WorldWideScience

Sample records for texture grain hardness

  1. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population

    Science.gov (United States)

    Grain hardness is a very important trait in determining wheat market class and also influences milling and baking traits. At the grain Hardness (Ha) locus on chromosome 5DS, there are two primary mutations responsible for conveying a harder kernel texture among U.S. hard red spring wheats: (1) the P...

  2. The effects of irradiation on grain coat color and grain texture in winter wheat

    International Nuclear Information System (INIS)

    Miao Bingliang; Liu Xueyu

    1989-01-01

    Dry seeds of the variety ''Yangmai 5'' with red grain coat, semihard grain texture, and the variety ''Ningmai 3'' with red grain coat, soft grain texture were irradiated with Y-rays at various doses.The effect on M1 grain coat color was different between two varieties, the higher doses made grain coat color of ''Yangmai 5'' redder, but had hardly effect on ''Ningmai 3''.The effect on M1 grain texture showed that the grain texture became softer with doses increased.It was found that there were 0.6% of positive ( red to white ) grain coat color mutants and 2.0% of negative(hard to soft) grain texture mutants in M2 of ''Yangmai 5'', and there were 0.7% of negative ( white to red ) grain coat color mutants and 3.6% of positive ( soft to hard ) grain texture mutants in M2 of ''Ningmai 3''. It seemed that the positive mutants selected in M3 were stable in M4. The results showed that γ-rays can be used to improve the grain coat color andgrain texture of wheat varieties

  3. The effect of texture and grain size on improving the mechanical properties of Mg-Al-Zn alloys by friction stir processing.

    Science.gov (United States)

    Peng, Jinhua; Zhang, Zhen; Liu, Zhao; Li, Yaozu; Guo, Peng; Zhou, Wei; Wu, Yucheng

    2018-03-08

    Friction stir processing (FSP) was used to achieve grain refinement on Mg-Al-Zn alloys, which also brought in significant texture modification. The different micro-texture characteristics were found to cause irregular micro-hardness distribution in FSPed region. The effects of texture and grain size were investigated by comparative analyses with strongly textured rolling sheet. Grain refinement improved both strength and elongation in condition of a basal texture while such led to an increment in yield stress and a drop in elongation and ultimate stress when the basal texture was modified by FSP.

  4. Flour quality and kernel hardness connection in winter wheat

    Directory of Open Access Journals (Sweden)

    Szabó B. P.

    2016-12-01

    Full Text Available Kernel hardness is controlled by friabilin protein and it depends on the relation between protein matrix and starch granules. Friabilin is present in high concentration in soft grain varieties and in low concentration in hard grain varieties. The high gluten, hard wheat our generally contains about 12.0–13.0% crude protein under Mid-European conditions. The relationship between wheat protein content and kernel texture is usually positive and kernel texture influences the power consumption during milling. Hard-textured wheat grains require more grinding energy than soft-textured grains.

  5. Identification of Alleles of Puroindoline Genes and Their Effect on Wheat (Triticum aestivum L. Grain Texture

    Directory of Open Access Journals (Sweden)

    Klára Štiasna

    2016-01-01

    Full Text Available Grain hardness is one of the most important quality characteristics of wheat (Triticum aestivum L.. It is a significant property of wheat grains and relates to milling quality and end product quality. Grain hardness is caused by the presence of puroindoline genes (Pina and Pinb. A collection of 25 genotypes of wheat with unusual grain colour (blue aleurone, purple and white pericarp, yellow endosperm was studied by polymerase chain reaction (PCR for the diversity within Pina and Pinb (alleles: Pina-D1a, Pina-D1b, Pinb-D1a, Pinb- -D1b, Pinb-D1c and Pinb-D1d. The endosperm structure was determined by a non-destructive method using light transfl ectance meter and grain hardness by a texture analyser. Genotype Novosibirskaya 67 and isogenic ANK lines revealed hitherto unknown alleles at the locus for the annealing of primers of Pinb-D1. Allele Pinb-D1c was found to be absent from each genotype. The mealy endosperm ranged from 0 to 100 % and grain hardness from 15.10 to 26.87 N per sample.

  6. Influence of grain size and texture prior to warm rolling on microstructure, texture and magnetic properties of Fe-6.5 wt% Si steel

    Science.gov (United States)

    Xu, H. J.; Xu, Y. B.; Jiao, H. T.; Cheng, S. F.; Misra, R. D. K.; Li, J. P.

    2018-05-01

    Fe-6.5 wt% Si steel hot bands with different initial grain size and texture were obtained through different annealing treatment. These bands were then warm rolled and annealed. An analysis on the evolution of microstructure and texture, particularly the formation of recrystallization texture was studied. The results indicated that initial grain size and texture had a significant effect on texture evolution and magnetic properties. Large initial grains led to coarse deformed grains with dense and long shear bands after warm rolling. Such long shear bands resulted in growth advantage for {1 1 3} 〈3 6 1〉 oriented grains during recrystallization. On the other hand, sharp {11 h} 〈1, 2, 1/h〉 (α∗-fiber) texture in the coarse-grained sample led to dominant {1 1 2} 〈1 1 0〉 texture after warm rolling. Such {1 1 2} 〈1 1 0〉 deformed grains provided massive nucleation sites for {1 1 3} 〈3 6 1〉 oriented grains during subsequent recrystallization. These {1 1 3} 〈3 6 1〉 grains were confirmed to exhibit an advantage on grain growth compared to γ-fiber grains. As a result, significant {1 1 3} 〈3 6 1〉 texture was developed and unfavorable γ-fiber texture was inhibited in the final annealed sheet. Both these aspects led to superior magnetic properties in the sample with largest initial grain size. The magnetic induction B8 was 1.36 T and the high frequency core loss P10/400 was 17.07 W/kg.

  7. Development of microstructure and texture in strip casting grain oriented silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Xu, Yun-Bo, E-mail: yunbo_xu@126.com; Zhang, Yuan-Xiang; Fang, Feng; Lu, Xiang; Liu, Hai-Tao; Wang, Guo-Dong

    2015-04-01

    Grain oriented silicon steel was produced by strip casting and two-stage cold rolling processes. The development of microstructure and texture was investigated by using optical microscopy, X-ray diffraction and electron backscattered diffraction. It is shown that the microstructure and texture evolutions of strip casting grain oriented silicon steel are significantly distinct from those in the conventional processing route. The as-cast strip is composed of coarse solidification grains and characterized by pronounced 〈001〉//ND texture together with very weak Goss texture. The initial coarse microstructure enhances {111} shear bands formation during the first cold rolling and then leads to the homogeneously distributed Goss grains through the thickness of intermediate annealed sheet. After the secondary cold rolling and primary annealing, strong γ fiber texture with a peak at {111}〈112〉 dominates the primary recrystallization texture, which is beneficial to the abnormal growth of Goss grain during the subsequent high temperature annealing. Therefore, the secondary recrystallization of Goss orientation evolves completely after the high temperature annealing and the grain oriented silicon steel with a good magnetic properties (B{sub 8}=1.94 T, P{sub 1.7/50}=1.3 W/kg) can be prepared. - Highlights: • Grain oriented silicon steel was developed by a novel ultra-short process. • Many evenly distributed Goss “seeds” were originated from cold rolled shear bands. • More MnS inhibitors were obtained due to the rapid cooling of strip casing. • The magnetic induction of grain oriented silicon steel was significantly improved.

  8. Extraction of Homogeneous Fine-Grained Texture Segments in Visual Images

    Czech Academy of Sciences Publication Activity Database

    Golcev, A.; Gritsenko, V.; Húsek, Dušan

    2017-01-01

    Roč. 27, č. 5 (2017), s. 447-477 ISSN 1210-0552 Institutional support: RVO:67985807 Keywords : texture feature * texture window * homogeneous fine-grained texture segment * extraction of texture segment * texture segmentation * ”float” coding method Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.394, year: 2016

  9. Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys

    Science.gov (United States)

    Hecht, Ulrike; Witusiewicz, Victor T.

    2017-12-01

    Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.

  10. Textural Maturity Analysis and Sedimentary Environment Discrimination Based on Grain Shape Data

    Science.gov (United States)

    Tunwal, M.; Mulchrone, K. F.; Meere, P. A.

    2017-12-01

    Morphological analysis of clastic sedimentary grains is an important source of information regarding the processes involved in their formation, transportation and deposition. However, a standardised approach for quantitative grain shape analysis is generally lacking. In this contribution we report on a study where fully automated image analysis techniques were applied to loose sediment samples collected from glacial, aeolian, beach and fluvial environments. A range of shape parameters are evaluated for their usefulness in textural characterisation of populations of grains. The utility of grain shape data in ranking textural maturity of samples within a given sedimentary environment is evaluated. Furthermore, discrimination of sedimentary environment on the basis of grain shape information is explored. The data gathered demonstrates a clear progression in textural maturity in terms of roundness, angularity, irregularity, fractal dimension, convexity, solidity and rectangularity. Textural maturity can be readily categorised using automated grain shape parameter analysis. However, absolute discrimination between different depositional environments on the basis of shape parameters alone is less certain. For example, the aeolian environment is quite distinct whereas fluvial, glacial and beach samples are inherently variable and tend to overlap each other in terms of textural maturity. This is most likely due to a collection of similar processes and sources operating within these environments. This study strongly demonstrates the merit of quantitative population-based shape parameter analysis of texture and indicates that it can play a key role in characterising both loose and consolidated sediments. This project is funded by the Irish Petroleum Infrastructure Programme (www.pip.ie)

  11. Appraisal on Textured Grain Growth and Photoconductivity of ZnO Thin Film SILAR

    Directory of Open Access Journals (Sweden)

    Deepu Thomas

    2014-01-01

    Full Text Available ZnO thin films were prepared by successive ionic layer adsorption reaction (SILAR method. The textured grain growth along c-axis in pure ZnO thin films and doped with Sn was studied. The structural analysis of the thin films was done by X-ray diffraction and surface morphology by scanning electron microscopy. Textured grain growth of the samples was measured by comparing the peak intensities. Textured grain growth and photo current in ZnO thin films were found to be enhanced by doping with Sn. ZnO thin film having good crystallinity with preferential (002 orientation is a semiconductor with photonic properties of potential benefit to biophotonics. From energy dispersive X-ray analysis, it is inferred that oxygen vacancy creation is responsible for the enhanced textured grain growth in ZnO thin films.

  12. Effect of texture on grain boundary misorientation distributions in polycrystalline high temperature superconductors

    International Nuclear Information System (INIS)

    Goyal, A.; Specht, E.D.; Kroeger, D.M.; Mason, T.A.

    1996-01-01

    Computer simulations were performed to determine the most probable grain boundary misorientation distribution (GBMD) in model polycrystalline superconductors. GBMDs in polycrystalline superconductors can be expected to dictate the macroscopic transport critical current density, J c . Calculations were performed by simulating model polycrystals and then determining the GBMD. Such distributions were calculated for random materials having cubic, tetragonal, and orthorhombic crystal symmetry. In addition, since most high temperature superconductors are tetragonal or pseudotetragonal, the effect of macroscopic uniaxial and biaxial grain orientation texture on the GBMD was determined for tetragonal materials. It is found that macroscopic texture drastically alters the grain boundary misorientation distribution. The fraction of low angle boundaries increases significantly with uniaxial and biaxial texture. The results of this study are important in correlating the macroscopic transport J c with the measured grain orientation texture as determined by x-ray diffraction copyright 1996 American Institute of Physics

  13. Relative effect(s) of texture and grain size on magnetic properties in a low silicon non-grain oriented electrical steel

    International Nuclear Information System (INIS)

    PremKumar, R.; Samajdar, I.; Viswanathan, N.N.; Singal, V.; Seshadri, V.

    2003-01-01

    Hot rolled low Si (silicon) non-grain oriented electrical steel was cold rolled to different reductions. Cold rolled material was subsequently recrystallized, 650 deg. C and 2 h, and then temper rolled (to 7% reduction) for the final grain growth annealing and decarburization treatment at 850 deg. C for 2-24 h. The development of texture, grain size and magnetic properties were characterized at different stages of processing. Effect of texture on magnetic properties (watt loss and permeability) was observed to be best represented by the ratio of volume fractions of (1 1 1) /(0 0 1) fibers, as estimated by convoluting X-ray ODFs (orientation distribution functions) with respective model functions. Such a ratio was termed as generalized texture factor (tf) for the non-grain oriented electrical steel. An effort was made to delink effects of grain size and texture, as represented by respective tf, on watt loss and permeability by careful analysis of experimental data. In general, low tf and/or high grain size were responsible for low watt loss and high permeability. However, individual effect of grain size or tf on magnetic properties was less significant at low tf or large grain size, respectively. An attempt was made to fit regression equations, namely--linear, exponential and power, relating magnetic properties with tf and grain size, limiting the fitting parameters to 3. Least standard deviations, between experimental and predicted values, were obtained by power regression equations for both magnetic properties

  14. Starch degradability of dry and ensiled high-moisture grains of corn hybrids with different textures at different grinding degrees

    Directory of Open Access Journals (Sweden)

    Wagner dos Reis

    2011-02-01

    Full Text Available This research evaluated corn grains with flint and dent texture (ensiled high-moisture or dried, submitted to grinding degrees, using the in situ ruminal degradation technique. Three rumen canulated adult sheeps were used in a complete randomized design, using a factorial outline 2 x 2 x 3, with two corn hybrids (flint and dent texture, two conservation methods (ensiled high-moisture and dry and three grinding degress (whole, coarsely and finely ground, corresponding to the sieve of 12; 10 and 8 mm. Starch soluble fraction (A of the dent hybrid ensiled corn grains was greater comparing to the dry materials and in both conservation forms this fraction was reduced in the flint texture hybrid, while the insoluble fraction potentially degradable (B the opposite occurred. The degradation potential was higher in grains ensiled in two textures. The ensiled allowed more starch effective degradation in relation to dry grain in two textures and the grains dent texture hybrid also increased such degradation in both conservation methods. The dent texture and the ensiled high-moisture grains proved the best option considering the starch degradability. Regardless of the conservation forms, the grains of corn hybrid flint texture should be finely ground, for providing higher ruminal degradation, while for the dent texture hybrid, the coarsely and whole grinding are the most suitable for ensiled and dry grain, respectively.

  15. Effect of hot band grain size on development of textures and magnetic properties in 2.0% Si non-oriented electrical steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.M. [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Huh, M.Y., E-mail: myhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Lee, H.J.; Park, J.T.; Kim, J.S. [Electrical Steel Sheet Research Group, Technical Research Laboratories, POSCO, Goedong-dong, Pohang (Korea, Republic of); Shin, E.J. [Korea Atomic Energy Research Institute, Neutron Science Division, Daejeon 305-353 (Korea, Republic of); Engler, O. [Hydro Aluminium Rolled Products GmbH, Research and Development Bonn, P.O. Box 2468, D-53014 Bonn (Germany)

    2015-12-15

    The effect of hot band grain size on the development of crystallographic texture and magnetic properties in non-oriented electrical steel sheet was studied. After cold rolling the samples with different initial grain sizes displayed different microstructures and micro-textures but nearly identical macro-textures. The homogeneous recrystallized microstructure and micro-texture in the sample having small grains caused normal continuous grain growth. The quite irregular microstructure and micro-texture in the recrystallized sample with large initial grain size provided a preferential growth of grains in 〈001〉//ND and 〈113〉//ND which were beneficial for developing superior magnetic properties. - Highlights: • We produced hot bands of electrical steel with different grain size but same texture. • Hot band grain size strongly affected cold rolling and subsequent annealing textures. • Homogeneous recrystallized microstructure caused normal continuous grain growth. • Irregular recrystallized microstructure led to selective growth of <001>//ND grains. • Hot band with large grains was beneficial for superior magnetic properties.

  16. Elongated grains in cube textured nickel substrate tapes and flat wires

    International Nuclear Information System (INIS)

    Eickemeyer, J; Gueth, A; Holzapfel, B

    2008-01-01

    Cube textured nickel substrate tapes and flat wires with an increased grain aspect ratio were prepared from nickel micro-alloyed with silver plus yttrium and silver, respectively. Whereas the maximum grain aspect ratio for the tapes was about 6, this value reached up to 14 for the flat wires

  17. Effects of Cold Rolling Reduction and Initial Goss Grains Orientation on Texture Evolution and Magnetic Performance of Ultra-thin Grain-oriented Silicon Steel

    Directory of Open Access Journals (Sweden)

    LIANG Rui-yang

    2017-06-01

    Full Text Available The ultra-thin grain-oriented silicon steel strips with a thickness of 0.06-0.12mm were produced by one-step-rolling methods with different Goss-orientation of grain-oriented silicon steel sheets. The effect of cold rolling reduction and initial Goss-orientation of samples on texture evolution and magnetic performance of ultra-thin grain-oriented silicon steel strips was studied by EBSD. The result shows that with the increase of cold rolling reduction and decrease of strips thickness, the recrystallization texture is enhanced after annealing.When the cold rolling reduction is 70%,RD//〈001〉 recrystallization texture is the sharpest, and the magnetic performance is the best. The higher degree of Goss orientation in initial sample is, the better magnetic performance of ultra-thin grain-oriented silicon steel.Therefore, for producing an ultra-thin grain-oriented silicon steel with high performance, a material with a concentrated orientation of Goss grains can be used.

  18. Surface Textural Analysis of Quartz Grains from Modern Point Bar Deposits in Lower Reaches of the Yellow River

    Science.gov (United States)

    Cheng, Yong; Liu, Cong; Lu, Ping; Zhang, Yu; Nie, Qi; Wen, Yiming

    2018-01-01

    The surfaces of quartz grains contain characteristic textures formed during the process of transport, due to their stable physical and chemical properties. The surface textures include the information about source area, transporting force, sedimentary environment and evolution history of sediment. Surface textures of quartz grains from modern point bar deposits in the lower reaches of the Yellow River are observed and studied by scanning electron microscopy (SEM). Results indicate that there are 22 kinds of surface textures. The overall surface morphology of quartz grains shows short transporting time and distance and weak abrasive action of the river water. The combined surface textures caused by mechanical action indicate that quartz grains are transporting in a high-energy hydrodynamic condition and suffer a strong mechanical impact and abrasion. The common solution pits prove that the chemical property of transportation medium is very active and quartz grains receive an obvious chemical action. The combination of these surface textures can be an identification mark of fluvial environment, and that is: quartz grains are main subangular outline, whose roundness is higher with the farther motion distance; Surface fluctuation degree of quartz grains is relatively high, and gives priority to high and medium relief; V-shaped percussion marks are very abundant caused by mechanical action; The conchoidal of different sizes and steps are common-developed with paragenesis relationship; Solution pits are common-developed as well. The study makes up for the blank of surface textures analysis of quartz grains from modern fluvial deposits in China. It provides new ideas and evidence for studies of the sedimentary process and environmental significance, although the deep meanings of these micro textures remain to be further researched.

  19. Formation of {1 0 0} textured columnar grain structure in a non-oriented electrical steel by phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Li; Yang, Ping, E-mail: yangp@mater.ustb.edu.cn; Zhang, Ning; Zong, Cui; Xia, Dongsheng; Mao, Weimin

    2014-04-01

    This study confirms the effect of anisotropic strain energy on the formation of {1 0 0} textured columnar grain structure induced by temperature gradient during γ to α phase transformation in pure hydrogen atmosphere. Results indicate that high temperature gradient in pure hydrogen atmosphere induces a significant strain energy difference across grain boundaries during γ to α phase transformation, leading to the formation of {1 0 0} texture with columnar grains. Given its simplicity in processing and its ability to obtain good texture-related magnetic properties, the proposed approach is helpful to the development of new types of non-oriented electrical steel. - Highlights: • A strong {1 0 0} texture with columnar grains was obtained. • Good texture and magnetic properties are attributed to the anisotropic strain energy. • The anisotropy in elastic strain energy was induced by the temperature gradient. • The phase transformation rate affects columnar grain morphology.

  20. The effect of β grain coarsening on variant selection and texture evolution in a near-β Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Obasi, G.C; Quinta da Fonseca, J. [Manchester Materials Science Centre, The University of Manchester, Grosvenor street, Manchester M13 9PL (United Kingdom); Rugg, D. [Rolls-Royce plc, P.O. Box 31, Derby DE24 8BJ (United Kingdom); Preuss, M., E-mail: michael.preuss@manchester.ac.uk [Manchester Materials Science Centre, The University of Manchester, Grosvenor street, Manchester M13 9PL (United Kingdom)

    2013-08-01

    In the present study, the role of β grain coarsening on α variant selection has been investigated in the near-titanium alloy Ti–21S (Ti–15Mo–3Nb–3Al–0.21Si). The material was first thermomechanically processed in a fully β stabilised condition in order to obtain a fine β grain size before undertaking controlled β grain-coarsening heat treatments. Two different cooling regimes ensured that either all β was retained at room temperature or significant α formation was achieved during cooling with predominant nucleation from β grain boundaries. Detailed electron backscatter diffraction (EBSD) characterisation was carried out on the β quenched and slowly cooled samples in order to compare the predicted α texture based on the β texture measurements assuming no variant selection with the measured α textures. A strong correlation was found between β coarsening and level of variant selection. It was also found that the grain coarsening is driven by the predominant growth of low energy grain boundaries, which strengthen specific β texture components that are part of the 〈1 1 1〉∥ND γ fibre. Finally, it was possible to demonstrate that the strengthened β texture components promote β grain pairs with a common 〈110〉, which is known to enhance variant selection when α nucleates from β grain boundaries.

  1. Bi axially textured YBCO coated tape prepared using dynamic magnetic grain alignment

    International Nuclear Information System (INIS)

    Genoud, Jean-Yves; Quinton, William

    1999-01-01

    A new magnetic grain alignment technique has been applied to produce bi axially aligned YBCO coated tapes. A bi axially aligned dispersion of orthorhombic Y 2 Ba 4 Cu 7 O 15 (Y-247) powder was settled on un textured silver substrates. The Y-247 tapes were then melt processed to achieve high critical current YBa 2 Cu 3 O 7 (Y-123) tapes with CuO as a secondary phase. The biaxial alignment is preserved after the densification process and a clear enhancement of J c relative to identically prepared un textured or uniaxially textured samples is obtained. Critical current densities of up to 5000 A cm -2 at 77 K in self-field and 1500 A cm -2 in 0.5 T magnetic field at 65 K were obtained in films from 20 to 40 μm thick. Problems were experienced in achieving fully densified thick films while retaining biaxial texture. The initial grain size distribution was found to have a major influence on the final microstructure. Provided significant improvements in J c can be obtained this method offers an alternative to coated tape processes based on epitaxial growth which has the advantage that it does not require textured substrates. The biaxial alignment technique described here intrinsically acts on the bulk material rather than at surfaces. This offers the possibility of texturing without thickness limitations. (author)

  2. Grain characterization and milling behaviour of near-isogenic lines differing by hardness.

    Science.gov (United States)

    Greffeuille, V; Abecassis, J; Rousset, M; Oury, F-X; Faye, A; L'Helgouac'h, C Bar; Lullien-Pellerin, V

    2006-12-01

    Wheat grain hardness is a major factor affecting the milling behaviour and end-product quality although its exact structural and biochemical basis is still not understood. This study describes the development of new near-isogenic lines selected on hardness. Hard and soft sister lines were characterised by near infrared reflectance (NIR) and particle size index (PSI) hardness index, grain protein content, thousand kernel weight and vitreousness. The milling behaviour of these wheat lines was evaluated on an instrumented micromill which also measures the grinding energy and flour particle size distribution was investigated by laser diffraction. Endosperm mechanical properties were measured using compression tests. Results pointed out the respective effect of hardness and vitreousness on those characteristics. Hardness was shown to influence both the mode of fracture and the mechanical properties of the whole grain and endosperm. Thus, this parameter also acts on milling behaviour. On the other hand, vitreousness was found to mainly play a role on the energy required to break the grain. This study allows us to distinguish between consequences of hardness and vitreousness. Hardness is suggested to influence the adhesion forces between starch granules and protein matrix whereas vitreousness would rather be related to the endosperm microstructure.

  3. Effect of texture and grain size on magnetic flux density and core loss in non-oriented electrical steel containing 3.15% Si

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.M.; Park, S.Y. [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Huh, M.Y., E-mail: myhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Kim, J.S. [Electrical Steel Sheet Research Group, Technical Research Laboratories, POSCO, Goedong-dong, Pohang (Korea, Republic of); Engler, O. [Hydro Aluminium Rolled Products GmbH, R and D Center Bonn, P.O. Box 2468, D-53014 Bonn (Germany)

    2014-03-15

    In an attempt to differentiate the impact of grain size and crystallographic texture on magnetic properties of non-oriented (NO) electrical steel sheets, samples with different grain sizes and textures were produced and analyzed regarding magnetic flux density B and core loss W. The textures of the NO electrical steel samples could be precisely quantified with the help of elliptical Gaussian distributions. In samples with identical textures, small grain sizes resulted in about 15% higher core loss W than larger grains, whereas grain size only moderately affected the magnetic flux density B. In samples having nearly the same grain size, a correlation of the magneto-crystalline anisotropic properties of B and W with texture was obtained via the anisotropy parameter A(h{sup →}). With increasing A(h{sup →}) a linear decrease of B and a linear increase of W were observed. - Highlights: • We produced electrical steel sheets having different grain size and texture. • Magnetic flux density B and core loss W were varied with grain size and texture. • Correlation of B and W with texture was established via anisotropy parameter A(h{sup →}). • With increasing A(h{sup →}) a linear decrease of B and a linear increase of W were observed. • Grain size mainly affected W with only minor impact on B.

  4. Relating microstructure, sensory and instrumental texture of processed oat

    Directory of Open Access Journals (Sweden)

    M. SALMENKALLIO-MARTTILA

    2008-12-01

    Full Text Available This study is a part of a larger project aiming to produce new, healthy, and tasty food ingredients from oat. Germination and different heating processes can be used to improve the texture and flavour of cereals. In this study effects of germination and wet and dry heating on the microstructure, instrumental structure and sensory properties of two oat varieties were assessed. The microstructure of native, germinated, autoclaved and extruded grains of the hulled cv. Veli and hull-less cv. Lisbeth was examined by light microscopy, the texture was measured by determining the milling energy and hardness of the grains and sensory characteristics were evaluated with descriptive sensory profile analysis. In cv. Veli the cells of the starchy endosperm were smaller than in cv. Lisbeth and ß-glucan was concentrated in the subaleurone layer. In cv. Lisbeth ß-glucan was evenly distributed in the starchy endosperm. The grains of cv. Lisbeth were more extensively modified in the germination process than the grains of cv. Veli, otherwise the effects of processing on the grains of the two cultivars were similar. Germination caused cell wall degradation, autoclaving and extrusion cooking caused starch gelatinization. Autoclaving resulted in the hardest perceived texture in oat. Gelatinization of starch appeared to contribute more to the hardness of oat groats than the cell wall structure. Of the instrumental methods used in this study the milling energy measurement appeared to be the most useful method for the analysis of the effects of processing on grain structure.;

  5. Grain refinement and hardness distribution in cryogenically cooled ferritic stainless steel welds

    International Nuclear Information System (INIS)

    Amuda, M.O.H.; Mridha, S.

    2013-01-01

    Highlights: ► Grain refinement was undertaken in AISI 430 FSS welds using cryogenic cooling. ► Flow rates of the cryogenic liquid influenced weld grain structure. ► Cryogenic cooling of welds generates about 45% grain refinement in welds. ► Phase structure of welds is not affected by flow rates of cryogenic liquid. ► Hardness profile in cryogenically cooled and conventional welds is similar. - Abstract: The energy input and heat dissipation dynamics during fusion welding generates coarse grain in the welds resulting in poor mechanical properties. While grain refinement in welds via the control of the energy input is quite common, the influence of heat dissipation on grain morphology and properties is not fully established. This paper characterized cryogenically cooled ferritic stainless steel (FSS) welds in terms of grain structure and hardness distribution along transverse and thickness directions. Cryogenic cooling reduces the weld dimension by more than 30% and provides grain refinement of almost 45% compared to conventional weld. The hardness distribution in the thickness direction gives slightly higher profile because of decreased grain growth caused by faster cooling effects of cryogenic liquid

  6. Grain growth kinetics of textured-BaTiO3 ceramics

    Indian Academy of Sciences (India)

    Administrator

    3Department of Physics and Materials Science, City University of Hong Kong, Hong Kong ... Abstract. Textured BaTiO3 (BT) ceramics were fabricated by templated grain growth method. Effects of ... approaches to improve electrical properties of lead-free ceramics. ... modification methods to enhance the piezoelectric pro-.

  7. Influence of cold rolling direction on texture, inhibitor and magnetic properties in strip-cast grain-oriented 3% silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Fang, F., E-mail: fangfengdbdx@163.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Lu, X.; Zhang, Y.X.; Wang, Y.; Jiao, H.T.; Cao, G.M.; Yuan, G.; Xu, Y.B. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, EL Paso, TX 79968 (United States); Wang, G.D. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2017-02-15

    An unconventional cold rolling scheme (inclined rolling at 0°, 30°, 45°, 90° during second-stage cold rolling process) was adopted to process grain-oriented silicon steel based on strip casting process. The influences of inclination angles on microstructure, texture, inhibitor and magnetic properties were studied by a combination of EBSD, XRD and TEM. It was found that the α-fiber texture was weakened and γ-fiber was strengthened in cold rolled sheet with increase in inclination angle. The primary recrystallization sheet exhibited more homogeneous microstructure with relatively strong γ-fiber, medium α-fiber texture, weak λ-fiber texture and Goss component at high inclination angles. Fine and homogeneous inhibitors were obtained after primary annealing with increase in inclination angle from 0° to 90° because of more uniform deformation after inclined rolling. The grain-oriented silicon steel experienced completely secondary recrystallization at various inclination angles after final annealing process, with superior magnetic properties at 0° and 90°. Furthermore, Goss nuclei capable of final secondary recrystallization in strip casting process newly formed both in-grain shear bands and grain boundaries region during second-stage cold rolling and subsequent annealing process, which is different from the well-accepted results that Goss texture originated from the subsurface layer of the hot rolled sheet or during intermediate annealing process. In addition, the Goss texture that nucleated in-grain shear bands was weaker but more accurate as compared to that in grain boundaries region. - Highlights: • Inclined cold rolling was adopted to process strip-cast grain-oriented silicon steel. • Influence of inclination angles on texture, inhibitor and magnetic properties was studied. • The initial texture was changed with respect to the inclination angle. • Homogeneous inhibitors were obtained after primary annealing at various inclination angles.

  8. The relative contribution of ferroelastic and ferroelectric texture to the character of a hard PZT ceramic

    Science.gov (United States)

    Key, Thomas Stallings

    The development of ferroelastic (90°) texture in addition to ferroelectric (180°) texture is essential to maximizing the piezoelectric properties of many hard tetragonal PZTs, including Piezoetechnologies K270. Ferroelastic texture results from motion of domain walls that is dependent on an individual crystals orientation. Increases in ferroelastic texture raises the maximum net polarization that can be achieved by changes in ferroelectric texture. By studying a hard PZT poled under various temperature conditions, insight was gained into factors affecting the development of ferroelastic texture and how ferroelastic texture contributes to piezoelectric properties. Depinning proved to be the major barrier to preventing ferroelastic domain wall motion where strain based domain interactions and polar defect complexes on the domain level appear to be the dominant factors. Insight into the affect of increased domain texture on the relationship between the increasing magnitude of the remnant polarization (|Pr|) and the magnitude of the coercive field (|EC|) was gained by plotting |EC| vs. |Pr| as a function of poling time for a variety of poling temperatures. At low |Pr| values, |EC| increased rapidly as a function of increases in |Pr| regardless of the poling temperature. This relationship was characteristic of samples poled at 25 °C where increases in ferroelastic texture were largely suppressed. Because increases in polarization were still observable changes in ferroelectric texture most responsible for the polarization increase and like play a strong role in the initial |EC| vs. |Pr| relationship. As |Pr| increased beyond 5 to 8 iC/cm2, the slope of |EC| vs. |Pr| decreased where the reduction in slope increased with poling temperature. This only occurred in samples poled at elevated temperatures where ferroelastic texture was know to ultimately develop during the poling process, leading to the suggestion that the change in slope was due to increases in combined

  9. Effect of Anneal temperature and Time on Change of Texture and Hardness of Al-Cu-Mg

    International Nuclear Information System (INIS)

    Masrukan; Adolf Asih, S.

    2000-01-01

    Observation of the effect of annealing temperature to its texture and hardness of the Al-Cu-Mg has been done. In this experiments aluminium alloy powder and 5 pieces cubes of this alloy with size of 8 x 8 x 8 mm 3 were used. The powder was not annealed, 2 pieces cube were annealed for 20 hours at temperatures of 200 o C and 300 o respectively, finally 3 pieces cube were annealed at temperature of 400 o C. Texture measurement was done using x-ray diffraction with wave length of 1.78892 A using inverse pole figure method. The hardness testing results at constant temperature of 400 o C and various time indicated that the hardness values are decreased with increasing annealed time. Also, at hardness testing for constant time and various annealing temperatures indicated that the hardness values decreased with increasing annealing temperature

  10. Ion-beam texturing of uniaxially textured Ni films

    International Nuclear Information System (INIS)

    Park, S.J.; Norton, D.P.; Selvamanickam, Venkat

    2005-01-01

    The formation of biaxial texture in uniaxially textured Ni thin films via Ar-ion irradiation is reported. The ion-beam irradiation was not simultaneous with deposition. Instead, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux, which differs from conventional ion-beam-assisted deposition. The uniaxial texture is established via a nonion beam process, with the in-plane texture imposed on the uniaxial film via ion beam bombardment. Within this sequential ion beam texturing method, grain alignment is driven by selective etching and grain overgrowth

  11. Texture analysis of a friction stir welded ultrafine grained Al–Al2O3 composite produced by accumulative roll-bonding

    International Nuclear Information System (INIS)

    Shamanian, Morteza; Mohammadnezhad, Mahyar; Szpunar, Jerzy

    2014-01-01

    Highlights: • Aluminum matrix composite was successfully bonded using friction stir welding. • After welding process the fraction of low angle boundary area rapidly decreases. • The grain growth in the NZ is related the increase of temperature during the FSW. • The aluminum matrix composite has a strong Rotated Cube texture. • The weld nugget has a Rotated Cube and shear texture. - Abstract: In recent years, several studies have been focused on friction stir welding of aluminum alloys, and some researchers have also been reported on welding of aluminum-based composites. In the present research, ultrafine grained sheets of aluminum matrix composite (Al–Al 2 O 3 ) were produced by accumulative roll-bonding (ARB) technique. The aluminum composite sheets were then joined by friction stir welding. The present work describes the effect of the FSW process on the microstructure and crystallographic textures in the base metal and weld nugget. Electron backscattered diffraction (EBSD) results demonstrated the existence of different grain orientations within the weld nugget as compared to the base metal. Al composite plates have a Rotated Cube texture component. Moreover, in the nugget, grain structure with Rotated Cube and shear texture developed. Friction stir welding coarsened the grain size in the weld zone from the original grain size of 3–17 μm

  12. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression.

    Science.gov (United States)

    Zhang, Lixin; Zhang, Wencong; Cao, Biao; Chen, Wenzhen; Duan, Junpeng; Cui, Guorong

    2017-10-26

    The ZK61 alloy rods with different grain sizes and crystallographic texture were successfully fabricated by cyclic extrusion and compression (CEC). Their room-temperature tension & compression yield strength displayed a significant dependence on grain size and texture, essentially attributed to {10-12} twinning. The texture variations were characterized by the angle θ between the c-axis of the grain and the extrusion direction (ED) during the process. The contour map of room-temperature yield strength as a function of grain size and the angle θ was obtained. It showed that both the tension yield strength and the compression yield strength of ZK61 alloy were fully consistent with the Hall-Patch relationship at a certain texture, but the change trends of the tension yield strength and the compression yield strength were completely opposite at the same grain size while texture altered. The friction stresses of different deformation modes calculated based on the texture confirmed the tension yield strength of the CECed ZK61 alloy rods, which was determined by both the basal slip and the tension twinning slip during the tension deformation at room temperature, while the compression yield strength was mainly determined by the basal slip during the compression deformation.

  13. Microstructure and texture of a nano-grained complex Al alloy fabricated by accumulative roll-bonding of dissimilar Al alloys.

    Science.gov (United States)

    Lee, Seong-Hee; Jeon, Jae-Yeol; Lee, Kwang-Jin

    2013-01-01

    An ultrafine grain (UFG) complex lamella aluminum alloy sheet was successfully fabricated by ARB process using AA1050 and AA6061. The lamella thickness of the alloy became thinner and elongated to the rolling direction with increasing the number of ARB cycles. By TEM observation, it is revealed that the aspect ratio of UFGs formed by ARB became smaller with increasing the number of ARB cycles. In addition, the effect of ARB process on the development of deformation texture at the quarter thickness of ARB-processed sheets was clarified. ARB process leaded to the formation of the rolling texture with shear texture and weak cube orientation. The subdivision of the grains to the rolling direction began to occur after 3 cycles of the ARB, resulting in formation of ultrafine grains with small aspect ratio. After 5 cycles, the ultrafine grained structure with the average grain diameter of 560 nm develops in almost whole regions of the sample.

  14. Effects of hardness of abrasive grains on surface roughness of work piece in PVA bonded grinding wheel

    International Nuclear Information System (INIS)

    Nitta, S.; Takata, A.; Ishizaki, K.

    2000-01-01

    The purpose of this study is to clarify relation between hardness of abrasive grains and surface roughness of work piece in the case of PVA (Polyvinyl alcohol) bonded grinding wheels. Two PVA bonded grinding wheels; with diamond or silicon carbide as abrasive grains and grinding of glass and aluminum alloy was performed. The PVA bonded grinding wheels The PVA bonded grinding wheel with silicon carbide could not grind the glass. Because insufficiency in hardness, the PVA bonded grinding wheel with the diamond abrasive grains caused deep scratch on the aluminum alloy. It was found that the final surface roughness of the work piece was not proportional to the hardness of abrasive grains. The suitable hardness of abrasive grains will be obtained by the hardness of work piece. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  15. Influence of hydrothermal processing on functional properties and grain morphology of finger millet.

    Science.gov (United States)

    Dharmaraj, Usha; Meera, M S; Reddy, S Yella; Malleshi, Nagappa G

    2015-03-01

    Finger millet was hydrothermally processed followed by decortication. Changes in color, diameter, density, sphericity, thermal and textural characteristics and also some of the functional properties of the millet along with the grain morphology of the kernels after hydrothermal processing and decortication were studied. It was observed that, the millet turned dark after hydrothermal processing and color improved over native millet after decortication. A slight decrease in grain diameter was observed but sphericity of the grains increased on decortication. The soft and fragile endosperm turned into a hard texture and grain hardness increased by about 6 fold. Hydrothermal processing increased solubility and swelling power of the millet at ambient temperature. Pasting profile indicated that, peak viscosity decreased significantly on hydrothermal processing and both hydrothermally processed and decorticated millet exhibited zero breakdown viscosity. Enthalpy was negative for hydrothermally processed millet and positive for decorticated grains. Microscopic studies revealed that the orderly structure of endosperm changed to a coherent mass after hydrothermal processing and the different layers of seed coat get fused with the endosperm.

  16. Evaluation of the effect of initial texture on the development of deformation texture

    DEFF Research Database (Denmark)

    Leffers, Torben; Juul Jensen, Dorte

    1986-01-01

    The authors describe a computer procedure which allows them to introduce experimental initial textures as starting conditions for texture simulation (instead of a theoretical random texture). They apply the procedure on two batches of copper with weak initial textures and on fine-grained and coarse......-grained aluminium with moderately strong initial textures. In copper the initial texture turns out to be too weak to have any significant effect. In aluminium the initial texture has a very significant effect on the simulated textures-similar to the effect it has on the experimental textures. However......, there are differences between the simulated and the experimental aluminium textures that can only be explained as a grain-size effect. Possible future applications of the procedure are discussed...

  17. Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hong-Yu; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; Wang, Guo-Dong

    2017-03-15

    A 0.1 mm-thick grain-oriented silicon steel sheet was successfully produced using strip casting and three-stage cold rolling method. The microstructure, texture and inhibitor evolution during the processing was briefly analyzed. It was found that Goss texture was absent in the hot rolled sheet because of the lack of shear deformation. After normalizing, a large number of dispersed MnS precipitates with the size range of 15–90 nm were produced. During first cold rolling, dense shear bands were generated in the deformed ferrite grains, resulting in the intense Goss texture after first intermediate annealing. The microstructure was further refined and homogenized during the subsequent cold rolling and annealing processes. After primary recrystallization annealing, a homogeneous microstructure consisting of fine and equiaxed grains was produced while the associated texture was characterized by a strong γ-fiber texture. Finally, a complete secondary recrystallization microstructure consisting of entirely large Goss grains was produced. The magnetic induction B{sub 8} and iron loss P{sub 10/400} was 1.79 T and 6.9 W/kg, respectively. - Highlights: • Ultra-thin grain-oriented silicon steel was produced by strip casting process. • Microstructure, texture and inhibitor evolution was briefly investigated. • Goss texture was absent in primary recrystallization annealed sheet. • MnS precipitates with a size range of 15–90 nm formed after normalizing. • A complete secondary recrystallization microstructure was produced.

  18. Texture analysis of a friction stir welded ultrafine grained Al–Al{sub 2}O{sub 3} composite produced by accumulative roll-bonding

    Energy Technology Data Exchange (ETDEWEB)

    Shamanian, Morteza, E-mail: shamanian@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mohammadnezhad, Mahyar [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N5A9 (Canada)

    2014-12-05

    Highlights: • Aluminum matrix composite was successfully bonded using friction stir welding. • After welding process the fraction of low angle boundary area rapidly decreases. • The grain growth in the NZ is related the increase of temperature during the FSW. • The aluminum matrix composite has a strong Rotated Cube texture. • The weld nugget has a Rotated Cube and shear texture. - Abstract: In recent years, several studies have been focused on friction stir welding of aluminum alloys, and some researchers have also been reported on welding of aluminum-based composites. In the present research, ultrafine grained sheets of aluminum matrix composite (Al–Al{sub 2}O{sub 3}) were produced by accumulative roll-bonding (ARB) technique. The aluminum composite sheets were then joined by friction stir welding. The present work describes the effect of the FSW process on the microstructure and crystallographic textures in the base metal and weld nugget. Electron backscattered diffraction (EBSD) results demonstrated the existence of different grain orientations within the weld nugget as compared to the base metal. Al composite plates have a Rotated Cube texture component. Moreover, in the nugget, grain structure with Rotated Cube and shear texture developed. Friction stir welding coarsened the grain size in the weld zone from the original grain size of 3–17 μm.

  19. Broken rice kernels and the kinetics of rice hydration and texture during cooking.

    Science.gov (United States)

    Saleh, Mohammed; Meullenet, Jean-Francois

    2013-05-01

    During rice milling and processing, broken kernels are inevitably present, although to date it has been unclear as to how the presence of broken kernels affects rice hydration and cooked rice texture. Therefore, this work intended to study the effect of broken kernels in a rice sample on rice hydration and texture during cooking. Two medium-grain and two long-grain rice cultivars were harvested, dried and milled, and the broken kernels were separated from unbroken kernels. Broken rice kernels were subsequently combined with unbroken rice kernels forming treatments of 0, 40, 150, 350 or 1000 g kg(-1) broken kernels ratio. Rice samples were then cooked and the moisture content of the cooked rice, the moisture uptake rate, and rice hardness and stickiness were measured. As the amount of broken rice kernels increased, rice sample texture became increasingly softer (P hardness was negatively correlated to the percentage of broken kernels in rice samples. Differences in the proportions of broken rice in a milled rice sample play a major role in determining the texture properties of cooked rice. Variations in the moisture migration kinetics between broken and unbroken kernels caused faster hydration of the cores of broken rice kernels, with greater starch leach-out during cooking affecting the texture of the cooked rice. The texture of cooked rice can be controlled, to some extent, by varying the proportion of broken kernels in milled rice. © 2012 Society of Chemical Industry.

  20. Effect of grain size on the hardness and reactivity of plasma-sintered beryllium

    International Nuclear Information System (INIS)

    Kim, Jae-Hwan; Nakamichi, Masaru

    2014-01-01

    Beryllium and its intermetallic compounds have attracted great attention as promising neutron multipliers in fusion reactors. In this study, mechanical and chemical properties of fabricated plasma-sintered beryllium (PS-Be) with different grain-sizes are investigated. Density and hardness analysis results of the fabricated PS-Be samples infer that a smaller grain size in the sintered Be indicates higher porosity and hardness. Sintered Be with a large grain size exhibits better resistance toward oxidation at 1273 K in dry air and at 1073 K in Ar/1% H 2 O, since oxidation at the grain boundaries of the determines the rate. In contrast, at 1273 K in Ar/1% H 2 O, a catastrophic oxidation is indicated by the increase of weight of the samples and the generation of H 2 from the bulk Be

  1. New durum wheat with soft kernel texture: end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    Science.gov (United States)

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which precludes conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft whit...

  2. Effects by the microstructure after hot and cold rolling on the texture and grain size after final annealing of ferritic non-oriented FeSi electrical steel

    Science.gov (United States)

    Schneider, J.; Stöcker, A.; Franke, A.; Kawalla, R.

    2018-04-01

    The magnetic properties of fully processed non-oriented FeSi electrical steel are characterized by their magnetization behavior and specific magnetic losses. The magnetic properties are determined by the texture and microstructure. Less gamma fiber intensity and a high intensity of preferable texture components, especially cube fiber texture, are desirable to obtain an excellent magnetizing behavior. Furthermore, large grain sizes are necessary to reach low values of the specific magnetic losses. The fabrication route of the fully processed non-oriented electrical steels comprises a heavy cold rolling of the hot rolled material before final annealing. To fulfill the requirements on large grain size for low loss materials, grain growth, which appears after complete recrystallization, plays an important role. In this paper we will analyze the influence of different microstructures of the hot strip and the resulting microstructure after cold rolling on the appearance of recrystallization and grain growth after final annealing. The evolution of texture reflects the present ongoing softening processes: recovery, recrystallization and finally grain growth at the given annealing conditions. It will be shown that the image of texture at recrystallization is remarkable different from the texture at grain growth. Substantially grain growth is obtained at lower annealing temperatures for an optimum microstructure of the hot rolled material.

  3. Effects by the microstructure after hot and cold rolling on the texture and grain size after final annealing of ferritic non-oriented FeSi electrical steel

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2018-04-01

    Full Text Available The magnetic properties of fully processed non-oriented FeSi electrical steel are characterized by their magnetization behavior and specific magnetic losses. The magnetic properties are determined by the texture and microstructure. Less gamma fiber intensity and a high intensity of preferable texture components, especially cube fiber texture, are desirable to obtain an excellent magnetizing behavior. Furthermore, large grain sizes are necessary to reach low values of the specific magnetic losses. The fabrication route of the fully processed non-oriented electrical steels comprises a heavy cold rolling of the hot rolled material before final annealing. To fulfill the requirements on large grain size for low loss materials, grain growth, which appears after complete recrystallization, plays an important role. In this paper we will analyze the influence of different microstructures of the hot strip and the resulting microstructure after cold rolling on the appearance of recrystallization and grain growth after final annealing. The evolution of texture reflects the present ongoing softening processes: recovery, recrystallization and finally grain growth at the given annealing conditions. It will be shown that the image of texture at recrystallization is remarkable different from the texture at grain growth. Substantially grain growth is obtained at lower annealing temperatures for an optimum microstructure of the hot rolled material.

  4. TOPICAL REVIEW Textured silicon nitride: processing and anisotropic properties

    Directory of Open Access Journals (Sweden)

    Xinwen Zhu and Yoshio Sakka

    2008-01-01

    Full Text Available Textured silicon nitride (Si3N4 has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW and templated grain growth (TGG. The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3 N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured

  5. Behaviors of Deformation, Recrystallization and Textures Evolution of Columnar Grains in 3%Si Electrical Steel Slabs

    Directory of Open Access Journals (Sweden)

    SHAO Yuan-yuan

    2017-11-01

    Full Text Available The behaviors of deformation and recrystallization and textures evolution of 3% (mass fraction Si columnar-grained electrical steel slabs were investigated by electron backscatter diffractometer technique and X-ray diffraction. The results indicate that the three columnar-grained samples have different initial textures with the long axes arranged along rolling, transverse and normal directions. Three shear orientations can be obtained in surface layer after hot rolling, of which Goss orientation is formed easily. The α and γ fibre rolling orientations are obtained in RD sample, while strong γ fibre orientations in TD sample and sharp {100} orientations in ND sample are developed respectively. In addition, cube orientation can be found in all the three samples. The characteristics of hot rolled orientations in center region reveal distinct dependence on initial columnar-grained orientations. Strong {111}〈112〉 orientation in RD and TD samples separately comes from Goss orientation of hot rolled sheets, and sharp rotated cube orientation in ND sample originates from the initial {100} orientation of hot rolled sheets after cold rolling. Influenced by initial deviated orientations and coarse grain size, large orientation gradient of rotated cube oriented grain can be observed in ND sample. The coarse {100} orientated grains of center region in the annealed sheets show the heredity of the initial columnar-grained orientations.

  6. Texturing of sodium bismuth titanate-barium titanate ceramics by templated grain growth

    Science.gov (United States)

    Yilmaz, Huseyin

    2002-01-01

    Sodium bismuth titanate modified with barium titanate, (Na1/2Bi 1/2)TiO3-BaTiO3 (NBT-BT), is a candidate lead-free piezoelectric material which has been shown to have comparatively high piezoelectric response. In this work, textured (Na1/2Bi1/2)TiO 3-BaTiO3 (5.5mol% BaTiO3) ceramics with pc (where pc denotes the pseudocubic perovskite cell) orientation were fabricated by Templated Grain Growth (TGG) or Reactive Templated Grain Growth (RTGG) using anisotropically shaped template particles. In the case of TGG, molten salt synthesized SrTiO3 platelets were tape cast with a (Na1/2Bi1/2)TiO3-5.5mol%BaTiO3 powder and sintered at 1200°C for up to 12 hours. For the RTGG approach, Bi4Ti3O12 (BiT) platelets were tape cast with a Na2CO3, Bi2O3, TiO 2, and BaCO3 powder mixture and reactively sintered. The TGG approach using SrTiO3 templates gave stronger texture along [001] compared to the RTGG approach using BiT templates. The textured ceramics were characterized by X-ray and electron backscatter diffraction for the quality of texture. The texture function was quantified by the Lotgering factor, rocking curve, pole figures, inverse pole figures, and orientation imaging microscopy. Electrical and electromechanical property characterization of randomly oriented and pc textured (Na1/2Bi1/2)TiO 3-5.5 mol% BaTiO3 rhombohedral ceramics showed 0.26% strain at 70 kV/cm, d33 coefficients over 500 pC/N have been obtained for highly textured samples (f ˜ 90%). The piezoelectric coefficient from Berlincourt was d33 ˜ 200 pC/N. The materials show considerable hysteresis. The presence of hysteresis in the unipolar-electric field curve is probably linked to the ferroelastic phase transition seen in the (Na 1/2Bi1/2)TiO3 system on cooling from high temperature at ˜520°C. The macroscopic physical properties (remanent polarization, dielectric constant, and piezoelectric coefficient) of random and textured ([001] pc) rhombohedral perovskites were estimated by linear averaging of single

  7. Effect of Maize Hybrid Maturity and Grain Hardness on Fumonisin and Zearalenone Contamination

    Directory of Open Access Journals (Sweden)

    Amedeo Reyneri

    2011-02-01

    Full Text Available The level of resistance in commercial hybrids for Fusarium ear rot is still not in general adequate to prevent unacceptable toxin concentrations in field. The purpose of this experiment was to verify the behaviour of commercial dent maize hybrids for fumonisin and zearalenone contamination and to identify the variety traits that influence the production of these toxins. Field experiments were carried out in 2000, 2001 and 2002 to evaluate the effect of maize hybrid maturity and endosperm hardness on European Corn Borer (ECB incidence, fungal ear rot incidence and severity and on fumonisin B1 and zearalenone contents. Nineteen yellow soft commercial hybrids, from the 500, 600 and 700 FAO maturity groups, were compared in 4 sites in NW Italy. Hybrid were grouped in 3 endosperm hardness categories (hard, intermediate, soft in function of Hard/Soft (H/S endosperm ratio. No effect due to endosperm hardness or hybrid maturity on the ECB infestation or fungal ear rot incidence and severity was observed. Grain hardness significant influenced fumonisin B1 content: hard endosperm hybrids showed 50% lower contamination than soft hybrids. The presence of fumonisin B1 in the grain of different maturity hybrids only resulted to be significantly different in 2001 experiment, with a mean concentration 2 times higher in the later hybrids (FAO rating 700 compared to the medium and medium-late hybrids. The zearalenone content never resulted to be significantly different in function of the endosperm hardness, while, late maturing hybrids, in which grain moisture content decreases slowly below 30%, are more susceptible to zearalenone contamination. This research has highlighted the presence of variety traits that can influence mycotoxin contamination. An accurate choice of hybrid, considering the territorial and cultivation context, could contribute to achieve products, that contain mycotoxins, which do not exceed the maximum international and UE regulation levels.

  8. Texture change through film thickness and off-axis accommodation of (0 0 2) planes

    International Nuclear Information System (INIS)

    Shetty, A.R.; Karimi, A.

    2011-01-01

    We present our recent experimental results on the formation of off-axis texture and crystallographic tilting of crystallites that take place in thin film of transition metal nitrides. For this purpose, the microstructural development of TiAlN film was studied, specially the change in texture with film thickness. Fiber texture was measured using θ-2θ and pole figure X-ray diffraction (XRD), while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the microstructure and changes in texture with thickness. The sin 2 ψ method was applied to determine the stresses on (1 1 1) and (0 0 2) plane. With deposition parameters chosen, the growth texture mechanism is discussed in three different stages of film growth. Surface energy minimization at low thickness leads to the development of (0 0 2) orientation. On the other hand, the competitive growth promotes the growth of (1 1 1) planes parallel to film surface at higher thickness. However, contrary to the prediction of growth models, the (0 0 2) grains are not completely overlapped by (1 1 1) grains at higher thickness. Rather the (0 0 2) grains still constitute the surface, but are tilted away from the substrate normal showing substantial in-plane alignment to allow the (1 1 1) planes remain parallel to film surface. Intrinsic stress along (1 1 1) and (0 0 2) shows a strong dependence with preferred orientation. The stress level in (0 0 2) grains which was compressive at low thickness changes to tensile at higher thickness. This change in the nature of stress allows the (0 0 2) planes to tilt away in order to promote the growth of 〈1 1 1〉 parallel to film normal and to minimize the overall energy of system due to high compressive stress stored in the (1 1 1) grains. The change in surface morphology with thickness was observed using SEM. An increase in surface roughness with film thickness was observed which indicates the development of (1 1 1) texture parallel to film

  9. On the implication of solute contents and grain boundaries on the Hall-Petch relationship of nanocrystalline Ni-W alloys

    International Nuclear Information System (INIS)

    Shakibi Nia, N.; Savall, C.; Creus, J.; Bourgon, J.; Girault, P.; Metsue, A.; Cohendoz, S.; Feaugas, X.

    2016-01-01

    Nano-crystalline nickel-tungsten alloys are investigated in order to provide evidence of the contribution of the solute content (light elements and tungsten) and grain-boundaries on hardness. For this purpose, Ni-W alloys were elaborated by electrodeposition in an additive free citrate ammonium bath. The variation of electrodeposition conditions leads to W contents up to 18 at%, with a broad range of grain sizes (5–650 nm). The incorporation of light elements (H, O, C, N) depends on the deposition applied conditions and a progressive modification of the texture is observed with the following sequence: {110}, NT (Non-Textured) and {111} textures. We show that the Hall-Petch relationship for these alloys is influenced by the presence of light elements, the nature of the crystallographic texture and the grain boundaries character. The dependence of grain size on flow stress is a direct consequence of the solute content (solute strengthening) and the evolution of the internal stresses with grain size. To explain the experimental data, two competing physical mechanisms are suggested: grain boundary shearing and dislocation emission at grain boundary, which are affected by the nature of the grain boundary and the solute content.

  10. On the implication of solute contents and grain boundaries on the Hall-Petch relationship of nanocrystalline Ni-W alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shakibi Nia, N., E-mail: Niusha.Shakibi-Nia@uibk.ac.at [LaSIE (UMR 7356) CNRS, Université de La Rochelle, Av. Michel Crépeau, F-17000, La Rochelle (France); Savall, C.; Creus, J. [LaSIE (UMR 7356) CNRS, Université de La Rochelle, Av. Michel Crépeau, F-17000, La Rochelle (France); Bourgon, J. [ICMPE (UMR 7182) CNRS-UPEC, Université Paris Est, 2-8 rue Henri Dunant, F-94320, Thiais (France); Girault, P.; Metsue, A.; Cohendoz, S.; Feaugas, X. [LaSIE (UMR 7356) CNRS, Université de La Rochelle, Av. Michel Crépeau, F-17000, La Rochelle (France)

    2016-12-15

    Nano-crystalline nickel-tungsten alloys are investigated in order to provide evidence of the contribution of the solute content (light elements and tungsten) and grain-boundaries on hardness. For this purpose, Ni-W alloys were elaborated by electrodeposition in an additive free citrate ammonium bath. The variation of electrodeposition conditions leads to W contents up to 18 at%, with a broad range of grain sizes (5–650 nm). The incorporation of light elements (H, O, C, N) depends on the deposition applied conditions and a progressive modification of the texture is observed with the following sequence: {110}, NT (Non-Textured) and {111} textures. We show that the Hall-Petch relationship for these alloys is influenced by the presence of light elements, the nature of the crystallographic texture and the grain boundaries character. The dependence of grain size on flow stress is a direct consequence of the solute content (solute strengthening) and the evolution of the internal stresses with grain size. To explain the experimental data, two competing physical mechanisms are suggested: grain boundary shearing and dislocation emission at grain boundary, which are affected by the nature of the grain boundary and the solute content.

  11. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties.

    Directory of Open Access Journals (Sweden)

    Rohit Kumar

    Full Text Available Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH and transition temperature (ΔT, showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have

  12. Microstructure and mechanical characteristics of laser coating-texturing alloying dimples

    International Nuclear Information System (INIS)

    Wan Daping; Chen Bingkui; Shao Yimin; Wang Shilong; Hu Dejin

    2008-01-01

    A novel laser coating-texturing (LCT) technique was proposed to achieve appropriate surface topographies and frictional behaviour. The LCT process was realized by applying laser pulses at very high repetition rate to produce innumerable micro-craters with required shape profile on the surface of the workpiece. Moreover, surface alloying of the dimples was carried out by melting submicron WC-TiC-Co alloy powder on the substrates. Morphology and microstructures of the texturing layers were characterised using optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Mechanical properties of the textured samples were evaluated by abrasive resistance tests and microhardness measurement. Experimental results show that good fusion bonding between the texturing layers and the substrate has been formed, and the texturing layers are mainly composed of dense and hard fine-grained structures. The abrasive wear resistance of the laser coating-textured surface was 10 times higher than that of the substrates. The average surface microhardness values were as high as 830 HV.

  13. Evolution of microstructure, texture and inhibitor along the processing route for grain-oriented electrical steels using strip casting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Yao, Sheng-Jie [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 264209 (China); Sun, Yu; Gao, Fei; Song, Hong-Yu; Liu, Guo-Huai [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Li, Lei; Geng, Dian-Qiao [Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China)

    2015-08-15

    In the present work, a regular grade GO sheet was produced successively by strip casting, hot rolling, normalizing annealing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing, secondary recrystallization annealing and purification. The aim of this paper was to characterize the evolution of microstructure, texture and inhibitor along the new processing route by comprehensive utilization of optical microscopy, X-ray diffraction and transmission electron microscopy. It was found that a fine microstructure with the ferrite grain size range of 7–12 μm could be obtained in the primary recrystallization annealed sheet though a very coarse microstructure was produced in the initial as-cast strip. The main finding was that the “texture memory” effect on Goss texture started on the through-thickness intermediate annealed strip after first cold rolling, which was not similar to the “texture memory” effect on Goss texture starting on the surface layers of the hot rolled strip in the conventional production route. As a result, the origin of Goss nuclei capable of secondary recrystallization lied in the grains already presented in Goss orientation in the intermediate annealed strip after first cold rolling. Another finding was that fine and dispersive inhibitors (mainly AlN) were easy to be produced in the primary recrystallization microstructure due to the initial rapid solidification during strip casting and the subsequent rapid cooling, and the very high temperature reheating usually used before hot rolling in the conventional production route could be avoided. - Highlights: • A regular grade grain-oriented electrical steel was produced. • Evolution of microstructure, texture and inhibitor was characterized. • Origin of Goss nuclei lied in the intermediate annealed strip. • A fine primary recrystallization microstructure could be produced. • Effective inhibitors were easy to be obtained in the new processing route.

  14. Effects of initial microstructure and texture on microstructure, texture evolution and magnetic properties of non-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Li, Hua-Long [Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Wang, Hui [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box No. 9-35, Huafengxincun, Jiangyou City, Sichuan Province 621908 (China); National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610041 (China); Liu, Yi; Gao, Fei; An, Ling-Zi; Zhao, Shi-Qi; Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China)

    2016-05-15

    An equiaxed grained as-cast strip and a columnar grained as-cast strip was produced by using twin-roll strip casting, respectively. Both as-cast strips mainly containing 0.71 wt%Si and 0.44 wt%Al were cold rolled and annealed with or without the hot rolling prior to cold rolling. Microstructure, texture evolution along the whole processing routes and the magnetic properties were investigated in detail. It was found that the equiaxed grained strip was characterized by almost random texture while the columnar grained strip was dominated by strong λ-fiber (<001>‖ND) texture. After cold rolling and annealing, all the final sheets of both the as-cast strips showed extremely weak γ-fiber (<111>‖ND) recrystallization texture. In addition, the finally annealed sheets of the equiaxed grained strip were dominated by relatively weak λ-fiber and strong Goss ({110}<001>) recrystallization texture while those of the columnar grained strip were dominated by much stronger λ-fiber and much weaker Goss recrystallization texture regardless of whether the hot rolling was adopted before cold rolling, thus the former showed much lower magnetic induction than the latter. On the other hand, even though the finally annealed sheets of the equiaxed grained strip showed a little more homogeneous recrystallization microstructure with a little bigger grain size than those of the columnar grained strip in the case of no hot rolling, a much higher iron loss was displayed. By contrast, in the case of hot rolling, the former exhibited a little lower iron loss than the latter as a result of the more significant increase in grain size and λ-fiber recrystallization texture. The introduction of the hot rolling could increase the grain size, strengthen λ-fiber texture and weaken Goss texture of the finally annealed sheets of both the as-cast strips, leading to a much improvement in both the magnetic induction and iron loss. - Highlights: • Equiaxed and columnar grained as-cast strips were

  15. Nano grained AZ31 alloy achieved by equal channel angular rolling process

    International Nuclear Information System (INIS)

    Hassani, F.Z.; Ketabchi, M.

    2011-01-01

    Equal channel angular rolling (ECAR) is a severe plastic deformation process which is carried out on large, thin sheets. The grain size could be significantly decreased by this process. The main purpose of this study is to investigate the possibility of grain refinement of AZ31 magnesium alloy sheet by this process to nanometer. The effect of the number of ECAR passes on texture evolution of AZ31 magnesium alloy was investigated. ECAR temperature was controlled to maximize the grain refinement efficiency along with preventing cracking. The initial microstructure of as-received AZ31 sheet showed an average grain size of about 21 μm. The amount of grain refinement increased with increasing the pass number. After 10 passes of the process, significant grain refinement occurred and the field emission scanning electron microscopic (FESEM) micrographs showed that the size of grains were decreased significantly to about 14-70 nm. These grains were formed at the grain boundaries and inside some of the previous larger micrometer grains. Observation of optical microstructures and X-ray diffraction patterns (XRD) showed the formation of twins after ECAR process. Micro-hardness of material was studied at room temperature. There was a continuous enhancement of hardness by increasing the pass number of ECAR process. At the 8th pass, hardness values increased by 53%. At final passes hardness reduced slightly, which was attributed to saturation of strain in high number of passes.

  16. A new look at grain size and load effects in the hardness of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Krell, A. [Fraunhofer-Institut fuer Keramische Technologien und Sinterwerkstoffe (IKTS), Dresden (Germany)

    1998-05-01

    A simple model describes the load effect (size effect) in the hardness, assuming an increasing microplastic deformability, when the further extension of the plastic zone growth and multiplication of pre-existing elements of plasticity are more effective than the generation of new dislocations or twins in the virgin material around the indentation site. The model explains experiments with sintered alumina which indicate a reduced load effect in increasingly fine-grained microstructures due to a grain size effect that is more pronounced at higher testing loads (larger indents) than in the microhardness range. A large difference between the hardness of plastically deformed volumes in single crystals and in polycrystalline microstructures consisting of grains with the same size, respectively, reveals a substantial contribution of the grain boundaries to plastic deformation at the indentation site even at room temperature and even for coarser microstructures. (orig.) 18 refs.

  17. Grain size stability and hardness in nanocrystalline Cu–Al–Zr and Cu–Al–Y alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D., E-mail: droy2k6@gmail.com [Material Science and Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Materials and Metallurgical Engineering Department, NIFFT, Ranchi 834003 (India); Mahesh, B.V. [Department of Mechanical and Aerospace Engineering, Monash University (Australia); Atwater, M.A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Chan, T.E.; Scattergood, R.O.; Koch, C.C. [Material Science and Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States)

    2014-03-01

    Cryogenic high energy ball milling has been used to synthesize nanocrystalline Cu–14Al, Cu–12Al–2Zr and Cu–12Al–2Y alloys by mechanical alloying. The alloys were studied with the aim of comparing the effect of substituting Y and Zr in place of Al, in Cu–Al alloys, on the grain size stability at elevated temperatures. The as-milled alloys were subjected to annealing at various temperatures between 200 and 900 °C and the resulting grain morphology has been studied using X-ray diffraction and transmission electron microscopy. The addition of Y results in significantly reduced susceptibility to grain growth whereas in case of CuAl and CuAlZr alloys, the susceptibility to grain growth was much higher. The hardness is substantially increased due to Zr and Y addition in the as-milled CuAl powders. However, the hardness of Cu–12Al–2Zr gradually decreases and approaches that of Cu–14Al alloy after the annealing treatment whereas in case of Cu–12Al–2Y alloy, the relative drop in the hardness is much lower after annealing. Accordingly, the efficacy of grain size stabilization by Y addition at high homologous temperatures has been explained on the basis of a recent thermodynamic stabilization models.

  18. Grain size stability and hardness in nanocrystalline Cu–Al–Zr and Cu–Al–Y alloys

    International Nuclear Information System (INIS)

    Roy, D.; Mahesh, B.V.; Atwater, M.A.; Chan, T.E.; Scattergood, R.O.; Koch, C.C.

    2014-01-01

    Cryogenic high energy ball milling has been used to synthesize nanocrystalline Cu–14Al, Cu–12Al–2Zr and Cu–12Al–2Y alloys by mechanical alloying. The alloys were studied with the aim of comparing the effect of substituting Y and Zr in place of Al, in Cu–Al alloys, on the grain size stability at elevated temperatures. The as-milled alloys were subjected to annealing at various temperatures between 200 and 900 °C and the resulting grain morphology has been studied using X-ray diffraction and transmission electron microscopy. The addition of Y results in significantly reduced susceptibility to grain growth whereas in case of CuAl and CuAlZr alloys, the susceptibility to grain growth was much higher. The hardness is substantially increased due to Zr and Y addition in the as-milled CuAl powders. However, the hardness of Cu–12Al–2Zr gradually decreases and approaches that of Cu–14Al alloy after the annealing treatment whereas in case of Cu–12Al–2Y alloy, the relative drop in the hardness is much lower after annealing. Accordingly, the efficacy of grain size stabilization by Y addition at high homologous temperatures has been explained on the basis of a recent thermodynamic stabilization models

  19. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting

    International Nuclear Information System (INIS)

    Antonysamy, A.A.; Meyer, J.; Prangnell, P.B.

    2013-01-01

    With titanium alloys, the solidification conditions in Additive Manufacturing (AM) frequently lead to coarse columnar β-grain structures. The effect of geometry on the variability in the grain structure and texture, seen in Ti-6Al-4V alloy components produced by Selective Electron Beam Melting (SEBM), has been investigated. Reconstruction of the primary β-phase, from α-phase EBSD data, has confirmed that in bulk sections where in-fill “hatching” is employed growth selection favours columnar grains aligned with an β direction normal to the deposited powder layers; this results in a coarse β-grain structure with a strong β fibre texture (up 8 x random) that can oscillate between a near random distribution around the fibre axis and cube reinforcement with build height. It is proposed that this behaviour is related to the highly elongated melt pool and the raster directions alternating between two orthogonal directions every layer, which on average favours grains with cube alignment. In contrast, the outline, or “contour”, pass produces a distinctly different grain structure and texture resulting in a skin layer on wall surfaces, where nucleation occurs off the surrounding powder and growth follows the curved surface of the melt pool. This structure becomes increasingly important in thin sections. Local heterogeneities have also been found within different section transitions, resulting from the growth of skin grain structures into thicker sections. Texture simulations have shown that the far weaker α-texture (∼ 3 x random), seen in the final product, arises from transformation on cooling occurring with a near random distribution of α-plates across the 12 variants possible from the Burgers relationship. - Highlights: • Distinctly different skin and bulk structures are produced by the contour and hatching passes. • Bulk sections contain coarse β-grains with a fibre texture in the build direction. • This oscillates between a random distribution

  20. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Antonysamy, A.A., E-mail: alphons.antonysamy@GKNAerospace.com [Additive Manufacturing Centre, GKN Aerospace, P.O. Box 500, Golf Course Lane, Filton, BS34 9 AU (United Kingdom); Meyer, J., E-mail: jonathan.meyer@eads.com [EADS Innovation Works, 20A1 Building, Golf Course Lane, Filton, Bristol, BS997AR (United Kingdom); Prangnell, P.B., E-mail: philip.prangnell@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2013-10-15

    With titanium alloys, the solidification conditions in Additive Manufacturing (AM) frequently lead to coarse columnar β-grain structures. The effect of geometry on the variability in the grain structure and texture, seen in Ti-6Al-4V alloy components produced by Selective Electron Beam Melting (SEBM), has been investigated. Reconstruction of the primary β-phase, from α-phase EBSD data, has confirmed that in bulk sections where in-fill “hatching” is employed growth selection favours columnar grains aligned with an <001> {sub β} direction normal to the deposited powder layers; this results in a coarse β-grain structure with a strong < 001 > {sub β} fibre texture (up 8 x random) that can oscillate between a near random distribution around the fibre axis and cube reinforcement with build height. It is proposed that this behaviour is related to the highly elongated melt pool and the raster directions alternating between two orthogonal directions every layer, which on average favours grains with cube alignment. In contrast, the outline, or “contour”, pass produces a distinctly different grain structure and texture resulting in a skin layer on wall surfaces, where nucleation occurs off the surrounding powder and growth follows the curved surface of the melt pool. This structure becomes increasingly important in thin sections. Local heterogeneities have also been found within different section transitions, resulting from the growth of skin grain structures into thicker sections. Texture simulations have shown that the far weaker α-texture (∼ 3 x random), seen in the final product, arises from transformation on cooling occurring with a near random distribution of α-plates across the 12 variants possible from the Burgers relationship. - Highlights: • Distinctly different skin and bulk structures are produced by the contour and hatching passes. • Bulk sections contain coarse β-grains with a < 001 > fibre texture in the build direction. • This

  1. New durum wheat with soft kernel texture: milling performance and end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    Science.gov (United States)

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which preclude conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft white...

  2. Effect of texture and grain size on the residual stress of nanocrystalline thin films

    Science.gov (United States)

    Cao, Lei; Sengupta, Arkaprabha; Pantuso, Daniel; Koslowski, Marisol

    2017-10-01

    Residual stresses develop in thin film interconnects mainly as a result of deposition conditions and multiple thermal loading cycles during the manufacturing flow. Understanding the relation between the distribution of residual stress and the interconnect microstructure is of key importance to manage the nucleation and growth of defects that can lead to failure under reliability testing and use conditions. Dislocation dynamics simulations are performed in nanocrystalline copper subjected to cyclic loading to quantify the distribution of residual stresses as a function of grain misorientation and grain size distribution. The outcomes of this work help to evaluate the effect of microstructure in thin films failure by identifying potential voiding sites. Furthermore, the simulations show how dislocation structures are influenced by texture and grain size distribution that affect the residual stress. For example, when dislocation loops reach the opposite grain boundary during loading, these dislocations remain locked during unloading.

  3. On texture formation of chromium electrodeposits

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Leisner, Peter; Horsewell, Andy

    1998-01-01

    The microstructure, texture and hardness of electrodeposited hard, direct current (DC) chromium and pulsed reversed chromium has been investigated. These investigations suggest that the growth and texture of hard chromium is controlled by inhibition processes and reactions. Further, it has been...

  4. Grain structure, texture and mechanical property evolution of automotive aluminium sheet during high power ultrasonic welding

    International Nuclear Information System (INIS)

    Haddadi, Farid; Tsivoulas, Dimitrios

    2016-01-01

    High power ultrasonic spot welding (HPUSW) is a joining technique which is performed within less than a second and provides a more energy-efficient alternative to friction stir spot welding (FSSW), which is considered a longer cycle manufacturing process for joining automotive alloys. To date, only a few reports exist on the deformation mechanisms that take place during high power ultrasonic spot welding. In this work, dynamic recrystallization and grain growth were examined using electron backscatter diffraction (EBSD). HPUSW causes extensive deformation within the weld zone where the temperature increases to 440 °C. An ultra-fine grain structure was observed in a thin band of flat weld interface within a short welding time of 0.10 s. With increasing welding time the interface was displaced and ‘folds’ or ‘crests’ appeared together with shear bands. The weld interface progressively changed from flat to sinusoidal and eventually to a convoluted wave-like pattern when the tool fully penetrated the workpiece, having a wavelength of ~ 1 mm after 0.40 s. Finally, the microstructure and texture varied significantly depending on the location within the weld. Although the texture near the weld interface was relatively weak, a shift was observed with increasing welding time from an initially Cube-dominated texture to one where the typical β-fibre Brass component prevailed. - Highlights: •Lap shear strength of ~2.9 kN was achieved in 0.30 sec welding time. •Temperature approached 440 °C along the weld centreline for the highest welding time. •The texture near the teeth was dominated by Brass, P and S components at optimum condition. •The weld interface showed typical β-fibre deformation texture at optimum condition.

  5. Grain structure, texture and mechanical property evolution of automotive aluminium sheet during high power ultrasonic welding

    Energy Technology Data Exchange (ETDEWEB)

    Haddadi, Farid, E-mail: farid.haddadi@gmail.com [Clemson University–International Center for Automotive Research (CU-ICAR), #347, 4 Research Drive, Greenville, SC 29607 (United States); School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Tsivoulas, Dimitrios, E-mail: dim.tsivoulas@gmail.com [School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Clean Energy/Nuclear Services, Amec Foster Wheeler, 601 Faraday Street, Birchwood Park, Warrington WA3 6GN (United Kingdom)

    2016-08-15

    High power ultrasonic spot welding (HPUSW) is a joining technique which is performed within less than a second and provides a more energy-efficient alternative to friction stir spot welding (FSSW), which is considered a longer cycle manufacturing process for joining automotive alloys. To date, only a few reports exist on the deformation mechanisms that take place during high power ultrasonic spot welding. In this work, dynamic recrystallization and grain growth were examined using electron backscatter diffraction (EBSD). HPUSW causes extensive deformation within the weld zone where the temperature increases to 440 °C. An ultra-fine grain structure was observed in a thin band of flat weld interface within a short welding time of 0.10 s. With increasing welding time the interface was displaced and ‘folds’ or ‘crests’ appeared together with shear bands. The weld interface progressively changed from flat to sinusoidal and eventually to a convoluted wave-like pattern when the tool fully penetrated the workpiece, having a wavelength of ~ 1 mm after 0.40 s. Finally, the microstructure and texture varied significantly depending on the location within the weld. Although the texture near the weld interface was relatively weak, a shift was observed with increasing welding time from an initially Cube-dominated texture to one where the typical β-fibre Brass component prevailed. - Highlights: •Lap shear strength of ~2.9 kN was achieved in 0.30 sec welding time. •Temperature approached 440 °C along the weld centreline for the highest welding time. •The texture near the teeth was dominated by Brass, P and S components at optimum condition. •The weld interface showed typical β-fibre deformation texture at optimum condition.

  6. Fabrication and electrical properties of textured strontium(0.53)barium(0.47)niobium(2)oxygen(6) ceramics prepared by templated grain growth

    Science.gov (United States)

    Duran, Cihangir

    Sr0.53Ba0.47Nb2O6 (SBN53) ceramics were textured by the templated grain growth (TGG), in a matrix of SrNb2O6 and BaNb2O6 powders. Acicular KSr2Nb5O15 (KSN) template particles, synthesized by a molten salt process, were used to texture the samples in the c direction (i.e., [001]). Template growth was assisted by adding V2O5 as a liquid phase former for some compositions. The texture fraction also increased with higher sintering temperatures or times and with initial template concentration due to the preferential growth of the template particles. When V2O5 was present, SBN53 phase formation initiated on the KSN templates and texture development started at temperatures as low as 950°C. Phase formation in the V2O5-free samples, however, initiated in the matrix (i.e., independent of the KSN templates). The liquid phase adversely affected the template growth by favoring anisotropic grain growth in the matrix, which caused lower texture fraction and broader texture distribution in [001] at low template concentrations. Increased template-template interaction (e.g., tangling) during tape casting also resulted in broader texture distribution. Therefore, an optimum template content was found to be ˜10--15 wt%. However, a texture fraction of 0.93 to 0.98 was obtained using only 5 wt% templates when anisotropic matrix grain growth was prevented. Phase evolution was studied in the randomly oriented samples as a function of quenching temperature, heating rate, and liquid phase, using KSN powder (rather than acicular particles) as a seed material. The formation temperature for SBN53 was lowered substantially by adding more seeds, decreasing the heating rate, and introducing a liquid. The temperature decreased from 1260°C for the samples with no seeds to 1130°C for the samples with 15.4 wt% seeds + 0.8 mol% V2O5 at a heating rate of 4°C/min. For the V2O5-free samples, the activation energy was considerably lowered from 554 +/- 15 kJ/mol for the samples with no seeds to 241

  7. Mechanism of texture formation by hot deformation in rapidly quenched FeNdB

    International Nuclear Information System (INIS)

    Li, L.; Graham, C.D. Jr.

    1990-01-01

    The development of crystallographic texture in rapidly quenched Fe 14 Nd 2 B has been investigated by hot deformation. The method was to catch the process in a state of partial completion, and then use transmission electron microscopy to examine the structure. The degree of texture formation was determined by x-ray diffraction and by magnetic measurements, and the hardness and the anisotropy in hardness were measured up to 600 degree C. It was concluded, in agreement with others but with additional evidence, that preferential growth of favorably oriented grains during plastic deformation produces the texture. The nature of the plastic deformation remains unclear, since no dislocations are observed in Fe 14 Nd 2 B. It was found that when samples are compressed at temperatures near 600 degree C under low stresses for long times, they become Nd rich at the bottom, presumably because of flow of the Nd-rich liquid phase under the influence of gravity. In such samples, plastic deformation and crystallographic orientation occurs preferentially at the Nd-rich end

  8. A quantitative approach to study the effect of local texture and heterogeneous plastic strain on the deformation micromechanism in RR1000 nickel-based superalloy

    International Nuclear Information System (INIS)

    Birosca, S.; Di Gioacchino, F.; Stekovic, S.; Hardy, M.

    2014-01-01

    In a weakly textured material with relatively pore-free and homogeneous microstructure, the local texture can influence primary crack propagation and secondary crack initiation, depending on specific microtexture cluster size. Moreover, the plastic strain assessment and strain quantity within individual grains are essential for understanding the material susceptibility to crack initiation and propagation at various loading conditions and temperature ranges. In the current study, electron backscatter diffraction (EBSD) is applied to measure the plastic strain present in RR1000 nickel-based superalloy microstructure following thermo-mechanical fatigue tests. The EBSD plastic strain measurements are evaluated to identify the distinctive deformation mode within individual grains. It was evident from the overall statistical analyses carried out for over 2000 grains that cube (〈0 0 1〉//loading direction) and near cube orientations (φ 1 , Φ, φ 2 : 0, 0–15, 0) behaved as “soft” grains with a high Schmid factor and contained low geometrically necessary dislocation (GND) density as a result of low strain hardening at the early stage of deformation for such grains. The near cube orientation (typically φ 1 , Φ, φ 2 : 0, 9, 0) was the softest orientation among the cube family. While the brass grains (〈1 1 1〉//loading direction) acted as “hard” grains that have the lowest Schmid factor with the highest Taylor factor and GND density compared with other oriented grains. A high GND content was found in the vicinity of the grain boundaries in the soft grains and on slip plane traces within the hard grains. It is concluded that GND absolute value for each grain can vary, as it is interrelated with deformation degree, but the GND locations within the grains give indications of the strain hardening state and deformation stages in hard and soft grains. Furthermore, the areas with random local texture contained high strain incompatibilities between neighbouring

  9. Influence of solution treatment on microstructure evolution of TC21 titanium alloy with near equiaxed β grains fabricated by laser additive manufacture

    International Nuclear Information System (INIS)

    Zhang, Q.; Chen, J.; Tan, H.; Lin, X.; Huang, W.D.

    2016-01-01

    Laser additive manufacture (LAM) is a novel technique in which metal components can be fabricated layer by layer. In this paper, the effects of solution temperature and cooling rate on microstructure evolution of the LAMed TC21 titanium alloy which containing near equiaxed prior β grains were studied. The LAMed and solution treated samples were investigated by optical microscopy (OM), scanning election microscope (SEM) and X-ray diffractometer (XRD). The results indicate that both the α phase volume fraction and α laths width are affected by the solution temperature and cooling rate. Different microstructure characterization leads to different Vickers hardness values. However, the solution temperatures selected in this study have insignificant effects on the β and α phase texture. The near equiaxed prior β grains exhibits much weaker texture intensity than the typical columnar prior β grains. The comparison of the calculated and measured α phase texture indicates that variant selection occurred during the solution treatment. The martensite α′ phase precipitated during the layer by layer process shows weak variant selection tendency. - Highlights: • LAMed TC21 titanium alloy containing near equiaxed β grains was fabricated. • Near equiaxed β grains exhibit weaker texture intensity than columnar β grains. • The solution treatment below T_β had insignificant effect on α phase texture. • Variant selection occurred during the solution treatment.

  10. Application of Electron Backscattered Diffraction (EBSD) and Atomic Force Microscopy (AFM) to Determine Texture, Mesotexture, and Grain Boundary Energies in Ceramics

    International Nuclear Information System (INIS)

    Glass, S.J.; Rohrer, G.S.; Saylor, D.M.; Vedula, V.R.

    1999-01-01

    Crystallographic orientations in alumina (Al 2 0 3 ) and magnesium aluminate spinel (MgAl 2 0 4 ) were obtained using electron backscattered diffraction (EBSD) patterns. The texture and mesotexture (grain boundary mis-orientations) were random and no special boundaries were observed. The relative grain boundary energies were determined by thermal groove geometries using atomic force microscopy (AFM) to identify relationships between the grain boundary energies and mis-orientations

  11. Interaction between sodium chloride and texture in semi-hard Danish cheese as affected by brining time, DL-starter culture, chymosin type and cheese ripening

    DEFF Research Database (Denmark)

    Akkerman, Marije; Søndergaard Kristensen, Lise; Jespersen, Lene

    2017-01-01

    Reduced NaCl in semi-hard cheeses greatly affects textural and sensory properties. The interaction between cheese NaCl concentration and texture was affected by brining time (0-28 h), . dl-starter cultures (C1, C2, and C3), chymosin type (bovine or camel), and ripening time (1-12 weeks). Cheese Na...... is reducible without significant textural impact using well-defined starter cultures and camel chymosin....

  12. Starch degradability of dry and ensiled high-moisture grains of corn hybrids with different textures at different grinding degrees

    OpenAIRE

    Wagner dos Reis; Ciniro Costa; Paulo Roberto de Lima Meirelles; Marina Gabriela Berchiol da Silva; Marco Aurélio Factori; Cristiano Magalhães Pariz; Simony Alves Mendonça; Erikelly Aline Ribeiro de Santana

    2011-01-01

    This research evaluated corn grains with flint and dent texture (ensiled high-moisture or dried), submitted to grinding degrees, using the in situ ruminal degradation technique. Three rumen canulated adult sheeps were used in a complete randomized design, using a factorial outline 2 x 2 x 3, with two corn hybrids (flint and dent texture), two conservation methods (ensiled high-moisture and dry) and three grinding degress (whole, coarsely and finely ground, corresponding to the sieve of 12; 10...

  13. Formation of biaxial texture in metal films by selective ion beam etching

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J. [Department of Materials Science and Engineering, University of Florida, 106 Rhines Hall, P.O. Box 116400, Gainesville, FL 32611 (United States); Norton, D.P. [Department of Materials Science and Engineering, University of Florida, 106 Rhines Hall, P.O. Box 116400, Gainesville, FL 32611 (United States)]. E-mail: dnort@mse.ufl.edu; Selvamanickam, Venkat [IGC-SuperPower, LLC, 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2006-05-15

    The formation of in-plane texture via ion bombardment of uniaxially textured metal films was investigated. In particular, selective grain Ar ion beam etching of uniaxially textured (0 0 1) Ni was used to achieve in-plane aligned Ni grains. Unlike conventional ion beam assisted deposition, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux. The initial uniaxial texture is established via surface energy minimization with no ion irradiation. Within this sequential texturing method, in-plane grain alignment is driven by selective etching and grain overgrowth. Biaxial texture was achieved for ion beam irradiation at elevated temperature.

  14. Formation of biaxial texture in metal films by selective ion beam etching

    International Nuclear Information System (INIS)

    Park, S.J.; Norton, D.P.; Selvamanickam, Venkat

    2006-01-01

    The formation of in-plane texture via ion bombardment of uniaxially textured metal films was investigated. In particular, selective grain Ar ion beam etching of uniaxially textured (0 0 1) Ni was used to achieve in-plane aligned Ni grains. Unlike conventional ion beam assisted deposition, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux. The initial uniaxial texture is established via surface energy minimization with no ion irradiation. Within this sequential texturing method, in-plane grain alignment is driven by selective etching and grain overgrowth. Biaxial texture was achieved for ion beam irradiation at elevated temperature

  15. Tribological Properties of Surface-Textured and Plasma-Nitrided Pure Titanium Under Oil Lubrication Condition

    Science.gov (United States)

    Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting

    2018-01-01

    Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.

  16. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L. Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Directory of Open Access Journals (Sweden)

    Fugen Dou

    Full Text Available The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic, cultivar ('Cocodrie' and 'Rondo', and soil texture (clay and sandy loam on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  17. Ruminal degradability of hard or soft texture corn grain at three maturity stages Degradabilidade ruminal de grãos de milho de textura dura ou macia em três estádios de maturação

    Directory of Open Access Journals (Sweden)

    Marcos Neves Pereira

    2004-01-01

    Full Text Available The predominance of vitreous endosperm in hard texture flint corn (Zea mays L. can decrease ruminal starch digestion comparatively to the farinaceous endosperm of dent corn, reducing energy content of the grain. The objective of this experiment was to evaluate the effects of texture and maturity stage on ruminal degradability of corn grain. Two dent and two flint hybrids were harvested at the early dent, half milk line, and black layer stages. The proportion of vitreous endosperm (vitreousness in dent hybrids was 44.3%, while in flint it was 67.0%. There was a linear increase in vitreousness with advancing maturity. Flint hybrids at the early dent stage were more vitreous than dent at the black layer stage. The increase in vitreousness per maturation day was greater for flint hybrids. Grains were incubated in situ in the rumen of 6 cows. The 24-hour ruminal dry matter degradation was 63.3% for dent corn and 52.4% for flint corn. The 72-hour incubation residues of dent and flint hybrids were 7.6% and 15.6%, respectively. Ruminal degradability was similar between hybrids at the early dent and half milk line stages. There was a marked texture effect on ruminal degradability at the black layer stage (quadratic effect of maturity stage and interaction between texture and maturity stage. Use of dent hybrids, compared to flint hybrids, may result in smaller relative reduction in ruminal starch digestion in situations of late grain harvesting.A predominância de endosperma vítreo em milho (Zea mays L. flint de textura dura pode deprimir a digestão ruminal do amido comparativamente ao endosperma farináceo de milho dentado, reduzindo o conteúdo energético do grão. O objetivo deste experimento foi avaliar os efeitos da textura e do estádio de maturidade sobre a degradabilidade ruminal de grãos de milho. Dois híbridos dentados e dois duros foram colhidos nos estádios dentado inicial, metade da linha do leite e linha preta. A proporção de

  18. Texture development in Al-Mg alloys during high temperature annealing

    International Nuclear Information System (INIS)

    Saitou, T.; Inagaki, H.

    2001-01-01

    To clarify the effect of Mg content on annealing textures developed in Al-Mg alloys during high temperature annealing, Al-Mg alloys containing up to 9 wt.% Mg in supersaturated solid solution were cold rolled 95% and isothermally annealed at 450 C. Their textures were investigated with the orientation distribution function analysis. It was found that, in the recrystallization textures observed at complete recrystallization, addition of more than 1 wt.% Mg was sufficient to suppress the development of {100} left angle 001 right angle. With increasing Mg content, {100} left angle 001 right angle decreased remarkably, whereas {100} left angle 013 right angle and {103} left angle 321 right angle increased. Thus, {100} left angle 013 right angle and {103} left angle 321 right angle were found to be the main orientations of the recrystallization textures of Al-Mg alloys annealed at high temperatures. {100} left angle 013 right angle developed most remarkably at 4 wt.% Mg, while {103} left angle 321 right angle showed the maximum development at 7 wt.% Mg. During subsequent grain growth at 450 C, remarkable texture changes were observed only in the alloys containing Mg in the range between 2 and 4 wt.%. In these alloys, {100} left angle 013 right angle developed at the expense of {100} left angle 001 right angle at earlier stages of grain growth, whereas {103} left angle 321 right angle increased independently of these two orientations at later stages of grain growth. Reflecting these texture changes, grain growth occurred in these alloys discontinuously. Such a discontinuous grain growth with large texture changes is expected, if strong textures are already present before grain growth, and if recrystallized grains having similar orientations are distributed by forming large clusters before grain growth. (orig.)

  19. Development of Goss texture in Al–0.3%Cu annealed after heavy rolling

    DEFF Research Database (Denmark)

    Shuai, L. F.; Huang, T. L.; Wu, G. L.

    2018-01-01

    The evolution of the microstructure and texture during annealing has been studied in the center layer of 95% cold rolled Al–0.3%Cu with a large initial grain size. The cold-rolled condition is characterized by a strong Brass texture component and a deformed microstructure comprising lamellar stru...... grain size of Goss-oriented grains and strengthening of the Goss texture. As a result, new low angle boundaries are formed between Goss-oriented grains in this strongly textured material....

  20. A Cellular Automaton / Finite Element model for predicting grain texture development in galvanized coatings

    Science.gov (United States)

    Guillemot, G.; Avettand-Fènoël, M.-N.; Iosta, A.; Foct, J.

    2011-01-01

    Hot-dipping galvanizing process is a widely used and efficient way to protect steel from corrosion. We propose to master the microstructure of zinc grains by investigating the relevant process parameters. In order to improve the texture of this coating, we model grain nucleation and growth processes and simulate the zinc solid phase development. A coupling scheme model has been applied with this aim. This model improves a previous two-dimensional model of the solidification process. It couples a cellular automaton (CA) approach and a finite element (FE) method. CA grid and FE mesh are superimposed on the same domain. The grain development is simulated at the micro-scale based on the CA grid. A nucleation law is defined using a Gaussian probability and a random set of nucleating cells. A crystallographic orientation is defined for each one with a choice of Euler's angle (Ψ,θ,φ). A small growing shape is then associated to each cell in the mushy domain and a dendrite tip kinetics is defined using the model of Kurz [2]. The six directions of basal plane and the two perpendicular directions develop in each mushy cell. During each time step, cell temperature and solid fraction are then determined at micro-scale using the enthalpy conservation relation and variations are reassigned at macro-scale. This coupling scheme model enables to simulate the three-dimensional growing kinetics of the zinc grain in a two-dimensional approach. Grain structure evolutions for various cooling times have been simulated. Final grain structure has been compared to EBSD measurements. We show that the preferentially growth of dendrite arms in the basal plane of zinc grains is correctly predicted. The described coupling scheme model could be applied for simulated other product or manufacturing processes. It constitutes an approach gathering both micro and macro scale models.

  1. Texture and anisotropy in ferroelectric lead metaniobate

    Science.gov (United States)

    Iverson, Benjamin John

    Ferroelectric lead metaniobate, PbNb2O6, is a piezoelectric ceramic typically used because of its elevated Curie temperature and anisotropic properties. However, the piezoelectric constant, d33, is relatively low in randomly oriented ceramics when compared to other ferroelectrics. Crystallographic texturing is often employed to increase the piezoelectric constant because the spontaneous polarization axes of grains are better aligned. In this research, crystallographic textures induced through tape casting are distinguished from textures induced through electrical poling. Texture is described using multiple quantitative approaches utilizing X-ray and neutron time-of-flight diffraction. Tape casting lead metaniobate with an inclusion of acicular template particles induces an orthotropic texture distribution. Templated grain growth from seed particles oriented during casting results in anisotropic grain structures. The degree of preferred orientation is directly linked to the shear behavior of the tape cast slurry. Increases in template concentration, slurry viscosity, and casting velocity lead to larger textures by inducing more particle orientation in the tape casting plane. The maximum 010 texture distributions were two and a half multiples of a random distribution. Ferroelectric texture was induced by electrical poling. Electric poling increases the volume of material oriented with the spontaneous polarization direction in the material. Samples with an initial paraelectric texture exhibit a greater change in the domain volume fraction during electrical poling than randomly oriented ceramics. In tape cast samples, the resulting piezoelectric response is proportional to the 010 texture present prior to poling. This results in property anisotropy dependent on initial texture. Piezoelectric properties measured on the most textured ceramics were similar to those obtained with a commercial standard.

  2. Determination of textures by neutron diffraction

    International Nuclear Information System (INIS)

    Dervin, P.; Penelle, R.

    1989-01-01

    In virtue of the low absorption coefficient of most materials in regard to neutrons, neutron diffraction is particularly well adapted for high-precision characterizing of the gross texture of massive fine-grained or coarse-grained specimens of the order of the cubic centimeter. The firt part of this paper is devoted to a description of the distribution of crystalline orientations, and the second part to experimental identification of textures [fr

  3. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    Science.gov (United States)

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  4. Unified Hall-Petch description of nano-grain nickel hardness, flow stress and strain rate sensitivity measurements

    Science.gov (United States)

    Armstrong, R. W.; Balasubramanian, N.

    2017-08-01

    It is shown that: (i) nano-grain nickel flow stress and hardness data at ambient temperature follow a Hall-Petch (H-P) relation over a wide range of grain size; and (ii) accompanying flow stress and strain rate sensitivity measurements follow an analogous H-P relationship for the reciprocal "activation volume", (1/v*) = (1/A*b) where A* is activation area. Higher temperature flow stress measurements show a greater than expected reduction both in the H-P kɛ and in v*. The results are connected with smaller nano-grain size (tested at very low imposed strain rates.

  5. Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel

    International Nuclear Information System (INIS)

    Chen, S.; Butler, J.; Melzer, S.

    2014-01-01

    In this study, both asymmetric hot rolling (AHR) and conventional hot rolling (CHR) were carried out to study the effect of the hot rolling conditions on the evolution of the texture and microstructure in a non-grain oriented (NGO) steel. The microstructure and texture in the subsequent processing stages were characterised and related to the final magnetic properties. The results show that AHR, compared with CHR, tends to homogenise texture through thickness of the hot band strips. AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips, which are favourable features in relation to the magnetic properties of the strip. However, the favourable features observed in hot rolled AHR strips are eliminated after cold rolling and annealing. Contrarily, the required θ-fibre is decreased and the unwanted γ-fibre is intensified in the AHR sheet after cold rolling and their strength is maintained in the subsequent process steps. On the other hand, AHR does not produce a discernible change in the grain size in the hot band annealed strip and in the final annealed sheet, except that the magnetic anisotropy in the AHR is improved after skin pass and extra annealing as the result of the redistribution of the texture components within the θ-fibre, no significant improvement of the magnetic properties as a direct consequence of the application of asymmetric hot rolling has been observed under the current AHR experimental conditions. - Highlights: • Asymmetrical hot rolling (AHR) produces more uniform distribution of texture through the thickness of the hot rolled strips and of the hot band annealed strips when compared with conventional hot rolling (CHR). • AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips. The θ-fibre is decreased but the γ-fibre is intensified in the AHR sheet after cold rolling

  6. Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S., E-mail: Shangping.chen@tatasteel.com [Tata Steel, 1970 CA IJmuiden (Netherlands); Butler, J. [Tata Steel, S60 3AR South Yorkshire (United Kingdom); Melzer, S. [Tata Steel, 1970 CA IJmuiden (Netherlands)

    2014-11-15

    In this study, both asymmetric hot rolling (AHR) and conventional hot rolling (CHR) were carried out to study the effect of the hot rolling conditions on the evolution of the texture and microstructure in a non-grain oriented (NGO) steel. The microstructure and texture in the subsequent processing stages were characterised and related to the final magnetic properties. The results show that AHR, compared with CHR, tends to homogenise texture through thickness of the hot band strips. AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips, which are favourable features in relation to the magnetic properties of the strip. However, the favourable features observed in hot rolled AHR strips are eliminated after cold rolling and annealing. Contrarily, the required θ-fibre is decreased and the unwanted γ-fibre is intensified in the AHR sheet after cold rolling and their strength is maintained in the subsequent process steps. On the other hand, AHR does not produce a discernible change in the grain size in the hot band annealed strip and in the final annealed sheet, except that the magnetic anisotropy in the AHR is improved after skin pass and extra annealing as the result of the redistribution of the texture components within the θ-fibre, no significant improvement of the magnetic properties as a direct consequence of the application of asymmetric hot rolling has been observed under the current AHR experimental conditions. - Highlights: • Asymmetrical hot rolling (AHR) produces more uniform distribution of texture through the thickness of the hot rolled strips and of the hot band annealed strips when compared with conventional hot rolling (CHR). • AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips. The θ-fibre is decreased but the γ-fibre is intensified in the AHR sheet after cold rolling

  7. Semi-empirical relationship between the hardness, grain size and mean free path of WC-Co

    CSIR Research Space (South Africa)

    Makhele-Lekala, L

    2001-01-01

    Full Text Available , grain size of WC and mean free path in Co was obtained. It was found that the empirical formula fitted our measured hardness well. However, when used against results of other researchers, it did not reproduce them satisfactorily at values higher than...

  8. Grain-boundary engineering applied to grain growth in a high temperature material

    International Nuclear Information System (INIS)

    Huda, Z.

    1993-01-01

    Crystallography of grain boundaries are determined for a high temperature material, before and after grain growth processes, so as to study the induction of special properties useful for application in components of a gas-turbine engine. The philosophy of grain-boundary engineering is applied to grain growth in APK-6, a powder formed nickel-base superalloy so as to establish the possible structure/property relationships. The alloy in the as received condition is shown to possess a strong texture and contained coincident site lattices (CSL) boundaries with most boundaries having sigma values in the range of 3 > sigma > 25. A normal grain-growth heat treatment result in a good population of low angle grain boundaries, and drastically reduces the proportion of CSL boundaries. A strong [011] annealing texture is observed after an intermediate grain growth; most grain boundaries, here, tend to be high angle indicating a possibility of possessing special properties. (author)

  9. Effect of Stewing in Cooking Step on Textural and Morphological Properties of Cooked Rice

    Directory of Open Access Journals (Sweden)

    E. GHASEMI

    2009-09-01

    Full Text Available Stewing of rice grains by steam after boiling in excess water can be used for cooking rice perfectly. The effects of this procedure in cooking of three varieties of Iranian rice (Sang Tarom, Domsiyah and Fajr on textural and morphological properties of cooked rice grains were investigated. The results showed that this step in rice cooking reduced the hardness and increased the adhesiveness of rice grains significantly. By the use of the scanning electron microscopy, it was shown that the outer surface of cooked rice stewed by steam had less porosity and closer pores due to the modification during cooking, and better gelatinization and more expansion of starch granules compared to non-stewed samples. The use of this procedure in rice cooking to provide a fully cooked and gelatinized, softer and stickier final product is recommended.

  10. Texture analysis using angle dispersive neutron nuclear scattering

    International Nuclear Information System (INIS)

    Brokmeier, H.G.

    1995-01-01

    This paper describes in detail the method of texture determination using neutron diffraction. The main advantages of neutron diffraction arise from the high penetration depth for most materials which is a factor of 10 2 -10 4 higher than for X-ray diffraction. Consequently neutron diffraction is an efficient tool for the investigation of global textures and coarse grained materials. Moreover, the measurement of large sample volumes gives excellent grain statistics, allows the influence of texture inhomogeneities to be neglected and allows the measurement of complete pole figures even of minority phases. A number of examples show the application of neutron diffraction to measure textures of metals, alloys, composites, intermetallic compounds and rocks. A detailed description of TEX-2 the neutron texture diffractometer at GKSS Research Centre is given which is completed by a comparison to other neutron texture diffractometers. (orig.) [de

  11. Nanocrystalline nickel films with lotus leaf texture for superhydrophobic and low friction surfaces

    Science.gov (United States)

    Shafiei, Mehdi; Alpas, Ahmet T.

    2009-11-01

    Nanostructured Ni films with high hardness, high hydrophobicity and low coefficient of friction (COF) were fabricated. The surface texture of lotus leaf was replicated using a cellulose acetate film, on which a nanocrystalline (NC) Ni coating with a grain size of 30 ± 4 nm was electrodeposited to obtain a self-sustaining film with a hardness of 4.42 GPa. The surface texture of the NC Ni obtained in this way featured a high density (4 × 10 3 mm -2) of conical protuberances with an average height of 10.0 ± 2.0 μm and a tip radius of 2.5 ± 0.5 μm. This structure increased the water repellency and reduced the COF, compared to smooth NC Ni surfaces. The application of a short-duration (120 s) electrodeposition process that deposited "Ni crowns" with a larger radius of 6.0 ± 0.5 μm on the protuberances, followed by a perfluoropolyether (PFPE) solution treatment succeeded in producing a surface texture consisting of nanotextured protuberances that resulted in a very high water contact angle of 156°, comparable to that of the superhydrophobic lotus leaf. Additionally, the microscale protuberances eliminated the initial high COF peaks observed when smooth NC Ni films were tested, and the PFPE treatment resulted in a 60% reduction in the steady-state COFs.

  12. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lin, Chi-Ming; Chen, Erh-Chiang; Kuo, Che-Wei; Wu, Weite, E-mail: wwu@dragon.nchu.edu.tw

    2014-05-01

    The textures and crystallographic orientations beneath the treatment area in AA 6061 aluminum alloy after vibratory stress relief (VSR) process were investigated by combining the electron backscatter diffraction analysis of the misoriented low- or high-angle boundaries, the (inverse) pole figures, the line scans and the various grain orientations. The relaxation effect caused by compressive residual stress in the intermediate region is superior to that of tensile residual stress on both sides of the cantilever by means of X-ray diffraction techniques. The residual stress relaxation that occurs due to vibrational stress excitation accompanies the “orientation of banding” disintegration, the decreases in the dislocation density, the strain energy, and the fraction of low-angle boundaries within each type of grain orientation, such as Copper {112} 〈111〉, S {123} 〈634〉, Goss {110} 〈001〉, and Brass {110} 〈112〉, excepting the Cube (or near-Cube) {100} 〈001〉 grain orientation. The maintained invariance in the Cube texture can be attributed to the maximum number of active primary slip systems, resulting in an interaction that results from hindered slip on intersecting families of the planes.

  13. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy

    International Nuclear Information System (INIS)

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lin, Chi-Ming; Chen, Erh-Chiang; Kuo, Che-Wei; Wu, Weite

    2014-01-01

    The textures and crystallographic orientations beneath the treatment area in AA 6061 aluminum alloy after vibratory stress relief (VSR) process were investigated by combining the electron backscatter diffraction analysis of the misoriented low- or high-angle boundaries, the (inverse) pole figures, the line scans and the various grain orientations. The relaxation effect caused by compressive residual stress in the intermediate region is superior to that of tensile residual stress on both sides of the cantilever by means of X-ray diffraction techniques. The residual stress relaxation that occurs due to vibrational stress excitation accompanies the “orientation of banding” disintegration, the decreases in the dislocation density, the strain energy, and the fraction of low-angle boundaries within each type of grain orientation, such as Copper {112} 〈111〉, S {123} 〈634〉, Goss {110} 〈001〉, and Brass {110} 〈112〉, excepting the Cube (or near-Cube) {100} 〈001〉 grain orientation. The maintained invariance in the Cube texture can be attributed to the maximum number of active primary slip systems, resulting in an interaction that results from hindered slip on intersecting families of the planes

  14. Highly (002) textured large grain bcc Cr{sub 80}Mn{sub 20} seed layer on Cr{sub 50}Ti{sub 50} amorphous layer for FePt-C granular film

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Jae, E-mail: jsjigst@ecei.tohoku.ac.jp; Saito, Shin [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Hinata, Shintaro [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Japan Society for the Promotion of Science Research Fellow (PD), 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Takahashi, Migaku [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-05-07

    Effect of bcc Cr{sub 80}Mn{sub 20} seed layer and Cr{sub 50}Ti{sub 50} amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain size in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.

  15. Effect of grain shape and texture on equi-biaxial creep of stress relieved and recrystallized Zircaloy-4

    International Nuclear Information System (INIS)

    Murty, K.L.; Tanikella, B.V.; Earthman, J.C.

    1994-01-01

    Zirconium alloys are extensively used in various types of fission reactors both light and heavy water types for different applications, examples being thin-walled tubing to clad radioactive fuel, grids, channels in boiling water reactors (BWRs) as well as pressure and calandria tubes in pressurized heavy water reactors (PHWRs). Biaxial creep behaviors of stress relieved and recrystallized thin-walled tubing of Zircaloy-4 are considered under equal hoop and axial stresses by internal pressurization superimposed with axial load. Both hoop and axial strains were monitored and the ratio of the strain rates along the hoop to axial directions is considered to represent the degree of anisotropy. The slightly stronger hoop direction of the recrystallized material became weaker compared to the axial direction following cold work and a stress-relief anneal. Crystallographic texture was considered in terms of x-ray pole figures from which the crystallite orientation distribution functions (CODF) were derived. A crystal plasticity model based on slip on representative systems was combined with the CODF to predict the creep anisotropy. It was found that the textural differences between the recrystallized and stress-relieved material is believed to invoke anisotropic grain boundary sliding leading to stress enhancement in the hoop direction. This stress enhancement is shown to account for the observed differences in creep behavior between the present equiaxed and columnar grain structures

  16. Effects of thermomechanical processing on the recrystallization texture and grain size of Al-1%Si sputtering target material

    DEFF Research Database (Denmark)

    Li, X.R.; Xu, C.L.; Huang, T.L.

    2015-01-01

    An Al-1%Si alloy was solution treated and deformed by conventional cold rolling to different strains, followed by annealing at various temperatures until complete recrystallization. The microstructures of annealed samples were characterized by electron backscatter diffraction. It is found that un...... that under optimal conditions of cold rolling and annealing, the microstructure desired for sputtering target materials with fine, uniformly sized and randomly textured grains can be obtained for the Al-1%Si alloy....

  17. Mechanisms of texture evolution during annealing of Zr and Ti alloys

    International Nuclear Information System (INIS)

    Gerspacher, F.

    2007-12-01

    Zirconium and Titanium are hexagonal metals. Thus, they have a weaker symmetry than cubic metals, and a stronger crystalline anisotropy. Despite this strong anisotropy, the fundamental mechanisms of the texture evolution of these metals have not been deeply investigated yet. We studied here the texture and microstructure evolution during annealing after several conditions of deformation, and showed that: - slow texture change is expected in grain growth after severe rolling, because of oriented growth - rapid texture change after low reductions is due to oriented nucleation - transverse rolling gives rise to a correlation between orientation and stored energy in the deformed material, which also induces fast texture changes. These mechanisms have been explained on the basis of microstructure specificities. In addition, texture evolution during normal grain growth was studied and the use of modeling allowed to confirm some hypotheses made on boundary mobility anisotropy. The mechanisms of appearance of abnormal grain growth have also been clarified. (author)

  18. Correlation between crystallographic texture, microstructure and magnetic properties of pulse electrodeposited nanocrystalline Nickel–Cobalt alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Amit; Chhangani, Sumit; Madhavan, R.; Suwas, Satyam, E-mail: satyamsuwas@materials.iisc.ernet.in

    2017-07-15

    Highlights: • Nano-crystalline Ni–Co materials with varying composition has been deposited by pulse electrodeposition. • Overall weakening of <1 1 1> texture and strengthening of <2 0 0> fibre texture is observed with increasing cobalt content. • Higher thermal stability of Ni–70Co is interpreted in terms of low mobility twins and texture. • A clear transition from soft to hard magnetic character is observed with an increase cobalt content. - Abstract: This paper reports the evolution of microstructure and texture in Nickel–Cobalt electrodeposits fabricated by pulse electrodeposition (PED) technique and the correlation of these attributes with the magnetic properties. The structural and microstructural investigation using X-ray diffraction and transmission electron microscopic studies indicate the presence of nanocrystalline grains and nano-twins in the electrodeposits. Convoluted Multiple Whole profile fitting reveals an increase in dislocation density and twin density with increasing cobalt content in the as-deposited samples. Strengthening of <1 1 1> fibre texture and weakening of <2 0 0> fibre texture with increasing cobalt concentration has been observed with X-ray texture analysis. A corresponding significant increase in the saturation magnetization and coercivity observed with increasing cobalt content. A significant improvement in the soft magnetic character in the electrodeposits in terms of increase in saturation magnetization and decrease in coercivity has been observed with thermal annealing.

  19. Electromigration-induced plasticity and texture in Cu interconnects

    International Nuclear Information System (INIS)

    Advanced Light Source; Tamura, Nobumichi; Budiman, A. S.; Hau-Riege, C.S.; Besser, P. R.; Marathe, A.; Joo, Y.-C.; Tamura, N.; Patel, J. R.; Nix, W. D.

    2007-01-01

    Plastic deformation has been observed in damascene Cu interconnect test structures during an in-situ electromigration experiment and before the onset of visible microstructural damage (ie. voiding) using a synchrotron technique of white beam X-ray microdiffraction. We show here that the extent of this electromigration-induced plasticity is dependent on the texture of the Cu grains in the line. In lines with strong textures, the extent of plastic deformation is found to be relatively large compared to our plasticity results in the previous study [1] using another set of Cu lines with weaker textures. This is consistent with our earlier observation that the occurrence of plastic deformation in a given grain can be strongly correlated with the availability of a direction of the crystal in the proximity of the direction of the electron flow in the line (within an angle of 10 o ). In out-of-plane oriented grains in a damascene interconnect scheme, the crystal plane facing the sidewall tends to be a {110} plane,[2-4] so as to minimize interfacial energy. Therefore, it is deterministic rather than probabilistic that the grains will have a direction nearly parallel to the direction of electron flow. Thus, strong textures lead to more plasticity, as we observe

  20. Electromigration-induced Plasticity and Texture in Cu Interconnects

    Science.gov (United States)

    Budiman, A. S.; Hau-Riege, C. S.; Besser, P. R.; Marathe, A.; Joo, Y.-C.; Tamura, N.; Patel, J. R.; Nix, W. D.

    2007-10-01

    Plastic deformation has been observed in damascene Cu interconnect test structures during an in-situ electromigration experiment and before the onset of visible microstructural damage (ie. voiding) using a synchrotron technique of white beam X-ray microdiffraction. We show here that the extent of this electromigration-induced plasticity is dependent on the texture of the Cu grains in the line. In lines with strong textures, the extent of plastic deformation is found to be relatively large compared to our plasticity results in the previous study[1] using another set of Cu lines with weaker textures. This is consistent with our earlier observation that the occurrence of plastic deformation in a given grain can be strongly correlated with the availability of a direction of the crystal in the proximity of the direction of the electron flow in the line (within an angle of 10°). In out-of-plane oriented grains in a damascene interconnect scheme, the crystal plane facing the sidewall tends to be a {110} plane,[2-4] so as to minimize interfacial energy. Therefore, it is deterministic rather than probabilistic that the grains will have a direction nearly parallel to the direction of electron flow. Thus, strong textures lead to more plasticity, as we observe.

  1. Textural and biochemical changes during ripening of old-fashioned salted herrings

    DEFF Research Database (Denmark)

    Christensen, Mette; Andersen, Eva; Christensen, Line

    2011-01-01

    the ripening period could be explained by free-radical-induced cross-linking of myosin and the formation of aggregates. In addition, degradation of these aggregates correlated with the decrease in hardness observed at 371 days. CONCLUSIONS: Texture changes during ripening of salted herrings can be explained...... of salted herrings. The aim of this study was to measure the texture changes during ripening using two differentmethods and to correlate the texture changeswith brine composition andwith biochemical modifications at themolecular level. RESULTS: During ripening (up to 151 days), hardness was higher in salted...... herrings compared to raw herrings, irrespective of the brine composition. However, the increase in hardness of herring prepared with extra brine occurred later. After prolonged storage (371 days), hardness was found for both batches to decrease to the level of raw herring. The increase in hardness during...

  2. Control of mechanical response of freestanding PbZr0.52Ti0.48O3 films through texture

    Science.gov (United States)

    Das, Debashish; Sanchez, Luz; Martin, Joel; Power, Brian; Isaacson, Steven; Polcawich, Ronald G.; Chasiotis, Ioannis

    2016-09-01

    The texture of piezoelectric lead zirconate titanate (PZT) thin films plays a key role in their mechanical response and linearity in the stress vs. strain behavior. The open circuit mechanical properties of PZT films with controlled texture varying from 100% (001) to 100% (111) were quantified with the aid of direct strain measurements from freestanding thin film specimens. The texture was tuned using a highly {111}-textured Pt substrate and excess-Pb in the PbTiO3 seed layer. The mechanical and ferroelastic properties of 500 nm thick PZT (52/48) films were found to be strongly dependent on grain orientation: the lowest elastic modulus of 90 ± 2 GPa corresponded to pure (001) texture, and its value increased linearly with the percentage of (111) texture reaching 122 ± 3 GPa for pure (111) texture. These elastic modulus values were between those computed for transversely isotropic textured PZT films by using the soft and hard bulk PZT compliance coefficients. Pure (001) texture exhibited maximum non-linearity and ferroelastic domain switching, contrary to pure (111) texture that exhibited more linearity and the least amount of switching. A micromechanics model was employed to calculate the strain due to domain switching. The model fitted well the non-linearities in the experimental stress-strain curves of (001) and (111) textured PZT films, predicting 17% and 10% of switched 90° domains that initially were favorably aligned with the applied stress in (001) and (111) textured PZT films, respectively.

  3. Biaxial magnetic grain alignment

    International Nuclear Information System (INIS)

    Staines, M.; Genoud, J.-Y.; Mawdsley, A.; Manojlovic, V.

    2000-01-01

    Full text: We describe a dynamic magnetic grain alignment technique which can be used to produce YBCO thick films with a high degree of biaxial texture. The technique is, however, generally applicable to preparing ceramics or composite materials from granular materials with orthorhombic or lower crystal symmetry and is therefore not restricted to superconducting applications. Because magnetic alignment is a bulk effect, textured substrates are not required, unlike epitaxial coated tape processes such as RABiTS. We have used the technique to produce thick films of Y-247 on untextured silver substrates. After processing to Y-123 the films show a clear enhancement of critical current density relative to identically prepared untextured or uniaxially textured samples. We describe procedures for preparing materials using magnetic biaxial grain alignment with the emphasis on alignment in epoxy, which can give extremely high texture. X-ray rocking curves with FWHM of as little as 1-2 degrees have been measured

  4. On the origin of recrystallization textures

    Indian Academy of Sciences (India)

    Unknown

    rival theories of evolution of recrystallization textures i.e. oriented nucleation (ON) and oriented growth (OG) has been under dispute. In the ON model, it has been argued that a higher frequency of the special orientation. (grains) than random occur, thus accounting for the texture. In the OG model, it has been argued that the.

  5. Electromigration-induced plasticity and texture in Cu interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; Tamura, Nobumichi; Budiman, A. S.; Hau-Riege, C.S.; Besser, P. R.; Marathe, A.; Joo, Y.-C.; Tamura, N.; Patel, J. R.; Nix, W. D.

    2007-10-31

    Plastic deformation has been observed in damascene Cu interconnect test structures during an in-situ electromigration experiment and before the onset of visible microstructural damage (ie. voiding) using a synchrotron technique of white beam X-ray microdiffraction. We show here that the extent of this electromigration-induced plasticity is dependent on the texture of the Cu grains in the line. In lines with strong <111> textures, the extent of plastic deformation is found to be relatively large compared to our plasticity results in the previous study [1] using another set of Cu lines with weaker textures. This is consistent with our earlier observation that the occurrence of plastic deformation in a given grain can be strongly correlated with the availability of a <112> direction of the crystal in the proximity of the direction of the electron flow in the line (within an angle of 10{sup o}). In <111> out-of-plane oriented grains in a damascene interconnect scheme, the crystal plane facing the sidewall tends to be a {l_brace}110{r_brace} plane,[2-4] so as to minimize interfacial energy. Therefore, it is deterministic rather than probabilistic that the <111> grains will have a <112> direction nearly parallel to the direction of electron flow. Thus, strong <111> textures lead to more plasticity, as we observe.

  6. Annealing texture of rolled nickel alloys

    International Nuclear Information System (INIS)

    Meshchaninov, I.V.; Khayutin, S.G.

    1976-01-01

    A texture of pure nickel and binary alloys after the 95% rolling and annealing has been studied. Insoluble additives (Mg, Zr) slacken the cubic texture in nickel and neral slackening of the texture (Zr). In the case of alloying with silicium (up to 2%) the texture practically coinsides with that of a technical-grade nickel. The remaining soluble additives either do not change the texture of pure nickel (C, Nb) or enhance the sharpness and intensity of the cubic compontnt (Al, Cu, Mn, Cr, Mo, W, Co -at their content 0.5 to 2.0%). A model is proposed by which variation of the annealing texture upon alloying is caused by dissimilar effect of the alloying elements on the mobility of high- and low-angle grain boundaries

  7. Calcium and zirconium as texture modifiers during rolling and annealing of magnesium–zinc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bohlen, Jan, E-mail: jan.bohlen@hzg.de; Wendt, Joachim; Nienaber, Maria; Kainer, Karl Ulrich; Stutz, Lennart; Letzig, Dietmar

    2015-03-15

    Rolling experiments were carried out on a ternary Mg–Zn–Ca alloy and its modification with zirconium. Short time annealing of as-rolled sheets is used to reveal the microstructure and texture development. The texture of the as-rolled sheets can be characterised by basal pole figures with split peak towards the rolling direction (RD) and a broad transverse angular spread of basal planes towards the transverse direction (TD). During annealing the RD split peaks as well as orientations in the sheet plane vanish whereas the distribution of orientations tilted towards the TD remains. It is shown in EBSD measurements that during rolling bands of twin containing structures form. During subsequent annealing basal orientations close to the sheet plane vanish based on a grain nucleation and growth mechanism of recrystallisation. Orientations with tilt towards the TD remain in grains that do not undergo such a mechanism. The addition of Zr delays texture weakening. - Highlights: • Ca in Mg–Zn-alloys contributes to a significant texture weakening during rolling and annealing. • Grain nucleation and growth in structures consisting of twins explain a texture randomisation during annealing. • Grains with transverse tilt of basal planes preferentially do not undergo a grain nucleation and growth mechanism. • Zr delays the microstructure and texture development.

  8. Grain Boundary Engineering of Electrodeposited Thin Films

    DEFF Research Database (Denmark)

    Alimadadi, Hossein

    is not yet well-understood. This, at least partly, owes to the lack of robust characterization methods for analyzing the nature of grain boundaries including the grain boundary plane characteristics, until recently. In the past decade, significant improvements in the 2-dimensional and 3-dimensional analysis...... of the favorable boundaries that break the network of general grain boundaries. Successful dedicated synthesis of a textured nickel film fulfilling the requirements of grain boundary engineered materials, suggests improved boundary specific properties. However, the textured nickel film shows fairly low...... thermal stability and growth twins annihilate by thermal treatment at 600 degree C. In contrast, for oriented grains, growth nano-twins which are enveloped within columnar grains show a high thermal stability even after thermal treatment at 600 degree C. In order to exploit the high thermal...

  9. Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy

    Science.gov (United States)

    Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania

    2018-03-01

    In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.

  10. Unraveling Recrystallization Mechanisms Governing Texture Development from Rare Earth Element Additions to Magnesium

    Science.gov (United States)

    Imandoust, Aidin

    The origin of texture components associated with rare-earth (RE) element additions in wrought magnesium (Mg) alloys is a long-standing problem in magnesium technology. The objective of this research is to identify the mechanisms accountable for rare-earth texture during dynamic recrystallization (DRX). Towards this end, we designed binary Mg-Cerium and Mg-Gadolinium alloys along with complex alloy compositions containing zinc, yttrium and Mischmetal. Binary alloys along with pure Mg were designed to individually investigate their effects on texture evolutions, while complex compositions are designed to develop randomized texture, and be used in automotive and aerospace applications. We selected indirect extrusion to thermo-mechanically process our materials. Different extrusion ratios and speeds were designed to produce partially and fully recrystallized microstructures, allowing us to analyze DRX from its early stages to completion. X-ray diffraction, electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to conduct microstructure and texture analyses. Our analyses revealed that rare-earth elements in zinc-containing magnesium alloys promote discontinuous dynamic recrystallization at the grain boundaries. During nucleation, the effect of rare earth elements on orientation selection was explained by the concomitant actions of multiple Taylor axes in the same grain. Isotropic grain growth was observed due to rare earth elements segregating to grain boundaries, which lead to texture randomization. The nucleation in binary Mg-RE alloys took place by continuous formation of necklace structures. Stochastic relaxation of basal and non-basal dislocations into low-angle grain boundaries produced chains of embryos with nearly random orientations. Schmid factor analysis showed a lower net activation of dislocations in RE textured grains compared to ones on the other side of the stereographic triangle. Lower dislocation densities within

  11. Analysis of recrystallization and grain growth in ultra low carbon steels using EBSD

    International Nuclear Information System (INIS)

    Novillo, E.; Petite, M. M.; Bocos, J. L.; Gutierrez, I.

    2004-01-01

    This work is focused on the study of recrystallization texture and micro texture in a cold rolled ultra low carbon steel and its relationship with the global texture. Aspects like nucleation, evolution of the volume fraction and grain size were considered. An important grain selection associated with a significant size and number advantages of the recrystallized grains is observed. This grain selection gives rise to the development, at the latest stages of recrystallization, of a strong γ-fibre associated to good drawing properties. (Author) 24 refs

  12. Impact of pulse duration in high power impulse magnetron sputtering on the low-temperature growth of wurtzite phase (Ti,Al)N films with high hardness

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Tetsuhide, E-mail: simizu-tetuhide@tmu.ac.jp [Division of Human Mechatronics Systems, Graduate School of System Design, Tokyo Metropolitan University, 6-6, Asahigaoka, Hino-shi, 191-0065 Tokyo (Japan); Teranishi, Yoshikazu; Morikawa, Kazuo; Komiya, Hidetoshi; Watanabe, Tomotaro; Nagasaka, Hiroshi [Surface Finishing Technology Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10, Aomi, Kohtoh-ku, 135-0064 Tokyo (Japan); Yang, Ming [Division of Human Mechatronics Systems, Graduate School of System Design, Tokyo Metropolitan University, 6-6, Asahigaoka, Hino-shi, 191-0065 Tokyo (Japan)

    2015-04-30

    (Ti,Al)N films were deposited from a Ti{sub 0.33}Al{sub 0.67} alloy target with a high Al content at a substrate temperature of less than 150 °C using high power impulse magnetron sputtering (HIPIMS) plasma. The pulse duration was varied from 60 to 300 μs with a low frequency of 333 Hz to investigate the effects on the dynamic variation of the substrate temperature, microstructural grain growth and the resulting mechanical properties. The chemical composition, surface morphology and phase composition of the films were analyzed by energy dispersive spectroscopy, scanning electron microscopy and X-ray diffraction, respectively. Mechanical properties were additionally measured by using a nanoindentation tester. A shorter pulse duration resulted in a lower rate of increase in the substrate temperature with an exponentially higher peak target current. The obtained films had a high Al content of 70–73 at.% with a mixed highly (0002) textured wurtzite phase and a secondary phase of cubic (220) grains. Even with the wurtzite phase and the relatively high Al contents of more than 70 at.%, the films exhibited a high hardness of more than 30 GPa with a relatively smooth surface of less than 2 nm root-mean-square roughness. The hardest and smoothest surfaces were obtained for pulses with an intermediate duration of 150 μs. The differences between the obtained film properties under different pulse durations are discussed on the basis of the grain growth process observed by transmission electron microscopy. The feasibility of the low-temperature synthesis of AlN rich wurtzite phase (Ti,Al)N films with superior hardness by HIPIMS plasma duration was demonstrated. - Highlights: • Low temperature synthesis of AlN rich wurtzite phase (Ti,Al)N film was demonstrated. • 1 μm-thick TiAlN film was deposited under the temperature less than 150 °C by HIPIMS. • High Al content with highly (0002) textured wurtzite phase structure was obtained. • High hardness of 35 GPa were

  13. Effect of strain path on microstructure, deformation texture and mechanical properties of nano/ultrafine grained AA1050 processed by accumulative roll bonding (ARB)

    Energy Technology Data Exchange (ETDEWEB)

    Naseri, M.; Reihanian, M. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Borhani, E., E-mail: e.borhani@semnan.ac.ir [Department of Nano Technology, Nano Materials Group, Semnan University, Semnan (Iran, Islamic Republic of)

    2016-09-15

    Commercial pure Al sheets were severe plastically deformed at room temperature by accumulative roll bonding (ARB) and cross accumulative roll bonding (CARB). Change in strain path was imposed during CARB by rotating the sheets with 90° around the normal direction axis between each cycle. Microstructural evolution of processed sheets was studied by electron back scattered diffraction (EBSD) analysis and revealed that nano/ultrafine grains (NG/UFG) with the average grain size of 380 nm and 155 nm were formed by both processing routes after eight cycles, respectively. The fraction of high angle grain boundaries and mean misorientation angle of the boundaries in the CARB were 49% and 40.20°, respectively, in comparison to that of ARB sample (41% and 37.37°). Deformation texture evolution demonstrated that the change in strain path leads to the formation of strong orientation along the β-fiber. The major texture components for ARB specimens were Brass {011}<211> and S {123}<634> while those for CARB were Brass {011}<211> and Goss {011}<100>. The CARB processed specimen exhibited the tensile strength, microhardness and elongation of about 230 MPa, 92 HV and 13% compared with ARB sample (180 MPa, 80 HV and 10.5%) after eight cycles. Scanning electron microscopy (SEM) observations of tensile fracture surface of specimens revealed ductile type fracture.

  14. Microstructure and local texture of partially recrystallized titanium sheet

    International Nuclear Information System (INIS)

    Zaefferer, S.; Schwarzer, R.A.

    1993-01-01

    The microstructure of TiAl6V4 sheet was investigated by transmission electron microscopy. Two types of microstructure were found: regions with a recrystallized and regions with a deformed structure. They could be distinguished from each other by grain size and shape, by the dislocation density and local texture. The orientations of individual grains were measured by on-line interpretation of Kikuchi patterns with a TEM. The results were represented on inverse pole figures. The deformed structure showed a strong preferred orientation (11 anti 20)[10 anti 10], while the texture of the recrystallized areas was substantially weaker containing other preferred orientations. The global texture of the sample was investigated by measuring pole figures with an x-ray texture goniometer. The ODF as well as inverse pole figures were calculated and compared to the TEM pole figures. (orig.)

  15. Texture evolution maps for upset deformation of body-centered cubic metals

    International Nuclear Information System (INIS)

    Lee, Myoung-Gyu; Wang, Jue; Anderson, Peter M.

    2007-01-01

    Texture evolution maps are used as a tool to visualize texture development during upset deformation in body-centered cubic metals. These maps reveal initial grain orientations that tend toward normal direction (ND)|| versus ND|| . To produce these maps, a finite element analysis (FEA) with a rate-dependent crystal plasticity constitutive relation for tantalum is used. A reference case having zero workpiece/die friction shows that ∼64% of randomly oriented grains rotate toward ND|| and ∼36% rotate toward ND|| . The maps show well-established trends that increasing strain rate sensitivity and decreasing latent-to-self hardening ratio reduce both and percentages, leading to more diffuse textures. Reducing operative slip systems from both {1 1 0}/ and {1 1 2}/ to just {1 1 0}/ has a mixed effect: it increases the percentage but decreases the percentage. Reducing the number of slip systems and increasing the number of FEA integration points per grain strengthen - texture bands that are observed experimentally

  16. Film grain synthesis and its application to re-graining

    Science.gov (United States)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  17. Computational study of textured ferroelectric polycrystals: Dielectric and piezoelectric properties of template-matrix composites

    Science.gov (United States)

    Zhou, Jie E.; Yan, Yongke; Priya, Shashank; Wang, Yu U.

    2017-01-01

    Quantitative relationships between processing, microstructure, and properties in textured ferroelectric polycrystals and the underlying responsible mechanisms are investigated by phase field modeling and computer simulation. This study focuses on three important aspects of textured ferroelectric ceramics: (i) grain microstructure evolution during templated grain growth processing, (ii) crystallographic texture development as a function of volume fraction and seed size of the templates, and (iii) dielectric and piezoelectric properties of the obtained template-matrix composites of textured polycrystals. Findings on the third aspect are presented here, while an accompanying paper of this work reports findings on the first two aspects. In this paper, the competing effects of crystallographic texture and template seed volume fraction on the dielectric and piezoelectric properties of ferroelectric polycrystals are investigated. The phase field model of ferroelectric composites consisting of template seeds embedded in matrix grains is developed to simulate domain evolution, polarization-electric field (P-E), and strain-electric field (ɛ-E) hysteresis loops. The coercive field, remnant polarization, dielectric permittivity, piezoelectric coefficient, and dissipation factor are studied as a function of grain texture and template seed volume fraction. It is found that, while crystallographic texture significantly improves the polycrystal properties towards those of single crystals, a higher volume fraction of template seeds tends to decrease the electromechanical properties, thus canceling the advantage of ferroelectric polycrystals textured by templated grain growth processing. This competing detrimental effect is shown to arise from the composite effect, where the template phase possesses material properties inferior to the matrix phase, causing mechanical clamping and charge accumulation at inter-phase interfaces between matrix and template inclusions. The computational

  18. Residual-stress-induced grain growth of twinned grains and its effect on formability of magnesium alloy sheet at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se-Jong [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Kim, Daeyong, E-mail: daeyong@kims.re.kr [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Lee, Keunho; Cho, Hoon-Hwe; Han, Heung Nam [Department of Materials Science and Engineering and RIAM, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-11-15

    A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth of twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.

  19. Simulation of growing grains under orientation relation - dependent quadruple point dragging

    International Nuclear Information System (INIS)

    Ito, K

    2015-01-01

    The growth behaviour of a specified grain embedded in matrix grains, for which the migration mobility of the quadruple points depended on the relation between the orientations of the growing and shrinking grains, was studied using a modified Potts MC-type threedimensional simulation. Large embedded grains continued to grow without being overcome by coarsening matrix grains, whereas small embedded grains disappeared, under the influence of the relative mobilities of the quadruple points, the composition of the matrix grain texture and the width of the grain size distribution of the matrix grains. These results indicate that orientation relation-dependent quadruple point dragging can affect the recrystallization texture during the grain coarsening stage. (paper)

  20. Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction

    International Nuclear Information System (INIS)

    Liu, B; Raabe, D; Roters, F; Eisenlohr, P; Lebensohn, R A

    2010-01-01

    We compare two full-field formulations, i.e. a crystal plasticity fast Fourier transform-based (CPFFT) model and the crystal plasticity finite element model (CPFEM) in terms of the deformation textures predicted by both approaches. Plane-strain compression of a 1024-grain ensemble is simulated with CPFFT and CPFEM to assess the models in terms of their predictions of texture evolution for engineering applications. Different combinations of final textures and strain distributions are obtained with the CPFFT and CPFEM models for this 1024-grain polycrystal. To further understand these different predictions, the correlation between grain rotations and strain gradients is investigated through the simulation of plane-strain compression of bicrystals. Finally, a study of the influence of the initial crystal orientation and the crystallographic neighborhood on grain rotations and grain subdivisions is carried out by means of plane-strain compression simulations of a 64-grain cluster

  1. Through process texture evolution of new thin-gauge non-oriented electrical steels with high permeability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning; Yang, Ping, E-mail: yangp@mater.ustb.edu.cn; Mao, Wei-Min

    2016-01-01

    This paper demonstrated new methods for producing high permeability thin-gauge non-oriented electrical steels with columnar-grained 3.05% Si cast slabs containing carbon and MnS precipitates, and the texture evolution was investigated. The magnetic properties of 0.2 mm final sheets were greatly improved by the optimized texture comprising {100}〈0vw〉 and strong {hk0}〈001〉 components, and the best combination of B{sub 50} and P{sub 1.5} was exhibited as 1.764 T and 2.45 W/kg respectively. The texture evolution depended on both the moderate inhibiting effect of coarse MnS precipitates and rolling methods. {100}〈0vw〉 texture could be retained from columnar grains, and strong {hk0}〈001〉 texture was obtained by two-stage rolling in distinct ways: On one hand, for the sample corresponding to low second-stage rolling reduction of 60%, based on the large grain size prior to cold rolling, the higher strain of first-stage cold rolling promoted {hk0}〈001〉 nucleation during intermediate annealing. {hk0}〈001〉 grains were further increased after moderate second-stage cold rolling and decarburization annealing, consequently leading to the final strong {100}–{110}〈001〉 texture and uniform microstructure by quantity and size priorities, and the optimum magnetic properties were achieved; on the other hand, secondary recrystallization occurred on fine-grained decarburized matrix at higher second-stage rolling strains and greatly improved the magnetic induction in RD. The level of abnormal Goss grains growth was decreased in the sample corresponding to 80% second-stage rolling reduction, and normal growth of other beneficial grains lowered the magnetic anisotropy, suggesting another potential way for non-oriented electrical steel production. In addition, the effect of carbon was discussed. - Highlights: • New thin-gauge non-oriented electrical steels with high permeability were fabricated. • The magnetic properties were improved by {100}〈0vw〉 and

  2. Matérn's hard core models of types I and II with arbitrary compact grains

    DEFF Research Database (Denmark)

    Kiderlen, Markus; Hörig, Mario

    Matérn's classical hard core models can be interpreted as models obtained from a stationary marked Poisson process by dependent thinning. The marks are balls of fixed radius, and a point is retained when its associated ball does not hit any other balls (type I) or when its random birth time is st...... of this model with the process of intact grains of the dead leaves model and the Stienen model leads to analogous results for the latter....

  3. Evaluation of deformation behavior of in grains and grain boundaries of L-grade austenitic stainless steel 316L

    International Nuclear Information System (INIS)

    Nagashima, Nobuo; Hayakawa, Masao; Tsukada, Takashi; Kaji, Yoshiyuki; Miwa, Yukio; Ando, Masami; Nakata, Kiyotomo

    2009-01-01

    In this study, micro-hardness tests and AFM observations were performed on SUS 316L low-carbon austenitic stainless steel pre-strained by cold rolling to investigate its deformation behavior. The following results were obtained. Despite the fact that the same plastic strain was applied, post-tensile test AFM showed narrower slip-band spacing in a reduction in area of 30% cold-rolled specimen than the unrolled specimen. Concentrated slip bands were observed near grain boundaries. These were presumably due to slip blocking at grain boundaries. SCC sensitivity increased at a hardness of 300 or higher, the frequency occurrence of a hardness of 300 or higher in the micro-hardness measurements was compared. The micro-hardness did not exceed 300 both within grains and at grain boundaries in the unrolled and up to a reduction in area of 20% cold-rolled specimens of before and after the tensile tests. Micro-hardness exceeding 300 was found to occur frequently in after tensile test specimens with a reduction in area of 30% or more, particularly at grain boundaries. It is suggested that the nonuniformity of deformation at grain boundaries plays an important role of IGSCC crack propagation mechanism of low-carbon austenitic stainless steel. (author)

  4. Evolution of microstructure, texture and topography during additional annealing of cube-textured Ni–5at.%W substrate for coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Mishin, Oleg; Grivel, Jean-Claude

    2012-01-01

    Microstructure, texture and topography have been studied in a recrystallized Ni–5at.%W substrate before and after additional annealing at 1025C for 1 h. The initial recrystallized material contained a strong cube texture and a high fraction of low angle grain boundaries. R3 boundaries were also f...

  5. Automated separation of touching grains in digital images of thin sections

    NARCIS (Netherlands)

    van den Berg, E.H.; Meesters, A.G.C.A.; Kenter, J.A.M.; Schlager, W.

    2002-01-01

    The determination of textural properties of granular material with image analysis is generally troubled by the fact that touching grain sections merge into single features. Without separation of these touching grain sections, the textural properties derived from the images contain substantial bias.

  6. Microstructure and texture evolution in a Cu–Ni–Si alloy processed by equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Hadj Larbi, Fayçal; Azzeddine, Hiba [Faculté de Physique, USTHB, BP 32 El-Alia, Dar El Beida, Alger (Algeria); Baudin, Thierry [Université de Paris Sud, ICMMO, UMR CNRS 8182, Laboratoire de physico-chimie de l’état solide, Bâtiment 410, 91405 Orsay Cedex (France); Mathon, Marie-Hélène [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Brisset, François; Helbert, Anne-Laure [Université de Paris Sud, ICMMO, UMR CNRS 8182, Laboratoire de physico-chimie de l’état solide, Bâtiment 410, 91405 Orsay Cedex (France); Kawasaki, Megumi, E-mail: megumi@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Bradai, Djamel [Faculté de Physique, USTHB, BP 32 El-Alia, Dar El Beida, Alger (Algeria); Langdon, Terence G. [Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-07-25

    Highlights: • A Cu–Ni–Si alloy is processed by ECAP up to 12 passes at 423 K through route A. • The texture after ECAP is characterized by typical shear components of fcc metals. • ECAP leads to randomization of the texture with increasing numbers of passes. • ECAP through route A rotates the texture positions from the ideal component. - Abstract: Experiments were conducted to evaluate the evolution of microstructure and texture in a commercial Cu–2.5Ni–0.6Si (wt.%) alloy processed by equal-channel angular pressing (ECAP) at 423 K for up to 12 passes. An electron backscatter diffraction (EBSD) analysis shows that ECAP processing leads to microstructural refinement with an average grain size of ∼0.9 μm. The refined grains are inclined to the direction of extrusion and the deformation structure evolves from elongated grains to a duplex microstructure of equiaxed and elongated grains. Detailed measurements demonstrate that the grain boundary misorientations gradually increase with increasing numbers of ECAP passes. The texture was investigated using both EBSD and neutron diffraction. The results show the texture after ECAP is characterized by typical shear components of face-centered cubic metals which deviate from their ideal positions.

  7. Microstructure and texture evolution in a Cu–Ni–Si alloy processed by equal-channel angular pressing

    International Nuclear Information System (INIS)

    Hadj Larbi, Fayçal; Azzeddine, Hiba; Baudin, Thierry; Mathon, Marie-Hélène; Brisset, François; Helbert, Anne-Laure; Kawasaki, Megumi; Bradai, Djamel; Langdon, Terence G.

    2015-01-01

    Highlights: • A Cu–Ni–Si alloy is processed by ECAP up to 12 passes at 423 K through route A. • The texture after ECAP is characterized by typical shear components of fcc metals. • ECAP leads to randomization of the texture with increasing numbers of passes. • ECAP through route A rotates the texture positions from the ideal component. - Abstract: Experiments were conducted to evaluate the evolution of microstructure and texture in a commercial Cu–2.5Ni–0.6Si (wt.%) alloy processed by equal-channel angular pressing (ECAP) at 423 K for up to 12 passes. An electron backscatter diffraction (EBSD) analysis shows that ECAP processing leads to microstructural refinement with an average grain size of ∼0.9 μm. The refined grains are inclined to the direction of extrusion and the deformation structure evolves from elongated grains to a duplex microstructure of equiaxed and elongated grains. Detailed measurements demonstrate that the grain boundary misorientations gradually increase with increasing numbers of ECAP passes. The texture was investigated using both EBSD and neutron diffraction. The results show the texture after ECAP is characterized by typical shear components of face-centered cubic metals which deviate from their ideal positions

  8. Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats

    Science.gov (United States)

    Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...

  9. Simulation of recrystallization textures in FCC materials based on a self consistent model

    International Nuclear Information System (INIS)

    Bolmaro, R.E; Roatta, A; Fourty, A.L; Signorelli, J.W; Bertinetti, M.A

    2004-01-01

    The development of re-crystallization textures in FCC polycrystalline materials has been a long lasting scientific problem. The appearance of the so-called cubic component in high stack fault energy laminated FCC materials is not an entirely understood phenomenon. This work approaches the problem using a self- consistent simulation technique of homogenization. The information on first preferential neighbors is used in the model to consider grain boundary energies and intra granular misorientations and to treat the growth of grains and the mobility of the grain boundary. The energies accumulated by deformations are taken as conducting energies of the nucleation and the later growth is statistically governed by the grain boundary energies. The model shows the correct trend for re-crystallization textures obtained from previously simulated deformation textures for high and low stack fault energy FCC materials. The model's topological representation is discussed (CW)

  10. High temperature growth kinetics and texture of surface-oxidised NiO for coated superconductor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kursumovic, A; Tomov, R; Huehne, R; Glowacki, B A; Everts, J E; Tuissi, A; Villa, E; Holzapfel, B

    2003-03-15

    Thick NiO films were grown in air, on biaxially textured (0 0 1) Ni and as-rolled Ni tapes, at temperatures from 1050 to 1350 deg. C. Ni diffusion through the NiO film mainly contributes to the growth since is much faster than oxygen diffusion and occurs by a vacancy diffusion mechanism in the lattice at high temperatures. Parabolic growth kinetics were found for both NiO film thickness and grain growth, and compared with the literature data. Competitive growth of (1 1 1) and (0 0 1) oriented grains establishes the final NiO orientation at temperatures below 1250 deg. C, while at higher temperatures leakage diffusion at/towards grain boundaries, grain coarsening and (1 1 0) oriented grains disrupt the (1 0 0) texture. Hence, development of epitaxy of NiO on textured Ni tapes was found to be largely due to growth kinetics depending on both, time and temperature. We report here a systematic study of the microstructure and kinetics of formation of textured NiO substrate for application as a buffer layer in coated conductor technology.

  11. Microstructure and texture development during high-strain torsion of NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Kloeden, B.

    2006-07-01

    In this study polycrystalline NiAl has been subjected to torsion deformation. The deformation, microstructure and texture development subject to the shear strain are studied by different techniques (Electron Back-Scatter and High Energy Synchrotron Radiation). Beside the development of microstructure and texture with shear strain, the effect of an initial texture as well as the deformation temperature on the development of texture and microstructure constitute an important part of this study. Therefore, samples with three different initial textures were deformed in the temperature range T=700 K-1300 K. The shear stress-shear strain curves are characterized by a peak at low strains, which is followed by softening and a steady state at high strains. Grain refinement takes place for all samples and the average grain size decreases with temperature. For temperatures T>1000 K, discontinuous dynamic recrystallization occurs, by which new grains form by nucleation and subsequent growth. The texture is characterized by two components, {l_brace}100{r_brace}<100> (cube,C) and {l_brace}110{r_brace}<100> (Goss,G). Torsional creep of NiAl is characterized by a stress exponent, which depends on temperature and an activation energy, which is stress dependent. The Swift effect, due to which samples change their axial dimension during torsion without applied axial stress, is observed for NiAl. (orig.)

  12. Influence of intermediate annealing on abnormal Goss grain growth in the rolled columnar-grained Fe-Ga-Al alloys

    International Nuclear Information System (INIS)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu

    2017-01-01

    Highlights: • Texture of primary IA sample was dominated by γ-fiber with a peak at {1 1 1}<1 1 0>. • Texture of primary CR sample was dominated by {1 1 3}<1 1 4> texture. • Inhomogeneous microstructure was significantly improved in primary IA sample. • Strong Goss texture was obtained in final IA sample without surface energy control. - Abstract: Magnetostrictive Fe 82 Ga 4.5 Al 13.5 sheets with 0.1 at% NbC were prepared from directional solidified alloys with <0 0 1> preferred orientation. The slabs were hot rolled at 650 °C and warm rolled at 500 °C. Then some warm-rolled sheets were annealed intermediately at 850 °C for 5 min but the others not. After that, all the sheets were cold rolled to a final thickness of ∼0.3 mm. The microstructures, the textures and the distributions of second phase particles in the primary recrystallized samples were investigated. With intermediate annealing, the inhomogeneous microstructure was improved remarkably and strong Goss ({1 1 0}<0 0 1>) and γ-fiber (<1 1 1>//normal direction [ND]) textures were produced in the primary recrystallized samples. But, an evident disadvantage in size and quantity was observed for Goss grains in the primary recrystallized sample without intermediate annealing. After a final annealing, the final textures and magnetostrictions of samples with and without intermediate annealing were characterized. For samples without intermediate annealing, abnormal growth of {1 1 3} grains occurred and deteriorated the magnetostriction. In contrast, abnormal Goss grain growth occurred completely in samples with intermediate annealing and led to saturation magnetostriction as high as 156 ppm.

  13. Influence of intermediate annealing on abnormal Goss grain growth in the rolled columnar-grained Fe-Ga-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu, E-mail: gaox@skl.ustb.edu.cn

    2017-08-01

    Highlights: • Texture of primary IA sample was dominated by γ-fiber with a peak at {1 1 1}<1 1 0>. • Texture of primary CR sample was dominated by {1 1 3}<1 1 4> texture. • Inhomogeneous microstructure was significantly improved in primary IA sample. • Strong Goss texture was obtained in final IA sample without surface energy control. - Abstract: Magnetostrictive Fe{sub 82}Ga{sub 4.5}Al{sub 13.5} sheets with 0.1 at% NbC were prepared from directional solidified alloys with <0 0 1> preferred orientation. The slabs were hot rolled at 650 °C and warm rolled at 500 °C. Then some warm-rolled sheets were annealed intermediately at 850 °C for 5 min but the others not. After that, all the sheets were cold rolled to a final thickness of ∼0.3 mm. The microstructures, the textures and the distributions of second phase particles in the primary recrystallized samples were investigated. With intermediate annealing, the inhomogeneous microstructure was improved remarkably and strong Goss ({1 1 0}<0 0 1>) and γ-fiber (<1 1 1>//normal direction [ND]) textures were produced in the primary recrystallized samples. But, an evident disadvantage in size and quantity was observed for Goss grains in the primary recrystallized sample without intermediate annealing. After a final annealing, the final textures and magnetostrictions of samples with and without intermediate annealing were characterized. For samples without intermediate annealing, abnormal growth of {1 1 3} grains occurred and deteriorated the magnetostriction. In contrast, abnormal Goss grain growth occurred completely in samples with intermediate annealing and led to saturation magnetostriction as high as 156 ppm.

  14. Mineralogical and textural characteristics of Kakul (Hazara) phosphate rock, NWFP, Pakistan

    International Nuclear Information System (INIS)

    Mehmood, R.; Bhatti, M.A.; Kazmi, K.R.; Mehmood, A.; Sheikh, S.T.; Aleem Shah, S.A.

    2010-01-01

    Various types of minerals, present in phosphate rock of Hazara area of Khyber Pukhtoonkhwa Province of Pakistan, were identified and their concentration was determined using a suitable method. The characteristics of the rock were defined by petrography, X-ray diffraction, and chemical analysis and the textural characteristics such as grain size, grain shape and their arrangement in the rock body were also investigated. The degree of liberation of phosphate-bearing mineral was studied by the particle-counting method. Mineralogical and textural observations indicated that fine-grained rock may be suitable for beneficiation by the froth flotation separation technique. (author)

  15. Quantitative comparison between simulated and experimental FCC rolling textures

    DEFF Research Database (Denmark)

    Wronski, M.; Wierzbanowski, K.; Leffers, Torben

    2015-01-01

    The degree of similarity between simulated and experimental fcc rolling textures is characterized by a single scalar parameter. The textures are simulated with a relatively simple and efficient 1-point model which allows us to vary the strength of the interaction between the grains and the surrou...

  16. Mineralogy, morphology, and textural relationships in coatings on quartz grains in sediments in a quartz-sand aquifer

    Science.gov (United States)

    Zhang, Shouliang; Kent, Douglas B.; Elbert, David C.; Shi, Zhi; Davis, James A.; Veblen, David R.

    2011-01-01

    Mineralogical studies of coatings on quartz grains and bulk sediments from an aquifer on Western Cape Cod, Massachusetts, USA were carried out using a variety of transmission electron microscopy (TEM) techniques. Previous studies demonstrated that coatings on quartz grains control the adsorption properties of these sediments. Samples for TEM characterization were made by a gentle mechanical grinding method and focused ion beam (FIB) milling. The former method can make abundant electron-transparent coating assemblages for comprehensive and quantitative X-ray analysis and the latter technique protects the coating texture from being destroyed. Characterization of the samples from both a pristine area and an area heavily impacted by wastewater discharge shows similar coating textures and chemical compositions. Major constituents of the coating include Al-substituted goethite and illite/chlorite clays. Goethite is aggregated into well-crystallized domains through oriented attachment resulting in increased porosity. Illite/chlorite clays with various chemical compositions were observed to be mixed with goethite aggregates and aligned sub-parallel to the associated quartz surface. The uniform spatial distribution of wastewater-derived phosphorus throughout the coating from the wastewater-contaminated site suggests that all of the coating constituents, including those adjacent to the quartz surface, are accessible to groundwater solutes. Both TEM characterization and chemical extraction results indicate there is a significantly greater amount of amorphous iron oxide in samples from wastewater discharge area compared to those from the pristine region, which might reflect the impact of redox cycling of iron under the wastewater-discharge area. Coating compositions are consistent with the moderate metal and oxy-metalloid adsorption capacities, low but significant cation exchange capacities, and control of iron(III) solubility by goethite observed in reactive transport

  17. Exceptionally High Piezoelectric Coefficient and Low Strain Hysteresis in Grain-Oriented (Ba, Ca)(Ti, Zr)O3 through Integrating Crystallographic Texture and Domain Engineering.

    Science.gov (United States)

    Liu, Yingchun; Chang, Yunfei; Li, Fei; Yang, Bin; Sun, Yuan; Wu, Jie; Zhang, Shantao; Wang, Ruixue; Cao, Wenwu

    2017-09-06

    Both low strain hysteresis and high piezoelectric performance are required for practical applications in precisely controlled piezoelectric devices and systems. Unfortunately, enhanced piezoelectric properties were usually obtained with the presence of a large strain hysteresis in BaTiO 3 (BT)-based piezoceramics. In this work, we propose to integrate crystallographic texturing and domain engineering strategies into BT-based ceramics to resolve this challenge. [001] c grain-oriented (Ba 0.94 Ca 0.06 )(Ti 0.95 Zr 0.05 )O 3 (BCTZ) ceramics with a texture degree as high as 98.6% were synthesized by templated grain growth. A very high piezoelectric coefficient (d 33 ) of 755 pC/N, and an extremely large piezoelectric strain coefficient (d 33 * = 2027 pm/V) along with an ultralow strain hysteresis (H s ) of 4.1% were simultaneously achieved in BT-based systems for the first time, which are among the best values ever reported on both lead-free and lead-based piezoceramics. The exceptionally high piezoelectric response is mainly from the reversible contribution, and can be ascribed to the piezoelectric anisotropy, the favorable domain configuration, and the formation of smaller sized domains in the BCTZ textured ceramics. This study paves a new pathway to develop lead-free piezoelectrics with both low strain hysteresis and high piezoelectric coefficient. More importantly, it represents a very exciting discovery with potential application of BT-based ceramics in high-precision piezoelectric actuators.

  18. Effect of solute grain boundary segregation and hardness on the ductile-to-brittle transition for a Cr-Mo low-alloy steel

    International Nuclear Information System (INIS)

    Shen, D.-D.; Song, S.-H.; Yuan, Z.-X.; Weng, L.-Q.

    2005-01-01

    Combined solute grain boundary segregation and hardness effect on the ductile-to-brittle transition is examined for a P-doped 2.25Cr-1Mo steel by means of Auger electron spectroscopy (AES) in conjunction with hardness measurements, Charpy impact tests and scanning electron microscopy (SEM). During ageing at 540 deg. C after water quenching from 980 deg. C, the segregation of phosphorus, molybdenum and chromium increases and the hardness decreases with increasing ageing time. The ductile-to-brittle transition temperature (DBTT) increases with increasing phosphorus segregation and decreases with decreasing hardness. The phosphorus segregation effect is dominant until 100 h ageing and after that the hardness effect becomes dominant, making the DBTT decrease with further increasing ageing time although the segregation of phosphorus still increases strongly. The segregation of molybdenum has some effect on the DBTT decrease

  19. Effect of Process Variables on the Grain Size and Crystallographic Texture of Hot-Dip Galvanized Coatings

    Science.gov (United States)

    Kaboli, Shirin; McDermid, Joseph R.

    2014-08-01

    A galvanizing simulator was used to determine the effect of galvanizing bath antimony (Sb) content, substrate surface roughness, and cooling rate on the microstructural development of metallic zinc coatings. Substrate surface roughness was varied through the use of relatively rough hot-rolled and relatively smooth bright-rolled steels, cooling rates were varied from 0.1 to 10 K/s, and bulk bath Sb levels were varied from 0 to 0.1 wt pct. In general, it was found that increasing bath Sb content resulted in coatings with a larger grain size and strongly promoted the development of coatings with the close-packed {0002} basal plane parallel to the substrate surface. Increasing substrate surface roughness tended to decrease the coating grain size and promoted a more random coating crystallographic texture, except in the case of the highest Sb content bath (0.1 wt pct Sb), where substrate roughness had no significant effect on grain size except at higher cooling rates (10 K/s). Increased cooling rates tended to decrease the coating grain size and promote the {0002} basal orientation. Calculations showed that increasing the bath Sb content from 0 to 0.1 wt pct Sb increased the dendrite tip growth velocity from 0.06 to 0.11 cm/s by decreasing the solid-liquid interface surface energy from 0.77 to 0.45 J/m2. Increased dendrite tip velocity only partially explains the formation of larger zinc grains at higher Sb levels. It was also found that the classic nucleation theory cannot completely explain the present experimental observations, particularly the effect of increasing the bath Sb, where the classical theory predicts increased nucleation and a finer grain size. In this case, the "poisoning" theory of nucleation sites by segregated Sb may provide a partial explanation. However, any analysis is greatly hampered by the lack of fundamental thermodynamic information such as partition coefficients and surface energies and by a lack of fundamental structural studies. Overall

  20. Texture Formation of Electroplated Nickel and Nickel Alloy on Cu Substrate

    International Nuclear Information System (INIS)

    Lee, Hee Gyoun; Hong, Gye Won; Kim, Jae Geun; Lee, Sun Wang; Kim, Ho Jin

    2006-01-01

    Nickel and nickel-tungsten alloy were electroplated on a cold rolled and heat treated copper(Cu) substrate. 4 mm-thick high purity commercial grade Cu was rolled to various thicknesses of 50, 70, 100 and 150 micron. High reduction ratio of 30% was applied down to 150 micron. Rolled texture was converted into cube texture via high temperature heat treatment at 400-800 degrees C. Grain size of Cu was about 50 micron which is much smaller compared to >300 micron for the Cu prepared using smaller reduction pass of 5%. 1.5 km-long 150 micron Cu was fabricated with a rolling speed of 33 m/min and texture of Cu was uniform along length. Abnormal grain growth and non-cube texture appeared for the specimen anneal above 900 degrees C. 1-10 micron thick Ni and Ni-W film was electroplated onto an annealed cube-textured Cu or directly on a cold rolled Cu. Both specimens were annealed and the degree of texture was measured. For electroplating of Ni on annealed Cu, Ni layer duplicated the cube-texture of Cu substrate and the FWHM of in plane XRD measurement for annealed Cu layer and electroplated layer was 9.9 degree and 13.4 degree, respectively. But the FWHM of in plane XRD measurement of the specimen which electroplated Ni directly on cold rolled Cu was 8.6 degree, which is better texture than that of nickel electroplated on annealed Cu and it might be caused by the suppression of secondary recrystallization and abnormal grain growth of Cu at high temperature above 900 degrees C by electroplated nickel.

  1. Micro-alloying Mg with Y, Ce, Gd and La for texture modification-A comparative study

    International Nuclear Information System (INIS)

    Stanford, N.

    2010-01-01

    A comparative study of the effectiveness of Y, La, Ce and Gd as texture modifiers during the extrusion of magnesium-based alloys has been carried out. It was found that La, Ce and Gd are all effective texture modifiers, being able to produce the 'rare earth' texture at the low alloying levels of 300, 400 and 600 ppm respectively. Y was not as effective as the other three elements in modifying the texture, and at no concentration studied did this element form a typical 'rare earth' texture. It is proposed that a strong interaction of solutes with dislocations and grain boundaries is responsible for the significant impact rare earth additions have on the extruded grain size and texture at very low alloying levels.

  2. Microstructure and texture evolution in a non-oriented electrical steel during γ→α transformation under various atmosphere conditions

    International Nuclear Information System (INIS)

    Xie, Li; Yang, Ping; Xia, Dongsheng; Mao, Weimin

    2015-01-01

    The microstructure and texture evolution of Fe–0.50%Mn non-oriented electrical steel during austenite (γ) to ferrite (α) transformation was studied following various processing conditions. The experimental results demonstrate that the γ→α transformation interface moves from the surface of sheets towards the inner part along the normal direction (ND) under a high temperature gradient in pure hydrogen atmosphere, hereafter calling the process as “directional” phase transformation. Driven by the anisotropic strain energy, the strong {100} textured columnar grains are obtained during the “directional” phase transformation in pure hydrogen atmosphere with a high flow rate. However, driven by the anisotropies of both strain energy and surface energy, the fine {100} and {110} textured columnar grains are developed in pure hydrogen atmosphere with a relatively low flow rate. By contrast, the transformation process is “global” when specimens are annealed in pure nitrogen atmosphere. As a consequence, a {111} texture with equiaxed grains is obtained. In addition, the effect of manganese (Mn) upon the surface oxidation behavior is investigated. - Highlights: • The various atmosphere conditions lead to the microstructure and texture evolution. • The γ→α transformation is “directional” in hydrogen and “global” in nitrogen. • {100} textured columnar grains are obtained at the high flow rate of hydrogen. • {100} and {110} textured columnar grains are obtained at a low flow rate of hydrogen. • A γ-fiber texture with equiaxed grains is obtained in “global” γ→α transformation

  3. Mechanical Aqueous Alteration Dominates Textures of Gale Crater Rocks: Mars Hand Lens Imager (MAHLI) Results

    Science.gov (United States)

    Aileen Yingst, R.; Minitti, Michelle; Edgett, Kenneth; McBride, Marie; Stack, Kathryn

    2015-04-01

    The Mars Hand Lens Imager (MAHLI) acquired sub-mm/pixel scale color images of over 70 individual rocks and outcrops during Curiosity's first year on Mars, permitting the study of textures down to the distinction between silt and very fine sand. We group imaged rock textures into classes based on their grain size, sorting, matrix characteristics, and abundance of pores. Because the recent campaign at Pahrump Hills acquired many more MAHLI images than elsewhere along the rover traverse [6], textural analysis there is more detailed and thus types observed there are sub-divided. Mudstones: These rocks contain framework grains smaller than the highest resolution MAHLI images (16 μm/pixel), and thus are interpreted to consist of grains that are silt-sized or smaller. Some rocks contain nodules, sulfate veins, and Mg-enriched erosionally-resistant ridges. The Pahrump Hills region contains mudstones of at least four different sub-textures: recessive massive, recessive parallel-laminated, resistant laminated-to-massive, and resistant cross-stratified. Recessive mudstones are slope-forming; parallel-laminated recessive mudstones display mm-scale parallel (and in some cases rhythmic) lamination that extends laterally for many meters, and are interbedded with recessive massive mudstones. Coarse cm- to mm-scale laminae appear within resistant mudstones though some portions are more massive; laminae tend to be traceable for cm to meters. Well-sorted sandstones: Rocks in this class are made of gray, fine-to-medium sand and exhibit little to no porosity. Two examples of this class show fine lineations with sub-mm spacing. Aillik, a target in the Shaler outcrop, shows abundant cross-lamination. The Pahrump Hills region contains a sub-texture of well-sorted, very fine to fine-grained cross-stratified sandstone at the dune and ripple-scale. Poorly-sorted sandstones. This class is subdivided into two sub-classes: rounded, coarse-to-very coarse sand grains of variable colors and

  4. Evolution of orientations and deformation structures within individual grains in cold rolled columnar grained nickel

    DEFF Research Database (Denmark)

    Wu, G.L.; Godfrey, A.; Winther, Grethe

    2011-01-01

    Columnar grained Ni is used as a model material allowing simultaneous non-surface investigations of the evolution of crystallographic orientations and deformation microstructures within individual grains as a function of rolling strain up to ε=0.7. Electron channelling contrast and electron...... backscattered diffraction are used to visualise microstructures and crystallographic orientations. It is found that both the microstructural and the textural development depend strongly on the initial grain orientation. A grain size effect is observed on the deformation-induced orientation scatter within...

  5. Textured ZnO thin films by RF magnetron sputtering

    CERN Document Server

    Ginting, M; Kang, K H; Kim, S K; Yoon, K H; Park, I J; Song, J S

    1999-01-01

    Textured thin films ZnO has been successfully grown by rf magnetron sputtering method using a special technique of introducing a small amount of water and methanol on the deposition chamber. The grain size of the textured surface is highly dependent on the argon pressure during the deposition. The pressure in this experiment was varied from 50 mTorr down to 5 mTorr and the highest grain size of the film is obtained at 5 mTorr. The total transmittance of the films are more than 85% in the wavelength of 400 to 800 nm, and haze ratio of about 14% is obtained at 400 nm wavelength. Beside the textured surface, these films also have very low resistivity, which is lower than 1.4x10 sup - sup 3 OMEGA centre dot cm. X-ray analysis shows that the films with textured surface have four diffraction peaks on the direction of (110), (002), (101) and (112), while the non-textured films have only (110) and (002) peaks. Due to the excellent characteristics of this film, it will make the film very good TCO alternatives for the ...

  6. Precipitation behaviors, texture and tensile properties of an extruded Mg-7Y-1Nd-0.5Zr (wt%) alloy bar with large cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Guoliang, E-mail: shigl@grinm.com; Zhang, Kui; Li, Xinggang; Li, Yongjun; Ma, Minglong; Yuan, Jiawei

    2017-02-08

    Precipitation behaviors, texture and tensile properties of an extruded Mg-7Y-1Nd-0.5Zr (wt%) (WE71) alloy bar with large cross-section of 230 mm×140 mm were investigated by hardness test, tensile test, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) macro-texture measurement. The bar was manufactured industrially through a procedure of “multi-direction forging (MDF)+extrusion+on-line quenching+T5 aging”. Totally different age-hardening behaviors are shown during T5 aging at 200 and 235 °C. In the first 100 h, T5 aging at 235 °C brings about 13% increases in hardness, while T5 aging at 200 °C results in 47% increase. During T5 aging at 200 °C, β′ precipitates homogeneously nucleate within the matrix with high number density; however, during T5 aging at 235 °C, β′ precipitates heterogeneously nucleate on discrete and sparse dislocations, resulting in chain-like arrangement of β′ precipitates with broad precipitate free zones in matrix. XRD macro-texture measurement illustrates that basal texture intensity of WE71 bar is much weaker than Mg-8Al-0.5Zn-0.15Mn (wt%) (AZ80) bar; the maximum basal texture intensities in the outer (O) and center (C) of WE71 bar are all about 3, while those of AZ80 bar are 17 and 14, respectively. EBSD micro-texture measurement demonstrates that the maximum texture intensities of C and O are 5.3 and 3.5, respectively. O has higher tensile properties than C because there are more un-dynamic-recrystallization (un-DRX) grains and thus larger average grain size in C. While stretching at room temperature (RT), extrusion direction (ED) in O has the best tensile properties, i.e. ultimate tensile strength (R{sub m})=368 MPa, elongation (A)=5%, and normal direction (ND) in C has the lowest tensile properties, i.e. R{sub m}=255 MPa, A=2%. While stretching at 200 °C, strength does not degrade much; ED in O still has

  7. Texture evolution in Fe-3% Si steel treated under unconventional annealing conditions

    International Nuclear Information System (INIS)

    Stoyka, Vladimir; Kovac, Frantisek; Stupakov, Oleksandr; Petryshynets, Ivan

    2010-01-01

    The present work investigates texture evolution stages in grain-oriented steel heat-treated using unconventional conditions. The Fe-3%Si steel taken after final cold rolling reduction from an industrial line was subjected to a laboratory isothermal annealing at different temperatures. The annealing temperatures were varied in a range of 850-1150 deg. C. During the annealing each specimen was heated at 10 deg. C/s and kept at the stated temperature for 5 min. Development of microstructure and texture in the annealed specimens were followed by the DC measurements of magnetic properties. The grain oriented steel, taken from the same industrial line after final box annealing was also analyzed and compared with the laboratory annealed specimens. It was shown that there is an optimal temperature region that, with combination of a fast heating rate, led to the best conditions of a drastically reduced development time of the {110} crystallographic texture in the cold rolled grain-oriented steel. Materials heat treated below the optimum temperature region account for a primary recrystallization, while applying heat above this region leads to a secondary recrystallization without abnormal grain growth. Moreover, in the optimum temperature range, there was a particular temperature leading to the most optimal microstructure and texture. The magnetic properties, measured after the optimal heat treatment, were close to that measured on specimens taken after the final box annealing. The electron back scattered diffraction measurement technique revealed that sharpness of the {110} crystallographic texture, developed at the optimum temperature is comparable to the steel taken after the industrial final box annealing. This fact is evidence that there is a temperature where the abnormal grain growth proceeds optimally.

  8. Improvement of in-plane alignment for surface oxidized NiO layer on textured Ni substrate by two-step heat-treatment

    International Nuclear Information System (INIS)

    Hasegawa, Katsuya; Izumi, Toru; Izumi, Teruo; Shiohara, Yuh; Maeda, Toshihiko

    2004-01-01

    Epitaxial growth of NiO on a textured Ni substrate as a template for an REBa 2 Cu 3 O y coated conductor was investigated. Highly in-plane aligned NiO layers were successfully fabricated using a new process of a two-step heat-treatment for oxidation. In the first-step, a highly in-plane aligned thin NiO layer was formed on a textured Ni substrate under a low driving force of oxidation. Then, in the second-step, a thick NiO layer was grown at a higher rate with maintaining its high in-plane grain alignment, as if the first NiO layer acts as a seed crystal layer. Further, growth rates and microstructures of the NiO layers were studied comparatively in the cases with and without the first layer. It was found that the oxidation rate in the case with the first layer was lower than that without the first layer. The microstructure observation revealed that the NiO without the first layer was poly-crystalline with many grain-boundaries. On the other hand, in the case with the first layer, grain-boundaries of the NiO were hardly observed. Hence, the reason for this difference of the growth rate and the microstructure of the NiO layers were discussed in view of a diffusivity path

  9. Microstructure evolution and texture development in a friction stir-processed AISI D2 tool steel

    Science.gov (United States)

    Yasavol, N.; Abdollah-zadeh, A.; Vieira, M. T.; Jafarian, H. R.

    2014-02-01

    Crystallographic texture developments during friction stir processing (FSP) of AISI D2 tool were studied with respect to grain sizes in different tool rotation rates. Comparison of the grain sizes in various rotation rates confirmed that grain refinement occurred progressively in higher rotation rates by severe plastic deformation. It was found that the predominant mechanism during FSP should be dynamic recovery (DRV) happened concurrently with continuous dynamic recrystallization (CDRX) caused by particle-stimulated nucleation (PSN). The developed shear texture relates to the ideal shear textures of D1 and D2 in bcc metals. The prevalence of highly dense arrangement of close-packed planes of bcc and the lowest Taylor factor showed the lowest compressive residual stress which is responsible for better mechanical properties compared with the grain-precipitate refinement.

  10. Special grain boundaries in the nugget zone of friction stir welded AA6061-T6 under various welding parameters

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Wang [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Yong, Zou, E-mail: yzou@sdu.edu.cn [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Xuemei, Liu [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Matsuda, Kenji [Department of Materials Science and Technology, Faculty of Engineering, University of Toyama, Toyama 930-8555 (Japan)

    2016-08-01

    The age hardenable AA6061-T6 plate was butt welded by friction stir welding. The total heat input, generated by friction between the tool and work piece and plastic deformation, results in a consumption of meta-stable phases in the nugget zone. Precipitation phenomena were closely related to the diffusion of the solute atoms. The existence of special grain boundaries like Σ1a and Σ3 will increase the difficulty in diffusion, which will improve the hardness in the nugget zone. Furthermore, the formation of Σ3 grain boundaries can result from an impingement of re-crystallized grains coming from texture components in twin relationship already. An appropriate strain level may benefit the development of the twin components with a similar intensity. The welding parameters have an effect on heat source mode and the strain level. Then, the type of dynamic re-crystallization and distribution of the special grain boundaries was altered by changing the parameters.

  11. Shape preferred orientation of iron grains compatible with Earth's uppermost inner core hemisphericity

    Science.gov (United States)

    Calvet, Marie; Margerin, Ludovic

    2018-01-01

    Constraining the possible patterns of iron fabrics in the Earth's Uppermost Inner Core (UIC) is key to unravel the mechanisms controlling its growth and dynamics. In the framework of crystalline micro-structures composed of ellipsoidal, aligned grains, we discuss possible textural models of UIC compatible with observations of P-wave attenuation and velocity dispersion. Using recent results from multiple scattering theory in textured heterogeneous materials, we compute the P-wave phase velocity and scattering attenuation as a function of grain volume, shape, and orientation wrt to the propagation direction of seismic P-waves. Assuming no variations of the grain volume between the Eastern and Western hemisphere, we show that two families of texture are compatible with the degree-one structure of the inner core as revealed by the positive correlation between seismic velocity and attenuation. (1) Strong flattening of grains parallel to the Inner Core Boundary in the Western hemisphere and weak anisometry in the Eastern hemisphere. (2) Strong radial elongation of grains in the Western hemisphere and again weak anisometry in the Eastern hemisphere. Both textures can quantitatively explain the seismic data in a limited range of grain volumes. Furthermore, the velocity and attenuation anisotropy locally observed under Africa demands that the grains be locally elongated in the direction of Earth's meridians. Our study demonstrates that the hemispherical seismic structure of UIC can be entirely explained by changes in the shape and orientation of grains, thereby offering an alternative to changes in grain volumes. In the future, our theoretical toolbox could be used to systematically test the compatibility of textures predicted by geodynamical models with seismic observations.

  12. A new method for grain refinement in magnesium alloy: High speed extrusion machining

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yao, E-mail: liuyao@ustb.edu.cn [School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China); Cai, Songlin [China Electric Power Research Institute, State Grid Corporation of China, Beijing 100192 (China); Dai, Lanhong [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, Beijing 100190 (China)

    2016-01-10

    Magnesium alloys have received broad attentions in industry due to their competitive strength to density ratio, but the poor ductility and strength limit their wide range of applications as engineering materials. A novel severe plastic deformation (SPD) technique of high speed extrusion machining (HSEM) was used here. This method could improve the aforementioned disadvantages of magnesium alloys by one single processing step. In this work, systematic HSEM experiments with different chip thickness ratios were conducted for magnesium alloy AZ31B. The microstructure of the chips reveals that HSEM is an effective SPD method for attaining magnesium alloys with different grain sizes and textures. The magnesium alloy with bimodal grain size distribution has increased mechanical properties than initial sample. The electron backscatter diffraction (EBSD) analysis shows that the dynamic recrystallization (DRX) affects the grain refinement and resulting hardness in AZ31B. Based on the experimental observations, a new theoretical model is put forward to describe the effect of DRX on materials during HSEM. Compared with the experimental measurements, the theoretical model is effective to predict the mechanical property of materials after HSEM.

  13. Multi-directional self-ion irradiation of thin gold films: A new strategy for achieving full texture control

    International Nuclear Information System (INIS)

    Seita, Matteo; Muff, Daniel; Spolenak, Ralph

    2011-01-01

    Highlights: → Multi-directional self-ion bombardment of Au films. → Extensive selective grain growth leads to single crystal-like films. → Texture rotation is prevented by the multi-directional irradiation process. → Texture rotation rate depends on the film initial defect density. - Abstract: Post-deposition ion bombardment can be employed to convert polycrystalline films into single crystals through a process of selective grain growth. Here we report a new technique that enables selective grain growth in self-ion bombarded gold films - a system in which the formation of large single crystal domains was prevented by the occurrence of ion-induced texture rotation. Our findings suggest that the extent of the texture rotation is a function of the ion fluence and the film initial microstructure.

  14. Texture development due to preferential grain growth of Ho--Ba--Cu--O in 1.6-T magnetic field

    International Nuclear Information System (INIS)

    Holloway, A.; McCallum, R.W.; Arrasmith, S.R.

    1993-01-01

    It has been experimentally observed that the application of even a relatively weak magnetic field of 1.6-T during sintering of HoBa 2 Cu 3 O 7-δ (hereafter HoBCO) results in a significant degree of grain alignment. The orientation of grains is found to be controlled by the direction and magnitude of a magnetic field. The degree of alignment was monitored by x-ray diffraction measurements on the flat surface of the samples and by metallography. It has been observed that the degree of alignment grows as the magnitude of the field increases between 0 and 1.6 T for a fixed temperature and processing time. The degree of alignment also increases when the processing temperature changes from 930 degree C to 965 degree C for a fixed field and time. It has also been observed that for both a fixed field and processing temperature, the alignment grows when the processing time increases between 16 and 72 hours. Metallography measurements on the flat and cross-sectional parts of the samples showed that the texture propagates into the bulk of the samples. In the presence of a sufficient amount of the liquid phase, the enhancement of the grain growth in the direction favorable to the magnetic field produces rather large single-crystals (0.3 to 0.5 mm linear size) within the sample

  15. Characterizing Grain-Oriented Silicon Steel Sheet Using Automated High-Resolution Laue X-ray Diffraction

    Science.gov (United States)

    Lynch, Peter; Barnett, Matthew; Stevenson, Andrew; Hutchinson, Bevis

    2017-11-01

    Controlling texture in grain-oriented (GO) silicon steel sheet is critical for optimization of its magnetization performance. A new automated laboratory system, based on X-ray Laue diffraction, is introduced as a rapid method for large scale grain orientation mapping and texture measurement in these materials. Wide area grain orientation maps are demonstrated for both macroetched and coated GO steel sheets. The large secondary grains contain uniform lattice rotations, the origins of which are discussed.

  16. Electric properties of a textured BiNaKTiO3 ceramic for energy harvesting system

    Science.gov (United States)

    Lim, D. H.; Song, T. K.; Lee, D. S.; Jeong, S. J.; Kim, Min-Soo; Song, Jae-Sung

    2012-01-01

    Piezoelectric ceramics with microstructural texturing were fabricated and evaluated to investigate their possibility for use in piezoelectric energy harvest devices in response to external mechanical impact. The microstructural evolution and properties of a Bi0.5(Na0.425K0.075) TiO3 (BNKT) ceramic material with platelike Bi4Ti3O12 (BiT) were investigated. The platelike Bi4Ti3O12 (BiT) was used as a template to induce grain growth under a proper heat treatment. The textured BNKTs were fabricated and heated at 1150 °C for 10 h. They exhibited -oriented large grains and improved of ferroelectric properties. The textured microstructure was due to the occurrence of grain growth around the templates. When subjected to a low stress of 0.8 MPa, the textured BNKT had a slightly larger voltage and power than the randomly-oriented BNKT. Meanwhile, when high stresses over 2 MPa were applied, the voltage and the power of the textured specimen were larger than those of the randomly-oriented specimen. The microstructure textured along the direction may contribute to the improved power generation.

  17. Electric properties of a textured BiNaKTiO3 ceramic for energy harvesting system

    International Nuclear Information System (INIS)

    Lim, D. H.; Song, T. K.; Lee, D. S.; Jeong, S. J.; Kim, M. S.; Song, J. S.

    2012-01-01

    Piezoelectric ceramics with microstructural texturing were fabricated and evaluated to investigate their possibility for use in piezoelectric energy harvest devices in response to external mechanical impact. The microstructural evolution and properties of a Bi 0.5 (Na 0.425 K 0.075 ) TiO 3 (BNKT) ceramic material with platelike Bi 4 Ti 3 O 12 (BiT) were investigated. The platelike Bi 4 Ti 3 O 12 (BiT) was used as a template to induce grain growth under a proper heat treatment. The textured BNKTs were fabricated and heated at 1150 .deg. C for 10 h. They exhibited -oriented large grains and improved of ferroelectric properties. The textured microstructure was due to the occurrence of grain growth around the templates. When subjected to a low stress of 0.8 MPa, the textured BNKT had a slightly larger voltage and power than the randomly-oriented BNKT. Meanwhile, when high stresses over 2 MPa were applied, the voltage and the power of the textured specimen were larger than those of the randomly-oriented specimen. The microstructure textured along the direction may contribute to the improved power generation.

  18. Development of Ultra-Fine-Grained Structure in AISI 321 Austenitic Stainless Steel

    Science.gov (United States)

    Tiamiyu, A. A.; Szpunar, J. A.; Odeshi, A. G.; Oguocha, I.; Eskandari, M.

    2017-12-01

    Ultra-fine-grained (UFG) structure was developed in AISI 321 austenitic stainless steel (ASS) using cryogenic rolling followed by annealing treatments at 923 K, 973 K, 1023 K, and 1073 K (650 °C, 700 °C, 750 °C, and 800 °C) for different lengths of time. The α'-martensite to γ-austenite reversion behavior and the associated texture development were analyzed in the cryo-rolled specimens after annealing. The activation energy, Q, required for the reversion of α'-martensite to γ-austenite in the steel was estimated to be 80 kJ mol-1. TiC precipitates and unreversed triple junction α'-martensite played major roles in the development of UFG structure through the Zener pinning of grain boundaries. The optimum annealing temperature and time for the development of UFG structure in the cryo-rolled AISI 321 steel are (a) 923 K (650 °C) for approximately 28800 seconds and (b) 1023 K (750 °C) for 600 seconds, with average grain sizes of 0.22 and 0.31 µm, respectively. Annealing at 1023 K (750 °C) is considered a better alternative since the volume fraction of precipitated carbides in specimens annealed at 1023 K (750 °C) are less than those annealed at 923 K (650 °C). More so, the energy consumption during prolonged annealing time to achieve an UFG structure at 923 K (650 °C) is higher due to low phase reversion rate. The hardness of the UFG specimens is 195 pct greater than that of the as-received steel. The higher volume fraction of TiC precipitates in the UFG structure may be an additional source of hardening. Micro and macrotexture analysis indicated {110}〈uvw〉 as the major texture component of the austenite grains in the UFG structure. Its intensity is stronger in the specimen annealed at low temperatures.

  19. Microstructure and texture evolution in cryorolled Al 7075 alloy

    International Nuclear Information System (INIS)

    Jayaganthan, R.; Brokmeier, H.-G.; Schwebke, Bernd; Panigrahi, S.K.

    2010-01-01

    The present work investigates the microstructure and texture evolution of cryorolled Al 7075 alloy using FE-SEM, TEM, and neutron diffraction, respectively. The solution treated bulk Al 7075 alloy is subjected to rolling at liquid nitrogen temperature to produce sheets with different thickness reductions such as 35%, 50%, 70%, and 90%, respectively. It is evident from the microstructural characterisations of cryorolled samples that with the increasing deformation strain induced in the materials, the grains are fragmented and produce high amount of dislocation density due the suppression of dynamic recovery. The texture analysis of the cryorolled Al 7075 alloy has shown that the ideal fibres observed in the starting solution treated alloy has been destroyed during rolling. The Goss/Brass orientation of the cryorolled Al alloy is shifting towards the Brass components with increasing deformation strain induced in the samples. The orientation distribution functions of the cryorolled Al 7075 alloy clearly indicate the progressive weakening of the texture components, during cryorolling, with increasing strain, therefore, fragmentation and reorientation of micron sized grains occurs easily for the formation of subgrains and ultrafine-grained microstructures as evident from EBSD and TEM micrographs.

  20. Grain boundary characteristics and texture formation in a medium carbon steel during its austenitic decomposition in a high magnetic field

    International Nuclear Information System (INIS)

    Zhang, Y.D.; Esling, C.; Lecomte, J.S.; He, C.S.; Zhao, X.; Zuo, L.

    2005-01-01

    A 12-T magnetic field has been applied to a medium plain carbon steel during the diffusional decomposition of austenite and the effect of a high magnetic field on the distribution of misorientation angles, grain boundary characteristics and texture formation in the ferrite produced has been investigated. The results show that a high magnetic field can cause a considerable decrease in the frequency of low-angle misorientations and an increase in the occurrence of low Σ coincidence boundaries, in particular the Σ3 of ferrite. This may be attributed to the elevation in the transformation temperature caused by the magnetic field and, therefore, the reduction of the transformation stress. The wider temperature range for grain growth offers longer time to the less mobile Σ boundaries to enlarge their areas. Moreover, the magnetic field can enhance the transverse field-direction fiber ( parallel TFD). It can be assumed that the effects of the field were caused by the dipolar interaction between the magnetic moments of Fe atoms

  1. Secondary recrystallization behavior in a twin-roll cast grain-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hong-Yu; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; Wang, Guo-Dong

    2017-04-15

    The microstructure and texture evolution along the processing was investigated with a particular focus on the secondary recrystallization behavior in a 0.23 mm-thick twin-roll cast grain-oriented electrical steel. A striking feature is that Goss orientation originated during twin-roll casting as a result of shear deformation and it was further enhanced during hot rolling and normalizing. After primary recrystallization annealing, a homogeneous microstructure associated with a sharp γ-fiber texture was produced. During secondary recrystallization annealing, the γ-fiber texture was first strengthened and weakened with increasing temperature prior to the onset of secondary recrystallization. Goss grains always exhibited more 20–45° misoriented boundaries than the matrix. The matrix was quite stable during secondary recrystallization with the aid of dense inhibitors. Finally, a complete secondary recrystallization microstructure consisting of large Goss grains was produced. The grain boundary characteristics distribution indicated that the high energy model was responsible for the abnormal growth of Goss grains under the present conditions. - Highlights: • A 0.23 mm twin-roll cast grain-oriented silicon steel sheet was produced. • Goss orientation originated during twin-roll casting. • Secondary recrystallization behavior was briefly investigated. • γ-fiber texture was enhanced prior to the onset of secondary recrystallization. • A complete secondary recrystallization microstructure was produced.

  2. Superhydrophylic textures fabricated by femtosecond laser pulses on sub-micro- and nano-crystalline titanium surfaces

    International Nuclear Information System (INIS)

    Kolobov, Yury R; Smolyakova, Marina Yu; Kolobova, Anastasia Yu; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Saltuganov, Pavel N; Zayarny, Dmitry A; Ligachev, Alexander E

    2014-01-01

    Sub-micron quasi-regular surface textures were fabricated on surfaces of pure titanium (VT1-0) with micro- and ultrafine-grained bulk structures by multiple femtosecond laser pulses in the scanning mode and characterized by scanning electron and atomic force microscopy. Their wetting characteristics acquired for the initial non-textured and as-textured samples, as well as upon ultrasonic and plasma cleaning, demonstrate corresponding drastic changes of the wetting angles from 87° to ≤ 10°, with much more pronounced contamination, cleaning and wetting effects for the ultrafine-grained titanium. (letter)

  3. Texture in equal-channel angular pressed aluminum and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, S.C.; Beyerlein, I.J.; Bourke, M.A.M.; Tome, C.N.; Rangaswamy, P. [Los Alamos National Lab., Los Alamos, NM (United States); Xu, C.; Langdon, T.G. [Univ. of Southern California, Los Angeles, CA (United States)

    2002-07-01

    Nano-structured metals with advantageous mechanical properties can be produced using severe plastic deformation techniques such as equal channel angular pressing (ECAP). Metals and alloys processed by ECAP have much higher yield strengths than the equivalent unprocessed material while retaining high ductilities, an extremely attractive combination of properties. Implicit in the process are the introduction of repetitive shear strains of 100% which introduce texture, the modeling of which is challenging. In this work, we present results from a neutron diffraction study on aluminum and nickel samples processed by ECAP. The results are compared to predictions from a visco-plastic self-consistent (VPSC) model. By taking into account grain-grain interactions in the model the agreement between the predicted and measured orientation distributions is improved. The results show also that the initial texture affects the texture evolution, at least up to strains of the order of {proportional_to}1, i.e. one ECAP pass. (orig.)

  4. DIFFERENCES BETWEEN WHEAT CULTIVARS IN GRAIN PARAMETERS RELATED TO ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Daniela Mikulíková

    2011-12-01

    Full Text Available Wheat grain samples from sixteen winter cultivars originated from four localities were evaluated and compared in traits related to ethanol production as grain yield, grain hardness, content of protein, starch and amylose, and α-amylase activity. Results obtained indicate significant differences between cultivars in amylose content, α-amylase activity, and grain hardness compared to grain yield, protein content, and starch content where differences were not significant. The amylose content, α-amylase activity, and grain hardness were affected by cultivar. Both testing methods for starch fermentation - separated hydrolysis and fermentation (SHF and simultaneous saccharification and fermentation (SSF revealed difference between cultivars in ethanol yield.

  5. Progress in melt-texturing of YBCO superconductors

    International Nuclear Information System (INIS)

    Salama, K.; Lee, D.F.; Selvamanickam, V.

    1993-01-01

    Since the discovery of high temperature superconductors (HTS), tremendous efforts have been expanded toward the improvement of these materials. Due to the weak-link problem associated with grain boundaries, sintered bulk HTS possess a transport critical current density (J c ) on the order of 10 2 -10 3 A/cm 2 at 77 K. While these sintered superconductors may be utilized in low current applications, novel processing methods have to be developed to obtain HTS that can sustain high currents. Melt-texturing of HTS was found to result in a high degree of grain orientation, and is presently the most prominent processing method used to manufacture bulk YBa 2 Cu 3 O x (123) with superior transport and magnetic properties. In this review paper, various melt-texturing methods will be discussed, and the variation in J c with processing will be presented. (orig.)

  6. Texture profile analyses in tench (Tinca tinca L., 1758 from extensive and intensive culture

    Directory of Open Access Journals (Sweden)

    František Vácha

    2013-01-01

    Full Text Available The aim of the study was to evaluate the differences in texture profile of tench flesh. Texture profile analyses in tench, two years old, (Tinca tinca L. was investigated using instrumental texture profile method, focused on hardness, springiness, cohesiveness, gumminess and chewiness performed with Texture Analyser TA.XTPlus. One group of fish was raised extensively in natural earth pond conditions; the other group was intensively cultured in a recirculation system, feeding on a commercial diet for 7 months. Twelve fish (6 females and 6 males from each group were used for analyses. Flesh of male tench in both groups was harder, more gummy and chewy, compared to female. Springiness was lower in tench male from intensive culture and cohesiveness lower in females from both groups. The result of texture analysis in the extensive culture group was 16.01 N for hardness and 0.72, 0.66, 10.73 and 7.69 for springiness, cohesiveness, gumminess and chewiness, respectively. In the intensive culture group it was 15.16 N for hardness and 0.59, 0.52, 8.06 and 4.96 for springiness, cohesiveness, gumminess and chewiness, respectively. The results proved that the flesh of fish raised extensively is harder, springier, more cohesive and more gummy, and thus more appealing to consumers. This is the first similar study of texture profile of tench.

  7. Texture in thin film silicides and germanides: A review

    International Nuclear Information System (INIS)

    De Schutter, B.; De Keyser, K.; Detavernier, C.; Lavoie, C.

    2016-01-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi_2, C54-TiSi_2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si_1_−_xGe_x in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  8. Texture in thin film silicides and germanides: A review

    Science.gov (United States)

    De Schutter, B.; De Keyser, K.; Lavoie, C.; Detavernier, C.

    2016-09-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi2, C54-TiSi2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si1-xGex in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  9. Texture in thin film silicides and germanides: A review

    Energy Technology Data Exchange (ETDEWEB)

    De Schutter, B., E-mail: bob.deschutter@ugent.be; De Keyser, K.; Detavernier, C. [Department of Solid State Sciences, Ghent University, Ghent (Belgium); Lavoie, C. [IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (United States)

    2016-09-15

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi{sub 2}, C54-TiSi{sub 2}, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si{sub 1−x}Ge{sub x} in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  10. Microstructure, microtexture and precipitation in the ultrafine-grained surface layer of an Al-Zn-Mg-Cu alloy processed by sliding friction treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanxia [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Yang, Yanqing, E-mail: yqyang@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Feng, Zongqiang [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Zhao, Guangming; Huang, Bin; Luo, Xian [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Zhang, Yusheng; Zhang, Wei [Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China)

    2017-01-15

    Precipitate redistribution and texture evolution are usually two concurrent aspects accompanying grain refinement induced by various surface treatment. However, the detailed precipitate redistribution characteristics and process, as well as crystallographic texture in the surface refined grain layer, are still far from full understanding. In this study, we focused on the microstructural and crystallographic features of the sliding friction treatment (SFT) induced surface deformation layer in a 7050 aluminum alloy. With the combination of transmission electron microscopy (TEM) and high angle angular dark field scanning TEM (HAADF-STEM) observations, a surface ultrafine grain (UFG) layer composed of both equiaxed and lamellar ultrafine grains and decorated by high density of coarse grain boundary precipitates (GBPs) were revealed. Further precession electron diffraction (PED) assisted orientation mapping unraveled that high angle grain boundaries rather than low angle grain boundaries are the most favorable nucleation sites for GBPs. The prominent precipitate redistribution can be divided into three successive and interrelated stages, i.e. the mechanically induced precipitate dissolution, solute diffusion and reprecipitation. The quantitative prediction based on pipe diffusion along dislocations and grain boundary diffusion proved the distribution feasibility of GBPs around UFGs. Based on PED and electron backscatter diffraction (EBSD) analyses, the crystallographic texture of the surface UFG layer was identified as a shear texture composed of major rotated cube texture (001) 〈110〉 and minor (111) 〈112〉, while that of the adjoining lamellar coarse grained matrix was pure brass. The SFT induced surface severe shear deformation is responsible for texture evolution. - Highlights: •The surface ultrafine grain layer in a 7050 aluminum alloy was focused. •Precipitate redistribution and texture evolution were discussed. •The quantitative prediction proved the

  11. Importance of Surface Texture to Infrared Remote Sensing Interpretations

    Science.gov (United States)

    Kirkland, L. E.; Adams, P. M.; Herr, K. C.; Salisbury, J. W.

    2001-11-01

    Thermal infrared remote sensing may be used to identify minerals present on the surface using diagnostic spectral bands. As band depth (spectral contrast) exhibited by the mineral increases, the mineral is easier to detect. In order to determine the expected spectral contrast, thermal infrared spectra of typical mineral endmembers are commonly measured in the laboratory. For example, for calcite, well-crystalline limestone is commonly studied. However, carbonates occur in several forms, including thin coatings, indurated carbonate (calcrete), and hot springs deposits. Different formation pathways may cause different microstructures and surface textures. This in turn can also affect the surface texture of the weathered material. Different surface textures can affect the measured band contrast, through roughness that causes a cavity (hohlraum) effect, and particle size and roughness on a scale that causes volume scattering. Thus since detection limits vary with the spectral contrast, surface texture can be an important variable in how detectable a mineral is. To study these issues, we have examined limestone and calcrete deposits at Mormon Mesa, Nevada that have two distinctly different microstructures and surface texture [Kirkland et al., 2001]. The limestone studied has larger grains and the grains frequently have flat, smooth surfaces on the order of 10-50 microns in cross-section length. The calcrete has smaller, more angular calcite grains, which exhibit almost no flat surfaces longer than 5 microns in cross-section length. We will show scanning electron microscope images to compare the different microstructures and surface textures of both the fresh and weathered surfaces, and we will show corresponding thermal infrared spectra to illustrate the different spectral signatures. The results demonstrate the importance of understanding the microstructure of mineral deposits to accurately interpret infrared remote sensing data, especially for studies that lack ground

  12. Evolution of solidification texture during additive manufacturing

    Science.gov (United States)

    Wei, H. L.; Mazumder, J.; DebRoy, T.

    2015-01-01

    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components. PMID:26553246

  13. Finite element simulation of texture evolution and Swift effect in NiAl under torsion

    Science.gov (United States)

    Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht

    2007-09-01

    The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.

  14. Evolution of microstructure and texture in copper during repetitive extrusion-upsetting and subsequent annealing

    DEFF Research Database (Denmark)

    Chen, Q.; Shu, D. Y.; Lin, J.

    2017-01-01

    The evolution of the microstructure and texture in copper has been studied during repetitive extrusion-upsetting (REU) to a total von Mises strain of 4.7 and during subsequent annealing at different temperatures. It is found that the texture is significantly altered by each deformation pass...... strain of 4.7 is measured to be ∼0.3μm. This refined microstructure is unstable at room temperature as is evident from the presence of a small number of recrystallized grains in the deformed matrix. Pronounced recrystallization took place during annealing at 200 °C for 1 h with recrystallized grains...... developing predominantly in high misorientation regions. At 350 ºC the microstructure is fully recrystallized with an average grain size of only 2.3 μm and a very weak crystallographic texture. This REU-processed and subsequently annealed material is considered to be potentially suitable for using...

  15. In situ measurement of grain rotation during deformation of polycrystals

    DEFF Research Database (Denmark)

    Margulies, L.; Winther, G.; Poulsen, H.F.

    2001-01-01

    Texture evolution governs many of the physical, chemical, and mechanical properties of polycrystalline materials, but texture models have only been tested on the macroscopic Level, which makes it hard to distinguish between approaches that are conceptually very different. Here, we present...

  16. Early Stages of Microstructure and Texture Evolution during Beta Annealing of Ti-6Al-4V

    Science.gov (United States)

    Pilchak, A. L.; Sargent, G. A.; Semiatin, S. L.

    2018-03-01

    The early stages of microstructure evolution during annealing of Ti-6Al-4V in the beta phase field were established. For this purpose, a series of short-time heat treatments was performed using sheet samples that had a noticeable degree of alpha-phase microtexture in the as-received condition. Reconstruction of the beta-grain structure from electron-backscatter-diffraction measurements of the room-temperature alpha-phase texture revealed that microstructure evolution at short times was controlled not by general grain growth, but rather by nucleation-and-growth events analogous to discontinuous recrystallization. The nuclei comprised a small subset of beta grains that were highly misoriented relative to those comprising the principal texture component of the beta matrix. From a quantitative standpoint, the transformation kinetics were characterized by an Avrami exponent of approximately unity, thus suggestive of metadynamic recrystallization. The recrystallization process led to the weakening and eventual elimination of the initial beta texture through the growth of a population of highly misoriented grains.

  17. Evolution of recrystallization microstructure and texture during rapid annealing in strip-cast non-oriented electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Feng [The State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Xu, Yun-Bo, E-mail: yunbo_xu@126.com [The State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Zhang, Yuan-Xiang; Wang, Yang; Lu, Xiang [The State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials Research and Innovation and Department of Metallurgical and Materials Engineering, University of Texas at El Paso, 500W, University Avenue, El Paso, TX 79968 (United States); Wang, Guo-Dong [The State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2015-05-01

    Non-oriented electrical steel as-cast strip was produced by twin roll strip casting process, and subsequently cold rolled and annealed at heating rates in the range of 3–450 °C/s with the aim to elucidate the effect of heating rate on the evolution of recrystallized microstructure and texture. The average grain size was rapidly increased when the heating rate was increased from 3 to 25 °C/s, and decreased when the heating rate was greater than 25 °C/s. The average grain size did not increase linearly with heating rate, which was related to different degree of nucleation and growth rate. The recrystallization texture exhibited pronounced improvement during rapid annealing. At high heating rate, the Goss and Cube had a higher probability of nucleation of shear bands with high stored energy, while the intensity of the γ-fiber texture was significantly reduced. The highest B{sub 50} value attained was 1.803 T at a heating rate of 300 °C/s. The study indicates that rapid heating has strong effect on the recrystallization behavior in non-oriented electrical steels, which facilitates optimization of microstructure and texture, especially in the coarse-grained structure. - Highlights: • The effects of heating rate on the microstructure and texture of non-oriented steel were investigated. • The average grain size did not change monotonically with heating rate. • Recrystallization texture exhibited pronounced improvement in the as-cast strip. • Superior magnetic properties were obtained in twin-rolled strip casting process.

  18. Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?

    Energy Technology Data Exchange (ETDEWEB)

    Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani; Watson, Kieva

    2013-11-30

    . Mercury Injection Porosimetry (MIP), Scanning Electron Microsco-py SEM, and Sedigraph measurements are used to assess the pore-throat-size distribu-tion, sorting, texture, and grain size of the samples. Also, displacement pressure at 10% mercury saturation (Pd) and graphically derived threshold pressure (Pc) were deter-mined by MIP technique. SEM images were used for qualitative study of the minerals and pores texture of the core samples. Moreover, EDS (Energy Dispersive X-Ray Spec-trometer), BET specific surface area, and Total Organic Carbon (TOC) measurements were performed to study various parameters and their possible effects on sealing capaci-ty of the samples. We found that shales have the relatively higher average sealing threshold pressure (Pc) than carbonate and sandstone samples. Based on these observations, shale formations could be considered as a promising caprock in terms of retarding scCO{sub 2} flow and leak-age into above formations. We hypothesized that certain characteristics of shales (e.g., 3 fine pore size, pore size distribution, high specific surface area, and strong physical chemical interaction between wetting phase and mineral surface) make them an effi-cient caprock for sealing super critical CO{sub 2}. We found that the displacement pressure at 10% mercury saturation could not be the ultimate representative of the sealing capacity of the rock sample. On the other hand, we believe that graphical method, introduced by Cranganu (2004) is a better indicator of the true sealing capacity. Based on statistical analysis of our samples from Oklahoma Panhandle we assessed the effects of each group of properties (textural and compositional) on maximum supercriti-cal CO{sub 2} height that can be hold by the caprock. We conclude that there is a relatively strong positive relationship (+.40 to +.69) between supercritical CO{sub 2} column height based on Pc and hard/ soft mineral content index (ratio of minerals with Mohs hardness more than 5 over minerals

  19. Rapid heating effects on grain-size, texture and magnetic properties ...

    Indian Academy of Sciences (India)

    Administrator

    oriented electrical steels (Kumar et ... through changes in recovery and recrystallization beha- viour during the final annealing treatment (Duan et .... recovery, recrystallization and grain coarsening (Doherty et al 1988). The size of recrystallized grain is ...

  20. Microstructure and Texture Evolution in Temper Rolled Fe-Si Steels with New System Nano-Inhibitors Under the Dynamic Annealing Conditions

    Directory of Open Access Journals (Sweden)

    Kováč F.

    2017-09-01

    Full Text Available This work investigates the microstructure and texture evolution in grain-oriented electrotechnical steel with a new inhibition system based on vanadium carbides nano-particles. The novel approach for the preparation of this steel with appropriate final magnetic properties combines not only nanoinhibitors based on the vanadium carbides precipitations but also includes straininduced grain growth mechanism in combination with dynamic continuous annealing during the secondary recrystallization. The experimental grain-oriented steel with proposed new chemical composition was prepared in laboratory conditions. The texture analysis has shown that suggested procedure led the formation of sufficiently strong {110} Goss texture during the short time period of a final annealing process, which is comparable to that obtained in the conventionally treated grain-oriented steels.

  1. Microstructure, texture and magnetic properties of strip-cast 1.3% Si non-oriented electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuanxiang, E-mail: yunboxu@126.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang (China); Xu Yunbo; Liu Haitao; Li Chenggang; Cao Guangming; Liu Zhenyu; Wang Guodong [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang (China)

    2012-10-15

    In this work, the evolution of microstructure, texture and magnetic properties of non-oriented 1.3% silicon steel processed using the twin-roll strip casting was investigated, especially under different solidification structures. A number of microstructures about the as-cast strips show that the initial solidification structure of casting a strip can be controlled by the melt superheats. The microstructures with the average grain size of {approx}100-400 {mu}m can be obtained in strips when the melt superheats are from 20 to 60 Degree-Sign C. A nearly random, diffuse, homogeneous texture under a low melt superheat, but comparatively developed {l_brace}100{r_brace} oriented grains are formed under a high melt superheat through the cast strip thickness. The relatively low core loss and high magnetic induction can be obtained in the cold rolled and annealed sheets when increasing the initial grain size of cast-strip. The textures in annealed sheets with coarse initial grain size are characterized by the relatively strong Goss component and {l_brace}001{r_brace} fiber but weak {gamma}-fiber component, which lead to the high permeability. - Highlights: Black-Right-Pointing-Pointer The superheat has an evident effect on the grain size and orientation of strip. Black-Right-Pointing-Pointer Developed Cube and Goss textures were formed in the annealed sheet. Black-Right-Pointing-Pointer High magnetic properties were obtained in the twin-rolled strip casting process.

  2. Microstructure evolution and texture development in thermomechanically processed Mg-Li-Al based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Department of Materials Science and Engineering, IIT Kanpur (India); Govind [Vikram Sarabhai Space Center, Trivandrum (India); Shekhar, Rajiv; Balasubramaniam, R. [Department of Materials Science and Engineering, IIT Kanpur (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Department of Materials Science and Engineering, IIT Kanpur (India)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thermomechanical processing of novel LAT 971 and LATZ 9531 Mg-Al-Li based alloys. Black-Right-Pointing-Pointer Microstructural deviation from the equilibrium phase diagram. Black-Right-Pointing-Pointer Disparity in texture of these alloys after hot-rolling (recrystallization and grain growth). Black-Right-Pointing-Pointer Role of alloying and phase distribution in affecting the texture/interplaner spacing. - Abstract: In the present study, the influence of alloying and thermomechanical processing on the microstructure and texture evolution on the two Mg-Li-Al based alloys, namely Mg-9 wt% Li-7 wt% Al-1 wt% Sn (LAT971) and Mg-9 wt% Li-5 wt% Al-3 wt% Sn-1 wt% Zn (LATZ9531) has been elicited. Novel Mg-Li-Al based alloys were cast (induction melting under protective atmosphere) followed by hot rolling at {approx}573 K with a cumulative reduction of five. A contrary dual phase dendritic microstructure rich in {alpha}-Mg, instead of {beta}-Li phase predicted by equilibrium phase diagram of Mg-Li binary alloy was observed. Preferential presence of Mg-Li-Sn primary precipitates (size 4-10 {mu}m) within {alpha}-Mg phase and Mg-Li-Al secondary precipitates (<3 {mu}m) interspersed in {beta}-Li indicated their degree of dissolution during hot-rolling and homogenization in the dual phase matrix. Presence of Al, Sn and Zn alloying elements in the Mg-Li based alloy has resulted an unusual dual-phase microstructure, change in the lattice parameter, and intriguing texture evolution after hot-rolling of cast LAT 971 and LATZ9531 alloy. Strong texture was absent in the as-cast samples whereas texture development after hot-rolling revealed an increased activity of the non-basal (101{sup Macron }0) slip planes. The quantification of the grain average misorientation (less than 2 Degree-Sign ) using electron backscattered diffraction confirmed the presence of strain free grains in majority of the grains (fraction >0.75) after hot-rolling of Mg

  3. Stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Kamminga, J.D.

    2004-01-01

    In the absence of thermal stress, tensile stress in hard metal films is caused by grain boundary shrinkage and compressive stress is caused by ion peening. It is shown that the two contributions are additive. Moreover tensile stress generated at the grain boundaries does not relax by ion

  4. Behavior of Goss, {411}<148>, and {111}<112> Oriented Grains During Recrystallization and Decarburization After Cold-rolling of Fe-3.1% GrainOriented Electrical Steel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung-Ji; Park, No-Jin [Kumoh National Institute of Technology, Gumi (Korea, Republic of); Joo, Hyung-Don; Park, Jong-Tae [POSCO, Pohang (Korea, Republic of)

    2016-07-15

    Grain-oriented electrical steel is used as a core material in transformers and motors. To obtain improved magnetic properties from the grain-oriented electrical steel, the steel should have a strong {110}<001> Goss texture. Recently, controlled manufacturing processes have been employed for developing electrical steels with a strong Goss texture. It is important to carry out research on the {411}<148> and {111}<112> oriented grains in relation to coincidence site lattice (CSL) boundaries, as they have an effect on the easy growth of the Goss grains upon secondary recrystallization. In this study, the behavior of the{411}<148> and {111}<112> oriented grains, which are neighbored with Goss grains after recrystallization with rapid and typical heating rates, and after decarburization, was examined by using x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) measurements. In the decarburized specimen, the Goss grains encroached the {411}<148> and {111}<112> oriented grains to a greater extent with a rapid heating rate than with a typical heating rate, and larger Goss grains were observed with the rapid heating rate. The {111}<112> oriented grains especially affect the easy growth of the Goss grains, as they are located near the Goss grains. Therefore, larger Goss grains can be produced at rapid heating rates, and the product is estimated to exhibit improved magnetic properties after secondary recrystallization.

  5. Magnetization dynamics of imprinted non-collinear spin textures

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Robert, E-mail: r.streubel@ifw-dresden.de; Kopte, Martin; Makarov, Denys, E-mail: d.makarov@ifw-dresden.de [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Fischer, Peter [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, UC Santa Cruz, Santa Cruz, California 95064 (United States); Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz (Germany)

    2015-09-14

    We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.

  6. Fine-grained sheet silicate rocks

    International Nuclear Information System (INIS)

    Weaver, C.E.

    1977-09-01

    Considerable interest has been shown in the possibility of using shales as repositories for radioactive waste and a variety of other waste products, and it appears that over the next few years much money and effort will be expended to investigate and test a wide variety of shales. If shales are to be studied in detail by a large number of investigators, it is important that all concerned have the same concept of what constitutes a shale. The term shale and other terms for fine-grained rocks have been used for many years and have been continually redefined. Most definitions predate the development of modern instrumentation and are based on field observations and intuition; however, the main problem is the diversity of definitions. An attempt is made here to develop a simple, rational classification of fine-grained sediments, and it is hoped that this classification will eliminate some of the present ambiguity. In order that the classification be pertinent, mineral composition and textural data were compiled and evaluated. The data on unconsolidated and consolidated sediments were contrasted and the effects of burial diagenesis assessed. It was found necessary to introduce a new term, physil, to describe all sheet silicate minerals. In contrast to the term clay mineral, the term physil has no size connotation. A simple classification is proposed that is based on the percentage of physils and grain size. In Part II the fine-grained physil rocks are classified on the basis of physil type, non-physil minerals, and texture. Formations are listed which have the mineral and textural characteristics of the most important rock types volumetrically. Selected rock types, and the formations in which they can be found, are recommended for laboratory study to determine their suitability for the storage of high-level radioactive waste

  7. The effect of microstructure and texture evolution on mechanical properties of low-carbon steel processed by the continuous hybrid process

    International Nuclear Information System (INIS)

    Hwang, Sun Kwang; Baek, Hyun Moo; Son, Il-Heon; Im, Yong-Taek; Bae, Chul Min

    2013-01-01

    In this paper, the continuous hybrid process is newly designed and applied for producing grain-refined long and large cross-section wires of low-carbon steel at high speed at room temperature. The initial specimen, with a diameter of 13 mm, continuously passes through the rolls, equal channel angular pressing (ECAP) dies, and wire-drawing dies in sequence during the process. The specimens deformed by the continuous hybrid process without and with the wire-drawing dies were obtained to investigate the role in the deformation separately. Their microstructures, textures, and mechanical properties were investigated by optical microscopy (OM), electron backscattering diffraction (EBSD), X-ray diffraction (XRD), tension, and Vickers micro-hardness tests and were compared with those for the case processed by the conventional wire-drawing process. According to the present investigation, the continuous hybrid process can more efficiently manufacture fine-grained wires with a strong shear texture in a continuous way than the conventional wire-drawing process can. In addition, the ultimate tensile strength value of the specimen processed by the continuous hybrid process was 23.9% higher, although the elongation was slightly lower than the one produced by the conventional wire-drawing process. The plastic deformation was mainly imposed by the ECAP dies, and the wire-drawing dies improve the dimensional accuracy and increase the local strain homogeneity in the continuous hybrid process. It is demonstrated that the continuous hybrid process might be beneficial in commercializing a continuous application of the severe plastic deformation process for producing grain-refined wires for industrial applications

  8. Plasma assisted nitriding for micro-texturing onto martensitic stainless steels*

    Directory of Open Access Journals (Sweden)

    Katoh Takahisa

    2015-01-01

    Full Text Available Micro-texturing method has grown up to be one of the most promising procedures to form micro-lines, micro-dots and micro-grooves onto the mold-die materials and to duplicate these micro-patterns onto metallic or polymer sheets via stamping or injection molding. This related application requires for large-area, fine micro-texturing onto the martensitic stainless steel mold-die materials. A new method other than laser-machining, micro-milling or micro-EDM is awaited for further advancement of this micro-texturing. In the present paper, a new micro-texturing method is developed on the basis of the plasma assisted nitriding to transform the two-dimensionally designed micro-patterns to the three dimensional micro-textures in the martensitic stainless steels. First, original patterns are printed onto the surface of stainless steel molds by using the dispenser or the ink-jet printer. Then, the masked mold is subjected to high density plasma nitriding; the un-masked surfaces are nitrided to have higher hardness, 1400 Hv than the matrix hardness, 200 Hv of stainless steels. This nitrided mold is further treated by sand-blasting to selectively remove the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel mold is fabricated as a tool to duplicate these micro-patterns onto the plastic materials by the injection molding.

  9. Extruded snacks from whole wheat supplemented with textured soy flour: Effect on instrumental and sensory textural characteristics.

    Science.gov (United States)

    Rodríguez-Vidal, Arturo; Martínez-Flores, Héctor Eduardo; González Jasso, Eva; Velázquez de la Cruz, Gonzalo; Ramírez-Jiménez, Aurea K; Morales-Sánchez, Eduardo

    2017-06-01

    The quality of extruded snacks can be affected not only by processing conditions, but also by some factors like the concentration and type of ingredients incorporated in their formulation and the working conditions used. Although the process conditions have been established with measurable textural properties, sensory qualities have not been correlated with these responses in expanded extruded snacks made with added functional ingredients. Therefore, in this study the effect of adding textured soy flour (TSF) and whole wheat flour (WWF) to refined wheat flour in the production of extruded snacks and expanded with hot air was evaluated. A response surface design using two levels with five central points was applied to obtain the best combinations of functional ingredients added, holding the parameters of the extrusion process and moisture of treatments. Some texture characteristics and sensory analysis were used as response variables, such as, hardness, fracturability, toughness, crispness, granularity, and chewiness. Likewise, the rate of expansion was evaluated. The results showed that the level of substitution of WWF, especially levels of 15%, had a significant effect on the hardness perceived by the panelist during sensory evaluation. The TSF at concentrations of ≥15%, favored the fracturability and crispness of the samples. It was found that the best expansion index was with the combination of 5% TSF and 15% WWF. Although a correlation between instrumental and sensory tests carried out on the extruded snacks expanded was not found. The physical characteristics of the extruded snacks such as expansion, hardness, and density are important parameters in terms of consumer acceptability of the final product as well as their functional properties. In other words, the appearance and texture are two of the most important attributes that can be seen in snack foods. In particular, the texture can be measured by intrinsic tests: objective (instrumental) and subjective

  10. Multi-phase EBSD mapping and local texture analysis in NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, T.G., E-mail: t.woodcock@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Gutfleisch, O. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany)

    2011-02-15

    A combination of electron backscatter diffraction and energy-dispersive X-ray spectroscopy has been used to identify the crystal structure and composition of all the phases present in commercially available NdFeB sintered magnets and to map their spatial distribution. The Nd{sub 2}Fe{sub 14}B and NdO grains were shown to have low defect densities. The fcc Nd-rich and Nd{sub 2}O{sub 3} grains had intra-grain misorientation angles of up to 14{sup o}, which was shown to be due to defects. Large numbers ({approx}100) of data points for each phase were used to study texture in the NdO, Nd{sub 2}O{sub 3} and Nd{sub 2}Fe{sub 14}B phases. The Nd{sub 2}Fe{sub 14}B grains exhibited a <0 0 1> fibre texture. The Nd oxide phases showed no strong texture, which implied that no strongly preferred orientation relationships between those phases and Nd{sub 2}Fe{sub 14}B exist. The result was shown to be valid for optimally annealed samples exhibiting high coercivity and as-sintered samples exhibiting low coercivity.

  11. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9 (Canada)

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  12. Effect of Mo addition on the microstructure and hardness of ultrafine-grained Ni alloys processed by a combination of cryorolling and high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Garima [Department of Materials Physics, Eötvös Loránd University, P.O.B. 32, Budapest H-1518 (Hungary); Huang, Yi [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO171BJ (United Kingdom); Sarma, V. Subramanya [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Langdon, Terence G. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO171BJ (United Kingdom); Gubicza, Jenő, E-mail: jeno.gubicza@ttk.elte.hu [Department of Materials Physics, Eötvös Loránd University, P.O.B. 32, Budapest H-1518 (Hungary)

    2017-03-14

    An investigation was conducted to examine the effect of molybdenum (Mo) content on the grain size, lattice defect structure and hardness of nickel (Ni) processed by severe plastic deformation (SPD). The SPD processing was applied to Ni samples with low (~0.3 at%) and high (~5 at%) Mo concentrations by a consecutive application of cryorolling and high-pressure torsion (HPT). The grain size and the dislocation density were determined by scanning electron microscopy and X-ray line profile analysis, respectively. In addition, the hardness values in the centers, half-radius and peripheries of the HPT-processed disks were determined after ½, 5 and 20 turns. The results show the higher Mo content yields a dislocation density about two times larger and a grain size about 30% smaller. The smallest value of the grain size was ~125 nm and the highest measured dislocation density was ~60×10{sup 14} m{sup −2} for Ni-5% Mo. For the higher Mo concentration, the dislocation arrangement parameter was larger indicating a less clustered dislocation structure due to the hindering effect of Mo on the rearrangement of dislocations into low energy configurations. The results show there is a good correlation between the dislocation density and the yield strength using the Taylor equation. The α parameter in this equation is slightly lower for the higher Mo concentration in accordance with the less clustered dislocation structure.

  13. CRUMB TEXTURE OF SPELT BREAD

    Directory of Open Access Journals (Sweden)

    Joanna Korczyk-Szabó

    2013-12-01

    Full Text Available Abstract The bread quality is considerably dependent on the texture characteristic of bread crumb. Crumb texture is an important quality indicator, as consumer prefer different bread taste. Texture analysis is primarily concerned with the evaluation of mechanical characteristics where a material is subjected to a controlled force from which a deformation curve of its response is generated. It is an objective physical examination of baked products and gives direct information on the product quality, oppositely to dough rheology tests what inform on the baking suitability of the flour, as raw material. This is why the texture analysis is one of the most helpful analytical methods of the product development. In the framework of our research during the years 2008 – 2009 were analyzed selected indicators for bread texture quality of five Triticum spelta L. varieties – Altgold, Oberkulmer Rotkorn, Ostro, Rubiota and Franckenkorn grown in an ecological system. The bread texture quality was evaluated on texture analyzer TA.XT Plus (Stable Micro Systems, Surrey, UK, following the AACC (74-09 standard method and expressed as crumb firmness (N, stiffness (N.mm-1 and relative elasticity (%. Our research proved that all selected indicators were significantly influenced by the year of growing and variety. The most soft bread was achieved in Rubiota, whereas bread crumb samples from Franckenkorn and Altgold were the most firm and stiff. Correlation analysis showed strong negative correlation between relative elasticity and bread crumb firmness as well as bread stiffness (-0.81++, -0.78++. The spelt grain can be a good source for making bread flour, but is closely dependent on choice of spelt variety. The spelt wheat bread crumb texture need further investigation as it can be a reliable quality parameter.

  14. The parent body controls on cosmic spherule texture: Evidence from the oxygen isotopic compositions of large micrometeorites

    Science.gov (United States)

    van Ginneken, M.; Gattacceca, J.; Rochette, P.; Sonzogni, C.; Alexandre, A.; Vidal, V.; Genge, M. J.

    2017-09-01

    High-precision oxygen isotopic compositions of eighteen large cosmic spherules (>500 μm diameter) from the Atacama Desert, Chile, were determined using IR-laser fluorination - Isotope Ratio Mass spectrometry. The four discrete isotopic groups defined in a previous study on cosmic spherules from the Transantarctic Mountains (Suavet et al., 2010) were identified, confirming their global distribution. Approximately 50% of the studied cosmic spherules are related to carbonaceous chondrites, 38% to ordinary chondrites and 12% to unknown parent bodies. Approximately 90% of barred olivine (BO) cosmic spherules show oxygen isotopic compositions suggesting they are related to carbonaceous chondrites. Similarly, ∼90% porphyritic olivine (Po) cosmic spherules are related to ordinary chondrites and none can be unambiguously related to carbonaceous chondrites. Other textures are related to all potential parent bodies. The data suggests that the textures of cosmic spherules are mainly controlled by the nature of the precursor rather than by the atmospheric entry parameters. We propose that the Po texture may essentially be formed from a coarse-grained precursor having an ordinary chondritic mineralogy and chemistry. Coarse-grained precursors related to carbonaceous chondrites (i.e. chondrules) are likely to either survive atmospheric entry heating or form V-type cosmic spherules. Due to the limited number of submicron nucleation sites after total melting, ordinary chondrite-related coarse-grained precursors that suffer higher peak temperatures will preferentially form cryptocrystalline (Cc) textures instead of BO textures. Conversely, the BO textures would be mostly related to the fine-grained matrices of carbonaceous chondrites due to the wide range of melting temperatures of their constituent mineral phases, allowing the preservation of submicron nucleation sites. Independently of the nature of the precursors, increasing peak temperatures form glassy textures.

  15. Microstructural and Microhardness Evolution from Homogenization and Hot Isostatic Pressing on Selective Laser Melted Inconel 718: Structure, Texture, and Phases

    Directory of Open Access Journals (Sweden)

    Raiyan Seede

    2018-05-01

    Full Text Available In this work, the microstructure, texture, phases, and microhardness of 45° printed (with respect to the build direction homogenized, and hot isostatically pressed (HIP cylindrical IN718 specimens are investigated. Phase morphology, grain size, microhardness, and crystallographic texture at the bottom of each specimen differ from those of the top due to changes in cooling rate. High cooling rates during the printing process generated a columnar grain structure parallel to the building direction in the as-printed condition with a texture transition from (001 orientation at the bottom of the specimen to (111 orientation towards the specimen top based on EBSD analysis. A mixed columnar and equiaxed grain structure associated with about a 15% reduction in texture is achieved after homogenization treatment. HIP treatment caused significant grain coarsening, and engendered equiaxed grains with an average diameter of 154.8 µm. These treatments promoted the growth of δ-phase (Ni3Nb and MC-type brittle (Ti, NbC carbides at grain boundaries. Laves phase (Fe2Nb was also observed in the as-printed and homogenized specimens. Ostwald ripening of (Ti, NbC carbides caused excessive grain growth at the bottom of the HIPed IN718 specimens, while smaller grains were observed at their top. Microhardness in the as-fabricated specimens was 236.9 HV and increased in the homogenized specimens by 19.3% to 282.6 HV due to more even distribution of secondary precipitates, and the nucleation of smaller grains. A 36.1% reduction in microhardness to 180.5 HV was found in the HIPed condition due to   γ ″ phase dissolution and differences in grain morphology.

  16. Deformation and recrystallization textures in commercially pure aluminum

    DEFF Research Database (Denmark)

    Hansen, Niels; Juul Jensen, Dorte

    1986-01-01

    The deformation and recrystallization textures of commercially pure aluminum (99.6 pct) containing large intermetallic particles (FeAl3) are measured by neutron diffraction, and the orientation distribution functions (ODF’s) are calculated. Sample parameters are the initial grain size (50 and 350...

  17. Prediction of grain deformation in drawn copper wire

    OpenAIRE

    Chang Chao-Cheng; Wang Zi-Wei; Huang Chien-Kuo; Wu Hsu-Fu

    2015-01-01

    Most copper wire is produced using a drawing process. The crystallographic texture of copper wire, which is strongly associated with grain deformation, can have a profound effect on the formability and mechanical and electrical properties. Thus, the ability to predict grain deformation in drawn copper wire could help to elucidate the evolution of microstructure, which could be highly valuable in product design. This study developed a novel method for predicting grain deformation in drawn copp...

  18. Annealing behavior of a cast Mg-Gd-Y-Zr alloy with necklace fine grains developed under hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yang, Xuyue, E-mail: yangxuyue@mail.csu.edu.cn [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083 (China); Xiao, Zhenyu; Zhang, Duxiu [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Jun [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Sakai, Taku [UEC Tokyo (The University of Electro-Communications), Chofu, Tokyo 182-8585 (Japan)

    2017-03-14

    The microstructure and texture development of a cast Mg-Gd-Y-Zr alloy during hot deformation and subsequent annealing were investigated by optical microscopy (OM) and electron backscattered diffraction (EBSD) technology. Initial microstructures with partially and fully developed new fine grains (NFGs), separately attended by continuous or interrupted hot forging, were various mixed grain structures composed of NFGs in necklace and retained coarse grains. It is shown that, during annealing, the development of grain size can be divided into three stages: i.e. an incubation of grain growth, a rapid coarsening and a normal grain growth. After a long time annealing of over 10{sup 4} ks at 693 K, the average grain size for samples continuous compressed to ε=1.2 and those interrupted compressed to ε=1.6 were close. Moreover, orientations of such strain-induced fine grains were relatively randomly distributed, leading to a weakened basal texture, while the basal plane of retained coarse grains were perpendicular to the forging direction. Such texture even became weaker during subsequent annealing. The results show that the development of necklace NFGs during hot deformation can be effective for homogeneous grain refinement under subsequent annealing.

  19. Hard Winter Wheat and Flour Properties in Relation to Breadmaking Quality of Straight-dough Bread: Flour Particle Size and Bread Crumb Grain

    Institute of Scientific and Technical Information of China (English)

    S H Park; O K Chung; P A Seib

    2006-01-01

    Samples of 12 hard winter wheats and their flours that produced breads varying in crumb grain scores were studied for 38 quality parameters including: wheat physical and chemical characteristics; flour ash and protein contents, starch damage,swelling power, pasting characteristics, and flour particle size distribution; dough properties determined by a mixograph; and breadmaking properties for pup loaves (100g flour). Only two parameters, the protein content of wheat and the granulation of flour, showed significant correlations with bread crumb grain scores. Protein content of wheat ranging 12.9%~ 14.5% determined by an NIR method showed a weak inverse relationship (r =-0.61, p < 0.05) with bread crumb grain score. Flour particle size distribution measured by both Alpine Air Jet Sieve and NIR methods revealed that the weight wt % of particles less than 38μ m in size and representing 9.6%~ 19.3% of the flour weights was correlated positively (r =0.78, p < 0.01) with crumb grain score, whereas wt % of flour particles larger than 125μm had an inverse relationship (r =-0.60, p<0.05) with crumb grain score.

  20. Orientations of recrystallization nuclei developed in columnar-grained Ni at triple junctions

    DEFF Research Database (Denmark)

    Xu, C.L.; Huang, S.; Zhang, Yubin

    2015-01-01

    A high purity columnar grained nickel sample with a strong <001> fiber texture was cold rolled to 50% reduction in thickness, followed by annealing at different temperatures. Optical microscopy was used to depict the grain boundaries prior to annealing and to detect nuclei formed on grain boundar...

  1. Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J., E-mail: Julian.Fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-01

    This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn{sub 2}O{sub 4}-target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn{sub 2}O{sub 4}-based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn{sub 2}O{sub 4}.

  2. Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes

    International Nuclear Information System (INIS)

    Fischer, J.; Music, D.; Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J.

    2014-01-01

    This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn 2 O 4 -target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn 2 O 4 -based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn 2 O 4

  3. Grain interaction mechanisms leading to intragranular orientation spread in tensile deformed bulk grains of interstitial-free steel

    DEFF Research Database (Denmark)

    Winther, Grethe; Wright, Jonathan P.; Schmidt, Søren

    2017-01-01

    environments representing the bulk texture, yet their deformation-induced rotations are very different. The ALAMEL model is employed to analyse the grain interaction mechanisms. Predictions of this model qualitatively agree with the directionality and magnitude of the experimental orientation spread. However......, quantitative agreement requires fine-tuning of the boundary conditions. The majority of the modelled slip is accounted for by four slip systems also predicted to be active by the classical Taylor model in uniaxial tension, and most of the orientation spread along the grain boundaries is caused by relative...... variations in the activities of these. Although limited to two grains, the findings prove that shear at the grain boundaries as accounted for by the ALAMEL model is a dominant grain interaction mechanism....

  4. Characterization of microstructure, texture and magnetic properties in twin-roll casting high silicon non-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao-Ze; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn; Lu, Hui-Hu; Song, Hong-Yu; Wang, Guo-Dong

    2014-02-15

    An Fe-6.5 wt.% Si-0.3 wt.% Al as-cast sheet was produced by twin-roll strip casting process, then treated with hot rolling, warm rolling and annealing. A detailed study of the microstructure and texture evolution at different processing stages was carried out by optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. The initial as-cast strip showed strong columnar grains and pronounced < 001 >//ND texture. The hot rolled and warm rolled sheets were characterized by large amounts of shear bands distributed through the thickness together with strong < 110 >//RD texture and weak < 111 >//ND texture. After annealing, detrimental < 111 >//ND texture almost disappeared while beneficial (001)<210 >, (001)<010 >, (115)<5 − 10 1 > and (410) < 001 > recrystallization textures were formed, thus the magnetic induction of the annealed sheet was significantly improved. The recrystallization texture in the present study could be explained by preferred nucleation and grain growth mechanism. - Highlights: • A high silicon as-cast strip with columnar structure was produced. • A thin warm rolled sheet without large edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Beneficial (001)<210 >, (001)<010 >, (410)<001 > recrystallization textures were formed. • The magnetic induction of annealed sheet was significantly improved.

  5. Microstructure and Texture in Surface Deformation Layer of Al-Zn-Mg-Cu Alloy Processed by Milling

    Directory of Open Access Journals (Sweden)

    CHEN Yanxia

    2017-12-01

    Full Text Available The microstructural and crystallographic features of the surface deformation layer in Al-Zn-Mg-Cu alloy induced by milling were investigated by means of transmission electron microscopy (TEM and precession electron diffraction (PED assisted nanoscale orientation mapping. The result shows that the surface deformation layer is composed by the top surface of equiaxed nanograins/ultrafine grains and the subsurface of lamellar nanograins/ultrafine grains surrounded by coarse grain boundary precipitates (GBPs. The recrystallized nanograins/ultrafine grains in the deformation layer show direct evidence that dynamic recrystallization plays an important role in grain refining process. The GBPs and grain interior precipitates (GIPs show a great difference in size and density with the matrix due to the thermally and mechanically induced precipitate redistribution. The crystallographic texture of the surface deformation layer is proved to be a mixture of approximate copper{112}, rotated cube{001} and F {111}. The severe shear deformation of the surface induced by milling is responsible for the texture evolution.

  6. Growth and characterization of textured well-faceted ZnO on planar Si(100, planar Si(111, and textured Si(100 substrates for solar cell applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2017-09-01

    Full Text Available In this work, textured, well-faceted ZnO materials grown on planar Si(100, planar Si(111, and textured Si(100 substrates by low-pressure chemical vapor deposition (LPCVD were analyzed by X-ray diffraction (XRD, scanning electron microscopy (SEM, atomic force microscopy (AFM, and cathode luminescence (CL measurements. The results show that ZnO grown on planar Si(100, planar Si(111, and textured Si(100 substrates favor the growth of ZnO(110 ridge-like, ZnO(002 pyramid-like, and ZnO(101 pyramidal-tip structures, respectively. This could be attributed to the constraints of the lattice mismatch between the ZnO and Si unit cells. The average grain size of ZnO on the planar Si(100 substrate is slightly larger than that on the planar Si(111 substrate, while both of them are much larger than that on the textured Si(100 substrate. The average grain sizes (about 10–50 nm of the ZnO grown on the different silicon substrates decreases with the increase of their strains. These results are shown to strongly correlate with the results from the SEM, AFM, and CL as well. The reflectance spectra of these three samples show that the antireflection function provided by theses samples mostly results from the nanometer-scaled texture of the ZnO films, while the micrometer-scaled texture of the Si substrate has a limited contribution. The results of this work provide important information for optimized growth of textured and well-faceted ZnO grown on wafer-based silicon solar cells and can be utilized for efficiency enhancement and optimization of device materials and structures, such as heterojunction with intrinsic thin layer (HIT solar cells.

  7. Microstructural characterization and electron backscatter diffraction analysis across the welded interface of duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiqiang; Jing, Hongyang [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Xu, Lianyong, E-mail: xulianyong@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Han, Yongdian; Gao, Zhanqi; Zhao, Lei [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Zhang, Jianli [Welding laboratory, Offshore Oil Engineering (Qing Dao) Company, Qing Dao 266520 (China)

    2017-08-15

    Highlights: • Apparent change in LTHAZ was the intergranular secondary austenite precipitation. • Ferrite in HAZ maintained same distribution as ferrite texture in base metal. • Different austenite in different zones showed different orientation with ferrite. • Ferrite and austenite grains exhibited different boundary characteristics. • Local deformations were generated in grain boundary and within deformed grain. - Abstract: The microstructural evolution, orientation relationships, boundary characteristics, grain type, local deformation, and microhardness across the welded interface of duplex stainless steel (DSS) were investigated. The DSS welded joint consisted of four typical zones: base metal (BM), low-temperature heat-affected zone (LTHAZ), high-temperature heat-affected zone (HTHAZ), and weld metal (WM). The apparent microstructural changes in the HTHAZ and LTHAZ were secondary austenite and Cr{sub 2}N precipitation. A modified cooperative precipitation mechanism of secondary austenite and Cr{sub 2}N at the interface was proposed. Furthermore, the ferrite in both the HTHAZ and LTHAZ maintained the same distribution as the ferrite texture in the BM, while this ferrite texture disappeared completely in the WM. Different austenite grains in the different zones exhibited different orientation relationships with the ferrite matrix. Special grain boundaries were mainly distributed between the austenite grains, while the ferrite grains primarily contained random grain boundaries. Austenite twins constituted the largest proportion of the special boundaries. The special austenite grain boundaries in the BM and LTHAZ were higher in relative frequency than those in the HTHAZ and WM. The ferrite grains in the HTHAZ and WM mainly consisted of substructured grains. In the BM, the recrystallization degree of ferrite was significantly lower than that of austenite grains. The local deformations were mainly generated in the grain boundaries and within the deformed

  8. Texture and microstructure development during hot deformation of ME20 magnesium alloy: Experiments and simulations

    International Nuclear Information System (INIS)

    Li, X.; Al-Samman, T.; Mu, S.; Gottstein, G.

    2011-01-01

    Highlights: → Second phase precipitates in ME20 hindered activation of tensile twinning at 300 deg. C. → New off-basal sheet texture during c-axis compression at low Z conditions. → Ce amplifies the role of pyramidal -slip over prismatic slip at 0.3T m . → Prismatic slip becomes equally important to deformation at 0.6T m . → Accurate texture predictions using a cluster-type Taylor model with grain interaction. - Abstract: The influence of deformation conditions and starting texture on the microstructure and texture evolution during hot deformation of a commercial rare earth (RE)-containing magnesium alloy sheet ME20 was investigated and compared with a conventional Mg sheet alloy AZ31. For all the investigated conditions, the two alloys revealed obvious distinctions in the flow behavior and the development of texture and microstructure, which was primarily attributed to the different chemistry of the two alloys. The presence of precipitates in the fine microstructure of the ME20 sheet considerably increased the recrystallization temperature and suppressed tensile twinning. This gave rise to an uncommon Mg texture development during deformation. Texture simulation using an advanced cluster-type Taylor approach with consideration of grain interaction was employed to correlate the unique texture development in the ME20 alloy with the activation scenarios of different deformation modes.

  9. Highly textured KNN-based piezoelectric ceramics by conventional sintering

    International Nuclear Information System (INIS)

    Zapata, Angelica Maria Mazuera; Silva Junior, Paulo Sergio da; Zambrano, Michel Venet

    2016-01-01

    Full text: Texturing in ferroelectric ceramics has played an important role in the enhancement of their piezoelectric properties. Common methods for ceramic texturing are hot pressing and template grain ground; nevertheless, the needed facilities to apply hot pressing and the processing of single crystal make the texture of ceramics expensive and very difficult. In this study, a novel method was investigated to obtain highly textured lead-free ceramics. A (K 0.5 Na 0.5 ) 0.97 Li 0. 0 3 Nb 0.8 Ta 0. 2 matrix (KNLNT), with CuO excess was sintered between 1070 and 1110 °C following a solid state reaction procedure. The CuO excess promotes liquid phase formation and a partial melting of the material. XRD patterns showed the intensity of (100) family peaks became much stronger with the increasing of sintering temperature and CuO. In addition, Lotgering factor was calculated and exhibited a texture degree between 40 % and 70 % for sintered samples having 13 and 16 wt. % CuO, respectively. These, highly textured ceramics, with adequate cut, can be used as substitutes single crystals for texturing of KNN-based lead-free ceramics. (author)

  10. Microstructure development and texture evolution of aluminum multi-port extrusion tube during the porthole die extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.H. [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Tang, D., E-mail: tangding@sjtu.edu.cn [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Fang, W.L.; Li, D.Y.; Peng, Y.H. [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-08-15

    Aluminum multi-port extrusion tube is processed by the porthole die extrusion and the internal tube walls are welded through the solid state metallurgical bonding. In order to observe the development of grains and their orientations under severe plastic deformation and solid state welding, the extrusion butt together with the die is quenched immediately after extrusion to preserve the grain structure in the processing. The forming histories of selected material points are obtained by analyzing the optical microscopy graph. The evolution of the microstructure along the forming path is characterized by electro backscattered diffraction. It is found that geometrical dynamic recrystallization happens in the process. Grains are elongated, scattered at the transition zone and shear intensive zone, and then pinched off when they are pushed out from the die orifice. The shear-type orientations are predominant at the surface layer on the longitudinal section of the tube web and have penetrated into the intermediate layer. The rolling-type orientations are formed at the central layer. Texture gradient through the thickness of the tube web is observed. And cube orientated grains are found at the seam weld region. - Highlights: •Microstructure of extrusion butt is preserved after the micro scale porthole die extrusion. •Grain morphology history along forming path is investigated. •Texture evolutions on three material flows are present. •Texture gradient exists on the longitudinal section of the internal wall of profile. •Rolling-type and cube textures are found at the solid state welding region.

  11. Effect of Starting As-cast Structure on the Microstructure-Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel

    Science.gov (United States)

    Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay

    2018-06-01

    Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.

  12. Influence of microflora on texture and contents of amino acids, organic acids, and volatiles in semi-hard cheese made with DL-starter and propionibacteria

    DEFF Research Database (Denmark)

    Rehn, Lina Ulrika Ingeborg; Vogensen, Finn Kvist; Persson, S.-E.

    2011-01-01

    The microflora of semi-hard cheese made with DL-starter and propionic acid bacteria (PAB) is quite complex, and we investigated the influence of its variation on texture and contents of organic acids, free amino acids, and volatile compounds. Variation in the microflora within the normal range...... of log 8 to log 9 cfu/g, which was about 1 log unit higher than the total number of starter bacteria and about 2 log units higher than the number of nonstarter lactic acid bacteria. Eye formation was observed during the warm room period and further ripening (at 8 to 10°C). The amounts of acetate......, propionate, total content of free amino acids, 2-propanol, and ethyl propionate in the ripened cheeses were related to the number of PAB. A decrease in the relative content of Asp and Lys and increase of Phe over the ripening time were different from what is observed in semi-hard cheese without PAB...

  13. Fabrication and Piezoelectric Properties of Textured (Bi1/2K1/2)TiO3 Ferroelectric Ceramics

    Science.gov (United States)

    Nagata, Hajime; Saitoh, Masahiro; Hiruma, Yuji; Takenaka, Tadashi

    2010-09-01

    Textured (Bi1/2K1/2)TiO3 (BKT) ceramics were prepared by a reactive templated grain growth (RTGG) method to improve their piezoelectric properties. Also, a hot-pressing (HP) method was modified on the basis of RTGG method to obtain dense ceramics and promote the grain orientation. The textured BKT ceramics prepared by the RTGG and HP methods exhibited a relatively high orientation factor F of 0.82 and a high density ratio of 95-99%. Scanning electron microscopy (SEM) micrographs of the textured HP-BKT indicated a textured and poreless microstructure. In addition, the resistivity of the textured HP-BKT was 1.73×1013 Ω·cm. The piezoelectric strain constant d33 determined by means of resonance and antiresonance method was 125 pC/N for the direction parallel to the sheet-stacking direction of the RTGG process. From the measurement of field-induced stain, the normalized d33* (=Smax/Emax) at 80 kV/cm were 127 and 238 pm/V on the randomly oriented and textured samples (F=0.82) for the (∥) direction, respectively.

  14. Mechanical Behavior of an Ultrafine/Nano Grained Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Seyed Mahmood Fatemi

    2017-06-01

    Full Text Available The application of magnesium alloys is greatly limited because of their relatively low strength and ductility. An effective way to improve the mechanical properties of magnesium alloy is to refine the grains. As the race for better materials performance is never ending, attempts to develop viable techniques for microstructure refinement continue. Further refining of grain size requires, however, application of extreme value of plastic deformation on material. In this work, an AZ31 wrought magnesium alloy was processed by employing multipass accumulative back extrusion process. The obtained microstructure, texture, and room temperature compressive properties were characterized and discussed. The results indicated that grains of 80 nm to 1 μm size were formed during accumulative back extrusion, where the mean grain size of the experimental material was reduced by applying successive ABE passes. The fraction of DRX increased and the mean grain size of the ABEed alloy markedly lowered, as subsequent passes were applied. This helped to explain the higher yield stress govern the occurrence of twinning during compressive loading. Compressive yield and maximum compressive strengths were measured to increase by applying successive extrusion passes, while the strain-to-fracture dropped. The evolution of mechanical properties was explained relying on the grain refinement effect as well as texture change.

  15. Effect of Grain Orientation and Boundary Distributions on Hydrogen-Induced Cracking in Low-Carbon-Content Steels

    Science.gov (United States)

    Masoumi, Mohammad; Coelho, Hana Livia Frota; Tavares, Sérgio Souto Maior; Silva, Cleiton Carvalho; de Abreu, Hamilton Ferreira Gomes

    2017-08-01

    Hydrogen-induced cracking (HIC) causes considerable economic losses in a wide range of steels exposed to corrosive environments. The effect of crystallographic texture and grain boundary distributions tailored by rolling at 850 °C in three different steels with a body-centered cube structure was investigated on HIC resistance. The x-ray and electron backscattered diffraction techniques were used to characterize texture evolutions during the rolling process. The findings revealed a significant improvement against HIC based on texture engineering. In addition, increasing the number of {111} and {110} grains, associated with minimizing the number of {001} grains in warm-rolled samples, reduced HIC susceptibility. Moreover, the results showed that boundaries associated with low {hkl} indexing and denser packing planes had more resistance against crack propagation.

  16. First steps towards cube textured nickel profile wires for YBCO-coated conductors

    International Nuclear Information System (INIS)

    Eickemeyer, J.; Gueth, A.; Freudenberger, J.; Holzapfel, B.; Schultz, L.

    2011-01-01

    The cube texture as a typical sheet texture can also be formed by cold drawing and recrystallization in profile wires. Cube textured Ni profile wires containing up to 96.2% cube oriented grains in the central region were obtained. Forthcoming investigations are promising to get a textured substrate wire for YBCO-coated conductors. Cube textured nickel alloy tapes prepared by cold rolling and annealing (RABiTS method) represent a standard metallic substrate for superconductor coatings of the YBa 2 Cu 3 O 7-δ (YBCO) type. These tapes have a width to thickness ratio of about 30-100. However, a value of close to one is optimal concerning low energetic losses under alternating current applications. First experiments on micro-alloyed nickel prove that the cube texture as a typical sheet texture can also be formed in profile wires with a rectangular cross-section after cold drawing and recrystallization treatment.

  17. TEXTURE ANALYSIS OF SPELT WHEAT BREAD

    Directory of Open Access Journals (Sweden)

    Magdaléna Lacko - Bartošová

    2013-02-01

    Full Text Available The bread quality is considerably dependent on the texture characteristic of bread crumb. Texture analysis is primarily concerned with the evaluation of mechanical characteristics where a material is subjected to a controlled force from which a deformation curve of its response is generated. It is an objective physical examination of baked products and gives direct information on the product quality, oppositely to dough rheology tests what are inform on the baking suitability of the flour, as raw material. This is why the texture analysis is one of the most helpful analytical methods of the product development. In the framework of our research during the years 2008 – 2009 were analyzed selected indicators of bread crumb for texture quality of three Triticum spelta L. cultivars – Oberkulmer Rotkorn, Rubiota and Franckenkorn grown in an ecological system at the locality of Dolna Malanta near Nitra. The bread texture quality was evaluated on texture analyzer TA.XT Plus and expressed as crumb firmness (N, stiffness (N.mm-1 and relative elasticity (%.Our research proved that all selected indicators were significantly influenced by the year of growing and variety. The most soft bread was measured in Rubiota, whereas bread crumb samples from Franckenkorn were the most firm and stiff. Relative elasticity confirmed that the lowest firmness and stiffness was found in Rubiota bread. The spelt grain can be a good source for making bread flour, but is closely dependent on choice of spelt variety.

  18. Texture evolution during the recrystallization of a warm-rolled low-carbon steel

    International Nuclear Information System (INIS)

    Sanchez-Araiza, M.; Godet, S.; Jacques, P.J.; Jonas, J.J.

    2006-01-01

    The texture changes taking place during the recrystallization of a warm-rolled low-carbon steel were examined using electron backscattered diffraction. The deformation textures of the warm-rolled material are similar in shape to those of cold-rolled materials, but are somewhat more intense. The recrystallization textures resemble the deformation textures but with a more extended α fibre that includes the {1 1 3} orientation; the γ fibre extends to the {5 5 4} orientation. These two orientations are related to the {1 1 2} deformed grains by near 26 deg, rotations about selected axes. Nevertheless, both orientations appear in the early stages of recrystallization, an observation that does not support the oriented growth theory. The {1 1 1} orientations are the first to recrystallize while the α fibre is present until the end of recrystallization. It is finally consumed by all types of grains as well as by subgrain coalescence. The similarities in the growth rates for the {1 1 1} and random orientations and the late disappearance of the α fibre suggest that recrystallization takes place according to the high stored energy oriented nucleation concept

  19. MESOSCALE SIMULATIONS OF MICROSTRUCTURE AND TEXTURE EVOLUTION DURING DEFORMATION OF COLUMNAR GRAINS

    International Nuclear Information System (INIS)

    Sarma, G.

    2001-01-01

    In recent years, microstructure evolution in metals during deformation processing has been modeled at the mesoscale by combining the finite element method to discretize the individual grains with crystal plasticity to provide the constitutive relations. This approach allows the simulations to capture the heterogeneous nature of grain deformations due to interactions with neighboring grains. The application of this approach to study the deformations of columnar grains present in solidification microstructures is described. The microstructures are deformed in simple compression, assuming the easy growth direction of the columnar grains to be parallel to the compression axis in one case, and perpendicular in the other. These deformations are similar to those experienced by the columnar zones of a large cast billet when processed by upsetting and drawing, respectively. The simulations show that there is a significant influence of the initial microstructure orientation relative to the loading axis on the resulting changes in grain shape and orientation

  20. Plastic strain and grain size effects in the surface roughening of a model aluminum alloy

    Science.gov (United States)

    Moore, Eric Joseph

    To address issues surrounding improved automotive fuel economy, an experiment was designed to study the effect of uniaxial plastic tensile deformation on surface roughness and on slip and grain rotation. Electron backscatter diffraction (EBSD) and scanning laser confocal microscopy (SLCM) were used to track grain size, crystallographic texture, and surface topography as a function of incremental true strain for a coarse-grained binary alloy that is a model for AA5xxx series aluminum alloys. One-millimeter thick sheets were heat treated at 425°C to remove previous rolling texture and to grow grains to sizes in the range ˜10-8000 mum. At five different strain levels, 13 sample regions, containing 43 grains, were identified in both EBSD and SLCM micrographs, and crystallographic texture and surface roughness were measured. After heat treatment, a strong cube texture matrix emerged, with bands of generally non-cube grains embedded parallel to the rolling direction (RD). To characterize roughness, height profiles from SLCM micrographs were extracted and a filtered Fourier transform approach was used to separate the profiles into intergranular (long wavelength) and intragranular (short wavelength) signatures. The commonly-used rms roughness parameter (Rq) characterized intragranular results. Two important parameters assess intergranular results in two grain size regimes: surface tilt angle (Deltatheta) and surface height discontinuity (DeltazH) between neighboring grains at a boundary. In general, the magnitude of Rq and Deltatheta increase monotonically with strain and indicate that intergranular roughness is the major contributor to overall surface roughness for true strains up to epsilon = 0.12. Surface height discontinuity DeltazH is defined due to exceptions in surface tilt angle analyses. The range of observed Deltatheta= 1-10° are consistent with the observed 3-12° rotation of individual grains as measured with EBSD. For some grain boundaries with Deltatheta

  1. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  2. Biaxially textured articles formed by power metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  3. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  4. Microstructure and crystallographic texture of pure titanium parts generated by laser additive manufacturing

    Science.gov (United States)

    Arias-González, Felipe; del Val, Jesús; Comesaña, Rafael; Penide, Joaquín; Lusquiños, Fernando; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Gil, Francisco Javier; Pou, Juan

    2018-01-01

    In this paper, the microstructure and crystallographic texture of pure Ti thin walls generated by Additive Manufacturing based on Laser Cladding (AMLC) are analyzed in depth. From the results obtained, it is possible to better understand the AMLC process of pure titanium. The microstructure observed in the samples consists of large elongated columnar prior β grains which have grown epitaxially from the substrate to the top, in parallel to the building direction. Within the prior β grains, α-Ti lamellae and lamellar colonies are the result of cooling from above the β-transus temperature. This transformation follows the Burgers relationship and the result is a basket-weave microstructure with a strong crystallographic texture. Finally, a thermal treatment is proposed to transform the microstructure of the as-deposited samples into an equiaxed microstructure of α-Ti grains.

  5. Texture evolution in Fe-3% Si steel treated under unconventional annealing conditions

    Czech Academy of Sciences Publication Activity Database

    Stoyka, V.; Kováč, F.; Stupakov, Oleksandr; Petryshynets, I.

    2010-01-01

    Roč. 61, č. 11 (2010), 1066-1073 ISSN 1044-5803 R&D Projects: GA ČR GP102/09/P108 Institutional research plan: CEZ:AV0Z10100520 Keywords : grain oriented steels * annealing * abnormal grain growth * crystallographic texture * hysteresis losses * electron backscattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.496, year: 2010

  6. Texture profile analysis of yogurt as influenced by partially hydrolyzed guar gum and process variables.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2017-11-01

    Effect of partially hydrolyzed guar gum (PHGG) level (1-5%), culture level (1.5-3.5%) and incubation time (4-8 h) on texture profile of yogurt was studied using response surface methodology. The fortification of partially hydrolyzed guar gum in yogurt decreased the firmness and gumminess while it increased the adhesiveness, cohesiveness and springiness of yogurt significantly at p  < 0.01. The culture level did not affect the textural properties of yogurt significantly except gumminess whereas textural properties of yogurt were negatively correlated with incubation time. The coefficient of determination for hardness/hardness, adhesiveness, cohesiveness, springiness and gumminess were 0.9216, 0.9397, 0.8914, 0.8971 and 0.9156, respectively, which revealed that the models obtained were significant as coefficient of determination value was close to one. The optimum conditions obtained were PHGG level 3.37%, culture level 1.96% and incubation time 5.96 h which leads to preparation of yogurt with desired textural characteristics.

  7. Neural network classification technique and machine vision for bread crumb grain evaluation

    Science.gov (United States)

    Zayas, Inna Y.; Chung, O. K.; Caley, M.

    1995-10-01

    Bread crumb grain was studied to develop a model for pattern recognition of bread baked at Hard Winter Wheat Quality Laboratory (HWWQL), Grain Marketing and Production Research Center (GMPRC). Images of bread slices were acquired with a scanner in a 512 multiplied by 512 format. Subimages in the central part of the slices were evaluated by several features such as mean, determinant, eigen values, shape of a slice and other crumb features. Derived features were used to describe slices and loaves. Neural network programs of MATLAB package were used for data analysis. Learning vector quantization method and multivariate discriminant analysis were applied to bread slices from what of different sources. A training and test sets of different bread crumb texture classes were obtained. The ranking of subimages was well correlated with visual judgement. The performance of different models on slice recognition rate was studied to choose the best model. The recognition of classes created according to human judgement with image features was low. Recognition of arbitrarily created classes, according to porosity patterns, with several feature patterns was approximately 90%. Correlation coefficient was approximately 0.7 between slice shape features and loaf volume.

  8. Textured strontium titanate layers on platinum by atomic layer deposition

    International Nuclear Information System (INIS)

    Blomberg, T.; Anttila, J.; Haukka, S.; Tuominen, M.; Lukosius, M.; Wenger, Ch.; Saukkonen, T.

    2012-01-01

    Formation of textured strontium titanate (STO) layers with large lateral grain size (0.2–1 μm) and low X-ray reflectivity roughness (∼ 1.36 nm) on Pt electrodes by industry proven atomic layer deposition (ALD) method is demonstrated. Sr(t-Bu 3 Cp) 2 , Ti(OMe) 4 and O 3 precursors at 250 °C were used to deposit Sr rich STO on Pt/Ti/SiO 2 /Si ∅200 mm substrates. After crystallization post deposition annealing at 600 °C in air, most of the STO grains showed a preferential orientation of the {001} plane parallel to the substrate surface, although other orientations were also present. Cross sectional and plan view transmission electron microscopy and electron diffraction analysis revealed more than an order of magnitude larger lateral grain sizes for the STO compared to the underlying multicrystalline {111} oriented platinum electrode. The combination of platinum bottom electrodes with ALD STO(O 3 ) shows a promising path towards the formation of single oriented STO film. - Highlights: ► Amorphous strontium titanate (STO) on platinum formed a textured film after annealing. ► Single crystal domains in 60 nm STO film were 0.2–1 μm wide. ► Most STO grains were {001} oriented.

  9. Texture development of HTS powder-in-tube conductors

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom)

    1998-10-01

    An overview of the fabrication and electromagnetic properties of high-temperature conductors processed by the powder-in-tube (PIT) technique with reference to texture development and critical anisotropy data is presented. Special emphasis is given to the optimization of the physicochemical and electromagnetic parameters of the multifilamentary and single-filament conductors with superconducting cores of Bi-2223, Tl-1223 and Y-123 superconducting phases. The influence of the multifilamentary and single-filament structures on texture development is discussed. Also, the importance of the local disturbances of the grain alignment and microdefects for the current distribution across and in the plane of the whole conductor is analysed. A comparative study of the critical current anisotropy with field direction in low magnetic fields of Tl-1223 and Bi-2223 conductors manufactured by the PIT technique is presented. For Tl-1223 PIT conductors the anisotropy coefficient shows a very pronounced minimum, followed by a monotonic reduction of anisotropy with the increase of the magnetic field. This is explained in terms of poor grain alignment with weak intergranular superconducting coupling which cause 3D current percolation and also by the demagnetizing effect of the grains and the ceramic core in the PIT Tl-1223 tapes. (author)

  10. Microstructural characterization and electron backscatter diffraction analysis across the welded interface of duplex stainless steel

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Gao, Zhanqi; Zhao, Lei; Zhang, Jianli

    2017-08-01

    The microstructural evolution, orientation relationships, boundary characteristics, grain type, local deformation, and microhardness across the welded interface of duplex stainless steel (DSS) were investigated. The DSS welded joint consisted of four typical zones: base metal (BM), low-temperature heat-affected zone (LTHAZ), high-temperature heat-affected zone (HTHAZ), and weld metal (WM). The apparent microstructural changes in the HTHAZ and LTHAZ were secondary austenite and Cr2N precipitation. A modified cooperative precipitation mechanism of secondary austenite and Cr2N at the interface was proposed. Furthermore, the ferrite in both the HTHAZ and LTHAZ maintained the same distribution as the ferrite texture in the BM, while this ferrite texture disappeared completely in the WM. Different austenite grains in the different zones exhibited different orientation relationships with the ferrite matrix. Special grain boundaries were mainly distributed between the austenite grains, while the ferrite grains primarily contained random grain boundaries. Austenite twins constituted the largest proportion of the special boundaries. The special austenite grain boundaries in the BM and LTHAZ were higher in relative frequency than those in the HTHAZ and WM. The ferrite grains in the HTHAZ and WM mainly consisted of substructured grains. In the BM, the recrystallization degree of ferrite was significantly lower than that of austenite grains. The local deformations were mainly generated in the grain boundaries and within the deformed grains. The HTHAZ exhibited the highest hardness, while the BM had the lowest hardness. The LTHAZ had a lower hardness than the HTHAZ and higher hardness than the BM.

  11. Texture evolution in Oxide Dispersion Strengthened (ODS) steel tubes during pilgering process

    Science.gov (United States)

    Vakhitova, E.; Sornin, D.; Barcelo, F.; François, M.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels are foreseen as fuel cladding material in the coming generation of Sodium Fast Reactors (SFR). Cladding tubes are manufactured by hot extrusion and subsequent cold forming steps. In this study, a 9 wt% Cr ODS steel exhibiting α-γ phase transformation at high temperature is cold formed under industrial conditions with a large section reduction in two pilgering steps. The influence of pilgering process parameters and intermediate heat treatment on the microstructure evolution is studied experimentally using Electron Backscattering Diffraction (EBSD) and X-ray Diffraction (XRD) methods. Pilgered samples show elongated grains and a high texture formation with a preferential orientation along the rolling direction. During the heat treatment, grain morphology is recovered from elongated grains to almost equiaxed ones, while the well-known α-fiber texture presents an unexpected increase in intensity. The remarkable temperature stability of this fiber is attributed to a crystallographic structure memory effect during phase transformations.

  12. Temperature dependence of piezoelectric properties for textured SBN ceramics.

    Science.gov (United States)

    Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio

    2007-12-01

    Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.

  13. Tempeh: a mold-modified indigenous fermented food made from soybeans and/or cereal grains.

    Science.gov (United States)

    Hachmeister, K A; Fung, D Y

    1993-01-01

    A variety of indigenous fermented foods exist today; however, tempeh has been one of the most widely accepted and researched mold-modified fermented products. Tempeh is a traditional fermented food made from soaked and cooked soybeans inoculated with a mold, usually of the genus Rhizopus. After fermentation has occurred, the soybeans are bound together into a compact cake by dense cottony mycelium. An important function of the mold in the fermentation process is the synthesis of enzymes, which hydrolyze soybean constituents and contribute to the development of a desirable texture, flavor, and aroma of the product. Enzymatic hydrolysis also may decrease or eliminate antinutritional constituents; consequently, the nutritional quality of the fermented product may be improved. Current technology and new scientific advancements have enabled researchers to examine specific strains of Rhizopus and new substrates such as cereal grains. Because Kansas produces numerous cereal grains, production of a fermented tempeh-like product using wheat, sorghum (milo), oats, rye, barley, corn, and triticale is a definite possibility for generating a Kansas Value-Added Product. In this study, several different tempeh-like products were produced using various cereal grains inoculated with Rhizopus oligosporus NRRL 2549 or R. oligosporus NRRL 2710. Grains used included hard red winter wheat, triticale, yellow sorghum (milo), and red sorghum (milo). The grain source as well as the strain of R. oligosporus used influenced the product's appearance, flavor, and patty integrity. Results showed that R. oligosporus NRRL 2549 produced more mycelium at a more rapid rate than did the R. oligosporus NRRL 2710 strain. The combination of red sorghum and R. oligosporus NRRL 2549 yielded a product with good patty texture, aroma, and appearance. Furthermore, the red sorghum fermented product was well suited for slicing. On the other hand, yellow sorghum inoculated with either R. oligosporus NRRL 2549 or

  14. Sina and Sinb genes in triticale do not determine grain hardness contrary to their orthologs Pina and Pinb in wheat.

    Science.gov (United States)

    Gasparis, Sebastian; Orczyk, Waclaw; Nadolska-Orczyk, Anna

    2013-11-26

    Secaloindoline a (Sina) and secaloindoline b (Sinb) genes of hexaploid triticale (x Triticosecale Wittmack) are orthologs of puroindoline a (Pina) and puroindoline b (Pinb) in hexaploid wheat (Triticum aestivum L.). It has already been proven that RNA interference (RNAi)-based silencing of Pina and Pinb genes significantly decreased the puroindoline a and puroindoline b proteins in wheat and essentially increased grain hardness (J Exp Bot 62:4025-4036, 2011). The function of Sina and Sinb in triticale was tested by means of RNAi silencing and compared to wheat. Novel Sina and Sinb alleles in wild-type plants of cv. Wanad were identified and their expression profiles characterized. Alignment with wheat Pina-D1a and Pinb-D1a alleles showed 95% and 93.3% homology with Sina and Sinb coding sequences. Twenty transgenic lines transformed with two hpRNA silencing cassettes directed to silence Sina or Sinb were obtained by the Agrobacterium-mediated method. A significant decrease of expression of both Sin genes in segregating progeny of tested T1 lines was observed independent of the silencing cassette used. The silencing was transmitted to the T4 kernel generation. The relative transcript level was reduced by up to 99% in T3 progeny with the mean for the sublines being around 90%. Silencing of the Sin genes resulted in a substantial decrease of secaloindoline a and secaloindoline b content. The identity of SIN peptides was confirmed by mass spectrometry. The hardness index, measured by the SKCS (Single Kernel Characterization System) method, ranged from 22 to 56 in silent lines and from 37 to 49 in the control, and the mean values were insignificantly lower in the silent ones, proving increased softness. Additionally, the mean total seed protein content of silenced lines was about 6% lower compared with control lines. Correlation coefficients between hardness and transcript level were weakly positive. We documented that RNAi-based silencing of Sin genes resulted in

  15. Texturing for bulk α-Fe/Nd2Fe14B nanocomposites with enhanced magnetic properties

    International Nuclear Information System (INIS)

    Lou, L.; Hou, F.C.; Wang, Y.N.; Cheng, Y.; Li, H.L.; Li, W.; Guo, D.F.; Li, X.H.; Zhang, X.Y.

    2014-01-01

    In the present study, the texturing of bulk α-Fe/Nd 2 Fe 14 B nanocomposites produced from Nd-lean amorphous Nd x Fe 92.5−x Cu 1.5 B 6 (x=9 to 11.5 at%) via a hot deformation under a uniaxial stress of ∼350 MPa at 973 K has been studied. An enhanced (00l) texture of the hard phase is observed with increasing Nd content, which results in an increase in the magnetic anisotropy of the nanocomposite magnets. As a result, both the coercivity and the remanence of the magnets increase simultaneously with increasing Nd content from x=9–11.5 at%, yielding a significant enhancement of the maximum energy product from (BH) max =13.2 to 17.5 MGOe in the direction parallel to stress axis. - Highlights: • Textured bulk α-Fe/Nd 2 Fe 14 B nanocomposites have been produced from Nd-lean alloys. • Nd content has an effect on the texturing of α-Fe/Nd 2 Fe 14 B nanocomposite magnets. • An enhanced (00l) texture of hard phase is observed with increasing Nd content. • Both the coercivity and remanence increase simultaneously with Nd content

  16. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Hai-Tao; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn; Wang, Guo-Dong

    2015-05-15

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious < 001 >//ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved.

  17. Texture of poled tetragonal PZT detected by synchrotron X-ray diffraction and micromechanics analysis

    International Nuclear Information System (INIS)

    Hall, D.A.; Steuwer, A.; Cherdhirunkorn, B.; Withers, P.J.; Mori, T.

    2005-01-01

    The texture and lattice elastic strain due to electrical poling of tetragonal PZT (lead zirconate titanate) ceramics have been measured using high energy synchrotron X-ray diffraction. It is shown that XRD peak intensity ratios associated with crystal planes of the form {002}, {112} and {202} exhibit a linear dependence on cos-bar 2 Ψ, where Ψ represents the orientation angle between the plane normal and the macroscopic poling axis. The observed dependence of texture and lattice strain on the grain orientation can be understood on the basis that the macroscopic strain due to poling is the average of the poling strains of all the individual grains

  18. Texture, color, lipid oxidation and sensory acceptability of gamma-irradiated marinated anchovy fillets

    Science.gov (United States)

    Tomac, Alejandra; Cova, María C.; Narvaiz, Patricia; Yeannes, María I.

    2015-01-01

    The effect of gamma irradiation (0, 2, 3 and 4 kGy) on vacuum-packed marinated anchovy fillets was analyzed for their texture, color, lipid oxidation and sensory acceptability after 10 months under refrigeration. Marinated (3% acetic acid, 10% sodium chloride and 0.2% citric acid) Engraulis anchoita fillets were vacuum-packed and irradiated with a cobalt-60 source at a semi-industrial irradiation facility. The irradiation caused a slight increase in hardness values regardless of the applied dose but maintained a consistent texture over the 10 months, even though the control samples softened, most likely due to degradation. This hardness increase did not affect the textural sensory acceptability. Irradiation did not modify the color but still reduced color changes during storage, benefitting the product's quality. TBARS was increased in every sample throughout storage, but irradiation decreased these values. Sensory acceptability was not affected by gamma irradiation. Therefore, gamma irradiation could be successfully applied to this type of product for the purpose of shelf-life extension.

  19. Adding Texture to Color: Quantitative Analysis of Color Emotions

    NARCIS (Netherlands)

    Lucassen, M.P.; Gevers, T.; Gijsenij, A.

    2010-01-01

    What happens to color emotion responses when texture is added to color samples? To quantify this we performed an experiment in which subjects ordered samples (displayed on a computer monitor) along four scales: Warm-Cool, Masculine-Feminine, Hard-Soft and Heavy-Light. Three sample types were used:

  20. Effect of Aluminum Addition on the Evolution of Microstructure, Crystallographic Texture and Mechanical Properties of Single Phase Hexagonal Close Packed Mg-Li Alloys

    Science.gov (United States)

    Bhagat Singh, P.; Sabat, R. K.; Kumaran, S.; Suwas, S.

    2018-02-01

    In the present investigation, an effort has been made to understand the effect of aluminum addition to α Mg-Li alloys. The corresponding composition Mg-4Li- xAl ( x = 0, 2, 4 and 6 wt.%) alloys have been prepared by stir casting route under an argon environment. Extrusion was carried out at 300 °C with the extrusion ratio of 15:1. Significant grain refinement was observed after extrusion. X-ray diffraction-based investigation of the cast and extruded alloys showed the presence of intermetallic compounds such as Mg17Al12 and AlLi in the Al-rich alloys namely, Mg-4Li- xAl ( x = 4 and 6 wt.%). These precipitates were also present in the extruded plus annealed samples, indicating the stability of the precipitates at high temperature. The bulk x-ray texture measurement revealed a crystallographic texture where the c-axis of the h.c.p crystals was perpendicular to the extrusion direction (ED) for extruded sample. A texture transition was observed on annealing. The c-axis was oriented parallel to the ED. Mechanical properties of the cast, extruded and extruded plus annealed material illustrate that the addition of Al led to enhancement in hardness, yield strength and ultimate tensile strength.

  1. Texture, color, lipid oxidation and sensory acceptability of gamma-irradiated marinated anchovy fillets

    International Nuclear Information System (INIS)

    Tomac, Alejandra; Cova, María C.; Narvaiz, Patricia; Yeannes, María I.

    2015-01-01

    The effect of gamma irradiation (0, 2, 3 and 4 kGy) on vacuum-packed marinated anchovy fillets was analyzed for their texture, color, lipid oxidation and sensory acceptability after 10 months under refrigeration. Marinated (3% acetic acid, 10% sodium chloride and 0.2% citric acid) Engraulis anchoita fillets were vacuum-packed and irradiated with a cobalt-60 source at a semi-industrial irradiation facility. The irradiation caused a slight increase in hardness values regardless of the applied dose but maintained a consistent texture over the 10 months, even though the control samples softened, most likely due to degradation. This hardness increase did not affect the textural sensory acceptability. Irradiation did not modify the color but still reduced color changes during storage, benefitting the product's quality. TBARS was increased in every sample throughout storage, but irradiation decreased these values. Sensory acceptability was not affected by gamma irradiation. Therefore, gamma irradiation could be successfully applied to this type of product for the purpose of shelf-life extension. - Highlights: • Marinated anchovies were γ-irradiated at 2, 3 and 4 kGy and stored at 4 °C (10 months). • Irradiation slightly hardened the texture and reduced its softening during storage. • Irradiated marinades had good sensory acceptability without differences with controls. • Irradiation improved the quality by reducing texture softening and color changes

  2. Impact of pretreatment on colour and texture of watermelon rind

    Science.gov (United States)

    Athmaselvi, K.; Alagusundaram, K.; Kavitha, C.; Arumuganathan, T.

    2012-07-01

    The effect of osmotic dehydration pretreatment on water loss, solid gain, colour and textural change was investigated. Watermelon rind 1 x 1 cm size was immersed in sucrose solution of 40, 50 and 60° Brix after pretreatment with microwave and conventional boiling in water for 1, 3, and 5 min, respectively. Water loss and solid gain increased with the time of cooking and sugar concentration. Microwave pretreated samples showed higher water loss and solid gain. Increase in the time of cooking decreased the brightness of all the samples. Microwave pretreated samples showed higher `b' values than conventionally pretreated ones. There was no significant difference (P≤0.05) in texture profile analysis parameters except for hardness. Hardness decreased with increase in time of cooking and sugar concentration. Second order regression model was developed for water loss and solid gain of microwave and conventional pretreated watermelon rind.

  3. A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidian, M., E-mail: jamshidian@cc.iut.ac.ir [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar (Germany); Thamburaja, P., E-mail: prakash.thamburaja@gmail.com [Department of Mechanical & Materials Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 (Malaysia); Rabczuk, T., E-mail: timon.rabczuk@tdt.edu.vn [Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City (Viet Nam)

    2016-12-15

    A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substrate and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.

  4. Influence of Fe(Cr) miscibility on thin film grain size and stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuyang; Kaub, Tyler; Martens, Richard L.; Thompson, Gregory B., E-mail: gthompson@eng.ua.edu

    2016-08-01

    During the post coalescence portion of thin film deposition, thin film stress is related to the grain size and adatom mobility of the depositing material. Using a Fe(Cr) alloy thin film, the manipulation of the tensile stress for thick films was studied as a function of Cr solute content up to 8 at.%. Solute concentrations up to 4 at.% resulted in an approximate 50% increase in grain size that resulted in a reduction of the tensile stress to be lower than either elemental film. Upon increasing the Cr content, the grain size refined and the tensile stress of the films increased. Atom probe characterization of the grain boundaries confirmed Cr chemical partitioning which refined the grain size and altered the film's texture, both of which contributed to the change in film stress. The use of intrinsic segregation, rather than deposition processing parameters, appears to be another viable option for regulating film stress. - Highlights: • Solute segregation to regulate grain size in controlling film stress • Quantification of Cr interfacial excess as a function of alloy content • Quantification of texture fiber alignment as a function of Cr content.

  5. Microstructure, Texture Evolution and Mechanical Properties of VT3-1 Titanium Alloy Processed by Multi-Pass Drawing and Subsequent Isothermal Annealing

    Directory of Open Access Journals (Sweden)

    Xiaofei Lei

    2017-04-01

    Full Text Available Microstructure, texture evolution, and mechanical properties of Ti–6Al–1.5Cr–2.5Mo–0.5Fe–0.3Si (VT3-1 titanium alloy processed by multi-pass drawing and subsequent isothermal annealing were systematically investigated. A fiber-like microstructure is formed after warm drawing at 760 °C with 60% area reduction. After isothermal annealing, the samples deformed to different amounts of area reduction show a similar volume fraction (80% of α phase, while the sample deformed to 60% exhibits a homogeneous microstructure with a larger grain size (5.8 μm. The major texture component of α phase developed during warm drawing is centered at a position of {φ1 = 10°, φ = 65°, φ2 = 0°}. The textures for annealed samples are almost along the orientation of original deformation textures and show significant increases in orientation density and volume fraction compared with their deformed states. In addition, for the drawn samples, the ultimate tensile strength increases but the ductility decreases with increasing drawing deformation. A negative slope of yield strength of annealed samples versus grain size (d−1/2 is found due to the difference between texture softening for as-rolled + annealed state and texture hardening for drawn + annealed state. The mechanical properties of annealed samples are found to be strongly dependent on grain size and texture, resulting in the balance of the strength and ductility.

  6. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    Science.gov (United States)

    Sagapuram, Dinakar

    Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for

  7. Piezoelectric textured ceramics: Effective properties and application to ultrasonic transducers.

    Science.gov (United States)

    Levassort, Franck; Pham Thi, Mai; Hemery, Henry; Marechal, Pierre; Tran-Huu-Hue, Louis-Pascal; Lethiecq, Marc

    2006-12-22

    Piezoelectric textured ceramics obtained by homo-template grain growth (HTGG) were recently demonstrated. A simple model with several assumptions has been used to calculate effective parameters of these new materials. Different connectivities have been simulated to show that spatial arrangements between the considered phases have little influence on the effective parameters, even through the 3-0 connectivity delivers the highest electromechanical thickness factor. A transducer based on a textured ceramic sample has been fabricated and characterised to show the efficiency of these piezoelectric materials. Finally, in a single element transducer configuration, simulation shows an improvement of 2 dB sensitivity for a transducer made with textured ceramic in comparison with a similar transducer design based on standard soft PZT (at equivalent bandwidths).

  8. Research and Implementation of the Practical Texture Synthesis Algorithms

    Institute of Scientific and Technical Information of China (English)

    孙家广; 周毅

    1991-01-01

    How to generate pictures real and esthetic objects is an important subject of computer graphics.The techniques of mapping textures onto the surfaces of an object in the 3D space are efficient approaches for the purpose.We developed and implemented algorithms for generating objects with appearances stone,wood grain,ice lattice,brick,doors and windows on Apollo workstations.All the algorithms have been incorporated into the 3D grometry modelling system (GEMS) developed by the CAD Center of Tsinghua University.This paper emphasizes the wood grain and the ice lattice algorithms.

  9. Abalone Muscle Texture Evaluation and Prediction Based on TPA Experiment

    Directory of Open Access Journals (Sweden)

    Jiaxu Dong

    2017-01-01

    Full Text Available The effects of different heat treatments on abalones’ texture properties and sensory characteristics were studied. Thermal processing of abalone muscle was analyzed to determine the optimal heat treatment condition based on fuzzy evaluation. The results showed that heat treatment at 85°C for 1 hour had certain desirable effects on the properties of the abalone meat. Specifically, a back propagation (BP neural network was introduced to predict the equations of statistically significant sensory hardness, springiness, and smell using the texture data gained through TPA (texture profile analysis experiments as input and sensory evaluation data as the desired output. The final outcome was that the predictability was proved to be satisfactory, with an average error of 6.93%.

  10. Effect of some grain refiners on the mechanical properties of aluminum

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2001-01-01

    It is well established that aluminum and its alloys are grain refined by some refractory metals to enhance their surface qualities and mechanical strengths. In this paper, the literature on grain refining, and its mechanism is reviewed and discussed. Also, the effect of grain refining of commercially pure aluminum by the addition of titanium, boron, vanadium, molybdenum, and zirconium is investigated. The effect of each of these elements on grain size, hardness and mechanical behavior is presented and discussed. It was found that the addition of any of these elements except zirconium resulted in enhancement of grain size, hardness and mechanical strength. An increase of 2.1 % in flow stress of Al grain refined by Ti+B was achieved by addition of 0.1 % V at 0.2 strain. (author)

  11. Identification and classification of similar looking food grains

    Science.gov (United States)

    Anami, B. S.; Biradar, Sunanda D.; Savakar, D. G.; Kulkarni, P. V.

    2013-01-01

    This paper describes the comparative study of Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers by taking a case study of identification and classification of four pairs of similar looking food grains namely, Finger Millet, Mustard, Soyabean, Pigeon Pea, Aniseed, Cumin-seeds, Split Greengram and Split Blackgram. Algorithms are developed to acquire and process color images of these grains samples. The developed algorithms are used to extract 18 colors-Hue Saturation Value (HSV), and 42 wavelet based texture features. Back Propagation Neural Network (BPNN)-based classifier is designed using three feature sets namely color - HSV, wavelet-texture and their combined model. SVM model for color- HSV model is designed for the same set of samples. The classification accuracies ranging from 93% to 96% for color-HSV, ranging from 78% to 94% for wavelet texture model and from 92% to 97% for combined model are obtained for ANN based models. The classification accuracy ranging from 80% to 90% is obtained for color-HSV based SVM model. Training time required for the SVM based model is substantially lesser than ANN for the same set of images.

  12. Elasticity and hardness of nano-polycrystalline boron nitrides: The apparent Hall-Petch effect

    International Nuclear Information System (INIS)

    Nagakubo, A.; Ogi, H.; Hirao, M.; Sumiya, H.

    2014-01-01

    Nano-polycrystalline boron nitride (BN) is expected to replace diamond as a superhard and superstiff material. Although its hardening was reported, its elasticity remains unclear and the as-measured hardness could be significantly different from the true value due to the elastic recovery. In this study, we measured the longitudinal-wave elastic constant of nano-polycrystalline BNs using picosecond ultrasound spectroscopy and confirmed the elastic softening for small-grain BNs. We also measured Vickers and Knoop hardness for the same specimens and clarified the relationship between hardness and stiffness. The Vickers hardness significantly increased as the grain size decreased, while the Knoop hardness remained nearly unchanged. We attribute the apparent increase in Vickers hardness to the elastic recovery and propose a model to support this insight.

  13. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    International Nuclear Information System (INIS)

    Moya Riffo, A.; Vicente Alvarez, M.A.; Santisteban, J.R.; Vizcaino, P.; Limandri, S.; Daymond, M.R.; Kerr, D.; Okasinski, J.; Almer, J.; Vogel, S.C.

    2017-01-01

    This work presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory. In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α(hcp) to β(bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β−>α transformation, while slow cooling rates and fine β grains result in strong variant selection.

  14. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    Energy Technology Data Exchange (ETDEWEB)

    Moya Riffo, A., E-mail: alvaromoya@cab.cnea.gov.ar [Neutron Physics Department, Centro Atómico Bariloche, CNEA-CONICET (Argentina); Vicente Alvarez, M.A.; Santisteban, J.R. [Neutron Physics Department, Centro Atómico Bariloche, CNEA-CONICET (Argentina); Vizcaino, P. [Zirconium Technology Department, Centro Atómico Ezeiza, CNEA-CONICET (Argentina); Limandri, S. [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba (Argentina); Daymond, M.R.; Kerr, D. [Dept. Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario (Canada); Okasinski, J.; Almer, J. [Advanced Photon Source, Argonne National Laboratory, Argonne (United States); Vogel, S.C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2017-05-15

    This work presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory. In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α(hcp) to β(bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β−>α transformation, while slow cooling rates and fine β grains result in strong variant selection.

  15. Recrystallization texture in nickel heavily deformed by accumulative roll bonding

    Science.gov (United States)

    Mishin, O. V.; Zhang, Y. B.; Godfrey, A.

    2017-07-01

    The recrystallization behavior of Ni processed by accumulative roll bonding to a total accumulated von Mises strain of 4.8 has been examined, and analyzed with respect to heterogeneity in the deformation microstructure. The regions near the bonding interface are found to be more refined and contain particle deformation zones around fragments of the steel wire brush used to prepare the surface for bonding. Sample-scale gradients are also observed, manifested as differences between the subsurface, intermediate and central layers, where the distributions of texture components are different. These heterogeneities affect the progress of recrystallization. While the subsurface and near-interface regions typically contain lower frequencies of cube-oriented grains than anywhere else in the sample, a strong cube texture forms in the sample during recrystallization, attributed to both a high nucleation rate and fast growth rate of cube-oriented grains. The observations highlight the sensitivity of recrystallization to heterogeneity in the deformation microstructure and demonstrate the importance of characterizing this heterogeneity over several length scales.

  16. Effect of plasma arc welding variables on fusion zone grain size and hardness of AISI 321 austenitic stainless steel

    Science.gov (United States)

    Kondapalli, S. P.

    2017-12-01

    In the present work, pulsed current microplasma arc welding is carried out on AISI 321 austenitic stainless steel of 0.3 mm thickness. Peak current, Base current, Pulse rate and Pulse width are chosen as the input variables, whereas grain size and hardness are considered as output responses. Response surface method is adopted by using Box-Behnken Design, and in total 27 experiments are performed. Empirical relation between input and output response is developed using statistical software and analysis of variance (ANOVA) at 95% confidence level to check the adequacy. The main effect and interaction effect of input variables on output response are also studied.

  17. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties

    International Nuclear Information System (INIS)

    Regle, H.

    1994-01-01

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. Technologically, cold-drawing is the only way

  18. Texture evolution in upset-forged P/M and wrought tantalum: Experimentation and modeling

    International Nuclear Information System (INIS)

    Bingert, J.F.; Desch, P.B.; Bingert, S.R.; Maudlin, P.J.; Tome, C.N.

    1997-11-01

    Preferred orientations in polycrystalline materials can significantly affect their physical and mechanical response through the retention of anisotropic properties inherent to the single crystal. In this study the texture evolution in upset-forged PIM and wrought tantalum was measured as a function of initial texture, compressive strain, and relative position in the pressing. A / duplex fiber texture parallel to the compression axis was generally observed, with varying degrees of a radial component evident in the wrought material. The development of deformation textures derives from restricted crystallographic slip conditions that generate lattice rotations, and these grain reorientations can be modeled as a function of the prescribed deformation gradient. Texture development was simulated for equivalent deformations using both a modified Taylor approach and a viscoplastic self-consistent (VPSC) model. A comparison between the predicted evolution and experimental results shows a good correlation with the texture components, but an overly sharp prediction at large strains from both the Taylor and VPSC models

  19. Anisotropy oxidation of textured ZrB2–MoSi2 ceramics

    DEFF Research Database (Denmark)

    Liu, Hai-Tao; Zou, Ji; Ni, De Wei

    2012-01-01

    Oxidation behavior of hot forged textured ZrB2–20vol% MoSi2 ceramics with platelet ZrB2 grains was investigated at 1500°C for exposure time from 0.5 to 12h. Compared to untextured ceramics, the textured ceramics showed obvious anisotropic oxidation behavior and the surface normal to the hot forgi...

  20. A top-down approach for the prediction of hardness and toughness of hierarchical materials

    International Nuclear Information System (INIS)

    Carpinteri, Alberto; Paggi, Marco

    2009-01-01

    Many natural and man-made materials exhibit structure over more than one length scale. In this paper, we deal with hierarchical grained composite materials that have recently been designed to achieve superior hardness and toughness as compared to their traditional counterparts. Their nested structure, where meso-grains are recursively composed of smaller and smaller micro-grains at the different scales with a fractal-like topology, is herein studied from a hierarchical perspective. Considering a top-down approach, i.e. from the largest to the smallest scale, we propose a recursive micromechanical model coupled with a generalized fractal mixture rule for the prediction of hardness and toughness of a grained material with n hierarchical levels. A relationship between hardness and toughness is also derived and the analytical predictions are compared with experimental data.

  1. Effect of gel texture and sucrose spatial distribution on sweetness perception

    NARCIS (Netherlands)

    Mosca, A.C.; Velde, van de F.; Bult, J.H.F.; Boekel, van M.A.J.S.; Stieger, M.A.

    2012-01-01

    Layered gels differing in mechanical and breakdown properties (soft, medium and hard gels) and in the distribution of sucrose in the matrix (homogeneous and inhomogeneous distributions) were used to investigate the effects of texture and spatial distribution of sucrose on sweetness perception.

  2. A single grain approach applied to modelling recrystallization kinetics in a single-phase metal

    NARCIS (Netherlands)

    Chen, S.P.; Zwaag, van der S.

    2004-01-01

    A comprehensive model for the recrystallization kinetics is proposed which incorporates both microstructure and the textural components in the deformed state. The model is based on the single-grain approach proposed previously. The influence of the as-deformed grain orientation, which affects the

  3. Deformation-induced microstructural evolution at grain scale

    DEFF Research Database (Denmark)

    Winther, Grethe

    During plastic deformation metals develop microstructures which may be analysed on several scales,spanning from crystallographic textures averaged over the entire sample to the scale of individualgrains. Even within individual grains, intragranular phenomena in the form of orientation gradients...... aswell as dislocation patterning by formation of dislocation boundaries occur. Experimental data andassociated data analysis at the grain scale and below will be presented to illustrate our current level ofunderstanding. The basis for the analysis is the crystallographic orientation of the grain as well...... is presented for both fcc and bcc materials inseveral deformation modes, demonstrating a clear grain orientation dependence [Huang & Winther,2007]. This dependence has its origin in a dependence on the slip systems [Winther & Huang, 2007].This further implies that the dislocations in the boundaries come from...

  4. Effect of equal-channel angular pressing and annealing conditions on the texture, microstructure, and deformability of an MA2-1 alloy

    Science.gov (United States)

    Serebryany, V. N.; Ivanova, T. M.; Kopylov, V. I.; Dobatkin, S. V.; Pozdnyakova, N. N.; Pimenov, V. A.; Savelova, T. I.

    2010-07-01

    Equal-channel angular pressing (ECAP) of am MA2-1 alloy according to routes A and Bc is used to study the possibility of increasing the low-temperature deformability of the alloy due to grain refinement and a change in its texture. To separate the grain refinement effect from the effect of texture on the deformability of the alloy, samples after ECAP are subjected to recrystallization annealing that provides grain growth to the grain size characteristic of the initial state (IS) of the alloy. Upon ECAP, the average grain size is found to decrease to 2-2.4 μm and the initial sharp axial texture changes substantially (it decomposes into several scattered orientations). The type of orientations and the degree of their scattering depend on the type of ECAP routes. The detected change in the texture is accompanied by an increase in the deformability parameters (normal plastic anisotropy coefficient R, strain-hardening exponent n, relative uniform elongation δu) determined upon tensile tests at 20°C for the states of the alloy formed in the IS-4A-4Bc and IS-4Ao-4BcO sequences. The experimental values of R agree with the values calculated in terms of the Taylor model of plastic deformation in the Bishop-Hill approximation using quantitative texture data in the form of orientation distribution function coefficients with allowance for the activation of prismatic slip, especially for ECAP routes 4Bc and 4BcO. When the simulation results, the Hall-Petch relation, and the generalized Schmid factors are taken into account, a correlation is detected between the deformability parameter, the Hall-Petch coefficient, and the ratio of the critical shear stresses on prismatic and basal planes.

  5. Preparation of textured CaBi4Ti4O15 based ceramics and dielectric properties optimized with La3+ doping

    Directory of Open Access Journals (Sweden)

    ZHENG Qianqian

    2012-12-01

    Full Text Available A batch of 001>textured CaBi4Ti4O15(x=0,0.1,0.2,0.3,0.4 (CBLT-x ceramics were fabricated by a two-step sintering method:synthesizing seed-crystal platelets by molten-salt method with oxide mixture as precursor,and then sintering the platelets via grain orientation technique (OCAP.Microstructural characterization by SEM was performed to establish the effect of increased doping of La3+ and sintering temperature on grain growth and texture development.Increasing La3+(to x=0.4 resulted in dielectric constant improvement up to 570 sintered at 1150℃ in the direction perpendicular to the tapecasting plan.The dielectric constant as well as loss of CBLT-x samples in the perpendicular direction is higher than that of parallel plane.The mechanism controlling the texture and grain growth in CBLT-xceramics is firstly discussed by 3D patterns in this letter.

  6. Textured strontium titanate layers on platinum by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, T., E-mail: tom.blomberg@asm.com [ASM Microchemistry Ltd., Vaeinoe Auerin katu 12 A, 00560 Helsinki (Finland); Anttila, J.; Haukka, S.; Tuominen, M. [ASM Microchemistry Ltd., Vaeinoe Auerin katu 12 A, 00560 Helsinki (Finland); Lukosius, M.; Wenger, Ch. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Saukkonen, T. [Aalto University, Puumiehenkuja 3, 02150 Espoo (Finland)

    2012-08-31

    Formation of textured strontium titanate (STO) layers with large lateral grain size (0.2-1 {mu}m) and low X-ray reflectivity roughness ({approx} 1.36 nm) on Pt electrodes by industry proven atomic layer deposition (ALD) method is demonstrated. Sr(t-Bu{sub 3}Cp){sub 2}, Ti(OMe){sub 4} and O{sub 3} precursors at 250 Degree-Sign C were used to deposit Sr rich STO on Pt/Ti/SiO{sub 2}/Si Empty-Set 200 mm substrates. After crystallization post deposition annealing at 600 Degree-Sign C in air, most of the STO grains showed a preferential orientation of the {l_brace}001{r_brace} plane parallel to the substrate surface, although other orientations were also present. Cross sectional and plan view transmission electron microscopy and electron diffraction analysis revealed more than an order of magnitude larger lateral grain sizes for the STO compared to the underlying multicrystalline {l_brace}111{r_brace} oriented platinum electrode. The combination of platinum bottom electrodes with ALD STO(O{sub 3}) shows a promising path towards the formation of single oriented STO film. - Highlights: Black-Right-Pointing-Pointer Amorphous strontium titanate (STO) on platinum formed a textured film after annealing. Black-Right-Pointing-Pointer Single crystal domains in 60 nm STO film were 0.2-1 {mu}m wide. Black-Right-Pointing-Pointer Most STO grains were {l_brace}001{r_brace} oriented.

  7. Electron backscatter and X-ray diffraction studies on the deformation and annealing textures of austenitic stainless steel 310S

    Energy Technology Data Exchange (ETDEWEB)

    Nezakat, Majid, E-mail: majid.nezakat@usask.ca [Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3 (Canada); Akhiani, Hamed [Westpower Equipment Ltd., 4451 54 Avenue South East, Calgary, AB T2C 2A2 (Canada); Sabet, Seyed Morteza [Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431 (United States); Szpunar, Jerzy [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9 (Canada)

    2017-01-15

    We studied the texture evolution of thermo-mechanically processed austenitic stainless steel 310S. This alloy was cold rolled up to 90% reduction in thickness and subsequently annealed at 1050 °C. At the early stages of deformation, strain-induced martensite was formed from deformed austenite. By increasing the deformation level, slip mechanism was found to be insufficient to accommodate higher deformation strains. Our results demonstrated that twinning is the dominant deformation mechanism at higher deformation levels. Results also showed that cold rolling in unidirectional and cross rolling modes results in Goss/Brass and Brass dominant textures in deformed samples, respectively. Similar texture components are observed after annealing. Thus, the annealing texture was greatly affected by texture of the deformed parent phase and martensite did not contribute as it showed an athermal reversion during annealing. Results also showed that when the fraction of martensite exceeds a critical point, its grain boundaries impeded the movement of austenite grain boundaries during annealing. As a result, recrystallization incubation time would increase. This caused an incomplete recrystallization of highly deformed samples, which led to a rational drop in the intensity of the texture components. - Highlights: •Thermo-mechanical processing through different cold rolling modes can induce different textures. •Martensite reversion is athermal during annealing. •Higher fraction of deformation-induced martensite can increase the annealing time required for complete recrystallization. •Annealing texture is mainly influenced by the deformation texture of austenite.

  8. Effect of crystallographic texture on the bulk magnetic properties of non-oriented electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pampa, E-mail: pampaghosh@gmail.com [Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada H3A 0C5 (Canada); Chromik, Richard R., E-mail: richard.chromik@mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada H3A 0C5 (Canada); Vashegi, Babak; Knight, Andrew M. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4 (Canada)

    2014-09-01

    Quantitative physical models for non-oriented electrical steels require precise knowledge of chemical and microstructural parameters for the material, with crystallographic texture being one of the most important. Describing the structure–property relationships in these materials is made difficult in that all of the parameters have an effect on magnetic properties. In the present study, a set of non-oriented electrical steel specimens are examined, where chemistry and grain size are kept similar from sample to sample, but texture is varied. A new texture parameter called Magnetic Texture Factor is introduced which is defined as the ratio of the volume fractions of 〈100〉 direction to 〈111〉 direction along magnetization vector. It was found that this Magnetic Texture Factor was a better parameter for identifying trends of magnetic properties with crystallographic texture than the often used Texture Factor, which is described as the ratio of the volume fractions of {100} planes to {111} planes. - Highlights: • Magnetic properties of a set of electrical steels were measured. • The effect of crystallographic texture was isolated from other material parameters. • A new texture factor is introduced called the Magnetic Texture Factor.

  9. Formation of textured microstructure by mist deposition of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Qin, Gang; Watanabe, Akira

    2013-01-01

    Unique and various textured TiO 2 films have been easily fabricated by mist deposition method on silicon and glass substrates with mild preparation conditions. Two kinds of TiO 2 nanoparticle with different shape, size, and crystal form were used as starting material, which resulted in a simple preparation process under low temperature and ordinary pressure. It was easy to control the thickness, morphology, and roughness of textured TiO 2 film by adjusting the mist deposition conditions such as deposition time, temperature, and the shape and size of nanoparticles. The optical properties of textured TiO 2 films before and after spin coating of Ag nanoparticles were investigated. The angular dependence of the reflectance was obviously reduced by textured TiO 2 surface and such effect was enhanced by Ag nanoparticles coating. A broad plasmon band of Ag grains was observed in the absorption spectrum of the textured Ag nanoparticle-coated TiO 2 film

  10. (0 0 1) textured CoPt-Ag nanocomposite films for high-density perpendicular magnetic recording

    International Nuclear Information System (INIS)

    Xue, S.X.; Wang, H.; Wang, H.B.; Yang, F.J.; Wang, J.A.; Cao, X.; Gao, Y.; Huang, Z.B.; Li, Z.Y.; Li, Q.; Wong, S.P.

    2006-01-01

    CoPt/Ag nanocomposite films were prepared by magnetron sputtering. The dependence of texture and magnetic properties on film thickness, Ag atomic fraction and annealing conditions is investigated. Films with a thickness about 20 nm are easy to form with (0 0 1) orientation. The existence of the Ag in the film plays a dominant role in inducing the (0 0 1) texture of the film and suppressing the growth of the CoPt grains during annealing. The Co 35 Pt 38 Ag 27 film after annealing at 600 deg. C exhibits a large perpendicular coercivity of 5.6 kOe and a squareness of 0.90 with a small average grains size of 12.5 nm

  11. Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): role of shear reversal

    Energy Technology Data Exchange (ETDEWEB)

    Bagherpour, E., E-mail: e.bagherpour@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan); Qods, F., E-mail: qods@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Ebrahimi, R., E-mail: ebrahimy@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Miyamoto, H., E-mail: hmiyamot@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan)

    2016-06-01

    In the present paper the role of shear reversal on microstructure, texture and mechanical properties of pure copper during a single pass of the simple shear extrusion (SSE) process was investigated. For SSE processing an appropriate die with a linear die profile was designed and constructed, which imposes forward shear in the first half and reverse shear in the second half channels. Electron back-scattering diffraction (EBSD), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to evaluate the microstructure of the deformed samples. The geometrical nature of this process imposes a distribution of strain results in the inhomogeneous microstructure and the hardness throughout the plane perpendicular to the extrusion direction. Strain reversal during the process results in a slight reduction in dislocation density, the hardness and mean disorientation angle of the samples, and an increase in the grain size. After a complete pass of SSE, dislocation density decreased by ~14% if compared to the middle of the process. This suggests that the dislocation annihilation occurred by the reversal of the shear strain. The simple shear textures were formed gradually and the strongest simple shear textures were observed on the middle of the SSE channel. The degree of the simple shear textures decreases with the distance from the middle plane where the shear is reversed, but the simple shear textures are still the major components after exit of the channel. Hardness variation was modeled by contributions from dislocation strengthening and grain boundary strengthening, where dislocation density is approximated by the misorientation angle of LAGBs which are regarded as dislocation cell boundaries. As a result, the hardness can be predicted successfully by the microstructural features, i.e. the low-angle boundaries, the mean misorientation angle and the fraction of high-angle grain boundaries.

  12. Induced spherococcoid hard wheat

    International Nuclear Information System (INIS)

    Yanev, Sh.

    1981-01-01

    A mutant has been obtained - a spheroccocoid line -through irradiation of hard wheat seed with fast neutrons. It is distinguished by semispherical glumes and smaller grain; the plants have low stem with erect leaves but with shorter spikes and with lesser number of spikelets than those of the initial cultivar. Good productive tillering and resistance to lodging contributed to 23.5% higher yield. The line was superior to the standard and the initial cultivars by 14.2% as regards protein content, and by up to 22.8% - as to flour gluten. It has been successfully used in hybridization producing high-yielding hard wheat lines resistant to lodging, with good technological and other indicators. The possibility stated is of obtaining a spherococcoid mutant in tetraploid (hard) wheat out of the D-genome as well as its being suited to hard wheat breeding to enhance protein content, resistance to lodging, etc. (author)

  13. Effect of texturing on polarization switching dynamics in ferroelectric ceramics

    Science.gov (United States)

    Zhukov, Sergey; Genenko, Yuri A.; Koruza, Jurij; Schultheiß, Jan; von Seggern, Heinz; Sakamoto, Wataru; Ichikawa, Hiroki; Murata, Tatsuro; Hayashi, Koichiro; Yogo, Toshinobu

    2016-01-01

    Highly (100),(001)-oriented (Ba0.85Ca0.15)TiO3 (BCT) lead-free piezoelectric ceramics were fabricated by the reactive templated grain growth method using a mixture of plate-like CaTiO3 and BaTiO3 particles. Piezoelectric properties of the ceramics with a high degree of texture were found to be considerably enhanced compared with the BCT ceramics with a low degree of texture. With increasing the Lotgering factor from 26% up to 94%, the piezoelectric properties develop towards the properties of a single crystal. The dynamics of polarization switching was studied over a broad time domain of 8 orders of magnitude and was found to strongly depend on the degree of orientation of the ceramics. Samples with a high degree of texture exhibited 2-3 orders of magnitude faster polarization switching, as compared with the ones with a low degree of texture. This was rationalized by means of the Inhomogeneous Field Mechanism model as a result of the narrower statistical distribution of the local electric field values in textured media, which promotes a more coherent switching process. The extracted microscopic parameters of switching revealed a decrease of the critical nucleus energy in systems with a high degree of texture providing more favorable switching conditions related to the enhanced ferroelectric properties of the textured material.

  14. A primary study on texture modification and proteolysis of mao-tofu ...

    African Journals Online (AJOL)

    Proteolysis occurred during fermentation was evaluated by SDS-PAGE and chemical analysis. Results from Texture Profile Analysis showed that adhesiveness of mao-tofu had an increase trend while hardness, cohesiveness and springiness had a decrease trend as fermentation progressed. SEM analysis showed that the ...

  15. Plasma-nitriding assisted micro-texturing into stainless steel molds

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Micro-texturing has grown up to be one of the most promising procedures. This related application required for large-area, fine micro-texturing onto the stainless steel mold materials. A new method other than laser-machining, micro-milling or micro-EDM was awaited for further advancement of this micro-texturing. In the present paper, a plasma nitriding assisted micro-texturing was developed to make various kinds of micro-patterns onto the martensitic stainless steels. First, original patterns were printed onto the surface of substrate by using the ink-jet printer. Then, the masked substrate was subjected to high density plasma nitriding; the un-masked surfaces were nitrided to have higher hardness. This nitrided substrate was further treated by sand-blasting to selectively dig the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel substrate was fabricated as a mold to duplicate these micro-patterns onto the work materials. The spatial resolution and depth profile controllability of this plasma nitriding assisted micro-texturing was investigated for variety of initial micro-patterns. The original size and dimension of initial micro-patterns were precisely compared with the three dimensional geometry of micro-textures after blasting treatment. The plastic cover case for smart cellular phones was employed to demonstrate how useful this processing is in practice.

  16. Influence of crystallographic texture in X70 pipeline steels on toughness anisotropy and delamination

    Science.gov (United States)

    Al-Jabr, Haytham M.

    The effects of microstructure and crystallographic texture in four commercially-produced API X70 pipeline steels and their relation to planar anisotropy of toughness and delamination were evaluated. The experimental steels were processed through either a hot strip mill, a Steckel mill, or a compact strip mill. Different processing routes were selected to obtain plates with potential variations in the microstructure and anisotropic characteristics. Tensile and Charpy impact testing were used to evaluate the mechanical properties in three orientations: longitudinal (L), transverse (T) and diagonal (D) with respect to the rolling direction to evaluate mechanical property anisotropy. The yield and tensile strengths were higher in the T orientation and toughness was lower in the D orientation for all plates. Delamination was observed in some of the ductile fracture surfaces of the impact samples. To further study the splitting behavior and effects on impact toughness, a modified impact test (MCVN) specimen with side grooves was designed to intensify induced stresses parallel to the notch root and thus facilitate evaluation of delamination. Scanning electron microscopy combined with electron backscattered diffraction (EBSD) were used to evaluate the grain size, microstructural constituents, and crystallographic texture to determine the factors leading to delamination and the anisotropy in toughness. The ferrite grain size is mainly responsible for the differences in DBTTs between the L and T orientations. The higher DBTT in the D orientation observed in pipeline steels is attributed to crystallographic texture. The higher DBTT in the D direction is due to the higher volume fraction of grains having their {100} planes parallel or close to the primary fracture plane for the D orientation. An equation based on a new "brittleness parameter," based on an assessment of grain orientations based on EBSD data, was developed to predict the changes in DBTTs with respect to sample

  17. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties; Alliages ferritiques 14/20% de chrome renforces par dispersion d`oxydes. Effets des procedes de mise en forme sur les textures de deformation, la recristallisation et les proprietes de traction

    Energy Technology Data Exchange (ETDEWEB)

    Regle, H

    1994-12-31

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. (Abstract Truncated)

  18. Textural and sensory properties of low fat pork sausages with added hydrated oatmeal and tofu as texture-modifying agents.

    Science.gov (United States)

    Yang, Han-Sul; Choi, Sung-Gil; Jeon, Jin-Tae; Park, Gu-Boo; Joo, Seon-Tea

    2007-02-01

    Low fat sausages were prepared with added hydrated oatmeal or tofu as texture-modifying agents at levels of 10%, 15%, and 25% (w/w), respectively. The effects of the type and level of texture-modifying agents on the physical and sensory properties of low fat sausages were investigated. The water-holding capacity in sausage products increased by increasing the hydrated oatmeal level, but no significant differences was observed by the addition of tofu. The higher level of the agents produced a sausage product with less cooking loss and with a softer texture. The moisture absorption measurements suggest that the decrease in hardness of oatmeal-added sausage products may be due to the higher water-retention properties of oatmeal in response to heat treatment, while that of tofu-added sausage products may be associated with a weaker internal structure of tofu than the pork loin. The sensory evaluations indicated that the greatest overall acceptability in a low fat sausage was attained when the hydrated oatmeal or tofu were at their 15% addition level, respectively.

  19. Diffraction stress analysis of thin films; investigating elastic grain interaction

    International Nuclear Information System (INIS)

    Kumar, A.

    2005-12-01

    This work is dedicated to the investigation of specimens exhibiting anisotropic microstructures (and thus macroscopic elastic anisotropy) and/or inhomogeneous microstructures, as met near surfaces and in textured materials. The following aspects are covered: (i) Analysis of specimens with direction-dependent (anisotropic) elastic grain-interaction. Elastic grain-interaction determines the distribution of stresses and strains over the (crystallographically) differently oriented grains of a mechanically stressed polycrystal and the mechanical and diffraction (X-ray) elastic constants (relating (diffraction) lattice strains to mechanical stresses). Grain interaction models that allow for anisotropic, direction-dependent grain interaction have been developed very recently. The notion 'direction-dependent' grain-interaction signifies that different grain-interaction constraints prevail along different directions in a specimen. Practical examples of direction-dependent grain interaction are the occurrence of surface anisotropy in thin films and the surface regions of bulk polycrystals and the occurrence of grain-shape (morphological) texture. In this work, for the first time, stress analyses of thin films have been performed on the basis of these newly developed grain-interaction models. It has also been demonstrated that the identification of the (dominant) source of direction-dependent grain interaction is possible. The results for the grain interaction have been discussed in the light of microstructural investigations of the specimens by microscopic techniques. (ii) Analysis of specimens with depth gradients: Diffraction stress analysis can be hindered if gradients of the stress state, the composition or the microstructure occur in the specimen under investigation, as the so-called information depth varies in the course of a traditional stress measurement: Ambiguous results are thus generally obtained. In this work, a strategy for stress measurements at fixed

  20. Microstructure and texture development of 7075 alloy during homogenisation

    Science.gov (United States)

    Ghosh, Abhishek; Ghosh, Manojit

    2018-06-01

    The microstructure evolution of Al-Zn-Mg-Cu alloy during homogenisation was studied by optical microscope, field emission scanning electron microscope, energy dispersive X-ray Spectroscopy, differential scanning calorimetry and X-ray diffraction in detailed. It has been found that primary cast structure consisted of primary α (Al), lamellar eutectic structure η Mg(Zn, Cu, Al)2 and a small amount of θ (Al2Cu) phase. A transformation of primary eutectic phase from η Mg(Zn, Cu, Al)2 to S (Al2CuMg) was observed after 6 h of homogenisation treatment. The volume fraction of dendrite network structure and intermetallic phase was decreased with increase in holding time and finally disappeared after 96 h of homogenisation, which is consistent with the results of homogenisation kinetic analysis. Crystallographic texture of this alloy after casting and 96 h of homogenisation was also studied. It was found that casting process led the development of strong Goss, Brass, P and CuT components, while after homogenisation Cube, S and Copper components became predominant. Mechanical tests revealed higher hardness, yield strength and tensile strength for cast materials compared to homogenised alloys due to the presence of coarse micro-segregation of MgZn2 phase. The significant improvement of ductility was observed after 96-h homogenisation, which was attributed to dissolution of second phase particles and grain coarsening. Fracture surfaces of the cast samples indicated the presence of shrinkage porosity and consequently failure occurred in the interdendritic regions or grain boundaries with brittle mode, while homogenised alloys failed under ductile mode as evident by the presence of fine dimple surfaces.

  1. Improvement of IBAD-MgO texturing for high throughput of buffered substrate

    International Nuclear Information System (INIS)

    Ito, T.; Takahashi, Y.; Matsuse, K.; Kuriki, R.; Tokumaru, M.; Yoshizumi, M.; Izumi, T.

    2011-01-01

    The requirements from the market on two important factors of performance and cost need to be satisfied for commercialization of the coated conductors. Highly biaxially grain texturing with high production rate should be realized from the perspective of buffer layers processing. IBAD-MgO process is one of the major techniques which are possible to satisfy those requirements. The structure of our buffered substrate is IBS-GZO/IBAD-MgO/RFsputter-LaMnO 3 /PLD-CeO 2 . The PLD-CeO 2 process is the rate limiting and cost dominant one in this architecture. It is proposed that the self-texturing CeO 2 layer thickness could be reduced by optimization of the MgO processing due to higher MgO texturing and/or effective growth of self-texturing CeO 2 . Influence of the IBAD beam conditions and deposition time has been studied to optimize the IBAD conditions. Optimized IBAD conditions were decided from the viewpoints of in-plane grain texturing and the stability to obtain high texturing on fabrication. The Δφ value of CeO 2 layer was improved from 4-5 o to 3-3.5 o by the optimization. This buffered substrate gave high and uniform I c values of 524-565 A/cm-width for 50 m long GdBCO (1.5 μm) tape, indicating uniform distribution of Δφ(CeO 2 ). This improvement of Δφ(CeO 2 ) enables to reduce the CeO 2 thickness down to 300 nm without making Δφ(CeO 2 ) > 5 o , which improves CeO 2 throughput from 10 m/h to 30 m/h. A 50 m long patch sample showed more uniform Δφ distribution around 4 o even by high speed of 30 m/h as CeO 2 through-put. Highly and uniformly textured CeO 2 buffered substrate was obtained in 100 m long cost-effectively by optimization of IBAD-MgO processing.

  2. Interactive contribution of grain size and grain orientation to coercivity of melt spun ribbons

    International Nuclear Information System (INIS)

    Wang, N.; Li, G.; Yao, W.J.; Wen, X.X.

    2010-01-01

    During melt spinning process, the improvement of certain grain orientation and the refinement of grain size with surface velocity have interactive and contradictory effects on the magnetic properties. The contributions of these effects have seldom been taken into account and they were discussed in this paper via Fe-2, 4, 6.5 wt% Si alloys. Heat treatment at 1173 K for 1 h was performed to show the annealing impact. The X-ray diffraction patterns show that the high surface velocity and heat treatment increase the intensity ratio of line (2 0 0) to (1 1 0) of A2 phase. The (2 0 0) line corresponds to (2 0 0) plane in direction, easy magnetization direction of α-Fe phase in Fe-Si alloy. The improvement of this grain orientation with the surface velocity decreases the coercivity, which should increase due to the grain refinement. It is revealed that the texture promoted by the anisotropic heat release during melt spinning process is one factor to improve the magnetic properties and should be considered when preparing soft magnetic materials.

  3. Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng; Guo, Mingxing, E-mail: mingxingguo@skl.ustb.edu.cn; Cao, Lingyong; Luo, Jinru; Zhang, Jishan; Zhuang, Linzhong

    2015-01-05

    The effect of heating rate on the mechanical properties, microstructure and texture of Al–Mg–Si–Cu alloy during solution treatment was investigated through tensile testing, scanning electron microscope, scanning transmission electron microscope, metallographic observation and EBSD measurement. The experimental results reveal that there are great differences in the mechanical properties, microstructures and textures after the solution treatment with two different heating rates. Compared with the alloy sheet solution treated with slow heating rate, the alloy sheet solution treated with rapid heating rate possesses weak mechanical property anisotropy and higher average r value. The equiaxed grain is the main recrystallization microstructure for the case of rapid heating rate, while the elongated grain appears in the case of slow heating rate. The texture components are also quite different in the two cases, Cube{sub ND} orientation is the main texture component for the former case, while the latter one includes Cube, R, Goss, P and Brass orientations. The relationship between r value, texture components and microstructure has also been established in this paper.

  4. Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment

    International Nuclear Information System (INIS)

    Wang, Xiaofeng; Guo, Mingxing; Cao, Lingyong; Luo, Jinru; Zhang, Jishan; Zhuang, Linzhong

    2015-01-01

    The effect of heating rate on the mechanical properties, microstructure and texture of Al–Mg–Si–Cu alloy during solution treatment was investigated through tensile testing, scanning electron microscope, scanning transmission electron microscope, metallographic observation and EBSD measurement. The experimental results reveal that there are great differences in the mechanical properties, microstructures and textures after the solution treatment with two different heating rates. Compared with the alloy sheet solution treated with slow heating rate, the alloy sheet solution treated with rapid heating rate possesses weak mechanical property anisotropy and higher average r value. The equiaxed grain is the main recrystallization microstructure for the case of rapid heating rate, while the elongated grain appears in the case of slow heating rate. The texture components are also quite different in the two cases, Cube ND orientation is the main texture component for the former case, while the latter one includes Cube, R, Goss, P and Brass orientations. The relationship between r value, texture components and microstructure has also been established in this paper

  5. Grain boundary engineering for structure materials of nuclear reactors

    Science.gov (United States)

    Tan, L.; Allen, T. R.; Busby, J. T.

    2013-10-01

    Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic-martensitic steels, and Zr alloys. GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys.

  6. Grain boundary engineering for structure materials of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tan, L., E-mail: tanl@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Allen, T.R. [Department of Engineering Physics, University of Wisconsin–Madison (United States); Busby, J.T. [Materials Science and Technology Division, Oak Ridge National Laboratory (United States)

    2013-10-15

    Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic–martensitic steels, and Zr alloys. GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys.

  7. Effects of Cooking End-point Temperature and Muscle Part on Sensory 'Hardness' and 'Chewiness' Assessed Using Scales Presented in ISO11036:1994.

    Science.gov (United States)

    Sasaki, Keisuke; Motoyama, Michiyo; Narita, Takumi; Chikuni, Koichi

    2013-10-01

    Texture and 'tenderness' in particular, is an important sensory characteristic for consumers' satisfaction of beef. Objective and detailed sensory measurements of beef texture have been needed for the evaluation and management of beef quality. This study aimed to apply the sensory scales defined in ISO11036:1994 to evaluate the texture of beef. Longissimus and Semitendinosus muscles of three Holstein steers cooked to end-point temperatures of 60°C and 72°C were subjected to sensory analyses by a sensory panel with expertise regarding the ISO11036 scales. For the sensory analysis, standard scales of 'chewiness' (9-points) and 'hardness' (7-points) were presented to the sensory panel with reference materials defined in ISO11036. As a result, both 'chewiness' and 'hardness' assessed according to the ISO11036 scales increased by increasing the cooking end-point temperature, and were different between Longissimus and Semitendinosus muscles. The sensory results were in good agreement with instrumental texture measurements. However, both texture ratings in this study were in a narrower range than the full ISO scales. For beef texture, ISO11036 scales for 'chewiness' and 'hardness' are useful for basic studies, but some alterations are needed for practical evaluation of muscle foods.

  8. Grain Orientation and Interface Character Distribution During Austenite Precipitation Phase in Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    XU Ting

    2018-02-01

    Full Text Available The grain orientation and the interface character distribution were investigated for γ precipitation from the supersaturated α during aging at 1323K in duplex stainless steel by using EBSD technique and misorientation analysis based on Rodrigues-Frank (R-F space. The results show that sharp texture and the grain boundary character distribution featured by a high population of low angle grain boundary (LAB and a small number of twin boundaries (TBs are produced in the γ precipitated from cold-rolled supersaturated coarse α with pre-strain of ε=2. The precipitated γ grains approximately possess K-S, N-W and Bain orientation relationship with the α matrix equally. For the unstrained α matrix of the same orientation, nearly random texture and the grain boundary character predominated by TBs are introduced in the γ precipitation after aging. Most of γ have K-S relation with the α matrix. However, twining in γ leads to the deviation from typical K-S orientation relationship. And also, one-fourth of phase boundaries along γ grains containing twins are found to obey a new orientation relationship of 35°/〈110〉 with α matrix.

  9. Concepts on Low Temperature Mechanical Grain Growth

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, John Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Metallurgy and Materials Joining Dept.; Boyce, Brad Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Metallurgy and Materials Joining Dept.

    2013-11-01

    In metals, as grain size is reduced below 100nm, conventional dislocation plasticity is suppressed resulting in improvements in strength, hardness, and wears resistance. Existing and emerging components use fine grained metals for these beneficial attributes. However, these benefits can be lost in service if the grains undergo growth during the component’s lifespan. While grain growth is traditionally viewed as a purely thermal process that requires elevated temperature exposure, recent evidence shows that some metals, especially those with nanocrystalline grain structure, can undergo grain growth even at room temperature or below due to mechanical loading. This report has been assembled to survey the key concepts regarding how mechanical loads can drive grain coarsening at room temperature and below. Topics outlined include the atomic level mechanisms that facilitate grain growth, grain boundary mobility, and the impact of boundary structure, loading scheme, and temperature.

  10. Texture Development and Material Flow Behavior During Refill Friction Stir Spot Welding of AlMgSc

    Science.gov (United States)

    Shen, Junjun; Lage, Sara B. M.; Suhuddin, Uceu F. H.; Bolfarini, Claudemiro; dos Santos, Jorge F.

    2018-01-01

    The microstructural evolution during refill friction stir spot welding of an AlMgSc alloy was studied. The primary texture that developed in all regions, with the exception of the weld center, was determined to be 〈110〉 fibers and interpreted as a simple shear texture with the 〈110〉 direction aligned with the shear direction. The material flow is mainly driven by two components: the simple shear acting on the horizontal plane causing an inward-directed spiral flow and the extrusion acting on the vertical plane causing an upward-directed or downward-directed flow. Under such a complex material flow, the weld center, which is subjected to minimal local strain, is the least recrystallized. In addition to the geometric effects of strain and grain subdivision, thermally activated high-angle grain boundary migration, particularly continuous dynamic recrystallization, drives the formation of refined grains in the stirred zone.

  11. Mechanical properties of highly textured Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Liu, Y.; Bufford, D.; Wang, H.; Sun, C.; Zhang, X.

    2011-01-01

    We report on the synthesis of highly (1 1 1) and (1 0 0) textured Cu/Ni multilayers with individual layer thicknesses, h, varying from 1 to 200 nm. When, h, decreases to 5 nm or less, X-ray diffraction spectra show epitaxial growth of Cu/Ni multilayers. High resolution transmission electron microscopy studies show the coexistence of nanotwins and coherent layer interfaces in highly (1 1 1) textured Cu/Ni multilayers with smaller h. Hardnesses of multilayer films increase with decreasing h, approach a maximum at h of a few nanometers, and show softening thereafter at smaller h. The influence of layer interfaces as well as twin interfaces on strengthening mechanisms of multilayers and the formation of twins in Ni in multilayers are discussed.

  12. The microstructure, texture, and room temperature mechanical properties of friction stir processed Mg-Y-Nd alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jamili, A.M. [The Complex Laboratory of Hot Deformation and Thermomechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Zarei-Hanzaki, A., E-mail: zareih@ut.ac.ir [The Complex Laboratory of Hot Deformation and Thermomechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Abedi, H.R. [The Complex Laboratory of Hot Deformation and Thermomechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Minárik, P. [Department of Physics of Materials, Charles University, Prague (Czech Republic); Soltani, R. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2017-04-06

    The effects of severe plastic straining, in the course of single and multi-pass friction stir processing (FSP), on the microstructure, texture and mechanical properties of an as-extruded WE43 Magnesium alloy are addressed in the present study. The latter was explored by applying a set of 1 and 3-passes FSP trials on the experimental material. The evolved microstructures were characterized through electron backscatter diffraction analyses. The results indicated an extraordinary reduction in grain size in addition to remarkable decrease in second phase volume fraction in the light of preferred strain rate and temperature conditions. The micro-textures of processed specimens were evaluated through plotting the Schmid factor maps and its distribution. The corresponding results showed that the basal planes poles intensity was increased after each step of FSP trials. The prismatic texture analyses also indicated the randomized and weakened distributed planes. The room temperature mechanical properties of the processed materials were also measured using tensile testing technique. The optimization of the strength and ductility values was attributed to the grain refinement, dynamic dissolution of the second phase and the texture strengthening at proper thermomechanical conditions.

  13. A novel ultra-low carbon grain oriented silicon steel produced by twin-roll strip casting

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang, E-mail: wy069024019@163.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhang, Yuan-Xiang; Lu, Xiang; Fang, Feng; Xu, Yun-Bo; Cao, Guang-Ming; Li, Cheng-Gang [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States); Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China)

    2016-12-01

    A novel ultra-low carbon grain oriented silicon steel was successfully produced by strip casting and two-stage cold rolling method. The microstructure, texture and precipitate evolution under different first cold rolling reduction were investigated. It was shown that the as-cast strip was mainly composed of equiaxed grains and characterized by very weak Goss texture ({110}<001>) and λ-fiber (<001>//ND). The coarse sulfides of size ~100 nm were precipitated at grain boundaries during strip casting, while nitrides remained in solution in the as-cast strip and the fine AlN particles of size ~20–50 nm, which were used as grain growth inhibitors, were formed in intermediate annealed sheet after first cold rolling. In addition, the suitable Goss nuclei for secondary recrystallization were also formed during intermediate annealing, which is totally different from the conventional process that the Goss nuclei originated in the subsurface layer of the hot rolled sheet. Furthermore, the number of AlN inhibitors and the intensity of desirable Goss texture increased with increasing first cold rolling reduction. After secondary recrystallization annealing, very large grains of size ~10–40 mm were formed and the final magnetic induction, B{sub 8}, was as high as 1.9 T. - Highlights: • A novel chemical composition base on strip casting silicon steel was proposed. • The ultra-low carbon design could shorten the processing routes. • The novel composition and processes were beneficial to obtain more inhibitors. • The magnetic induction of grain oriented silicon steel was significantly improved.

  14. Giant Young’S Modulus Variations in Ultrafine-Grained Copper Caused by Texture Changes at Post-Spd Heat Treatment / Gigantyczne Zmiany Modułu Younga W Ultra Drobnoziarnistej Miedzi Spowodowane Przez Zmiany Tekstury W Trakcie Obróbki Cieplnej Po SPD

    Directory of Open Access Journals (Sweden)

    Pal-Val P.

    2015-12-01

    Full Text Available The effect of annealing on dynamic Young’s modulus, E, of ultrafine-grained (UFG copper obtained by combined severe plastic deformation (SPD is investigated. It is established that Young’s modulus in the SPD-prepared samples exceeds that in the coarse-grained fully annealed (CGFA samples by 10 to 20 %. Isothermal annealing at elevated temperatures between 90 and 630°С leads to a sharp decrease of Young’s modulus for annealing temperatures above 210°С. After annealing at 410°С, the value of E reaches its minimal value that is 35 % lower than E in CGFA samples (total change in E is about 47 % of the initial value. Further annealing at higher temperatures leads to an increase in Young’s modulus. It is shown, that the unusual behavior of Young’s modulus is caused by formation of the axial texture in the SPD-treated samples which then is replaced by the texture during the post-SPD heat treatment.

  15. Study of microstructure and electrical properties of bulk YBCO prepared by melt textured growth technique

    International Nuclear Information System (INIS)

    Gonal, M. R.; Krishnan, Madangopal; Tewari, R.; Tyagi, A. K.; Gyore, A.; Vajda, I.

    2015-01-01

    Bulk YBCO components were prepared using Melt Texture Growth (MTG) technique. Components were fabricated using MTG by addition of Y 2 BaCuO 5 (Y211) and Ag to YBCO, which leads to improved grain size without affecting superconducting properties. Green compacts prepared by cold isostatic pressing were pre-sintered at 930°C before subjecting melt texturing. Cooling rates lower than 1 °C.h −1 was used, in between (peritectic) temperature of about 995 and 1025°C, to obtain large grained components. Microstructure studies in details were carried out by Scanning Electron Microscope (SEM), Electron Probe Micro Analysis (EPMA), Orientation Imaging Microscope (OIM) and TEM correlated with electrical properties like Critical current density (J c )

  16. Magnetic properties and recrystallization texture of phosphorus-added non-oriented electrical steel sheets

    International Nuclear Information System (INIS)

    Tanaka, I.; Yashiki, H.

    2006-01-01

    The effect of phosphorus on magnetic properties and recrystallization texture has been investigated in non-oriented electrical steel sheets to develop low core loss and high permeability core materials. Specimens with different phosphorus contents were cold-rolled to various thicknesses, i.e. with various cold-rolling reductions, and annealed for recrystallization and grain growth. Although magnetic induction of the steel with low phosphorus content dramatically dropped with reducing thickness, i.e. with increasing in cold-rolling reduction, that of the steel with high phosphorus content only slightly decreased. The most effective way to reduce core loss was to reduce thickness of electrical steel sheets. Therefore, phosphorus-added thin gauge non-oriented electrical steel sheets have achieved low core loss and high permeability. The typical magnetic properties of phosphorus-added non-oriented electrical steel sheets 0.27mm in sheet thickness were 16.6W/kg in W 10/400 and 1.73T in B 50 . These excellent magnetic properties were due to the recrystallization texture control. {111} component in recrystallization texture was suppressed by the phosphorus segregation at initial grain boundaries. Accordingly, phosphorus would greatly contribute to the improvement of magnetic properties

  17. Measurement and modelling of textures in flow formed Cr-Mo-V steel tubes

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoulas, D. [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Clean Energy/Nuclear Services, Amec Foster Wheeler, 601 Faraday Street, Birchwood Park, Warrington WA3 6GN (United Kingdom); Quinta da Fonseca, J. [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Tuffs, M. [Rolls-Royce plc, Derby DE24 8BJ (United Kingdom); Preuss, M. [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2017-02-08

    Flow formed components undergo a complex deformation mode under biaxial strain, which is expected to have significant impact on the crystallographic texture evolution. X-ray diffraction measurements and calculations of orientation distribution functions (ODFs) were employed to analyse flow formed tubes produced with different parameters such as preform hardness, feed rate, roller contact angle, and wall thickness reduction. Texture variations were observed both throughout the wall thickness and along the tube length. A crystal plasticity finite-element model was used to decipher the texture formation relative to the imposed axial and hoop strains. The shear strain on the axial-hoop plane was found to be responsible for the deviation from cold rolling textures and the formation of a fibre along Φ = 0° in the φ{sub 2} = 45° ODF section. Finally, annealing treatments at 700 °C were carried out to monitor texture changes due to potential recrystallisation effects during the forming process, upon which strengthening of the {113}<1–10> orientation was noted.

  18. Hot hardness studies on zircaloy 2 pressure tube along three orientations

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Ravi, K.; Jarvis, T.; Sengupta, A.K.; Majumdar, S.; Tewari, R.; Shrivastava, D.; Dey, G.K.

    2002-01-01

    Zirconium based alloys are the natural choice for both the fuel element cans and in-core structural components in water cooled nuclear reactors. In this paper, the hot hardness behaviour of zircaloy 2 pressure tubes has been examined from room temperature to 400 degC using a hot hardness tester. For the purpose of comparison, the hardness of the as cast and room temperature rolled specimens has also been carried out. For this, the samples were cut along three orientations and hardness was measured in each of these directions using Vickers diamond pyramid indenter. The variation in hardness of the pressure tube samples show that the hardness was highest along circumferential direction and least along the axial direction. The room temperature rolled samples showed highest hardness along the rolling planes. These variations in hardness could be explained in terms of development of texture during working on the material. (author)

  19. Structural Transformations Versus Hard Particles Motion in the Brass Ingots

    Directory of Open Access Journals (Sweden)

    Wołczyński W.

    2017-12-01

    Full Text Available A mathematical method for the forecast of the type of structure in the steel static ingot has been recently developed. Currently, the method has been applied to structural zones prediction in the brass ingots obtained by the continuous casting. Both the temperature field and thermal gradient field have been calculated in order to predict mathematically the existence of some structural zones in the solidifying brass ingot. Particularly, the velocity of the liquidus isotherm movement and thermal gradient behavior versus solidification time have been considered. The analysis of the mentioned velocity allows the conclusion that the brass ingots can evince: chilled columnar grains-, (CC, fine columnar grains-, (FC, columnar grains-, (C, equiaxed grains zone, (E, and even the single crystal, (SC, situated axially. The role of the mentioned morphologies is analyzed to decide whether the hard particles existing in the brass ingots can be swallowed or rejected by the solid / liquid (s/l interface of a given type of the growing grains. It is suggested that the columnar grains push the hard particles to the end of a brass ingot during its continuous casting.

  20. Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications.

    Science.gov (United States)

    Mostaed, Ehsan; Hashempour, Mazdak; Fabrizi, Alberto; Dellasega, David; Bestetti, Massimiliano; Bonollo, Franco; Vedani, Maurizio

    2014-09-01

    Ultra-fine grained ZK60 Mg alloy was obtained by multi-pass equal-channel angular pressing at different temperatures of 250°C, 200°C and 150°C. Microstructural observations showed a significant grain refinement after ECAP, leading to an equiaxed and ultrafine grain (UFG) structure with average size of 600nm. The original extrusion fiber texture with planes oriented parallel to extrusion direction was gradually undermined during ECAP process and eventually it was substituted by a newly stronger texture component with considerably higher intensity, coinciding with ECAP shear plane. A combination of texture modification and grain refinement in UFG samples led to a marked reduction in mechanical asymmetric behavior compared to the as-received alloy, as well as adequate mechanical properties with about 100% improvement in elongation to failure while keeping relatively high tensile strength. Open circuit potential, potentiodynamic and weight loss measurements in a phosphate buffer solution electrolyte revealed an improved corrosion resistance of UFG alloy compared to the extruded one, stemming from a shift of corrosion regime from localized pitting in the as-received sample to a more uniform corrosion mode with reduced localized attack in ECAP processed alloy. Compression tests on immersed samples showed that the rate of loss of mechanical integrity in the UFG sample was lower than that in the as-received sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Investigation into the Effects of Textural Properties on Cuttability Performance of a Chisel Tool

    Science.gov (United States)

    Tumac, Deniz; Copur, Hanifi; Balci, Cemal; Er, Selman; Avunduk, Emre

    2018-04-01

    The main objective of this study is to investigate the effect of textural properties of stones on cutting performance of a standard chisel tool. Therewithal, the relationships between textural properties and cutting performance parameters and physical and mechanical properties were statistically analyzed. For this purpose, physical and mechanical property tests and mineralogical and petrographic analyses were carried out on eighteen natural stone samples, which can be grouped into three fundamentally different geological origins, i.e., metamorphic, igneous, and sedimentary. Then, texture coefficient analyses were performed on the samples. To determine the cuttability of the stones; the samples were cut with a portable linear cutting machine using a standard chisel tool at different depths of cut in unrelieved (non-interactive) cutting mode. The average and maximum forces (normal and cutting) and specific energy were measured, and the obtained values were correlated with texture coefficient, packing weighting, and grain size. With reference to the relation between depth of cut and cutting performance of the chisel tool for three types of natural stone groups, specific energy decreases with increasing depth of cut, and cutting forces increase in proportion to the depth of cut. The same is observed for the relationship between packing weighting and both of specific energy and cutter forces. On the other hand, specific energy and the forces decrease while grain size increases. Based on the findings of the present study, texture coefficient has strong correlation with specific energy. Generally, the lower depth of cut values in cutting tests shows higher and more reliable correlations with texture coefficient than the increased depth of cut. The results of cutting tests show also that, at a lower depth of cut (less than 1.5 mm), even stronger correlations can be observed between texture coefficient and cutting performance. Experimental studies indicate that cutting

  2. Assessment Of Mold-Design Dependent Textures In CIM-Components By Polarized Light Optical Texture Analysis (PLOTA)

    International Nuclear Information System (INIS)

    Kern, Frank; Rauch, Johannes; Gadow, Rainer

    2007-01-01

    By thermoplastic ceramic injection moulding (CIM) ceramic components of high complexity can be produced in a large number of items at low dimensional tolerances. The cost advantage by the high degree of automation leads to an economical mass-production. The structure of injection-moulded components is determined by the form filling behaviour and viscosity of the feedstock, the machine parameters, the design of the mold and the gate design. With an adapted mold- and gate-design CIM-components without textures are possible. The ''Polarized Light Optical Texture analysis'' (PLOTA) makes it possible to inspect the components and detect and quantify the textures produced by a new mold. Based on the work of R. Fischer (2004) the PLOTA procedure was improved by including the possibility to measure the inclination angle and thus describe the orientation of the grains in three dimensions. Sampled thin sections of ceramic components are analysed under the polarization microscope and are brought in diagonal position. Pictures are taken with a digital camera. The pictures are converted in the L*a*b*- colour space and the crystals color values a* and b* in the picture are measured. The color values are compared with the values of a quartz wedge, which serves as universal standard. From the received values the inclination angle can be calculated relative to the microscope axis. It is possible to use the received data quantitatively e.g. for the FEM supported simulation of texture-conditioned divergences of mechanical values. Thus the injection molding parameters can be optimized to obtain improved mechanical properties

  3. On the texture of spray formed gamma titanium aluminide

    International Nuclear Information System (INIS)

    Staron, P.; Bartels, A.; Brokmeier, H.-G.; Gerling, R.; Schimansky, F.P.; Clemens, H.

    2006-01-01

    Spray forming is an attractive processing route for titanium aluminides that combines advantages both of ingot and powder metallurgy. Spray formed deposits were produced using the electrode induction melting gas atomization technique. The texture of a spray formed Ti-48.9 at.% Al deposit in the as-sprayed state and after isothermal forging as well as after isothermal forging and a subsequent stress relief heat treatment was analysed by means of neutron diffraction. The spray formed deposit was found to have a very weak -fibre texture with a maximum pole density of 1.12 multiples of random distribution. After isothermal forging of cylinders to 77% reduction at an initial strain rate of 2 x 10 -3 s -1 at 1150 deg. C, a band of orientations from to with a maximum close to was found. A Zener-Hollomon parameter of 12.6 is estimated, which indicates that during isothermal forging dynamic recrystallization is governed by nucleation of new grains. A subsequent stress relief treatment at 1030 deg. C for 2 h caused additional grain growth, after which the maximum pole density is increased from 3.3 to 3.8 times random

  4. Heterogeneous grain-scale response in ferroic polycrystals under electric field

    DEFF Research Database (Denmark)

    Daniels, John E.; Majkut, Marta; Cao, Qingua

    2016-01-01

    -ray diffraction (3D-XRD) is used to resolve the non-180° ferroelectric domain switching strain components of 191 grains from the bulk of a polycrystalline electro-ceramic that has undergone an electric-field-induced phase transformation. It is found that while the orientation of a given grain relative...... to the field direction has a significant influence on the phase and resultant domain texture, there are large deviations from the average behaviour at the grain scale. It is suggested that these deviations arise from local strain and electric field neighbourhoods being highly heterogeneous within the bulk...

  5. Determining the effect of grain size and maximum induction upon coercive field of electrical steels

    Science.gov (United States)

    Landgraf, Fernando José Gomes; da Silveira, João Ricardo Filipini; Rodrigues-Jr., Daniel

    2011-10-01

    Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 μm). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B50 and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed.

  6. Neuro - Fuzzy Analysis for Silicon Carbide Abrasive Grains ...

    African Journals Online (AJOL)

    Grinding wheels are made of very small, sharp and hard abrasive materials or grits held together by strong porous bond. Abrasive materials are materials of extreme hardness that are used to shape other materials by a grinding or abrading action and they are used either as loose grains, as grinding wheels, or as coatings ...

  7. Fabrication and properties of radially C textured PMN-PT cylinders for transducer applications

    Science.gov (United States)

    Poterala, Stephen F.; Meyer, Richard J.; Messing, Gary L.

    2012-07-01

    C Textured PMN-PT ceramics have electromechanical properties (d33 = 850-1050 pm/V, k33 = 0.79-0.83) between those of conventional PZT ceramics and relaxor PMN-PT crystals. In this work, we tailor crystallographic orientation in textured PMN-PT ceramics for transducer designs with non-planar poling surfaces. Specifically, omni-directional cylindrical transducer elements were fabricated using monolithic, radially C textured and poled PMN-PT ceramic. Texture was produced by templated grain growth using NBT-PT templates, which were oriented radially by wrapping green ceramic tapes around a cylindrical mandrel. Finished transducer elements measure ˜5 cm in diameter by ˜2.5 cm in height and demonstrate scalability of textured ceramic fabrication techniques. The fabricated cylinders are ˜50 vol. % textured and show high 31-mode electromechanical properties compared to PZT ceramics (d31 = -259 pm/V, k31 = 0.43, ɛT33 = 3000, and Qm = 350). Frequency bandwidth is related to the square of the hoop mode coupling coefficient kh2, which is ˜60% higher in textured PMN-PT cylinders compared to PZT 5H. Finite element simulations show that this parameter may be further increased by improving texture quality to ≥90 vol. %. Radially textured PMN-PT may thus improve performance in omni-directional cylindrical transducers while avoiding the need for segmented single crystal designs.

  8. SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2015-08-01

    Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound

  9. Memory effects of transformation textures in steel and its prediction by the double Kurdjumov–Sachs relation

    International Nuclear Information System (INIS)

    Tomida, T.; Wakita, M.; Yasuyama, M.; Sugaya, S.; Tomota, Y.; Vogel, S.C.

    2013-01-01

    The phenomenon that the transformation texture near the initial texture reproduces after the phase transformation cycle such as ferrite (α, body-centered cubic) → austenite (γ, face-centered cubic) → α is called a texture memory. In this study, the texture change in a 0.1% C–1% Mn hot-rolled steel sheet during the α → γ → α transformation cycle was studied via neutron diffraction and the transformation texture prediction based on a variant selection rule that we call the double Kurdjumov–Sachs (K–S) relation. The texture change observed by neutron diffraction, which clearly showed the texture memory, could be quantitatively reproduced by the proposed variant selection rule adopted into the calculation method based on the spherical harmonics expansion of orientation distribution functions. Therefore, it is most likely that the texture memory in steel is caused by the preferential selection of those K–S variants that reduce the interfacial energy between a precipitate and two adjoining parent phase grains at the same time, which we call the double K–S relation

  10. COMPUTER GRAPHICS MEETS IMAGE FUSION: THE POWER OF TEXTURE BAKING TO SIMULTANEOUSLY VISUALISE 3D SURFACE FEATURES AND COLOUR

    Directory of Open Access Journals (Sweden)

    G. J. Verhoeven

    2017-08-01

    Full Text Available Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM approaches are capable of providing a photo-realistic texture along the threedimensional (3D digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  11. Computer Graphics Meets Image Fusion: the Power of Texture Baking to Simultaneously Visualise 3d Surface Features and Colour

    Science.gov (United States)

    Verhoeven, G. J.

    2017-08-01

    Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM) approaches are capable of providing a photo-realistic texture along the threedimensional (3D) digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  12. Crystallographic texture control helps improve pipeline steel resistance to hydrogen-induced cracking

    Energy Technology Data Exchange (ETDEWEB)

    Caleyo, F; Hallen, J M; Herrera, O; Venegas, V [ESIQIE, Instituto Politecnico Nacional, Mexico, (Mexico); Baudin, T [Universite de Paris Sud, Orsay, (France)

    2010-07-01

    The resistance to HIC of sour service pipeline steels has been improved through several strategies but none have proven to be totally efficient in the preservation of HIC in difficult operating conditions. The crystallographic texture plays a significant role in determining the behavior of HIC in pipeline steels. The present study tried to prove that crystallographic texture control, through warm rolling schedules, helps improve pipeline steel resistance to HIC. Several samples of an API 5L X52 grade pipeline steel were produced using different thermomechanical processes (austenization, controlled rolling and recrystallization). These samples were subjected to cathodic charging. Scanning electron microscopy and automated FEG/EBSD were used to perform metallographic inspections and to collect microstructure data. The results showed that the strong y fiber texture significantly reduces or even prevents the HIC damage. It is possible to improve the HIC resistance of pipeline steels using crystallography texture control and grain boundary engineering.

  13. An investigation into texturing of high-Tc superconducting ceramics by creep-sintering

    International Nuclear Information System (INIS)

    Regnier, P.; Le Hazif, R.; Chaffron, L.

    1989-01-01

    The possibility of preparing highly textured samples of YBa 2 Cu 3 O 7-x high-Tc ceramics by creep-sintering under an uniaxial stress was investigated in detail. It is shown that the quality of the texture is sharply dependant on: the applied load, the temperature of the sintering dwell, the rate at which this dwell is reached, the exact instant at which the load is applied and the nature of the material in contact with the sample. It is also shown that further annealing without applied stress enhances the texture and considerably increases the grain size. Deformation, which was systematically recorded, occurs within a few minutes after the load is applied and exhibits a stress dependance typical of a viscous flow. Systematic examination by polarized light microscopy has indicated that the texture was homogeneous throughout the whole thickness of all the prepared samples. The resistivity versus temperature curves show that the transition is very sharp and well above 77 K

  14. Investigation of the Influence of Ni Doping on the Structure and Hardness of Ti-Ni-C Coatings

    Directory of Open Access Journals (Sweden)

    J. Daniel

    2017-01-01

    Full Text Available Nanocomposite nc-TiC/a-C:H thin films exhibit unique combination of mechanical properties, high hardness, low friction, and wear. Selective doping by weak-carbide forming element can be used in order to specifically design the physical and chemical properties of nc-TiC/a-C:H coatings. In this paper we report on an effect of nickel addition on structure and hardness of the nc-TiC/a-C:H coatings. The effect of Ni alloying on the coating structure under conditions of DCMS and HiPIMS depositions was studied. The coating structure was correlated with the coating hardness. The grain size, the grain carbon vacancy concentration, and the mean grain separation were found to be the key parameters determining the coating hardness. Ni doping proved to have a significant effect on the coating microstructure which resulted in changes of the hardness of the deposited coatings.

  15. The microstructure, mechanical stress, texture, and electromigration behavior of Al-Pd alloys

    Science.gov (United States)

    Rodbell, K. P.; Knorr, D. B.; Mis, J. D.

    1993-06-01

    As the minimum feature size of interconnect lines decreases below 0.5 urn, the need to control the line microstructure becomes increasingly important. The alloy content, deposition process, fabrication method, and thermal history all determine the microstructure of an interconnect, which, in turn, affects its performance and reliability. The motivation for this work was to characterize the microstructure of various sputtered Al-Pd alloys (Al-0.3wt.%Pd, Al-2Cu-0.3Pd, and Al-0.3Nb-0.3Pd) vs sputtered Al-Cu control samples (Al-0.5Cu and Al-2Cu) and to assess the role of grain size, mechanical stress, and crystallographic texture on the electromigration behavior of submicrometer wide lines. The grain size, mechanical stress, and texture of blanket films were measured as a function of annealing. The as-deposited film stress was tensile and followed a similar stress history on heating for all of the films; on cooling, however, significant differences were observed between the Al-Pd and Al-Cu films in the shape of their stress-temperature-curves. A strong (111) crystallographic texture was typically found for Al-Cu films deposited on SiO2. A stronger (111) texture resulted when Al-Cu was deposited on 25 nm titanium. Al-0.3Pd films, however, exhibited either a weak (111) or (220) texture when deposited on SiO2, which reverted to a strong (111) texture when deposited on 25 nm titanium. The electromigration lifetimes of passivated, ≈0.7 μm wide lines at 250°C and 2.5 × 106 A/cm2 for both single and multi-level samples (separated with W studs) are reported. The electromigration behavior of Al-0.3Pd was found to be less dependent on film microstructure than on the annealing atmosphere used, i.e. forming gas (90% N2-10%H2) annealed Al-0.3Pd films were superior to all of the alloys investigated, while annealing in only N2 resulted in poor lifetimes.

  16. Dryland Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Biosolids Applications

    Directory of Open Access Journals (Sweden)

    Richard T. Koenig

    2011-01-01

    Full Text Available Applications of biosolids were compared to inorganic nitrogen (N fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L. cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Biosolids produced 0 to 1400 kg ha−1 (0 to 47% higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the biosolids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dryland production systems. Grain protein content with biosolids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with biosolids. Results indicate the potential to improve dryland winter wheat yields with biosolids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when biosolids are applied immediately before planting.

  17. Influence of rolling and annealing conditions on texture and mechanical properties of zirconium (1960)

    International Nuclear Information System (INIS)

    Orssaud, J.

    1958-06-01

    Rolling and annealing textures of KROLL zirconium samples at several rolling rates were studied by pole figures with an automatic recorder versus the position in the sheet thickness. Tensile tests, hardness measurements and micrographic examinations allowed to study the evolution of the recrystallization and the variation of the mechanical properties after rolling and/or annealing. Annealing textures slightly varies with the annealing temperature. Annealing at 500 deg. C gives several peculiarities. This temperature seems characteristic in the study of zirconium. (author) [fr

  18. Formation and texture of palladium germanides studied by in situ X-ray diffraction and pole figure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Geenen, F.A., E-mail: Filip.Geenen@UGent.be [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Knaepen, W.; De Keyser, K. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Opsomer, K. [Interuniversitair Micro-Electronica Centrum (IMEC), Kapeldreef 75, 3001 Leuven (Belgium); Vanmeirhaeghe, R.L. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Jordan-Sweet, J.; Lavoie, C. [IBM T.J. Watson Research Center, Yorktown (United States); Detavernier, C. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium)

    2014-01-31

    The solid state reaction between 30 nm Pd films and various Ge substrates (Ge(100), Ge(111), polycrystalline Ge and amorphous Ge) was studied by means of in situ X-ray diffraction and in situ sheet resistance measurements. The reported phase sequence of Pd{sub 2}Ge followed by PdGe was verified on all substrates. The texture of the germanides was analysed by pole figure measurements on samples quenched in the Pd{sub 2}Ge and in the PdGe phase on both Ge(100) and (111) substrates. We report an epitaxial growth of Pd{sub 2}Ge on Ge(111) and on Ge(100). The formed PdGe has an axiotaxial alignment on Ge(111). On Ge(100), the axiotaxial texture is observed together with a fibre texture. The higher formation temperature of PdGe on Ge(111) could be related to the epitaxial alignment of the Pd{sub 2}Ge parent phase on Ge(111). - Highlights: • Solid-state reaction is studied on a Pd film with Ge substrates. • Pd2Ge grains have an epitaxial texture on both Ge 100 and Ge 111. • PdGe grains are found to grow with an axiotaxial texture. • Retarded PdGe formation on Ge111 is related with strong epitaxy of Pd2Ge.

  19. Computer Texture Mapping for Laser Texturing of Injection Mold

    Directory of Open Access Journals (Sweden)

    Yongquan Zhou

    2014-04-01

    Full Text Available Laser texturing is a relatively new multiprocess technique that has been used for machining 3D curved surfaces; it is more flexible and efficient to create decorative texture on 3D curved surfaces of injection molds so as to improve the surface quality and achieve cosmetic surface of molded plastic parts. In this paper, a novel method of laser texturing 3D curved surface based on 3-axis galvanometer scanning unit has been presented to prevent the texturing of injection mold surface from much distortion which is often caused by traditional texturing processes. The novel method has been based on the computer texture mapping technology which has been developed and presented. The developed texture mapping algorithm includes surface triangulation, notations, distortion measurement, control, and numerical method. An interface of computer texture mapping has been built to implement the algorithm of texture mapping approach to controlled distortion rate of 3D texture math model from 2D original texture applied to curvature surface. Through a case study of laser texturing of a high curvature surface of injection mold of a mice top case, it shows that the novel method of laser texturing meets the quality standard of laser texturing of injection mold.

  20. The Influence of Stunning Method, Refrigeration and Freezing Time on the Rheological and Textural Properties of Raw Meat

    Directory of Open Access Journals (Sweden)

    Liliana Tudoreanu

    2013-11-01

    Full Text Available The present research was conducted to provide information on the influence of stunning methods in conjunction with refrigeration and freezing time on the textural and rheological properties of raw meat. Pork raw meat, commercially available, was analyzed for textural properties such as hardness, cohesiveness, adhesiveness and fracture force. Sample were analyzed fresh, after 3 days of refrigeration, and 15 days, 30days and 60 days freezing time in commercially available refrigerators mimicking the storing conditions used by consumers. For pork raw meat, hardness increased sharply after 3 days of refrigeration and showed no significant differences after 15days of freezing compared to 3days refrigeration time. After 30 days of freezing the raw pork meat samples’ hardness decreased significantly compared to the hardness of the samples freeze for15 days. Hardness of gas stunning raw pork meat samples compared to electrical stunning raw pork meat samples was 2.57 times higher indicating a better firmness of the gas stunning raw pork meat. The cohesiveness of the raw pork meat from gas stunned animals maintained its levels after 60 days of freezing while the meat from electrically stunned animals showed significant modificatio

  1. Effect of Primary Recrystallized Microstructure and Nitriding on Secondary Recrystallization in Grain Oriented Silicon Steel by Low Temperature Slab Reheating

    Directory of Open Access Journals (Sweden)

    LIU Gong-tao

    2018-01-01

    Full Text Available Different primary recrystallized grain sizes were obtained by controlling decarburization process in grain oriented silicon steel produced by low temperature slab reheating technique. The effect of primary grain size on secondary recrystallization and magnetic properties was studied. The appropriate nitrogen content after nitriding was explored in case of very large primary grain size, and the effect of {411}〈148〉 primary recrystallized texture on the abnormal growth behavior was discussed. The results show that an increase in average primary grain size from 10μm to 15μm leads to an increase of secondary recrystallization temperature and a sharper Goss texture with higher magnetic permeability, in the condition of a very large average primary grain size of 28μm, the suitable amount of nitrogen increases to about 6×10-4. The {411}〈148〉 oriented grains in primary recrystallized microstructure can easily grow into larger sizes due to their size advantage, and thus hinder the abnormal growth of secondary grains, moreover, the hindering effect is more pronounced in the abnormal growth of Brass-oriented grains due to their misorientation with low migration rate other than Goss grains.

  2. Effect of Thermomechanical Processing on Microstructure, Texture Evolution, and Mechanical Properties of Al-Mg-Si-Cu Alloys with Different Zn Contents

    Science.gov (United States)

    Wang, X. F.; Guo, M. X.; Chen, Y.; Zhu, J.; Zhang, J. S.; Zhuang, L. Z.

    2017-07-01

    The effect of thermomechanical processing on microstructure, texture evolution, and mechanical properties of Al-Mg-Si-Cu alloys with different Zn contents was studied by mechanical properties, microstructure, and texture characterization in the present study. The results show that thermomechanical processing has a significant influence on the evolution of microstructure and texture and on the final mechanical properties, independently of Zn contents. Compared with the T4P-treated (first preaged at 353 K (80 °C) for 12 hours and then naturally aged for 14 days) sheets with high final cold rolling reduction, the T4P-treated sheets with low final cold rolling reduction possess almost identical strength and elongation and higher average r values. Compared with the intermediate annealed sheets with high final cold rolling reduction, the intermediate annealed sheets with low final cold rolling reduction contain a higher number of particles with a smaller size. After solution treatment, in contrast to the sheets with high final cold rolling reduction, the sheets with low final cold rolling reduction possess finer grain structure and tend to form a weaker recrystallization texture. The recrystallization texture may be affected by particle distribution, grain size, and final cold rolling texture. Finally, the visco-plastic self-consistent (VPSC) model was used to predict r values.

  3. Improvement of IBAD-MgO texturing for high throughput of buffered substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T., E-mail: t-ito@istec.or.jp [Superconductivity Research Laboratory, ISTEC, 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Takahashi, Y.; Matsuse, K.; Kuriki, R.; Tokumaru, M.; Yoshizumi, M.; Izumi, T. [Superconductivity Research Laboratory, ISTEC, 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062 (Japan)

    2011-11-15

    The requirements from the market on two important factors of performance and cost need to be satisfied for commercialization of the coated conductors. Highly biaxially grain texturing with high production rate should be realized from the perspective of buffer layers processing. IBAD-MgO process is one of the major techniques which are possible to satisfy those requirements. The structure of our buffered substrate is IBS-GZO/IBAD-MgO/RFsputter-LaMnO{sub 3}/PLD-CeO{sub 2}. The PLD-CeO{sub 2} process is the rate limiting and cost dominant one in this architecture. It is proposed that the self-texturing CeO{sub 2} layer thickness could be reduced by optimization of the MgO processing due to higher MgO texturing and/or effective growth of self-texturing CeO{sub 2}. Influence of the IBAD beam conditions and deposition time has been studied to optimize the IBAD conditions. Optimized IBAD conditions were decided from the viewpoints of in-plane grain texturing and the stability to obtain high texturing on fabrication. The {Delta}{phi} value of CeO{sub 2} layer was improved from 4-5{sup o} to 3-3.5{sup o} by the optimization. This buffered substrate gave high and uniform I{sub c} values of 524-565 A/cm-width for 50 m long GdBCO (1.5 {mu}m) tape, indicating uniform distribution of {Delta}{phi}(CeO{sub 2}). This improvement of {Delta}{phi}(CeO{sub 2}) enables to reduce the CeO{sub 2} thickness down to 300 nm without making {Delta}{phi}(CeO{sub 2}) > 5{sup o}, which improves CeO{sub 2} throughput from 10 m/h to 30 m/h. A 50 m long patch sample showed more uniform {Delta}{phi} distribution around 4{sup o} even by high speed of 30 m/h as CeO{sub 2} through-put. Highly and uniformly textured CeO{sub 2} buffered substrate was obtained in 100 m long cost-effectively by optimization of IBAD-MgO processing.

  4. Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg [Institute for Microstructural and Mechanical Processing Engineering, University of Sheffield (IMMPETUS), Mappin Street, Sheffield S1 3JD (United Kingdom); Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721 (Egypt); Wynne, B.P.; Rainforth, W.M. [Institute for Microstructural and Mechanical Processing Engineering, University of Sheffield (IMMPETUS), Mappin Street, Sheffield S1 3JD (United Kingdom); Threadgill, P.L. [TWI LTD, Granta Park, Great Abington, Cambridge CB21 6AL (United Kingdom)

    2012-02-15

    In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder. The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.

  5. Kinetics of Texture and Colour Changes in Chicken Sausage during Superheated Steam Cooking

    Directory of Open Access Journals (Sweden)

    Abdulhameed Asmaa A.

    2016-07-01

    Full Text Available The aim of this study was to develop a kinetic model to describe the texture and colour changes of chicken sausage during superheated steam cooking. Chicken sausages were cooked at temperature ranging from 150-200°C with treatment times ranging from 2-6 mins. The texture profile was evaluated in terms of hardness, cohesiveness, gumminess, and chewiness, while the colour parameters were estimated in terms of lightness (L*, redness (a*, yellowness (b*, and total colour difference (∆E. Experimental data showed a gradual reduction in texture parameters as cooking times and temperatures increased. The L* value of the colour showed a linear reduction with cooking condition, while the a*, b*, and ∆E values showed a contrary effects. The decrease in texture parameters and L*-value of colour parameter followed the first-order kinetic model. While, zero-order kinetic model was adapted to fit the a* and b*. The modified first order kinetic showed a good fit for total ∆E. Significant correlations between colour and texture parameters were observed, which showed that a* alone could be used to predict the texture of chicken sausage.

  6. Hydrological regime as key to the morpho-texture and activity of braided streams

    Science.gov (United States)

    Storz-Peretz, Y.; Laronne, J. B.

    2012-04-01

    Braided streams are a common fluvial pattern in different climates. However, studies of gravel braided streams have mainly been conducted in humid braided systems or in flume simulations thereof, leaving arid braided streams scarcely investigated. Dryland rivers have bare catchments, rapid flow recession and unarmoured channel beds which are responsible for very high bedload discharges, thereby increasing the likelihood for braiding. Our main objective is to characterize the morpho-texture of the main morphological elements - mid-channel bars, chutes and anabranches (braid-cells) in the dryland braided system and compare them to their humid counterparts. Selected areas of the dryland braided Wadis Ze'elim, Rahaf and Roded in the SE hyper-arid Israel were measured, as were La-Bleone river in the French pre-alps along with the Saisera and Cimoliana rivers in NE Italy representing humid braided systems. Terrestrial Laser Scanning (TLS) of morphological units produced point clouds from which high resolution accurate Digital Elevation Models (DEMs) were extracted. Active braid cells in humid environments were also surveyed by electronic theodolite. Roughness and upper tail Grain Size Distribution (GSD) quantiles were derived from the scanned point clouds or from Wolman sampling. Results indicate that dryland anabranches tend to be finer-grained and less armoured than the bars, contrary to the humid braided systems, where the main or larger anabranches are coarser-grained and more armoured than the bars. Chutes are commonly similar or coarser-grained than the bars they dissect, in accordance with their steeper gradients due to the considerable relief of the bar-anabranch. The morpho-texture displayed in the steep braided Saisera River, located in the Italian Dolomites having the highest annual precipitation, has similarity to that of the dryland braided channels. In drylands coarse gravel is deposited mainly as bars due to the high flux of bedload, whereas the rapid flow

  7. Evolution of twinning in extruded AZ31 alloy with bimodal grain structure

    Energy Technology Data Exchange (ETDEWEB)

    Garcés, G., E-mail: ggarces@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research CENIM-CSIC, Av. De Gregorio del Amo 8, 28040 Madrid (Spain); Oñorbe, E. [CIEMAT, Division of Structural Materials, Avenida Complutense, 40, 28040 Madrid (Spain); Gan, W. [German Engineering Materials Science Centre at MLZ, Helmholtz-Zentrum Geesthacht, Lichtebergstr. 1, D-85747 Garching (Germany); Máthis, K. [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, KeKarlovu 5, 121 16 Praha 2 (Czech Republic); Tolnai, D. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Horváth, K. [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, KeKarlovu 5, 121 16 Praha 2 (Czech Republic); Pérez, P.; Adeva, P. [Department of Physical Metallurgy, National Centre for Metallurgical Research CENIM-CSIC, Av. De Gregorio del Amo 8, 28040 Madrid (Spain)

    2017-04-15

    Twinning in extruded AZ31 alloy with a bimodal grain structure is studied under compression along the extrusion direction. This study has combined in-situ measurements during the compression tests by Synchrotron Radiation Diffraction and Acoustic Emission techniques and the evaluation of the microstructure and texture in post-mortem compression samples deformed at different strains. The microstructure of the alloy is characterized by the coexistence of large areas of fine dynamic recrystallized grains and coarse non-recrystallized grains elongated along extrusion direction. Twinning occurs initially in large elongated grains before the macroscopic yield stress which is controlled by the twinning in equiaxed dynamically recrystallized grains. - Highlights: • The AZ31 extruded at low temperature exhibits a bimodal grains structure. • Twinning takes place before macroscopic yielding in coarse non-DRXed grains. • DRXed grains controls the beginning of plasticity in magnesium alloys with bimodal grain structure.

  8. Influence of skin hardness on dehydration kinetics of wine grapes.

    Science.gov (United States)

    Rolle, Luca; Caudana, Alberto; Giacosa, Simone; Gerbi, Vincenzo; Río Segade, Susana

    2011-02-01

    Knowledge of the influence of initial mechanical properties on the evolution of the weight loss of berries through the drying process is scarce. Therefore, the main purpose of this work was to investigate the effect of skin hardness at two different physiological stages of off-vine drying kinetics of grapes. Skin hardness was evaluated as the berry skin-break force parameter, measured by the texture analysis test. The decrease of berry weight as a function of the drying time was linear, indicating that the drying rates were constant within each cultivar studied (Moscato bianco and Erbaluce), and for each ripening stage and berry skin hardness. The drying rates decreased as berry skin hardness increased for the ripest grapes in the cultivars studied. The study allowed the assessment of the correlation between the skin hardness of fresh berries and the weight loss determined for different drying days. 2010 Society of Chemical Industry.

  9. Influence of storage in the texture and viscoelasticity of buns of corn variety white Cariaco

    Directory of Open Access Journals (Sweden)

    José David Torres-González

    2016-09-01

    Full Text Available The objective was to determine the influence of storage time on the variation of texture and visco-elasticity of buns of corn of the white Cariaco variety. The samples were stored refrigerated at 15 °C during 15 days. Textural parameters were determined every two days, using a texture analyzer; viscoelastic properties were set by a test of relaxation and com-pression effort, adjusting the experimental data to the generalized Maxwell model. Also, to determine the model parameters described, an iterative process was performed by non-linear regression using least squares techniques damped by the Solver add-on in Excel 2013. The storage time influenced the texture profile of buns, and the increase of hardness from the eleventh day, which was attributed to moisture loss of the product during cooling. Chewiness was higher for longer storage time. Cohesiveness, adhesiveness and elasticity reported no significant differences with respect to storage time. Statistical differences were presented at initial and final relaxation speeds expressed in the Maxwell model. The experimental data were successfully fitted to the model (R2 > 0.95 which was statistically significant (p < 0.05 and the performance of the elastic module indicated that buns from the white Cariaco variety showed a characteristic behavior of a viscoelastic material, increasing its hardness during the days of storage.

  10. Evolution of grain structure in nickel oxide scales

    International Nuclear Information System (INIS)

    Atkinson, H.V.

    1987-01-01

    In systems such as the oxidation of nickel, in which grain-boundary diffusion in the oxide can control the rate of oxidation, understanding of the factors governing the grain structure is of importance. High-purity mechanically polished polycrystalline nickel was oxidized at 700 0 C, 800 0 C, and 1000 0 C for times up to 20 hr in 1 atm O 2 . The scale microstructures were examined by parallel and transverse cross section transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Texture coefficients were found by x-ray diffraction (XRD). Each grain in the transverse section grain boundary networks was systematically analyzed for width parallel to the Ni-NiO interface and perpendicular length, for boundary radius of curvature and for number of sides. The variation of these parameters with depth in the scale was examined. In particular, grains were increasingly columnar (i.e., with ratio of grain length to width > 1) at higher temperatures and longer times. Columnar grain boundaries tended to be fairly static; the columnar grain width was less than the rate controlling grain size predicted from the oxidation rate. The mean boundary curvature per grain provided a guide to the tendency for grain growth, except in the region of the Ni-NiO interface, where the boundaries were thought to be pinned

  11. Mineralogy and Textural Characteristics of Fine-grained Rims in the Yamato 791198 CM2 Carbonaceous Chondrite: Constraints on the Location of Aqueous Alteration

    Science.gov (United States)

    Chizmadia, Lysa J.; Brearley, Adrian J.

    2003-01-01

    Carbonaceous chondrites provide important clues into the nature of physical and chemical processes in the early solar system. A question of key importance concerns the role of water in solar nebular and asteroidal processes. The effects of water on primary mineral assemblages have been widely recognized in chondritic meteorites, especially the CI and CM carbonaceous chondrites. These meteorites have undergone extensive aqueous alteration that occurred prior to their arrival on Earth. In the case of the CM chondrites, this alteration has resulted in the partial to complete replacement of the primary nebular phases with secondary alteration phases. Considerable controversy exists as to the exact location where the alteration of the CM chondrites occurred. Several textural lines of evidence have been cited in support of aqueous alteration prior to the accretion of the final parent asteroid. An important line of evidence to support this hypothesis is the dis-equilibrium nature of fine-grained rims and matrix materials. [2] also noted the juxtaposition of micron-sized Fe-Ni metal grains and apparently unaltered chondrule glass against hydrated rim silicates. Conversely, there is a large body of evidence in favor of parent body alteration such as the occurrence of undisturbed Fe-rich aureoles and the systematic redistribution of elemental components over millimeters, e.g., Mg(+2) into the matrix and Fe(+2) into chondrules etc.

  12. Processing, microstructure and properties of grain-oriented ferroelectric ceramics

    International Nuclear Information System (INIS)

    Okazaki, K.; Igarashi, H.; Nagata, K.; Yamamoto, T.; Tashiro, S.

    1986-01-01

    Grain oriented ferroelectric ceramics such as PbBi/sub 2/Nb/sub 2/O/sub 9/, bismuth compound with layer structure, (PbLa)Nb/sub 2/O/sub 6/, tungsten-bronze structure and SbSI were prepared by an uni-axial hot-pressing, a double-stage hot-pressing and tape casting methods. Microstructures of them were examined by SEM and the prefered textures of the ceramics composed of thin plate and/or needle crystallites were ascertained. Grain orientation effects on electrical, piezoelectric, optical and mechanical properties are discussed

  13. A challenging hysteresis operator for the simulation of Goss-textured magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cardelli, Ermanno [Dipartimento di Ingegneria, Università di Perugia, Via G. Duranti, 67, 06125 Perugia (Italy); Centre for Electric and Magnetic Applied Research, Perugia (Italy); Faba, Antonio [Centre for Electric and Magnetic Applied Research, Perugia (Italy); Polo Didattico Scientifico di Terni, Strada Pentima Bassa n. 4, 05100 Terni (Italy); Laudani, Antonino [Università Roma tre, Via Ostiense, 159, 00154 Roma (Italy); Pompei, Michele [Dipartimento di Ingegneria, Università di Perugia, Via G. Duranti, 67, 06125 Perugia (Italy); Quondam Antonio, Simone, E-mail: simonequondam87@gmail.com [Dipartimento di Ingegneria, Università di Perugia, Via G. Duranti, 67, 06125 Perugia (Italy); Fulginei, Francesco Riganti; Salvini, Alessandro [Università Roma tre, Via Ostiense, 159, 00154 Roma (Italy)

    2017-06-15

    Highlights: • New 2-D hysteresis operator for the simulation of Goss-textured ferromagnets at macromagnetic scale-length. • The operator is derived from the classic Stoner–Wohlfarth but the in-plane magnetic anisotropy is cubic. • The single hysteron model is defined exploiting only one “moving” hysteresis operator. • Results are especially promising for FEM based calculations, where the magnetization state in each point must be recalculated at each time step. • Numerical accuracy is proved by comparison with measured data. - Abstract: A new hysteresis operator for the simulation of Goss-textured ferromagnets is here defined. The operator is derived from the classic Stoner–Wohlfarth model, where the anisotropy energy is assumed to be cubic instead of uniaxial, in order to reproduce the magnetic behavior of Goss textured ferromagnetic materials, such as grain-oriented Fe–Si alloys, Ni–Fe alloys, and Ni–Co alloys. A vector hysteresis model based on a single hysteresis operator is then implemented and used for the prediction of the rotational magnetizations that have been measured in a sample of grain-oriented electrical steel. This is especially promising for FEM based calculations, where the magnetization state in each point must be recalculated at each time step. Finally, the computed loops, as well as the magnetic losses, are compared to the measured data.

  14. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei [Department of Machine Tools and Factory Management, Technical University of Berlin, Pascalstraße 8 – 9, 10587, Berlin (Germany); Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Kannengiesser, Thomas [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Institute of Materials and Joining Technology, Otto von Guericke University Magdeburg, Universitetsplatz 2, 39106, Magdeburg (Germany)

    2014-09-08

    The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results.

  15. Evaluation of Texture Profile, Color and Determination of FOS in Yacón Products (Smallanthus sonchifolius

    Directory of Open Access Journals (Sweden)

    Valeria Cristina Del Castillo

    2016-07-01

    Full Text Available Textural characteristics, color and fructooligosaccharides (FOS content, in yacón root products (syrup and dried snack subjected to different pretreatments with NaCl, blanching and ascorbic acid were evaluated. Yacón from Salta Capital, with 8 months of growth were used. Texture profiles and Color were evaluated instrumentally and FOS content by HPLC. There were significant differences between the samples treated with NaCl and the ones treated by blanching and ascorbic acid for fracture strength, fracture number and hardness according to pretreatment used, and for hardness and tackiness by the drying time. Regarding to color: longer drying time reduces sample brightness. In processed products the FOS content is lower than in fresh yacón, but higher in sucrose, glucose and fructose.

  16. Coupled X-ray computed tomography and grey level co-occurrence matrices as a method for quantification of mineralogy and texture in 3D

    Science.gov (United States)

    Jardine, M. A.; Miller, J. A.; Becker, M.

    2018-02-01

    Texture is one of the most basic descriptors used in the geological sciences. The value derived from textural characterisation extends into engineering applications associated with mining, mineral processing and metal extraction where quantitative textural information is required for models predicting the response of the ore through a particular process. This study extends the well-known 2D grey level co-occurrence matrices methodology into 3D as a method for image analysis of 3D x-ray computed tomography grey scale volumes of drill core. Subsequent interrogation of the information embedded within the grey level occurrence matrices (GLCM) indicates they are sensitive to changes in mineralogy and texture of samples derived from a magmatic nickel sulfide ore. The position of the peaks in the GLCM is an indication of the relative density (specific gravity, SG) of the minerals and when interpreted using a working knowledge of the mineralogy of the ore presented a means to determine the relative abundance of the sulfide minerals (SG > 4), dense silicate minerals (SG > 3), and lighter silicate minerals (SG < 3). The spread of the peaks in the GLCM away from the diagonal is an indication of the degree of grain boundary interaction with wide peaks representing fine grain sizes and narrow peaks representing coarse grain sizes. The method lends itself to application as part of a generic methodology for routine use on large XCT volumes providing quantitative, timely, meaningful and automated information on mineralogy and texture in 3D.

  17. Laser Texturing of Magnetic Recording Media Final Report CRADA No. TSV-1298-96

    Energy Technology Data Exchange (ETDEWEB)

    Hackel, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marshall, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    The Commercial Laser Systems Group at LLNL developed a concept for patterning of computer magnetic recording discs. Magnetic recording media require texturing over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate was polished to a specular finish then a mechanical means was used to roughen an annular area intended to be the head contact band. In a previous patent (US Patent 5,062,021) it was proposed that the focused output of a low power laser with short pulse length could be used to generate the textured pattern. However, the patterned area typically required 75,000 textured spots that needed to be rapidly (less than 10 seconds) printed with good uniformity. A means to achieve the accurate placement and uniform profile, as well as a meaningfully rapid process time, was not discussed in the referenced patent. The LLNL team devised a system that could rapidly and inexpensively accomplish the texturing.

  18. Statistical Theory of Normal Grain Growth Revisited

    International Nuclear Information System (INIS)

    Gadomski, A.; Luczka, J.

    2002-01-01

    In this paper, we discuss three physically relevant problems concerning the normal grain growth process. These are: Infinite vs finite size of the system under study (a step towards more realistic modeling); conditions of fine-grained structure formation, with possible applications to thin films and biomembranes, and interesting relations to superplasticity of materials; approach to log-normality, an ubiquitous natural phenomenon, frequently reported in literature. It turns out that all three important points mentioned are possible to be included in a Mulheran-Harding type behavior of evolving grains-containing systems that we have studied previously. (author)

  19. Diagnosis and prognosis of Ostheoarthritis by texture analysis using sparse linear models

    DEFF Research Database (Denmark)

    Marques, Joselene; Clemmensen, Line Katrine Harder; Dam, Erik

    We present a texture analysis methodology that combines uncommitted machine-learning techniques and sparse feature transformation methods in a fully automatic framework. We compare the performances of a partial least squares (PLS) forward feature selection strategy to a hard threshold sparse PLS...... algorithm and a sparse linear discriminant model. The texture analysis framework was applied to diagnosis of knee osteoarthritis (OA) and prognosis of cartilage loss. For this investigation, a generic texture feature bank was extracted from magnetic resonance images of tibial knee bone. The features were...... used as input to the sparse algorithms, which dened the best features to retain in the model. To cope with the limited number of samples, the data was evaluated using 10 fold cross validation (CV). The diagnosis evaluation using sparse PLS reached a generalization area-under-the-ROC curve (AUC) of 0...

  20. Roles of texture in controlling oxidation, hydrogen ingress and hydride formation in Zr alloys

    International Nuclear Information System (INIS)

    Szpunar, Jerzy A.; Qin, Wen; Li, Hualong; Kumar, Kiran

    2011-01-01

    Experimental observations shows that the oxide formed on Zr alloys are strongly textured. The texture and grain-boundary characteristics of oxide are dependent on the texture of metal substrate. Computer simulation and thermodynamic modeling clarify the effect of metal substrate on structure of oxide film, and intrinsic factors affecting the microstructure. Models of diffusion process of hydrogen atoms and oxygen diffusion through oxide are presented. Both intra-granular and inter-granular hydrides were found following (0001) α-Zr //(111) δ-ZrH1.5 relationship. The through-thickness texture inhomogeneity in cladding tubes, the effects of hoop stress on the hydride orientation and the formation of interlinked hydride structure were studied. A thermodynamic model was developed to analyze the nucleation and the stress-induced reorientation of intergranular hydrides. These works provide a framework for understanding the oxidation, the hydrogen ingress and the hydride formation in Zr alloys. (author)

  1. Study of thermal stability of ultrafine-grained copper by means of electron back scattering diffraction

    Czech Academy of Sciences Publication Activity Database

    Man, O.; Pantělejev, L.; Kunz, Ludvík

    2010-01-01

    Roč. 51, č. 2 (2010), s. 209-213 ISSN 1345-9678 R&D Projects: GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultra-fine grained copper * thermal stability of microstructure * electron back scattering diffraction * grain size * texture Subject RIV: JG - Metallurgy Impact factor: 0.779, year: 2010

  2. Measurement of kinaesthetic properties of in-brine table olives by microstructure of fracture surface, sensory evaluation and texture profile analysis (TPA).

    Science.gov (United States)

    Lanza, Barbara; Amoruso, Filomena

    2018-02-02

    A series of transformations occur in olive fruit both during ripening and processing. In particular, significant changes in the microstructural composition affect the flavour, texture, nutrients and overall quality of the end product. Texture is one of the sensory quality attributes of greatest importance to consumer acceptance. In the present work, kinaesthetic properties of in-brine table olives of three cultivars of Olea europaea L. (Bella di Cerignola, Peranzana and Taggiasca cvs) were provided by several measurements of olive tissue texture by sensory, rheological and microstructural approaches. Olives at the same stage of ripening and processed with the same technology, but belonging to different cultivars, showed significant differences at microstructural, sensorial and rheological levels. To describe the relationship between the three variables, multiple regression analysis and principal component analysis were chosen. Differences in microstructure were closely related both in terms of hardness measured by texture profile analysis and hardness measured by sensory analysis. The information provided could be an aid for screening and training of a sensory panel. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Adjoint-based optimization of mechanical performance in polycrystalline materials and structures through texture control

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Grace [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bishop, Joseph E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    The texture of a polycrystalline material refers to the preferred orientation of the grains within the material. In metallic materials, texture can significantly affect the mechanical properties such as elastic moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive manufacturing of metallic materials offer the possibility in the not too distant future of controlling the spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization algorithm within a finite element solver (COMSOL) to optimize several engineering quantities of interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to general texture optimization, we consider the idealized case of a pure fiber texture in which the homogenized properties are transversely isotropic. In this special case, the only spatially varying design variables are the three Euler angles that prescribe the orientation of the homogenized material at each point within the structure. This work paves a new way to design metallic materials for tunable mechanical properties at the microstructure level.

  4. Driving forces for texture transformation in thin Ag films

    International Nuclear Information System (INIS)

    Ellis, Elizabeth A.; Chmielus, Markus; Lin, Ming-Tzer; Joress, Howie; Visser, Kyle; Woll, Arthur; Vinci, Richard P.; Brown, Walter L.; Baker, Shefford P.

    2016-01-01

    The well-known thickness-dependent (111)-to-(100) texture transformation in thin FCC films is usually attributed to a competition between interface and strain energies. In this model, thin films retain their (111) texture due to the lower energy of the (111) interface, while thick films transform to (100) due to the lower stiffness and thus strain energy of a (100) film. However, recent work has called this model into question, suggesting that neither the stress nor the interface energy play a dominant role in texture transformation. We investigated the driving forces involved in this transformation by using a bulge test apparatus to induce different stresses in thin Ag films under identical annealing conditions. In situ synchrotron XRD measurements show the change in texture during annealing, and reveal that applied stresses have no effect on the transformation. Stress analysis shows that differences in driving forces for texture transformation due to applied bulge pressure were significant (≈200 kJ/m 3 ), suggesting that a different, much larger driving force must be responsible. Reduction in defect energy has been proposed as an alternative. However, vacancy and dislocation densities must be exceptionally high to significantly exceed the strain energy and do not provide obvious orientation selection mechanisms. Nanotwins in reported densities are shown to provide greater driving force (≈1000 kJ/m 3 ) and may account for orientation selection. The large difference between the calculated strain and defect energies and the driving force for grain growth (21,100 kJ/m 3 ) casts doubt on the applicability of a simple thermodynamic model of texture transformation.

  5. Nanostructural Evolution of Hard Turning Layers in Carburized Steel

    Science.gov (United States)

    Bedekar, Vikram

    The mechanisms of failure for components subjected to contact fatigue are sensitive to the structure and properties of the material surface. Although, the bulk material properties are determined by the steel making, forming and the heat treatment; the near surface material properties are altered during final material removal processes such as hard turning or grinding. Therefore, the ability to optimize, modulate and predict the near surface properties during final metal removal operations would be extremely useful in the enhancement of service life of a component. Hard machining is known to induce severely deformed layers causing dramatic microstructural transformations. These transformations occur via grain refinement or thermal phenomena depending upon cutting conditions. The aim of this work is to engineer the near surface nanoscale structure and properties during hard turning by altering strain, strain rate, temperature and incoming microstructure. The near surface material transformations due to hard turning were studied on carburized SAE 8620 bearing steel. Variations in parent material microstructures were introduced by altering the retained austenite content. The strain, strain rate and temperature achieved during final metal cutting were altered by varying insert geometry, insert wear and cutting speed. The subsurface evolution was quantified by a series of advanced characterization techniques such as transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD), X-ray stress evaluation and nanoindentation which were coupled with numerical modeling. Results showed that the grain size of the nanocrystalline near surface microstructure can be effectively controlled by altering the insert geometry, insert wear, cutting speed and the incoming microstructure. It was also evident that the near surface retained austenite decreased at lower cutting speed indicating transformation due to plastic deformation, while it increased at higher cutting

  6. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction.

    Science.gov (United States)

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design.

  7. Dynamic crystallization of a eucrite basalt. [achondrite textural features produced by superheating and differing cooling rates

    Science.gov (United States)

    Walker, D.; Powell, M. A.; Hays, J. F.; Lofgren, G. E.

    1978-01-01

    The textural features produced in Stannern, a non-porpyritic representative of the eucrite basaltic achondrite class of meteorite, at differing cooling rates and various degrees of initial superheating were studied. Textures produced from mildly superheated melts were found to be fasciculate rather than porphyritic as the result of the cosaturated bulk chemistry of Stannern. The qualitative type of texture apparently depends mainly on the degree of initial superheating, whereas cooling rate exerts a strong influence on the coarseness of texture. Increasing the degree of superheating produces textures from intergranular/subophitic to fasciculate/porphyritic. With initial superheating to 1200 deg C the transition to quasi-porphyritic is controlled by cooling rate, but the development of phenocrysts is merely an overprint on the fasciculate background texture of the groundmass. The suppression of fasciculate texture is completed by a decrease of the degree of initial superheating below the plagioclast entry and suppression of quasi-porphyritic texture is completed by decrease of the degree of initial superheating below pyroxene entry; these qualitative changes do not seem to be produced by changes of cooling rate. A grain size/cooling rate dependence has been used to deduce the cooling rate of fasciculate-textured Stannern clasts (10.1 to 100 deg C/hr).

  8. Effect of Quenching Rate on Microstructure and Hardness of Al-Zn-Mg-Cu-Cr Alloy Extruded Bar

    Directory of Open Access Journals (Sweden)

    HAN Su-qi

    2017-04-01

    Full Text Available The effect of quenching rate on microstructure and hardness of Al-Zn-Mg-Cu-Cr alloy extruded bar was studied by hardness test, scanning electron microscopy and transmission electron microscopy. The results show that at quenching rate below 100℃/s, during the cooling process, the hardness begins to fall significantly; and it decreases by 43% at the quenching rate of 2℃/s. At quenching rate below 100℃/s, the number and size of equilibrium η phase heterogeneously nucleated at(subgrain boundaries and on dispersoids inside grains increase obviously with the decrease of quenching rate, leading to greatly reduced age-hardening response. At the same quenching rate, the equilibrium η phase inside grains is larger than that at grain boundaries. In the range of the studied quenching rates, a quantitative relationship between hardness and equilibrium η phase area fraction has been established.

  9. Hardness and microstructure homogeneity of pure copper processed by accumulative back extrusion

    International Nuclear Information System (INIS)

    Bazaz, B.; Zarei-Hanzaki, A.; Fatemi-Varzaneh, S.M.

    2013-01-01

    The present work deals with the microstructure evolution of a pure copper processed by a new severe plastic deformation method. A set of pure copper (99.99%) work-pieces with coarse-grained microstructures was processed by accumulative back extrusion (ABE) method at room temperature. The optical and scanning electron microscopy (SEM) and hardness measurements were utilized to study the microstructural evolution and hardness homogeneity. The results indicated that ABE is a capable process to provide a homogenous grain refined microstructure in pure copper. The observed grain refinement was discussed relying on the occurrence of dynamic restoration processes. The analysis of microstructure and hardness showed outstanding homogeneity improvement throughout the work-pieces as the consecutive ABE passes were applied. The homogeneity improvement was attributed to the propagation of the shear bands and also the heavily deformed regions. A reversing route was also applied in the ABE processing to investigate its effect on the development of microstructural homogeneity. Comparing to the conventional route, the application of the reversing route was found to yield better homogeneity after less passes of the process.

  10. Dry land Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Bio solids Applications

    International Nuclear Information System (INIS)

    Koenig, R.T.; Cogger, C.G.; Bary, A.I.

    2011-01-01

    Applications of bio solids were compared to inorganic nitrogen (N) fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L.) cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Bio solids produced 0 to 1400 kg ha -1 (0 to 47%) higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the bio solids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dry land production systems. Grain protein content with bio solids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with bio solids. Results indicate the potential to improve dry land winter wheat yields with bio solids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when bio solids are applied immediately before planting.

  11. Texture of low-fat Iranian White cheese as influenced by gum tragacanth as a fat replacer.

    Science.gov (United States)

    Rahimi, J; Khosrowshahi, A; Madadlou, A; Aziznia, S

    2007-09-01

    The effect of different concentrations of gum tragacanth on the textural characteristics of low-fat Iranian White cheese was studied during ripening. A batch of full-fat and 5 batches of low-fat Iranian White cheeses with different gum tragacanth concentrations (without gum or with 0.25, 0.5, 0.75, or 1 g of gum/kg of milk) were produced to study the effects of fat content reduction and gum concentration on the textural and functional properties of the product during ripening. Cheese samples were analyzed with respect to chemical, color, and sensory characteristics, rheological parameters (uniaxial compression and small-amplitude oscillatory shear), and microstructure. Reducing the fat content had an adverse effect on cheese yield, sensory characteristics, and the texture of Iranian White cheese, and it increased the instrumental hardness parameters (i.e., fracture stress, elastic modulus, storage modulus, and complex modulus). However, increasing the gum tragacanth concentration reduced the values of instrumental hardness parameters and increased the whiteness of cheese. Although when the gum concentration was increased, the low-fat cheese somewhat resembled its full-fat counterpart, the interaction of the gum concentration with ripening time caused visible undesirable effects on cheese characteristics by the sixth week of ripening. Cheeses with a high gum tragacanth concentration became very soft and their solid texture declined somewhat.

  12. Teasing apart the contributions of hard dietary items on 3D dental microtextures in primates.

    Science.gov (United States)

    Calandra, Ivan; Schulz, Ellen; Pinnow, Mona; Krohn, Susanne; Kaiser, Thomas M

    2012-07-01

    3D dental microtexture analysis is a powerful tool for reconstructing the diets of extinct primates. This method is based on the comparison of fossils with extant species of known diet. The diets of primates are highly diversified and include fruits, seeds, grass, tree leaves, bark, roots, tubers, and animal resources. Fruits remain the main component in the diets of most primates. We tested whether the proportion of fruit consumed is correlated with dental microtexture. Two methods of microtexture analysis, the scale-sensitive fractal analysis (SSFA) and the Dental Areal Surface Texture Analysis (DASTA; after ISO/FDIS 25178-2), were applied to specimens of eight primate species (Alouatta seniculus, Gorilla gorilla, Lophocebus albigena, Macaca fascicularis, Pan troglodytes, Papio cynocephalus, Pongo abelii, Theropithecus gelada). These species largely differ in the mean annual proportion of fruit (from 0 to 90%) in their diet, as well as in their consumption of other hard items (seeds, bark, and insect cuticles) and of abrasive plants. We find the complexity and heterogeneity of textures (SSFA) to correlate with the proportion of fruits consumed. Textural fill volume (SSFA) indicates the proportion of both fruits and other hard items processed. Furthermore, anisotropy (SSFA) relates to the consumption of abrasive plants like grass and other monocots. ISO parameters valley height, root mean square height, material volume, density of peaks, and closed hill and dale areas (DASTA) describe the functional interaction between food items and enamel facets during mastication. The shallow, plastic deformation of enamel surfaces induced by small hard particles, such as phytoliths or dust, results in flat microtexture relief, whereas the brittle, deep fracture caused by large hard items such as hard seeds creates larger relief. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hug, E., E-mail: eric.hug@ensicaen.fr [Laboratoire de Cristallographie et Sciences des Matériaux, Normandie Université, CNRS UMR 6508, 6 Bd Maréchal Juin, 14050 Caen (France); Prasath Babu, R. [School of Materials, University of Manchester, M13 9PL (United Kingdom); Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, Normandie Université, Saint-Etienne du Rouvray Cedex (France); Monnet, I. [Centre de recherches sur les Ions, les Matériaux et la Photonique CEA-CNRS, Normandie Université, 6 Bd Maréchal Juin, 14050 Caen (France); Etienne, A. [Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, Normandie Université, Saint-Etienne du Rouvray Cedex (France); Moisy, F. [Centre de recherches sur les Ions, les Matériaux et la Photonique CEA-CNRS, Normandie Université, 6 Bd Maréchal Juin, 14050 Caen (France); Pralong, V. [Laboratoire de Cristallographie et Sciences des Matériaux, Normandie Université, CNRS UMR 6508, 6 Bd Maréchal Juin, 14050 Caen (France); Enikeev, N. [Institute of Physics of Advanced Materials, Ufa (Russian Federation); Saint Petersburg State University, Laboratory of the Mechanics of Bulk Nanostructured Materials, 198504 St. Petersburg (Russian Federation); Abramova, M. [Institute of Physics of Advanced Materials, Ufa (Russian Federation); and others

    2017-01-15

    Highlights: • Impacts of nanostructuration and irradiation on the properties of 316 stainless steels are reported. • Irradiation of nanostructured samples implies chromium depletion as than depicted in coarse grain specimens. • Hardness of nanocrystalline steels is only weakly affected by irradiation. • Corrosion resistance of the nanostructured and irradiated samples is less affected by the chromium depletion. - Abstract: The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV {sup 56}Fe{sup 5+} ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.

  14. Quality of Bread Supplemented with Antrodia
salmonea-Fermented Grains

    Science.gov (United States)

    Chien, Rao-Chi; Ulziijargal, Enkhjargal

    2016-01-01

    Summary Fermented grains of buckwheat, oat, embryo rice and wheat, which were prepared by solid-state fermentation with Antrodia salmonea, and the mycelium was used to substitute 7% of wheat flour to make bread. No difference in proximate composition, texture profile and contents of non-volatile taste components was observed among bread samples. White bread and bread supplemented with mycelium and fermented grains looked different. Bread supplemented with fermented grains had similar thermal properties, which differed from those of white bread and bread supplemented with mycelium. Bread supplemented with fermented grains contained substantial mass fractions (on dry mass basis) of adenosine (0.92–1.96 µg/g), ergosterol (24.53–30.12 µg/g), ergothioneine (2.16–3.18 µg/g) and γ-aminobutyric acid (2.20–2.45 µg/g). In addition, bread supplemented with mycelium contained lovastatin (0.43 µg/g). White bread and bread supplemented with fermented grains had similar sensory results. Overall, fermented grains could be incorporated into bread to provide beneficial effects. PMID:27904408

  15. Quality of Bread Supplemented with Antrodia salmonea-Fermented Grains

    Directory of Open Access Journals (Sweden)

    Rao-Chi Chien

    2016-01-01

    Full Text Available Fermented grains of buckwheat, oat, embryo rice and wheat, which were prepared by solid-state fermentation with Antrodia salmonea, and the mycelium was used to substitute 7 % of wheat flour to make bread. No difference in proximate composition, texture profile and contents of non-volatile taste components was observed among bread samples. White bread and bread supplemented with mycelium and fermented grains looked different. Bread supplemented with fermented grains had similar thermal properties, which differed from those of white bread and bread supplemented with mycelium. Bread supplemented with fermented grains contained substantial mass fractions (on dry mass basis of adenosine (0.92–1.96 μg/g, ergosterol (24.53–30.12 μg/g, ergothioneine (2.16–3.18 μg/g and γ-aminobutyric acid (2.20–2.45 μg/g. In addition, bread supplemented with mycelium contained lovastatin (0.43 μg/g. White bread and bread supplemented with fermented grains had similar sensory results. Overall, fermented grains could be incorporated into bread to provide beneficial effects.

  16. Cooking Methods for a Soft Diet Using Chicken Based on Food Texture Analysis.

    Science.gov (United States)

    Watanabe, Emi; Maeno, Masami; Kayashita, Jun; Miyamoto, Ken-Ichi; Kogirima, Miho

    2017-01-01

    Undernutrition caused by difficulties in masticating is of growing concern among the elderly. Soft diets are often served at nursing homes; however, the styles differ with nursing homes. Improperly modified food texture and consistency may lead to further loss of nutritive value. Therefore, we developed a method to produce a soft diet using chicken. The texture-modified chicken was prepared by boiling a mixture of minced chicken and additive foodstuff that softened the meat. The best food additive was determined through testing cooking process, size after modification and texture. The optimum proportions of each component in the mixture were determined measuring food texture using a creep meter. Teriyaki chicken was cooked using the texture-modified chicken, and provided to a nursing home. The amount of food intake by elderly residents was subsequently surveyed. This study involved 22 residents (1 man and 21 women; mean age 91.4±5.3 y). Consequently, yakifu, which was made from wheat gluten, was the most suitable additive foodstuff. The hardness of the texture-modified chicken, with proportions of minced chicken, yakifu, and water being 50%, 10%, and 40% respectively, was under 40,000 N/m 2 . The intake amount of the texture-modified chicken of subjects whose intake amount of conventional chicken using chicken thigh was not 100% was significantly higher. These findings suggest that properly modified food textures could contribute to improve the quality of meals by preventing undernutrition among the elderly with mastication difficulties.

  17. Columns formed by multiple twinning in nickel layers—An approach of grain boundary engineering by electrodeposition

    DEFF Research Database (Denmark)

    Alimadadi, Hossein; da Silva Fanta, Alice Bastos; Somers, Marcel A. J.

    2013-01-01

    grain boundaries. A peculiar arrangement of Σ3 boundaries forming five-fold junctions is observed. The resulting microstructure meets the requirements for grain boundary engineering. Twinning induced effects on the crystallographic orientation of grains result in one major texture component being a ⟨210......⟩ fiber axis and additional minor orientations originating from first and second generation twins of ⟨210⟩, i.e., ⟨542⟩ and ⟨20 2 1⟩....

  18. Effects of structural and textural grain characteristics on leaching of sulphide minerals from a polymetallic concentrate by sodium nitrate and sulphuric acid solution

    Directory of Open Access Journals (Sweden)

    Sokić Miroslav D.

    2017-01-01

    Full Text Available In this paper, the influence of structural and textural characteristics of sulfide minerals on their leaching from a polymetallic concentrate by sulfuric acid and sodium nitrate solution is presented. The starting material was Pb–Zn–Cu sulphide polymetallic concentrate enriched during the flotation of a polymetallic ore in the "Rudnik" flotation plant (Rudnik – Serbia. Leaching experiments were carried out in a closed glass reactor, which provides stable hermetic conditions and allows heating at constant temperature. Chemical, XRD, qualitative and quantitative microscopic and SEM/EDX analyses were used to characterizes samples of the polymetallic concentrate and leach residue. It was determined that chalcopyrite, sphalerite, galena, pyrrhotite and quartz were present in the polymetallic concentrate. The content of sulphide minerals was 69.5%, of which 60.9% occurred as liberated grains: 88.3% of chalcopyrite, 59.3% of sphalerite, 25.1% of galena and 51.6% of pirrhotite. The rest of chalcopyrite, sphalerite, galena and pirrhotite grains were in the forms of inclusions, impregnations, and simple and complex intergrowths. During the leaching process by sodium nitrate and sulphuric acid solution, it was shown previously that the leaching rate of sulphide minerals decreased with time while a part of the sulphide minerals remained in the leach residue. After leaching at 80°C for 120 min, the yields were 69.8, 82.7 and 67.1% for Cu, Zn and Fe, respectively. Lead, in the form of insoluble anglesite, remained in the leach residue. In addition to the anglesite, unleached sulfide minerals and quartz, elemental sulfur was found in the solid residue. The content of sulphide minerals was 35% of which 33.7% minerals occur independently. In specific, 54.7% of chalcopyrite, 31.9% of sphalerite, 8.2% of galena and 37.6% of pyrrhotite appear as separate grains with highly corroded surfaces. Therefore, the structural assembly of sulphide grains in the

  19. Effect of addition of tantalum and zirconium on the mechanical behavior of aluminum grain refined by Ti+ B

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2003-01-01

    Aluminum and its alloys normally solidify in a columnar structure with coarse grains. Therefore, they are normally grain refined by adding either titanium or titanium + boron to their melts to obtain finer grain size and better surface quality. Other elements may be added beside the grain refiners to enhance their grain refinement efficiency and improve the mechanical behavior. Some elements were found to improve the grain refining efficiency of the master alloys e.g., vanadium, molybdenum, while others were found to deteriorate the grain refining efficiency e.g., zirconium and tantalum. The literature reveals that in general, only one element is added in the presence of the binary AI-Ti or the ternary AI-Ti-B grain refining master alloy. It is, therefore, anticipated that the addition of Ta and Zr may have different effect when added together from that if each element is added alone. This formed the main objective of this paper. In this paper, the effect of addition of either Zr, Ta or both of them together, with a percentage of 0.1 %wt each, on the grain size, hardness and mechanical behavior of AI and AI grain refined by Ti+B is investigated. It was found that adding Zr or Ta to commercially pure aluminum resulted in grain refinement of its structure and resulted in slight improvement of its hardness. However, a pronounced improvement was obtained in its mechanical strength and formability. On the other hand, addition of either Zr or Ta to Al grain refined by Ti+B resulted in poisoning effect i.e. reducing the grain refining efficiency of the AI- Ti-B master alloy. Practically, addition of either Zr or Ta has no effect on its hardness but resulted in a pronounced improvement of its mechanical strength. Finally, the addition of Zr + Ta to commercially pure aluminum or to aluminum grain refined by Ti+B resulted in reduction of grain size, little improvement in hardness and pronounced improvement in mechanical strength than when each element was added alone

  20. Processing, microstructure, and mechanical properties of large-grained zirconium diboride ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Neuman, Eric W.; Hilmas, Gregory E., E-mail: ghilmas@mst.edu; Fahrenholtz, William G.

    2016-07-18

    Zirconium diboride ceramics produced using commercial ZrB{sub 2} powders, and milled with zirconium diboride grinding media, were fabricated by hot-pressing at temperatures of 2100–2200 °C with hold times of 30–120 min. This ZrB{sub 2} exhibits no additional impurities typically introduced by milling with grinding media of differing composition. Microstructure analysis revealed grain sizes ranging from ~25 to ~50 µm along with ~3 vol% porosity. Flexure strength ranged from 335 to 400 MPa, elastic modulus from 490 to 510 GPa, fracture toughness from 2.7 to 3.2 MPa m{sup ½}, and hardness from 13.0 to 14.4 GPa. Strength limiting flaws were identified as surface grain pullout induced by machining. Elastic modulus and hardness were found to increase with decreasing porosity. Compared to the fine grained ceramics typically reported, large grain zirconium diboride ceramics exhibit higher than expected room temperature strengths.

  1. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels

    Science.gov (United States)

    Hug, E.; Prasath Babu, R.; Monnet, I.; Etienne, A.; Moisy, F.; Pralong, V.; Enikeev, N.; Abramova, M.; Sauvage, X.; Radiguet, B.

    2017-01-01

    The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV 56Fe5+ ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.

  2. Continuous epitaxial growth of extremely strong Cu6Sn5 textures at liquid-Sn/(111)Cu interface under temperature gradient

    Science.gov (United States)

    Zhong, Y.; Zhao, N.; Liu, C. Y.; Dong, W.; Qiao, Y. Y.; Wang, Y. P.; Ma, H. T.

    2017-11-01

    As the diameter of solder interconnects in three-dimensional integrated circuits (3D ICs) downsizes to several microns, how to achieve a uniform microstructure with thousands of interconnects on stacking chips becomes a critical issue in 3D IC manufacturing. We report a promising way for fabricating fully intermetallic interconnects with a regular grain morphology and a strong texture feature by soldering single crystal (111) Cu/Sn/polycrystalline Cu interconnects under the temperature gradient. Continuous epitaxial growth of η-Cu6Sn5 at cold end liquid-Sn/(111)Cu interfaces has been demonstrated. The resultant η-Cu6Sn5 grains show faceted prism textures with an intersecting angle of 60° and highly preferred orientation with their ⟨ 11 2 ¯ 0 ⟩ directions nearly paralleling to the direction of the temperature gradient. These desirable textures are maintained even after soldering for 120 min. The results pave the way for controlling the morphology and orientation of interfacial intermetallics in 3D packaging technologies.

  3. Physiochemical, texture properties, and the microstructure of set yogurt using whey protein-sodium tripolyphosphate aggregates as thickening agents.

    Science.gov (United States)

    Cheng, Jianjun; Xie, Siyu; Yin, Yuan; Feng, Xianmin; Wang, Shuai; Guo, Mingruo; Ni, Chunlei

    2017-07-01

    Polymerized whey protein-sodium tripolyphosphate can be induced to gel in an acidic environment provided during fermentation. The variety of thickening agent has an influence on texture that is an essential aspect of yogurt quality affecting consumer preference. Similar to polysaccharide stabilizers, the cold gelation properties of whey proteins can improve the body texture of yogurt products. Polymerized whey protein-sodium tripolyphosphate could be a favorable and interesting thickening agent for making set yogurt. The effects of whey protein isolate (WPI), heat-treated whey protein-sodium tripolyphosphate (WPI-STPP), heat-treated WPI and pectin on the storage properties and microstructure of yogurt were investigated. All samples were analyzed for syneresis, pH, titratable acidity, viscosity, texture profile and microstructure during storage. The results showed that incorporating heat-treated WPI-STPP had a significant impact on syneresis (32.22 ± 0.60), viscosity (10 956.67 ± 962.1) and hardness (209.24 ± 12.48) (p Yogurt fermented with modified WPI-STPP had higher levels of protein and better hardness compared with yogurt using pectin. The microstructure was observed to be a uniform and denser, complicated network. Heat-treated WPI-STPP may be useful for improving yogurt texture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. The pasting and gel textural properties of corn starch in glucose, fructose and maltose syrup.

    Science.gov (United States)

    Sun, Qingjie; Xing, Yan; Qiu, Chao; Xiong, Liu

    2014-01-01

    The pasting and gel textural properties of corn starch in syrup at different concentrations were investigated by Rapid Visco Analyzer (RVA) and Texture profile analysis (TPA) tests. The results showed that the pasting temperatures of corn starch greatly increased, especially at higher sugar concentration. Increasing concentration of syrup caused an increase in peak, trough and final viscosity of corn starch. Peak viscosity and the disintegration rate of starch increased in the following order: fructose syrup> maltose syrup> glucose syrup. Increasing syrup concentration to 13%, 25% and 50% resulted in a lower retrogradation rate than the control. When the maltose syrup concentration increased to 50%, the retrogradation rate decreased to 14.30% from 33.38%. The highest hardness was observed when the syrup concentration was 25%. There was a particular low hardness when the concentration of syrup was 50%. The springiness of starch gels in syrup was similar at different concentrations.

  5. GEO-MIX-SELF calculations of the elastic properties of a textured graphite sample at different hydrostatic pressures

    International Nuclear Information System (INIS)

    Matthies, Siegfried

    2012-01-01

    The recently developed GEO-MIX-SELF approximation (GMS) is applied to interpret the pressure dependence of the longitudinal ultrasonic wave velocities in a polycrystalline graphite sample that has already been investigated in a wide range of experimental contexts. Graphite single crystals have extremely anisotropic elastic properties, making this sample a challenging test to demonstrate the potential of the GMS method. GMS combines elements of well known self-consistent algorithms and of the geometric mean approximation. It is able to consider mixtures of different polycrystalline phases, each with its own nonspherical grain shape and preferred orientation (texture). Pores and 'cracks', typical for bulk graphite, are modeled as phases with 'empty' grains. The pressure dependence (up to 150 MPa) of the experimental wave velocities can be well explained using the known texture of the sample by fitting the shape parameters and volume fractions of the graphite grains, cracks and spherical pores. The pressure dependence of these parameters describes a reasonable scenario for the closing of the cracks and pores with increasing pressure. (orig.)

  6. A Framework for Establishing Standard Reference Scale of Texture by Multivariate Statistical Analysis Based on Instrumental Measurement and Sensory Evaluation.

    Science.gov (United States)

    Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye

    2016-01-13

    A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.

  7. 17th International Conference on Textures of Materials (ICOTOM 17)

    International Nuclear Information System (INIS)

    Skrotzki, Werner; Oertel, Carl-Georg

    2015-01-01

    The 17th International Conference on Textures of Materials (ICOTOM 17) took place in Dresden, Germany, August 24-29, 2014. It belongs to the 'triennial' series of ICOTOM meetings with a long tradition, starting in 1969 - Clausthal, 1971 - Cracow, 1973 - Pont-à-Mousson, 1975 - Cambridge, 1978 - Aachen, 1981 - Tokyo, 1984 - Noordwijkerhout, 1987 - Santa Fe, 1990 - Avignon, 1993 - Clausthal, 1996 - Xian, 1999 - Montreal, 2002 - Seoul, 2005 - Leuven, 2008 - Pittsburgh, 2011 - Mumbai, 2014 - Dresden. ICOTOM 17 was hosted by the Dresden University of Technology, Institute of Structural Physics. Following the tradition of the ICOTOM conferences, the main focus of ICOTOM-17 was to promote and strengthen the fundamental understanding of the basic processes that govern the formation of texture and its relation to the properties of polycrystalline materials. Nonetheless, it was the aim to forge links between basic research on model materials and applied research on engineering materials of technical importance. Thus, ICOTOM 17 provided a forum for the presentation and discussion of recent progress in research of texture and related anisotropy of mechanical and functional properties of all kinds of polycrystalline materials including natural materials like rocks. Particular attention was paid to recent advances in texture measurement and analysis as well as modeling of texture development for all kinds of processes like solidification, plastic deformation, recrystallization and grain growth, phase transformations, thin film deposition, etc. Hence, ICOTOM 17 was of great interest to materials scientists, engineers from many different areas and geoscientists. The topics covered by ICOTOM 17 were: 1. Mathematical, numerical and statistical methods of texture analysis 2. Deformation textures 3. Crystallization, recrystallization and growth textures 4. Transformation textures 5. Textures in functional materials 6. Textures in advanced materials 7. Textures in rocks 8

  8. Micro-hardness of non-irradiated uranium dioxide

    International Nuclear Information System (INIS)

    Kim, Sung-Sik; Takagi, Osamu; Obata, Naomi; Kirihara, Tomoo.

    1983-01-01

    In order to obtain the optimum conditions for micro-hardness measurements of sintered UO 2 , two kinds of hardness tests (Vickers and Knoop) were examined with non-irradiated UO 2 of 2.5 and 5 μm in grain size. The hardness values were obtained as a function of the applied load in the load range of 25 -- 1,000 g. In the Vickers test, cracks were generated around the periphery of an indentation even at lower load of 50 g, which means the Vickers hardness is not suitable for UO 2 specimens. In the Knoop test, three stages of load dependence were observed for sintered pellet as well as for a single crystal by Bates. Load dependence of Knoop hardness and crack formation were discussed. In the range of applied load around 70 -- 100 g there were plateau region where hardness values were nearly unchanged and did not contain any cracks in the indentation. The plateau region represents a hardness of a specimen. From a comparison between the hardness values of 2.5 μm and those of 5 μm UO 2 , it was approved that the degree of sintering controls the hardness in the plateau region. (author)

  9. Impact of grain microstructure on the heterogeneity of precipitation strengthening in an Al–Li–Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dorin, Thomas, E-mail: thomas.dorin@deakin.edu.au [Université Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); Constellium Technology Center, CS 10027, 38341 Voreppe Cedex (France); Deschamps, Alexis; De Geuser, Frédéric [Université Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Robaut, Florence [Consortium des Moyens Technologiques Communs, Grenoble-INP, F-38502 St. Martin d’Hères (France)

    2015-03-11

    The effect of grain microstructure on the age-hardening behavior is investigated on recrystallized and un-recrystallized Al–Cu–Li alloys by combining electron-backscatter-diffraction and micro-hardness mapping. The spatial heterogeneity of micro-hardness is found to be strongly dependent on the grain microstructure. Controlled experiments are carried out to change the pre-strain before artificial ageing. These experiments lead to an evaluation of the range of local strain induced by pre-stretching as a function of the grain microstructure and results in heterogeneous formation of the hardening T{sub 1} precipitates.

  10. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel

    International Nuclear Information System (INIS)

    Liu, Hai-Tao; Li, Hao-Ze; Li, Hua-Long; Gao, Fei; Liu, Guo-Huai; Luo, Zhong-Han; Zhang, Feng-Quan; Chen, Sheng-Lin; Cao, Guang-Ming; Liu, Zhen-Yu; Wang, Guo-Dong

    2015-01-01

    Fe-6.5 wt% Si non-oriented electrical steel sheets with a thickness of 0.50 mm were produced by using a new processing route: strip casting followed by hot rolling, intermediate temperature (150–850 °C) rolling and final annealing. The present study focused on exploring the effects of rolling temperature varying from 150 to 850 °C on the microstructure and texture evolution, the formability and final magnetic properties. The microstructure and texture evolution at the various processing steps were investigated in detail by using OM, XRD, EBSD and TEM. It was found that the formability during rolling, the microstructure and texture before and after annealing and final magnetic properties highly depended on rolling temperature. The formability during rolling was gradually improved with increasing rolling temperature due to the slipping of dislocation. In particular, the rolling temperature dominated the formation of in-grain shear bands in the rolled microstructure, which played an important role in the development of final recrystallization microstructure and texture. In the case of lower temperature (150–450 °C) rolling, an inhomogeneous microstructure with a large amount of in-grain shear bands was formed in the rolled sheets, which finally resulted in a fine and inhomogeneous annealing microstructure dominated by mild λ-fiber texture composed of cube and {001}〈210〉 components and α*-fiber texture concentrated on {115}〈5–10 1〉 component. By contrast, in the case of higher temperature (650–850 °C) rolling, a relatively homogeneous microstructure without in-grain shear bands was formed instead in the rolled sheets, which finally led to a coarse and relatively homogeneous annealing microstructure characterized by strong α-fiber and γ-fiber texture. Accordingly, on the whole, both the magnetic induction (B 8 and B 50 ) and iron loss (P 15/50 and P 10/400 ) decreased with raising rolling temperature. - Highlights: • Fe−6.5 wt% Si sheet was

  11. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Li, Hao-Ze [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Li, Hua-Long [Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Gao, Fei; Liu, Guo-Huai [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Luo, Zhong-Han; Zhang, Feng-Quan; Chen, Sheng-Lin [National Engineering Research Center for Silicon Steel, Wuhan Iron & Steel (Group) Corp, Wuhan 430083 (China); Cao, Guang-Ming; Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China)

    2015-10-01

    Fe-6.5 wt% Si non-oriented electrical steel sheets with a thickness of 0.50 mm were produced by using a new processing route: strip casting followed by hot rolling, intermediate temperature (150–850 °C) rolling and final annealing. The present study focused on exploring the effects of rolling temperature varying from 150 to 850 °C on the microstructure and texture evolution, the formability and final magnetic properties. The microstructure and texture evolution at the various processing steps were investigated in detail by using OM, XRD, EBSD and TEM. It was found that the formability during rolling, the microstructure and texture before and after annealing and final magnetic properties highly depended on rolling temperature. The formability during rolling was gradually improved with increasing rolling temperature due to the slipping of dislocation. In particular, the rolling temperature dominated the formation of in-grain shear bands in the rolled microstructure, which played an important role in the development of final recrystallization microstructure and texture. In the case of lower temperature (150–450 °C) rolling, an inhomogeneous microstructure with a large amount of in-grain shear bands was formed in the rolled sheets, which finally resulted in a fine and inhomogeneous annealing microstructure dominated by mild λ-fiber texture composed of cube and {001}〈210〉 components and α*-fiber texture concentrated on {115}〈5–10 1〉 component. By contrast, in the case of higher temperature (650–850 °C) rolling, a relatively homogeneous microstructure without in-grain shear bands was formed instead in the rolled sheets, which finally led to a coarse and relatively homogeneous annealing microstructure characterized by strong α-fiber and γ-fiber texture. Accordingly, on the whole, both the magnetic induction (B{sub 8} and B{sub 50}) and iron loss (P{sub 15/50} and P{sub 10/400}) decreased with raising rolling temperature. - Highlights: • Fe−6

  12. Textural properties of chicken breast treated by different means

    Directory of Open Access Journals (Sweden)

    Jozef Čurlej

    2013-12-01

    Full Text Available The aim of the study was to compare textural atributes of cooked chicken breast samples subjected to different storage or preparation conditions (raw meat after cooking, raw meat after freezing/subsequent thawing, after storage under modified – controlled conditions using instrumental analysis. For this purpose, samples were subjected to texture testing by the use of Warner-Bratzler probe, to find changes in muscle hardness by determination of firmness and work of shear. As expected, various values of mentioned atributes were obtained for tested samples treated by three different ways. For statistical evaluation of the results, macro function of Exponent software and paired T test were used, statistically significant differences were taken at p <0.05. In conclussion, different forces were needed for cutting of tested samples, subjected to selected storage conditions, prior to cooking.

  13. Optimization of the texture of fat-based spread containing hull-less pumpkin (Cucurbita pepo L. seed press-cake

    Directory of Open Access Journals (Sweden)

    Radočaj Olga F.

    2011-01-01

    Full Text Available Hull-less pumpkin seed press-cake, a by-product of the pumpkin oil pressing process, was used to formulate a fat-based spread which resembled commercial peanut butter; both in the appearance and in texture. In this study, response surface methodology was used to investigate the effects of a commercial stabilizer and cold-pressed hemp oil added to the pumpkin seed press-cake, on the texture of the formulations using instrumental texture profile analysis. The responses were significantly affected by both variables tested in a central composite, two factorial experimental design on five levels. Strong and firm spreads, without visible oil separation were formed and had an appearance and texture comparable to commercial peanut butter. In terms of the primary food texture attributes such as hardness, cohesiveness and adhesiveness, determined by the instrumental texture analysis, the optimum combination of variables with 1-1.2% of added stabilizer and 20- 40% of added hemp oil (in the oil phase produced desirable spreads.

  14. Effect of glucose treatment on texture and colour of pidan white during storage.

    Science.gov (United States)

    Ganesan, Palanivel; Benjakul, Soottawat

    2014-04-01

    Changes in texture and colour of pidan white as influenced by glucose treatment at levels of 0, 2 and 5% were determined after pickling (week 3) and during the storage up to 12 weeks. Hardness and cohesiveness of pidan white without glucose treatment were more retained but showed a decrease in adhesiveness as storage time increased up to week 12 (P white treated with glucose at both levels as the storage time increased (P colour, mainly via the Maillard reaction with free amino groups of pidan white at alkaline pH, but it could impair the textural property. Pidan white without glucose treatment showed the higher color and appearance likeness score, but lower texture and odour likeness score than commercial counterpart (P < 0.05). Therefore, glucose was not a necessary aid for pidan production.

  15. Assessing Asphalt and Concrete Pavement Surface Texture in the Field

    Directory of Open Access Journals (Sweden)

    Saad I. Sarsam

    2016-06-01

    Full Text Available The incorporation of safety characteristics into the traditional pavement structural design or in the functional evaluation of pavement condition has not been established yet. The design has focused on the structural capacity of the roadway so that the pavement can withstand specific level of repetitive loading over the design life. On the other hand, the surface texture condition was neither included in the AASHTO design procedure nor in the present serviceability index measurements. The pavement surface course should provide adequate levels of friction and ride quality and maintain low levels of noise and roughness. Many transportation departments perform routine skid resistant testing, the type of equipment used for testing varies depending on the preference of each transportation department. It was felt that modeling of the surface texture condition using different methods of testing may assist in solving such problem. In this work, Macro texture and Micro texture of asphalt and cement concrete pavement surface have been investigated in the field using four different methods (The Sand Patch Method, Outflow Time Method, British Pendulum Tester and Photogrammetry Technique. Two different grain sizes of sand have been utilized in conducting the Sand Patch while the Micro texture was investigated using the British Pendulum tester method at wet pavement surface conditions. The test results of the four methods were correlated to the skid number. It was concluded that such modeling could provide instant data in the field for pavement condition which may help in pavement maintenance management.

  16. High-power piezoelectric characteristics of textured bismuth layer structured ferroelectric ceramics.

    Science.gov (United States)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Shiratsuyu, Kousuke; Sakabe, Yukio

    2007-12-01

    Abstract-The high-power piezoelectric characteristics in h001i oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi(2)Nb(2)O(9) (SBN), (Bi,La)(4)Ti(3)O(12) (BLT), and CaBi(4)Ti(4)O(15) (CBT), were studied by a constant voltage driving method. These textured ceramics were fabricated by a templated grain growth (TGG) method, and their Lotgering factors were 95%, 97%, and 99%, respectively. The vibration velocities of the longitudinal mode (33-mode) increased proportionally to an applied electric field up to 2.5 m/s in these textured BLSF ceramics, although, the vibration velocity of the 33-mode was saturated at more than 1.0 m/s in the Pb(Mn,Nb)O(3)-PZT ceramics. The resonant frequencies were constant up to the vibration velocity of 2.5 m/s in the SBN and CBT textured ceramics; however, the resonant frequency decreased with increasing over the vibration velocity of 1.5 m/s in the BLT textured ceramics. The dissipation power density of the BLT was almost the same as that of the Pb(Mn,Nb)O(3)-PZT ceramics. However, the dissipation power densities of the SBN and CBT were lower than those of the BLT and Pb(Mn,Nb)O(3)-PZT ceramics. The textured SBN and CBT ceramics are good candidates for high-power piezoelectric applications.

  17. Grain structure evolution in Inconel 718 during selective electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Helmer, H.; Bauereiß, A., E-mail: Andreas.Bauereiss@fau.de; Singer, R.F.; Körner, C.

    2016-06-21

    Selective electron beam melting (SEBM) is an additive manufacturing method where complex parts are built from metal powders in layers of typically 50 µm. An electron beam is used for heating (about 900 °C building temperature) and selective melting of the material. The grain structure evolution is a result of the complex thermal and hydrodynamic conditions in the melt pool. We show how different scanning strategies can be used to produce either a columnar grain structure with a high texture in building direction or an equiaxed fine grained structure. Numerical simulations of the selective melting process are applied to study the fundamental mechanisms responsible for differing grain structures. It is shown, that the direction of the thermal gradient during solidification can be altered by scanning strategies to acquire either epitaxial growth or stray grains. We show that it is possible to locally alter the grain structure of a part, thus allowing tailoring of the mechanical properties.

  18. Texture and anisotropy in the bismuth sodium titanate system

    Science.gov (United States)

    Fancher, Christoher M.

    Bi0.5Na0.5TiO3 has received interest as a potential replacement for lead containing ferroelectrics. However, the piezoelectric response of pure Bi0.5Na0.5TiO 3 does not compare to the strong piezoelectric response of lead based piezoelectrics. To increase the piezoelectric response, Bi0.5Na 0.5TiO3 has been alloyed with BaTiO3 and K 0.5Na0.5NbO3. Another route to enhance the response is to take advantage of the anisotropic properties by inducing a preferred crystallographic orientation. Both routes were used to investigate the effect a crystallographic texture has on the strain response of Bi0.5Na 0.5TiO3-based ceramics. A crystallographic texture was induced by templated grain growth of pure phase Bi0.5Na0.5TiO3 templates using the tape casting method to orient template particles relative to the tape cast normal. Sintered Bi0.5Na0.5TiO3-based materials developed a strong (00l)pc fiber texture relative to the tape cast normal, with no preferential alignment relative to the tape cast plane. Textured Bi0.5Na0.5TiO3-(5)BaTiO3 showed a piezoelectric response of 245 pC/N, a better than 50% enhancement from the 150 pC/N response of randomly oriented samples. The Bi0.5Na0.5TiO3-(5)BaTiO3-(2)K 0.5Na0.5NbO3 (x,y) system has been shown to undergo electric-field-induced phase transformation from a pseudocubic to polar phase. For (7,2) a strong 8.7 multiples of a random distribution (MRD) crystallographic texture increased the macroscopic strain response by 50%. Applying the electric field perpendicular to the fiber texture axis reduces the macroscopic strain response of textured (7,2) by 17%. The affect field direction has on the electric-field-induced phase transformations of textured (7,2) was investigated using in situ electric field dependent diffraction. In situ diffraction data showed the high strain response of textured (7,2) can be attributed to a reversible pseudocubic to tetragonal transformation. The field-induced tetragonal phase nucleates preferentially with a

  19. A cosmic microwave background feature consistent with a cosmic texture.

    Science.gov (United States)

    Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M

    2007-12-07

    The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.

  20. Textural properties of gelling system of low-methoxy pectins produced by demethoxylating reaction of pectin methyl esterase.

    Science.gov (United States)

    Kim, Y; Yoo, Y-H; Kim, K-O; Park, J-B; Yoo, S-H

    2008-06-01

    After deesterification of commercial pectins with a pectin methyl esterase (PME), their gelling properties were characterized using instrumental texture analysis. The final degree of esterification (DE) of the high- and low-methoxy pectins reached approximately 6% after the PME treatment, while deesterification of low-methoxy amidated pectin stopped at 18% DE. Furthermore, DE of high-methoxy pectin was tailored to be 40%, which is equivalent to the DE of commercial low-methoxy pectin. As a result, significant changes in molecular weight (Mw) distribution were observed in the PME-treated pectins. The texture profile analysis showed that PME modification drastically increased hardness, gumminess, and chewiness, while decreasing cohesiveness and adhesiveness of the pectin gels (P pectin gel with relatively high peak molecular weight (Mp, 3.5 x 10(5)) and low DE (6), which was produced from high-methoxy pectin, exhibited the greatest hardness, gumminess, chewiness, and resilience. The hardness of low-methoxy amidated pectin increased over 300% after PME deesterification, suggesting that the effects of amide substitution could be reinforced when DE is even lower. The partial least square regression analysis indicated that the Mw and DE of the pectin molecule are the most crucial factors for hardness, chewiness, gumminess, and resilience of gel matrix.

  1. Ion-beam bombardment induced texture in nickel substrates for coated high-Tc superconductors

    International Nuclear Information System (INIS)

    Wang, S S; Wu, K; Zhou, Y; Godfrey, A; Meng, J; Liu, M L; Liu, Q; Liu, W; Han, Z

    2003-01-01

    Biaxially textured metal substrates are often used for making YBa 2 Cu 3 O 7-x coated conductors with high critical current density. Generally, specific rolling and high-temperature annealing procedures are required to obtain the biaxial texture for metal substrates. Here, we report on a new method for developing strongly biaxially textured grain structure in rolled nickel tape by argon ion-beam bombardment. X-ray diffraction (XRD) θ-2θ scans have shown that a (200) diffraction peak intensity of the Ni foil processed by ion-beam structure modification (ISM) is two orders of magnitude greater than that of cold-rolled foil, while the (111) and (220) intensities are very weak. In the ISM processed Ni foils, from the rocking curve, the full width at half maximum (FWHM) value of the (200) peak has been found to be less than 5.9 deg., whilst the in-plane FWHM obtained from a pole figure analysis is just 8 deg. We discuss the possible mechanisms leading to the texture changes during ISM. (rapid communication)

  2. TEXTURE AND MECHANICAL BEHAVIOUR OF Ti AND Nb-Ti STABILIZED IF STEELS

    Directory of Open Access Journals (Sweden)

    Fabio Moreira da Silva Dias

    2013-12-01

    Full Text Available An analysis of the crystallographic texture and mechanical behavior of two types of IF steels is presented. Two steels, Ti and Nb-Ti, were submitted to different thermal annealing cycles in a continuous hot-dip galvanizing line, heat treated at temperatures of 860°C and 760°C. The more relevant characteristics of mechanical properties are evaluated. The crystallographic texture of the samples is determined by electron diffraction technique of back-scattering (SEM-EBSD. The intensity of orientation //ND is evaluated and compared. Metallographic characterization is done, and the ferritic grain size is measured with optical microscopy. The mechanical behavior of materials is characterized in the tensile test with 80 mm gauge length.

  3. Influence of the type of packaging on textural properties of minimally processed yellow Peruvian roots

    Directory of Open Access Journals (Sweden)

    Lara Santana Fernandes

    2016-06-01

    Full Text Available ABSTRACT The textural properties of minimally processed products indicate its quality, and the package is fundamental to maintain the conservation of these foods. The aim of this study was to evaluate texture alterations that occur during the storage period of minimally processed yellow Peruvian roots, using texture profile analysis (TPA and relaxation, in function of four types of plastic packaging, combined to refrigeration. The roots were selected, sanitized, peeled and sliced. The processing continued with final sanitization, rinsing and immersion in ascorbic and citric acid solution. The slices were centrifuged and packed in expanded polystyrene trays covered with PVC film, and in high-density polyethylene bags (HDPE, polypropylene bags (PP and multilayer polyolefin bags for vacuum, and stored at 5 ± 2 ºC and 90 ± 5% relative humidity during 12 days. For the TPA, the parameters of interest were hardness and adhesiveness, automatically calculated from the force curves (F x time (s. For modeling the relaxation process, the generalized Maxwell model was used. The slices packed in PP and vacuum showed higher hardness and normalized force in the balance (0.7502 and 0.7580, respectively, indicating that they were more elastic, better preserving the quality during storage than slices packed in other packaging.

  4. Effect of fat hardness on large deformation rheology of emulsion-filled gels

    NARCIS (Netherlands)

    Oliver, L.; Scholten, E.; Aken, van G.A.

    2015-01-01

    The aim of this work was to investigate the impact on the texture properties of emulsion-filled gels when saturated solid fat is replaced by unsaturated liquid oil. Whey protein aggregate, gelatin and micellar casein, were chosen to form different types of gel matrices and the fat hardness was

  5. Standard hardness conversion tables for metals relationship among brinell hardness, vickers hardness, rockwell hardness, superficial hardness, knoop hardness, and scleroscope hardness

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...

  6. Room temperature deformation mechanisms in ultrafine-grained materials processed by hot isostatic pressing

    International Nuclear Information System (INIS)

    Cao, W.Q.; Dirras, G.F.; Benyoucef, M.; Bacroix, B.

    2007-01-01

    Ultrafine-grained (uf-g) and microcrystalline-grained (mc-g) irons have been fabricated by hot isostatic pressing of nanopowders. The mechanical properties have been characterized by compressive tests at room temperature and the resulting microstructures and textures have been determined by combining electron back scatter diffraction and transmission electron microscopy. A transition of the deformation mode, from work hardening to work softening occurs for grain sizes below ∼1 μm, reflecting a transition of the deformation mode from homogeneous to localized deformation into shear bands (SBs). The homogeneous deformation is found to be lattice dislocation-based while the deformation within SBs involves lattice dislocations as well as boundary-related mechanisms, possibly grain boundary sliding accommodated by boundary opening

  7. Effect of titania addition on hot hardness of UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, A.K. E-mail: arghya@apsara.barc.ernet.in; Basak, C.B.; Jarvis, T.; Bhagat, R.K.; Pandey, V.D.; Majumdar, S

    2004-02-15

    Large grain UO{sub 2} is a potential fuel for LWR's for achieving extended burn up. Large grains are obtained by addition of dopants like Nb{sub 2}O{sub 5}, TiO{sub 2}, Cr{sub 2}O{sub 3}, V{sub 2}O{sub 5} etc. However, presence of such dopants might affect the thermophysical and thermomechanical properties of the fuel. In the present investigation the effect of TiO{sub 2} addition on the hot hardness (H) of sintered UO{sub 2} fuel has been studied from ambient to 1573 K in vacuum. TiO{sub 2} content was varied from 0.01 to 0.15 w/o resulting in a grain size (G) variation of 9 to 94 {mu}m. With increase in grain size (or TiO{sub 2} content) H first decreases, attains a minima and then increases further. The increase is more prominent at lower temperature (<773 K) than that at higher temperatures. H vs. G{sup -1/2} plots indicates the same type of variation like other oxide ceramics with H minima at an intermediate grain size at low temperature. The intrinsic hardness and softening coefficient of UO{sub 2} indicate cubic dependence on TiO{sub 2} content.

  8. Texture characterisation of hexagonal metals: Magnesium AZ91 alloy, welded by laser processing

    International Nuclear Information System (INIS)

    Kouadri, A.; Barrallier, L.

    2006-01-01

    Cooled and cast magnesium AZ91 alloy was welded using a CO 2 laser. The changes in the microstructure were analysed by optical and scanning electron microscopy and X-ray diffraction. Modification of the anisotropic properties was evaluated by the characterization of the texture in the base metal, in the core of the welded zone and in the welded zone close to the surface. In the two former zones, we have not observed a texture. Laser welding only leads to a change of the grain size and a disappearance of the eutectic phase. By contrast, in the welded zone close to the surface, the laser process leads both to a finer microstructure, to a loss of the Al-content and to the presence of several texture components. In this zone, our results showed that these textures are on pyramidal {101-bar 1} and prismatic {101-bar 0} planes. Much of the explanation for such texture rests with the fact that during the laser welding, material solidifies in strong non-equilibrium conditions. The kinetics of the nucleation and the growth are partly controlled by the high-rise and high fall of the temperature and the power produced by the laser process. The nature of the texture has been explained by the presence of a columnar to equiaxed transition in the welded zone

  9. Theory and modeling of microstructural evolution in polycrystalline materials: Solute segregation, grain growth and phase transformations

    Science.gov (United States)

    Ma, Ning

    2005-11-01

    To accurately predict microstructure evolution and, hence, to synthesis metal and ceramic alloys with desirable properties involves many fundamental as well as practical issues. In the present study, novel theoretical and phase field approaches have been developed to address some of these issues including solute drag and segregation transition at grain boundaries and dislocations, grain growth in systems of anisotropic boundary properties, and precipitate microstructure development in polycrystalline materials. The segregation model has allowed for the prediction of a first-order segregation transition, which could be related to the sharp transition of solute concentration of grain boundary as a function of temperature. The incorporating of interfacial energy and mobility as functions of misorientation and inclination in the phase field model has allowed for the study of concurrent grain growth and texture evolution. The simulation results were analyzed using the concept of local grain boundary energy density, which simplified significantly the development of governing equations for texture controlled grain growth in Ti-6Al-4V. Quantitative phase field modeling techniques have been developed by incorporating thermodynamic and diffusivity databases. The models have been validated against DICTRA simulations in simple 1D problems and applied to simulate realistic microstructural evolutions in Ti-6Al-4V, including grain boundary a and globular a growth and sideplate development under both isothermal aging and continuous cooling conditions. The simulation predictions agree well with experimental observations.

  10. Analysis of elastic strain and crystallographic texture in poled rhombohedral PZT ceramics

    International Nuclear Information System (INIS)

    Hall, D.A.; Steuwer, A.; Cherdhirunkorn, B.; Mori, T.; Withers, P.J.

    2006-01-01

    The elastic strain and crystallographic texture of a rhombohedral lead zirconate titanate ceramic have been characterised in the remanent state, after poling, using high-energy synchrotron X-ray diffraction as a function of the grain orientation ψ relative to the poling direction. It is observed that the (2 0 0) diffraction peak exhibits pronounced shifts as a function of ψ, indicating an elastic lattice strain, while others ({1 1 1}, {1 1 2} and {2 2 0}) show marked changes in intensity as a result of preferred ferroelectric domain orientation. It is shown that the (2 0 0) peak is not affected by the domain switching itself but rather acts like an elastic macrostrain sensor. A simple Eshelby analysis is used to demonstrate that both the elastic strain and texture vary systematically with ψ according to the factor (3cos 2 ψ - 1). This angular dependence is evaluated through micromechanics modelling. The physical meaning of the texture variations with ψ is also discussed

  11. The pasting and gel textural properties of corn starch in glucose, fructose and maltose syrup.

    Directory of Open Access Journals (Sweden)

    Qingjie Sun

    Full Text Available The pasting and gel textural properties of corn starch in syrup at different concentrations were investigated by Rapid Visco Analyzer (RVA and Texture profile analysis (TPA tests. The results showed that the pasting temperatures of corn starch greatly increased, especially at higher sugar concentration. Increasing concentration of syrup caused an increase in peak, trough and final viscosity of corn starch. Peak viscosity and the disintegration rate of starch increased in the following order: fructose syrup> maltose syrup> glucose syrup. Increasing syrup concentration to 13%, 25% and 50% resulted in a lower retrogradation rate than the control. When the maltose syrup concentration increased to 50%, the retrogradation rate decreased to 14.30% from 33.38%. The highest hardness was observed when the syrup concentration was 25%. There was a particular low hardness when the concentration of syrup was 50%. The springiness of starch gels in syrup was similar at different concentrations.

  12. Tensile properties of cooked meat sausages and their correlation with texture profile analysis (TPA) parameters and physico-chemical characteristics.

    Science.gov (United States)

    Herrero, A M; de la Hoz, L; Ordóñez, J A; Herranz, B; Romero de Ávila, M D; Cambero, M I

    2008-11-01

    The possibilities of using breaking strength (BS) and energy to fracture (EF) for monitoring textural properties of some cooked meat sausages (chopped, mortadella and galantines) were studied. Texture profile analysis (TPA), folding test and physico-chemical measurements were also performed. Principal component analysis enabled these meat products to be grouped into three textural profiles which showed significant (p<0.05) differences mainly for BS, hardness, adhesiveness and cohesiveness. Multivariate analysis indicated that BS, EF and TPA parameters were correlated (p<0.05) for every individual meat product (chopped, mortadella and galantines) and all products together. On the basis of these results, TPA parameters could be used for constructing regression models to predict BS. The resulting regression model for all cooked meat products was BS=-0.160+6.600∗cohesiveness-1.255∗adhesiveness+0.048∗hardness-506.31∗springiness (R(2)=0.745, p<0.00005). Simple linear regression analysis showed significant coefficients of determination between BS (R(2)=0.586, p<0.0001) versus folding test grade (FG) and EF versus FG (R(2)=0.564, p<0.0001).

  13. Study of rapid grain boundary migration in a nanocrystalline Ni thin film

    International Nuclear Information System (INIS)

    Kacher, Josh; Robertson, I.M.; Nowell, Matt; Knapp, J.; Hattar, Khalid

    2011-01-01

    Research highlights: → Abnormal growth is distributed randomly in the foil and initiates at different times. → Growth occurs from seemingly uncorrelated regions of the grain boundary. → Growth twins are created during all stages of abnormal grain growth. → Grain growth patterns are qualitatively similar to a vacancy diffusion model. → Grain boundaries and orientations evolve during growth to minimize system energy. - Abstract: Grain boundary migration associated with abnormal grain growth in pulsed-laser deposited Ni was studied in real time by annealing electron transparent films in situ in the transmission electron microscope. The resulting texture evolution and grain boundary types produced were evaluated by ex situ electron backscatter diffraction of interrupted anneals. The combination of these two techniques allowed for the investigation of grain growth rates, grain morphologies, and the evolution of the orientation and grain boundary distributions. Grain boundaries were found to progress in a sporadic, start/stop fashion with no evidence of a characteristic grain growth rate. The orientations of the abnormally growing grains were found to be predominately //ND throughout the annealing process. A high fraction of twin boundaries developed during the annealing process. The intermittent growth from different locations of the grain boundary is discussed in terms of a vacancy diffusion model for grain growth.

  14. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Naiming Lin

    2016-10-01

    Full Text Available Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316, surface-textured 316 (ST-316, and duplex-treated 316 (DT-316 in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication.

  15. Characterization of creep properties and creep textures in pure aluminum processed by equal-channel angular pressing

    International Nuclear Information System (INIS)

    Kawasaki, Megumi; Beyerlein, Irene J.; Vogel, Sven C.; Langdon, Terence G.

    2008-01-01

    High-purity aluminum was processed by equal-channel angular pressing (ECAP) and then tested under creep conditions at 473 K. The results show conventional power-law creep with a stress exponent of n = 5 which is consistent with an intragranular dislocation process involving the glide and climb of dislocations. It is demonstrated that diffusion creep is not important in these tests because the ultrafine grains produced by ECAP are not stable at this temperature. Texture measurements were undertaken using the high-pressure preferred orientation neutron time-of-flight diffractometer and they reveal significant differences in the evolution of texture during creep in pressed and unpressed specimens. These experimental measurements of texture are in excellent agreement with theoretical textures predicted using a visco-plastic self-consistent model that limits deformation to plastic slip. The calculations provide additional confirmation that creep occurs through an intragranular dislocation process

  16. Improved (0 0 1)-texture of FePt-C for heat-assisted magnetic recording media by insertion of Cr buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Shiroyama, T.; Wang, J.; Felicia, A.; Takahashi, Y.K.; Hono, K., E-mail: kazuhiro.hono@nims.go.jp

    2017-06-15

    Highlights: • Improvement of (0 0 1)-texture of prototype FePt-C granular films for heat heat assisted magnetic recording media. • Insertion of Cr buffer layer improves the crystallographic textures of the MgO underlayers, thereby reduces in-plane component in the FePt-C recording layer. • The growth in the grain size of the MgO underlayer as well as the (0 0 1)-texture of the MgO underlayer are the key factor in reducing the in-plane component in the FePt-C recording layer. - Abstract: FePt-C granular films deposited on MgO underlayers are the prototype media for heat-assisted magnetic recording. To reduce the in-plane magnetic component in the FePt-C media, we investigated the effect of Cr buffer layers on the crystallographic textures of the MgO underlayers and the resultant magnetic properties of the FePt-C layers. By growing a MgO underlayer on a Cr buffer layer, the (0 0 1) texture of the MgO underlayer is improved, on which the in-plane component of a FePt-C film is substantially reduced. We conclude that the growth in the grain size of the MgO underlayer is the key factor in reducing the in-plane component in the FePt-C recording layer.

  17. Textural constraints on the dynamics of the 2000 Miyakejima eruption

    Science.gov (United States)

    Garozzo, Ileana; Romano, Claudia; Giordano, Guido; Geshi, Nobuo; Vona, Alessandro

    2016-04-01

    Miyakejima Volcano is a basaltic-andesite stratovolcano active from ~10.000 years, located on the north of the Izu-Bonin arc. During the last 600 years the volcano has been characterized mainly by flank fissure activity, with explosive phreatomagmatic eruptions on the coastal areas. In the last century, the activity became more frequent and regular with intervals of 20 to 70 years (1940, 1962, 1983 and 2000). The last activity started on 27 June 2000, with a minor submarine eruption on the west coast of the volcano, and proceeded with six major summit eruptions from July 8 to August 29. The eruptions led to the formation of a collapse caldera ~1.6 km across. The total erupted tephra represents only 1.7% in volume of the caldera, the high fragmentation of magma produced mainly fine-grained volcanic ash. In order to improve the understanding on the triggering and dynamics of this explosive eruption, we carried out a detailed investigation of the erupted materials with particular attention to the textural features of juvenile pyroclasts (Vesicle and Crystal Size Distributions). The stratigraphic record can be divided into six fall units, corresponding to the six summit eruptions, although juvenile materials were identified only in 4 units (unit 2, 4, 5, 6). We selected about 100 juvenile grains sampled from the bottom to the top of each level, to be analyzed by scanning electron microscopy. The study of juvenile morphological features allowed us to recognize the existence of three characteristic morphotypes, showing marked differences in their external morphologies and internal textures (from poorly to highly crystallized and vesiculated clasts). The distribution of these morphotypes is non-homogeneous along the eruptive sequence indicating changes of dynamics during magma ascent. Juveniles do not show features inherited from the interaction with external water. Vesicle Volume Distributions of the selected ash grains show that the three types of pyroclasts experienced

  18. Study of amino acids dynamics, superconducting alloys and texture determination by neutron scattering. Coordinated programme on neutron scattering techniques in applied research

    International Nuclear Information System (INIS)

    Huhn Jun Kim

    1982-02-01

    Based on Bunges formalism, a computer program to analyze the fiber-type texture has been developed by expanding the orientation distribution function up to the 50th term. By annealing 99.9% cold-drawn copper wire, various degree of texture were developed. Using these samples, the accuracy of texture analysis has been studied by comparing experimental results with calculations obtained with various series truncations. Using the oriented silicon steels as sample, the sheet-type texture has been studied. Experimental evidences of the primary extinction and simultaneous reflections are discussed. From these, use of single-procedure geometry for pole figure measurement and precluding of strong reflections from input data for texture analysis are proposed to obtain accurate information for coarse-grained and strongly-textured materials. For the quantitative correlation between texture and physical anisotropy, the magnetic anisotropy energy and Young modulus in silicon steel have been studied by comparing measurements with theoretical results predicted from texture

  19. Multi-Scale Texturing of Metallic Surfaces for High Performance Military Systems

    Science.gov (United States)

    2015-08-17

    AISI 440C stainless steel balls of 3 mm radius and 690 HV hardness. The sliding time (20 min), amplitude (10.5 mm), frequency (1.5 Hz) and normal...texture form (e. g., micro-scale topography) on surface integrity measures and tribological wear performance were quantified. The ensuing results are... Tribological Applications, Submitted for publication (08 2015) TOTAL: 2 Books Number of Manuscripts: Patents Submitted Patents Awarded Awards Graduate Students

  20. LOCAL TEXTURE DESCRIPTION FRAMEWORK FOR TEXTURE BASED FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    R. Reena Rose

    2014-02-01

    Full Text Available Texture descriptors have an important role in recognizing face images. However, almost all the existing local texture descriptors use nearest neighbors to encode a texture pattern around a pixel. But in face images, most of the pixels have similar characteristics with that of its nearest neighbors because the skin covers large area in a face and the skin tone at neighboring regions are same. Therefore this paper presents a general framework called Local Texture Description Framework that uses only eight pixels which are at certain distance apart either circular or elliptical from the referenced pixel. Local texture description can be done using the foundation of any existing local texture descriptors. In this paper, the performance of the proposed framework is verified with three existing local texture descriptors Local Binary Pattern (LBP, Local Texture Pattern (LTP and Local Tetra Patterns (LTrPs for the five issues viz. facial expression, partial occlusion, illumination variation, pose variation and general recognition. Five benchmark databases JAFFE, Essex, Indian faces, AT&T and Georgia Tech are used for the experiments. Experimental results demonstrate that even with less number of patterns, the proposed framework could achieve higher recognition accuracy than that of their base models.

  1. Properties of extruded snacks supplemented with amaranth grain grits

    Directory of Open Access Journals (Sweden)

    Hadnađev Miroslav S.

    2009-01-01

    Full Text Available Extruded amaranth grain products have specific aroma and can be used as snack food, supplement in breakfast cereals, or as raw material for further processing. Extruded products of corn-amaranth grits blends, containing 20% or 50% amaranth grain grits, were produced by extrusion-cooking using a laboratory Brabender single screw extruder 20 DN. Extrudates with various texture were obtained. During extrusion process starch granules are partially degraded, hence rheological properties were examined. All samples exhibited thixotropic flow behavior. Those samples in which part of the corn grits was replaced with amaranth one had lower viscosity and exhibited lower level of structuration during storage.

  2. The effect of grain and pore sizes on the mechanical behavior of thin Al films deposited under different conditions

    International Nuclear Information System (INIS)

    Ben-David, E.; Landa, M.; Janovská, M.; Seiner, H.; Gutman, O.; Tepper-Faran, T.; Shilo, D.

    2015-01-01

    This paper presents a comprehensive study of the relationships between deposition conditions, microstructure and mechanical behavior in thin aluminum films commonly used in micro and nano-devices. A particular focus is placed on the effect of porosity, which is present in all thin films deposited by evaporation or sputtering techniques. The influences of the deposition temperature on the grain size, pore size and crystallographic texture were characterized by X-ray diffraction and scanning electron microscopy. The mechanical behavior of the films was investigated using four different methods. Each method is suitable for characterizing different properties and for testing the material at different length scales. Nanoindentation was used to study hardness at the level of individual grains; resonant ultrasound spectroscopy was used to measure the elastic moduli and porosity; and bulge and tensile tests were used to study released films under biaxial and uniaxial tensions. Our results demonstrate that even low porosities may have tremendous effects on the mechanical properties and that different methods allow the capture of different aspects of these effects. Therefore, a combination of several methods is required to obtain a comprehensive understanding of the mechanical behavior of a film. It is also shown that porosity with different pore size leads to very different effects on the mechanical behavior

  3. The impact of the manufacturing process on the hardness and sensory properties of milk chocolate

    Directory of Open Access Journals (Sweden)

    Zarić Danica B.

    2012-01-01

    Full Text Available The aim of this paper was to examine the impact of the manufacturing process on the textural characteristics and sensory properties of milk chocolate. The research was conducted on the samples of chocolate produced in a ball mill during 30, 60 and 90 minutes of refining, each of them being pre-crystallized at 26, 28 and 30°C. A chocolate mass of identical ingredient composition was also produced using a standard manufacturing process at the same pre-crystallization temperatures. Chocolate hardness was examined using a piece of equipment called Texture Analyser, measuring the stress intensity which leads to chocolate crushing. Sensory analysis was performed using the point scoring method. The new manufacturing process, i.e. the manufacturing of chocolate in a ball mill improves sensory properties and hardness of milk chocolate. [Projekat Ministarstva nauke Republike Srbije, br. TR 31014

  4. PREFACE: 17th International Conference on Textures of Materials (ICOTOM 17)

    Science.gov (United States)

    Skrotzki, Werner; Oertel, Carl-Georg

    2015-04-01

    The 17th International Conference on Textures of Materials (ICOTOM 17) took place in Dresden, Germany, August 24-29, 2014. It belongs to the "triennial" series of ICOTOM meetings with a long tradition, starting in 1969 - Clausthal, 1971 - Cracow, 1973 - Pont-à-Mousson, 1975 - Cambridge, 1978 - Aachen, 1981 - Tokyo, 1984 - Noordwijkerhout, 1987 - Santa Fe, 1990 - Avignon, 1993 - Clausthal, 1996 - Xian, 1999 - Montreal, 2002 - Seoul, 2005 - Leuven, 2008 - Pittsburgh, 2011 - Mumbai, 2014 - Dresden. ICOTOM 17 was hosted by the Dresden University of Technology, Institute of Structural Physics. Following the tradition of the ICOTOM conferences, the main focus of ICOTOM-17 was to promote and strengthen the fundamental understanding of the basic processes that govern the formation of texture and its relation to the properties of polycrystalline materials. Nonetheless, it was the aim to forge links between basic research on model materials and applied research on engineering materials of technical importance. Thus, ICOTOM 17 provided a forum for the presentation and discussion of recent progress in research of texture and related anisotropy of mechanical and functional properties of all kinds of polycrystalline materials including natural materials like rocks. Particular attention was paid to recent advances in texture measurement and analysis as well as modeling of texture development for all kinds of processes like solidification, plastic deformation, recrystallization and grain growth, phase transformations, thin film deposition, etc. Hence, ICOTOM 17 was of great interest to materials scientists, engineers from many different areas and geoscientists. The topics covered by ICOTOM 17 were: 1. Mathematical, numerical and statistical methods of texture analysis 2. Deformation textures 3. Crystallization, recrystallization and growth textures 4. Transformation textures 5. Textures in functional materials 6. Textures in advanced materials 7. Textures in rocks 8. Texture

  5. Local current-voltage behaviors of preferentially and randomly textured Cu(In,Ga)Se2 thin films investigated by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Shin, R.H.; Jo, W.; Kim, D.W.; Yun, Jae Ho; Ahn, S.

    2011-01-01

    Electrical transport properties on polycrystalline Cu(In,Ga)Se 2 (CIGS) (Ga/(In+Ga) ∼35%) thin films were examined by conductive atomic force microscopy. The CIGS thin films with a (112) preferential or random texture were deposited on Mo-coated glass substrates. Triangular pyramidal grain growths were observed in the CIGS thin films preferentially textured to the (112) planes. Current maps of the CIGS surface were acquired with a zero or non-zero external voltage bias. The contrast of the images on the grain boundaries and intragrains displayed the conduction path in the materials. Local current-voltage measurements were performed to evaluate the charge conduction properties of the CIGS thin films. (orig.)

  6. Effects of Alkali Concentration and Conching Temperature on Flavour, Hardness and Colour of Chocolate

    Directory of Open Access Journals (Sweden)

    Misnawi Jati

    2006-05-01

    Full Text Available Alkalization is an addition of alkali into cocoa mass to improve product quality in terms of flavour and colour appearance. Sodium bicarbonate and potassium bicarbonate are usual to be added into cocoa cotyledon prior to roasting. A study has been carried out to evaluate the effects of alkalization proceeded upon conching on chocolate sensory properties, hardness and colour. Re sponse Surface Methodology design at alkali concentrations of 1—15 g kg -1 and conching temperature of 40—80 oC have been used in the study. Parameters evaluated were sensory properties, particle size, hardness and colour. Results of the study showed that alkali concentration significantly influenced aroma, overall preference, particle size and hardness; meanwhile, conching temperature showed significant influence on aroma, taste, appearance, overall preference and texture of chocolate. Alkali concentration and conching temperature showed interactively influence on aroma and overall preference. A good quality of chocolate could be found at the alkali concentration of 8—15 g kg -1 and conching temperature of 74—80 oC. Key words: cocoa bean, chocolate, flavour, conching, alkalization, colour, particle size, texture.

  7. Stabilized copper plating method by programmed electroplated current: Accumulation of densely packed copper grains in the interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Li-Chi; Hsu, Li-Hsuan; Brahma, Sanjaya; Huang, Bo-Chia; Liu, Chun-Chu; Lo, Kuang-Yao, E-mail: kuanglo@mail.ncku.edu.tw

    2016-12-01

    Highlights: • Actual Cu interconnect experiences many times of annealing and then cause the stress. • Stack Cu grains with varying grain size successively to enhance packed density. • XRD and PBR analyze the residual stress of local and average area of plated Cu film. • High packed Cu grain with stable stress proved by texture of Cu(1 1 1) and Cu(2 0 0). - Abstract: In this work, we programmed the plating current to stack the different size of copper (Cu) grain and analyzed the relation between the sequence of different Cu grain size and the stability of the residual stress. The residual stress was measured with varying times of annealing process in order to reach the purpose of simulating the actual Cu interconnect process. We found that varied plating strategy will make different stabilization condition of residual stress through the proof of X-ray diffraction (XRD) and optical parallel beams reflection (PBR) method. The accumulation of Cu grains, formed by Cu grain with successive variation in grain size, would enhance the packing density better than only single grain size in the finite space. The high density of the grain boundary in the electroplated Cu film will be eliminated through annealing process and it will help to suppress the void formation in further interconnect process. The electroplated Cu film with the plating current of saw tooth wave can soon reach a stable tensile stress through annealing since the Cu grains with high packing density will be quickly eliminated to approach the minimum of the strain energy which reflects to variation in the texture of Cu (2 0 0). The result of this work illustrates the importance of how to stack different size of Cu grain, for achieving a densely packed Cu film which close to the Cu bulk.

  8. Investigation of slip transfer across HCP grain boundaries with application to cold dwell facet fatigue

    International Nuclear Information System (INIS)

    Zheng, Zebang; Balint, Daniel S.; Dunne, Fionn P.E.

    2017-01-01

    This paper addresses the role of grain boundary slip transfer and thermally-activated discrete dislocation plasticity in the redistribution of grain boundary stresses during cold dwell fatigue in titanium alloys. Atomistic simulations have been utilised to calculate the grain boundary energies for titanium with respect to the misorientation angles. The grain boundary energies are utilised within a thermally-activated discrete dislocation plasticity model incorporating slip transfer controlled by energetic and grain boundary geometrical criteria. The model predicts the grain size effect on the flow strength in Ti alloys. Cold dwell fatigue behaviour in Ti-6242 alloy is investigated and it is shown that significant stress redistribution from soft to hard grains occurs during the stress dwell, which is observed both for grain boundaries for which slip transfer is permitted and inhibited. However, the grain boundary slip penetration is shown to lead to significantly higher hard-grain basal stresses near the grain boundary after dwell, thus exacerbating the load shedding stress compared to an impenetrable grain boundary. The key property controlling the dwell fatigue response is argued to remain the time constant associated with the thermal activation process for dislocation escape, but the slip penetrability is also important and exacerbates the load shedding. The inclusion of a macrozone does not significantly change the conclusions but does potentially lead to the possibility of a larger initial facet.

  9. Surface coatings on quartz grains in bentonites and their relevance to human health

    International Nuclear Information System (INIS)

    Wendlandt, Richard F.; Harrison, Wendy J.; Vaughan, David J.

    2007-01-01

    The cytotoxicity of quartz in the human lung is recognized to be dependent on both the inherent properties of the silica dust and external factors related to the history of the dust and including the presence of surface contamination. In this study, the physical and chemical surface properties of quartz grains in commercial bentonite deposits from the western (South Dakota) and southern (Alabama) USA were investigated. Measured quartz contents of bentonites range from 1.9 to 8.5 wt% with the <10 μm size fraction comprising 6-45% of this total. Trace element contents (Fe-Ti-Al) of quartz grains from any given bentonite are similar, indicating a single origin for the quartz with little if any contamination from other sources. Surface coatings are pervasive on all quartz grains and resist removal by repeated vigorous washings and reaction with HCl. Textural attributes and XPS and EDS analyses of these coatings are consistent with most being montmorillonite and, less frequently, mixtures of montmorillonite and opaline silica. Opaline silica (opal-A and opal-CT) occurs in two texturally distinct generations: an early massive grain-coating event and as later lepispheres. Montmorillonite coating thicknesses range from <1 μm to more than 10 μm thick. Surfaces of plagioclase, K-feldspar, and biotite grains are conspicuously devoid of montmorillonite coatings, but may show sparse distributions of opal-CT lepispheres. HRTEM has not confirmed a topotactic relationship or atomic structural concordance between montmorillonite coatings and underlying quartz grains. Alternatively, a precursor volcanic glass phase that coats the quartz surfaces during volcanic eruption and/or preferential early precipitation of opaline silica on quartz may provide substrates for development of montmorillonite coatings. Estimations of montmorillonite biodurability under pulmonary pH conditions suggest possible prolonged sequestration of respired bentonite quartz grains from contact with lung

  10. Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire

    Directory of Open Access Journals (Sweden)

    T. Omori

    2013-09-01

    Full Text Available Effects of grain size on superelastic properties in Fe-34Mn-15Al-7.5Ni alloy wires with a ⟨110⟩ fiber-texture were investigated by cyclic tensile tests. It was confirmed that the critical stress for induced martensitic transformation and the superelastic strain are functions of relative grain size d/D (d: mean grain diameter, D: wire diameter, and that the critical stress is proportional to (1–d/D2 as well as in Cu-based shape memory alloys. A large superelastic strain of about 5% was obtained in the specimen with a large relative grain size over d/D = 1.

  11. Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: A theoretical analysis

    International Nuclear Information System (INIS)

    Qin, W.; Szpunar, J.A.; Kozinski, J.

    2012-01-01

    Hydride-induced degradation of hoop ductility in Zr-alloy tubular components has been studied for many years because of its importance in the nuclear industry. In this paper the role of intergranular and intragranular δ-hydrides in the degradation of ductility of the textured Zr-alloy tubes is investigated. The correlation among hydride distribution, orientation and morphology in the tubes is formulated based on thermodynamic modeling, and then analyzed. The results show that the applied stress, the crystallographic texture of α-Zr matrix, the grain-boundary structure, and the morphology and size of Zr grains simultaneously govern the site preference and the orientation of hydrides. A criterion is proposed to determine the threshold stress of hydride reorientation. The hoop ductility of the hydrided Zr tubes is discussed using the concept of macroscopic fracture strain. It is shown that the intergranular hydrides may be more deleterious to ductility than the intragranular ones. This work defines a general framework for understanding the relation of the microstructure of hydride-forming materials to embrittlement.

  12. Competitive grain growth in directional solidification investigated by phase field simulation

    International Nuclear Information System (INIS)

    Li Junjie; Wang Zhijun; Wang Jincheng; Yang Yujuan

    2012-01-01

    During directional solidification, the competitive dendritic growth between various oriented grains is a key factor to obtain desirable texture. In order to understand the mechanism of competitive dendritic growth, the phase field method was adopted to simulate the microstructure evolution of bicrystal samples. The simulation has well reproduced the whole competitive growth process for both diverging and converging dendrites. In converging case, besides the block of the unfavorably oriented dendrite by the favorably oriented one, the unfavorably oriented dendrite is also able to overgrow the favorable one under the condition of relatively low pulling velocity. This unusual overgrowth is dictated by the solute interaction of the converging dendrite tips. In diverging case, it was found that the grain boundary can be either inclined or parallel to the favorably oriented grain depending on the disposition of two grains.

  13. A novel process for textured thick film YBa2Cu3Oy coated conductors based on a constitutional gradients principle

    International Nuclear Information System (INIS)

    Reddy, E Sudhakar; Tarka, M; Noudem, J G; Goodilin, E A; Schmitz, G J

    2005-01-01

    A new method for the processing of textured YBa 2 Cu 3 O y (Y 123) thick film stripes on metallic tapes is discussed. The process involves the texturing of Y123 grains by a localized directional solidification method by creating constitutional gradients along the width of the precursor Y 2 BaCuO 5 (Y 211) stripe during an infiltration and growth process. The differences in the solidification temperatures of different rare earth 123 compounds were utilized to generate the constitutional gradients. The sample configuration involves printed lines of light (Nd) and heavy (Yb) rare earth compounds on either side of an airbrushed Y211 stripe underneath a liquid phase (barium cuprates) layer. The higher peritectic temperature (T p ) Nd regions serve as nucleating sites for Y123 grains nucleated in the adjacent Y211 stripes and the constitutional gradients produced due to the diffusion of respective rare earth ions between the Nd and Yb regions, typically of 200 K cm -1 in the region, induce a driving force for the directional growth of the nucleated grains. The solidification is analogous to that in a typical Bridgman furnace in applied high temperature gradients. The process, being independent of growth rate parameter and texture of the underlying substrate, is suitable for the fabrication of long length thick film conductors by a wind and react process in simple box type furnaces

  14. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, F., E-mail: f.bittner@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Woodcock, T.G. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Schultz, L. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Schwöbel, C. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); Gutfleisch, O. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); Fraunhofer ISC, Projektgruppe für Werkstoffkreisläufe und Ressourcenstrategie IWKS, Rodenbacher Chaussee 4, 63457 Hanau (Germany); Zickler, G.A.; Fidler, J. [Technische Universität Wien, Institute of Solid State Physics, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Üstüner, K.; Katter, M. [Vacuumschmelze GmbH & Co. KG, 63412 Hanau (Germany)

    2017-03-15

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 µm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 µm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve. - Highlights: • He Jet milling to reduce Nd-Fe-B grain size and to enhance coercivity. • Normal and abnormal grain growth observed for low temperature sintering. • Well oriented abnormal grown grains explained by size dependent field alignment. • Poor rectangularity is caused by low nucleation field of

  15. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    International Nuclear Information System (INIS)

    Bittner, F.; Woodcock, T.G.; Schultz, L.; Schwöbel, C.; Gutfleisch, O.; Zickler, G.A.; Fidler, J.; Üstüner, K.; Katter, M.

    2017-01-01

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 µm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 µm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve. - Highlights: • He Jet milling to reduce Nd-Fe-B grain size and to enhance coercivity. • Normal and abnormal grain growth observed for low temperature sintering. • Well oriented abnormal grown grains explained by size dependent field alignment. • Poor rectangularity is caused by low nucleation field of

  16. Texture and Microtexture of Pure (6N and Commercially Pure Aluminum after Deformation by Extrusion with Forward-Backward Rotating Die (Kobo

    Directory of Open Access Journals (Sweden)

    Bieda M.

    2016-03-01

    Full Text Available Pure aluminium (6N and commercially pure aluminium (99.7 was deformed by KOBO method. Microstructure and texture of both materials after deformation was analyzed by means of scanning and transmission electron microscopy. Advanced methods of crystallographic orientations measurements like Electron Backscatter Diffraction - EBSD (SEM and microdiffraction (TEM was used. Grain size distribution and misorientation between grains in cross and longitudinal sections of the samples were analyzed. Differences in size and homogeneity of the grains were observed in both materials. Pure aluminium was characterized by larger grain size in both sections of extruded material. Whereas commercially pure aluminium reveals smaller grain size and more homogeneous and stable microstructure.

  17. Comparation of instrumental and sensory methods in fermented milk beverages texture quality analysis

    Directory of Open Access Journals (Sweden)

    Jovica Hardi

    2001-04-01

    Full Text Available The texture of the curd of fermented dairy products is one of the primary factors of their overall quality. The flow properties of fermented dairy products have characteristic of thixotropic (pseudoplastic type of liquids. At the same time, these products are viscoelastic systems, i.e. they are capable of texture renewal after applied deformation. Complex analysis of some of the properties is essentional for the system description . The aim of the present work was to completely describe the texture of fermented milk beverages . Three basic parameters were taken into consideration: structure, hardness (consistency and stability of the curd. The description model of these three parameters was applied on the basis of the experimental results obteined. Results obtained by present model were compared with the results of sensory analysis. Influence of milk fat content and skimmed milk powder addition on acidophilus milk texture quality was also examined using this model. It was shawn that, by using this model – on the basis of instrumental and sensory analyses, a complete and objective determination of texture quality of the fermented milk beverages can be obtained. High degree of correlation between instrumental and sensory results (r =0.8975 is obtained results of this work indicated that both factors (milk fat content and skimmed milk powder addition had an influence on texture quality. Samples with higher milk fat content had a better texture properties in comparsion with low fat content samples. Texture of all examined samples was improved by increasing skimmed milk powder content. Optimal amounts of skimmed milk powder addition with regard to milk fat content, in milk, is determined using the proposed model.

  18. Texture and structure contribution to low-temperature plasticity enhancement of Mg-Al-Zn-Mn Alloy MA2-1hp after ECAP and annealing

    Science.gov (United States)

    Serebryany, V. N.; D'yakonov, G. S.; Kopylov, V. I.; Salishchev, G. A.; Dobatkin, S. V.

    2013-05-01

    Equal channel angular pressing (ECAP) in magnesium alloys due to severe plastic shear deformations provides both grain refinement and the slope of the initial basal texture at 40°-50° to the pressing direction. These changes in microstructure and texture contribute to the improvement of low-temperature plasticity of the alloys. Quantitative texture X-ray diffraction analysis and diffraction of backscattered electrons are used to study the main textural and structural factors responsible for enhanced low-temperature plasticity based on the example of magnesium alloy MA2-1hp of the Mg-Al-Zn-Mn system. The possible mechanisms of deformation that lead to this positive effect are discussed.

  19. Ion beam texturing

    Science.gov (United States)

    Hudson, W. R.

    1977-01-01

    A microscopic surface texture was created by sputter-etching a surface while simultaneously sputter-depositing a lower sputter yield material onto the surface. A xenon ion-beam source was used to perform the texturing process on samples as large as 3-cm diameter. Textured surfaces have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, stainless steel, Au, and Ag. A number of texturing parameters are studied including the variation of texture with ion-beam powder, surface temperature, and the rate of texture growth with sputter etching time.

  20. Minerals Concentration and Textural Properties of Romanian Beef Row and Cooked Meat and Offal

    Directory of Open Access Journals (Sweden)

    Liliana Tudoreanu

    2013-11-01

    Full Text Available Introduction: Consumers preferences for solid food are, for the majority of foods groups, influenced by their textural properties. Romanian traditional cuisine is rich in meat foods and therefore this food group has an important contribution to the total mineral intake as well as the ingestion of potentially toxic metals such as Cd and Pb. Although beef liver is an important source of minerals for human consumption, its concentrations in Cd and Pb and heterogeneous textural properties may hinder its acceptability. Aims: The purpose of the work was to estimate raw and cooked beef meat and offal mineral quality including Cd and Pb concentrations and their contribution to a balanced human diet and health  as well as the influenced of thermal preparation on their mineral and textural properties. Materials and methods:  Beef liver, kidney and longissimus dorsi muscle were bought from local markets. Thermal preparation was conducted by microwave and boiling with no water contact. Texture profile analyses was conducted for quantifying textural properties such as  Hardness, Cohesiveness, Springiness, Springiness Index, Chewiness, Adhesiveness and Stiffness. The mineral concentrations of the raw and cooked samples were analyzed by ICP-MS. Conclusion: The offal textural parameters variability was very large within the same organ and compared to the muscle textural parameters variability too. Muscle and offal thermal preparation strongly influenced their minerals’ concentrations as well as their textural properties. Thermal preparation significantly decreased beef liver and kidney samples’ total K and Na concentrations. It is suggested that for improving beef liver acceptability, the consumer has to be advised on the influence of the thermal preparation on beef liver parts’ textural properties as well as minerals concentrations.

  1. Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)

    International Nuclear Information System (INIS)

    Alihosseini, H.; Faraji, G.; Dizaji, A.F.; Dehghani, K.

    2012-01-01

    In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 μm was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones: (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: ► A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. ► Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. ► A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.

  2. Orange peel flour effect on physicochemical, textural and sensory properties of cooked sausages

    Directory of Open Access Journals (Sweden)

    Sonia Hernandez Garcia

    2010-06-01

    Full Text Available Orange peel flours as a source of fiber, protein, and flavonoids as antioxidants was added to meat batters in order to improve nutritional quality and physicochemical, textural and sensory properties. Orange peel flour in meat batters improved yield and reduced expressible moisture. Hardness in orange peel flour samples was higher, but less resilient and cohesive. Warner-Bratzler shear force was not different between control (no orange peel flour and samples with this functional ingredient. A no trained panel determinate that there was no difference between control and orange peel flour added sausages at a 5% (w/w level. In this view, orange peel flour can be employed to improve yield and texture of cooked meat products.

  3. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    International Nuclear Information System (INIS)

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-01-01

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  4. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada)

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  5. High-strength bolt-forming of fine-grained aluminum alloy 6061 with a continuous hybrid process

    International Nuclear Information System (INIS)

    Kim, Ji Hun; Hwang, Sun Kwang; Im, Yong-Taek; Son, Il-Heon; Bae, Chul Min

    2012-01-01

    Highlights: ► Fine-grained AA6061-O was produced by a continuous hybrid process. ► It consists of rolling, ECAP, and drawing. ► High-strength bolt was manufactured with the fine-grained AA6061-O. ► The UTS and micro-hardness of the bolt was increased by 50%. ► The route C was better in making a uniform micro-hardness distribution in the bolt. - Abstract: It is well known that the development of a continuous manufacturing process to apply severe plastic deformation (SPD) is a major challenge for industrial usages to improve the mechanical properties of the material through grain refinement. In this study, fine-grained AA6061-O wire was manufactured by a two-pass hybrid process consisting of drawing, equal channel angular pressing and rolling in a continuous manner to investigate the effects of processing routes for two different routes, A and C, on the variation of ultimate tensile strength (UTS) and micro-hardness distribution. The UTS value (185 MPa) of the specimen processed by the two-pass hybrid process with route A was higher than that of 171 MPa obtained from the two-pass wire-drawing process and was equivalent to the level of 184 MPa processed by the three-pass wire-drawing process. The average micro-hardness value (Hv 58.0) obtained from the two-pass hybrid process through route C was the highest among all the cases. According to transmission electron microscopy, the original grain was subdivided and elongated owing to deformation during the processes. The specimen processed by the two-pass hybrid process through route C showed smaller deformation bands and had potentially higher angle grain boundaries compared to the specimen processed by the two-pass wire-drawing process. Finally, the high-strength bolt was manufactured using the fine-grained AA6061-O wire prepared by the continuous hybrid process to check its formability. A ductile fracture at the first thread right above the jaw was observed in the bolt tension test of the manufactured bolt

  6. Formation mechanisms of periodic longitudinal microstructure and texture patterns in friction stir welded magnesium AZ80

    Energy Technology Data Exchange (ETDEWEB)

    Hiscocks, J., E-mail: j.hiscocks@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario (Canada); Diak, B.J. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario (Canada); Gerlich, A.P. [Department of Mechanical and Mechatronics Engineering, Waterloo University, Waterloo, Ontario (Canada); Daymond, M.R. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario (Canada)

    2016-12-15

    Many studies of friction stir welding have shown that periodicity of metal flow around the tool pin may result in the formation of periodic differences in microstructure and texture in the weld nugget area correlated with the weld pitch. The current work investigates the periodicity of magnesium weld microtexture in the nugget region and its association with material flow using optical and electron microscopy. Two welds created in AZ80 at different processing conditions are presented in detail, one illustrating periodic longitudinal texture change, and one showing for the first time that periodic variations in texture, grain size, or composition are not defining features of periodic nugget flow. While nugget texture is dominated by shear deformation, it was found here to be affected to a lesser degree by compaction of material behind the welding tool, which led to reduction in intensity of the shear texture fiber. The decreased tendency for magnesium based alloys to form periodic patterns as compared to aluminum based alloys is explained with reference to the shear textures. - Highlights: •It is shown here that periodic material flow in the nugget does not necessitate longitudinal texture patterns. •Longitudinal texture patterns are shown to be present or absent in Mg AZ80 based on processing conditions. •Texture in the nugget is mainly dictated by shear deformation, but has measurable effects from other deformation modes. •Explanation of why longitudinal texture change is frequently reported in aluminum but not magnesium alloys is provided. •A new vector visualization of material flow based on EBSD data analysis is shown.

  7. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    DEFF Research Database (Denmark)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang

    2016-01-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations....... It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed...... they form. Finally, possible nucleation mechanisms are briefly discussed....

  8. 3D tooth microwear texture analysis in fishes as a test of dietary hypotheses of durophagy

    Science.gov (United States)

    Purnell, Mark A.; Darras, Laurent P. G.

    2016-03-01

    An understanding of how extinct animals functioned underpins our understanding of past evolutionary events, including adaptive radiations, and the role of functional innovation and adaptation as drivers of both micro- and macroevolution. Yet analysis of function in extinct animals is fraught with difficulty. Hypotheses that interpret molariform teeth in fishes as evidence of durophagous (shell-crushing) diets provide a good example of the particular problems inherent in the methods of functional morphology. This is because the assumed close coupling of form and function upon which the approach is based is weakened by, among other things, behavioural flexibility and the absence of a clear one to one relationship between structures and functions. Here we show that ISO 25178-2 standard parameters for surface texture, derived from analysis of worn surfaces of molariform teeth of fishes, vary significantly between species that differ in the amount of hard-shelled prey they consume. Two populations of the Sheepshead Seabream (Archosargus probatocephalus) were studied. This fish is not a dietary specialist, and one of the populations is known to consume more vegetation and less hard-shelled prey than the other; this is reflected in significant differences in their microwear textures. The Archosargus populations differ significantly in their microwear from the specialist shell-crusher Anarhichas lupus (the Atlantic Wolffish). Multivariate analysis of these three groups of fishes lends further support to the relationship between diet and tooth microwear, and provides robust validation of the approach. Application of the multivariate models derived from microwear texture in Archosargus and Anarhichas to a third fish species—the cichlid Astatoreochromis alluaudi—successfully separates wild caught fish that ate hard-shelled prey from lab-raised fish that did not. This cross-taxon validation demonstrates that quantitative analysis of tooth microwear texture can

  9. 3D tooth microwear texture analysis in fishes as a test of dietary hypotheses of durophagy

    International Nuclear Information System (INIS)

    Purnell, Mark A; Darras, Laurent P G

    2016-01-01

    An understanding of how extinct animals functioned underpins our understanding of past evolutionary events, including adaptive radiations, and the role of functional innovation and adaptation as drivers of both micro- and macroevolution. Yet analysis of function in extinct animals is fraught with difficulty. Hypotheses that interpret molariform teeth in fishes as evidence of durophagous (shell-crushing) diets provide a good example of the particular problems inherent in the methods of functional morphology. This is because the assumed close coupling of form and function upon which the approach is based is weakened by, among other things, behavioural flexibility and the absence of a clear one to one relationship between structures and functions. Here we show that ISO 25178-2 standard parameters for surface texture, derived from analysis of worn surfaces of molariform teeth of fishes, vary significantly between species that differ in the amount of hard-shelled prey they consume. Two populations of the Sheepshead Seabream (Archosargus probatocephalus) were studied. This fish is not a dietary specialist, and one of the populations is known to consume more vegetation and less hard-shelled prey than the other; this is reflected in significant differences in their microwear textures. The Archosargus populations differ significantly in their microwear from the specialist shell-crusher Anarhichas lupus (the Atlantic Wolffish). Multivariate analysis of these three groups of fishes lends further support to the relationship between diet and tooth microwear, and provides robust validation of the approach. Application of the multivariate models derived from microwear texture in Archosargus and Anarhichas to a third fish species—the cichlid Astatoreochromis alluaudi—successfully separates wild caught fish that ate hard-shelled prey from lab-raised fish that did not. This cross-taxon validation demonstrates that quantitative analysis of tooth microwear texture can

  10. Observation of Pseudopartial Grain Boundary Wetting in the NdFeB-Based Alloy

    Science.gov (United States)

    Straumal, B. B.; Mazilkin, A. A.; Protasova, S. G.; Schütz, G.; Straumal, A. B.; Baretzky, B.

    2016-08-01

    The NdFeB-based alloys were invented in 1980s and remain the best-known hard magnetic alloys. In order to reach the optimum magnetic properties, the grains of hard magnetic Nd2Fe14B phase have to be isolated from one another by the (possibly thin) layers of a non-ferromagnetic Nd-rich phase. In this work, we observe that the few-nanometer-thin layers of the Nd-rich phase appear between Nd2Fe14B grains due to the pseudopartial grain boundary (GB) wetting. Namely, some Nd2Fe14B/Nd2Fe14B GBs are not completely wetted by the Nd-rich melt and have the high contact angle with the liquid phase and, nevertheless, contain the 2-4-nm-thin uniform Nd-rich layer.

  11. Grain boundary microchemistry and metallurgical characterization of Eurofer'97 after simulated service conditions

    International Nuclear Information System (INIS)

    Fernandez, P.; Garcia-Mazario, M.; Lancha, A.M.; Lapena, J.

    2004-01-01

    The aim of this paper is to describe the microstructural investigations, the mechanical properties (hardness, tensile and charpy) and the grain boundary microchemistry studied by Auger electron spectroscopy (AES), of the Eurofer'97 steel aged in the range of temperatures from 400 to 600 deg. C up to 10,000 h. After these thermal aging treatments the steel showed a high microstructural stability, and similar values of hardness, ultimate tensile strength and 0.2% proof stress regardless of the material condition. A slight DBTT increase was observed in the material aged at 600 deg. C for 5000 and 10,000 h. The Auger results showed chromium enrichment at grain boundaries in all material conditions. In addition, phosphorus was detected at the grain boundaries after the aging treatments at 500 deg. C

  12. Local current-voltage behaviors of preferentially and randomly textured Cu(In,Ga)Se{sub 2} thin films investigated by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shin, R.H.; Jo, W. [Ewha Womans University, Department of Physics, Seoul (Korea, Republic of); Kim, D.W. [Ewha Womans University, Department of Physics, Seoul (Korea, Republic of); Ewha Womans University, Department of Chemistry and Nanosciences, Seoul (Korea, Republic of); Yun, Jae Ho; Ahn, S. [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2011-09-15

    Electrical transport properties on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) (Ga/(In+Ga) {approx}35%) thin films were examined by conductive atomic force microscopy. The CIGS thin films with a (112) preferential or random texture were deposited on Mo-coated glass substrates. Triangular pyramidal grain growths were observed in the CIGS thin films preferentially textured to the (112) planes. Current maps of the CIGS surface were acquired with a zero or non-zero external voltage bias. The contrast of the images on the grain boundaries and intragrains displayed the conduction path in the materials. Local current-voltage measurements were performed to evaluate the charge conduction properties of the CIGS thin films. (orig.)

  13. Probiotic salami with fat and curing salts reduction: physicochemical, textural and sensory characteristics

    Directory of Open Access Journals (Sweden)

    Mariana Nougalli ROSELINO

    2018-04-01

    Full Text Available Abstract This work was evaluated the physicochemical, textural and the sensory properties of meat products fermented with traditional or probiotic cultures with lower fat and curing salt content. Chemical composition was evaluated in T30 and instrumental texture was determined during the experimental protocol. A sensory profile evaluation was carried out using the quantitative descriptive analysis (QDA and the acceptance test. The lowest fat content was found in the salamis processed with reduced pork fat. Texture profile analysis the F5 exhibited the lowest mean value of hardness. In QDA, the results showed that the F1 exhibited the highest mean value of regularity of the border, brightness, softness and smoked, due to the greater amount of fat in their composition. The results revealed that, in T30, there was good acceptance for all formulations and during the storage period, the mean values remained high. The consumers demonstrated a positive purchase intention for all formulations.

  14. The brass-type texture and its deviation from the copper-type texture

    DEFF Research Database (Denmark)

    Leffers, Torben; Ray, R.K.

    2009-01-01

    Our basic aim with the present review is to address the classical problem of the “fcc rolling texture transition” – the fact that fcc materials may, depending on material parameters and rolling conditions, develop two different types of rolling textures, the copper-type texture and the brass...... the subject and sketch our approach for dealing with it. We then recapitulate the decisive progress made during the nineteen sixties in the empirical description of the fcc rolling texture transition and in lining up a number of possible explanations. Then follows a section about experimental investigations...... of the brass-type texture after the nineteen sixties covering texture measurements and microstructural investigations. The main observations are: (1) The brass-type texture deviates from the copper-type texture from an early stage of texture development. (2) Deformation twinning has a decisive effect...

  15. A comparison of texture results obtained using precession electron diffraction and neutron diffraction methods at diminishing length scales in ordered bimetallic nanolamellar composites

    International Nuclear Information System (INIS)

    Carpenter, J.S.; Liu, X.; Darbal, A.; Nuhfer, N.T.; McCabe, R.J.; Vogel, S.C.; LeDonne, J.E.; Rollett, A.D.; Barmak, K.; Beyerlein, I.J.; Mara, N.A.

    2012-01-01

    Precession electron diffraction (PED) is used to acquire orientation information in Cu–Nb nanolamellar composites fabricated by accumulative roll bonding (ARB). The resulting maps quantify the grain size, shape, orientation distributions and interface planes in the vicinity of nanometer-thick deformation twins. The PED-based texture results compare favorably with bulk textures provided by neutron diffraction measurements, indicating uniformity in the ARB Cu–Nb texture. Additionally, {1 1 2} Cu ||{1 1 2} Nb interfaces are present, suggesting that ARB techniques can lead to stable interfaces with a special crystallography.

  16. Dental microwear textures: reconstructing diets of fossil mammals

    International Nuclear Information System (INIS)

    DeSantis, Larisa R G

    2016-01-01

    Dietary information of fossil mammals can be revealed via the analysis of tooth morphology, tooth wear, tooth geochemistry, and the microscopic wear patterns on tooth surfaces resulting from food processing. Although dental microwear has long been used by anthropologists and paleontologists to clarify diets in a diversity of mammals, until recently these methods focused on the counting of wear features (e.g., pits and scratches) from two-dimensional surfaces (typically via scanning electron microscopes or low-magnification light microscopes). The analysis of dental microwear textures can instead reveal dietary information in a broad range of herbivorous, omnivorous, and carnivorous mammals by characterizing microscopic tooth surfaces in three-dimensions, without the counting of individual surface features. To date, dental microwear textures in ungulates, xenarthrans, marsupials, carnivorans, and primates (including humans and their ancestors) are correlated with known dietary behavior in extant taxa and reconstruct ancient diets in a diversity of prehistoric mammals. For example, tough versus hard object feeding can be characterized across disparate phylogenetic groups and can distinguish grazers, folivorous, and flesh consumers (tougher food consumers) from woody browsers, frugivores, and bone consumers (harder object feeders). This paper reviews how dental microwear textures can be useful to reconstructing diets in a broad array of living and extinct mammals, with commentary on areas of future research. (topical review)

  17. The Effect of Emulsifier and Hydrocolloid on Baking Expansion and Texture of Bread from Modified Cassava

    Directory of Open Access Journals (Sweden)

    Pudjihastuti Isti

    2018-01-01

    Full Text Available Indonesia has a very abundant cassava that can be used instead of wheat. Bread made from cassava is safe for celiac sufferers, in which cannot tolerate a protein called gluten found in wheat flour. However, bread from cassava has the disadvantage that it cannot inflate perfectly. Our research goal is to study the effect of emulsifier and hydrocolloid concentration as modifying agents on baking expansion and bread texture (hardness. The test level hedonic preference for bread products results from modified tapioca is also necessary to know the level of customer satisfaction. This study were conducted by three main stages, modification of cassava, baking process, and analyses. Modification of cassava starch was applied using combination of lactic acid solution and ultra violet (UV irradiation. Emulsifier (DATEM and hydrocolloid (xanthan gum were used in baking process. The addition of emulsifier and hydrocolloid can improve baking expansion. The addition of 7% emulsifiers on modified cassava can increase the volume of bread, taste, and texture so it can give greater satisfaction to consumers. Hydrocolloid can replace the function of gluten so the bread can inflate perfectly. The optimal composition of modified cassava in bread making is 25% of modified cassava and 75% of wheat flour. The low value of texture (hardness on bread made from modified cassava indicated a better performance in comparison with native cassava. Baking expansion and texture of the bread is influenced by the modification process. Furthermore, the comprehensive and optimum studies of modification need to be investigated.

  18. Microstructure and mechanical properties of extruded and ECAPed AZ31 Mg alloy, grain refined with Al-Ti-C master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Torbati-Sarraf, S.A. [School of Metallurgical and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mahmudi, R., E-mail: mahmudi@ut.ac.ir [School of Metallurgical and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2010-06-15

    Different amounts of Al-3Ti-0.15C master alloy (TiCAl), as grain refiner, were added to the AZ31 magnesium alloy (Mg-3Al-1Zn-0.3Mn) and the resulting microstructure, grain size distributions, texture, and mechanical properties were studied after extrusion and equal channel angular pressing (ECAP). Results showed that the addition of 1.0 wt.% TiCAl had the strongest grain refinement effect, reducing the grain sizes by 51.2 and 38.4% in the extruded and ECAPed conditions, respectively. The observed grain refinement was in part due to the presence of the thermally stable micron- and submicron-sized particles in the melt which act as nucleation sites during solidification. During the high-temperature extrusion and ECAP processes, dynamic recrystallization (DRX) and grain growth are likely to occur. However, second phase particles will help in reducing the grain size by the particle stimulated nucleation (PSN) mechanism. Furthermore, the pinning effect of these particles can oppose grain growth by reducing the grain boundary migration. These two phenomena together with the partitioning of the grains imposed by the severe plastic deformation in the ECAP process have all contributed to the achieved fine-grained structure in the AZ31 alloy with enhanced mechanical properties. The enhancement in the shear yield stress (SYS) and ultimate shear strengths (USS) were, respectively, 11.2 and 6.1% in the extruded state, and 7.6 and 3.9% in the ECAPed conditions. The weaker strengthening effect of grain refinement in the ECAPed alloys can be attributed to the textural modifications which partly offset the achieved grain boundary strengthening.

  19. Combining fine texture and coarse color features for color texture classification

    Science.gov (United States)

    Wang, Junmin; Fan, Yangyu; Li, Ning

    2017-11-01

    Color texture classification plays an important role in computer vision applications because texture and color are two fundamental visual features. To classify the color texture via extracting discriminative color texture features in real time, we present an approach of combining the fine texture and coarse color features for color texture classification. First, the input image is transformed from RGB to HSV color space to separate texture and color information. Second, the scale-selective completed local binary count (CLBC) algorithm is introduced to extract the fine texture feature from the V component in HSV color space. Third, both H and S components are quantized at an optimal coarse level. Furthermore, the joint histogram of H and S components is calculated, which is considered as the coarse color feature. Finally, the fine texture and coarse color features are combined as the final descriptor and the nearest subspace classifier is used for classification. Experimental results on CUReT, KTH-TIPS, and New-BarkTex databases demonstrate that the proposed method achieves state-of-the-art classification performance. Moreover, the proposed method is fast enough for real-time applications.

  20. Application of electron back-scatter diffraction to texture research

    International Nuclear Information System (INIS)

    Randle, V.

    1996-01-01

    The application of electron back-scatter diffraction (EBSD) to materials research is reviewed. A brief history of the technique is given, followed by a description of present-day operation. The methodology of 'microtexture', i.e. spatially specific orientations, is described and recent examples of its application using EBSD are given, in particular to interstitial-free steel processing, growth of phases in a white iron and grain boundary phenomena in a superplastic alloy. The advantages and disadvantages of EBSD compared to use of X-rays for texture determination are discussed in detail

  1. Multi-scale analysis by SEM, EBSD and X-ray diffraction of deformation textures of a copper wire drawn industrially

    Directory of Open Access Journals (Sweden)

    Zidani M.

    2013-09-01

    Full Text Available In this study, we tried to understand the texture evolution of deformation during the cold drawing of copper wire (99.26% Drawn by the company ENICAB destined for electrical cabling and understand its link with the electrical conductivity. Characterisations performed show the appearance and texture development during the reduction of section of the wire. The texture is mainly composed of the fiber // DN (DN // drawing axis (majority and the fiber // ND (minority whose acuity increases with deformation level. The wire was performed for the main components of the texture, ie the fiber and conventionally present in these materials. We will pay particular attention on the energy of the cube component {100} recrystallization that develops when the level of reduction is sufficient. There was also an increase in hardness and electrical resistivity along the applied deformation.

  2. Novel hard compositions and methods of preparation

    Science.gov (United States)

    Sheinberg, H.

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated. 3 figs.

  3. Ultra fine grained Ti prepared by severe plastic deformation

    Science.gov (United States)

    Lukáč, F.; Čížek, J.; Knapp, J.; Procházka, I.; Zháňal, P.; Islamgaliev, R. K.

    2016-01-01

    The positron annihilation spectroscopy was employed for characterisation of defects in pure Ti with ultra fine grained (UFG) structure. UFG Ti samples were prepared by two techniques based on severe plastic deformation (SPD): (i) high pressure torsion (HPT) and (ii) equal channel angular pressing (ECAP). Although HPT is the most efficient technique for grain refinement, the size of HPT-deformed specimens is limited. On the other hand, ECAP is less efficient in grain refinement but enables to produce larger samples more suitable for industrial applications. Characterisation of defects by positron annihilation spectroscopy was accompanied by hardness testing in order to monitor the development of mechanical properties of UFG Ti.

  4. Influence of rolling and annealing conditions on texture and mechanical properties of zirconium (1960); Influence des conditions de laminage et de recuit sur la texture et les proprietes mecaniques du zirconium (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Orssaud, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-06-15

    Rolling and annealing textures of KROLL zirconium samples at several rolling rates were studied by pole figures with an automatic recorder versus the position in the sheet thickness. Tensile tests, hardness measurements and micrographic examinations allowed to study the evolution of the recrystallization and the variation of the mechanical properties after rolling and/or annealing. Annealing textures slightly varies with the annealing temperature. Annealing at 500 deg. C gives several peculiarities. This temperature seems characteristic in the study of zirconium. (author) [French] Les textures de laminage et de recuit d'echantillons de zirconium KROLL lamine a divers taux ont ete etudiees en tracant des diagrammes de figures de poles en divers points de l'epaisseur des toles, a l'aide d'un appareil a enregistrement automatique. Des essais de traction et des mesures de duretes ainsi que des micrographies ont permis de suivre l'evolution de la recristallisation et les variations des caracteristiques mecaniques au divers stades du laminage et du recuit. La texture de recuit parait varier avec la temperature utilisee. De nombreuses particularites qui apparaissent apres recuit vers 500 deg. C montrent l'importance de cette zone de temperature dans l'etude du zirconium. (auteur)

  5. An investigation of texturing by magnetic and mechanical techniques in high critical temperature superconducting ceramics

    International Nuclear Information System (INIS)

    Deschanels, X.

    1992-11-01

    The principal goal of this work is to quantify the influence of texture of ceramic superconductors ReBaCuO (Re=Dy, Y) on their critical current density (Jc). The magnetic alignment of particles at ambient temperature is the first technique who has allowed us to produce superconducting (Meissner effect) and textured ceramics. However, these materials are very brittle because of their porosity and this makes it impossible to measure their Jc. Press-forging (or creep sintering) is the second technique who has allowed us to prepare highly textured ceramics materials which are also dense. We have studied the influence of various conditions of thermomechanical treatment (sintering time and temperature, applied load, rate of deformation, density of the material at the beginning) on the texture quality. We have shown that at 900 deg, the eutectic liquid formed by BaCuO 2 , CuO and YBa 2 Cu 3 0 7-Y various mechanisms that help explain the formation of observed texture. After the oxidation stage which requires heat treatment under controlled atmospheres, we obtain superconducting ceramics (Tc=85 K). Moreover, this study also shows that the texture can improve the Jc by 400%, to 750 A/cm 2 at 77 K in the best specimens. This low value is explained by the presence of non-superconducting secondary phases and amorphous phases at the grain boundaries. (Author). 120 refs., figs., tabs

  6. Microindentation hardness evaluation of iridium alloy clad vent set cups

    International Nuclear Information System (INIS)

    Ulrich, G.B.; DeRoos, L.F.; Stinnette, S.E.

    1993-01-01

    An iridium alloy, DOP-26, is used as cladding for 238 PuO 2 fuel in radioisotope heat sources for space power systems. Presently, DOP-26 iridium alloy clad vent sets (CVS) are being manufactured at the Oak Ridge Y-12 Plant for potential use in the National Aeronautics and Space Administration's Cassini mission to Saturn. Wrought/ground/stress relieved blanks are warm formed into CVS cups. These cups are then annealed to recrystallize the material for subsequent fabrication/assembly operations as well as for final use. One of the cup manufacturing certification requirements is to test for Vickers microindentation hardness. New microindentation hardness specification limits, 210 to 310 HV, have been established for a test load of 1000 grams-force (gf). The original specification limits, 250 to 350 HV, were for 200 gf testing. The primary reason for switching to a higher test load was to reduce variability in the test data. The DOP-26 alloy exhibits microindentation hardness load dependence, therefore, new limits were needed for 1000 gf testing. The new limits were established by testing material from 15 CVS cups using 200 gf and 1000 gf loads and then statistically analyzing the data. Additional work using a Knoop indenter and a 10 gf load indicated that the DOP-26 alloy grain boundaries have higher hardnesses than the grain interiors

  7. Microindentation hardness evaluation of iridium alloy clad vent set cups

    International Nuclear Information System (INIS)

    Ulrich, G.B.; DeRoos, L.F.; Stinnette, S.E.

    1992-01-01

    An iridium alloy, DOP-26, is used as cladding for 238 PuO 2 fuel in radioisotope heat sources for space power systems. Presently, DOP-26 iridium alloy clad vent sets (CVS) are being manufactured at the Oak Ridge Y-12 Plant for potential use in the National Aeronautics and Space Administration's Cassini mission to Saturn. Wrought/ground/stress relieved blanks are warm formed into CVS cups. These cups are then annealed to recrystallize the material for subsequent fabrication/assembly operations as well as for final use. One of the cup manufacturing certification requirements is to test for Vickers microindentation hardness. New microindentation hardness specification limits, 210 to 310 HV, have been established for a test load of 1000 grams-force (gf). The original specification limits, 250 to 350 HV, were for 200 gf testing. The primary reason for switching to a higher test load was to reduce variability in the test data. The DOP-26 alloy exhibits microindentation hardness load dependence, therefore, new limits were needed for 1000 gf testing. The new limits were established by testing material from 15 CVS cups using 200 gf and 1000 gf loads and then statistically analyzing the data. Additional work using a Knoop indenter and a 10 gf load indicated that the DOP-26 alloy grain boundaries have higher hardnesses than the grain interiors

  8. Color, sensory and textural attributes of beef frankfurter, beef ham and meat-free sausage containing tomato pomace.

    Science.gov (United States)

    Savadkoohi, Sobhan; Hoogenkamp, Henk; Shamsi, Kambiz; Farahnaky, Asgar

    2014-08-01

    The present investigation focuses on the textural properties, sensory attributes and color changes of beef frankfurter, beef ham and meat-free sausage produced by different levels of bleached tomato pomace. The texture and color profile were performed using an instrumental texture analyzer and colorimeter. The findings indicated that tomato pomace-added sausages had higher water holding capacity (WHC) compared to that of commercial samples. The frankfurters containing 5 and 7% (w/w) tomato pomace had the highest redness (a*), chroma (C*) and color differences (ΔE) values, while the meat-free sausages containing 7% (w/w) tomato pomace had significant (p0.05) color differences between beef ham samples (with and without tomato pomace). A significant progression in the textural hardness and chewiness of systems containing tomato pomace was observed as well as higher sensory scores by panelists. According to sensorial evaluations, bleached tomato pomace improved the consumer acceptability and preference. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Hard magnetic property and δM(H) plot for sintered NdFeB magnet

    International Nuclear Information System (INIS)

    Gao, R.W.; Zhang, D.H.; Li, W.; Li, X.M.; Zhang, J.C.

    2000-01-01

    The hard magnetic properties and the interactions between the grains for sintered Nd 16 Fe 73 Co 5 B 6 magnets are investigated by using δM(H) plot technique. The results show that the δM(H) plot of NdFeB sintered magnet can explain the effects of the microstructure (size, shape and orientation of the grains) and the intergrain interactions on the hard magnetic properties of the magnet. However, the value of δM(H) is positive when the applied field is not strong enough, which means that the common δM(H) plot theory is not completely consistent with the sintered NdFeB magnet

  10. Semi-quantitative evaluation of texture components and anisotropy of the yield strength in 2524 T3 alloy sheets

    International Nuclear Information System (INIS)

    Shen, Fanghua; Yi, Danqing; Wang, Bin; Liu, Huiqun; Jiang, Yong; Tang, Cong; Jiang, Bo

    2016-01-01

    Decreasing the anisotropy of 2524 alloys is a key factor for their use in applications such as high-performance inertial components or space robots. Studying the interaction between sheet textures and anisotropy is a key factor to overcome this problem. In this study, the semi-quantitative approach to estimate the relation between texture and in-plane anisotropy (IPA) of yield strength has been developed. The intensity ratio between Cube and Brass texture components (F CGB ) was used as an effective variable for this purpose. This approach has been tested in 2524 T3 aluminum alloy sheets, which were investigated using X-Ray diffraction, scanning electron microscopy, optical microscopy and tensile tests. The results show that F CGB decreased with an increase in cold reduction. The 2524 T3 sheet, dominated by Cube texture grains, possesses the lowest in-plane anisotropy for the yield strength of all texture components investigated. The alloy sheet dominated by Brass texture exhibits the highest anisotropy, while the Goss texture-led sheets fall in between them. These results agree with the trends seen in the factor F CGB , suggesting that is suited to evaluate the anisotropy of yield strength in 2524 T3 alloy sheets semi-quantitatively.

  11. Semi-quantitative evaluation of texture components and anisotropy of the yield strength in 2524 T3 alloy sheets

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Fanghua [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yi, Danqing, E-mail: yioffice@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Light Alloy Research Institute, Central South University, Changsha, Hunan 410083 (China); National Collaborative Innovation Center of Advanced Nonferrous Structural Materials and Manufacturing, Central South University, Changsha 410083 (China); Wang, Bin; Liu, Huiqun; Jiang, Yong; Tang, Cong; Jiang, Bo [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-10-15

    Decreasing the anisotropy of 2524 alloys is a key factor for their use in applications such as high-performance inertial components or space robots. Studying the interaction between sheet textures and anisotropy is a key factor to overcome this problem. In this study, the semi-quantitative approach to estimate the relation between texture and in-plane anisotropy (IPA) of yield strength has been developed. The intensity ratio between Cube and Brass texture components (F{sub CGB}) was used as an effective variable for this purpose. This approach has been tested in 2524 T3 aluminum alloy sheets, which were investigated using X-Ray diffraction, scanning electron microscopy, optical microscopy and tensile tests. The results show that F{sub CGB} decreased with an increase in cold reduction. The 2524 T3 sheet, dominated by Cube texture grains, possesses the lowest in-plane anisotropy for the yield strength of all texture components investigated. The alloy sheet dominated by Brass texture exhibits the highest anisotropy, while the Goss texture-led sheets fall in between them. These results agree with the trends seen in the factor F{sub CGB}, suggesting that is suited to evaluate the anisotropy of yield strength in 2524 T3 alloy sheets semi-quantitatively.

  12. Wheat grain mechanical vulnerability to mechanical damage in light of the recent agrophysical research

    International Nuclear Information System (INIS)

    Grundas, S.

    1995-01-01

    The paper contains basic information on mechanical damage to wheat grains. The most important causes of mechanical damage and some of its effects in manufacturing are discussed. Grain material included 5 varieties of winter wheat and 2 varieties of spring wheat. Internal mechanical damage was examined by X-ray technique; external damage was examined with the colorimeter method. The results obtained were compared with the estimation results of more important processing features of the grain: gluten quantity and quality and grain hardness. (author)

  13. Characterization and hardness of TiCu–Ti2Cu3 intermetallic material fabricated by mechanical alloying and subsequent annealing

    International Nuclear Information System (INIS)

    Akbarpour, Mohammad Reza; Hesari, Feridoun Alikhani

    2016-01-01

    In this research, the microstructural and phase evolutions during mechanical alloying (MA) and subsequent heat treatment of Cu–Ti powder mixture are investigated through x-ray diffraction, scanning electron microscopy, transmission electron microscopy and micro-hardness measurements. The obtained experimental results demonstrated that after an optimum MA time of 30 h, TiCu intermetallic compound was achieved with a mean grain size of ≈8 nm and a high micro-hardness value of ≈634 Hv. Annealing the milled powder at different temperatures resulted in formation of major TiCu and Ti 2 Cu 3 , and minor Ti 2 Cu and Cu 4 Ti nanocrystalline phases, release of internal strain, and coarsening of grains. The amount of TiCu phase and the grain size increased with increase of the annealing temperature. Micro-hardness value of ≈765 Hv was recorded when the milled TiCu powder was annealed at 850 °C. This superior high micro-hardness value can be attributed to formation of higher amount of TiCu phase. (paper)

  14. TEXTURAL FRACTOGRAPHY

    Directory of Open Access Journals (Sweden)

    Hynek Lauschmann

    2011-05-01

    Full Text Available The reconstitution of the history of a fatigue process is based on the knowledge of any correspondences between the morphology of the crack surface and the velocity of the crack growth (crack growth rate - CGR. The textural fractography is oriented to mezoscopic SEM magnifications (30 to 500x. Images contain complicated textures without distinct borders. The aim is to find any characteristics of this texture, which correlate with CGR. Pre-processing of images is necessary to obtain a homogeneous texture. Three methods of textural analysis have been developed and realized as computational programs: the method based on the spectral structure of the image, the method based on a Gibbs random field (GRF model, and the method based on the idealization of light objects into a fibre process. In order to extract and analyze the fibre process, special methods - tracing fibres and a database-oriented analysis of a fibre process - have been developed.

  15. Microstructure and mechanical strength of near- and sub-micrometre grain size copper prepared by spark plasma sintering