WorldWideScience

Sample records for texaco gasification process

  1. DEMONSTRATION BULLETIN: TEXACO GASIFICATION PROCESS TEXACO, INC.

    Science.gov (United States)

    The Texaco Gasification Process (TGP) has operated commercially for nearly 45 years on feeds such as natural gas, liquid petroleum fractions, coal, and petroleum coke. More than 45 plants are either operational or under development in the United States and abroad. Texaco has dev...

  2. TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

  3. Assessment of environmental control technologies for Koppers-Totzek, Winkler, and Texaco coal gasification systems

    Energy Technology Data Exchange (ETDEWEB)

    Mudge, L.K.; Sealock, L.J. Jr.

    1979-09-01

    The US Department of Energy, Division of Environmental Control Technology, supports the Assistant Secretary for Environment in discharging responsibilities for environmental control aspects of technology in use and development. The coal gasification technologies employed by Winkler, Koppers-Totzek (K-T) and Texaco are described. Evaluation of the status of these technologies for control of major environmental pollutants indicates that a minimum risk to the environment is involved. The complete gasification process involves coal storage, coal preparation, gasification, gas cooling, particulate removal, acid gas cleanup, shift conversion, oxygen manufacture, cleanup of waste water and makeup water, and utility operation. The status of each of these technologies with respect to environmental acceptability is discussed. Very little is known about the behavior of trace elements in the K-T, Texaco and Winkler gasification systems. Airborne emissions of trace elements can occur from the utility boiler, and from wind entrainment of discharged residue and stored coal. Ash components are discharged from the gasification processes with gasifier residues and gas-cleanup sludges and residues. The trace element composition of coal is geochemically similar to the makeup of the earth's crust and includes almost all of the elements of the periodic table. The potential hazard from emissions of trace elements is mainly from long-term, low-level exposures to increased atmospheric pollution levels. Discharges from the K-T, Texaco and Winkler processes can be expected to have very minor contributions to atmospheric pollution levels of trace elements. Table 1 summarizes the status of technology and data needs for the different processing steps. The different process areas and their potential for intrusion of the environment are discussed.

  4. SITE TECHNOLOGY CAPSULE: TEXACO GASIFICATION PROCESS

    Science.gov (United States)

    In 1980, the U.S. Congress passed the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund. to protect human health and the environment from uncontrolled hazardous waste sites. CERCLA was amended by the Superfund Amendments and R...

  5. The FICFB - gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, H.; Veronik, G.; Fleck, T.; Rauch, R. [Vienna University of Technology (Austria); Mackinger, H.; Fercher, E. [Austrian Energy and Environment, Graz (Austria)

    1997-12-31

    A novel fluidized bed gasification reactor has been developed to get a product gas with a high calorific value (up to 15 MJ/Nm{sup 3}) and nearly free of nitrogen. The gasification process is based on an internally circulating fluidized system and consists of a gasification zone fluidized with steam and a combustion zone fluidized with air. The circulating bed material acts as heat carrier from the combustion to the gasification zone. Gas mixing between these two zones is avoided by construction measures. Furthermore, the apparatus is characterized by a very compact design. The results attained came fully up to expectations. (author)

  6. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  7. Gasification — the process and the technology

    NARCIS (Netherlands)

    van Swaaij, Willibrordus Petrus Maria

    1981-01-01

    Thermochemical gasification of biomass can produce low, medium and high calorific value gases. The characteristics, applications and potential of the different processes and reactor types are discussed. The introduction of biomass gasification on a large or intermediate scale for the production of

  8. Updraft gasification of salmon processing waste

    Science.gov (United States)

    The purpose of this research is to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible “syngas” in a high temperature (above 700 °C), oxygen deficient environmen...

  9. Mathematical Modelling of Coal Gasification Processes

    Science.gov (United States)

    Sundararajan, T.; Raghavan, V.; Ajilkumar, A.; Vijay Kumar, K.

    2017-07-01

    Coal is by far the most commonly employed fuel for electrical power generation around the world. While combustion could be the route for coal utilization for high grade coals, gasification becomes the preferred process for low grade coals having higher composition of volatiles or ash. Indian coals suffer from high ash content-nearly 50% by weight in some cases. Instead of transporting such high ash coals, it is more energy efficient to gasify the coal and transport the product syngas. Integrated Gasification Combined Cycle (IGCC) plants and Underground Gasification of coal have become attractive technologies for the best utilization of high ash coals. Gasification could be achieved in fixed beds, fluidized beds and entrained beds; faster rates of gasification are possible in fluidized beds and entrained flow systems, because of the small particle sizes and higher gas velocities. The media employed for gasification could involve air/oxygen and steam. Use of oxygen will yield relatively higher calorific value syngas because of the absence of nitrogen. Sequestration of the carbon dioxide after the combustion of the syngas is also easier, if oxygen is used for gasification. Addition of steam can increase hydrogen yield in the syngas and thereby increase the calorific value also. Gasification in the presence of suitable catalysts can increase the composition of methane in the product gas. Several competing heterogenous and homogenous reactions occur during coal major heterogenous reaction pathways, while interactions between carbon monoxide, oxygen, hydrogen, water vapour, methane and carbon dioxide result in several simultaneous gas-phase (homogenous) reactions. The overall product composition of the coal gasification process depends on the input reactant composition, particle size and type of gasifier, and pressure and temperature of the gasifier. The use of catalysts can also selectively change the product composition. At IIT Madras, over the last one decade, both

  10. Biomass utilization for the process of gasification

    Directory of Open Access Journals (Sweden)

    Josef Spěvák

    2008-01-01

    Full Text Available Biomass as one of the renewable resources of energy has bright future in utilization, especially in obtaining various forms of energy (heat, electrical energy, gas.According to the conception of energy policy of the Czech Republic and according to the fulfillment of the indicators of renewable resources using until the year 2010, the research of thermophysical characteristics of biofuels was realized.There were acquired considerable amount of results by combustion and gasification process on the basis of three-year project „Biomass energy parameters.” By means of combustion and gasification tests of various (biomass fuels were acquired the results which were not published so far.Acquired results are published in the fuel sheets, which are divided into four parts. They consist of information on fuel composition, ash composition, testing conditions and measurand overview. Measurements were realized for the process of combustion, fluidized-bed gasification and fixed-bed gasification. Following fuels were tested: Acacia, Pine, Birch, Beech, Spruce, Poplar, Willow, Rape, Amaranth, Corn, Flax, Wheat, Safflower, Mallow, and Sorrel.

  11. Feasibility of Biomass Biodrying for Gasification Process

    Science.gov (United States)

    Hamidian, Arash

    An important challenge of biomass gasification is the limitation of feedstock quality especially the moisture content, which plays a significant role on the performance of gasification process. Gasification requires low moisture levels (20% and less) and several reports have emphasized on the moisture as a typical problem while gasifying biomass. Moisture affects overall reaction rates in the gasifiers as a result of temperature drop and ultimately increases tar content, decreases gas yield, changes the composition of produced gas and affects the efficiency. Therefore, it is mandatory to pre-treat the biomass before gasification and reduce the moisture content to the suitable and economic level. The well-known solutions are either natural drying (not practical for commercial plants) or conventional drying technologies (have high operating costs). Biodrying is an alternative process, which uses both convective air and heat of biological reactions as a source of energy, to reduce the moisture. In the biodrying reactor heat is generated from exothermic decomposition of organic fraction of biomass and that is why the process is called "self-heating process". Employing such technology for drying biomass at pre-treatment units of gasification process returns several economic and environmental advantages to mills. In Europe, municipal waste treatment (MSW) plants use the biodrying at commercial scale to degrade a part of the biodegradable fraction of waste to generate heat and reduce the moisture content for high quality SRF (Solid Recovered Fuel) production. In Italy, wine industry is seeking to develop biodrying for energy recovery of grape wastes after fermentation and distillation, which returns economic benefits to the industry. In Canada, the development of biodrying technology for pulp and paper industry was started at Ecole polytechnique de Montreal as an option for sludge management solution. Therefore, batch biodrying reactor was successfully developed in 2004

  12. Robustness studies on coal gasification process variables | Coetzer ...

    African Journals Online (AJOL)

    Optimisation of the Sasol-Lurgi gasification process was carried out by utilising the method of Factorial Experimental Design on the process variables of interest from a specifically equipped full-scale test gasifier. The process variables that govern gasification are not always fully controllable during normal operation.

  13. Purification processes for coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, D.K.; Primack, H.S.

    1977-01-01

    It is apparent from the discussion that many routes can be taken to achieve acid-gas removal and sulfur recovery from coal gas. The selection of the optimum purification system is a major task. The type of coal, type of gasifier and the upstream processing all strongly influence the selection. Several generalizations can be made: (1) The cost of the purification sections of a high-Btu gas plant is significant--perhaps 10 to 30% of the capital cost of the coal conversion facility. (2) The cost of purifying gas produced from high-sulfur coal feed is more expensive than the cost for purifying gas produced from low-sulfur coal. (3) The choice of an acid-gas removal system will often be a function of system pressure. The economical choice will usually be: (a) amine-based systems at atmospheric pressure; (b) hot-carbonate systems at moderate pressure or (c) physical-solvent systems at higher pressure. (4) For a high-Btu, high-sulfur case: (a) A selective acid-gas removal system with a Claus plant is probably more economical than a non-selective acid-gas system with liquid oxidation of the H/sub 2/S in the regenerator off-gas. (b) Even moderately selective systems can produce an H/sub 2/S-rich gas suitable for a Claus plant. The CO/sub 2/-rich gas may or may not require further sulfur removal, depending on the selectivity. (5) For a high-Btu, low-sulfur case: (a) The hot carbonate and tertiary amine systems may not be sufficiently selective to produce a gas suitable for feed to a Claus process while a physical solvent system may be. Therefore, the physical solvent system may be expected to be more economical. (b) The regenerated gas from the bulk CO/sub 2/ removal system following a selective physical solvent system may require further sulfur removal, depending upon the sulfur level in the initial feedstock and the selectivity of the system selected.

  14. BIOMASS REACTIVITY IN GASIFICATION BY THE HYNOL PROCESS

    Science.gov (United States)

    A thermobalance reactor was used to evaluate the reactivity of poplar wood in gasification under the operating conditions specific for the Hynol process where biomass is gasified at 30 atm and 800E C with a hydrogen-rich gas recycled from methane synthesis. The gasification invol...

  15. Pulsed combustion process for black liquor gasification

    Energy Technology Data Exchange (ETDEWEB)

    Durai-Swamy, K.; Mansour, M.N.; Warren, D.W.

    1991-02-01

    The objective of this project is to test an energy efficient, innovative black liquor recovery system on an industrial scale. In the MTCI recovery process, black liquor is sprayed directly onto a bed of sodium carbonate solids which is fluidized by steam. Direct contact of the black liquor with hot bed solids promotes high rates of heating and pyrolysis. Residual carbon, which forms as a deposit on the particle surface, is then gasified by reaction with steam. Heat is supplied from pulse combustor resonance tubes which are immersed within the fluid bed. A portion of the gasifier product gas is returned to the pulse combustors to provide the energy requirements of the reactor. Oxidized sulfur species are partially reduced by reaction with the gasifier products, principally carbon monoxide and hydrogen. The reduced sulfur decomposed to solid sodium carbonate and gaseous hydrogen sulfide (H{sub 2}S). Sodium values are recovered by discharging a dry sodium carbonate product from the gasifier. MTCI's indirectly heated gasification technology for black liquor recovery also relies on the scrubbing of H{sub 2}S for product gases to regenerate green liquor for reuse in the mill circuit. Due to concerns relative to the efficiency of sulfur recovery in the MTCI integrated process, an experimental investigation was undertaken to establish performance and design data for this portion of the system.

  16. Second stage gasifier in staged gasification and integrated process

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  17. Modelling Test of Autothermal Gasification Process Using CFD

    Science.gov (United States)

    Janoszek, Tomasz; Stańczyk, Krzysztof; Smoliński, Adam

    2017-06-01

    There are many complex physical and chemical processes, which take place among the most notable are the chemical reactions, mass and energy transport, and phase transitions. The process itself takes place in a block of coal, which properties are variable and not always easy to determine in the whole volume. The complexity of the phenomena results in the need for a construction of a complex model in order to study the process on the basis of simulation. In the present study attempts to develop a numerical model of the fixed bed coal gasification process in homogeneous solid block with a given geometry were mode. On the basis of analysis and description of the underground coal gasification simulated in the ex-situ experiment, a numerical model of the coal gasification process was developed. The model was implemented with the use of computational fluid dynamic CFD methods. Simulations were conducted using commercial numerical CFD code and the results were verified with the experimental data.

  18. Groups win pollution suit against Texaco

    Energy Technology Data Exchange (ETDEWEB)

    Stern, P. (Natural Resources Defense Council, Washington, DC (United States))

    1992-12-01

    The Natural Resources Defense Council (NRDC) and the Delaware Audubon Society have won a ruling in federal court against Texaco Refining and Marketing, Inc. for continuous pollution of the Delaware River. Texaco was found to have committed hundreds of violations under the Clean Water Act during a 9 year period from 1983 to 1991, and was ordered to pay a $1.68 million penalty. Texaco must also improve its water pollution investigation practices which were deemed inconsistent and less than thorough, relying on supposition rather than thorough investigation. A court order enjoining Texaco from further violations was deemed necessary to vindicate the public interest. Illegal discharges included chlorine, ammonia, and oil and grease, with some violations exceeding legal limits by as much as 2000%.

  19. Dynamic Modelling of the Two-stage Gasification Process

    DEFF Research Database (Denmark)

    Gøbel, Benny; Henriksen, Ulrik B.; Houbak, Niels

    1999-01-01

    A two-stage gasification pilot plant was designed and built as a co-operative project between the Technical University of Denmark and the company REKA.A dynamic, mathematical model of the two-stage pilot plant was developed to serve as a tool for optimising the process and the operating conditions...... of the gasification plant.The model consists of modules corresponding to the different elements in the plant. The modules are coupled together through mass and heat conservation.Results from the model are compared with experimental data obtained during steady and unsteady operation of the pilot plant. A good...

  20. DESIGN, FABRICATION, ASSEMBLY AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF REACTION CHAMBER TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Tom Leininger

    2001-03-31

    Reliable measurement of gasifier reaction chamber temperature is important for the proper operation of slagging, entrained-flow gasification processes. Historically, thermocouples have been used as the main measurement technique, with the temperature inferred from syngas methane concentration being used as a backup measurement. While these have been sufficient for plant operation in many cases, both techniques suffer from limitations. The response time of methane measurements is too slow to detect rapid upset conditions, and thermocouples are subject to long-term drift, as well as slag attack, which eventually leads to failure of the thermocouple. Texaco's Montebello Technology Center (MTC) has developed an infrared ratio pyrometer system for measuring gasifier reaction chamber temperature. This system has a faster response time than both methane and thermocouples, and has been demonstrated to provide reliable temperature measurements for longer periods of time when compared to thermocouples installed in the same MTC gasifier. In addition, the system can be applied to commercial gasifiers without any significant scale-up issues. The major equipment items, the purge system, and the safety shutdown system in a commercial plant are essentially identical to the prototypes at MTC. The desired result of this DOE program is ''a bench-scale prototype, either assembled or with critical components (laboratory) tested in a convincing manner.'' The prototype of the pyrometer system (including gasifier optical access port) that was designed, assembled and tested for this program, has had previous prototypes that have been built and successfully tested under actual coal and coke gasification conditions in three pilot units at MTC. It was the intent of the work performed under the auspices of this program to review and update the existing design, and to fabricate and bench test an updated system that can be field tested in one or more commercial gasifiers

  1. Alexela ostab Hydro Texaco tanklaketi / Gert D. Hankewitz

    Index Scriptorium Estoniae

    Hankewitz, Gert D.

    2006-01-01

    Kütusefirma Alexela Oil teatas, et ostab tanklaketi Hydro Texaco kõik Balti riikide tanklad. Diagramm: Alexela ja Hydro Texaco majandusnäitajad. Vt. samas: Statoili juht: ühinemine turul muutusi ei too

  2. Mathematical modelling and optimization of biomass-plastic fixed-bed downdraft co-gasification process

    Directory of Open Access Journals (Sweden)

    Donskoy Igor

    2017-01-01

    Full Text Available Co-gasification of woody biomass and polyethylene is studied using mathematical modeling. The gasification process is downdraft fixed-bed. Comparison of modeling results with some experimental data is made. Influence of biomass/plastic ratio and air equivalence ratio on gasification efficiency is investigated.

  3. Mathematical modelling and optimization of biomass-plastic fixed-bed downdraft co-gasification process

    Science.gov (United States)

    Donskoy, Igor

    2017-10-01

    Co-gasification of woody biomass and polyethylene is studied using mathematical modeling. The gasification process is downdraft fixed-bed. Comparison of modeling results with some experimental data is made. Influence of biomass/plastic ratio and air equivalence ratio on gasification efficiency is investigated.

  4. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  5. The study of reactions influencing the biomass steam gasification process

    Energy Technology Data Exchange (ETDEWEB)

    C. Franco; F. Pinto; I. Gulyurtlu; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2003-05-01

    Steam gasification studies were carried out in an atmospheric fluidised bed. The gasifier was operated over a temperature range of 700 900{sup o}C whilst varying a steam/biomass ratio from 0.4 to 0.85 w/w. Three types of forestry biomass were studied: Pinus pinaster (softwood), Eucalyptus globulus and holm-oak (hardwood). The energy conversion, gas composition, higher heating value and gas yields were determined and correlated with temperature, steam/biomass ratio, and species of biomass used. The results obtained seemed to suggest that the operating conditions were optimised for a gasification temperature around 830{sup o}C and a steam/biomass ratio of 0.6 0.7 w/w, because a gas richer in hydrogen and poorer in hydrocarbons and tars was produced. These conditions also favoured greater energy and carbon conversions, as well the gas yield. The main objective of the present work was to determine what reactions were dominant within the operation limits of experimental parameters studied and what was the effect of biomass type on the gasification process. As biomass wastes usually have a problem of availability because of seasonal variations, this work analysed the possibility of replacing one biomass species by another, without altering the gas quality obtained. 19 refs., 8 figs. 2 tabs.

  6. Analysis of green liquor influence on coal steam gasification process

    Directory of Open Access Journals (Sweden)

    Karczewski Mateusz

    2017-01-01

    Full Text Available Gasification is a clean and efficient technology with a long history dating up to the 19th century. The possible application of this process ranges from gas production and chemical synthesis to the energy sector and therefore this technology holds noticeable potential for future applications. In order to advance it, a new efficient approaches for this complex process are necessary. Among possible methods, a process enhancing additives, such as alkali and alkaline earth metals seems to be a promising way of achieving such a goal, but in practice might turn to be a wasteful approach for metal economy, especially in large scale production. This paper shows alkali abundant waste material that are green liquor dregs as a viable substitute. Green liquor dregs is a waste material known for its low potential as a fuel, when used separately, due to its low organic content, but its high ash content that is also abundant in alkali and alkaline earth elements seems to make it a suitable candidate for application in coal gasification processes. The aim of this work is an evaluation of the suitability of green liquor waste to work as a potential process enhancing additive for coal steam gasification process. During the experiment, three blends of hard coal and green liquor dregs were selected, with consideration for low corrosive potential and possibly high catalytic activity. The mixtures were gasified in steam under four different temperatures. Their energies syngas yield, coal conversion degree and energies of activation were calculated with use of Random Pore Model (RPM and Grain Model (GM which allowed for their comparison.

  7. Biofluid process: fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, A. [ATEKO a.s., Hradec Kralove (Czech Republic)

    1996-12-31

    Fluidised-bed gasification of biomass was developed by ATEKO by using long-term experience from coal gasification. An experimental unit was built and a number of tests, first with sawdust gasification, were carried out. A gas combustion engine combined with a power generator was installed and operated in power production. (orig.)

  8. Gas processing handbook

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Brief details are given of processes including: BGC-Lurgi slagging gasification, COGAS, Exxon catalytic coal gasification, FW-Stoic 2-stage, GI two stage, HYGAS, Koppers-Totzek, Lurgi pressure gasification, Saarberg-Otto, Shell, Texaco, U-Gas, W-D.IGI, Wellman-Galusha, Westinghouse, and Winkler coal gasification processes; the Rectisol process; the Catacarb and the Benfield processes for removing CO/SUB/2, H/SUB/2s and COS from gases produced by the partial oxidation of coal; the selectamine DD, Selexol solvent, and Sulfinol gas cleaning processes; the sulphur-tolerant shift (SSK) process; and the Super-meth process for the production of high-Btu gas from synthesis gas.

  9. STUDY OF CHARACTERISTICS OF GASIFICATION PROCESS OF VARIOUS BIOMASS IN A DOWNDRAFT GASIFIER

    OpenAIRE

    Aktawan, Agus; Prasetya, Agus; Wilopo, Wahyu

    2015-01-01

    Biomass gasification is an endothermic reaction process for converting biomass into syngas, occurs at high temperatures with limited oxygen. Knowing the temperature profile of biomass gasification wood charcoal, coconut shell charcoal and coconut shell, rice husk and woodchip and seek optimal results from gasification of biomass are the purpose of the research.The equipment in this research consisted of; gasifier as the main tool with 4 temperature sensors, two cyclones for tar and dust separ...

  10. Numerical simulation of coal gasification process using the modifying Watanabe ? Otaka model

    OpenAIRE

    Papadopoulos, T.;Losurdo, M.;Spliethoff, H.

    2017-01-01

    High-pressure entrained flow coal gasification is becoming increasingly important particularly in the development of Integrated Coal Gasification Combined Cycle (IGCC) technology for the production of electricity. However, there is a lack of knowledge worldwide for the gasification process and more especially for the chemical reactions (reactions rates, constants) that take place under high pressure and temperature. Therefore a gasifier has been designed and is being built at the Institute fo...

  11. Mathematical Modelling of the Fixed-Bed Biomass-Coal Co-Gasification Process

    Directory of Open Access Journals (Sweden)

    Donskoy Igor G.

    2016-01-01

    Full Text Available The paper considers mathematical modelling of downdraft fixed-bed gasification process of the mixtures of woody biomass and coal. Biomass/coal ratio, biomass moisture content and air equivalence ratio are varying parameters. Boundaries of the efficient gasification regimes are estimated.

  12. Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-06-01

    In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Analysis of parameters of coal gasification process for demand of clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Zaporowski, B. (Technical University of Poznan, Poznan (Poland))

    1993-01-01

    The paper presents the complex energy analysis of the process of total, pressure coal gasification. The basis of this analysis is an elaborated mathematical model of the coal gasification process. This model is elaborated in a form that allows a simulation of the total pressure of gasification of coal, with the use of various gasifying media. The model constitutes a system of equations, describing chemical, physical and energy processes taking place in the gas generator. The laws of statistical quantum thermodynamics are used to formulate the equations describing chemical and physical processes proceeding in the gas generator. On the basis of the elaborated mathematical model of coal gasification process, special computer program was derived. This program allows multivariant calculations of parameters of coal gasification process to be made. For each variant the following were calculated: composition of gas produced in the process of coal gasification, caloric value of produced gas, volume of gas obtained from 1 kg of coal, consumption of gasifying medium per 1 kg of coal and chemical and energy efficiency of coal gasification process. 4 refs., 14 figs.

  14. Computational Studies for Underground Coal Gasification (UCG) Process

    Science.gov (United States)

    Chatterjee, Dipankar

    2017-07-01

    Underground coal gasification (UCG) is a well proven technology in order to access the coal lying either too deep underground, or is otherwise too costly to be extracted using the conventional mining methods. UCG product gas is commonly used as a chemical feedstock or as fuel for power generation. During the UCG process, a cavity is formed in the coal seam during its conversion to gaseous products. The cavity grows in a three-dimensional fashion as the gasification proceeds. The UCG process is indeed a result of several complex interactions of various geo-thermo-mechanical processes such as the fluid flow, heat and mass transfer, chemical reactions, water influx, thermo-mechanical failure, and other geological aspects. The rate of the growth of this cavity and its shape will have a significant impact on the gas flow patterns, chemical kinetics, temperature distributions, and finally the quality of the product gas. It has been observed that there is insufficient information available in the literature to provide clear insight into these issues. It leaves us with a great opportunity to investigate and explore the UCG process, both from the experimental as well as theoretical perspectives. In the development and exploration of new research, experiment is undoubtedly very important. However, due to the excessive cost involvement with experimentation it is not always recommended for the complicated process like UCG. Recently, with the advent of the high performance computational facilities it is quite possible to make alternative experimentation numerically of many physically involved problems using certain computational tools like CFD (computational fluid dynamics). In order to gain a comprehensive understanding of the underlying physical phenomena, modeling strategies have frequently been utilized for the UCG process. Keeping in view the above, the various modeling strategies commonly deployed for carrying out mathematical modeling of UCG process are described here in

  15. Development of an advanced, continuous mild gasification process for the production of co-products: Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Cha, C.Y.; Merriam, N.W.; Jha, M.C.; Breault, R.W.

    1988-06-01

    Research on mild gasification is discussed. The report is divided into three sections: literature survey of mild gasification processes; literature survey of char, condensibles, and gas upgrading and utilization methods; and industrial market assessment of products of mild gasification. Recommendations are included in each section. (CBS) 248 refs., 58 figs., 62 tabs.

  16. Numerical modelling of the CHEMREC black liquor gasification process. Conceptual design study of the burner in a pilot gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marklund, Magnus

    2001-02-01

    The work presented in this report is done in order to develop a simplified CFD model for Chemrec's pressurised black liquor gasification process. This process is presently under development and will have a number of advantages compared to conventional processes for black liquor recovery. The main goal with this work has been to get qualitative information on influence of burner design for the gas flow in the gasification reactor. Gasification of black liquor is a very complex process. The liquor is composed of a number of different substances and the composition may vary considerably between liquors originating from different mills and even for black liquor from a single process. When a black liquor droplet is gasified it loses its organic material to produce combustible gases by three stages of conversion: Drying, pyrolysis and char gasification. In the end of the conversion only an inorganic smelt remains (ideally). The aim is to get this smelt to form a protective layer, against corrosion and heat, on the reactor walls. Due to the complexity of gasification of black liquor some simplifications had to be made in order to develop a CFD model for the preliminary design of the gasification reactor. Instead of modelling droplets in detail, generating gas by gasification, sources were placed in a prescribed volume where gasification (mainly drying and pyrolysis) of the black liquor droplets was assumed to occur. Source terms for the energy and momentum equations, consistent with the mass source distribution, were derived from the corresponding control volume equations by assuming a symmetric outflow of gas from the droplets and a uniform degree of conversion of reactive components in the droplets. A particle transport model was also used in order to study trajectories from droplets entering the reactor. The resulting model has been implemented in a commercial finite volume code (AEA-CFX) through customised Fortran subroutines. The advantages with this simple

  17. Influence of Torrefaction on the Conversion Efficiency of the Gasification Process of Sugarcane Bagasse.

    Science.gov (United States)

    Anukam, Anthony; Mamphweli, Sampson; Okoh, Omobola; Reddy, Prashant

    2017-03-10

    Sugarcane bagasse was torrefied to improve its quality in terms of properties prior to gasification. Torrefaction was undertaken at 300 °C in an inert atmosphere of N₂ at 10 °C·min -1 heating rate. A residence time of 5 min allowed for rapid reaction of the material during torrefaction. Torrefied and untorrefied bagasse were characterized to compare their suitability as feedstocks for gasification. The results showed that torrefied bagasse had lower O-C and H-C atomic ratios of about 0.5 and 0.84 as compared to that of untorrefied bagasse with 0.82 and 1.55, respectively. A calorific value of about 20.29 MJ·kg -1 was also measured for torrefied bagasse, which is around 13% higher than that for untorrefied bagasse with a value of ca. 17.9 MJ·kg -1 . This confirms the former as a much more suitable feedstock for gasification than the latter since efficiency of gasification is a function of feedstock calorific value. SEM results also revealed a fibrous structure and pith in the micrographs of both torrefied and untorrefied bagasse, indicating the carbonaceous nature of both materials, with torrefied bagasse exhibiting a more permeable structure with larger surface area, which are among the features that favour gasification. The gasification process of torrefied bagasse relied on computer simulation to establish the impact of torrefaction on gasification efficiency. Optimum efficiency was achieved with torrefied bagasse because of its slightly modified properties. Conversion efficiency of the gasification process of torrefied bagasse increased from 50% to approximately 60% after computer simulation, whereas that of untorrefied bagasse remained constant at 50%, even as the gasification time increased.

  18. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    Science.gov (United States)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ˚ C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the

  19. The Effect of Temperature on the Gasification Process

    Directory of Open Access Journals (Sweden)

    Marek Baláš

    2012-01-01

    Full Text Available Gasification is a technology that uses fuel to produce power and heat. This technology is also suitable for biomass conversion. Biomass is a renewable energy source that is being developed to diversify the energy mix, so that the Czech Republic can reduce its dependence on fossil fuels and on raw materials for energy imported from abroad. During gasification, biomass is converted into a gas that can then be burned in a gas burner, with all the advantages of gas combustion. Alternatively, it can be used in internal combustion engines. The main task during gasification is to achieve maximum purity and maximum calorific value of the gas. The main factors are the type of gasifier, the gasification medium, biomass quality and, last but not least, the gasification mode itself. This paper describes experiments that investigate the effect of temperature and pressure on gas composition and low calorific value. The experiments were performed in an atmospheric gasifier in the laboratories of the Energy Institute atthe Faculty of Mechanical Engineering, Brno University of Technology.

  20. Carbon formation and metal dusting in advanced coal gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

    1997-02-01

    The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

  1. Energetic and exergetic performance assessment of some coals in Turkey for gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, M.; Ozek, N.; Yuksel, Y.E. [Suleyman Demirel University, Isparta (Turkey). Dept. of Physics

    2011-07-01

    This paper undertakes a study on energetic and exergetic performance evaluation of various types of coals in Turkey, such as Armutcuk, Amasra, Zonguldak and Catalagzi hard coals and Tuncbilek, Beypazari, Cayirhan, Afsin, Soma, Yatagan, Can and Sorgun lignites for gasification purposes, where syn-gas may subsequently be used for the production of electricity, heat, hydrogen, etc. in industry. The chemical exergy contents of these coals are determined and compared for a potential use in gasification, and their energetic and exergetic efficiencies are also assessed for performance comparison. In the analysis, exergetic efficiencies are evaluated for an idealised gasifier in which chemical equilibrium is reached, ashes of coals are not considered and heat losses are neglected. It is observed that coals having lower heating value have higher gasification efficiency, and the ratios of hydrogen to chemical exergy of coal are related to the gasification process efficiencies of this coal.

  2. Underground Coal Gasification: Rates of Post Processing Gas Transport

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Stanczyk, K.; Šolcová, Olga

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1707-1715 ISSN 0366-6352 R&D Projects: GA MŠk 7C12017 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gasification * gas transport * textural properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  3. Gasification of residual materials from coal liquefaction: Type II preliminary pilot-plant evaluation of molten H-Coal liquefaction residue

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.M.; Robin, A.M.

    1982-10-01

    About 5.5 tons of vacuum tower bottoms (residue) obtained from the liquefaction of Illinois No. 6 coal from the H-Coal liquefaction process pilot plant at Catlettsburg, Kentucky were successfully gasified at Texaco's Montebello Research Laboratory on January 16-17, 1982. Two test runs with molten H-Coal liquefaction residue were completed, each at a different operating temperature. The conversions of carbon in the feed to syngas achieved during the two test runs were 99.4 and 98.6 percent, yielding 35.2 and 35.5 standard cubic feet of dry syngas per pound of residue feed. The oxygen requirement was about 0.8 pound of oxygen per pound of residue for each run. The dry syngas contained about 93.4 (vol.) percent carbon monoxide plus hydrogen. The two short pilot unit runs did confirm the operability of the Texaco Synthesis Gas Generation Process with this feedstock, and the data obtained confirm earlier predictions of performance efficiency. A comparison of the gasification efficiency of molten H-Coal liquefaction residue with the gasification efficiency of H-Coal liquefaction residue-water slurry revealed that the molten process was more efficient. The molten system required less oxygen for gasification, 0.78 versus 1.00 pounds of oxygen per pound of residue, and produced a greater volume percent carbon monoxide plus hydrogen in the product syngas, 93.4% versus 79.2%, than the residue-water slurry.

  4. Fundamental research on novel process alternatives for coal gasification: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A H; Knight, R A; Anderson, G L; Feldkirchner, H L; Babu, S P

    1986-10-01

    The Institute of Gas Technology has conducted a fundamental research program to determine the technical feasibility of and to prepare preliminary process evaluations for two new approaches to coal gasification. These two concepts were assessed under two major project tasks: Task 1. CO/sub 2/-Coal Gasification Process Concept; Task 2. Internal Recirculation Catalysts Coal Gasification Process Concept. The first process concept involves CO/sub 2/-O/sub 2/ gasification of coal followed by CO/sub 2/ removal from the hot product gas by a solid MgO-containing sorbent. The sorbent is regenerated by either a thermal- or a pressure-swing step and the CO/sub 2/ released is recycled back to the gasifier. The product is a medium-Btu gas. The second process concept involves the use of novel ''semivolatile'' materials as internal recirculating catalysts for coal gasification. These materials remain in the gasifier because their vapor pressure-temperature behavior is such that they will be in the vapor state at the hotter, char exit part of the reactor and will condense in the colder, coal-inlet part of the reactor. 21 refs., 43 figs., 43 tabs.

  5. Catalytic Gasification of Lignocellulosic Biomass

    NARCIS (Netherlands)

    Chodimella, Pramod; Seshan, Kulathuiyer; Schlaf, Marcel; Zhang, Z. Conrad

    2015-01-01

    Gasification of lignocellulosic biomass has attracted substantial current research interest. Various possible routes to convert biomass to fuels have been explored. In the present chapter, an overview of the gasification processes and their possible products are discussed. Gasification of solid

  6. Low-temperature catalytic gasification of food processing wastes. 1995 topical report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Hart, T.R.

    1996-08-01

    The catalytic gasification system described in this report has undergone continuing development and refining work at Pacific Northwest National Laboratory (PNNL) for over 16 years. The original experiments, performed for the Gas Research Institute, were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous stirred-tank reactor tests provided useful design information for evaluating the preliminary economics of the process. This report is a follow-on to previous interim reports which reviewed the results of the studies conducted with batch and continuous-feed reactor systems from 1989 to 1994, including much work with food processing wastes. The discussion here provides details of experiments on food processing waste feedstock materials, exclusively, that were conducted in batch and continuous- flow reactors.

  7. Process simulation of ethanol production from biomass gasification and syngas fermentation.

    Science.gov (United States)

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Phillips, John R; Aichele, Clint P; Mohammad, Sayeed

    2017-12-01

    The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Development of an advanced, continuous mild gasification process for the production of coproducts

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; McCormick, R.L.; Hogsett, R.F.; Rowe, R.M.

    1990-10-23

    Research continued on the production of coproducts from continuous mild gasification. During the third quarter of 1990, work focused on start-up and operation of the 50 pound/hour char-to-carbon (CTC) process research unit (PRU). Start-up procedures have been finalized for the methane production reactor, and the design temperature has been achieved. Flows and pressures for the overall process have been balanced and optimized. We have achieved temperatures above 1500{degree}F in the carbon formation reactor. Upgrading experiments on mild gasification pitch have also continued on a pitch produced in run MG-122. Results of heat treating and catalytic treating tests are reported.

  9. Development of an advanced, continuous mild gasification process for the production of co-products

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, R.A.; Wright, R.E.; Im, C.J.; Henkelman, M.R.; O`Neal, G.W.

    1992-11-01

    The objective of this project is to develop a continuous mild gasification process to convert highly caking coals to coal liquids, char and coke for near term commercial application. Task 3, Bench-Scale Char Upgrading Study, has been underway since September 1989. In char upgrading studies, ``green`` uncured char briquettes have been prepared and calcined in 20-pound batches to evaluate the effects of char, binders, and heating conditions on final coke properties. A total of 150. formulations have been tested thus far in this work. Work on Task 4, Process Development Unit (PDU) Mild Gasification Study, has been in progress since February 1991, with the completion of a Continuous Mild Gasification Unit (CMGU) with a design rate of 1000 lb./hr. Since start-up of the CMGU, there have been 72 runs with a variety of operating conditions and coal types.

  10. Efficient volatile metal removal from low rank coal in gasification, combustion, and processing systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Bland, Alan E.; Sellakumar, Kumar Muthusami; Newcomer, Jesse D.

    2017-03-21

    Efficient coal pre-processing systems (69) integrated with gasification, oxy-combustion, and power plant systems include a drying chamber (28), a volatile metal removal chamber (30), recirculated gases, including recycled carbon dioxide (21), nitrogen (6), and gaseous exhaust (60) for increasing the efficiencies and lowering emissions in various coal processing systems.

  11. Pyrolysis and Gasification

    DEFF Research Database (Denmark)

    Astrup, Thomas; Bilitewski, B.

    2011-01-01

    Pyrolysis and gasification include processes that thermally convert carbonaceous materials into products such as gas, char, coke, ash, and tar. Overall, pyrolysis generates products like gas, tar, and char, while gasification converts the carboncontaining materials (e.g. the outputs from pyrolysis......) into a mainly gaseous output. The specific output composition and relative amounts of the outputs greatly depend on the input fuel and the overall process configuration. Although pyrolysis processes in many cases also occur in gasification (however prior to the gasification processes), the overall technology...... may often be described as gasification only. Pyrolysis, however, can also be employed without proceeding with gasification. Gasification is by no means a novel process; in the 19th century so-called ‘town gas’ was produced by the gasification of coal and for example used for illumination purposes...

  12. Development of an advanced, continuous mild gasification process for the production of co-products (Task 1), Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. (Institute of Gas Technology, Chicago, IL (United States)); Duthie, R.G. (Bechtel Group, Inc., San Francisco, CA (United States)); Wootten, J.M. (Peabody Holding Co., Inc., St. Louis, MO (United States))

    1991-09-01

    Under US DOE sponsorship, a project team consisting of the Institute of Gas Technology, Peabody Holding Company, and Bechtel Group, Inc. has been developing an advanced, mild gasification process to process all types of coal and to produce solid and condensable liquid co-products that can open new markets for coal. The three and a half year program (September 1987 to June 1991) consisted of investigations in four main areas. These areas are: (1) Literature Survey of Mild Gasification Processes, Co-Product Upgrading and Utilization, and Market Assessment; (2) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (3) Bench-Scale Char Upgrading Study; (4) Mild Gasification Technology Development: System Integration Studies. In this report, the literature and market assessment of mild gasification processes are discussed.

  13. Coal gasification by indirect heating in a single moving bed reactor: Process development & simulation

    Directory of Open Access Journals (Sweden)

    Junaid Akhlas

    2015-10-01

    Full Text Available In this work, the development and simulation of a new coal gasification process with indirect heat supply is performed. In this way, the need of pure oxygen production as in a conventional gasification process is avoided. The feasibility and energetic self-sufficiency of the proposed processes are addressed. To avoid the need of Air Separation Unit, the heat required by gasification reactions is supplied by the combustion flue gases, and transferred to the reacting mixture through a bayonet heat exchanger installed inside the gasifier. Two alternatives for the flue gas generation have been investigated and compared. The proposed processes are modeled using chemical kinetics validated on experimental gasification data by means of a standard process simulator (Aspen PlusTM, integrated with a spreadsheet for the modeling of a special type of heat exchanger. Simulation results are presented and discussed for proposed integrated process schemes. It is shown that they do not need external energy supply and ensure overall efficiencies comparable to conventional processes while producing syngas with lower content of carbon dioxide.

  14. System study on high temperature gas cleaning in Integrated Coal Gasification Combined Cycles (IGCC's). Systeemstudie hoge temperatuur gasreiniging bij KV-STEG-installaties; Bijlage

    Energy Technology Data Exchange (ETDEWEB)

    Alderliesten, P.T.; Jansen, D. (Netherlands Energy Research Foundation, Petten (Netherlands)); Brunia, A.; Melman, A.G.; Schmal, D.; Verschoor, M.J.E.; Woudstra, N. (Instituut voor Milieu- en Energietechnologie TNO, Apeldoorn (Netherlands)); Enoch, G.D.; Janssen, F.J.; Raas, J.L.; Tummers, J.F. (Keuring van Elektrotechnische Materialen, Arnhem (Netherlands)); Klein Teeselink, H. (Stork Ketels, Utrecht (N

    1990-11-01

    This volume is a supplement of the report with the same title, report number NOVEM--90-310. The complete input data and calculation results of the thermodynamic system calculations, as discussed in chapter 5 of the above-mentioned report, are presented. For each system calculation a process diagram, a list of the input data and a computer print of the calculation results are given for the following variants: SBAS, SBASa, S250, S350, S600, TBAS, TBASa, T250, T350, and T600. S stands for the Shell-coal-gasification process, and T for the Texaco-coal-gasification process. The BAS-variant is a low-temperature (40{sup o}C) gas cleaning process. The other variants are hot gas cleanup's (250, 350 and 600{sup o}C).

  15. CFD simulations of influence of steam in gasification agent on parameters of UCG process

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2015-01-01

    Full Text Available Underground coal gasification (UCG is considered to be a perspective and constantly developing technology. Nevertheless it is a very complex and technically difficult process, which results depend on many variables. Mathematical models enable detailed analysis of UCG process – for example – give possibility of prediction of syngas composition depending on applied gasification medium. In practice, mixtures of oxygen, air and steam are the most frequently used as converting agents. Steam is injected to the reactor in order to obtain combustible components. Nevertheless higher concentrations of steam create a problem of reduction of temperature in reactor. This issue of amount of steam in reacting system was analyzed in given paper. Computer simulations were used as test method applied in presented work. Calculations were carried by using Computational Fluid Dynamics (CDF method and Ansys Fluent software. Changes in outlet concentrations of syngas components (CO, CO2, CH4, H2O, H2, in relation with time of process, were presented. Composition of product gas, its heating value and temperature of process were also examined (on outlet of rector in function of content of steam in gasification agent (which was mixture of O2 and H2O. Obtained results indicated a possibility of conduct of stable gasification process (with predictable characteristic of gas. The simulation also demonstrated a possibility of deterioration of conditions in real reactors as a results of applying of too high amounts of steam.

  16. The influence of catalytic additives on kinetics of coal gasification process

    Directory of Open Access Journals (Sweden)

    Zubek Katarzyna

    2017-01-01

    Full Text Available Catalytic coal gasification is a process that has the potential to become one of the efficient industrial technology of energy production. For this reason, the subject of this study was to analyze the kinetics of catalytic gasification of ‘Janina’ coal with steam. Isothermal measurements were performed at 800 °C, 900 °C, 950 °C and 1000 °C at a pressure of 1 MPa using cations of sodium, potassium and calcium as catalysts. During examination the thermovolumetric method was used. This method allows to determine the formation rates of a gaseous product such as carbon monoxide, hydrogen, methane and carbon dioxide as well as their contribution to the resulting gas. Moreover, the influence of catalysts on the kinetics of CO and H2 formation at various temperatures was determined and the kinetics parameters were calculated with the use of isoconversional model, Random Pore Model and Grain Model. The obtained results confirmed the positive effect of catalysts on the coal gasification process. The catalytic measurements were characterized by higher reaction rate and shorter duration of the process, and the calculated values of the kinetic parameters were lower than for the gasification process without the addition of catalysts.

  17. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    Science.gov (United States)

    Butakov, Evgenii; Burdukov, Anatoly; Chernetskiy, Mikhail; Kuznetsov, Victor

    2017-10-01

    Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  18. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: Process performance and gas product characterization.

    Science.gov (United States)

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Frandsen, Flemming Jappe; Henriksen, Ulrik Birk

    2017-08-01

    Results from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.12 and with pure silica sand as start-up bed material. A total of 8600kg of MSS dry matter was gasified during 133h of operation. The average thermal loads during the five experiments were 62-100% of nominal capacity. The short term stability of all campaigns was excellent, but gasification of dry MSS lead to substantial accumulation of coarse and rigid, but un-sintered, ash particles in the system. Co-gasification of MSS with sufficient amounts of cereal straw was found to be an effective way to mitigate these issues as well as eliminate thermal MSS drying requirements. Characterization of gas products and process performance showed that even though gas composition varied substantially, hot gas efficiencies of around 90% could be achieved for all MSS fuel types. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Gasification Reaction Characteristics between Biochar and CO2 as well as the Influence on Sintering Process

    Directory of Open Access Journals (Sweden)

    Min Gan

    2017-01-01

    Full Text Available For achieving green production of iron ore sintering, it is significant to substitute biochar, which is a clean and renewable energy, for fossil fuels. In this paper, the gasification reaction between CO2 and biochar was investigated. The results showed the initial temperature and the final temperature of the gasification reaction between biochar and CO2 were lower, while the maximum weight loss rate and the biggest heat absorption value were much higher than those of coke breeze, which indicated gasification reaction between the biochar and CO2 occurred rapidly at lower temperature. The gasification activation energy of biochar was 131.10 kJ/mol, which was lower than that of the coke breeze by 56.26 kJ/mol. Therefore, biochar had a higher reactivity and easily reacted with CO2 to generate CO. As a result, when biochar replaced coke powder at equal heat condition in sintering process, the combustion efficiency of fuel decreased and was disadvantage to the mineralization of iron ores at high temperature. With the increase of substitute proportion, the sinter yield, tumble strength, and productivity were decreased. The proportion of biochar replacing coke breeze should not be higher than 40%. By reducing the heat replacement ratio of biochar, the yield and quality of sinter got improved.

  20. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  1. Preparation and Characterization of Malaysian Dolomites as a Tar Cracking Catalyst in Biomass Gasification Process

    OpenAIRE

    M. A. A. Mohammed; A. Salmiaton; W. A. K. G. Wan Azlina; M. S. Mohamad Amran; Y. H. Taufiq-Yap

    2013-01-01

    Three types of local Malaysian dolomites were characterized to investigate their suitability for use as tar-cracking catalysts in the biomass gasification process. The dolomites were calcined to examine the effect of the calcination process on dolomite’s catalytic activity and properties. The modifications undergone by dolomites consequent to thermal treatment were investigated using various analytical methods. Thermogravimetric and differential thermal analyses indicated that the dolomites u...

  2. Chemical hot gas purification for biomass gasification processes; Chemische Heissgasreinigung bei Biomassevergasungsprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Stemmler, Michael

    2010-07-01

    The German government decided to increase the percentage of renewable energy up to 20 % of all energy consumed in 2020. The development of biomass gasification technology is advanced compared to most of the other technologies for producing renewable energy. So the overall efficiency of biomass gasification processes (IGCC) already increased to values above 50 %. Therefore, the production of renewable energy attaches great importance to the thermochemical biomass conversion. The feedstock for biomass gasification covers biomasses such as wood, straw and further energy plants. The detrimental trace elements released during gasification of these biomasses, e.g. KCl, H{sub 2}S and HCl, cause corrosion and harm downstream devices. Therefore, gas cleaning poses an especial challenge. In order to improve the overall efficiency this thesis aims at the development of gas cleaning concepts for the allothermic, water blown gasification at 800 C and 1 bar (Guessing-Process) as well as for the autothermic, water and oxygen blown gasification at 950 C and 18 bar (Vaernamo-Process). Although several mechanisms for KCl- and H{sub 2}S-sorption are already well known, the achievable reduction of the contamination concentration is still unknown. Therefore, calculations on the produced syngas and the chemical hot gas cleaning were done with a thermodynamic process model using SimuSage. The syngas production was included in the calculations because the knowledge of the biomass syngas composition is very limited. The results of these calculations prove the dependence of syngas composition on H{sub 2}/C-ratio and ROC (Relative Oxygen Content). Following the achievable sorption limits were detected via experiments. The KCl containing syngases were analysed by molecular beam mass spectrometry (MBMS). Furthermore, an optimised H{sub 2}S-sorbent was developed because the examined sorbents exceeded the sorption limit of 1 ppmv. The calculated sorption limits were compared to the limits

  3. Process simulation of single-step dimethyl ether production via biomass gasification.

    Science.gov (United States)

    Ju, Fudong; Chen, Hanping; Ding, Xuejun; Yang, Haiping; Wang, Xianhua; Zhang, Shihong; Dai, Zhenghua

    2009-01-01

    In this study, we simulated the single-step process of dimethyl ether (DME) synthesis via biomass gasification using ASPEN Plus. The whole process comprised four parts: gasification, water gas shift reaction, gas purification, and single-step DME synthesis. We analyzed the influence of the oxygen/biomass and steam/biomass ratios on biomass gasification and synthesis performance. The syngas H(2)/CO ratio after water gas shift process was modulated to 1, and the syngas was then purified to remove H(2)S and CO(2), using the Rectisol process. Syngas still contained trace amounts of H(2)S and about 3% CO(2) after purification, which satisfied the synthesis demands. However, the high level of cold energy consumption was a problem during the purification process. The DME yield in this study was 0.37, assuming that the DME selectivity was 0.91 and that CO was totally converted. We performed environmental and economic analyses, and propose the development of a poly-generation process based on economic considerations.

  4. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    Science.gov (United States)

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  6. Handbook of gasifiers and gas-treatment systems. [39 gasification processes and 40 gas processing systems

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, R.D.

    1982-09-01

    In February 1976, the Energy Research and Development Administration (ERDA) published the Handbook of Gasifiers and Gas Treatment Systems. The intent of this handbook was to provide a ready reference to systems that are or may be applicable to coal conversion technology. That handbook was well received by users and was subsequently reprinted many times. The Department of Energy (successor agency to the ERDA) expands, revises and updates the Handbook in this volume. This new Handbook is not intended as a comparative evaluation, but rather as an impartial reference on recent and current technology. The Handbook now presents 39 gasification technologies and 40 gas processing systems that are or may be applicable to coal conversion technology. The information presented has been approved or supplied by the particular licensor/developer.

  7. PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2017-02-01

    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.

  8. Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction.

    Science.gov (United States)

    Gorazda, K; Tarko, B; Werle, S; Wzorek, Z

    2018-03-01

    Increasing problems associated with sewage sludge disposal are observed nowadays. As the thermal conversion of sewage sludge (combustion, co-combustion, gasification and pyrolysis) appears to be the most promising alternative for its management, the solid residues left after gasification were examined. The present study evaluates the potential of this waste as an alternative phosphorus source in the context of phosphorus recovery. The obtained solid gasification residues were characterised (chemical and phase composition, thermal properties, surface properties and technological parameters used for phosphorus raw materials) and compared to commercial phosphate raw materials. It was revealed that gasification residue is a valuable source of phosphorus and microelements, comparable to sewage sludge ash (SSA) considered nowadays as secondary phosphorus raw materials. Chemical properties as well as technological parameters characteristic for natural phosphate ores are different. Solid gasification residue was leached with mineral acids (phosphoric and nitric) according to the patented method of phosphorus recovery - PolFerAsh, developed by Cracow University of Technology. It was revealed that phosphorus can be selectively leached from solid gasification residue with high efficiency (73-82%); moreover, most of the iron and heavy metals stay in the solid phase due to the low concentration of acids and proper solid to liquid phase ratio. The obtained leachates are valuable products that can be considered for the production of fertilisers. Combining the gasification process with nutrient recovery provides the opportunity for more environmentally efficient technologies driven by sustainable development rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Underground coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Vydra, J.; Pragr, P.; Skalicka, J.

    1988-03-01

    Discusses principles of underground coal gasification, which comprises 2 stages: drilling boreholes into the seams to be gasified and connecting them together and actual gasification process. Describes method used in USA and USSR involving multiple narrow extraction fronts and gas removal through a network of parallel channels in the seam. Refers to possibility of using inclined-horizontal drilling method (adapted from oil industry practice) to perform gasification in deep seams and discusses gasification media (air or oxygen, either alone or mixed with water vapor or carbon dioxide). Lists 3 basic gasification schemes in use today: production of low-energy gas for power plants by gasification using an air/water vapor mixture; production of medium-energy gas for use as chemical synthesis gas by gasification using oxygen/water vapor mixture; production of substitute natural gas, rich in methane, by gasification using high gas pressure and high hydrogen content. Describes 3 main stages of gasification: 0-300 degrees C - drying stage, when hygroscopically bound water and crystalline water are removed; 300- 700 degrees C - pyrolysis stage, when bituminous substances are converted to gaseous products; 700-1200 degrees C - gasification stage, when coke is formed and coke gasification occurs. 5 refs.

  10. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  11. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Jeffrey J. [Phillips66 Company, West Terre Haute, IN (United States)

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char

  12. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-06-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

  13. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-04-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

  14. Study on the combined sewage sludge pyrolysis and gasification process: mass and energy balance.

    Science.gov (United States)

    Wang, Zhonghui; Chen, Dezhen; Song, Xueding; Zhao, Lei

    2012-12-01

    A combined pyrolysis and gasification process for sewage sludge was studied in this paper for the purpose of its safe disposal with energy self-balance. Three sewage sludge samples with different dry basis lower heat values (LHV(db)) were used to evaluate the constraints on this combined process. Those samples were pre-dried and then pyrolysed within the temperature range of 400-550 degrees C. Afterwards, the char obtained from pyrolysis was gasified to produce fuel gas. The experimental results showed that the char yield ranged between 37.28 and 53.75 wt% of the dry sludge and it changed with ash content, pyrolysis temperature and LHV(db) of the sewage sludge. The gas from char gasification had a LHV around 5.31-5.65 MJ/Nm3, suggesting it can be utilized to supply energy in the sewage sludge drying and pyrolysis process. It was also found that energy balance in the combined process was affected by the LHV(db) of sewage sludge, moisture content and pyrolysis temperature. Higher LHV(db), lower moisture content and higher pyrolysis temperature benefit energy self-balance. For sewage sludge with a moisture content of 80 wt%, LHV(db) of sewage sludge should be higher than 18 MJ/kg and the pyrolysis temperature should be higher than 450 degrees C to maintain energy self-sufficiency when volatile from the pyrolysis process is the only energy supplier; when the LHV(db) was in the range of 14.65-18 MJ/kg, energy self-balance could be maintained in this combined process with fuel gas from char gasification as a supplementary fuel; auxiliary fuel was always needed if the LHV(db) was lower than 14.65 MJ/kg.

  15. Development of an advanced, continuous mild gasification process for the production of co-products. Quarterly report, January 1994--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    O`Neal, G.W.

    1994-04-01

    The primary objective of this project is to develop an advanced continuous mild gasification process and product upgrading processes which will be capable of eventual commercialization. This program consists of four tasks. Task 1 is a literature survey of mild gasification processes and product upgrading methods and also a market assessment for mild gasification products. Based on the literature survey, a mild gasification process and char upgrading method will be identified for further development. Task 2 is a bench-scale investigation of mild gasification to generate data for a larger scale reactor. Task 3 is a bench-scale study of char upgrading to value added products. Task 4 is being implemented by building and operating a 1000-pound per hour demonstration facility. Task 4 also includes a technical and economic evaluation based on the performance of the mild gasification demonstration facility.

  16. Evaluating the status of the Texaco gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Perry, H.

    1981-01-01

    Conclusions after a series of runs at steady state conditions in the pilot plant are: (1) Western Kentucky No. 9 coal (either run-of-mine or washed) can be gasified without pretreatment; (2) other coking bituminous coal may also be able to be gasified without pretreatment; (3) pretreatment is not required to achieve satisfactory ash agglomeration; (4) balanced ash agglomeration with satisfactory removal of the agglomerates has been achieved and stable operation of ash agglomeration is possible during periods of short upset; (5) solutions appear to have been found for prevention of clinkering and sintering by alternative venturi design, modification in the oxygen feed system and increasing the superficial velocity of the gas; (6) under certain circumstances fines recycle has been achieved with stable operation and fluidization; (7) the process can be operated at pressures up to 60 psig without adversely affecting other process parameters; (8) a wide range of operating conditions can be used while maintaining system operability; and (9) in a single test water cooling of the cyclone appears to prevent ash deposition on the cooled surfaces which confirms the experience of Westinghouse with ash deposition prevention in their fluidized bed gasifier. 11 references, 12 tables.

  17. Performance analysis of RDF gasification in a two stage fluidized bed-plasma process.

    Science.gov (United States)

    Materazzi, M; Lettieri, P; Taylor, R; Chapman, C

    2016-01-01

    The major technical problems faced by stand-alone fluidized bed gasifiers (FBG) for waste-to gas applications are intrinsically related to the composition and physical properties of waste materials, such as RDF. The high quantity of ash and volatile material in RDF can provide a decrease in thermal output, create high ash clinkering, and increase emission of tars and CO2, thus affecting the operability for clean syngas generation at industrial scale. By contrast, a two-stage process which separates primary gasification and selective tar and ash conversion would be inherently more forgiving and stable. This can be achieved with the use of a separate plasma converter, which has been successfully used in conjunction with conventional thermal treatment units, for the ability to 'polish' the producer gas by organic contaminants and collect the inorganic fraction in a molten (and inert) state. This research focused on the performance analysis of a two-stage fluid bed gasification-plasma process to transform solid waste into clean syngas. Thermodynamic assessment using the two-stage equilibrium method was carried out to determine optimum conditions for the gasification of RDF and to understand the limitations and influence of the second stage on the process performance (gas heating value, cold gas efficiency, carbon conversion efficiency), along with other parameters. Comparison with a different thermal refining stage, i.e. thermal cracking (via partial oxidation) was also performed. The analysis is supported by experimental data from a pilot plant. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Preparation and Characterization of Malaysian Dolomites as a Tar Cracking Catalyst in Biomass Gasification Process

    Directory of Open Access Journals (Sweden)

    M. A. A. Mohammed

    2013-01-01

    Full Text Available Three types of local Malaysian dolomites were characterized to investigate their suitability for use as tar-cracking catalysts in the biomass gasification process. The dolomites were calcined to examine the effect of the calcination process on dolomite’s catalytic activity and properties. The modifications undergone by dolomites consequent to thermal treatment were investigated using various analytical methods. Thermogravimetric and differential thermal analyses indicated that the dolomites underwent two stages of decomposition during the calcination process. The X-ray diffraction and Fourier-transform infrared spectra analyses showed that thermal treatment of dolomite played a significant role in the disappearance of the CaMg(CO32 phase, producing the MgO-CaO form of dolomite. The scanning electron microscopy microphotographs of dolomite indicated that the morphological properties were profoundly affected by the calcination process, which led to the formation of a highly porous surface with small spherical particles. In addition, the calcination of dolomite led to the elimination of carbon dioxide and increases in the values of the specific surface area and average pore diameter, as indicated by surface area analysis. The results showed that calcined Malaysian dolomites have great potential to be applied as tar-cracking catalysts in the biomass gasification process based on their favorable physical properties.

  19. The Peat and Wood Gasification at Different Conditions of the Pyrolysis Process

    Directory of Open Access Journals (Sweden)

    Portnov Dmitriy

    2015-01-01

    Full Text Available In this article are described the prospects of peat and wood using as a raw material for gasification with producing of high potential synthesis gas. It is shown that the low-grade fuel recycling, in particular wood and peat makes a use of this energy sources a possible alternative to the using a more traditional coal and natural gas. The features of low-temperature pyrolysis are analyzed and computer modeling of this process at different conditions is conducted. The temperature influence of recycling to main parameters (calorific value, elementary composition of gaseous components of produced gas is established.

  20. Gasification of Woody Biomass.

    Science.gov (United States)

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges.

  1. Study of Raw Materials Treatment by Melting and Gasification Process in Plasma Arc Reactor

    Directory of Open Access Journals (Sweden)

    Peter KURILLA

    2010-12-01

    Full Text Available The world consumption of metals and energy has increased in last few decades and it is still increasing. Total volume production results to higher waste production. Raw material basis of majority metals and fossil fuels for energy production is more complex and current waste treatment has long term tendency. Spent power cells of different types have been unneeded and usually they are classified as dangerous waste. This important issue is the main topic of the thesis, in which author describes pyrometallurgical method for storage batteries – power cells and catalysts treatment. During the process there were tested a trial of spent NiMH, Li – ion power cells and spent copper catalysts with metal content treatment by melting and gasification process in plasma arc reactor. The synthetic gas produced from gasification process has been treated by cogenerations micro turbines units for energy recovery. The metal and slag from treatment process are produced into two separately phases and they were analyzing continually.

  2. Gasification system

    Science.gov (United States)

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  3. Substitution of fossil carbon in metallurgy process approaches for biomass introduction via gasification

    Energy Technology Data Exchange (ETDEWEB)

    Kleinhappl, M.; Roschitz, C.; Stutterecker, W. (Austrian bioenergy centre gmbH, Area gasification, Graz (Austria)); Kepplinger, W. (Leoben University of Mining and Materials, Institute for Process Technology and Industrial Environmental Protection, Leoben (Austria)); Hofbauer, H. (Vienna University of Technology, Institute of Chemical Engineering, Environmental Technology and Biosciences, Vienna (Austria))

    2007-07-01

    A look at the historic development shows, that the early production of wrought iron by the peoples Hethitic (turkey) 1500 B.C. and Chinese 600 B.C. (cast iron); 200 A.D (blast furnace) was based on charcoal. In 1709 the utilisation of fossil coke from coal has started. About 1910 the last char coal operated blast furnaces was shut down in the deepest valley in central Europe. Nowadays we have gigantic production of crude iron in Europe, and all over the world. The monitoring of CO{sub 2} as a greenhouse gas is now done in all branches of energy, transportation and production. In this work the production of iron is analysed, as well as the systems of biomass conversion into char coal, oil and product gas. The biomass technologies of pyrolysis and gasification show suitable products. The systems of blast furnace, MIDREX and COREX show connectors to consume these products. In further work the complete utilisation of biomass with high efficiency as an additionally carrier of carbon/hydrogen will be investigated. Regarding to the necessary process data it will be focused on the path of gasification and 'gas coupling'. A path of complete gasification is preferred, because of the connection to a gas injection system of blast furnace, a DR Midrex plant and the coking plant can be combined with. For evaluation an amount of 30,000 m3/h up to 100,000 m3/h of gas with a lower heating value of minimally 10 MJ/m3 is considered. The necessary quantity of needed biomass resources has been evaluated and the delivery seems to be feasible. The gas quality requirements like inerts, acids, heating value, pressure level are discussed. The role of CO{sub 2}, its shift from fossil to renewable and the precipitation with absorption technology is lightened. The results of this work are the basis of decision in next future. (orig.)

  4. Development of an advanced, continuous mild gasification process for the production of co-products

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.A.; Gissy, J.; Onischak, M.; Kline, S.; Babu, S.P.

    1990-01-01

    Research continued on the production of co-products from mild gasification. This quarter, 10 mild gasification tests were conducted in the 8-inch-I.D. process research unit (PRU). Modifications to the PRU were made during this period to improve mixing and to overcome the caking tendency of the Illinois No. 6 coal. Six of the tests resulted in satisfactory operation at steady conditions for 2.25 to 3.25 hours. Samples of char, gas, water, and organic condensables were collected over a one-hour period from each of these successful tests and analyzed. The effects of process temperature over the range of 1025{degree} to 1390{degree} was studied during this quarter. Compositional effects on the oils and tars observed with increased temperature are increased light oil content, decreased pitch content, decreased oxygen content, increased nitrogen and sulfur content, and increasing aromaticity. Char upgrading studies continued during the quarter. Briquettes made in a laboratory press, using either a pitch binder or Illinois No. 6 coal to provide an in-situ binder, were calcined and tested for diametral compression strength. Char was also subjected to steam activation at a variety of conditions to determine the potential for use as a low-cost absorbent for water treatment. 2 refs., 15 figs., 11 tabs.

  5. Development of an advanced, continuous mild gasification process for the production of co-products (Task 1), Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. [Institute of Gas Technology, Chicago, IL (United States); Duthie, R.G. [Bechtel Group, Inc., San Francisco, CA (United States); Wootten, J.M. [Peabody Holding Co., Inc., St. Louis, MO (United States)

    1991-09-01

    Under US DOE sponsorship, a project team consisting of the Institute of Gas Technology, Peabody Holding Company, and Bechtel Group, Inc. has been developing an advanced, mild gasification process to process all types of coal and to produce solid and condensable liquid co-products that can open new markets for coal. The three and a half year program (September 1987 to June 1991) consisted of investigations in four main areas. These areas are: (1) Literature Survey of Mild Gasification Processes, Co-Product Upgrading and Utilization, and Market Assessment; (2) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (3) Bench-Scale Char Upgrading Study; (4) Mild Gasification Technology Development: System Integration Studies. In this report, the literature and market assessment of mild gasification processes are discussed.

  6. Pressurized gasification solves many problems. IVOSDIG process for peat, wood and sludge

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, O.; Repo, A.

    1996-11-01

    Research is now being done on one of the essential elements of pressurized gasification: the feeding of fuel into high pressure. At the IVOSDIG pilot plant in Jyvaeskylae, a pilot-scale piston feeder for peat, wood and sludge has been tested. A piston feeder achieves pressurization through the movement of the piston, not by inert pressurization gas. The feeder cylinder then turns 180 degrees to another position, and the piston forces the fuel contained in the cylinder into the pressure vessel, which is at the process pressure. The feeder has to cylinders; one is filled while the other is being emptied. In pilot-scale tests, the capacity of the feeder is ten cubic metres of fuel per hour. The commercial-scale feeder has been designed for a capacity of fifty cubic metres per hour. The feeder operates hydraulically, and the hydraulic system can be assembled from commercially available components. IVO began development work to devise a feeder based on the piston technique in 1992. During 1993, short tests were performed with the pilot-scale feeder. Tests under real conditions were begun during 1994 at the laboratory of VTT Energy in Jyvaeskylae, which houses the IVOSDIG pressurized gasification pilot plant for moist fuels developed by IVO

  7. Evaluating the emissions from the gasification processing of municipal solid waste followed by combustion.

    Science.gov (United States)

    Lopes, Evandro José; Queiroz, Neide; Yamamoto, Carlos Itsuo; da Costa Neto, Pedro Ramos

    2018-03-01

    In this study, we evaluated the emissions of pollutants generated from the combustion of syngas in the gasification of Municipal Solid Waste (MSW) in Brazil using a mobile grille gasifier fed with domestic waste without any previous separation or grinding. The basic syngas composition (H 2 , CH 4 and CO) was analyzed by gas chromatography and the Lower Calorific Value was calculated, which ranged from 1.9 to 10.2 MJ/kg. In the monitoring of combustion gases (CO 2 , CO, NO , NO 2 , SO 2 and Total Hydrocarbon Content), values were found for these pollutants that were lower than the values established by the Brazilian legislation, except for SO 2 . Regarding the determination of the emission of metals, values lower than those permissible in the legislation were found for the most toxic metals grouped as class I (Cd, Hg, Tl). Therefore, it was evident that gasification followed by the combustion of syngas from MSW without prior segregation at source has the advantages of having fewer process steps, allowing the low emission of pollutants into the environment and it avoids that the residues are deposited in landfills, which are generators of leachate and greenhouse gas (methane). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Gasification process for fuel supply - basic conceptional aspects; Vergasung zur Kraftstoffbereitstellung - Grundsaetzliche konzeptionelle Ueberlegungen

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, A.; Kaltschmitt, M. [Institut fuer Energetik und Umwelt gGmbH, Leipzig (Germany); Bolhar-Nordenkampf, M.; Hofbauer, H. [Technische Universitaet Wien (Austria). Inst. fuer Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften

    2003-07-01

    Advanced gasification processes are investigated in this contribution. There are several options, from fixed bed to mixed to fluidized bed systems and with water vapour or water vapour/oxygen mixtures as gasification agents. One key issue is the fuel supply and the reduction of the transport cost; this means either very favourable siting conditions or thermochemical conversion of fuels produced in distributed systems. The contribution presents two overall concepts for commercial plants. [German] Um den Aufwand einer - in jedem Fall erforderlichen - Gasaufbereitung jedoch moeglichst gering zu halten, ist die Entwicklung fortschrittlicher Vergasungsverfahren eine der Hauptaufgaben der zukuenftigen Kraftstoffbereitstellung. Betrachtet man ausgehend von diesen Anforderungen an das Synthesegas sowohl die wissenschaftlichen Grundlagenerkenntnisse, als auch die in der Vergangenheit realisierten Entwicklungen im Bereich der Vergasungstechnik, so ist festzustellen, dass nur - Bewegtbett- oder mehrstufige Reaktoren unter dem Einsatz von - Wasserdampf oder Wasserdampf-Sauerstoff-Gemischen als Vergasungsmittel zielfuehrend sind. Sowohl die Entwicklung geeigneter Vergasungsverfahren als auch die Zusammenfuehrung zu funktionierenden Gesamtkonzepten ist jedoch noch nicht abgeschlossen. Eine Fragestellung dabei ist, die - fuer die Vergasung erforderliche - Bereitstellung der entsprechenden Brennstoffmengen zur Reduktion der Transportkosten; dazu bedarf es entweder sehr guenstiger Standortbedingungen der Gesamtkonzepte oder einer thermochemischen Wandlung der dezentral anfallenden Brennstoffe. Aus diesen Ueberlegungen heraus werden in diesem Vortrag zwei Gesamtkonzepte vorgestellt, welche zwar weiterer Untersuchungen beduerfen, jedoch die Kommerzialisierung synthetischer Bio-Kraftstoffe als sehr wahrscheinlich erscheinen lassen.

  9. Molten salt coal gasification process development unit. Phase 1. Volume 1. PDU operations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, A.L.

    1980-05-01

    This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit. In this process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of sodium carbonate, removal of sulfur, and disposal of the ash. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner during one of the runs. The principal problem encountered during the five test runs was maintaining a continuous flow of melt from the gasifier to the quench tank. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined-cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

  10. Development of an advanced, continuous mild gasification process for the production of co-products

    Energy Technology Data Exchange (ETDEWEB)

    Wright, R.E.; Wolfe, R.A.; Im, C.J.; Henkelman, M.R.; O`Neal, G.W.; McKinney, D.A.

    1993-12-31

    The objective of this project is to develop a continuous mild gasification process to convert highly caking coals to coal liquids, char and coke for near term commercial application. Coal liquids after fractionation can be blended with petroleum and used interchangeably with conventional fuels without modifications in gasoline and diesel engines. Char can be used as a carbon source in the production of ferroalloys and in mini-mills. Coke can be produced by upgrading char through briquetting and calcining and for use in the steel industry foundries and blast furnaces. In a step beyond the scope of the project, the plan is to finance, design and construct, in a partnership with others, a plant to produce coal liquid, char and coke in the initial range of 250,000 tons/year. In the Coal Technology Corporation CTC/CLC{reg_sign} Process, coal is continuously moved by interfolded twin screws through a heated retort in the absence of air. The residence time of the coal in the Continuous Mild Gasification Unit (CMGU) is in the range of 20--30 minutes. The coal is heated to controlled temperatures between 800{degree} and 1400{degree}F and is converted into char, condensible hydrocarbon liquids, small quantities of water, and non-condensible fuel gases. The coal derived fuel gases could supply all the required process heat, but for convenience, natural gas is used in the experimental unit. The process concept particularly suitable for highly caking coals which cannot be processed in fluidized bed or moving bed furnaces.

  11. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    Science.gov (United States)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  12. Fluidised bed gasification of South African coals – experimental results and process integration

    CSIR Research Space (South Africa)

    Engelbrecht, A

    2011-06-01

    Full Text Available high-ash coal from the Waterberg coalfield was tested in a bubbling fluidised bed gasifier at the CSIR using various gasification agents and operating conditions. The results of the tests show that when air and steam are used as the gasification agents...

  13. Prevention of the ash deposits by means of process conditions in biomass gasification; Biomassapolttoaineiden tuhkan kuonaantumiskaeyttaeytymisen estaeminen prosessiolosuhteiden avulla

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.; Laatikainen-Luntama, J.; Nieminen, M.; Kurkela, E.; Korhonen, J. [VTT Energy, Espoo (Finland)

    1997-10-01

    In fluidised-bed gasification, various types of deposits and agglomerates may be formed by biomass ash in the bed, in upper zones of the reactor, for instance in cyclones. These may decisively hamper the operation of the process. The aim of the project was to obtain data on the detrimental fouling behaviour of the ash of different types of biomass in fluidised-bed gasification, and on the basis of these data to determine the process conditions and ways of preventing this kind of behaviour. Different types of biomass fuel relevant to energy production such as straw, wood residue were be used as samples. The project consisted of laboratory studies and fluidised-bed reactor tests including ash behaviour studied both in the bed and freeboard. In laboratory tests, the sample material was characterised as a function of different process parameters. In fluid-bed reactors, the most harmful biomasses were tested using process variables such as temperature, bed material and the gasification agents. Bubbling fluidised-bed gasification tests with wheat straw showed that agglomerates with different sizes and structures formed in the bed depending on the temperature, the feed gas composition and bed material. Agglomerates consisted of molten ash which sintered with bed material and other solids. In all BFB tests, freeboard walls were slicked by ash agglomerates (different amounts) which, however, were easily removable. The results of this project and the earlier pilot-scale gasification experience obtained with the same feedstocks showed that useful characteristic data about ash behaviour can be obtained using laboratory tests and small scale reactors. (orig.)

  14. The bioliq {sup registered} bioslurry gasification process for the production of biosynfuels, organic chemicals, and energy

    Energy Technology Data Exchange (ETDEWEB)

    Dahmen, Nicolaus; Henrich, Edmund; Dinjus, Eckhard; Weirich, Friedhelm [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. of Catalysis Research and Technology

    2012-12-15

    Biofuels may play a significant role in regard to carbon emission reduction in the transportation sector. Therefore, a thermochemical process for biomass conversion into synthetic chemicals and fuels is being developed at the Karlsruhe Institute of Technology (KIT) by producing process energy to achieve a desirable high carbon dioxide reduction potential. In the bioliq process, lignocellulosic biomass is first liquefied by fast pyrolysis in distributed regional plants to produce an energy-dense intermediate suitable for economic transport over long distances. Slurries of pyrolysis condensates and char, also referred to as biosyncrude, are transported to a large central gasification and synthesis plant. The bioslurry is preheated and pumped into a pressurized entrained flow gasifier, atomized with technical oxygen, and converted at > 1,200 C to an almost tar-free, low-methane syngas. Syngas - a mixture of CO and H2 - is a well-known versatile intermediate for the selectively catalyzed production of various base chemicals or synthetic fuels. At KIT, a pilot plant has been constructed together with industrial partners to demonstrate the process chain in representative scale. The process data obtained will allow for process scale-up and reliable cost estimates. In addition, practical experience is gained. The paper describes the background, principal technical concepts, and actual development status of the bioliq process. It is considered to have the potential for worldwide application in large scale since any kind of dry biomass can be used as feedstock. Thus, a significant contribution to a sustainable future energy supply could be achieved.

  15. Deformation properties of sedimentary rocks in the process of underground coal gasification

    Directory of Open Access Journals (Sweden)

    Mirosława Bukowska

    2015-01-01

    Full Text Available The article presents results of research into changes in deformation properties of rocks, under influence of temperature, during the process of underground coal gasification. Samples of carboniferous sedimentary rocks (claystones and sandstones, collected in different areas of Upper Silesian Coal Basin (GZW, were heated at the temperature of between 100 and 1000–1200 °C, and then subjected to uniaxial compression tests to obtain a full stress-strain curves of the samples and determine values of residual strain and Poisson's ratio. To compare the obtained values of deformation parameters of rocks, tested in dry-air state and after heating in a given range of temperature, normalised values of residual strain and Poisson's ratio were determined. Based on them, coefficient of influence of temperature on tested deformation parameters was determined. The obtained values of the coefficient can be applied in mining practice to forecast deformability of gangue during underground coal gasification, when in the direct surrounding of a georeactor there are claystones or sandstones. The obtained results were analysed based on classification of uniaxial compression strength of GZW gangue, which formed the basis for dividing claystones and sandstones into very low, low, medium and high uniaxial compression strength rocks. Based on the conducted tests it was concluded that the influence of uniaxial compression strength on the value of residual strain, unlike the influence of grain size of sandstones, is unambiguous within the range of changes in the parameter. Among claystones changes in the value of Poisson's ratio depending on their initial strength were observed. Sandstones of different grain size either increased or decreased the value of Poisson's ratio in comparison with the value determined at room temperature in dry-air conditions.

  16. Product Chemistry and Process Efficiency of Biomass Torrefaction, Pyrolysis and Gasification Studied by High-Throughput Techniques and Multivariate Analysis

    Science.gov (United States)

    Xiao, Li

    ), fast growing energy crops (switchgrass), and popular forage crop (alfalfa), as well as biochar derived from those materials and their mixtures. It demonstrated that Py-MBMS coupled with MVA could be used as fast analytical tools for the study of not only biomass composition but also its thermal decomposition behaviors. It found that the impact of biomass composition heavily depends on the thermal decomposition temperature because at different temperature, the composition of biomass decomposed and the impact of minerals on the decomposition reaction varies. At low temperature (200-500°C), organic compounds attribute to the majority of variation in thermal decomposition products. At higher temperature, inorganics dramatically changed the pyrolysis pathway of carbohydrates and possibly lignin. In gasification, gasification tar formation is also observed to be impacted by ash content in vapor and char. In real reactor, biochar structure also has interactions with other fractions to make the final pyrolysis and gasification product. Based on the evaluation of process efficiencies during torrefaction, temperature ranging from 275°C to 300°C with short residence time (<10min) are proposed to be optimal torrefaction conditions. 500°C is preferred to 700°C as primary pyrolysis temperature in two stage gasification because higher primary pyrolysis temperature resulted in more tar and less gasification char. Also, in terms of carbon yield, more carbon is lost in tar while less carbon is retained in gas product using 700°C as primary pyrolysis temperature. In addition, pyrolysis char is found to produce less tar and more gas during steam gasification compared with gasification of pyrolysis vapor. Thus it is suggested that torrefaction might be an efficient pretreatment for biomass gasification because it can largely improve the yield of pyrolysis char during the primary pyrolysis step of gasification thus reduce the total tar of the overall gasification products. Future work

  17. Gasification slag rheology and crystalline phase formation in titanium-calcium-alumina-silica-rich glass

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, D.D. [Texaco, Inc., Beacon, NY (United States); Oh, M.S. [Hongik Univ., Seoul (Korea, Republic of)

    1996-10-01

    The Texaco Gasification Process employs a high temperature and pressure slagging gasifier, in which the viscosity of the slag plays a key role in determining operating conditions. The empirical models available in the literature as well as laboratory testing have concentrated on low titanium feeds. During the gasification of waste material, titanium oxide will become an important element in controlling the ash and slag behavior. Slag viscosity was measured at temperatures in the range of 1150-1500{degrees}C under reducing atmosphere with 0-30% titanium in combination with calcium-alumina-silica rich feeds to gain a better understanding of the slag theology. The slag viscosities with most titanium-rich slags showed the behavior of a crystalline slag with T{sub cv} of 1250{degrees}C. Crystalline phase analyses of the slag samples revealed that titanium oxide crystal will nucleate, but the glass phase is dominated by calcium-titanium-silicate and calcium-alumina-silicate glasses which have low melting points.

  18. Development of an advanced, continuous mild gasification process for the production of co-products. Quarterly report, April--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    O`Neal, G.W.

    1994-07-01

    The primary objective of this project is to develop an advanced continuous mild gasification process and product upgrading processes which will be capable of eventual commercialization. The program consists of four tasks. Task 1 is a literature survey of mild gasification processes and product upgrading methods and also a market assessment of markets for mild gasification products. Based on the literature survey, a mild gasification process and char upgrading method will be identified for further development. Task 2 is a bench-scale investigation of mild gasification to generate design data for a larger scale reactor. Task 3 is a bench-scale study of char upgrading to value added products. Task 4 is being implemented by building and operating a 1000-pound per hour demonstration facility. Task 4 also includes a technical and economic evaluation based on the performance of the mild gasification demonstration facility. Installation of a continuous coke pilot plant started in the second quarter of 1994. Ten of 14 major components have been set. The remaining four are on order. Startup is scheduled for late September 1994. Eight test runs were completed in the continuous mild gasification unit (CMGU). These were short test runs to evaluate repair work or to demonstrate the PDU. Efforts continued to obtain financing for a commercial unit.

  19. Biomass gasification. Conversion of biomass in a step-gasification process including slag formation and high-temperature gas purification; Vergasung von Biomasse. Umsetzung von Biomasse in einer gestuften Vergasung mit Schlackebildung und Hochtemperaturgasreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Rumpl, M.; Kleinhappl, M.; Martini, S.; Roschitz, C.; Grandl, A. [Austrian Bioenergy Centre, Graz (Austria); Hofbauer, H. [Inst. fuer Verfahrenstechnik und Technische Biowissenschaft, TU Wien (Austria); Kepplinger, W. [Inst. fuer Verfahrenstechnik des industriellen Umweltschutzes, Montanuniversitaet Leoben (Austria)

    2008-07-01

    In a multi-step high-temperature gasification facility with separated mass flows of pyrolysis gas and pyrolysis coke the renewable raw materials miscanthus (up to 36 kg/h) and straw (up to 27.5 kg/h) were pyrolyzed, the pyrolysis gas was converted in the gasification reactor zu reaction gas.The test facility allows the setting of different process parameters for pyrolysis and gasification in order to analyse the respective pyrolysis products, the calorific value of the product gas and the tar load. The measured data will be used to optimize the process parameters and the gas quality for the specific biomass. It was shown, that the sulfur and chlorine concentrations are below the limiting values for all process conditions. For the use of the product gas in gas engines a gas purification with appropriate solvents is necessary. The particulate concentration can be reduced by adaption of the filter parameters.

  20. Gasification Coupled Chemical Looping Combustion of Coal: A Thermodynamic Process Design Study

    OpenAIRE

    Borkhade, Sonali A.; Shriwas, Preksha A.; Ganesh R. Kale

    2013-01-01

    A thermodynamic investigation of gasification coupled chemical looping combustion (CLC) of carbon (coal) is presented in this paper. Both steam and CO2 are used for gasification within the temperature range of 500–1200°C. Chemical equilibrium model was considered for the gasifier and CLC fuel reactor. The trends in product compositions and energy requirements of the gasifier, fuel reactor, and air reactor were determined. Coal (carbon) gasification using 1.5 mol H2O and 1.5 mol CO2 per mole c...

  1. Chemical process modelling of Underground Coal Gasification (UCG) and evaluation of produced gas quality for end use

    Science.gov (United States)

    Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket

    2015-04-01

    Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents

  2. Development of sampling systems and special analyses for pressurized gasification processes; Paineistettujen kaasutusprosessien naeytteenottomenetelmien ja erityisanalytiikan kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Staahlberg, P.; Oesch, P.; Leppaemaeki, E.; Moilanen, A.; Nieminen, M.; Korhonen, J. [VTT Energy, Espoo (Finland)

    1996-12-01

    The reliability of sampling methods used for measuring impurities contained in gasification gas were studied, and new methods were developed for sampling and sample analyses. The aim of the method development was to improve the representativeness of the samples and to speed up the analysis of gas composition. The study focused on tar, nitrogen and sulphur compounds contained in the gasification gas. In the study of the sampling reliability, the effects of probe and sampling line materials suitable for high temperatures and of the solids deposited in the sampling devices on gas samples drawn from the process were studied. Measurements were carried out in the temperature range of 250 - 850 deg C both in real conditions and in conditions simulating gasification gas. The durability of samples during storage was also studied. The other main aim of the study was to increase the amount of quick-measurable gas components by developing on-line analytical methods based on GC, FTIR and FI (flow injection) techniques for the measurements of nitrogen and sulphur compounds in gasification gas. As these methods are suitable only for the gases that do not contain condensing gas components disturbing the operation of analysers (heavy tar compounds, water), a sampling system operating in dilution principle was developed. The system operates at high pressures and temperatures and is suitable for gasification gases containing heavy tar compounds. The capabilities of analysing heavy tar compounds (mole weight >200 g mol) was improved by adding the amount of compounds identified and calibrated by model substances and by developing analytical methods based on the high-temperature-GC analysis and the thermogravimetric method. (author)

  3. Supercritical water gasification of biomass for H2 production: process design.

    Science.gov (United States)

    Fiori, Luca; Valbusa, Michele; Castello, Daniele

    2012-10-01

    The supercritical water gasification (SCWG) of biomass for H(2) production is analyzed in terms of process development and energetic self-sustainability. The conceptual design of a plant is proposed and the SCWG process involving several substrates (glycerol, microalgae, sewage sludge, grape marc, phenol) is simulated by means of AspenPlus™. The influence of various parameters - biomass concentration and typology, reaction pressure and temperature - is analyzed. The process accounts for the possibility of exploiting the mechanical energy of compressed syngas (later burned to sustain the SCWG reaction) through expansion in turbines, while purified H(2) is fed to fuel cells. Results show that the SCWG reaction can be energetically self-sustained if minimum feed biomass concentrations of 15-25% are adopted. Interestingly, the H(2) yields are found to be maximal at similar feed concentrations. Finally, an energy balance is performed showing that the whole process could provide a net power of about 150 kW(e)/(1000 kg(feed)/h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  5. Modelling of Gas Flow in the Underground Coal Gasification Process and its Interactions with the Rock Environment

    Directory of Open Access Journals (Sweden)

    Tomasz Janoszek

    2013-01-01

    Full Text Available The main goal of this study was the analysis of gas flow in the underground coal gasification process and interactions with the surrounding rock mass. The article is a discussion of the assumptions for the geometric model and for the numerical method for its solution as well as assumptions for modelling the geochemical model of the interaction between gas-rock-water, in terms of equilibrium calculations, chemical and gas flow modelling in porous mediums. Ansys-Fluent software was used to describe the underground coal gasification process (UCG. The numerical solution was compared with experimental data. The PHREEQC program was used to describe the chemical reaction between the gaseous products of the UCG process and the rock strata in the presence of reservoir waters.

  6. Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W. H.

    1980-09-01

    Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

  7. Integrated hot fuel gas cleaning for advanced gasification combined cycle process

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Kangasmaa, K.; Laatikainen, J.; Staahlberg, P.; Kurkela, E. [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1996-12-01

    The fate of halogens in pressurised fluidized-bed gasification and hot gas filtration is determined. Potential halogen removal sorbents, suitable for integrated hot gas cleaning, are screened and some selected sorbents are tested in bench scale. Finally, halogen removal results are verified using the PDU-scale pressurised fluidized-bed gasification and integrated hot gas cleaning facilities of VTT. The project is part of the JOULE II Extension programme of the European Union. (author)

  8. Literature survey of mild gasification processes, co-products upgrading and utilization, and market assessment: Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Wootten, J.M.; Nawaz, M.; Duthie, R.G.; Knight, R.A.; Onischak, M.; Babu, S.P.; Bair, W.G.

    1988-01-01

    The primary objective of this DOE-sponsored project is to develop an advanced mild gasification process to produce coal-derived co- products that can readily open new markets for coal in both the utility and nonutility sectors. The study will incorporate novel and innovative concepts for process development and for co-products utilization. The former includes the development of a means to promote the rapid, continuous devolatilization of caking coals, the use of inexpensive reactor additives for capturing sulfur compounds, and the use of inexpensive reaction gases to produce co-products of optimal quality and quantity. It is the ultimate goal of this project to commercialize the advanced mild gasification technology in the next 5 to 10 years. 109 refs., 86 figs., 45 tabs.

  9. H{sub 2} rich syngas by selective CO{sub 2} removal from biomass gasification in a dual fluidized bed system - Process modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Proell, Tobias; Hofbauer, Hermann [Vienna University of Technology, Institute of Chemical Engineering, Getreidemarkt 9, 1060 Wien (Austria)

    2008-11-15

    A process model of dual fluidized bed gasification is presented based on mass- and energy balances. The model further covers the evaluation of thermodynamic equilibrium states. The gasification is investigated for the special case that CaO/CaCO{sub 3} is used as bed material allowing selective transport of CO{sub 2} from the gasification reactor to the combustion reactor by repeated carbonation and calcination. Experimental data are used to determine the model parameters. An empirical approach towards the kinetics of fuel conversion allows prediction of process behaviour at varied fuel water content. The selective transport of CO{sub 2} results in high H{sub 2} contents in the produced syngas. The lower operating temperatures in the gasification reactor increase the efficiency of energy conversion. The results are in agreement with experimental data and show the thermodynamic limitations of the technology. (author)

  10. Phase-equilibria for design of coal-gasification processes: dew points of hot gases containing condensible tars. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prausnitz, J.M.

    1980-05-01

    This research is concerned with the fundamental physical chemistry and thermodynamics of condensation of tars (dew points) from the vapor phase at advanced temperatures and pressures. Fundamental quantitative understanding of dew points is important for rational design of heat exchangers to recover sensible heat from hot, tar-containing gases that are produced in coal gasification. This report includes essentially six contributions toward establishing the desired understanding: (1) Characterization of Coal Tars for Dew-Point Calculations; (2) Fugacity Coefficients for Dew-Point Calculations in Coal-Gasification Process Design; (3) Vapor Pressures of High-Molecular-Weight Hydrocarbons; (4) Estimation of Vapor Pressures of High-Boiling Fractions in Liquefied Fossil Fuels Containing Heteroatoms Nitrogen or Sulfur; and (5) Vapor Pressures of Heavy Liquid Hydrocarbons by a Group-Contribution Method.

  11. Development of an advanced, continuous mild gasification process for the production of co-products

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, G.W.

    1991-01-01

    During this quarter the work on Task 3, char upgrading, was in two areas; upgrading Penelec char made from Penelec filter cake to blast furnace formed coke, and evaluating various bituminous pitch binders. The formed coke from Penelec filter cake was of good quality with a high crush strength of 3000 pounds. The reactivity was not equal to that of conventional coke but it is felt that it could be made to equal conventional coke with further study, specifically by adding binder coal to the raw material recipe. The work evaluating bituminous pitch binders confirmed earlier thinking that will be valuable to a commercial scale-up. Asphalt binders are compatible with coal tar binders and produce a coke of equal quality. Hence asphalt binders can be used to supply deficiencies of tar production in units employing coals with insufficient volatile matter to supply enough tar for the coking process. Asphalt binders have about a 50% savings from coal tar pitch. During the 4th Quarter of 1991, a total of 15 Continuous Mild Gasification Unit (CMGU) test runs were made. Efforts continued to determine the optimum forward/reverse ratio to maximize coal feed rate. The success of these efforts has been limited with a maximum coal feed rate of 400 lbs/hr obtainable with a caking coal. The handicap of not having screw shaft heaters cannot be overcome by adjustment of the forward/reverse ratio.

  12. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    Energy Technology Data Exchange (ETDEWEB)

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  13. Gasification - Status and technology

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen

    2012-06-15

    In this report gasification and gas cleaning techniques for biomass are treated. The main reason for gasifying biomass is to refine the fuel to make it suitable for efficient CHP production, as vehicle fuel or in industrial processes. The focus is on production of synthesis gas that can be used for production of vehicle fuel and for CHP production. Depending on application different types of gasifiers, gasification techniques and process parameters are of interest. Two gasification techniques have been identified as suitable for syngas generation, mainly due to the fact that they allow the production of a nitrogen free gas out of the gasifier; Indirect gasification and pressurized oxygen-blown gasification For CHP production there are no restrictions on the gas composition in terms of nitrogen and here air-blown gasification is of interest as well. The main challenge when it comes to gas cleaning is related to sulphur and tars. There are different concepts and alternatives to handle sulphur and tars. Some of them are based on conventional techniques with well-proven components that are commercially available while others, more advantageous solutions, still need further development.

  14. A thermo fluid dynamic model of wood particle gasification- and combustion processes

    Directory of Open Access Journals (Sweden)

    G Boiger

    2016-09-01

    Full Text Available In order to qualitatively understand and evaluate the thermo- fluid dynamic situation within a wood gasification reactor, a 1D particle model has been created. The presented tool accounts for the highly in- stationary, kinetic- and thermo chemical effects, leading to partial gasification and combustion of a wood particle embedded within a packed bed collective. It considers the fluid- dynamic situation within the changing porous bulk structure of the packed bed, its impact on species- and heat transition mechanisms, the energy- and mass balances of wood, coal, pyrolysis-gas, wood- gas and off- gas phases, the thermodynamics of locally developing gasification- and combustion reaction equilibria, as well as the presence of the chemical species hydrogen, water, carbon (di- oxide, methane, oxygen, solid carbon and gaseous, longer chain hydrocarbons from pyrolysis. Model results can be shown to yield very good, qualitative agreement with measurements, found in literature.

  15. Biomass waste gasification - can be the two stage process suitable for tar reduction and power generation?

    Science.gov (United States)

    Sulc, Jindřich; Stojdl, Jiří; Richter, Miroslav; Popelka, Jan; Svoboda, Karel; Smetana, Jiří; Vacek, Jiří; Skoblja, Siarhei; Buryan, Petr

    2012-04-01

    A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW(th). The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950°C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER=0.71) led to substantial reduction of gas heating value (LHV=3.15 MJ/Nm(3)), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950°C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the

  16. Biomass gasification and in-bed contaminants removal: performance of iron enriched olivine and bauxite in a process of steam/O2 gasification.

    Science.gov (United States)

    Barisano, D; Freda, C; Nanna, F; Fanelli, E; Villone, A

    2012-08-01

    A modified Olivine, enriched in iron content (10% Fe/Olivine), and a natural bauxite, were tested in the in-bed reduction of tar and alkali halides (NaCl and KCl) released in a process of biomass steam/O(2) gasification. The tests were carried out at an ICBFB bench scale reactor under the operating conditions of: 855-890 °C, atmospheric pressure, 0.5 steam/biomass and 0.33 ER ratios. From the use of the two materials, a reduction in the contaminant contents of the fuel gas produced was found. For the alkali halides, a decrease up to 70%(wt) was observed for the potassium concentration, while for sodium, the reduction was found to be quite poor. For the organic content, compared to unmodified Olivine, the chromatographically determined total tar quantity showed a removal efficiency of 38%(wt). Moreover, regarding the particulate content a rough doubling in the fuel gas revealed a certain brittleness of the new bed material. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Green Gasoline from Wood using Carbona Gasification and Topsoe TIGAS Process

    Energy Technology Data Exchange (ETDEWEB)

    Udengaard, Niels [Haldor Topsoe, Inc., Houston, TX (United States); Knight, Richard [Haldor Topsoe, Inc., Houston, TX (United States); Wendt, Jesper [Haldor Topsoe, Inc., Houston, TX (United States); Patel, Jim [Haldor Topsoe, Inc., Houston, TX (United States); Walston, Kip [Haldor Topsoe, Inc., Houston, TX (United States); Jokela, Pekka [Haldor Topsoe, Inc., Houston, TX (United States); Adams, Cheryl [Haldor Topsoe, Inc., Houston, TX (United States)

    2015-02-19

    This final report presents the results of a four-year technology demonstration project carried out by a consortium of companies sponsored in part by a $25 million funding by the Department of Energy (DOE) under the American Recovery and Reinvestment Act (ARRA). The purpose of the project was to demonstrate a new, economical technology for the thermochemical conversion of woody biomass into gasoline and to demonstrate that the gasoline produced in this way is suitable for direct inclusion in the already existing gasoline pool. The process that was demonstrated uses the Andritz-Carbona fluidized-bed steam-oxygen gasification technology and advanced tar reforming catalytic systems to produce a clean syngas from waste wood, integrated conventional gas cleanup steps, and finally utilizes Haldor Topsoe’s (Topsoe) innovative Topsoe Improved Gasoline Synthesis (TIGASTM) syngas-to-gasoline process. Gas Technology Institute (GTI) carried out the bulk of the testing work at their Flex Fuel development facility in Des Plaines, Illinois; UPM in Minnesota supplied and prepared the feedstocks, and characterization of liquid products was conducted in Phillips 66 labs in Oklahoma. The produced gasoline was used for a single-engine emission test at Southwest Research Institute (SwRI®) in San Antonio, TX, as well as in a fleet test at Transportation Research Center, Inc. (TRC Inc.) in East Liberty, Ohio. The project benefited from the use of existing pilot plant equipment at GTI, including a 21.6 bone dry short ton/day gasifier, tar reformer, Morphysorb® acid gas removal, associated syngas cleanup and gasifier feeding and oxygen systems.

  18. Process simulation of biomass gasification integrated with a solid oxide fuel cell stack

    Science.gov (United States)

    Doherty, Wayne; Reynolds, Anthony; Kennedy, David

    2015-03-01

    Biomass gasification-solid oxide fuel cell (BG-SOFC) combined heat and power (CHP) systems are of major interest in the context of climate change mitigation, energy security and increasing energy efficiency. Aspen Plus is employed to simulate various BG-SOFC CHP systems. The aim of the research work is to investigate the technical feasibility of these systems and to study the influence of important operating parameters and examine integration options. Systems based on dual fluidised bed steam gasification and tubular SOFC technologies are modelled. The cathode recycle and electric heater integration options are not attractive in comparison to the base case anode recycle system. Thermal integration, i.e. using SOFC flue gas as gasifier oxidant, is desirable. Lowering the syngas preheat temperature (prior to SOFC anodes) is highly recommended and is more practical than lowering the cathode air preheat temperature. Results of the parametric study indicate that: steam to carbon ratio and biomass moisture content should be as low as possible; fuel utilisation factor can change the mode of operation of the plant (focus on electricity or heat); high temperature syngas cleaning is very attractive; gasification air preheating is more attractive than gasification steam superheating. High efficiencies are predicted, proving the technical feasibility of BG-SOFC CHP systems.

  19. Pre-treatment of oil palm frond biomass via extensive high temperature drying for gasification process

    Directory of Open Access Journals (Sweden)

    Mat Razali Nur Hazwani

    2017-01-01

    Full Text Available Oil palm frond has been utilized as a solid biomass fuel for gasification to produce synthesis gas or syngas to be used for heat and power generation. A fuel pre-treatment method by means of extensively-drying OPF blocks at 150°C and 200°C for 4 hours was implemented to investigate the effects of the fuel in terms of drying efficiency and gasification performances. Tar, pyrolysis oil and condensates were found to be squeezed out by heat during drying, signifying volatilization of fuel at temperatures between water boiling point at 100°C and fuel pyrolysis point at 280°C. Syngas produced from the updraft gasification of extensively-dried OPF blocks was analyzed and tested for sustainable gas flares. The syngas was found to be composed of 16.5% CO, 10% CO2, 4% H2 and 0.9% CH4 and was produced at gasification temperatures lower than that exhibited by normal OPF blocks.

  20. Examination of oxygen-enriched gasification process for municipal solid wastes in south China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hongyu [Tsinghua Univ., Beijing (China). Inst. of Thermal Engineering; Nagoya Univ. (Japan). EcoTopia Science Inst.; Chinese Academy of Science, Guangzhou (China). Guangzhou Inst. of Energy Conversion; Maryland Univ., College Park, MD (United States). Dept. of Mechanical Engineering; Yuan, Haoran; Zuhong, Xiong; Chen, Yong [Chinese Academy of Science, Guangzhou (China). Guangzhou Inst. of Energy Conversion; Kobayashi, Noriyuki [Nagoya Univ. (Japan). Dept. of Chemical Engineering; Gupta, Ashwani K. [Maryland Univ., College Park, MD (United States). Dept. of Mechanical Engineering; Kitagawa, Kuniyuki [Tsinghua Univ., Beijing (China). Inst. of Thermal Engineering; Nagoya Univ. (Japan). EcoTopia Science Inst.

    2013-07-01

    Theoretical and experimental research on the MSW gasification using oxygen is conducted to determine the favorable conditions for the production of increased syngas production of higher heating value. The technology utilizes oxygen enrichment of air for minimum combustion of the waste to increase heating value of the fuel due to decreased amounts of nitrogen in the syngas. The results showed that increase in equivalence ratio (ER) decreased CO and CH{sub 4} content in the syngas while H{sub 2} content increased at ER = 0.25 and then decreased. When the ER is greater than 0.30, the gasification controlled reaction change to combustion controlled. The equivalence ratio of in the range of 0.2-0.3 is the most suitable range for oxygen-enriched gasification. The calculated and experimental results showed good agreement. The equivalence ratio is crucial in oxygen enriched gasification of MSW since it impacts the heating value and gas phase components of the syngas produced.

  1. A Medium-Scale 50 MWfuel Biomass Gasification Based Bio-SNG Plant: A Developed Gas Cleaning Process

    Directory of Open Access Journals (Sweden)

    Ramiar Sadegh-Vaziri

    2015-06-01

    Full Text Available Natural gas is becoming increasingly important as a primary energy source. A suitable replacement for fossil natural gas is bio-SNG, produced by biomass gasification, followed by methanation. A major challenge is efficient gas cleaning processes for removal of sulfur compounds and other impurities. The present study focuses on development of a gas cleaning step for a product gas produced in a 50 MWfuel gasification system. The developed gas cleaning washing process is basically a modification of the Rectisol process. Several different process configurations were evaluated using Aspen plus, including PC-SAFT for the thermodynamic modeling. The developed configuration takes advantage of only one methanol wash column, compared to two columns in a conventional Rectisol process. Results from modeling show the ability of the proposed configuration to remove impurities to a sufficiently low concentrations - almost zero concentration for H2S, CS2, HCl, NH3 and HCN, and approximately 0.01 mg/Nm3 for COS. These levels are acceptable for further upgrading of the gas in a methanation process. Simultaneously, up to 92% of the original CO2 is preserved in the final cleaned syngas stream. No process integration or economic consideration was performed within the scope of the present study, but will be investigated in future projects to improve the overall process.

  2. Historical development of underground coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Olness, D.; Gregg, D.W.

    1977-06-30

    The development of underground coal gasification is traced through a discussion of the significant, early experiments with in situ gasification. Emphasized are the features of each experiment that were important in helping to alter and refine the process to its present state. Experimental details, coal characteristics, and gasification data are supplied for many of the experiments. 69 refs.

  3. New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2).

    Science.gov (United States)

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2012-11-01

    The enhanced thermo-chemical process (i.e., pyrolysis/gasification) of various macroalgae using carbon dioxide (CO(2)) as a reaction medium was mainly investigated. The enhanced thermo-chemical process was achieved by expediting the thermal cracking of volatile chemical species derived from the thermal degradation of the macroalgae. This process enables the modification of the end products from the thermo-chemical process and significant reduction of the amount of condensable hydrocarbons (i.e., tar, ∼50%), thereby directly increasing the efficiency of the gasification process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The Open city as the Stuff of Creation in Texaco | Carrasco | Journal ...

    African Journals Online (AJOL)

    The Open city as the Stuff of Creation in Texaco. David Carrasco. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Article Metrics. Metrics Loading ... Metrics powered by PLOS ALM · http://dx.doi.org/10.4314/jsr.v16i2.6108 · AJOL African Journals Online. HOW TO USE ...

  5. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  6. Fluid bed gasification – Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species

    Energy Technology Data Exchange (ETDEWEB)

    Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Chapman, Chris, E-mail: chris.chapman@app-uk.com [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Taylor, Richard, E-mail: richard.taylor@app-uk.com [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom)

    2014-01-15

    Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

  7. Combined coal gasification and Fe{sub 3}O{sub 4}-reduction using high-temperature solar process heat

    Energy Technology Data Exchange (ETDEWEB)

    Tamaura, Y. [Tokyo Inst. of Technology, Tokyo (Japan); Ehrensberger, K.; Steinfeld, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The coal/Fe{sub 3}O{sub 4} system was experimentally studied at PSI solar furnace. The reactants were directly exposed to a solar flux irradiation of 3,000 suns (1 sun = 1 kW/m{sup 2}). The combined gasification of coal and reduction of Fe{sub 2}O{sub 3} proceeded rapidly after only one second exposure, suggesting an efficient heat transfer and chemical conversion by direct solar energy absorption at the reaction site. The proposed solar thermochemical process offers the possibility of converting coal to a cleaner fluid fuel with a solar-upgraded calorific value. (author) 2 figs., 8 refs.

  8. Process Simulation of Biomass Gasification Integrated With a Solid Oxide Fuel Cell Stack

    OpenAIRE

    Doherty, Wayne; Reynolds, Anthony; Kennedy, David

    2014-01-01

    Biomass gasification-solid oxide fuel cell (BG-SOFC) combined heat and power (CHP) systems are of major interest in the context of climate change mitigation, energy security and increasing energy efficiency. Aspen Plus is employed to simulate various BG-SOFC CHP systems. The aim of the research work is to investigate the technical feasibility of these systems and to study the influence of important operating parameters and examine integration options. Systems based on dual fluidised bed steam...

  9. Formation and removal of biomass-derived contaminants in fluidized-bed gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The objectives of this thesis were to examine the effects of the feedstock and the operating conditions of a fluidized-bed gasifier on the formation of tars and nitrogen-containing compounds and to study the effectiveness of the hot gas cleaning methods developed for the removal of particulates, alkali metals, tars and nitrogen-containing compounds. The most essential part of the work was carried out in the pressurized fluidized-bed gasification test facilities composed of an air-blown bubbling fluidized-bed gasifier and subsequent hot gas filter unit. The operation pressure of the test rig could be varied in the range 0.3 - 1.0 MPa and the maximum allowable gasification temperature was 1 050 deg C. The maximum capacity with biomass fuels was 80 kg/h. A wide range of feedstocks from hard coals, lignite and peat to different wood derived fuels and straw were used in the gasification tests. Two different types of ceramic filters were tested in the filter unit connected to the pressurized fluidized-bed gasifier. The filter unit was operated in a temperature range of 400 - 740 deg C. The particulate removal requirements set by the gas turbines were met by both types of filters and with product gases derived from all the feedstocks tested. In addition to the gasification and gas filtration tests, catalytic tar and ammonia decomposition was studied using both laboratory and bench-scale test facilities. Inexpensive calcium-based bulk materials, dolomites and limestones, were efficient tar decomposition catalysts in atmospheric-pressure tests

  10. WATER- AND COAL GASIFICATION

    Directory of Open Access Journals (Sweden)

    N. S. Nazarov

    2006-01-01

    Full Text Available According to the results of gas analysis it has been established that water- and coal gasification is rather satisfactorily described by three thermo-chemical equations. One of these equations is basic and independent and the other two equations depend on the first one.The proposed process scheme makes it possible to explain the known data and also permits to carry out the gasification process and obtain high-quality hydrogen carbon-monoxide which is applicable for practical use.

  11. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  12. Design, fabrication, operation and Aspen simulation of oil shale pyrolysis and biomass gasification process using a moving bed downdraft reactor

    Science.gov (United States)

    Golpour, Hassan

    Energy is the major facilitator of the modern life. Every developed and developing economy requires access to advanced sources of energy to support its growth and prosperity. Declining worldwide crude oil reserves and increasing energy needs has focused attention on developing existing unconventional fossil fuels like oil shale and renewable resources such as biomass. Sustainable, renewable and reliable resources of domestically produced biomass comparing to wind and solar energy is a sensible motivation to establish a small-scale power plant using biomass as feed to supply electricity demand and heat for rural development. The work in Paper I focuses on the possibility of water pollution from spent oil shale which should be studied before any significant commercial production is attempted. In Paper II, the proposed Aspen models for oil shale pyrolysis is to identify the key process parameters for the reactor and optimize the rate of production of syncrude from oil shale. The work in Paper III focuses on (1) Design and operation of a vertical downdraft reactor, (2) Establishing an optimum operating methodology and parameters to maximize syngas production through process testing. Finally in Paper IV, a proposed Aspen model for biomass gasification simulates a real biomass gasification system discussed in Paper III.

  13. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: Process performance and gas product characterization

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny

    2017-01-01

    of MSS dry matter was gasified during 133h of operation. The average thermal loads during the five experiments were 62-100% of nominal capacity. The short term stability of all campaigns was excellent, but gasification of dry MSS lead to substantial accumulation of coarse and rigid, but un-sintered, ash...... substantially, hot gas efficiencies of around 90% could be achieved for all MSS fuel types....

  14. Development of an advanced, continuous mild gasification process for the production of co-products. Quarterly report, April 1--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    O`Neal, G.W.

    1993-12-31

    The primary objective of this project is to develop an advanced continuous mild gasification process and product upgrading processes which will be capable of eventual commercialization. The program consists of four tasks. Task 1 is a literature survey of mild gasification processes and product upgrading methods and also a market assessment of markets for mild gasification products. Based on the literature survey, a mild gasification process and char upgrading method will be identified for further development. Task 2 is a bench-scale investigation of mild gasification to generate design data for a larger scale reactor. Task 3 is a bench-scale study of char upgrading to value added products. Task 4 is being implemented by building and operating a 1,000-pound per hour demonstration facility. Task 4 also includes a technical and economic evaluation based on the performance of the mild gasification demonstration facility. Seven briquette tests were made to show the effects of different volatile matter contents of chars on coke quality. Higher char volatiles in the range of 7.52% to 14.14% produced better quality coke. This correlation was determined for a low volatile coal, Pocahontas {number_sign}3, and a mid volatiles coal, Sewell Lady H. Fifteen CMGU test runs were made using low volatile coal, Pocahontas {number_sign}3, and a mid volatile coal, Sewell Lady H. The 1,000 pounds/hour design coal feed rate was exceeded at 1,183 pounds/hour. Improvements to the vapor handling system were made including installation of a packed column demister and a tar trap condenser. Elimination of smoke emissions from the flare is in progress.

  15. Process aspects in combustion and gasification Waste-to-Energy (WtE) units.

    Science.gov (United States)

    Leckner, Bo

    2015-03-01

    The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Assessment of the chemical, microbiological and toxicological aspects of post-processing water from underground coal gasification.

    Science.gov (United States)

    Pankiewicz-Sperka, Magdalena; Stańczyk, Krzysztof; Płaza, Grażyna A; Kwaśniewska, Jolanta; Nałęcz-Jawecki, Grzegorz

    2014-10-01

    The purpose of this paper is to provide a comprehensive characterisation (including chemical, microbiological and toxicological parameters) of water after the underground coal gasification (UCG) process. This is the first report in which these parameters were analysed together to assess the environmental risk of the water generated during the simulation of the underground coal gasification (UCG) process performed by the Central Mining Institute (Poland). Chemical analysis of the water indicated many hazardous chemical compounds, including benzene, toluene, ethylbenzene, xylene, phenols and polycyclic aromatic hydrocarbons (PAHs). Additionally, large quantities of inorganic compounds from the coal and ashes produced during the volatilisation process were noted. Due to the presence of refractory and inhibitory compounds in the post-processing water samples, the microbiological and toxicological analyses revealed the high toxicity of the UCG post-processing water. Among the tested microorganisms, mesophilic, thermophilic, psychrophilic, spore-forming, anaerobic and S-oxidizing bacteria were identified. However, the number of detected microorganisms was very low. The psychrophilic bacteria dominated among tested bacteria. There were no fungi or Actinomycetes in any of the water samples. Preliminary study revealed that hydrocarbon-oxidizing bacteria were metabolically active in the water samples. The samples were very toxic to the biotests, with the TU50 reaching 262. None of biotests was the most sensitive to all samples. Cytotoxicity and genotoxicity testing of the water samples in Vicia uncovered strong cytotoxic and clastogenic effects. Furthermore, TUNEL indicated that all of the water samples caused sporadic DNA fragmentation in the nuclei of the roots. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Development of an advanced, continuous mild gasification process for the production of co-products. Quarterly report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    O`Neal, G.W.

    1993-12-01

    It is important that a mild gasification reactor interface easily with the subsequent product upgrading steps in which the market value of the products is enhanced. Upgrading and marketing of the char are critical to the overall economics of a mild gasification plant because char is the major product (65 to 75% of the coal feedstock). In the past, the char product was sold as a ``smokeless`` fuel, but in today`s competitive markets the best price for char as a fuel for steam generation would be that of the parent coal. Substantially higher prices could be obtained for char upgraded into products such as metallurgical coke, graphite, carbon electrode feedstock or a slurry fuel replacement for No. 6 fuel oil. In this effort, upgrading techniques are being developed to address these premium markets. Liquid products can similarly be upgraded to high market value products such as high-density fuel, chemicals, binders for form coke, and also gasoline and diesel blending stocks. About half of the non-condensable fuel gases produced by the gasification process will be required to operate the process; the unused portion could be upgraded into value-added products or used as fuel either internally or in ``across the fence`` sales. The primary objective of this project is to develop an advanced continuous mild gasification process and product upgrading processes which will be capable of eventual commercialization.

  18. Gasification of shredder residue (AUTOGAS)

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Suomalainen, M.; Maekinen, T. [VTT Processes, Espoo (Finland); Jalkanen, H.; Huitu, K. [Helsinki University of Technology, Espoo (Finland)

    2004-07-01

    The disposal of shredder residue is presently based worldwide on landfilling. However, the current trend in the legislation of European Union is to emphasise, at a first priority, material recycling and, in addition, to prefer energy recovery to landfilling. Gasification is a potential option to utilise shredder residue in energy production in environmentally acceptable way. In addition some metals in shredder residue may be recovered from gasification ash leading to increase in material recycling. An air blown fluidised bed gasification process for thermal treatment of shredder residue will be developed in the project. The process will produce fuel gas, which will be clean enough to be used as replacement of other fuels in coal fired boilers, industrial kilns or other applications. Attention is also paid on the economic feasibility of the process concept. Three authentic shredder residue samples delivered by shredders were characterised by chemical analysis and then used as a feedstock in bench- scale and PDU-scale fluidised bed gasification test trials. The results indicated that the process concept is a potential application for treating shredder residue. Based on the gasification test results, a preliminary evaluation of technological and economic feasibility of the process concept was carried out. The overall conclusion after the preliminary evaluation was that air-blown gasification of shredder residue is a very interesting and economically competitive alternative for treating shredder residue. However, there are still needs for further development of process details. (orig.)

  19. CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Arastoopour, Hamid [Illinois Inst. of Technology, Chicago, IL (United States); Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States)

    2014-07-31

    estimated cost of carbon v capture is in the range of $31-$44/ton, suggesting that a regenerative MgO-Based process can be a viable option for pre-combustion carbon dioxide capture in advanced gasification based power systems.

  20. Integration of mixed conducting membranes in an oxygen–steam biomass gasification process

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Soprani, Stefano; Søgaard, Martin

    2013-01-01

    distillation, especially for small to medium scale plants. This paper examines different configurations for oxygen production using MIEC membranes where the oxygen partial pressure difference is achieved by creating a vacuum on the permeate side, compressing the air on the feed side or a combination of the two....... However, high costs for both oxygen supply equipment and operation are significant challenges for the commercial implementation of this technology. Mixed ionic and electronic conducting (MIEC) membranes can be used for oxygen separation from air at a lower energy consumption compared to cryogenic....... The two configurations demonstrating the highest efficiency are then thermally integrated into an oxygen– steam biomass gasification plant. The energy demand for oxygen production and the membrane area required for a 6 MWth biomass plant are calculated for different operating conditions. Increasing...

  1. Treatment of sewage sludge in supercritical water and evaluation of the combined process of supercritical water gasification and oxidation.

    Science.gov (United States)

    Qian, Lili; Wang, Shuzhong; Xu, Donghai; Guo, Yang; Tang, Xingying; Wang, Longfei

    2015-01-01

    Influences of temperature and oxidation coefficient (n) on sewage sludge treatment in supercritical water and its corresponding reaction mechanism were studied. Moreover, the combined process of supercritical water gasification (SCWG) and supercritical water oxidation (SCWO) was also investigated. The results show that ammonia nitrogen, phenols and pyridines are main refractory intermediates. The weight of solid products at 873K and n=4 is only 3.5wt.% of the initial weight, which is lower than that after combustion. Volatile organics in solid phase have almost released at 723K and n=0. Highest yield of combustible gases was obtained at n=0, and H2 yield can reach 11.81mol/kg at 873K. Furthermore, the combination of SCWG at 723K and SCWO at 873K with a total n=1 is feasible for its good effluent quality and low operation costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Instrumentation and process control development for in situ coal gasification. Fourth quarterly report, September--November 1975

    Energy Technology Data Exchange (ETDEWEB)

    Northrop, D.A. (ed.)

    1976-01-01

    The instrumentation effort for Phases 2 and 3 of the Second Hanna In Situ Coal Gasification Experiment was fielded and background data obtained prior to the initiation of Phase 2 on November 25, 1975. A total of over 600 channels of instrumentation in 15 instrumentation wells and two surface arrays was fielded for the instrumentation techniques under evaluation. The feasibility of the passive acoustic technique to locate the source of process-related noises has been demonstrated; its utility is presently hampered by the inexact definition of signal arrivals and the lack of automated signal monitoring and analysis systems. A revised mathematical model for the electrical techniques has been developed which demonstrates the potential for remote monitoring. (auth)

  3. Simulation of the influence of tar formation in wood gasification processes on the cost of the purified process gas; Simulation des Einflusses der Teerbildung bei der Vergasung von Holz auf die Kosten des gereinigten Produktgases

    Energy Technology Data Exchange (ETDEWEB)

    Saller, G.; Krumm, W. [Siegen Univ. (Gesamthochschule) (Germany). Inst. fuer Energietechnik

    1998-09-01

    The influence of the gasification process and the related tar formation rate on the cost of gas production is investigated with the aid of process models. The processes of gasification, gas purification and adsorptive treatment of waste water were modelled mathematically with a view to process mechanisms and cost. Simulations of the overall process helped to obtain a quantitative assessment of the cost of product gas as a function of process parameters like gasification process and tar formation. (orig./SR) [Deutsch] Mit Hilfe von Prozessmodellen wird untersucht, welchen Einfluss das Vergasungsverfahren und die damit verbundene Teerbildung mit entsprechenden Reinigungsverfahren auf die Produktionskosten des gereinigten Produktgases besitzt. Hierfuer werden die Prozesse der Vergasung, Gasreinigung und adsorptiven Abwasseraufbereitung hinsichtlich verfahrenstechnischer Zusammenhaenge und Kosten mathematisch modelliert. Durch Simulation des Gesamtprozesses werden quantitativ die Kosten des Produktgases in Abhaengigkeit von Prozessparametern wie Vergasungsverfahren und Teerbildung ermittelt. (orig./SR)

  4. The mathematical description of the gasification process of woody biomass in installations with a plasma heat source for producing synthesis gas

    Science.gov (United States)

    Sadrtdinov, A. R.; Safin, R. G.; Gerasimov, M. K.; Petrov, V. I.; Gilfanov, K. K.

    2016-04-01

    The article presents the scheme of processing of plant biomass in the gasification installation with a plasma heat source to produce synthesis gas suitable for chemical industry. The analyzed physical picture of raw materials' recycling process underlies a mathematical description of the process set out in the form of the basic differential equations with boundary conditions. The received mathematical description allows calculating of the main parameters of equipment for biomass recycling and to determine the optimal modes of its operation.

  5. Simulation analysis of wastes gasification technologies

    Directory of Open Access Journals (Sweden)

    Stępień Leszek

    2017-01-01

    Full Text Available Each year a significant growth in the amount of wastes generated is observed. Due to this fact technologies enabling utilization of wastes are needed. One of the ways to utilizes wastes is thermal conversion. Most widely used technology for thermal conversion is gasification that enables to produce syngas that can be either combusted or directed to further synthesis to produce methanol or liquid fuels. There are several commercially available technologies that enable to gasify wastes. The first part of this study is subjected to general description of waste gasification process. Furthermore the analysis and comparison of commercially available gasification technologies is presented, including their process arrangement, limits and capabilities. Second part of the study is dedicated to the development of thermodynamic model for waste gasification. The model includes three zones of gasification reactors: drying, gasification and eventually ash melting. Modified Gibbs minimization method is used to simulate gasification process. The model is capable of predicting final gas composition as a function of temperature or equivalence ratio. Calculations are performed for a specified average wastes composition and different equivalence ratios of air to discuss its influence on the performance of gasification (temperature of the process and gas composition. Finally the model enables to calculate total energy balance of the process as well as gasification and final gas temperature.

  6. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  7. Pinch technology in theory and its application to a biomass integrated gasification and humid air turbine process

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, B.L.

    1998-03-01

    The Pinch Technology has become a powerful tool for the optimization of the design of heat exchanger networks during the last 20 years. In this work, the different aspects of the methodology have been studied both in a theoretical way and in a practical approach. The first part of the work is a systematic analysis of the pinch technology: what it is, how it works, what are its advantages and disadvantages. There is also a brief discussion about the pinch method and other methods which handle energy recovery problems. Once the philosophy of the pinch technology has been theoretically studied, the second part of the work is its application to two different processes. The first process analyzed is a relatively simple but realistically practical problem based on a two distillation columns system. The knowledge gained during the calculations of this process is used in the second and more complex one. This second process is an integrated biomass gasification and humid air turbine (IGHAT) which has been already optimized by a heat balance program. The application of the pinch technology to this process shows the huge potential for improvements that this technology can provide in order to save energy. All the calculations are handled by the pinch technology software program `SuperTarget`. This program is evaluated along the work. In spite of some shortcomings that have been noticed, the usefulness of the program can be claimed 26 refs, 28 figs, 7 tabs

  8. Analysis of ecotoxic influence of waste from the biomass gasification process.

    Science.gov (United States)

    Hawrot-Paw, Małgorzata; Koniuszy, Adam; Mikiciuk, Małgorzata; Izwikow, Monika; Stawicki, Tomasz; Sędłak, Paweł

    2017-06-01

    The purpose of this research was evaluation of the effect of soil contamination with waste coming from biomass gasification on chosen indicators of its biological activity, growth and development of spring barley, and change of physiological parameters of the plant. Chromatographic content and basic rheological parameters of the substances under research were also analyzed. Liquid wastes, tar, and mixture of tar and engine oil were introduced to the soil in the amount of 100 mg kg -1 DM soil. Based on the conducted research, it was ascertained that the changes in the number and activity of soil microorganisms were determined by the type of waste and its dose. Individual groups of microorganisms showed different sensitivity to the presence of pollution; however, the impact of tar and engine oil mixture was generally more disadvantageous. Presence of contaminants in the soil limited the growth of roots and aboveground parts of spring barley, especially when the dose was 10,000 mg kg -1 DM soil. The unfavorable impact of waste on photosynthesis efficiency on assimilation pigment synthesis and water content in the plant was recorded.

  9. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

    2011-05-01

    This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

  10. El Caso Texaco y la construcción de la memoria

    OpenAIRE

    Barreiro, María Augusta

    2006-01-01

    La intención del presente trabajo, es analizar a través de cuatro actores distintos: ONG`s, Prensa Escrita, Víctimas y Abogados, como se dan los procesos de construcción de memoria alrededor del denominado “Juicio del Siglo”, seguido por colonos e indígenas del nor-oriente ecuatoriano en contra de una de las compañías petroleras mas grandes del mundo; la Chevron Texaco. El juicio arrancó el 3 de Noviembre de 1993 cuando se presentó la demanda en Nueva York; diez años después, fue remiti...

  11. Characterization and partitioning of the char ash collected after the processing of pine wood chips in a pilot-scale gasification unit

    Science.gov (United States)

    Thomas L. Eberhardt; Hui Pan; Leslie H. Groom; Chi-Leung So

    2011-01-01

    Southern yellow pine wood chips were used as the feedstock for a pilot-scale gasification unit coupled with a 25 kW generator. The pulp-grade wood chips were relatively free of bark and low in ash content. Processing this feedstock yielded a black/sooty by-product that upon combustion in a muffle furnace resulted in an ash content of about 48%. The term "char ash...

  12. Modeling integrated biomass gasification business concepts

    Science.gov (United States)

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  13. International Seminar on Gasification 2009 - Biomass Gasification, Gas Clean-up and Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    During the seminar international and national experts gave presentations concerning Biomass gasification, Gas cleaning and gas treatment; and Strategy and policy issues. The presentations give an overview of the current status and what to be expected in terms of development, industrial interest and commercialization of different biomass gasification routes. The following PPT presentations are reproduced in the report: Black Liquor Gasification (Chemrec AB.); Gasification and Alternative Feedstocks for the Production of Synfuels and 2nd Generation Biofuels (Lurgi GmbH); Commercial Scale BtL Production on the Verge of Becoming Reality (Choren Industries GmbH.); Up-draft Biomass Gasification (Babcock and Wilcox Voelund A/S); Heterogeneous Biomass Residues and the Catalytic Synthesis of Alcohols (Enerkem); Status of the GoBiGas-project (Goeteborg Energi AB.); On-going Gasification Activities in Spain (University of Zaragoza,); Biomass Gasification Research in Italy (University of Perugia.); RDandD Needs and Recommendations for the Commercialization of High-efficient Bio-SNG (Energy Research Centre of the Netherlands.); Cleaning and Usage of Product Gas from Biomass Steam Gasification (Vienna University of Technology); Biomass Gasification and Catalytic Tar Cracking Process Development (Research Triangle Institute); Syngas Cleaning with Catalytic Tar Reforming (Franhofer UMSICHT); Biomass Gas Cleaning and Utilization - The Topsoee Perspective (Haldor Topsoee A/S); OLGA Tar Removal Technology (Dahlman); Bio-SNG - Strategy and Activities within E.ON (E.ON Ruhrgas AG); Strategy and Gasification Activities within Sweden (Swedish Energy Agency); 20 TWh/year Biomethane (Swedish Gas Association)

  14. Potential electrical energy generation in Brazil with biomass waste by gasification process; Potencial para geracao de energia eletrica no Brasil com residuos de biomassa atraves da gaseificacao

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, Rachel Martins

    2009-01-15

    The adoption of new technologies for generating electricity is based on technical, economic and environmental analysis. An important factor for choose the technology to be adopted is the raw material available for this purpose. Given the energy application below the potential of agricultural and urban solid waste, the growing demand for energy and the existence of environmental concerns, this thesis aims to emphasize the technology of gasification as an alternative for energy use of agricultural and urban solid waste. Thus, it describes the technology's state of the art, its maturity and improvement. Of great importance for understanding this process, it is needed to add the conclusions derived from experience in the gasification pilot plant at the University of Louvain la Neuve, Belgium. Considering the waste selected, the quantity available and the technology chosen, it is estimated the potential for electric energy that could be generated if the inputs were gasified. (author)

  15. Influence of forest biomass grown in fertilised soils on combustion and gasification processes as well as on the environment with integrated bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Jaanu, K.; Orjala, M. [VTT Energy, Jyvaeskylae (Finland). Fuel Production

    1997-12-01

    This presentation describes research carried out by VTT Energy and METLA during 1996, as part of the collaborative EU project involving Finland, Portugal and Spain. The main objectives of this project are to carry out experimental studies of both combustion and gasification under atmospheric (Portugal and Spain) and pressurised conditions (Finland) using biomass from different countries, namely Finland, Portugal and Spain. This was to determine the influence of biomass fertilising conditions on the process itself and the impact on the integrated energy production facilities, such as gas turbines. The aim of the research was carried out during 1996: (1) To complete the biomass collection, analyses and selection of the samples for combustion and gasification tests. This task has been carried out in co-operation with VTT and METLA, (2) To start the combustion and gasification tests under pressurised and atmospheric conditions. The combustion research in Finland is being performed in pressurised entrained flow reactor at VTT in Jyvaeskylae and the gasification research is being conducted at VTT in Espoo. The collection of biomass samples has been completed. The analyses of the samples show that for instance potassium and phosphorus content will be increased by about 30-50 % due to fertilisation. In the ash fusion tests, the ash from fertilised bark and branches and needles may start to soften already at 900 deg C under reducing conditions depending on the composition of the ash. In oxidising atmospheres the ash softening seems to occur at higher temperatures. Preliminary results indicate that the fertilisation may have an influence on the combustion process

  16. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    Energy Technology Data Exchange (ETDEWEB)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T. [NICERT, University of Ulster at Jordanstown, Newtownabbey BT37 0QB, Northern Ireland (United Kingdom); Pinto, F.; Franco, C.; Gulyurtlu, I. [INETI-DEECA, Estrada do Paco do Lumiar, 22, 1649-038 Lisboa (Portugal); Armesto, L.; Cabanillas, A. [CIEMAT, Avda Complutense, 22, 28040 Madrid (Spain); Caballero, M.A.; Aznar, M.P. [Chemical and Environmental Engineering Department, Centro Politecnico Superior, Maria de Luna, University of Saragossa, 50018 Saragossa (Spain)

    2006-09-15

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  17. Survey of biomass gasification. Volume II. Principles of gasification

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B. (comp.)

    1979-07-01

    Biomass can be converted by gasification into a clean-burning gaseous fuel that can be used to retrofit existing gas/oil boilers, to power engines, to generate electricity, and as a base for synthesis of methanol, gasoline, ammonia, or methane. This survey describes biomass gasification, associated technologies, and issues in three volumes. Volume I contains the synopsis and executive summary, giving highlights of the findings of the other volumes. In Volume II the technical background necessary for understanding the science, engineering, and commercialization of biomass is presented. In Volume III the present status of gasification processes is described in detail, followed by chapters on economics, gas conditioning, fuel synthesis, the institutional role to be played by the federal government, and recommendations for future research and development.

  18. Digested sewage sludge gasification in supercritical water.

    Science.gov (United States)

    Zhai, Yunbo; Wang, Chang; Chen, Hongmei; Li, Caiting; Zeng, Guangming; Pang, Daoxiong; Lu, Pei

    2013-04-01

    Digested sewage sludge gasification in supercritical water was studied. Influences of main reaction parameters, including temperature (623-698 K), pressure (25-35 Mpa), residence time (10-15 min) and dry matter content (5-25 wt%), were investigated to optimize the gasification process. The main gas products were methane, carbon monoxide, carbon dioxide and traces of ethene, etc. Results showed that 10 wt% dry matter content digested sewage sludge at a temperature of 698 K and residence time of 50 min, with a pressure of 25 MPa, were the most favorable conditions for the sewage sludge gasification and carbon gasification efficiencies. In addition, potassium carbonate (K2CO3) was also employed as the catalyst to make a comparison between gasification with and without catalyst. When 2.6 g K2CO3 was added, a gasification efficiency of 25.26% and a carbon gasification efficiency of 20.02% were achieved, which were almost four times as much as the efficiencies without catalyst. K2CO3 has been proved to be effective in sewage sludge gasification.

  19. Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  20. The effect of torrefaction on the process performance of oxygen-steam blown CFB gasification of hardwood and softwood.

    NARCIS (Netherlands)

    Tsalidis, George; di Marcello, Manuela; Spinelli, Giacomo; de Jong, Wiebren; Kiel, Jaap

    2017-01-01

    Torrefaction is a promising biomass upgrading method, offering advantages in logistics and handling. Gasification is an attractive thermochemical conversion technology due to its flexibility in the product gas end-use. The aim of this paper is to investigate the impact of torrefaction on the

  1. Biomass Waste Gasification – Can Be the Two Stage Process Suitable for Tar Reduction and Power Generation?

    Czech Academy of Sciences Publication Activity Database

    Šulc, J.; Štojdl, J.; Richter, M.; Popelka, J.; Svoboda, Karel; Smetana, J.; Vacek, J.; Skoblia, S.; Buryan, P.

    2012-01-01

    Roč. 32, č. 4 (2012), s. 692-700 ISSN 0956-053X Grant - others:RFCR(XE) CT-2010-00009 Institutional research plan: CEZ:AV0Z40720504 Keywords : waste biomass * gasification * tar Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 2.485, year: 2012

  2. The effect of torrefaction on the process performance of oxygen-steam blown CFB gasification of hardwood and softwood

    NARCIS (Netherlands)

    Tsalidis, G.A.; Di Marcello, M.; Spinelli, G.; de Jong, W.; Kiel, J.H.A.

    2017-01-01

    Torrefaction is a promising biomass upgrading method, offering advantages in logistics and handling. Gasification is an attractive thermochemical conversion technology due to its flexibility in the product gas end-use. The aim of this paper is to investigate the impact of torrefaction on the

  3. Pressurized pyrolysis and gasification behaviour of black liquor and biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K.; Backman, R.; Hupa, M. [Aabo Akademi, Turku (Finland)

    1996-12-01

    The objective of this project is to obtain basic experimental data on pyrolysis and gasification of various black liquors and biofuels at elevated pressures, and to model these processes. Liquor-to-liquor differences in conversion behavior of single liquor droplets during gasification at atmospheric pressure were investigated. The applicability of a rate equation developed for catalyzed gasification of carbon was investigated with regard to pressurized black liquor gasification. A neural network was developed to simulate the progression of char conversion during pressurized black liquor gasification. Pyrolysis of black liquor in a pressurized drop-tube furnace was investigated in collaboration with KTH in Stockholm. (author)

  4. Evaluation of the Battelle Agglomerating Ash Burner High Btu Coal Gasification Process

    Energy Technology Data Exchange (ETDEWEB)

    Malow, M.; West, A.S.

    1978-06-01

    The economics of the Battelle Agglomerating Ash Burner Process for the production of high Btu gas (SNG) from coal has been evaluated. A conceptual process design including process flowsheets, heat and material balances and equipment specifications has been prepared. Capital costs, operating costs and gas costs have been developed using the CFBraun ''Gas Cost Guidelines''. The estimated capital and gas costs for the Battelle process have been compared to the alternative high Btu processes described in CFBraun's ''Factored Estimates for Western Coal Commercial Concepts'' and were found to be economically unattractive. Some of the reasons for the higher capital cost and gas costs for the Battelle process are: Low Gasifier and Combustor Operating Pressure, Low Methane Make and Concentration in the Gasifier Effluent, Large Volume of Combustion Gases Produced and SO/sub 2/ Content, Use of Dual CO/sub 2/ Removal Units, and the Methanation Scheme. The Battelle process shows thermal efficiencies significantly lower than the most efficient processes, i.e., HYGAS, CO/sub 2/ Acceptor and BI-GAS.

  5. Bio-gasification of post transesterified microalgae residues: A route to improving overall process renewabilities

    DEFF Research Database (Denmark)

    Ehimen, Ehiazesebhor Augustine

    shown to be non-renewable. The process renewability of biodiesel production from microalgae was found to significantly improve with the use of renewable electricity, reacting alcohols from biomass fermentation and process heating and biomass drying using heat from wood pellet combustion or heat pump...

  6. Review and analysis of biomass gasification models

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Joan Carles; Coronas, Alberto

    2010-01-01

    The use of biomass as a source of energy has been further enhanced in recent years and special attention has been paid to biomass gasification. Due to the increasing interest in biomass gasification, several models have been proposed in order to explain and understand this complex process......, and the design, simulation, optimisation and process analysis of gasifiers have been carried out. This paper presents and analyses several gasification models based on thermodynamic equilibrium, kinetics and artificial neural networks. The thermodynamic models are found to be a useful tool for preliminary...

  7. Fluidised-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Kudjoi, A.; Hippinen, I.; Heinolainen, A.; Suominen, M.; Lu Yong [Helsinki Univ. of Technology (Finland). Lab of Energy Economics and Power Plant Engineering

    1996-12-01

    Partial gasification processes have been presented as possibilities for future power production. In the processes, the solid materials removed from a gasifier (i.e. fly ash and bed material) contain unburnt fuel and the fuel conversion is increased by burning this gasification residue either in an atmospheric or a pressurised fluidised-bed. In this project, which is a part of European JOULE 2 EXTENSION research programme, the main research objectives are the behaviour of calcium and sulphur compounds in solids and the emissions of sulphur dioxide and nitrogen oxides (NO{sub x} and N{sub 2}O) in pressurised fluidised-bed combustion of gasification residues. (author)

  8. Process optimisation in waste combustion and gasification; Prozessoptimierung bei der Verbrennung und Vergasung von Abfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Born, M. [Technische Univ. Bergakademie Freiberg, Inst. IEC, Fakultaet 4 (Germany)

    1998-09-01

    Optimisation of thermal treatment processes is chiefly geared to the following aims: in terms of process engineering, to the homogenisation of input materials, improvement of process effectivity (increased reaction rates), intensification of mixing and exploitation of residence time (approximation to thermodynamic equilibria); in ecological terms, to the minimisation of material flows and pollutant generation and limitation of emissions; and in economic terms to the simplification of process techniques, maximisation of net energy production, and minimisation of the quantity and pollutant content of arising wastes. The present contribution takes a closer look at some of these ways of optimisation. [Deutsch] Die Optimierung der thermischen Behandlungsprozesse wird vor allem mit folgenden Zielstellung durchgefuehrt: - verfahrenstechnisch durch - Homogenisierung der Input-Materialien, Verbesserung der Effektivitaet der Prozesse (Erhoehung der Reaktionsgeschwindigkeit), Intensivierung der Mischung und Nutzung der Verweilzeit (Annaeherung an thermodynamische Gleichgewichte). - Oekologisch durch - Minimierung der Stoffstroeme, Minimierung der Schadstoffentstehung, Begrenzung der Emissionen. - Oekonomisch durch - Vereinfachung der Verfahrenstechnik, Maximierung der Nettoenergieproduktion, Minimierung der Mengen und Schadstoffgehalte entstehender Abfaelle. In den folgenden Ausfuehrungen sollen einige dieser Optimierungsmoeglichkeiten naeher betrachtet werden. (orig./SR)

  9. Pulsed combustion process for black liquor gasification. Second annual report, [November 1990--February 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    This second annual report summarizes the work accomplished during the period November 1990 through February 1992 for DOE Cooperative Agreement No. DE-FC05-90CE40893. The overall project objective is to field test an energy-efficient, innovative black liquor recovery system at a significant industrial scale. This is intended to demonstrate the maturity of the technology in an industrial environment and serve as an example to the industry of the safer and more energy-efficient processing technique. The project structure is comprised of three primary activities: process characterization testing, scale-up hardware development, and field testing. The objective of the process characterization testing was to resolve key technical issues regarding the black liquor recovery process that were identified during earlier laboratory verification tests. This was intended to provide a sound engineering data base for the design, construction and testing of a nominal 1.0 TPH integrated black liquor recovery gasifier. The objective of the scale-up hardware development effort was to ensure that key hardware components, in particular the pulse heater module, would perform reliably and safely in the field. Finally, the objective of the field test is to develop an industrial data base sufficient to demonstrate the capabilities and performance of the operating system with respect to thermal efficiency, product quality, fuel handling, system control, reliability and cost. These tests are to provide long-term and continuous operating data at a capacity unattainable in the bench-scale apparatus.

  10. Exxon catalytic coal-gasification process development program. Quarterly technical progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Euker, Jr, C. A.

    1980-03-01

    Work continued on the catalyst recovery screening studies to evaluate the economic impacts of alternative processing approaches and solid-liquid separation techniques. Equipment specifications have been completed for two cases with countercurrent water washing using rotary-drum filters for the solid-liquid separations. Material and energy balances have been completed for an alternative methane recovery process configuration using low pressure stripping which requires 26% less horsepower than the Study Design system. A study has been initiated to identify trace components which might be present in the CCG gas loop and to assess their potential impacts on the CCG process. This information will be used to assist in planning an appropriate series of analyses for the PDU gasifier effluent. A study has been initiated to evaluate the use of a small conventional steam reformer operating in parallel with a preheat furnace for heat input to the catalytic gasifier which avoids the potential problem of carbon laydown. Preliminary replies from ten manufacturers are being evaluated as part of a study to determine the types and performance of coal crushing equipment appropriate for commercial CCG plants. A material and energy balance computer model for the CCG reactor system has been completed. The new model will provide accurate, consistent and cost-efficient material and energy balances for the extensive laboratory guidance and process definition studies planned under the current program. Other activities are described briefly.

  11. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  12. Biomass Gasification - Process analysis and dimensioning aspects for downdraft units and gas cleaning lines

    OpenAIRE

    Stoppiello, Giovanni

    2010-01-01

    In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipm...

  13. Development of an advanced, continuous mild gasification process for the production of co-products

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, L.R. (Xytel-Bechtel, Inc. (United States)); Hogsett, R.F. (AMAX Research and Development Center, Golden, CO (United States)); Sinor, J.E. (Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)); Ness, R.O. Jr.; Runge, B.D. (North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center)

    1992-10-01

    The principal finding of this study was the high capital cost and poor financial performance predicted for the size and configuration of the plant design presented. The XBi financial assessment gave a disappointingly low base-case discounted cash flow rate of return (DCFRR) of only 8.1% based on a unit capital cost of $900 per ton year (tpy) for their 129,000 tpy design. This plant cost is in reasonable agreement with the preliminary estimates developed by J.E. Sinor Associates for a 117,000 tpy plant based on the FMC process with similar auxiliaries (Sinor, 1989), for which a unit capital costs of $938 tpy was predicted for a design that included char beneficiation and coal liquids upgrading--or about $779 tpy without the liquid upgrading facilities. The XBi assessment points out that a unit plant cost of $900 tpy is about three times the cost for a conventional coke oven, and therefore, outside the competitive range for commercialization. Modifications to improve process economics could involve increasing plant size, expanding the product slate that XBi has restricted to form coke and electricity, and simplifying the plant flow sheet by eliminating marginally effective cleaning steps and changing other key design parameters. Improving the financial performance of the proposed formed coke design to the level of a 20% DCFRR based on increased plant size alone would require a twenty-fold increase to a coal input of 20,000 tpd and a coke production of about 2.6 minion tpy--a scaling exponent of 0.70 to correct plant cost in relation to plant size.

  14. Modelling of Underground Coal Gasification Process Using CFD Methods / Modelowanie Procesu Podziemnego Zgazowania Węgla Kamiennego Z Zastosowaniem Metod CFD

    Science.gov (United States)

    Wachowicz, Jan; Łączny, Jacek Marian; Iwaszenko, Sebastian; Janoszek, Tomasz; Cempa-Balewicz, Magdalena

    2015-09-01

    The results of model studies involving numerical simulation of underground coal gasification process are presented. For the purpose of the study, the software of computational fluid dynamics (CFD) was selected for simulation of underground coal gasification. Based on the review of the literature, it was decided that ANSYS-Fluent will be used as software for the performance of model studies. The ANSYS- -Fluent software was used for numerical calculations in order to identify the distribution of changes in the concentration of syngas components as a function of duration of coal gasification process. The nature of the calculations was predictive. A geometric model has been developed based on construction data of the georeactor used during the researches in Experimental Mine "Barbara" and Coal Mine "Wieczorek" and it was prepared by generating a numerical grid. Data concerning the georeactor power supply method and the parameters maintained during the process used to define the numerical model. Some part of data was supplemented based on the literature sources. The main assumption was to base the simulation of the georeactor operation on a mathematical models describing reactive fluid flow. Components of the process gas and the gasification agent move along the gasification channel and simulate physicochemical phenomena associated with the transfer of mass and energy as well as chemical reactions (together with the energy effect). Chemical reactions of the gasification process are based on a kinetic equation which determines the course of a particular type of equation of chemical coal gasification. The interaction of gas with the surrounding coal layer has also been described as a part of the model. The description concerned the transport of thermal energy. The coal seam and the mass rock are treated as a homogeneous body. Modelling studies assumed the coal gasification process is carried out with the participation of separately oxygen and air as a gasification agent

  15. Exploration of the effect of process variables on the production of high-value fuel gas from glucose via supercritical water gasification.

    Science.gov (United States)

    Hendry, Doug; Venkitasamy, Chandrasekar; Wilkinson, Nikolas; Jacoby, William

    2011-02-01

    A new continuous supercritical water gasification reactor was designed to investigate glucose gasification in supercritical water at high temperatures and low residence times. A 2(3) full factorial experiment was performed to determine the effects of feed concentration, temperature, and residence time on glucose gasification. The temperature levels (750°C and 800°C) were higher than ever used, while the residence times (4 and 6.5s) were shorter than ever used in previous supercritical water gasification studies. The reactor proved capable of attaining higher gasification rates than previously shown with high efficiencies and yields. In addition, the glucose gasification reaction was modeled by estimating activation energy and reaction order of glucose gasification in supercritical water. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

  17. Plant for the production of activated carbon and electric power from the gases originated in gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Ganan, J.; Turegano, J.P.; Calama, G. [Area de Engenharia. Escola Superior de Tecnologia e Gestao. Instituto Politecnico de Portalegre, Lugar da Abadesa, Apartado 148, 7301 Portalegre Codex (Portugal); Roman, S.; Al-Kassir, A. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, Badajoz, 06071 (Spain)

    2006-01-15

    The development of the countries involves a high energy demand; however, the energetic resources used by the moment are not renewable. Events like the energetic crisis of 1973, the continuous geopolitic clashes in energetic resource-rich areas, and the global environmental deterioration as a consequence of the industrial activity taking place in last century, make obvious the need of searching new sources of energy [1]. One of these sources is the obtainment of energy from biomass exploitation. The use of this raw material involves advantages in the emission of low quantities of contaminants to the atmosphere and its renewable character. Until now, the main drawback of this source is its lack of viability when trying to obtain electric power from biomass, due to the use of systems composed of a boiler and a steam turbine (which offer low operative flexibility), which are not rentable in such a competitive market as it is, currently, the energetic one. Nowadays, the use of internal combustion engines, combined with biomass gasifiers, allows rapid connection-disconnection of the plant (aproximately of five minutes), which confers a big flexibility to the system and, as a consequence, a better exploitation of the plant in maximum energetic consumption hours. It also has the advantage of establishing a co-generation system since the gases are generated at a high temperature, 800 {sup o}C [2]. With this view, the aim of this work has focused in the re-design of a gasification plant for the production of activated carbons, from biomassic residues, for the energetic exploitation of the combustible gases produced during the pyrolytic process (H{sub 2}, CO, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}), since these gases are currently burnt in a torch in the plant. The idea of designing the activated carbon production plant arose from the need of managing the biomass residues (olive wastes) generated by the firm Euroliva-Azeites e Oleos Alimentares SA

  18. CO2 gasification of microalgae (N. Oculata – A thermodynamic study

    Directory of Open Access Journals (Sweden)

    Adnan Muflih Arisa

    2018-01-01

    Full Text Available A new model of CO2 gasification has been developed in the Aspen Plus. The potential of microalgae (N. oculata for CO2 gasification also has been investigated. The present gasification process utilizes the CO2 at atmospheric pressure as the gasifying agent. The steam is also injected to the gasification to enhance the H2 production. The composition of the producer gas and gasification system efficiency (GSE are used for performance evaluation. It is found that the CO2 gasification of microalgae produces a producer gas with a high concentration of CO and H2. The GSE indicates that the process works at high performance.

  19. High Performance Gasification with the Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Gøbel, Benny; Hindsgaul, Claus; Henriksen, Ulrik Birk

    2002-01-01

    Based on more than 15 years of research and practical experience, the Technical University of Denmark (DTU) and COWI Consulting Engineers and Planners AS present the two-stage gasification process, a concept for high efficiency gasification of biomass producing negligible amounts of tars....... In the two-stage gasification concept, the pyrolysis and the gasification processes are physical separated. The volatiles from the pyrolysis are partially oxidized, and the hot gases are used as gasification medium to gasify the char. Hot gases from the gasifier and a combustion unit can be used for drying...... a cold gas efficiency exceeding 90% is obtained. In the original design of the two-stage gasification process, the pyrolysis unit consists of a screw conveyor with external heating, and the char unit is a fixed bed gasifier. This design is well proven during more than 1000 hours of testing with various...

  20. Research of lignite underground gasification

    Directory of Open Access Journals (Sweden)

    Tibor Sasvári

    2010-10-01

    Full Text Available Underground Coal Gasification (UCG is an in situ technique to recover the fuel or feedstock value of coal that is noteconomically available through conventional recovery technologies. First tentative works directed toward the utilization of the in situmethod of gasification under conditions of Northern Bohemian brown-coal basin date back to 1956 in formerly Czechoslovakia.6 experiments of UCG were realized later. The obtained results did not confirm the technological assumptions of gasification especiallyregarding the quality of the gas recovered. The average heating capacity reached the value from 1.59 – 3.44 MJ.m-3. Today, similarly allother countries in the world, in Slovakia there is an interest in the revival and perfection of the UCG technology. In this paperit is described a laboratory plant including monitoring and controlling system and some reached results.During these experiments were find out that the gasification process depends on many factors/parameters. Most the important aretopologies/methods, humidity of coal, heat losses, temperatures in relevant zones, composition of oxidation agents and permeability.The calorific value of syngas is 2 - 5 MJ.m-3 if the oxidation agent was used air only. In case of using the air + oxygen mix the calorificvalue to 10 MJ.m-3 has been obtained.

  1. Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

  2. Radiative Gasification Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — This apparatus, developed at EL, determines gasification rate (mass loss rate) of a horizontally oriented specimen exposed in a nitrogen environment to a controlled...

  3. Prediction and measurement of entrained flow coal gasification processes. Interim report, September 8, 1981-September 7, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Hedman, P.O.; Smoot, L.D.; Fletcher, T.H.; Smith, P.J.; Blackham, A.U.

    1984-01-31

    This volume reports interim experimental and theoretical results of the first two years of a three year study of entrained coal gasification with steam and oxygen. The gasifier facility and testing methods were revised and improved. The gasifier was also modified for high pressure operation. Six successful check-out tests at elevated pressure were performed (55, 75, 100, 130, 170, and 215 psig), and 8 successful mapping tests were performed with the Utah bituminous coal at an elevated pressure of 137.5 psig. Also, mapping tests were performed at atmospheric pressure with a Utah bituminous coal (9 tests) and with a Wyoming subbituminous coal (14 tests). The LDV system was used on the cold-flow facility to make additional nonreactive jets mixing measurements (local mean and turbulent velocity) that could be used to help validate the two-dimensional code. The previously completed two-dimensional entrained coal gasification code, PCGC-2, was evaluated through rigorous comparison with cold-flow, pulverized coal combustion, and entrained coal gasification data. Data from this laboratory were primarily used but data from other laboratories were used when available. A complete set of the data used has been compiled into a Data Book which is included as a supplemental volume of this interim report. A revised user's manual for the two-dimensional code has been prepared and is also included as a part of this interim report. Three technical papers based on the results of this study were published or prepared. 107 references, 57 figures, 35 tables.

  4. EMERY BIOMASS GASIFICATION POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Phillips; Scott Hassett; Harry Gatley

    2002-11-27

    Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

  5. A critical review on sustainable biochar system through gasification: Energy and environmental applications.

    Science.gov (United States)

    You, Siming; Ok, Yong Sik; Chen, Season S; Tsang, Daniel C W; Kwon, Eilhann E; Lee, Jechan; Wang, Chi-Hwa

    2017-12-01

    This review lays great emphasis on production and characteristics of biochar through gasification. Specifically, the physicochemical properties and yield of biochar through the diverse gasification conditions associated with various types of biomass were extensively evaluated. In addition, potential application scenarios of biochar through gasification were explored and their environmental implications were discussed. To qualitatively evaluate biochar sustainability through the gasification process, all gasification products (i.e., syngas and biochar) were evaluated via life cycle assessment (LCA). A concept of balancing syngas and biochar production for an economically and environmentally feasible gasification system was proposed and relevant challenges and solutions were suggested in this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Materials of Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  7. CFD Analysis of Coal and Heavy Oil Gasification for Syngas Production

    DEFF Research Database (Denmark)

    Sreedharan, Vikram

    2012-01-01

    This work deals with the gasification of coal and heavy oil for syngas production using Computational Fluid Dynamics (CFD). Gasification which includes complex physical and chemical processes such as turbulence, multiphase flow, heat and mass transfer and chemical reactions has been modeled using...... phases. Gasification consists of the processes of passive heating, devolatilization, volatiles oxidation, char gasification and gas phase reactions. Attention is given here to the chemical kinetics of the gasification processes. The coal gasification model has been validated for entrained-flow gasifiers...... dioxide is overestimated. The deviation is fairly small, particularly for the improved chemical kinetics scheme. The heavy oil gasification model has been validated for a pilot-scale entrained-flow gasifier operating under different oxygen ratios. A gasification model similar to that developed for coal...

  8. Biomass gasification: a strategy for energy recovery and disposal of ...

    African Journals Online (AJOL)

    As distinct from gas generation from biological/ organic wastes the biomass by biological conversion process, which is limited to non-lignaceous matter, the thermo chemical conversion route also termed gasification can process any solid organic matter. Harnessing of energy through gasification route is not only providing to ...

  9. Coal gasification. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of 18 coal gasification pilot plants or supporting projects supported by US DOE is reviewed under the following headings: company involved, location, contract number, funding, gasification process, history, process description, flowsheet and progress in the July-September 1979 quarter. (LTN)

  10. Supercritical Water Gasification of Biomass : A Literature and Technology Overview

    NARCIS (Netherlands)

    Yakaboylu, O.; Harinck, J.; Smit, K.G.; De Jong, W.

    2014-01-01

    The supercritical water gasification process is an alternative to both conventional gasification as well as anaerobic digestion as it does not require drying and the process takes place at much shorter residence times; a few minutes at most. The drastic changes in the thermo-physical properties of

  11. Kinetic study of coals gasification into carbon dioxide atmosphere

    Directory of Open Access Journals (Sweden)

    Korotkikh A.G.

    2015-01-01

    Full Text Available The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The mass loss and gasification time dependencies from temperature were defined to calculate chemical reaction frequency factor and activation energy. Two coal char gasification physico-mathematical models were proposed and recommendations for them were formed.

  12. Update of the Texaco mortality study 1947-93: Part II. Analyses of specific causes of death for white men employed in refining, research, and petrochemicals.

    Science.gov (United States)

    Divine, B J; Hartman, C M; Wendt, J K

    1999-03-01

    To examine patterns of mortality for specific causes of death with increases in the Texaco mortality study to determine if the patterns are related to employment in the petroleum industry. Mortality patterns by duration of employment in various job groups were examined for mesothelioma, non-Hodgkin's lymphoma, multiple myeloma, cell type specific leukaemia, and brain tumours. Mortality from mesothelioma was examined for the total cohort and for two maintenance groups with the greatest potential for exposure to asbestos. The insulator group had a standardised mortality ratio (SMR) of 3029, and a larger group consisting of insulators, carpenters, labourers, electricians, pipefitters, boiler-makers, and welders had an SMR of 411. The mortalities from mesothelioma increased with increasing duration of employment. Mortality was lower for those first employed after 1950. An analysis of all brain tumours for the total cohort and some job and unit subgroups resulted in an SMR of 178 for those employed on the units related to motor oil and 166 for those employed as laboratory workers. Mortality from brain tumours in both of these job groups was higher for those employed > or = 5 years in the group. An analysis of non-Hodgkin's lymphoma showed no consistent patterns among the various employment groups. Mortality from multiple myeloma was non-significantly increased among people employed on the crude (SMR = 155) and fluid catalytic cracking units (SMR = 198). Leukaemia mortality was not increased for the total cohort, and a cell type analysis of leukaemia mortality for the total cohort showed no significant increases for the major cell types. However, there were significant increases for acute unspecified leukaemia (SMR = 276) and leukaemia of unknown cell type (SMR = 231). Analyses of specific causes of death by duration of employment in various job and process units did not show any patterns which suggest that, other than for mesothelioma, any of these increases in

  13. Update of the Texaco mortality study 1947-93: Part I. Analysis of overall patterns of mortality among refining, research, and petrochemical workers.

    Science.gov (United States)

    Divine, B J; Hartman, C M; Wendt, J K

    1999-03-01

    To update information on the workers of the Texaco mortality study to determine if the patterns of mortality have changed with 16 additional years of follow up. All workers were employed for > or = 5 years at company refineries, petrochemical plants, and research laboratories from 1947-93. The cohort now consists of 28,480 employees with an average of > or = 20 years of follow up. The overall mortality, and most cause specific mortalities were lower than or similar to those for the general population of the United States. For white men (86% of the cohort), there were 8873 observed deaths and 11,181 expected resulting in a significantly lower standardised mortality ratio (SMR) of 79. There were significant deficits for all the leading causes of death in the United States including all cancers, cancer of the lung, stroke, heart disease, respiratory disease, and accidents. Slightly increased mortality was found for cancer of the pancreas, cancer of the brain and central nervous system, leukaemia, and cancer of other lymphatic tissue. For cancer of the bone, the SMR was 162 (95% confidence interval (95% CI) 86 to 278), and for benign and unspecified neoplasms, it was 152 (95% CI 109 to 206). Overall mortality patterns for non-white men and women were similar to those for white men. Mortality patterns for white men were also examined by duration of employment, time first employed, location, and by job and process unit. There were significantly increased SMRs for brain cancer for those people employed as laboratory workers and on units with motor oil and for cancer of other lymphatic tissue for people employed on the fluid catalytic cracking unit. The results of the updated study showed a favourable mortality experience for employees in the Texaco mortality study compared with the United States population. There were a few increases found consistently including, but not limited to, brain cancer and cancer of other lymphatic tissue. These increases led to additional

  14. A critical review on biomass gasification, co-gasification, and their environmental assessments

    Directory of Open Access Journals (Sweden)

    Somayeh Farzad

    2016-12-01

    Full Text Available Gasification is an efficient process to obtain valuable products from biomass with several potential applications, which has received increasing attention over the last decades. Further development of gasification technology requires innovative and economical gasification methods with high efficiencies. Various conventional mechanisms of biomass gasification as well as new technologies are discussed in this paper. Furthermore, co-gasification of biomass and coal as an efficient method to protect the environment by reduction of greenhouse gas (GHG emissions has been comparatively discussed. In fact, the increasing attention to renewable resources is driven by the climate change due to GHG emissions caused by the widespread utilization of conventional fossil fuels, while biomass gasification is considered as a potentially sustainable and environmentally-friendly technology. Nevertheless, social and environmental aspects should also be taken into account when designing such facilities, to guarantee the sustainable use of biomass. This paper also reviews the life cycle assessment (LCA studies conducted on biomass gasification, considering different technologies and various feedstocks.

  15. An overview of peat gasification

    Science.gov (United States)

    Punwani, D. V.

    Thermal and biological peat gasification processes are reviewed, with research showing that peat is high in both oxygen and hydrogen, and also nitrogen, which can be used to form ammonia as a byproduct. The hydrogen-carbon ratio of peat has been shown to exceed that of subbituminous coal, indicating less of a need to supply more hydrogen in the formation of gaseous fuels. The gasification process involves crushing the peat into particles smaller than 2 mm, which cascade through drying air into a gasifier, where gases from the hydrogasifier induce hydropyrolysis. The char then flows into a reactor with steam and oxygen to make synthesis gas. Minnesota peat has shown the highest hydrocarbon yields in the U.S., and economic comparisons show peak gasification has economic parity with other means of producing SNG. Experiments have also shown the feasibility of wet peat conversion using a peat-water slurry in an anaerobic digestor to produce methane. Building of pilot plants is suggested as necessary to verify existing processes.

  16. PLASMA GASIFICATION OF WASTE PLASTICS

    Directory of Open Access Journals (Sweden)

    Tadeusz Mączka

    2013-01-01

    Full Text Available The article presents the process of obtaining liquid fuels and fuel gas in the process of plasma processing of organic materials, including waste plastics. The concept of plasma pyrolysis of plastics was presented and on its basis a prototype installation was developed. The article describes a general rule of operating the installation and its elements in the process and basic operation parameters determined during its start-up. Initial results of processing plastics and the directions further investigations are also discussed. The effect of the research is to be the design of effective technology of obtaining fuels from gasification/pyrolysis of organic waste and biomass.

  17. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2009-07-01

    Full Text Available A review was conducted on the use of thermochemical biomass gasification for producing biofuels, biopower and chemicals. The upstream processes for gasification are similar to other biomass processing methods. However, challenges remain in the gasification and downstream processing for viable commercial applications. The challenges with gasification are to understand the effects of operating conditions on gasification reactions for reliably predicting and optimizing the product compositions, and for obtaining maximal efficiencies. Product gases can be converted to biofuels and chemicals such as Fischer-Tropsch fuels, green gasoline, hydrogen, dimethyl ether, ethanol, methanol, and higher alcohols. Processes and challenges for these conversions are also summarized.

  18. Apparatus for solar coal gasification

    Science.gov (United States)

    Gregg, D.W.

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  19. Hydrothermal Gasification for Waste to Energy

    Science.gov (United States)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  20. Determination of the Technological Parameters of Borehole Underground Coal Gasification for Thin Coal Seams

    OpenAIRE

    Falshtynskyi, Volodymyr S.; Dychkovskyi, Roman O.; Vasyl G. Lozynskyi; Pavlo B. Saik

    2013-01-01

    In this article the characteristics of the criteria of borehole underground coal gasification for thin coal seams are defined. The thermal and material balance calculations for coal seam gasification processes are also explained. The construction, method of in situ gasifier preparation, and the sequence of coal seam gasification for area No 1 (located in the field of Solenovsk coal deposits) are also described. The parameters of borehole underground coal gasification for the Solenovsk coal mi...

  1. Gasification of solid waste — potential and application of co-current moving bed gasifiers

    NARCIS (Netherlands)

    Groeneveld, M.J.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    A review is given of gasification processes for solid fuels with special emphasis on waste gasification. Although the co-current moving bed gasifier has not been under consideration for a long time, it offers interesting possibilities for waste gasification. Some operational data are given. Two

  2. Optical spectra of coal gasification products in the RF plasmatron

    Science.gov (United States)

    Fedorovich, S. D.; Burakov, I. A.; Dudolin, A. A.; Markov, A. A.; Khtoo Naing, Aung; Ulziy, Batsamboo; Kavyrshin, D. I.

    2017-11-01

    The use of solid fuel gasification process is relevant to the regions where there is no opportunity to use natural gas as the main fuel. On the territory of the Russian Federation such regions are largely the Urals, Siberia and the Far East. In order to reduce the harmful effects on the environment solid fuel with high sulfur content, ash content and moisture are subjected to gasification process. One of the major problems of this process is to produce syngas with a low calorific value. For conventional types of gasification (gasification), the value of this quantity ranges 8 - 10 MJ / m3. The use of plasma gasification increases the calorific value of 12 - 16 MJ / m3 which allows the most efficient use of the syngas. The reason for the increase of the value lies in the change of temperature in the reaction zone. A significant rise in temperature in the reaction zone leads to an increase in methane formation reactions constant value, which allows to obtain a final product with a large calorific value. The HFI-plasma torch coal temperature reaches 3000 ° C, and the temperature of coal gasification products can reach 8000 ° C. The aim is to develop methods for determining the composition of the plasma gasification products obtained optical spectra. The Kuznetsky coal used as the starting material. Received and decrypted gasification products optical spectra in a wavelength range from 220 to 1000 nm. Recommendations for the use of the developed method for determining the composition of the plasma gasification products. An analysis of the advantages of using plasma gasification as compared with conventional gasification and coal combustion.

  3. International Seminar on Gasification 2008

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen (ed.)

    2008-11-15

    In total 20 international and national experts were invited to give presentations (The PPT-presentations are collected in this volume).The seminar was divided into three parts: Production technologies; Applications - Gas turbines and gas Engines - Biomethane as vehicle fuel- Syngas in industrial processes; Strategy, policy and vision. Production of synthetic fuels through gasification of biomass is expected to develop rapidly due to political ambitions related to the strong fossil fuel dependency, especially within the transportation sector, security of supply issues and the growing environmental concern. Techniques that offer a possibility to produce high quality fuels in an efficient and sustainable way are of great importance. In this context gasification is expected to play a central part. The indirect gasification concept has been further developed in recent years and there are now pilot and demonstration plants as well as commercial plants in operation. The RandD activities at the semi-industrial plant in Guessing, Austria have resulted in the first commercial plant, in Oberwart. The design data is 8.5 MW{sub th} and 2.7 MW{sub e} which gives an electric efficiency of 32 % and the possibility to produce biomethane. In this scale conventional CHP production based on combustion of solid biomass and the steam cycle would result in a poor electric efficiency. Metso Power has complemented the 12 MW{sub th} CFB-boiler at Chalmers University of Technology, Gothenburg, Sweden with a 2 MW{sub th} indirect gasifier. The gasifier is financed by Gothenburg Energy and built for RD purposes. Gothenburg Energy in collaboration with E.ON Sweden will in a first stage build a 20 MW plant for biomethane production (as vehicle fuel and for grid injection) in Gothenburg based on the indirect gasification technology. The plant is expected to be in operation in 2012. The next stage involves an 80 MW plant with a planned start of operation in 2015. Indirect gasification of biomass

  4. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  5. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  6. An overview of world history of underground coal gasification

    Science.gov (United States)

    Konovšek, Damjan; Nadvežnik, Jakob; Medved, Milan

    2017-07-01

    We will give an overview of the activities in the field of underground coal gasification in the world through history. Also we will have a detailed presentation of the most successful and the most recent research and development projects. The currency and scope of the study of coal gasification processes are linked through recent history to the price of crude oil. We will show how by changing oil prices always changes the interest for investment in research in the field of coal gasification. Most coal-producing countries have developed comprehensive programs that include a variety of studies of suitable coal fields, to assess the feasibility and design pilot and commercial projects of underground coal gasification. The latest technologies of drilling in oil and gas industry now enable easier, simpler and more economically viable process underground coal gasification. The trend of increasing research in this area will continue forward until the implementation of commercial projects.

  7. Pyrolysis and gasification behavior of black liquor under pressurized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K.

    1997-11-01

    The purpose of this study has been to enhance the understanding of the processes involved in pressurized black liquor gasification. Gasification is known to occur in three stages: drying, pyrolysis and char gasification. The work presented here focuses on the pyrolysis and gasification stages. Experiments were carried out primarily in two laboratory-scale reactors. A pressurized grid heater was used to study black liquor pyrolysis under pressurized conditions. Char yields and the fate of elements in the liquor, as well as the degree of liquor swelling, were measured in this device. A pressurized thermogravimetric reactor was used to measure the rate of the char gasification process under different temperatures and pressures and in various gas atmospheres. Pyrolysis experiments were also carried out in this device, and data on swelling behavior, char yields and component release were obtained 317 refs.

  8. Process Design and Economics for the Conversion of Lignocellulosic Biomass to High Octane Gasoline: Thermochemical Research Pathway with Indirect Gasification and Methanol Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hensley, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schaidle, Josh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Jeff [Harris Group, Inc., Seattle, WA (United States); Sexton, Danielle [Harris Group, Inc., Seattle, WA (United States); Yap, Raymond [Harris Group, Inc., Seattle, WA (United States); Lukas, John [Harris Group, Inc., Seattle, WA (United States)

    2015-03-01

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve the conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.

  9. Utilisation of the energy-independent underground gasification-uvea process for carbamide production; Einsatz des energieautarken Untertagevergasungs-Urea-Prozesses zur Carbamid-Herstellung

    Energy Technology Data Exchange (ETDEWEB)

    Nakaten, Natalie; Kempka, Thomas [Helmholtz Zentrum Potsdam, Deutsches GeoForschungszentrum (GFZ) Potsdam (Germany); Schlueter, Ralph [DMT GmbH und Co. KG, Essen (Germany). Abt. Geologie und Bohrlochvermessungen; Hamann, Joerg [EPC Industrial Engineering Deutschland GmbH, Alzenau (Germany); Islam, Rafiqul [Dhaka Univ. (Bangladesh). Dept. of Applied Chemistry and Chemical Engineering; Azzam, Rafig [RWTH Aachen (Germany). Lehrstuhl fuer Ingenieur- und Hydrogeologie

    2011-08-15

    The worldwide coal resources have an energy supply potential of several hundred years. However, great depths, thin seams and tectonic faults may greatly restrict the utilisation of the coal seams by means of conventional conveyor technologies. With the aim of production of a conveyable synthesis gas underground coal gasification (UCG) offers an environmentally friendly and economically viable possibility of utilisation of previously inaccessible coal deposits. The high-calorific UCG synthesis gas can be used, for example, for the generation of electricity in an integrated gas and steam turbine process (GaS) as well as the production of chemical starting materials. One possibility of product recovery from the UCG synthesis gas is the production of the fertiliser carbamide (CH{sub 6}N{sub 2}O{sub 2}). The aim of this study is the development of a utilisation concept for coal deposits on the basis of a combined and energy-independent UCG-GaS-urea process. To check the utilisation concept based on an independent electricity supply an economic feasibility study for a selected investigation area in the north of Bangladesh was carried out with consideration of the economic viability and potential of the UCG-GaS-urea process. (orig.)

  10. Selected Environmental Aspects of Gasification and Co-Gasification of Various Types of Waste

    Directory of Open Access Journals (Sweden)

    Natalia Kamińska-Pietrzak

    2013-01-01

    Full Text Available The process of gasification of carbonaceous fuels is a technology with a long-standing practice. In recent years, the technology has been extensively developing to produce energy or chemicals on the basis of obtained gas. Studies focused on the improvement of the gasification process aims at developing the process by increasing environmental safety, the efficiency and the possibilities to utilize various types of alternative fuels (post-consumer waste, various types of biomass waste, by-products and post-process residues, sewage sludge independently or by co-gasification with coal. The choice of the gas purification system, the process operating parameters and introducing the necessary modifications to the existing technologies are essential steps while processing these kinds of feedstock, with regard to their individual characteristics. This paper discusses selected environmental aspects of the gasification and co-gasification of municipal solid waste, sewage sludge, various types of biomass waste and post-process residues. Selected alternative fuels are also characterized, focusing on the influence of their presence in the feedstock in terms of production and the emission of polychlorinated organic compounds, tars, heavy metals and toxic elements.

  11. Clean Coal and Gasification Technology: How it Works?

    Directory of Open Access Journals (Sweden)

    Marina Sidorová

    2006-10-01

    Full Text Available Gasification of coal is the oldest method for the production of hydrogen. Coal gasification is a process that converts coal from a solid to a gaseous state. The gas that is created is very similar to natural gas and can be used to produce chemicals, fertilizers, and/or the electric power [1]. Cleanest of all coal-based electric power technologies, gasification has significantly lower levels of air emissions (including volatile mercury, solid wastes, and wastewater.Due to its high efficiencies, gasification also uses less coal to produce the same amount of energy, resulting in lower carbon dioxide (CO2 emissions. Some scientists believe that CO2 in the atmosphere contributes to a "greenhouse effect" that will lead to the global warming. Coal gasification has a proven technology for capturing CO2 at a fraction of the cost required for coal combustion technologies.

  12. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-01-01

    The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Development of an advanced continuous mild gasification process for the production of co-products. Quarterly report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    O`Neal, G.W.

    1996-01-01

    Efforts continued to obtain financing for a commercial continuous formed coke plant. Discussions were held with two steel companies that are interested in producing coke for their use in steel production and foundry operations. Planning for production of 40 tons of foundry formed coke is underway. This coke will be used in two 20-ton tests at General Motors` foundries. During this production, it is planned to determine if a tunnel kiln can be used as a coking furnace as an alternative for a rotary hearth. A rotary hearth is about three times more costly than a competitive-sized tunnel kiln. Work continued on using Western non-caking coals to produce formed coke. Successful tests were made by using Eastern caking coals and other binders to permit using up to 50% of the cheaper Western non-caking coals in formed coke production. The primary objective of this project is to develop an advanced continuous mild gasification process and product upgrading processes which will be capable of eventual commercialization.

  14. Kinetics of Pyrolysis and Gasification Using Thermogravimetric and Thermovolumetric Analyses

    Directory of Open Access Journals (Sweden)

    Czerski Grzegorz

    2016-03-01

    Full Text Available The carbon dioxide gasification process of Miscanthus giganteus biomass was examined using two methods. First an isothermal thermovolumetric method was applied. The measurement was conducted at 950°C and pressure of 0.1 MPa. Based on the continuous analysis of different kinds of gases formed during the gasification process, the thermovolumetric method allowed the determination of yields and composition of the resulting gas as well as the rate constant of CO formation. Then a non-isothermal thermogravimetric method was applied, during which the loss of weight of a sample as a function of temperature was recorded. In the course of the measurement, the temperature was raised from ambient to 950°C and the pressure was 0.1 MPa. As a result, a change in the carbon conversion degree was obtained. Moreover, TGA methods allow distinguishing various stages of the gasification process such as primary pyrolysis, secondary pyrolysis and gasification, and determining kinetic parameters for each stage. The presented methods differs from each other as they are based either on the analysis of changes in the resulting product or on the analysis of changes in the supplied feedstock, but both can be successfully used to the effective examination of kinetics of the gasification process. In addition, an important advantage of both methods is the possibility to carry out the gasification process for different solid fuels as coal, biomass, or solid waste in the atmosphere of a variety of gasification agents.

  15. Numerical investigation of the staged gasification of wet wood

    Science.gov (United States)

    Donskoi, I. G.; Kozlov, A. N.; Svishchev, D. A.; Shamanskii, V. A.

    2017-04-01

    Gasification of wooden biomass makes it possible to utilize forestry wastes and agricultural residues for generation of heat and power in isolated small-scale power systems. In spite of the availability of a huge amount of cheap biomass, the implementation of the gasification process is impeded by formation of tar products and poor thermal stability of the process. These factors reduce the competitiveness of gasification as compared with alternative technologies. The use of staged technologies enables certain disadvantages of conventional processes to be avoided. One of the previously proposed staged processes is investigated in this paper. For this purpose, mathematical models were developed for individual stages of the process, such as pyrolysis, pyrolysis gas combustion, and semicoke gasification. The effect of controlling parameters on the efficiency of fuel conversion into combustible gases is studied numerically using these models. For the controlling parameter are selected heat inputted into a pyrolysis reactor, the excess of oxidizer during gas combustion, and the wood moisture content. The process efficiency criterion is the gasification chemical efficiency accounting for the input of external heat (used for fuel drying and pyrolysis). The generated regime diagrams represent the gasification efficiency as a function of controlling parameters. Modeling results demonstrate that an increase in the fraction of heat supplied from an external source can result in an adequate efficiency of the wood gasification through the use of steam generated during drying. There are regions where it is feasible to perform incomplete combustion of the pyrolysis gas prior to the gasification. The calculated chemical efficiency of the staged gasification is as high as 80-85%, which is 10-20% higher that in conventional single-stage processes.

  16. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    Energy Technology Data Exchange (ETDEWEB)

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  17. Numerical simulation of waste tyres gasification.

    Science.gov (United States)

    Janajreh, Isam; Raza, Syed Shabbar

    2015-05-01

    Gasification is a thermochemical pathway used to convert carbonaceous feedstock into syngas (CO and H2) in a deprived oxygen environment. The process can accommodate conventional feedstock such as coal, discarded waste including plastics, rubber, and mixed waste owing to the high reactor temperature (1000 °C-1600 °C). Pyrolysis is another conversion pathway, yet it is more selective to the feedstock owing to the low process temperature (350 °C-550 °C). Discarded tyres can be subjected to pyrolysis, however, the yield involves the formation of intermediate radicals additional to unconverted char. Gasification, however, owing to the higher temperature and shorter residence time, is more opted to follow quasi-equilibrium and being predictive. In this work, tyre crumbs are subjected to two levels of gasification modelling, i.e. equilibrium zero dimension and reactive multi-dimensional flow. The objective is to investigate the effect of the amount of oxidising agent on the conversion of tyre granules and syngas composition in a small 20 kW cylindrical gasifier. Initially the chemical compositions of several tyre samples are measured following the ASTM procedures for proximate and ultimate analysis as well as the heating value. The measured data are used to carry out equilibrium-based and reactive flow gasification. The result shows that both models are reasonably predictive averaging 50% gasification efficiency, the devolatilisation is less sensitive than the char conversion to the equivalence ratio as devolatilisation is always complete. In view of the high attained efficiency, it is suggested that the investigated tyre gasification system is economically viable. © The Author(s) 2015.

  18. Development of an advanced, continuous mild gasification process for the production of co-products. Quarterly report, October 30, 1991--January 2, 1992

    Energy Technology Data Exchange (ETDEWEB)

    O`Neal, G.W.

    1991-12-31

    During this quarter the work on Task 3, char upgrading, was in two areas; upgrading Penelec char made from Penelec filter cake to blast furnace formed coke, and evaluating various bituminous pitch binders. The formed coke from Penelec filter cake was of good quality with a high crush strength of 3000 pounds. The reactivity was not equal to that of conventional coke but it is felt that it could be made to equal conventional coke with further study, specifically by adding binder coal to the raw material recipe. The work evaluating bituminous pitch binders confirmed earlier thinking that will be valuable to a commercial scale-up. Asphalt binders are compatible with coal tar binders and produce a coke of equal quality. Hence asphalt binders can be used to supply deficiencies of tar production in units employing coals with insufficient volatile matter to supply enough tar for the coking process. Asphalt binders have about a 50% savings from coal tar pitch. During the 4th Quarter of 1991, a total of 15 Continuous Mild Gasification Unit (CMGU) test runs were made. Efforts continued to determine the optimum forward/reverse ratio to maximize coal feed rate. The success of these efforts has been limited with a maximum coal feed rate of 400 lbs/hr obtainable with a caking coal. The handicap of not having screw shaft heaters cannot be overcome by adjustment of the forward/reverse ratio.

  19. Gasificación con aire en lecho fluidizado de los residuos sólidos del proceso industrial de la naranja//Air gasification in fluidized bed of solid residue the orange industrial process

    Directory of Open Access Journals (Sweden)

    Leonardo Aguiar-Trujillo

    2012-12-01

    Full Text Available La industria procesadora de la naranja genera elevados volúmenes de residuos sólidos. Este residuo se ha utilizado en la alimentación animal y en procesos bioquímicos; pero no se ha aprovechado a través de la gasificación. El objetivo del trabajo fue determinar el aporte energético por medio del proceso de gasificación, realizándose estudios de los residuos sólidos de naranja, utilizando aire en reactor de lecho fluidizado burbujeante (variando la temperatura de gasificación, relación estequiométrica y altura del lecho. En el proceso se utilizó un diseño de experimento factorial completo de 2k, valorando la influencia de las variables independientes y sus interacciones en las respuestas, con un grado de significación del 95 %. Se obtuvieron los parámetros para efectuar el proceso de gasificación de los residuos sólidos de naranja, obteniendo un gas de bajo poder calórico, próximo a 5046 kJ/m3N, demostrando sus cualidades para su aprovechamiento energético.Palabras claves: gasificación con aire, lecho fluidizado, residuo de naranja._______________________________________________________________________________AbstractThe orange industrial process generates high volumes of solid residue. This residue has been used as complement in the animal feeding and biochemical processes; but it has not taken advantage through of the gasification process. The objective of the work was to determine the energy contribution by means ofthe gasification process, were carried out studies of the orange solid residue, using air in reactor of bubbling fluidized bed (varying the gasification temperature, air ratio and bed height. In the process a design of complete factorial experiment of 2k, was used, valuing the influence of the independent variables and its interactions in the answers, using a confidence level of 95 %. Were obtained the parameters to make the process of gasification of the orange solid residue, obtaining a gas of lower heating

  20. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R.; Lindblom, M. [Lund Univ. (Sweden). Dept. of Chemical Engineering

    1996-12-31

    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  1. Multi Staged Gasification Systems - A New Approach

    Energy Technology Data Exchange (ETDEWEB)

    Huber, M.B.; Koidl, F.; Kreutner, G.; Giovannini, A. (MCI - Univ. of Applied Science for Environmental-, Process- and Biotechnology, A-6020 Innsbruck (Austria)); Kleinhappl, M.; Roschitz, C.; Hofbauer, H. (Austrian Bioeneregy Centre, Graz (Austria)); Gruber, F. (GE Jenbacher, Jenbach (Austria)); Krueger, J. (SynCraft Engineering, Schwaz (Austria))

    2008-10-15

    Multi-staged fixed bed (MFB) gasification systems represent one of the most promising and effective methods of transforming solid biomass into power and heat (CHP). The underlying magic of this gasification process is, that a clean producer gas suitable for gas engines at high cold-gas efficiency rates can be produced. These two attributes allow multi-staged gasification systems to minimize the efforts for gas cleaning, while maximizing the energy retrieval out of the biomass. Though already demonstrated in small-scale, MFB gasification becomes a challenge when thinking of commercial-sized plants above 150kW{sub el}. In such a dimension especially the pressure loss over the char bed and bulk instabilities become the major process obstacles. After years of investigation the MCI developed a new process pathway which allows avoiding these bottle necks while maintaining the advantages of MFB systems. The core of the new staged alignment is the combination of a partial-oxidation-accelerator with a floating-bed-reduction-reactor. The process has already achieved technical proof of concept during ongoing investigations at a 250 kW{sub th} pilot plant in Jenbach and will be upscaled to demonstration plant size as soon as sufficient long time experience is gained

  2. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    Science.gov (United States)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. GASIFICATION FOR DISTRIBUTED GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  4. Tar removal from biomass gasification streams: processes and catalysts; Remocao do alcatrao de correntes de gaseificacao de biomassa: processos e catalisadores

    Energy Technology Data Exchange (ETDEWEB)

    Quitete, Cristina P.B. [Centro de Pesquisa e Desenvolvimento Leopoldo Americo Miguez de Mello (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Processos de Conversao de Biomassa; Souza, Mariana M.V.M., E-mail: mmattos@eq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Escola de Quimica

    2014-07-01

    Biomass gasification is a technology that has attracted great interest in synthesis of biofuels and oxo alcohols. However, this gas contains several contaminants, including tar, which need to be removed. Removal of tar is particularly critical because it can lead to operational problems. This review discusses the major pathways to remove tar, with a particular focus on the catalytic steam reforming of tar. Few catalysts have shown promising results; however, long-term studies in the context of real biomass gasification streams are required to realize their potential. (author)

  5. Gasification of black liquor

    Science.gov (United States)

    Kohl, A.L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  6. Macauba gasification; Gaseificacao da macauba

    Energy Technology Data Exchange (ETDEWEB)

    Santos Filho, Jaime dos; Oliveira, Eron Sardinha de [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Vitoria da Conquista, BA (Brazil)], E-mail: jaime@ifba.edu.br; Silva, Jadir Nogueira da; Galvarro, Svetlana Fialho Soria [Universidade Federal de Vicosa (UFV), MG (Brazil); Chaves, Modesto Antonio [Universidade Estadual do Sudoeste da Bahia (UESB), Itapetinga, BA (Brazil). Dept. de Engenharia de Alimentos

    2009-07-01

    For development of a productive activity, with reduced environmental degradation, the use of renewable energy sources as an important option. The gasification has been increasing among the ways of obtaining energy from biomass, and consists of a process where the necessary oxygen to the complete combustion of a fuel it is restricts and, in high temperatures it generates fuel gas of high-quality. In this direction, this work is justified and has its importance as the study of a renewable energy source, macauba coconut (Acrocomia aculeata [Jacq] Lodd), with the gasification process. The objective of this study is to build a biomass concurrent gasifier and evaluate the viability to provide heating for dehydration of fruits, using the macauba coconut as fuel. It was measured the temperature in five points distributed in both gasifier and combustor chamber, being the input area of primary combustor air and also the speed of rotation of the electric motor, using a factorial 3X3 experimental design with three repetitions and interval of measurements of five minutes. The analytical results take to infer that the macauba coconut have potential to be gasified and used for the dehydration of fruits. (author)

  7. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  8. Integrated bioenergy conversion concepts for small scale gasification power systems

    Science.gov (United States)

    Aldas, Rizaldo Elauria

    Thermal and biological gasification are promising technologies for addressing the emerging concerns in biomass-based renewable energy, environmental protection and waste management. However, technical barriers such as feedstock quality limitations, tars, and high NOx emissions from biogas fueled engines impact their full utilization and make them suffer at the small scale from the need to purify the raw gas for most downstream processes, including power generation other than direct boiler use. The two separate gasification technologies may be integrated to better address the issues of power generation and waste management and to complement some of each technologies' limitations. This research project investigated the technical feasibility of an integrated thermal and biological gasification concept for parameters critical to appropriately matching an anaerobic digester with a biomass gasifier. Specific studies investigated the thermal gasification characteristics of selected feedstocks in four fixed-bed gasification experiments: (1) updraft gasification of rice hull, (2) indirect-heated gasification of rice hull, (3) updraft gasification of Athel wood, and (4) downdraft gasification of Athel and Eucalyptus woods. The effects of tars and other components of producer gas on anaerobic digestion at mesophilic temperature of 36°C and the biodegradation potentials and soil carbon mineralization of gasification tars during short-term aerobic incubation at 27.5°C were also examined. Experiments brought out the ranges in performance and quality and quantity of gasification products under different operating conditions and showed that within the conditions considered in the study, these gasification products did not adversely impact the overall digester performance. Short-term aerobic incubation demonstrated variable impacts on carbon mineralization depending on tar and soil conditions. Although tars exhibited low biodegradation indices, degradation may be improved if the

  9. Textural properties of chars as determined by petrographic analysis: comparison between air-blown, oxygen-blown and oxygen-enriched gasification

    CSIR Research Space (South Africa)

    Oboirien, BO

    2012-11-01

    Full Text Available efficiencies in future gasification processes by selecting the most appropriate gaseous environments and (ii) to prevent or minimise the occurrence of slagging in future gasification processes. This is specifically applicable to operations involving fluidised...

  10. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  11. Biomass steam gasification - an extensive parametric modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, G.; Loeffler, G.; Weigl, K.; Hofbauer, H. [Vienna University of Technology (Austria). Institute of Chemical Engineering

    2001-03-01

    A model for steam gasification of biomass was developed by applying thermodynamic equilibrium calculations. With this model, the simulation of a decentralized combined heat and power station based on a dual fluidized-bed steam gasifier was carried out. Fuel composition (ultimate analysis and moisture content) and the operating parameters, temperature and amount of gasification agent, were varied over a wide range. Their influences on amount, composition, and heating value of product gas and process efficiencies were evaluated. It was shown that the accuracy of an equilibrium model for the gas composition is sufficient for thermodynamic considerations. Net electric efficiency of about 20% can be expected with a rather simple process. Sensitivity analysis showed that gasification temperature and fuel oxygen content were the most significant parameters determining the chemical efficiency of the gasification. (author)

  12. Preliminary experimental studies of waste coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.; Jin, Y.G.; Yu, X.X.; Worrall, R. [CSIRO, Brisbane, QLD (Australia). Advanced Coal Technology

    2013-07-01

    Coal mining is one of Australia's most important industries. It was estimated that coal washery rejects from black coal mining was approximately 1.82 billion tonnes from 1960 to 2009 in Australia, and is projected to produce another one billion tonnes by 2018 at the current production rate. To ensure sustainability of the Australian coal industry, we have explored a new potential pathway to create value from the coal waste through production of liquid fuels or power generation using produced syngas from waste coal gasification. Consequently, environmental and community impacts of the solid waste could be minimized. However, the development of an effective waste coal gasification process is a key to the new pathway. An Australian mine site with a large reserve of waste coal was selected for the study, where raw waste coal samples including coarse rejects and tailings were collected. After investigating the initial raw waste coal samples, float/sink testing was conducted to achieve a desired ash target for laboratory-scale steam gasification testing and performance evaluation. The preliminary gasification test results show that carbon conversions of waste coal gradually increase as the reaction proceeds, which indicates that waste coal can be gasified by a steam gasification process. However, the carbon conversion rates are relatively low, only reaching to 20-30%. Furthermore, the reactivity of waste coal samples with a variety of ash contents under N{sub 2}/air atmosphere have been studied by a home-made thermogravimetric analysis (TGA) apparatus that can make the sample reach the reaction temperature instantly.

  13. Research of Heat Rates Effect on the Process Of Fuel-Bed Gasification Of “Balakhtinskoe”, “Osinnikovskoe”, “Krasnogorskoe” and “Borodinskoe” Coal Deposits

    Directory of Open Access Journals (Sweden)

    Zenkov Andrey

    2016-01-01

    Full Text Available Experimental research of fuel-bed gasification at different heating rates was conducted. Release of four gases (CO, NO, H2O, CO2 was determined. Optimal heating rate mode for this method of gasification was established.

  14. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  15. Gasification Characteristics and Kinetics of Coke with Chlorine Addition

    Science.gov (United States)

    Wang, Cui; Zhang, Jianliang; Jiao, Kexin; Liu, Zhengjian; Chou, Kuochih

    2017-10-01

    The gasification process of metallurgical coke with 0, 1.122, 3.190, and 7.132 wt pct chlorine was investigated through thermogravimetric method from ambient temperature to 1593 K (1320 °C) in purified CO2 atmosphere. The variations in the temperature parameters that T i decreases gradually with increasing chlorine, T f and T max first decrease and then increase, but both in a downward trend indicated that the coke gasification process was catalyzed by the chlorine addition. Then the kinetic model of the chlorine-containing coke gasification was obtained through the advanced determination of the average apparent activation energy, the optimal reaction model, and the pre-exponential factor. The average apparent activation energies were 182.962, 118.525, 139.632, and 111.953 kJ/mol, respectively, which were in the same decreasing trend with the temperature parameters analyzed by the thermogravimetric method. It was also demonstrated that the coke gasification process was catalyzed by chlorine. The optimal kinetic model to describe the gasification process of chlorine-containing coke was the Šesták Berggren model using Málek's method, and the pre-exponential factors were 6.688 × 105, 2.786 × 103, 1.782 × 104, and 1.324 × 103 min-1, respectively. The predictions of chlorine-containing coke gasification from the Šesták Berggren model were well fitted with the experimental data.

  16. Thermovolumetric investigations of steam gasification of coals and their chars

    Directory of Open Access Journals (Sweden)

    Porada Stanisław

    2017-01-01

    Full Text Available The process of steam gasification of three coals of various rank and three chars obtained from these coals by the ex-situ method at 900 °C was compared. In the coal gasification process, the pyrolysis stage plays a very important part, which is connected with its direct impact on the kinetics of gasification of the resulting char. What is more, taking into consideration the impact of pyrolysis conditions on char properties, it should be anticipated that the gasification kinetics of coal and char, formed from it by the ex situ method, will be different. In order to examine and compare the process of gasification of coals and chars, an isothermal thermovolumetric method, designed by the authors, was applied. For all the examined samples the measurements were performed at three temperatures, i.e. 850, 900, and 950 °C, and at the pressure of 0.1 MPa. An evaluation of the impact of raw material on the steam gasification of the examined samples was made. The carbon conversion degree and the kinetic parameters of CO and H2 formation reaction were calculated. It was observed that the course of gasification is different for coals and chars obtained from them and it can be concluded that coals are more reactive than chars. Values of kinetic parameters of carbon monoxide and hydrogen formation calculated for coals and corresponding chars are also different. Due to the observed differences the process of gasification of coals and of chars with steam should not be equated.

  17. Indirect liquefaction of coal. [Coal gasification plus Fischer-Tropsch, methanol or Mobil M-gasoline process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-30

    The most important potential environmental problems uniquely associated with indirect liquefaction appear to be related to the protection of occupational personnel from the toxic and carcinogenic properties of process and waste stream constituents, the potential public health risks from process products, by-products and emissions and the management of potentially hazardous solid wastes. The seriousness of these potential problems is related partially to the severity of potential effects (i.e., human mortality and morbidity), but even more to the uncertainty regarding: (1) the probable chemical characteristics and quantities of process and waste streams; and (2) the effectiveness and efficiencies of control technologies not yet tested on a commercial scale. Based upon current information, it is highly improbable that these potential problems will actually be manifested or pose serious constraints to the development of indirect liquefaction technologies, although their potential severity warrants continued research and evaluation. The siting of indirect liquefaction facilities may be significantly affected by existing federal, state and local regulatory requirements. The possibility of future changes in environmental regulations also represents an area of uncertainty that may develop into constraints for the deployment of indirect liquefaction processes. Out of 20 environmental issues identified as likely candidates for future regulatory action, 13 were reported to have the potential to impact significantly the commercialization of coal synfuel technologies. These issues are listed.

  18. Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard; Houbak, N.; Elmegaard, Brian

    2010-01-01

    Methanol production process configurations based on renewable energy sources have been designed. The processes were analyzed in the thermodynamic process simulation tool DNA. The syngas used for the catalytic methanol production was produced by gasification of biomass, electrolysis of water, CO2...... of water, gasification of biomass and autothermal reforming of natural gas for syngas production....

  19. Biomass Gasification Combined Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  20. Biomass gasification, stage 2 LTH. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bjerle, I.; Chambert, L.; Hallgren, A.; Hellgren, R.; Johansson, Anders; Mirazovic, M.; Maartensson, R.; Padban, N.; Ye Zhicheng [comps.] [Lund Univ. (Sweden). Dept. of Chemical Engineering II

    1996-11-01

    This report presents the final report of the first phase of a project dealing with a comprehensive investigation on pressurized biomass gasification. The intention with the project first phase was firstly to design, install and to take in operation a PCFB biomass gasifier. A thorough feasibility study was made during the first half year including extensive calculations on an internal circulating fluidized bed concept. The experimental phase was intended to study pressurized gasification up to 2.5 MPa (N{sub 2}, air) at temperatures in the interval 850-950 deg C. The more specific experimental objective was to examine the impact from various process conditions on the product formation as well as on the function of the different systems. The technical concept has been able to offer novel approaches regarding biomass feeding and PCFB gasification. The first gasification test run was made in December 1993 after almost 18 months of installation work. Extensive work was made during 1994 and the first half of 1995 to find the balance of the PCFB gasifier. It turned out to be very difficult to find operating parameters such that gave a stable circulation of the bed material during gasification mode. Apparently, the produced gas partly changed the pressure profile over the riser which in turn gave unstable operation. After a comprehensive investigation involving more than 100 hours of tests runs it was decided to leave the circulating bed concept and focus on bubbling bed operations. The test rig is currently operating as a bubbling bed gasifier. 4 refs, 24 figs, 6 tabs

  1. Small Scale Gasification of Biomass and Municipal Wastes for Heat and Electricity Production using HTAG Technology

    Directory of Open Access Journals (Sweden)

    Stasiek Jan

    2017-01-01

    Full Text Available Combustion and gasification technology utilizing high-cycle regenerative air/steam preheater has drawn increased attention in many application areas. The process is to be realized at temperature level above ash melting point using highly preheated agent. The use of highly preheated media above 900°C provides additional energy to conversion processes and results in considerable changes to the design of combustion and gasification equipment and its performance. This paper presents an advanced gasification system that utilizes high-temperature air and steam to convert biomass and municipal wastes into syngas production as well as selected results from experimental studies of high temperature air/steam gasification.

  2. Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, Shamsuddin; Kumar, Dhananjay

    2012-07-31

    Dense Pd, Pd-Cu and Pd-Ag composite membranes on microporous stainless steel substrate (MPSS) were fabricated by a novel electroless plating (EP) process. In the conventional Pd-EP process, the oxidation-reduction reactions between Pd-complex and hydrazine result in an evolution of NH{sub 3} and N{sub 2} gas bubbles. When adhered to the substrate surface and in the pores, these gas bubbles hinder uniform Pd-film deposition which results in dendrite growth leading to poor film formation. This problem was addressed by introducing cationic surfactant in the electroless plating process known as surfactant induced electroless plating (SIEP). The unique features of this innovation provide control of Pd-deposition rate, and Pd-grain size distribution. The surfactant molecules play an important role in the EP process by tailoring grain size and the process of agglomeration by removing tiny gas bubbles through adsorption at the gas-liquid interface. As a result surfactant can tailor a nanocrystalline Pd, Cu and Ag deposition in the film resulting in reduced membrane film thickness. Also, it produces a uniform, agglomerated film structure. The Pd-Cu and Pd-Ag membranes on MPSS support were fabricated by sequential deposition using SIEP method. The pre- and post-annealing characterizations of these membranes (Pd, Pd-Cu and Pd-Ag on MPSS substrate) were carried out by SEM, EDX, XRD, and AFM studies. The SEM images show significant improvement of the membrane surface morphology, in terms of metal grain structures and grain agglomeration compared to the membranes fabricated by conventional EP process. The SEM images and helium gas-tightness studies indicate that dense and thinner films of Pd, Pd-Cu and Pd-Ag membranes can be produced with shorter deposition time using surfactant. H{sub 2} Flux through the membranes fabricated by SIEP shows large improvement compared to those by CEP with comparable permselectivity. Pd-MPSS composite membrane was subjected to test for long term

  3. Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

  4. Catalytic gasification of wet biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Matsumura, Yukihiko; Xu, Xiaodong [Univ. of Hawaii at Manoa, Honolulu, HI (United States)] [and others

    1995-12-01

    A pressurized catalytic gasification process, operated at 600{degrees}C, 34.5 MPa, efficiently produces a hydrogen rich synthesis gas from high-moisture content biomass. Glucose was selected as a model compound for catalytic biomass gasification. A proprietary heterogeneous catalyst X was extremely effective for the gasification of both the model compound and whole biomass feeds. The effect of temperature, pressure, reactant concentration on the gasification of glucose with catalyst X were investigated. Complete conversion of glucose (22% by weight in water) to gas was obtained at a weight hourly space velocity of 22.2 (g/h)/g in supercritical water at 600{degrees}C, 34.5 MPa. Complete conversion of whole biomass feeds including water hyacinth, depithed bagasse liquid extract, sewage sludge, and paper sludge was also achieved at the same temperature and pressure. The propriety catalyst X is inexpensive and extremely effective.

  5. An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor

    Science.gov (United States)

    Calvo, L. F.; García, A. I.; Otero, M.

    2013-01-01

    The gasification of sewage sludge was carried out in a simple atmospheric fluidized bed gasifier. Flow and fuel feed rate were adjusted for experimentally obtaining an air mass : fuel mass ratio (A/F) of 0.2 gasification. This allowed improving the process heat transfer and, therefore, gasification efficiency. The heating value of the produced gas was 8.4 MJ/Nm, attaining a hot gas efficiency of 70% and a cold gas efficiency of 57%. PMID:24453863

  6. Development of Highly Durable and Reactive Regenerable Magnesium-Based Sorbents for CO2 Separation in Coal Gasification Process

    Energy Technology Data Exchange (ETDEWEB)

    Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane

    2005-06-01

    The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbents was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude

  7. Sewage Sludge Gasification for CHP Applications

    Energy Technology Data Exchange (ETDEWEB)

    McCahey, S.; Huang, Y.; McMullan, J.T.

    2003-07-01

    Many routes previously available for sewage sludge disposal within the European Union are now prohibited or constrained by environmental legislation. Meanwhile, sewage sludge production increases annually as more rigorous treatment processes are used. This paper introduces an ongoing project, supported by the European Commission FP5 Programme, which seeks to examine the key technical environmental and economic issues relating to the gasification of sewage sludge for utilisation in CHP applications and ultimately to establish the commercial viability of the process. Sewage sludge treatment data has been collected by country and region and a database compiled. Laboratory and pilot plant scale gasification trials are underway and two small engines and a generator have been installed and commissioned. This paper discusses the concurrent development of ECLIPSE process simulation models for the three selected gasification processes, namely fluidised bed, spouted bed and fixed bed. These models have been validated and are being used to predict the behaviour of appropriately sized commercial scale plant, enabling informed decisions regarding technical suitability. The next step in this project is to determine capital costs and economic performance. Process routes will be identified that offer the most cost effective routes to reducing environmental burdens by using sewage sludge in CHP applications. (author)

  8. Transient behavior of devolatilization and char reaction during steam gasification of biomass.

    Science.gov (United States)

    Moon, Jihong; Lee, Jeungwoo; Lee, Uendo; Hwang, Jungho

    2013-04-01

    Steam gasification of biomass is a promising method for producing high quality syngas for polygeneration. During the steam gasification, devolatilization and char reaction are key steps of syngas production and the contributions of the two reactions are highly related to gasification conditions. In this study, the transient characteristics of devolatilization and char reaction in biomass steam gasification were investigated by monitoring cumulative gas production and composition changes in terms of reaction temperature and S/B ratio. Contribution of each reaction stage on the product gas yield was studied in detail. The results provide important insight for understanding the complex nature of biomass gasification and will guide future improvements to the biomass gasification process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. HIGH TEMPERATURE REMOVAL OF H{sub 2}S FROM COAL GASIFICATION PROCESS STREAMS USING AN ELECTROCHEMICAL MEMBRANE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Jack Winnick; Meilin Liu

    2003-06-01

    A bench scale set-up was constructed to test the cell performance at 600-700 C and 1 atm. The typical fuel stream inlet proportions were 34% CO, 22% CO{sub 2}, 35% H{sub 2}, 8% H{sub 2}O, and 450-2000 ppm H{sub 2}S. The fundamental transport restrictions for sulfur species in an electrochemical cell were examined. Temperature and membrane thickness were varied to examine how these parameters affect the maximum flux of H{sub 2}S removal. It was found that higher temperature allows more sulfide species to enter the electrolyte, thus increasing the sulfide flux across the membrane and raising the maximum flux of H{sub 2}S removal. The results identify sulfide diffusion across the membrane as the rate-limiting step in H{sub 2}S removal. The maximum H{sub 2}S removal flux of 1.1 x 10-6 gmol H{sub 2}S min{sup -1} cm{sup -2} (or 3.5 mA cm{sup -2}) was obtained at 650 C, with a membrane that was 0.9 mm thick, 36% porous, and had an estimated tortuosity of 3.6. Another focus of this thesis was to examine the stability of cathode materials in full cell trials. A major hurdle that remains in process scale-up is cathode selection, as the lifetime of the cell will depend heavily on the lifetime of the cathode material, which is exposed to very sour gas. Materials that showed success in the past (i.e. cobalt sulfides and Y{sub 0.9}Ca{sub 0.1}FeO{sub 3}) were examined but were seen to have limitations in operating environment and temperature. Therefore, other novel metal oxide compounds were studied to find possible candidates for full cell trials. Gd{sub 2}TiMoO{sub 7} and La{sub 0.7}Sr{sub 0.3}VO{sub 3} were the compounds that retained their structure best even when exposed to high H{sub 2}S, CO{sub 2}, and H{sub 2}O concentrations.

  10. Biomass thermochemical gasification: Experimental studies and modeling

    Science.gov (United States)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  11. Solar coal gasification reactor with pyrolysis gas recycle

    Science.gov (United States)

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  12. Coal gasification. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  13. Gasification Plant Cost and Performance Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air

  14. Substitute natural gas from biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Tunaa, Per (Lund Inst. of Technology, Lund (SE))

    2008-03-15

    Biomass is by many considered as the only alternative to phase-out the usage of fossil fuels such as natural gas and oil especially for the transportation sector where alternative solutions, such as hydrogen fuel cells and batteries, are not yet fully developed. Thermal gasification or other methods such as pyrolysis of the biomass must be applied in order to produce an intermediate product suitable for further upgrading to either gaseous or liquid products. This thesis will evaluate the possibilities of producing, substitute natural gas, (SNG) from biomass gasification by using computer simulation. Three different gasification techniques were evaluated; entrained-flow, fluidized-bed and indirect gasification coupled with two different desulphurisation systems and two methanation processes. The desulphurisation systems were a zinc oxide bed and a Rectisol wash system. Methanation were performed by a series of adiabatic reactors with gas recycling and by an isothermal reactor. The impact on SNG efficiency from system pressure, isothermal methanation temperature and PSA methane recovery were evaluated as well. The results show that the fluidized-bed and the indirect gasifier have the highest SNG efficiency. Furthermore there are little to no difference between the methanation processes and small differences for the gas cleanup systems. SNG efficiencies in excess of 50 % were possible for all gasifiers. SNG efficiency is defined as the energy in the SNG product divided by the total input to the system from biomass, drying and oxygen. Increasing system pressure has a negative impact on SNG efficiency as well as increasing operating costs due to increased power for compression. Isothermal methanation temperature has no significant impact on SNG efficiency. Recovering as much methane as possible in the PSA is the most important parameter. Recovering methane that has been dissolved in condensed process water increases the SNG efficiency by 2-10% depending on system.

  15. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I. [Condens Oy, Haemeenlinna (Finland)

    1996-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  16. Modeling and comparative assessment of municipal solid waste gasification for energy production.

    Science.gov (United States)

    Arafat, Hassan A; Jijakli, Kenan

    2013-08-01

    Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H(2)) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify(®)) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Microwave-driven plasma gasification for biomass waste treatment at miniature scale

    NARCIS (Netherlands)

    Sturm, G.S.J.; Navarrete Muñoz, A.; Purushothaman Vellayani, A.; Stefanidis, G.

    2016-01-01

    Gasification technology may combine waste treatment with energy generation. Conventional gasification processes are bulky and inflexible. By using an external energy source, in the form of microwave-generated plasma, equipment size may be reduced and flexibility as regards to the feed composition

  18. System model for gasification of biomass model compounds in supercritical water - A thermodynamic analysis

    NARCIS (Netherlands)

    Withag, J.A.M.; Smeets, Jules R.; Bramer, Eduard A.; Brem, Gerrit

    2012-01-01

    This article presents a system model for the process of gasification of biomass model compounds in supercritical water. Supercritical water gasification of wet biomass (water content of 70 wt% or more) has as the main advantage that conversion may take place without the costly drying step. The

  19. Performance, cost and environmental assessment of gasification-based electricity in India: A preliminary analysis

    Science.gov (United States)

    Rani, Abha; Singh, Udayan; Jayant; Singh, Ajay K.; Sankar Mahapatra, Siba

    2017-07-01

    Coal gasification processes are crucial to decarbonisation in the power sector. While underground coal gasification (UCG) and integrated gasification combined cycle (IGCC) are different in terms of the site of gasification, they have considerable similarities in terms of the types of gasifiers used. Of course, UCG offers some additional advantages such as reduction of the fugitive methane emissions accompanying the coal mining process. Nevertheless, simulation of IGCC plants involving surface coal gasification is likely to give reasonable indication of the 3E (efficiency, economics and emissions) prospects of the gasification pathway towards electricity. This paper will aim at Estimating 3E impacts (efficiency, environment, economics) of gasification processes using simulation carried out in the Integrated Environmental Control Model (IECM) software framework. Key plant level controls which will be studied in this paper will be based on Indian financial regulations and operating costs which are specific to the country. Also, impacts of CO2 capture and storage (CCS) in these plants will be studied. The various parameters that can be studied are plant load factor, impact of coal quality and price, type of CO2 capture process, capital costs etc. It is hoped that relevant insights into electricity generation from gasification may be obtained with this paper.

  20. Evaluation of catalytic effects in gasification of biomass at intermediate temperature and pressure

    NARCIS (Netherlands)

    Nanou, Pavlina; van Rossum, G.; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.; Lefferts, Leonardus; Seshan, Kulathuiyer

    2011-01-01

    This paper proposes and examines an alternative thermo-chemical process for biomethane production from lignocellulosic biomass, termed self-gasification. Self-gasification of biomass is envisaged to utilize a high-pressure steam gasifier (30−80 bar) at temperatures of 600−900 °C and to use the

  1. System model for gasification of biomass model compounds in supercritical water – a thermodynamic analysis

    NARCIS (Netherlands)

    Withag, Jan A.M.; Smeets, Jules R.; Bramer, Eduard A.; Brem, Gerrit

    2012-01-01

    This article presents a system model for the process of gasification of biomass model compounds in supercritical water. Supercritical water gasification of wet biomass (water content of 70 wt% or more) has as the main advantage that conversion may take place without the costly drying step. The

  2. Gasification Product Improvement Facility (GPIF). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

  3. Underground gasification and combustion brown with the use of groundwater

    Directory of Open Access Journals (Sweden)

    Zholudyev S.V.

    2011-11-01

    Full Text Available The problems of coal excavation and environement protection are priority for Ukraine. Underground coal gasification (UCG and underground coal incineration (UCI are combining excavation with simultaneous underground processing in entire technological process, capable to solve this problem. Using an intermediate heat carrier - ground water may optimisating of these processes.

  4. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented....... Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio......, excess air ratio, oxygen concentration, feeder gas flow, and residence time. Wood, straw, and lignin were used as biomass fuels. In general, the carbon conversion was higher than 90 % in the biomass gasification experiments conducted at high temperatures (> 1200 °C). The biomass carbon...

  5. UTILIZATION OF AQUEOUS-TAR CONDENSATES FORMED DURING GASIFICATION

    Directory of Open Access Journals (Sweden)

    Anna Kwiecińska

    2016-11-01

    Full Text Available Gasification of solid fuels is an alternative process for energy production using conventional and renewable fuels. Apart from desired compounds, i.e. carbon oxide, hydrogen and methane, the produced gas contains complex organic (tars and inorganic (carbonizate, ammonia contaminants. Those substances, together with water vapor, condensate during cooling of the process gas, what results in the formation of aqueous-tar condensate, which requires proper methods of utilization. The management of this stream is crucial for commercialization and application of the gasification technology. In the paper the treatment of aqueous-tar condensates formed during biomass gasification process is discussed. The removal of tars from the stream was based on their spontaneous separation. The aqueous stream was subjected to ultrafiltration operated at different pressures. Such a treatment configuration enabled to obtain highly concentrated retentate, which could be recycled to the gasifier, and filtrate, which could be subjected to further treatment.

  6. Characteristics of the microwave pyrolysis and microwave CO2-assisted gasification of dewatered sewage sludge.

    Science.gov (United States)

    Chun, Young Nam; Jeong, Byeo Ri

    2017-07-28

    Microwave drying-pyrolysis or drying-gasification characteristics were examined to convert sewage sludge into energy and resources. The gasification was carried out with carbon dioxide as a gasifying agent. The examination results were compared with those of the conventional heating-type electric furnace to compare both product characteristics. Through the pyrolysis or gasification, gas, tar, and char were generated as products. The produced gas was the largest component of each process, followed by the sludge char and the tar. During the pyrolysis process, the main components of the produced gas were hydrogen and carbon monoxide, with a small amount of hydrocarbons such as methane and ethylene. In the gasification process, however, the amount of carbon monoxide was greater than the amount of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene in light tar was generated from the pyrolysis or gasification. Ammonia and hydrogen cyanide, which are precursors of NO x , were also generated. In the microwave heating method, the sludge char produced by pyrolysis and gasification had pores in the mesopore range. This could be explained that the gas obtained from the microwave pyrolysis or gasification of the wet sewage sludge can be used as an alternative fuel, but the tar and NO x precursors in the produced gas should be treated. Sludge char can be used as a biomass solid fuel or as a tar removal adsorbent if necessary.

  7. Incineration, pyrolysis and gasification of electronic waste

    Directory of Open Access Journals (Sweden)

    Gurgul Agnieszka

    2017-01-01

    Full Text Available Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  8. Incineration, pyrolysis and gasification of electronic waste

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2017-11-01

    Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins) while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  9. Biomass gasification with preheated air: Energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    Karamarkovic Rade M.

    2012-01-01

    Full Text Available Due to the irreversibilities that occur during biomass gasification, gasifiers are usually the least efficient units in the systems for production of heat, electricity, or other biofuels. Internal thermal energy exchange is responsible for a part of these irreversibilities and can be reduced by the use of preheated air as a gasifying medium. The focus of the paper is biomass gasification in the whole range of gasification temperatures by the use of air preheated with product gas sensible heat. The energetic and exergetic analyses are carried with a typical ash-free biomass feed represented by CH1.4O0.59N0.0017 at 1 and 10 bar pressure. The tool for the analyses is already validated model extended with a heat exchanger model. For every 200 K of air preheating, the average decrease of the amount of air required for complete biomass gasification is 1.3% of the amount required for its stoichiometric combustion. The air preheated to the gasification temperature on the average increases the lower heating value of the product gas by 13.6%, as well as energetic and exergetic efficiencies of the process. The optimal air preheating temperature is the one that causes gasification to take place at the point where all carbon is consumed. It exists only if the amount of preheated air is less than the amount of air at ambient temperature required for complete gasification at a given pressure. Exergy losses in the heat exchanger, where the product gas preheats air could be reduced by two-stage preheating.

  10. Gasification processes study of biomass and industrial wastes integrated to a type IGCC cogeneration system. Scientific report PE 5-1, 2003 - BIOCOGAZ; Etude des procedes de gazeification de la biomasse et de residus industriels integres a un systeme de co-generation de type IGCC. Rapport scientifique PE 5-1, 2003 - BIOCOGAZ

    Energy Technology Data Exchange (ETDEWEB)

    Most, J.M. [Poitiers Univ., Lab. de Combustion et Detonique (LCD) UPR 9028, 86 (France); Lede, J. [Laboratoire des Sciences du Genie Chimique de Nancy, 54 (France)

    2004-07-01

    The exploratory program objective was to define the characteristics of a thermochemical process of pyrolysis-gasification of the biomass or wastes, which can be connected to a direct energy generation application (gas turbines, boilers, engines). This document presents the program methodology. (A.L.B.)

  11. Gasification of biomass - principles and technical alternatives; Vergasung von Biomassen - Prinzipien und technische Moeglichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Klose, E. [Technische Univ. Bergakademie, Freiberg (Germany)

    1996-12-31

    The technical principles of gasification are outlined, and a number of biomass gasification processes are presented and compared with the coal gasification process. On the basis of the knowledge gained in coal gasification, it will be easy to carry out the development work still required on small-scale biomass gasification systems in cooperation with the gas users. (orig) [Deutsch] Das technische Prinzip derVergasung und verschiedene Verfahrensweisen bei der Vergasung von Biomasse werden vorgestellt und mit der Kohlevergasung verglichen. Auf der Grundlage der technischen Erkenntnisse bei der Kohlevergasung einschliesslich der vor- und nachgeschalteten Prozessstufen sind die noch notwendigen verfahrens- und apparatetechnischen Entwicklungsarbeiten fuer vorwiegend kleine Anlagen in Zusammenarbeit mit den Gasnutzern durchfuehrbar. (orig)

  12. Thermodynamic Analysis of the Gasification of Municipal Solid Waste

    Directory of Open Access Journals (Sweden)

    Pengcheng Xu

    2017-06-01

    Full Text Available This work aims to understand the gasification performance of municipal solid waste (MSW by means of thermodynamic analysis. Thermodynamic analysis is based on the assumption that the gasification reactions take place at the thermodynamic equilibrium condition, without regard to the reactor and process characteristics. First, model components of MSW including food, green wastes, paper, textiles, rubber, chlorine-free plastic, and polyvinyl chloride were chosen as the feedstock of a steam gasification process, with the steam temperature ranging from 973 K to 2273 K and the steam-to-MSW ratio (STMR ranging from 1 to 5. It was found that the effect of the STMR on the gasification performance was almost the same as that of the steam temperature. All the differences among the seven types of MSW were caused by the variation of their compositions. Next, the gasification of actual MSW was analyzed using this thermodynamic equilibrium model. It was possible to count the inorganic components of actual MSW as silicon dioxide or aluminum oxide for the purpose of simplification, due to the fact that the inorganic components mainly affected the reactor temperature. A detailed comparison was made of the composition of the gaseous products obtained using steam, hydrogen, and air gasifying agents to provide basic knowledge regarding the appropriate choice of gasifying agent in MSW treatment upon demand.

  13. Movimientos sociales y redes transnacionales: un estudio sobre la reivindicación de los derechos ambientales de Orellana y Sucumbíos (Ecuador) frente a Texaco (2003-2013)

    OpenAIRE

    Barreto Silva, Angie Carolina

    2016-01-01

    Esta monografía examina y analiza de qué manera la Asamblea de Afectados por Texaco gestionó la defensa de la Amazonia ecuatoriana por el daño ambiental ocasionado por la multinacional Texaco entre los años 2003-2013. Por lo anterior, se comprobará por medio de la teoría de las Redes de Defensa Transnacional de Keck y Sikkink y del análisis de fuentes académicas y empíricas, que la Asamblea de Afectados con el objetivo de visualizar la problemática ambiental ocasionada por la multinacional Te...

  14. An experimental study on air gasification of biomass micron fuel (BMF) in a cyclone gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xianjun [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074 (China)]|[School of Environment and Materials Engineering, Yantai University, 32 Qingquan Rd., Yantai 264005 (China); Xiao, Bo; Liu, Shiming; Hu, Zhiquan; Luo, Siyi; He, Maoyun [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074 (China)

    2009-02-15

    Biomass micron fuel (BMF) produced from feedstock (energy crops, agricultural wastes, forestry residues and so on) through an efficient crushing process is a kind of powdery biomass fuel with particle size of less than 250 {mu}m. Based on the properties of BMF, a cyclone gasifier concept has been considered in our laboratory for biomass gasification. The concept combines and integrates partial oxidation, fast pyrolysis, gasification, and tar cracking, as well as a shift reaction, with the purpose of producing a high quality of gas. In this paper, characteristics of BMF air gasification were studied in the gasifier. Without outer heat energy input, the whole process is supplied with energy produced by partial combustion of BMF in the gasifier using a hypostoichiometric amount of air. The effects of equivalence ratio (ER) and biomass particle size on gasification temperature, gas composition, gas yield, low-heating value (LHV), carbon conversion and gasification efficiency were studied. The results showed that higher ER led to higher gasification temperature and contributed to high H{sub 2}-content, but too high ER lowered fuel gas content and degraded fuel gas quality. A smaller particle was more favorable for higher gas yield, LHV, carbon conversion and gasification efficiency. And the BMF air gasification in the cyclone gasifier with the energy self-sufficiency is reliable. (author)

  15. Technology Assessment Report: Aqueous Sludge Gasification Technologies

    Science.gov (United States)

    The study reveals that sludge gasification is a potentially suitable alternative to conventional sludge handling and disposal methods. However, very few commercial operations are in existence. The limited pilot, demonstration or commercial application of gasification technology t...

  16. Thermodynamics analysis of refinery sludge gasification in adiabatic updraft gasifier.

    Science.gov (United States)

    Ahmed, Reem; Sinnathambi, Chandra M; Eldmerdash, Usama; Subbarao, Duvvuri

    2014-01-01

    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values.

  17. Survey of biomass gasification. Volume III. Current technology and research

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

  18. Tar Management and Recycling in Biomass Gasification and Syngas Purification

    Science.gov (United States)

    McCaffrey, Zach

    Removal of tars is critical to the design and operation of biomass gasification systems as most syngas utilization processing equipment (e.g. internal combustion engines, gas turbines, fuel cells, and liquid fuel synthesis reactors) have a low tolerance for tar. Capturing and disposal of tar is expensive due to equipment costs, high hazardous waste disposal costs where direct uses cannot be found, and system energy losses incurred. Water scrubbing is an existing technique commonly used in gasification plants to remove contaminants and tar; however using water as the absorbent is non-ideal as tar compounds have low or no water solubility. Hydrophobic solvents can improve scrubber performance and this study evaluated tar solubility in selected solvents using slip-streams of untreated syngas from a laboratory fluidized bed reactor operated on almond composite feedstock using both air and steam gasification. Tar solubility was compared with Hansen's solubility theory to examine the extent to which the tar removal can be predicted. As collection of tar without utilization leads to a hazardous waste problem, the study investigated the effects of recycling tars back into the gasifier for destruction. Prior to experiments conducted on tar capture and recycle, characterizations of the air and steam gasification of the almond composite mix were made. This work aims to provide a better understanding of tar collection and solvent selection for wet scrubbers, and to provide information for designing improved tar management systems for biomass gasification.

  19. Determination of the Technological Parameters of Borehole Underground Coal Gasification for Thin Coal Seams

    Directory of Open Access Journals (Sweden)

    Volodymyr S. Falshtynskyi

    2013-01-01

    Full Text Available In this article the characteristics of the criteria of borehole underground coal gasification for thin coal seams are defined. The thermal and material balance calculations for coal seam gasification processes are also explained. The construction, method of in situ gasifier preparation, and the sequence of coal seam gasification for area No 1 (located in the field of Solenovsk coal deposits are also described. The parameters of borehole underground coal gasification for the Solenovsk coal mine on the model of rock and coal massif are detailed too. The method of in situ gasifier preparation, and the sequence of coal seam gasification during a standard installation are also described in detail. Interpretations based on the conducted research and investigation are also presented.

  20. Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Yukihiko [Hiroshima Univ., Dept. of Mechanical System Engineering, Hiroshima (Japan)

    2002-08-01

    Two wet biomass gasification processes, supercritical water gasification and biomethanation, were evaluated from energy, environmental, and economic aspects. Gasification of 1 dry-t/d of water hyacinth was taken as a model case. Assumptions were made that system should be energetically independent, that no environmentally harmful material should be released, and that carbon dioxide should be removed from the product gas. Energy efficiency, carbon dioxide payback time, and price of the product gas were chosen as indices for energy, environmental, and economic evaluations, respectively. Under the conditions assumed here, supercritical water gasifications is evaluated to be more advantageous over biomethanation, but the cost of the product gas is still 1.86 times more expensive than city gas in Tokyo. To improve efficiency of supercritical water gasification, improvement of heat exchanger efficiency is effective. Utilization of fermentation sludge will make biomethanation much more advantageous. (Author)

  1. Coal gasification. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. There are, for example, important differences in reactor configurations and methods of supplying heat for gasification. Moreover, because these processes require high temperatures and some require high pressures, temperature-resistant alloys and new pressure vessels must be developed to obtain reliable performance. A number of the processes for converting coal to high-Btu and to low-Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  2. Process-information definition for evaluation of gasification and gas-cleanup processes for use in molten-carbonate fuel-cell power plants. Task A topical report

    Energy Technology Data Exchange (ETDEWEB)

    Vidt, E.J.

    1981-11-01

    This report satisfies the requirements for DOE contract DE-AC21-81MC16220 to list coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants. The process information and data necessary for this study were extracted from sources in the public domain, including reports from DOE, EPRI, and EPA; work sponsored in whole or in part by federal agencies; and from trade journals, MCFC developers, and manufacturers. The listings included data on the state of development, operating characteristics, effluents, and effectiveness of the gasifiers and coal gas cleanup systems, to the extent that such information is available in the public domain. Information available in the public domain on the effects of contaminants on MCFC performance and on the design constraints on heat recovery equipment used to adjust coal gas temperatures to levels appropriate for available cleanup systems was also provided. Cleanup systems not chosen by DOE's MCFC contractors, General Electric and United Technologies, Inc., for their MCFC power plant work, by virtue of the resource requirements of those systems for commercial development, were extensively characterized. Such characterization is included in Appendix B, principally for the hot gas cleanup processes listed therein. One of those processes, using zinc ferrite for coal gas desulfurization, is now under active development by METC and has the potential for effective use in MCFC power plants.

  3. Guideline for safe and eco-friendly biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Vos, J.; Knoef, H. (BTG biomass technology group, Enschede (Netherlands)); Hauth, M. (Graz Univ. of Technology. Institute of Thermal Engineering, Graz (Austria)) (and others)

    2009-11-15

    The objective of the Gasification Guide project is to accelerate the market penetration of small-scale biomass gasification systems (< 5 MW fuel power) by the development of a Guideline and Software Tool to facilitate risk assessment of HSE aspects. The Guideline may also be applied in retrofitting or converting old thermal plants in the Eastern European countries - with rich biomass recourses - to new gasification plants. The objective of this document is to guide key target groups identifying potential hazards and make a proper risk assessment. The software tool is an additional aid in the risk assessment. This guideline is intended to be a training tool and a resource for workers and employers to safely design, fabricate, construct, operate and maintain small-scale biomass gasification facilities. The Guideline is applicable with the following constraints: 1) The maximum scale of the gasification plant was agreed to be about 1 MW{sub e}. The reason is that large companies do have normally their safety rules in place; 2) This means in principle only fixed bed gasifier designs. However, most parts are also valid to other designs and even other thermal conversion processes; 3) The use of contaminated biomass is beyond the scope of this Guideline. The Guideline contains five major chapters; Chapter 2 briefly describes the gasification technology in general. Chapter 3 gives an overview of major legal framework issues on plant permission and operation. The legal frame is changing and the description is based on the situation by the end of 2007. Chapter 4 explains the theory behind the risk assessment method and risk reduction measures. Chapter 5 is the heart of the Guideline and gives practical examples of good design, operation and maintenance principles. The practical examples and feedback have been received throughout the project and the description is based on mid-2009. Chapter 6 describes the best techniques currently available for emission abatement which are

  4. Producing a synthesis gas for producing ammonia, hydrogen and methanol based on gasification of coal dust, report number one, an installation for studying the kinetic patterns in the gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, A.S.; Brager, G.V.; Kosyakov, N.Ye.

    1984-01-01

    A model installation for studying the kinetic patterns of the process which occurs at 1,500 to 2,000 degrees and pressures of up to 3 megapascals is described. It is proposed that the acquired data be used for designing commercial gas generators.

  5. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  6. Catalyzed steam gasification of biomass. Phase II. Final research report

    Energy Technology Data Exchange (ETDEWEB)

    Hooverman, R.H.

    1979-05-01

    The Wright-Malta gasification process is characterized by low-temperature, catalyzed steam gasification in a pressurized rotary kiln. Fresh biomass moves slowly and continuously through the kiln, where it is gradually heated to around 1200/sup 0/F in an atmosphere of 300 psi steam. During its traverse, pyrolysis and reaction of steam with the nascent char convert nearly all of the organic solids to the gaseous phase. The volatile pyrolysis products pass through the kiln co-currently with the solids and are similarly cracked and steam-reformed within the kiln to fixed gases. Heat for the gasification process is provided by sensible heat recovered from the product gas and the wood decomposition exotherm, making the process inherently very energy-efficient. This report summarizes the work done during the experimental, laboratory-scale phase of development of the W-M biomass gasification process. Two bench-scale experimental gasifiers were constructed and tested: the ''minikiln'', a batch-feed, rotating autoclave; and the ''biogasser'', a stationary, continuous-feed, tubular reactor with zone heating and auger transport. Studies were carried out in these reactors to determine the extent of conversion of biomass solids to gas, and the makeup of the product gas, over a wide range of process conditions. The process variables that were investigated included reactor pressure and temperature, catalyst type and concentration, moisture content and type of biomass feed.

  7. Experimental investigations of biomass gasification with carbon-dioxide

    Science.gov (United States)

    Sircar, Indraneel

    A sustainable energy cycle may include enhanced utilization of solar energy and atmospheric CO2 to produce biomass and enhanced utilization of exhaust CO2 from power plants for synthetic gas production. The reaction of carbon with CO2 is potentially one of the important processes in a future sustainable carbon cycle. Reactions involving carbon and CO2 are also relevant to the chemical process and metal industries. Biomass char has been recognized as a present and future alternative to fossil-fuels for energy production and fuel synthesis. Therefore, biomass char gasification with CO2 recycling is proposed as a sustainable and carbon-neutral energy technology. Biomass char is a complex porous solid and its gasification involves heat and mass transfer processes within pores of multiple sizes from nanometer to millimeter scales. These processes are coupled with heterogeneous chemistry at the internal and external surfaces. Rates for the heterogeneous carbon gasification reactions are affected by inorganic content of the char. Furthermore, pore structure of the char develops with conversion and influences apparent gasification rates. Effective modeling of the gasification reactions has relied on the best available understanding of diffusion processes and kinetic rate property constants from state of the art experiments. Improvement of the influences of inorganic composition, and process parameters, such as pressure and temperature on the gasification reaction rates has been a continuous process. Economic viability of gasification relies on use of optimum catalysts. These aspects of the current status of gasification technologies have motivated the work reported in this dissertation. The reactions between biomass chars and CO2 are investigated to determine the effects of temperature and pressure on the reaction rates for large char particles of relevance to practical gasification technologies. An experimental apparatus consisting of a high-pressure fixed-bed reactor

  8. Gasification - Status and Technology; Foergasning - Status och teknik

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen

    2011-07-15

    In this report gasification and gas cleaning techniques for biomass are treated. The main reason for gasifying biomass is to refine the fuel to make it suitable for efficient CHP production, as vehicle fuel or in industrial processes. The focus is on production of synthesis gas that can be used for production of vehicle fuel and for CHP production. Depending on application different types of gasifiers, gasification techniques and process parameters are of interest. Two gasification techniques have been identified as suitable for syngas generation, mainly due to the fact that they allow the production of a nitrogen free gas out of the gasifier; Indirect atmospheric gasification and Pressurized oxygen blown gasification For CHP production there are no restrictions on the gas composition in terms of nitrogen and here air-blown gasification is of interest as well. The main challenge when it comes to gas cleaning is related to sulphur and tars. There are different concepts and alternatives to handle sulphur and tars. Some of them is based on conventional techniques with well-proven components that are commercially available while others more advantageous solutions, still need further development. The report deals to a minor extent with the conversion of syngas to synthetic fuels. The ongoing research and development of gasification techniques is extensive, both on national and international level. Although many process concepts and components have been demonstrated, there is still no full-scale plant for the production of synthetic fuels based on biomass. Factors affecting the choice of technology are plant size, operating conditions, the possibility for process integration, access to feedstock, market aspects, incentives and economic instruments et cetera. Increased competition for biofuels will inevitably lead to higher raw material costs. This in turn means that the fuel chains with high efficiency, such as biomethane through gasification and methanation, are favored

  9. Simulation of Steam Gasification in a Fluidized Bed Reactor with Energy Self-Sufficient Condition

    Directory of Open Access Journals (Sweden)

    Ajaree Suwatthikul

    2017-03-01

    Full Text Available The biomass gasification process is widely accepted as a popular technology to produce fuel for the application in gas turbines and Organic Rankine Cycle (ORC. Chemical reactions of this process can be separated into three reaction zones: pyrolysis, combustion, and reduction. In this study, sensitivity analysis with respect to three input parameters (gasification temperature, equivalence ratio, and steam-to-biomass ratio has been carried out to achieve energy self-sufficient conditions in a steam gasification process under the criteria that the carbon conversion efficiency must be more than 70%, and carbon dioxide gas is lower than 20%. Simulation models of the steam gasification process have been carried out by ASPEN Plus and validated with both experimental data and simulation results from Nikoo & Mahinpey (2008. Gasification temperature of 911 °C, equivalence ratio of 0.18, and a steam-to-biomass ratio of 1.78, are considered as an optimal operation point to achieve energy self-sufficient condition. This operating point gives the maximum of carbon conversion efficiency at 91.03%, and carbon dioxide gas at 15.18 volumetric percentages. In this study, life cycle assessment (LCA is included to compare the environmental performance of conventional and energy self-sufficient gasification for steam biomass gasification.

  10. Gasification and effect of gasifying temperature on syngas quality and tar generation: A short review

    Science.gov (United States)

    Guangul, Fiseha Mekonnen; Sulaiman, Shaharin Anwar; Raghavan, Vijay R.

    2012-06-01

    Corrosion, erosion and plugging of the downstream equipments by tar and ash particle and, low energy content of syngas are the main problems of biomass gasification process. This paper attempts to review the findings of literature on the effect of temperature on syngas quality, and in alleviating the tar and ash problems in the gasification process. The review of literature indicates that as the gasification temperature increases, concentration of the resulting H2 and carbon conversion efficiency increase, the amount of tar in the syngas decreases. For the same condition, CH4 and CO concentration do not show consistent trend when the feedstock and gasification process varies. These necessitate the need for conducting an experiment for a particular gasification process and feedstock to understand fully the benefits of controlling the gasification temperature. This paper also tries to propose a method to improve the syngas quality and to reduce the tar amount by using preheated air and superheated steam as a gasifying media for oil palm fronds (OPF) gasification.

  11. Computational fluid dynamic model for glycerol gasification in supercritical water in a tee junction shaped cylindrical reactor

    NARCIS (Netherlands)

    Yukananto, Riza; Pozarlik, Artur K.; Brem, Gerrit

    2018-01-01

    Gasification in supercritical water is a very promising technology to process wet biomass into a valuable gas. Providing insight of the process behavior is therefore very important. In this research a computational fluid dynamic model is developed to investigate glycerol gasification in

  12. GASIFICATION BASED BIOMASS CO-FIRING

    Energy Technology Data Exchange (ETDEWEB)

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate

  13. Modelling and simulation of energy conversion in combined gas-steam power plant integrated with coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Zaporowski, B. [Poznan Univ. of Technology (Poland)

    1996-12-31

    The paper presents the modeling and simulation of energy conversion in technological systems of combined gas-steam power plants integrated with coal gasification. The energy analysis of technological systems of gas-steam power plants is connected with energy analysis of various technologies of coal gasification. The base of the performed energy analysis are the elaborate mathematical models of coal gasification process, and of energy processes proceeding in gas and in steam parts of power plants. The mathematical model of coal gasification process for gas-steam power plants allows them to calculate: the composition and physical properties, and energy parameters of gas produced in the process of coal gasification, the consumption and temperature of gasifying medium, and both the chemical and the energy efficiency of coal gasification. The mathematical models of energy conversion processes in the gas generator and in the gas cycle of gas-steam power plants are elaborated on the base of quantum statistical physics, and on the base of phenomenological thermodynamics for the steam cycle of these power plants. The mathematical models were the basis for computer programs for multivariant numerical simulation of energy conversion processes in gas-steam power plants. The results of numerical simulation are shown in the form of tables, presenting the influence of the methods of coal gasification process, and of the structure and of the energy parameters of technological systems of gas-steam power plants on the efficiency of electric energy generation in combined gas-steam power plants integrated with coal gasification.

  14. Leaching From Biomass Gasification Residues

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Polletini, A.

    2011-01-01

    The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled with geoche......The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled...

  15. Waste-gasification efficiency of a two-stage fluidized-bed gasification system.

    Science.gov (United States)

    Liu, Zhen-Shu; Lin, Chiou-Liang; Chang, Tsung-Jen; Weng, Wang-Chang

    2016-02-01

    This study employed a two-stage fluidized-bed gasifier as a gasification reactor and two additives (CaO and activated carbon) as the Stage-II bed material to investigate the effects of the operating temperature (700°C, 800°C, and 900°C) on the syngas composition, total gas yield, and gas-heating value during simulated waste gasification. The results showed that when the operating temperature increased from 700 to 900°C, the molar percentage of H2 in the syngas produced by the two-stage gasification process increased from 19.4 to 29.7mol% and that the total gas yield and gas-heating value also increased. When CaO was used as the additive, the molar percentage of CO2 in the syngas decreased, and the molar percentage of H2 increased. When activated carbon was used, the molar percentage of CH4 in the syngas increased, and the total gas yield and gas-heating value increased. Overall, CaO had better effects on the production of H2, whereas activated carbon clearly enhanced the total gas yield and gas-heating value. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Investigations on catalyzed steam gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

    1981-01-01

    The purpose of the study is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from December 1977 to October 1980. The study was comprised of laboratory studies, process development, and economic analyses. The laboratory studies were conducted to develop operating conditions and catalyst systems for generating methane-rich gas, synthesis gases, hydrogen, and carbon monoxide; these studies also developed techniques for catalyst recovery, regeneration, and recycling. A process development unit (PDU) was designed and constructed to evaluate laboratory systems at conditions approximating commercial operations. The economic analyses, performed by Davy McKee, Inc. for PNL, evaluated the feasibility of adapting the wood-to-methane and wood-to-methanol processes to full-scale commercial operations. Plants were designed in the economic analyses to produce fuel-grade methanol from wood and substitute natural gas (SNG) from wood via catalytic gasification with steam.

  17. High temperature air-blown woody biomass gasification model for the estimation of an entrained down-flow gasifier.

    Science.gov (United States)

    Kobayashi, Nobusuke; Tanaka, Miku; Piao, Guilin; Kobayashi, Jun; Hatano, Shigenobu; Itaya, Yoshinori; Mori, Shigekatsu

    2009-01-01

    A high temperature air-blown gasification model for woody biomass is developed based on an air-blown gasification experiment. A high temperature air-blown gasification experiment on woody biomass in an entrained down-flow gasifier is carried out, and then the simple gasification model is developed based on the experimental results. In the experiment, air-blown gasification is conducted to demonstrate the behavior of this process. Pulverized wood is used as the gasification fuel, which is injected directly into the entrained down-flow gasifier by the pulverized wood banner. The pulverized wood is sieved through 60 mesh and supplied at rates of 19 and 27kg/h. The oxygen-carbon molar ratio (O/C) is employed as the operational condition instead of the air ratio. The maximum temperature achievable is over 1400K when the O/C is from 1.26 to 1.84. The results show that the gas composition is followed by the CO-shift reaction equilibrium. Therefore, the air-blown gasification model is developed based on the CO-shift reaction equilibrium. The simple gasification model agrees well with the experimental results. From calculations in large-scale units, the cold gas is able to achieve 80% efficiency in the air-blown gasification, when the woody biomass feedrate is over 1000kg/h and input air temperature is 700K.

  18. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...

  19. Biomass gasification in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-07-15

    This reports summarizes the activities, industries, and plants on biomass gasification in the Netherlands. Most of the initiatives somehow relate to waste streams, rather than clean biomass, which may seem logic for a densely populated country as the Netherlands. Furthermore, there is an increasing interest for the production of SNG (Substitute Natural Gas) from biomass, both from governments and industry.

  20. BIMOMASS GASIFICATION PILOT PLANT STUDY

    Science.gov (United States)

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  1. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  2. Simulation of Steam Gasification in a Fluidized Bed Reactor with Energy Self-Sufficient Condition

    OpenAIRE

    Ajaree Suwatthikul; Siripong Limprachaya; Paisan Kittisupakorn; Iqbal Mohammed Mujtaba

    2017-01-01

    The biomass gasification process is widely accepted as a popular technology to produce fuel for the application in gas turbines and Organic Rankine Cycle (ORC). Chemical reactions of this process can be separated into three reaction zones: pyrolysis, combustion, and reduction. In this study, sensitivity analysis with respect to three input parameters (gasification temperature, equivalence ratio, and steam-to-biomass ratio) has been carried out to achieve energy self-sufficient conditions in a...

  3. Status of health and environmental research relative to coal gasification 1976 to the present

    Energy Technology Data Exchange (ETDEWEB)

    Wilzbach, K.E.; Reilly, C.A. Jr. (comps.)

    1982-10-01

    Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

  4. Semi-pilot scale test for production of hydrogen-rich fuel gas from different wastes by means of a gasification and smelting process with oxygen multi-blowing

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, R. [Department of Basic Science and Environment CERNAS, ESAC-Polytechnic Institute of Coimbra, Bencanta, 3040-316 Coimbra (Portugal); Sato, H.; Matsukura, Y.; Yamamoto, T. [Corporate Research and Development Laboratories, Sumitomo Metal Industries Ltd., 16-1 Sunayama, Hasaki-machi 314-0255 (Japan)

    2005-08-25

    In Europe, most wastes are deposited in landfills, but a European Council directive has called for a 30% reduction of the landfill amount. Though the cement industry commonly burns waste as an alternative fuel together with fossil fuel (so-called waste co-incineration), it is necessary to reconsider this co-incineration from the viewpoints of sustainable development and cement quality. Gasification and smelting processes (GSPs) for waste can convert waste to slag and fuel gas, which can be used by the energy sector and industry, so these processes are desirable in that they provide wide social benefit. Considering its low environmental impact and good economic performance, a GSP that uses a one-process furnace and oxygen multi-blowing was tested on a semi-pilot scale (1.7 tons/day) to convert different wastes (municipal waste, plastic waste and refuse of polyvinyl chloride with a chlorine content of 48%) to slag and hydrogen-rich fuel gas. The results show that the techniques applied in this test increase the quality of the produced fuel gas, strictly control pollutants, and prolong the life of the plant. Furthermore, the tested GSP has the potential to be linked with a hydrogen-based system through its production of hydrogen-rich fuel gas.

  5. Hydrogen production from molten metal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Eatwell-Hall, R.E.A.; Sharifi, V.N.; Swithenbank, J. [Energy and Environmental Engineering Research Group (EEERG), Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2010-12-15

    As fossil fuel reserves are depleted, more innovative technologies are needed to facilitate fuel production, such as molten media gasification. This technique uses a liquid metal bath in a two-stage process: Stage 1) superheated steam is injected into the melt, with metal oxides formed, and H{sub 2} released; Stage 2) carbon is injected, the oxide is reduced, and CO and CO{sub 2} are released. The main study objective was to develop and test the first stage of this process. The results showed that hydrogen production peaked 100 s into the test, and then levelled off, with a maximum output of 13.6% hydrogen. XRD analysis of the metal samples showed that no tin oxides or magnetite were formed during the process, only a form of wustite (FeO). The syngas produced was very clean, and would need little gas cleaning for use as a feedstock in industrial processes or fuel cells. (author)

  6. Solid–gaseous phase transformation of elemental contaminants during the gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ying; Ameh, Abiba [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom); Lei, Mei [Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Duan, Lunbo [Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Longhurst, Philip, E-mail: P.J.Longhurst@cranfield.ac.uk [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom)

    2016-09-01

    Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid–gas phase transition of metal(loid)s during gasification. Detailed elemental analyses (C, H, O, N and key metal/metalloid elements) were performed on five plant species collected from a contaminated site. Using multi-phase equilibria modelling software (MTDATA), the analytical data allows modelling of the solid/gas transformation of metal(loid)s during gasification. Thermodynamic modelling based on chemical equilibrium calculations was carried out in this study to predict the fate of metal(loid) elements during typical gasification conditions and to show how these are influenced by metal(loid) composition in the biomass and operational conditions. As, Cd, Zn and Pb tend to transform to their gaseous forms at relatively low temperatures (< 1000 °C). Ni, Cu, Mn and Co converts to gaseous forms within the typical gasification temperature range of 1000–1200 °C. Whereas Cr, Al, Fe and Mg remain in solid phase at higher temperatures (> 1200 °C). Simulation of pressurised gasification conditions shows that higher pressures increase the temperature at which solid-to-gaseous phase transformations takes place. - Highlights: • Disposal of plants removed from metal contaminated land raises environmental concerns • Plant samples collected from a contaminated site are shown to contain heavy metals. • Gasification is suitable for plant disposal and its emission is modelled by MTDATA. • As, Cd, Zn and Pb are found in gaseous emissions at a low process temperature. • High pressure gasification can reduce heavy metal elements in process emission.

  7. Biogenic methane from hydrothermal gasification of biomass; Biogenes Methan durch hydrothermale Vergasung von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, M.; Vogel, F.

    2007-09-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on work done in the area of gasification of biomass. The use of dung, manure and sewage sludge as sources of energy is described and discussed. Hydrothermal gasification is proposed as an alternative to conventional gas-phase processes. The aim of the project in this respect is discussed. Here, a catalytic process that demonstrates the gasification of wet biomass to synthetic natural gas (SNG) in a continuously operating plant on a laboratory scale is being looked at. Difficulties encountered in preliminary tests are discussed. Long-term catalyst stability and the installations for the demonstration of the process are discussed, and gasification tests with ethanol are commented on.

  8. High Temperature Air/Steam Gasification (HTAG). Technical report no. 2: High Temperature Air/Steam Gasification of biomass and wastes - Stage 2

    Energy Technology Data Exchange (ETDEWEB)

    Blasiak, W.; Kalisz, S.; Szewczyk, D.; Lucas, C.; Abeyweera, R. [Royal Inst. of Technology, Stockholm (Sweden). Dep of Materials Science and Engineering

    2005-02-01

    This report aims to provide information on activity of Division of Energy and Furnace Technology, Royal Inst. of Technology in the field of solid biomass conversion into fuel gas within year 2003. Contrary to the conventional gasification, in this work highly preheated air and steam is used as a gasifying agent and supplied to newly designed continuous gasifier. Preheating of air and steam is realised by means of the modern high-cycle regenerative Air/steam preheater. Maximum temperature of preheated air or steam is raised up to 1600 deg C. In this work the laboratory test facility called High Temperature Air/steam Gasification (HTAG) plant with flow rate of preheated air or steam up to 110 Nm{sup 3}/h is used. Use of highly preheated gasifying media provides additional energy into the gasification, which enhances the thermal decomposition of solids being gasified. Together with continuous operation mode of the new gasifier, a stable process producing relatively clean fuel gas is reported. High Temperature Air/steam Gasification has very clear economical and environmental benefits. It will increase consumption of biomass (like wood pellets) thus decreases CO{sub 2} emissions from energy intensive industries. Apart from CO{sub 2} reduction possibility, the new process, High Temperature Gasification of wastes, fulfils all new regulations proposed by European Commission on wastes incineration since: no landfilling of ash residues is required, no need to treat ashes from gasification since there is no ash produced but slag which is non leachable and can be used as building material, clean gas for combustion and production of heat or electricity. In this work only gasification of wood pellets is reported but all efforts are targeted on later continuous gasification of other kinds of biomass and wastes.

  9. Novel approach to coal gasification using chemically incorporated catalysts (Phase II). Final report, May 1978-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, H.F.; Conkle, H.N.; Appelbaum, H.R.; Chauhan, S.P.

    1981-01-01

    Since 1974, Battelle has been developing a catalytic treatment process that would allow more economic, efficient and reliable utilization of the vast deposits of eastern coals in gasification systems. In order to keep the process simple and economic, a disposable catalyst lime (CaO), was employed. It was found that the effectiveness of low concentrations of CaO was greatly increased by thorough incorporation into the coal. As a result of these efforts, a catalytic treatment system has been developed that promises to allow simplifications and improvements in existing commercial gasification processes as well as advanced gasification systems. One gasification system that appears exceptionally attractive utilizing the treatment system is direct fluid-bed hydrogasification or hydropyrolysis. A simple pressurized fluid-bed steam/oxygen gasification system is also an attractive option which could be commercialized quickly. Data generated under this program demonstrated the technical and economic advantages of these approaches.

  10. Coal gasification. Quarterly report, July-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    To develop the most suitable techniques for gasifying coal, DOE, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, each of the processes under development has unique characteristics. There are, for example, important differences in reactor configurations and in methods of supplying heat for gasification. Moreover, because these processes require high temperatures, because some require high pressures, and because all produce corrosive and chemically-active gases, resistant alloys and new pressure vessels must be developed to obtain reliable performance. A number of processes for making high Btu gas and for making low Btu gas are described with the contractor identification, contract, site, funding, and current progress. Projects on mathematical modeling and preparation of a coal conversion systems technical data book are also described. (LTN)

  11. Method for Hot Real-Time Sampling of Gasification Products

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, Marc D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-29

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a highly instrumented half-ton/day pilot scale plant capable of demonstrating industrially relevant thermochemical technologies from lignocellulosic biomass conversion, including gasification. Gasification creates primarily Syngas (a mixture of Hydrogen and Carbon Monoxide) that can be utilized with synthesis catalysts to form transportation fuels and other valuable chemicals. Biomass derived gasification products are a very complex mixture of chemical components that typically contain Sulfur and Nitrogen species that can act as catalysis poisons for tar reforming and synthesis catalysts. Real-time hot online sampling techniques, such as Molecular Beam Mass Spectrometry (MBMS), and Gas Chromatographs with Sulfur and Nitrogen specific detectors can provide real-time analysis providing operational indicators for performance. Sampling typically requires coated sampling lines to minimize trace sulfur interactions with steel surfaces. Other materials used inline have also shown conversion of sulfur species into new components and must be minimized. Sample line Residence time within the sampling lines must also be kept to a minimum to reduce further reaction chemistries. Solids from ash and char contribute to plugging and must be filtered at temperature. Experience at NREL has shown several key factors to consider when designing and installing an analytical sampling system for biomass gasification products. They include minimizing sampling distance, effective filtering as close to source as possible, proper line sizing, proper line materials or coatings, even heating of all components, minimizing pressure drops, and additional filtering or traps after pressure drops.

  12. Gasification of yeast industry treatment plant sludge using downdraft Gasifier.

    Science.gov (United States)

    Ayol, Azize; Tezer, Ozgun; Gurgen, Alim

    2018-01-01

    Sludges produced in biological wastewater treatment plants have rich organic materials in their characteristics. Recent research studies have focused on the energy recovery from sludge due to its high organic content. The gasification process is a thermal conversion technology transforming the chemical energy contained in a solid fuel into thermal energy and electricity. The produced syngas as a mixture of CO, CH 4 , H 2 and other gases can be used to generate electrical energy. The gasification of yeast industry sludge has been experimentally evaluated in a pilot scale downdraft-type gasifier as a route towards the energy recovery. The gasifier has 20 kg biomass/h fuel capacity. During gasification, the temperature achieved was more than 1,000°C in the gasifier, and then the syngas was transferred to the gas engine to yield the electricity. A load was connected to the grid box and approximately 1 kWh electrical power generation for 1 kg dry sludge was determined. The characteristics of residuals - ash, glassy material - were also analyzed. It was found that most of the heavy metals were fixed in the glassy material. Experimental results showed that the yeast industry sludge was an appropriate material for gasification studies and remarkable energy recovery was obtained in terms of power production by using syngas.

  13. Hydrogen production from algal biomass via steam gasification.

    Science.gov (United States)

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Solid Oxide Fuel Cells coupled with a biomass gasification unit

    Directory of Open Access Journals (Sweden)

    Skrzypkiewicz Marek

    2016-01-01

    Full Text Available A possibility of fuelling a solid oxide fuel cell stack (SOFC with biomass fuels can be realized by coupling a SOFC system with a self-standing gasification unit. Such a solution enables multi-fuel operation, elasticity of the system as well as the increase of the efficiency of small-scale biomass-to-electricity conversion units. A system of this type, consisting of biomass gasification unit, gas purification unit, SOFC stack, anode off-gas afterburner and peripherals was constructed and operated successfully. During the process, biomass fuel (wood chips was gasified with air as gasification agent. The gasifier was capable of converting up to 30 kW of fuel to syngas with efficiencies up to 75%. Syngas leaving the gasification unit is delivered to a medium temperature adsorber for sulphur compounds removal. Steam is added to the purified fuel to maintain steam to carbon ratio higher than 2. The syngas then is passed to a SOFC stack through a fuel preheater. In such a configuration it was possible to operate a commercial 1.3 kW stack within its working regime. Conducted tests confirmed successful operation of a SOFC stack fuelled by biomass-sourced syngas.

  15. CFD simulation of coal gasification in an entrained-flow gasifier

    DEFF Research Database (Denmark)

    Sreedharan, V.; Hjertager, B.H.; Solberg, T.

    2010-01-01

    A study on predicting different chemical and physical processes occurring within an entrained-flow coal gasifier using computational fluid dynamics is carried out. The synthesis gas produced as a result of the gasification process is composed primarily of a combustible mixture of CO and hydrogen...... (water and CO being the other major constituents). The abundant availability of coal coupled with the flexibility of feedstock usage, fluctuations in natural gas prices, and increased environmental concerns make gasification an attractive alternative to conventional thermal power plant solutions...... for the energy requirements of tomorrow. Power plants using the Integrated Gasification Combined Cycle technology are being developed to utilize conventional feedstock in a cleaner and more efficient manner. Their intended use in gasification technology based power plants are expected to bring about improvements...

  16. Challenges for implementation of bioenergy in the Brazilian energy matrix and biomass gasification process for the production of electrical power; Desafios da bioenergia para sua implementacao na matriz energetica brasileira e o processo de gaseificacao da biomassa para a producao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Figueiroa, E.O.; Moutinho-Junior, D.A.A.; Silva, J.D. [Universidade de Pernambuco (UPE), Recife, PE (Brazil)

    2010-07-01

    The gasification is the conversion of any solid or liquid fuel in fuel gas through the process of the partial oxidation at a high temperature. The gasification process of course occurs in four distinct physicochemical stages with different temperatures of reaction, as drying of the biomass, pyrolysis, reduction and combustion. The reorganization of the Brazilian electric sector foresees technological innovations in the system of electric generation for the country. The process of gasification integrated in a combined cycle (cycle of Brayton and cycle of Rankine) characterizes an innovative technology. It is with noting that this technology is still in improvement, it shows an excellent perspective of commercial viability and efficiency significantly higher than conventional technology. This work presents a study of the gases generated in the zone of combustion and its behavior in the zone of 'freeboard' of a gasifier of fluidized stream bed. For this study, we made the use of one hybrid technique (half-analytical) that is the transformed one of Fourier. (author)

  17. Studies on biomass char gasification and dynamics

    Science.gov (United States)

    You, Zhanping; You, Shijun; Ma, Xiaoyan

    2018-01-01

    The gasification performances of two kinds of biomass char by experiment methods are studied, including conversion rate and gasification gas component with temperature and time. Experimental results show that gasification temperature has important effects on the conversion rate and gas component. In the range of experimental temperature, char conversion rates are no more than 30.0%. The apparent activation energies and apparent reaction frequency factors of two biomass chars are obtained through kinetic studies.

  18. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  19. Gasification of Greek lignite in an indirect heat (allothermal) rotary kiln gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Androutsopoulos, G.P.; Hatzilyberis, K.S.; Theofilou, N.A.; Agalianos, D.S.; Chronis, C.G.; Kapassakalis, V.N.; Karsakos, A.G.; Katsaros, A.N.; Stamatakis, C.P.; Zissis, C.L. [National Technical University of Athens, Athens (Greece). Dept. of Chemical Engineering

    2003-09-01

    This work reports the performance results of a pilot-size lignite gasification plant. The feed material was Greek lignite (Megalopolis), currently being employed for electricity generation in pulverized lignite-fired thermoelectric stations. Low energy conversion efficiency, low station availability, and environmental issues call for developing improved processes, e.g., an IGCC (Integrated Gasification Combined Cycle). An indirect heat (allothermal) rotary kiln was selected as the lignite gasification reactor for developing an overall gasification process of improved efficiency. Week long gasification runs, at near atmospheric pressure and maximum temperature in the range 900-950{sup o}C, validated high DAF lignite conversions, i.e., 90-95%, and the production of a medium heating value synthesis gas (i.e., 11-13 MJ/Nm{sup 3} dry basis), despite the use of air for burning recycled product gas for process heating. Gas composition is equivalent to that of autothermal gasifiers (e.g., Lurgi, Winkler, Koppers-Totzek), which operate on oxygen, under pressure and strict moisture and particle size specifications. Similarly, the kiln gas is comparable to that of an allothermal, high-pressure, fluidized bed gasifier running with a high rank coal feed. The data indicate satisfactory gasification efficiency and a good thermal efficiency that should be improved further through heat integration of a scaled-up process based on an indirect heat rotary kiln gasifier.

  20. Biomass Gasification Research Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-03GO13175 and DE-FC36-02GO12024) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. This multi-year effort to develop methods to effectively monitor gaseous species produced in thermochemical process streams resulted in a sampling and analysis approach that is continuous, sensitive, comprehensive, accurate, reliable, economical, and safe. The improved approach for sampling thermochemical processes that GTI developed and demonstrated in its series of field demonstrations successfully provides continuous transport of vapor-phase syngas streams extracted from the main gasification process stream to multiple, commercially available analyzers. The syngas stream is carefully managed through multiple steps to successfully convey it to the analyzers, while at the same time bringing the stream to temperature and pressure conditions that are compatible with the analyzers. The primary principle that guides the sample transport is that throughout the entire sampling train, the temperature of the syngas stream is maintained above the maximum condensation temperature

  1. Gasification experience with biomass and wastes

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, H.P.; Adlhoch, W. [Rheinbraun AG, Cologne (Germany)

    1996-12-31

    The HTW process is particularly favourable for the gasification of low-rank feedstocks. During various tests - performed in b-bench- scale, pilot-scale and industrial scale units - consequences with regard to feedstock preparation. Gasification behaviour, corrosion, emission and residual matter were carefully studied for a large number of different feedstocks. Information is now available for optimal utilisation of several types of biomass and waste materials in relation to plant operation, emission and residue utilization. Different types of biomass were tested in bench-scale conditions in an atmospheric HTW process development unit. Industrial-scale experience concerning biomass is available from the Gasification plant at Oulu, Finland, which operated from 1988 to 1991, producing ammonia synthesis gas from dried Finnish peat. During several test campaigns performed at the HTW demonstration plant sewage sludge, loaded coke and used plastics were co-gasified at feeding rates of up to 5 t/h. Operability, conversion efficiency, syngas contaminants, solid residue characteristics and emissions were monitored very carefully. Co-gasification in a dried lignite mixture allows synthesis gas for methanol production to be obtained also from waste materials. Thus, waste is converted into a useful chemical feedstock. For both sewage sludge and loaded coke, conversion efficiency and syngas yield were sufficient. Within the scope of a solid residue characterization various contaminants, including chlorine, sulphur, heavy metals and other trace elements or organic compounds, their formation and/or release were detected. Emissions were well below the limits. However, an increase in the benzene and naphthalene concentrations in the crude gas occurred. Thus, a commercial application requires additional gas treatment. In the next few years, feedstock recycling of mixed plastics household waste from Duales System Deutschland GmbH will call for a plant capacity of 350 000 to 400 000

  2. Gasification biochar as soil amendment for carbon sequestration and soil quality

    DEFF Research Database (Denmark)

    Hansen, Veronika

    2014-01-01

    Thermal gasification of biomass is an efficient and flexible way to generate energy. Besides the energy, avaluable by-product, biochar, is produced. Biochar contains a considerable amount of recalcitrant carbon thathas potential for soil carbon sequestration and soil quality improvement if recycled...... back to agriculture soils. To determine the effect of gasification biochar on soil processes and crop yield, a short-term incubation study was conducted and a field trial has been established....

  3. Modelling of Biomass Gasification Integrated with a Solid Oxide Fuel Cell System

    OpenAIRE

    Doherty, Wayne

    2014-01-01

    Biomass is of major interest as a renewable energy source in the context of climate change and energy security. Traditional biomass conversion technologies achieve low electrical efficiencies. Biomass gasification (BG) coupled with fuel cells offer higher efficiencies. Gasification is a process in which a carbonaceous fuel is converted to a combustible gas. It occurs when a controlled amount of oxidant is reacted at high temperatures with available carbon in a fuel within a gasifier. Two tech...

  4. Technologies relevant for gasification and methanation in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Niels Bjarne

    2012-09-15

    approx. 75 MW input. It could correspond to 5-6 unit lines in parallel with very high operation reliability (10-12 MW as unit size). It would be a possibility to install a common (relatively cheaper) methanation unit (e.g. TREMP) after the gasifiers. This methanation unit could also supply steam to the gasification process itself achieving a synergy effect and increasing efficiency. (LN)

  5. Trace metal transformations in gasification

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A. [and others

    1995-08-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  6. Investigation of sewage sludge gasification with use of flue gas as a gasifying agent

    Directory of Open Access Journals (Sweden)

    Maj Izabella

    2017-01-01

    Full Text Available The paper presents results of investigation of low-temperature sewage sludge gasification with use of flue gas as a gasifying agent. Tests were conducted in a laboratory stand, equipped with a gasification reactor designed and constructed specifically for this purpose. During presented tests, gas mixture with a composition of typical flue gases was used as a gasifying agent. The measuring system ensures online measurements of syngas composition: CO, CO2, H2, CH4. As a result of gasification process a syngas with combustible components has been obtained. The aim of the research was to determine the usability of sewage sludge for indirect cofiring in power boilers with the use of flue gas from the boiler as a gasifying agent and recirculating the syngas to the boiler’s combustion chamber. Results of presented investigation will be used as a knowledge base for industrial-scale sewage sludge gasification process. Furthermore, toxicity of solid products of the process has been determined by the use of Microtox bioassay. Before tests, solid post-gasification residues have been ground to two particle size fractions and extracted into Milli-Q water. The response of test organisms (bioluminescent Aliivibrio fischeri bacteria in reference to a control sample (bacteria exposed to 2% NaCl solution was measured after 5 and 15 minutes of exposure. The obtained toxicity results proved that thermal treatment of sewage sludge by their gasification reduces their toxicity relative to water organisms.

  7. Catalysts for dual fluidised bed biomass gasification - an experimental study at the pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Christoph; Koppatz, Stefan; Hofbauer, Hermann [Vienna University of Technology, Institute of Chemical Engineering, Vienna (Austria)

    2011-07-15

    Energy from renewable sources is expected to contribute increasingly to the future energy supply. Particularly, the utilisation of biomass via gasification features a high potential for local energy supply. In addition to the conventional heat and power supply, the biomass-derived product gas is utilisable for further conversion, e.g. into liquid fuels, synthetic natural gas or even chemicals. In the field of biomass gasification systems, fluidised bed gasification has achieved notable relevance. Biomass gasification by fluidised bed processing produces high-quality product gas. However, the technical and economical effectiveness is not yet competitive. A major issue is the purity of the product gas, which is mainly focused on the gasification originating tar. A promising option to yield tar-free product gas is the application of a catalyst directly in the fluidised bed process. The present paper outlines catalysts for biomass gasification in fluidised bed processing. Recent activities in the development of gasifier catalysts are highlighted. Different catalysts are described depending on their performance and capability regarding tar conversion. The scope of catalysts ranges from naturally occurring materials to synthetic materials. (orig.)

  8. The assessment of sewage sludge gasification by-products toxicity by ecotoxicologial test.

    Science.gov (United States)

    Werle, Sebastian; Dudziak, Mariusz

    2015-08-01

    The process of gasification of sewage sludge generates by-products, which may be contaminated with toxic and hazardous substances, both organic and inorganic. It is therefore important to assess the environmental risk associated with this type of waste. The feasibility of using an ecotoxicological tests for this purpose was determined in the presented study. The applied tests contained indicator organisms belonging to various biological groups (bacteria, crustaceans, plants). The subject of the study were solid (ash, char) and liquid (tar) by-products generated during gasification (in a fixed bed reactor) of dried sewage sludge from various wastewater treatment systems. The tested samples were classified based on their toxic effect. The sensitivity of the indicator organisms to the tested material was determined. In-house procedures for the preparation for toxicity analysis of both sewage sludge and by-products generated during the gasification were presented. The scope of work also included the determination of the effect of selected process parameters (temperature, amount of gasifying agent) on the toxicity of gasification by-products depending on the sewage sludge source. It was shown that both the type of sewage sludge and the parameters of the gasification process affects the toxicity of the by-products of gasification. However, the results of toxicity studies also depend on the type of ecotoxicological test used, which is associated with a different sensitivity of the indicator organisms. Nevertheless, it may be concluded that the by-products formed during the gasification of the low toxicity sewage sludge can be regarded as non-toxic or low toxic. However, the results analysis of the gasification of the toxic sludge were not conclusive, which leads to further research needs in this area. © The Author(s) 2015.

  9. Using Mathematica software for coal gasification simulations – Selected kinetic model application

    Directory of Open Access Journals (Sweden)

    Sebastian Iwaszenko

    2015-01-01

    Full Text Available Coal gasification is recognized as a one of promising Clean Coal Technologies. As the process itself is complicated and technologically demanding, it is subject of many research. In the paper a problem of using volumetric, non-reactive core and Johnson model for coal gasification and underground coal gasification is considered. The usage of Mathematica software for models' equations solving and analysis is presented. Coal parameters were estimated for five Polish mines: Piast, Ziemowit, Janina, Szczygłowice and Bobrek. For each coal the models' parameters were determined. The determination of parameters was based on reactivity assessment for 50% char conversion. The calculations show relatively small differences between conversion predicted by volumetric and non reactive core model. More significant differences were observed for Johnson model, but they do not exceeded 10% for final char conversion. The conceptual model for underground coal gasification was presented.

  10. Biomass Gasification Behavior in an Entrained Flow Reactor: Gas Product Distribution and Soot Formation

    DEFF Research Database (Denmark)

    Qin, Ke; Jensen, Peter Arendt; Lin, Weigang

    2012-01-01

    Biomass gasification and pyrolysis were studied in a laboratory-scale atmospheric pressure entrained flow reactor. Effects of operating parameters and biomass types on the syngas composition were investigated. In general, the carbon conversion during biomass gasification was higher than 90......% at the optimal conditions of 1400 °C with steam addition. The biomass carbon that was not converted to gas in the gasification process only appeared as soot particles in the syngas in all of the experiments, except for the two experiments performed at 1000 °C, where a very small amount of char was also left....... In comparison to pyrolysis, lower yields of soot, H2, and CO were produced during gasification. The yield of soot could be reduced by a longer residence time, larger feeder air flow, lower oxygen concentration, higher excess air ratio, higher steam/carbon ratio, and higher reactor temperature. Changes...

  11. ASPEN plus modelling of air–steam gasification of biomass with sorbent enabled CO2 capture

    Directory of Open Access Journals (Sweden)

    S. Rupesh

    2016-06-01

    Full Text Available The work deals with the modelling and simulation of carbon dioxide capture in air–steam gasification of saw dust using ASPEN Plus process simulator. The proposed quasi-steady state model incorporates pyrolysis, tar cracking and char conversion using existing experimental data. Prediction accuracy of the developed model is validated by comparing with available experimental results. Effects of CaO addition in air–steam gasification are analysed through key operating parameters such as gasification temperature, equivalence ratio, steam to biomass ratio and gasification efficiency. Maximum H2 mole fraction of 31.17% is obtained at a temperature of 900 K, equivalence ratio of 0.25, and steam to biomass ratio and sorbent to biomass ratio of unity. The H2 and CO2 mole fractions are found to be increased and decreased by 28.10% and 42.6%, respectively, when compared with the corresponding non- sorbent case.

  12. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  13. Coal gasification. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    High-Btu natural gas has a heating value of 950 to 1,000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  14. Investigation of sewage sludge treatment using air plasma assisted gasification.

    Science.gov (United States)

    Striūgas, Nerijus; Valinčius, Vitas; Pedišius, Nerijus; Poškas, Robertas; Zakarauskas, Kęstutis

    2017-06-01

    This study presents an experimental investigation of downdraft gasification process coupled with a secondary thermal plasma reactor in order to perform experimental investigations of sewage sludge gasification, and compare process parameters running the system with and without the secondary thermal plasma reactor. The experimental investigation were performed with non-pelletized mixture of dried sewage sludge and wood pellets. To estimate the process performance, the composition of the producer gas, tars, particle matter, producer gas and char yield were measured at the exit of the gasification and plasma reactor. The research revealed the distribution of selected metals and chlorine in the process products and examined a possible formation of hexachlorobenzene. It determined that the plasma assisted processing of gaseous products changes the composition of the tars and the producer gas, mostly by destruction of hydrocarbon species, such as methane, acetylene, ethane or propane. Plasma processing of the producer gas reduces their calorific value but increases the gas yield and the total produced energy amount. The presented technology demonstrated capability both for applying to reduce the accumulation of the sewage sludge and production of substitute gas for drying of sewage sludge and electrical power. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Pre-treatment of oil palm fronds biomass for gasification

    Directory of Open Access Journals (Sweden)

    Sulaiman Shaharin Anwar

    2017-01-01

    Full Text Available Oil Palm Fronds (OPF has been proven as one of the potential types of biomass feedstock for power generation. The low ash content and high calorific value are making OPF an attractive source for gasification. The objective of this study is to investigate the effects of pre-treatments of OPF residual on gasification. The pre-treatments included the briquetting process and extensive drying of OPF which are studied separately. In briquetting process, the OPF were mixed with some portions of paper as an additives, leaflets, and water, to form a soupy slurry. The extensive drying of OPF needs to cut down OPF in 4–6 cm particle size and left to dry in the oven at 150°C for 24 hours. Gasification process was carried out at the end of each of the pre-treated processes. It was found that the average gas composition obtained from briquetting process was 8.07%, 2.06%, 0.54%,and 11.02% for CO, H2, CH4, and CO2 respectively. A good composition of syngas was produced from extensive dried OPF, as 16.48%, 4.03%, 0.91%,and 11.15% for CO, H2, CH4, and CO2 contents respectively. It can be concluded that pre-treatments improved the physical characteristics of biomass. The bulk density of biomass can be increased by briquetting but the stability of the structure is depending on the composition of briquette formulation. Furthermore, the stability of gasification process also depended on briquette density, mechanical strength, and formulation.

  16. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  17. Hydrogen production from lignocellulosic biomass by two-step gasification method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Gu [Korea Institute of Energy Research (Korea, Republic of)

    2010-07-01

    Hydrogen can be produced from woody biomass by conventional gasification methods such as partial oxidation or steam gasification. Since these methods produce gas products with low content of hydrogen as well as high content of tar from gasification reactors, posttreatment processes including tar cracker and water-gas shift reaction process are usually necessary for obtaining clean hydrogen-rich gas from woody biomass. In this work, a twostep gasification method was experimentally studied as an alternative to the conventional methods. The first step of the gasification is the fast pyrolysis of biomass to obtain liquid-phase product (bio-oil) and the second step is to gasify the bio-oil to hydrogen-rich gas in supercritical water. The fast pyrolysis of woody biomass was carried out using a bench-scale fluidized-bed reactor. The gasification of bio-oil in supercritical water was performed using a continuous-flow reactor packed with catalyst. The effect of major reaction conditions such as temperature and catalyst on hydrogen yield will be discussed. (orig.)

  18. An Experimental and Numerical Investigation of Fluidized Bed Gasification of Solid Waste

    Directory of Open Access Journals (Sweden)

    Sharmina Begum

    2013-12-01

    Full Text Available Gasification is a thermo-chemical process to convert carbon-based products such as biomass and coal into a gas mixture known as synthetic gas or syngas. Various types of gasification methods exist, and fluidized bed gasification is one of them which is considered more efficient than others as fuel is fluidized in oxygen, steam or air. This paper presents an experimental and numerical investigation of fluidized bed gasification of solid waste (SW (wood. The experimental measurement of syngas composition was done using a pilot scale gasifier. A numerical model was developed using Advanced System for Process ENgineering (Aspen Plus software. Several Aspen Plus reactor blocks were used along with user defined FORTRAN and Excel code. The model was validated with experimental results. The study found very similar performance between simulation and experimental results, with a maximum variation of 3%. The validated model was used to study the effect of air-fuel and steam-fuel ratio on syngas composition. The model will be useful to predict the various operating parameters of a pilot scale SW gasification plant, such as temperature, pressure, air-fuel ratio and steam-fuel ratio. Therefore, the model can assist researchers, professionals and industries to identify optimized conditions for SW gasification.

  19. Two-step gasification of cattle manure for hydrogen-rich gas production: Effect of biochar preparation temperature and gasification temperature.

    Science.gov (United States)

    Xin, Ya; Cao, Hongliang; Yuan, Qiaoxia; Wang, Dianlong

    2017-10-01

    Two-step gasification process was proposed to dispose cattle manure for hydrogen rich gas production. The effect of temperature on product distribution and biochar properties were first studied in the pyrolysis-carbonization process. The steam gasification of biochar derived from different pyrolysis-carbonization temperatures was then performed at 750°C and 850°C. The biochar from the pyrolysis-carbonization temperatures of 500°C had high carbon content and low volatiles content. According to the results of gasification stage, the pyrolysis-carbonization temperature of 500°C and the gasification temperature of 850°C were identified as the suitable conditions for hydrogen production. We obtained 1.61m 3 /kg of syngas production, 0.93m 3 /kg of hydrogen yield and 57.58% of hydrogen concentration. This study shows that two-step gasification is an efficient waste-to-hydrogen energy process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Gasification Studies Task 4 Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, Kevin; Fletcher, Thomas; Pugmire, Ronald; Smith, Philip; Sutherland, James; Thornock, Jeremy; Boshayeshi, Babak; Hunsacker, Isaac; Lewis, Aaron; Waind, Travis; Kelly, Kerry

    2014-02-01

    A key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3) with fundamental understanding of the chemical processes (Subtask 4.4) processes that take place as coal particles are converted to synthesis gas and slag. However, it is important to be able to compare predictions from the models against data obtained from actual operating coal gasifiers, and Subtask 4.6 aims to provide an accessible, non-proprietary system, which can be operated over a wide range of conditions to provide well-characterized data for model validation. Highlights of this work include: • Verification and validation activities performed with the Arches coal gasification simulation tool on experimental data from the CANMET gasifier (Subtask 4.1). • The simulation of multiphase reacting flows with coal particles including detailed gas-phase chemistry calculations using an extension of the one-dimensional turbulence model’s capability (Subtask 4.2). • The demonstration and implementation of the Reverse Monte Carlo ray tracing (RMCRT) radiation algorithm in the ARCHES code (Subtask 4.3). • Determination of steam and CO{sub 2} gasification kinetics of bituminous coal chars at high temperature and elevated pressure under entrained-flow conditions (Subtask 4.4). In addition, attempts were made to gain insight into the chemical structure differences between young and mature coal soot, but both NMR and TEM characterization efforts were hampered by the highly reacted nature of the soot. • The development, operation, and demonstration of in-situ gas phase measurements from the University of Utah’s pilot-scale entrained-flow coal gasifier (EFG) (Subtask 4.6). This subtask aimed at acquiring predictable, consistent performance and characterizing the

  1. FORMATION OF DIOXINS AND FURANS DURING MUNICIPAL SOLID WASTE GASIFICATION

    Directory of Open Access Journals (Sweden)

    E. J. Lopes

    2015-03-01

    Full Text Available Abstract Thermal treatment is an interesting strategy to dispose of municipal solid waste: it reduces the volume and weight of the material dumped in landfills and generates alternative energy. However, the process emits pollutants, such as dioxins and furans. The present study evaluated MSW gasification-combustion integrated technologies in terms of dioxin and furan emission; and compared the obtained data with literature results on incineration, to point out which operational features differentiate the release of pollutants by these two processes. The results show that the process of integrated gasification and combustion emitted 0.28 ng N-1 m-3, expressed in TEQ (Total Equivalent Toxicity, of PCDD/F, less than the maximum limits allowed by local and international laws, whereas incineration normally affords values above these limits and requires a gas treatment system. The distinct operational conditions of the two thermal processes, especially those related to temperature and the presence of oxygen and fixed carbon, led to a lower PCDD/F emission in gasification.

  2. Sulfur Rich Coal Gasification and Low Impact Methanol Production

    OpenAIRE

    Andrea Bassani; Giula Bozzano; Carlo Pirola; Caterina Frau; Alberto Pettinau; Enrico Maggio; Eliseo Ranzi; Flavio Manenti

    2018-01-01

    In recent times, the methanol was employed in numerous innovative applications and is a key compound widely used as a building block or intermediate for producing synthetic hydrocarbons, solvents, energy storage medium and fuel. It is a source of clean, sustainable energy that can be produced from traditional and renewable sources: natural gas, coal, biomass, landfill gas and power plant or industrial emissions. An innovative methanol production process from coal gasification is proposed in t...

  3. Una aplicación de topic modeling para el estudio del trauma: el caso de chevron-texaco en Ecuador

    Directory of Open Access Journals (Sweden)

    Eliana Sanandrés

    2015-09-01

    Full Text Available Las perspectivas tradicionales en el estudio del trauma sugieren la existencia de eventos inherentemente traumáticos que desencadenan dicha emoción negativa en las comunidades afectadas. No obstante, desde la década de 1990 los sociólogos culturales han venido desarrollando una nueva perspectiva conocida como la teoría del trauma cultural. Esta sugiere que no existen eventos traumáticos y que el trauma, en cambio, es el resultado de un proceso de construcción sociocultural que depende de las representaciones simbólicas que los actores construyen sobre aquellos eventos que perciben como amenazas a la identidad colectiva. Ahora bien, la aplicación de técnicas de análisis que permitan identificar tales representaciones implica el reto metodológico de trabajar cualitativamente con un gran número de datos. En tal sentido, en este artículo se presenta una aplicación de Topic Modeling al estudio del proceso de trauma derivado del caso de Chevron-Texaco en Ecuador para mostrar que esta técnica facilita dicha labor.

  4. When cultures clash: a case study of the Texaco takeover of Getty Oil and the impact of acculturation on the acquired firm

    Energy Technology Data Exchange (ETDEWEB)

    Altendorf, D.M.

    1986-01-01

    Historical surveys of merger and acquisition performance indicate that corporate combinations often do not result in the sought after financial success. An ethnographic case study of the Texaco takeover of Getty Oil was undertaken. Based on the in-depth open-ended interviews, field notes, historical accounts, corporate documents, and organizational symbols, data were analyzed using qualitative techniques explicated by Geertz and Glaser and Strauss. The analysis explored cross cultural contact, employee interpretations resulting in related behavioral and performance outcomes, and the factors influencing the type of acculturation observed. Theoretical properties emerged from descriptive accounts. An integrated theory was developed suggesting that the form of acculturation that occurs in the combination of two or more firms is a direct consequence of culture differences and the interpretations that the employees make of these differences. Different occurrences - events, strategies, and activities - contributed to corporate culture clash and organizational change. Results also indicated that how meaning is created and managed affects cross cultural contact, employee assessments, and acculturation. Related propositions were generated and implications for future research discussed.

  5. Biomass Gasification - A synthesis of technical barriers and current research issues for deployment at large scale

    Energy Technology Data Exchange (ETDEWEB)

    Heyne, Stefan [Chalmers Univ. of Technology, Gothenburg (Sweden); Liliedahl, Truls [KTH, Royal Inst. of Technology, Stockholm (Sweden); Marklund, Magnus [Energy Technology Centre, Piteaa (Sweden)

    2013-09-01

    Thermal gasification at large scale for cogeneration of power and heat and/or production of fuels and materials is a main pathway for a sustainable deployment of biomass resources. However, so far no such full scale production exists and biomass gasification projects remain at the pilot or demonstration scale. This report focuses on the key critical technology challenges for the large-scale deployment of the following biomass-based gasification concepts: Direct Fluidized Bed Gasification (FBG), Entrained Flow Gasification (EFG) and indirect Dual Fluidized Bed Gasification (DFBG). The main content in this report is based on responses from a number of experts in biomass gasification obtained from a questionnaire. The survey was composed of a number of more or less specific questions on technical barriers as to the three gasification concepts considered. For formalising the questionnaire, the concept of Technology Readiness Level (TRL 1-9) was used for grading the level of technical maturity of the different sub-processes within the three generic biomass gasification technologies. For direct fluidized bed gasification (FBG) it is mentioned that the technology is already available at commercial scale as air-blown technology and thus that air-blown FBG gasification may be reckoned a mature technology. The remaining technical challenge is the conversion to operation on oxygen with the final goal of producing chemicals or transport fuels. Tar reduction, in particular, and gas cleaning and upgrading in general are by far the most frequently named technical issues considered problematic. Other important aspects are problems that may occur when operating on low-grade fuels - i.e. low-cost fuels. These problems include bed agglomeration/ash sintering as well as alkali fouling. Even the preparation and feeding of these low-grade fuels tend to be problematic and require further development to be used on a commercial scale. Furthermore, efficient char conversion is mentioned by

  6. Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal

    Directory of Open Access Journals (Sweden)

    Lucio Zaccariello

    2015-08-01

    Full Text Available The effect of fuel composition on gasification process performance was investigated by performing mass and energy balances on a pre-pilot scale bubbling fluidized bed reactor fed with mixtures of plastic waste, wood, and coal. The fuels containing plastic waste produced less H2, CO, and CO2 and more light hydrocarbons than the fuels including biomass. The lower heating value (LHV progressively increased from 5.1 to 7.9 MJ/Nm3 when the plastic waste fraction was moved from 0% to 100%. Higher carbonaceous fines production was associated with the fuel containing a large fraction of coal (60%, producing 87.5 g/kgFuel compared to only 1.0 g/kgFuel obtained during the gasification test with just plastic waste. Conversely, plastic waste gasification produced the highest tar yield, 161.9 g/kgFuel, while woody biomass generated only 13.4 g/kgFuel. Wood gasification showed a carbon conversion efficiency (CCE of 0.93, while the tests with two fuels containing coal showed lowest CCE values (0.78 and 0.70, respectively. Plastic waste and wood gasification presented similar cold gas efficiency (CGE values (0.75 and 0.76, respectively, while that obtained during the co-gasification tests varied from 0.53 to 0.73.

  7. Critical factors affecting the integration of biomass gasification and syngas fermentation technology

    Directory of Open Access Journals (Sweden)

    Karthikeyan D. Ramachandriya

    2016-05-01

    Full Text Available Gasification-fermentation is a thermochemical-biological platform for the production of fuels and chemicals. Biomass is gasified at high temperatures to make syngas, a gas composed of CO, CO2, H2, N2 and other minor components. Syngas is then fed to anaerobic microorganisms that convert CO, CO2 and H2 to alcohols by fermentation. This platform offers numerous advantages such as flexibility of feedstock and syngas composition and lower operating temperature and pressure compared to other catalytic syngas conversion processes. In comparison to hydrolysis-fermentation, gasification-fermentation has a major advantage of utilizing all organic components of biomass, including lignin, to yield higher fuel production. Furthermore, syngas fermentation microorganisms do not require strict CO:H2:CO2 ratios, hence gas reforming is not required. However, several issues must be addressed for successful deployment of gasification-fermentation, particularly those that involve the integration of gasification and fermentation. Most previous reviews have focused only on either biomass gasification or syngas fermentation. In this review, the critical factors that affect the integration of biomass gasification with syngas fermentation, such as carbon conversion efficiency, effect of trace gaseous species, H2 to CO ratio requirements, and microbial preference of carbon substrate, are thoroughly discussed.

  8. The underground coal gasification First step of community collaboration; Gasification Subterranea del Carbon. Primer Intento en el Ambito de una Colaboracion Comunitaria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The objective of the project was to demonstrate the technical feasibility of underground coal gasification in coal seams at 600 metre depth, in order to asses its potential as a means of energy exploitation in Europe. The trial was based on the use of deviated boreholes and a retractable injection system techniques, which have both been developed by the oil and gas industries. One borehole, the injection well, was drilled in the coal seam. The other, the vertical production well, was run to intercept it in the lower part of the coal seam as closely as possible, in order to construct a continuous channel for gasification. The well were completed with casing and concentric tubing to provide the necessary paths for production, injection, purging gas and cooling water flows. A coiled tubing located in the injection well was used to execute the retraction (or CRIP) manoeuvre, which is a process in which the injector head for the gasification agents, i. e. oxygen and water, and the ignitor, are directed to a specific section of the coal seam. The gasification products passes to a surface production line for flow measurement and sampling of gas and condensate products. Production gases were either flared or incinerated, while the liquids were collected for appropriate disposal. The first trial achieved its principal objectives of in seam drilling, channel communication, the CRIP manoeuvres and the gasification of significant quantity of coal. The post-gasification study also identified the shape and extent of the cavity. The study has demonstrated the technical feasibility of underground coal gasification at the intermediate depths of European coal and proposals are made for further development and semi-commercial exploitation of this promising extraction technology. (Author) 11 refs.

  9. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  10. Advanced Gasification By-Product Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Brock Marrs; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Zhe Lu; Harold Schobert

    2006-08-31

    objectives of this collaborative effort between the University of Kentucky Center for Applied Energy Research (CAER), The Pennsylvania State University Energy Institute, and industry collaborators supplying gasifier char samples were to investigate the potential use of gasifier slag carbons as a source of low cost sorbent for Hg and NOX capture from combustion flue gas, concrete applications, polymer fillers and as a source of activated carbons. Primary objectives were to determine the relationship of surface area, pore size, pore size distribution, and mineral content on Hg storage of gasifier carbons and to define the site of Hg capture. The ability of gasifier slag carbon to capture NOX and the effect of NOX on Hg adsorption were goals. Secondary goals were the determination of the potential for use of the slags for cement and filler applications. Since gasifier chars have already gone through a devolatilization process in a reducing atmosphere in the gasifier, they only required to be activated to be used as activated carbons. Therefore, the principal objective of the work at PSU was to characterize and utilize gasification slag carbons for the production of activated carbons and other carbon fillers. Tests for the Hg and NOX adsorption potential of these activated gasifier carbons were performed at the CAER. During the course of this project, gasifier slag samples chemically and physically characterized at UK were supplied to PSU who also characterized the samples for sorption characteristics and independently tested for Hg-capture. At the CAER as-received slags were tested for Hg and NOX adsorption. The most promising of these were activated chemically. The PSU group applied thermal and steam activation to a representative group of the gasifier slag samples separated by particle sizes. The activated samples were tested at UK for Hg-sorption and NOX capture and the most promising Hg adsorbers were tested for Hg capture in a simulated flue gas. Both UK and PSU tested the

  11. Methods and apparatus for catalytic hydrothermal gasification of biomass

    Science.gov (United States)

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  12. Alkaline subcritical water gasification of dairy industry waste (Whey).

    Science.gov (United States)

    Muangrat, Rattana; Onwudili, Jude A; Williams, Paul T

    2011-05-01

    The near-critical water gasification of dairy industry waste in the form of Whey, a product composed of mixtures of carbohydrates (mainly lactose) and amino acids such as glycine and glutamic acid, has been studied. The gasification process involved partial oxidation with hydrogen peroxide in the presence of NaOH. The reactions were studied over the temperature range from 300°C to 390°C, corresponding pressures of 9.5-24.5 MPa and reaction times from 0 min to 120 min. Hydrogen production was affected by the presence of NaOH, the concentration of H(2)O(2), temperature, reaction time and feed concentration. Up to 40% of the theoretical hydrogen gas production was achieved at 390°C. Over 80% of the Whey nitrogen content was found as ammonia, mainly in the liquid effluent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny

    2017-01-01

    The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer....... Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100...... in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared...

  14. The development of solid fuel gasification systems for cost-effective power generation with low environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Kurkela, E.; Staahlberg, P.; Laatikainen-Luntama, J.; Ranta, J.; Hepola, J.; Kangasmaa, K. [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1997-10-01

    Relatively low carbon conversion is a disadvantage related to the air-blown fluidised-bed coal-biomass co-gasification process. Low carbon conversion is due to different reactivities and ash sintering behaviour of coal and biomass which leads to compromises in definition of gasification process conditions. In certain cases co-gasification may also lead to unexpected deposit formations or corrosion problems in downstream components especially when high alkali metal or chlorine containing biomass feedstocks are co-gasified with coal. During the reporting period, the work focused on co-gasification of coal and wood waste. The objectives of the present work were to find out the optimum conditions for improving the carbon conversion and to study the formation of different gas impurities. The results based on co-gasification tests with a pressurised fluidised-bed gasifies showed that in co-gasification even with only 15 % coal addition the heavy tar concentration was decreased significantly and, simultaneously, an almost total carbon conversion was achieved by optimising the gasification conditions. The study of filter fines recirculation and solid residues utilisation was started by characterizing filter dust. The work was carried out with an entrained-flow reactor in oxidising, inert and reducing gas conditions. The aim was to define the conditions required for achieving increased carbon conversion in different reactor conditions

  15. Power Systems Development Facility Gasification Test Campaing TC18

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

  16. Ten residual biomass fuels for circulating fluidized-bed gasification

    Energy Technology Data Exchange (ETDEWEB)

    Drift, A. van der; Doorn, J. van [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Vermeulen, J.W. [NV Afvalzorg, Haarlem (Netherlands)

    2001-07-01

    In co-operation with a Dutch company (NV Afvalzorg) and the Dutch agency for energy and environment (Novem), ECN has successfully tested 10 different biomass residues in its 500 kW{sub th} circulating fluidized-bed gasification facility. Among the fuels used as demolition wood (both puree and mixed with sewage sludge and paper sludge), verge grass, railroad ties, cacao shells and different woody fuels. Railroad ties turn out to contain very little (heavy) metals. Initially, fuel feeding problems often impeded smooth operation. Contrary to feeding systems, the circulating fluidized-bed gasification process itself seems very flexible concerning the conversion of different kinds of biomass fuels. The fuel moisture content is one of the most important fuel characteristics. More moisture means that more air is needed to maintain the process temperature resulting in better carbon conversion and lower tar emission but also lower product gas heating value and lower cold gas efficiency. So, for a good comparison of the gasification behaviour of different fuels, the moisture content should be similar. However, the moisture content should be defined on an ash-free basis rather than on total mass (the usual way). Some of the ashes produced and retained in the second cyclone were analysed both for elemental composition and leaching behaviour. It turned out that the leaching rate of Mo and Br, elements only present in small concentrations, are preventing the ash to be considered as inert material according to the Dutch legislation for dumping on landfill sites. (Author)

  17. Novel Sorption Enhanced Reaction Process for Simultaneous Production of CO2 and H2 from Synthesis Gas Produced by Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Shivaji Sircar; Hugo S. Caram; Kwangkook Jeong; Michael G. Beaver; Fan Ni; Agbor Tabi Makebe

    2010-06-04

    The goal of this project is to evaluate the extensive feasibility of a novel concept called Thermal Swing Sorption Enhanced Reaction (TSSER) process to simultaneously produce H{sub 2} and CO{sub 2} as a single unit operation in a sorber-reactor. The successful demonstration of the potential feasibility of the TSSER concept implies that it is worth pursuing further development of the idea. This can be done by more extensive evaluation of the basic sorptive properties of the CO{sub 2} chemisorbents at realistic high pressures and by continuing the experimental and theoretical study of the TSSER process. This will allow us to substantiate the assumptions made during the preliminary design and evaluation of the process and firm up the initial conclusions. The task performed under this project consists of (i) retrofitting an existing single column sorption apparatus for measurement of high pressure CO{sub 2} sorption characteristics, (ii) measurement of high pressure CO{sub 2} chemisorption equilibria, kinetics and sorption-desorption column dynamic characteristics under the conditions of thermal swing operation of the TSSER process, (iii) experimental evaluation of the individual steps of the TSSER process (iv) development of extended mathematical model for simulating cyclic continuous operation of TSSER to aid in process scale-up and for guiding future work, (v) simulate and test SER concept using realistic syngas composition, (vi) extensive demonstration of the thermal stability of sorbents using a TGA apparatus, (vii) investigation of the surfaces of the adsorbents and adsorbed CO{sub 2} ,and (viii) test the effects of sulfur compounds found in syngas on the CO{sub 2} sorbents.

  18. Development of Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemical and Biomolecular Engineering

    2016-12-20

    The overall objective of the current project was to investigate the high pressure gasification characteristics of a feed containing both coal and biomass. The two feed types differ in their ash contents and ash composition, particularly the alkali content. Gasification of a combined feed of coal and biomass has the potential for considerable synergies that might lead to a dramatic improvement in process economics and flexibility. The proposed study aimed to develop a detailed understanding of the chemistry, kinetics, and transport effects during high pressure gasification of coal-biomass blend feed. Specifically, we studied to develop: (a) an understanding of the catalytic effect of alkali and other inorganic species present in the biomass and coal, (b) an understanding of processing conditions under which synergistic effects of the blending of coal and biomass might be observed. This included the role of particle size, residence time, and proximity of the two feed types, (c) kinetics of high pressure gasification of individual feeds as well as the blends, and (d) development of mathematical models that incorporate kinetics and transport models to enable prediction of gasification rate at a given set of operating conditions, and (e) protocols to extend the results to other feed resources. The goal was to provide a fundamental understanding of the gasification process and guide in optimizing the configurations and design of the next generation of gasifiers. The approach undertaken was centered on two basic premises: (1) the gasification for small particles without internal mass transfer limitations can be treated as the sum of two processes in series (pyrolysis and char gasification) , and (2) the reactivity of the char generated during pyrolysis not only depends on the pressure and temperature but is also affected by the heating rates. Thus low heating rates (10-50 °C/min) typical of PTGA fail to produce char that would typically be formed at high heating rates

  19. Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

  20. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Dalrymple

    2004-06-01

    a portion of the inlet H{sub 2}S. Oxidation catalysts may also produce some elemental sulfur under these conditions, which can be removed and recovered prior to the CrystaSulf absorber. The CrystaSulf-DO process can utilize direct oxidation catalyst from many sources. Numerous direct oxidation catalysts are available from many suppliers worldwide. They have been used for H{sub 2}S oxidation to sulfur and/or SO{sub 2} for decades. It was believed at the outset of the project that TDA Research, Inc., a subcontractor, could develop a direct oxidation catalyst that would offer advantages over other commercially available catalysts for this CrystaSulf-DO process application. This project involved the development of several of TDA's candidate proprietary direct oxidation catalysts through laboratory bench-scale testing. These catalysts were shown to be effective for conversion of H{sub 2}S to SO{sub 2} and to elemental sulfur under certain operating conditions. One of these catalysts was subsequently tested on a commercial gas stream in a bench-scale reactor at CrystaTech's pilot plant site in west Texas with good results. However, commercial developments have precluded the use of TDA catalysts in the CrystaSulf-DO process. Nonetheless, this project has advanced direct oxidation catalyst technology for H{sub 2}S control in energy industries and led to several viable paths to commercialization. TDA is commercializing the use of its direct oxidation catalyst technology in conjunction with the SulfaTreat{reg_sign} solid scavenger for natural gas applications and in conjunction with ConocoPhillips and DOE for gasification applications using ConocoPhillips gasification technology. CrystaTech is commercializing its CrystaSulf-DO process in conjunction with Gas Technology Institute for natural gas applications (using direct oxidation catalysts from other commercial sources) and in conjunction with ChevronTexaco and DOE for gasification applications using ChevronTexaco

  1. Long-term operation of biomass-to-liquid systems coupled to gasification and Fischer-Tropsch processes for biofuel production.

    Science.gov (United States)

    Kim, Kwangsu; Kim, Youngdoo; Yang, Changwon; Moon, Jihong; Kim, Beomjong; Lee, Jeongwoo; Lee, Uendo; Lee, Seehoon; Kim, Jaeho; Eom, Wonhyun; Lee, Sangbong; Kang, Myungjin; Lee, Yunje

    2013-01-01

    Long-term operation of the biomass-to-liquid (BTL) process was conducted with a focus on the production of bio-syngas that satisfies the purity standards for the Fischer-Tropsch (FT) process. The integrated BTL system consisted of a bubbling fluidized bed (BFB) gasifier (20 kW(th)), gas cleaning unit, syngas compression unit, acid gas removing unit, and an FT reactor. Since the raw syngas from the gasifier contains different types of contaminants, such as particulates, condensable tars, and acid gases, which can cause various mechanical problems or deactivate the FT catalyst, the syngas was purified by passing through cyclones, a gravitational dust collector, a two-stage wet scrubber (packing-type), and a methanol absorption tower. The integrated system was operated for 500 h over several runs, and stable operating conditions for each component were achieved. The cleaned syngas contained no sulfur compounds (under 1 ppmV) and satisfied the requirements for the FT process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Physicochemical properties and gasification reactivity of the ultrafine semi-char derived from a bench-scale fluidized bed gasifier

    Science.gov (United States)

    Zhang, Yukui; Zhang, Haixia; Zhu, Zhiping; Na, Yongjie; Lu, Qinggang

    2017-08-01

    Zhundong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to investigate the physicochemical properties and gasification reactivity of the ultrafine semi-char, derived from a bench-scale fluidized bed gasifier, using Zhundong coal as fuel. The results obtained are as follows. In comparison to the raw coal, the carbon and ash content of the semi-char increase after partial gasification, but the ash fusion temperatures of them show no significant difference. Particularly, 76.53% of the sodium in the feed coal has released to the gas phase after fluidized bed gasification. The chemical compositions of the semi-char are closely related to its particle size, attributable to the distinctly different natures of diverse elements. The semi-char exhibits a higher graphitization degree, higher BET surface area, and richer meso- and macropores, which results in superior gasification reactivity than the coal char. The chemical reactivity of the semi-char is significantly improved by an increased gasification temperature, which suggests the necessity of regasification of the semi-char at a higher temperature. Consequently, it will be considered feasible that these carbons in the semi-char from fluidized bed gasifiers are reclaimed and reused for the gasification process.

  3. Biomass gasification with CHP production: A review of state of the art technology and near future perspectives

    Directory of Open Access Journals (Sweden)

    Jankes Goran G.

    2012-01-01

    Full Text Available This paper is a review of the state of the art of biomass gasification and the future of using biomass in Serbia and it presents researches within the project “The Development of a CHP Plant with Biomass Gasification”. The concept of downdraft demonstration unit coupled with gas engine is adopted. Downdraft fixed-bed gasification is generally favored for CHP, owing to the simple and reliable gasifiers and low content of tar and dust in produced gas. The composition and quantity of gas and the amount of air are defined by modeling biomass residues gasification process. The gas (290-400m3/h for 0.5- 0.7MW biomass input obtained by gasification at 800oC with air at atmospheric pressure contains 14% H2, 27% CO, 9% CO2, 2% CH4, and 48% N2, and its net heating value is 4.8-6 MJ/Nm3. The expected gasifier efficiency is up to 80%. The review of the work on biomass gasification has shown that the development of technology has reached the mature stage. There are CHP plants with biomass gasification operating as demonstration plants and several gasification demonstration units are successfully oriented to biofuel production. No attempt has been made here to address the economic feasibility of the system. Economics will be the part of a later work as firmer data are acquired.

  4. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    Energy Technology Data Exchange (ETDEWEB)

    Vas Choudhry; Stephen Kwan; Steven R. Hadley

    2001-07-01

    The objective of the project entitled ''Utilization of Lightweight Materials Made from Coal Gasification Slags'' was to demonstrate the technical and economic viability of manufacturing low-unit-weight products from coal gasification slags which can be used as substitutes for conventional lightweight and ultra-lightweight aggregates. In Phase I, the technology developed by Praxis to produce lightweight aggregates from slag (termed SLA) was applied to produce a large batch (10 tons) of expanded slag using pilot direct-fired rotary kilns and a fluidized bed calciner. The expanded products were characterized using basic characterization and application-oriented tests. Phase II involved the demonstration and evaluation of the use of expanded slag aggregates to produce a number of end-use applications including lightweight roof tiles, lightweight precast products (e.g., masonry blocks), structural concrete, insulating concrete, loose fill insulation, and as a substitute for expanded perlite and vermiculite in horticultural applications. Prototypes of these end-use applications were made and tested with the assistance of commercial manufacturers. Finally, the economics of expanded slag production was determined and compared with the alternative of slag disposal. Production of value-added products from SLA has a significant potential to enhance the overall gasification process economics, especially when the avoided costs of disposal are considered.

  5. A new HYSYS model for underground gasification of hydrocarbons under hydrothermal conditions

    KAUST Repository

    Alshammari, Y.M.

    2014-08-01

    A new subsurface process model was developed using the ASPEN HYSYS simulation environment to analyse the process energy and gasification efficiency at steady-state equilibrium conditions. Injection and production wells were simulated using the HYSYS pipe flow utilities which makes use of the Beggs and Brill flow correlation applicable for vertical pipes. The downhole reservoir hydrothermal reactions were assumed to be in equilibrium, and hence, the Gibbs reactor was used. It was found that high W/C ratios and low O/C ratios are required to maximise gasification efficiency at a constant hydrocarbon feed flowrate, while the opposite is true for the energy efficiency. This occurs due to the dependence of process energy efficiency on the gas pressure and temperature at surface, while the gasification efficiency depends on the gas composition which is determined by the reservoir reaction conditions which affects production distribution. Another effect of paramount importance is the increase in reservoir production rate which was found to directly enhance both energy and gasification efficiency showing conditions where the both efficiencies are theoretically maximised. Results open new routes for techno-economic assessment of commercial implementation of underground gasification of hydrocarbons. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  6. A high temperature drop-tube and packed-bed solar reactor for continuous biomass gasification

    Science.gov (United States)

    Bellouard, Quentin; Abanades, Stéphane; Rodat, Sylvain; Dupassieux, Nathalie

    2017-06-01

    Biomass gasification is an attractive process to produce high-value syngas. Utilization of concentrated solar energy as the heat source for driving reactions increases the energy conversion efficiency, saves biomass resource, and eliminates the needs for gas cleaning and separation. A high-temperature tubular solar reactor combining drop tube and packed bed concepts was used for continuous solar-driven gasification of biomass. This 1 kW reactor was experimentally tested with biomass feeding under real solar irradiation conditions at the focus of a 2 m-diameter parabolic solar concentrator. Experiments were conducted at temperatures ranging from 1000°C to 1400°C using wood composed of a mix of pine and spruce (bark included) as biomass feedstock. The aim of this study was to demonstrate the feasibility of syngas production in this reactor concept and to prove the reliability of continuous biomass gasification processing using solar energy. The study first consisted of a parametric study of the gasification conditions to obtain an optimal gas yield. The influence of temperature and oxidizing agent (H2O or CO2) on the product gas composition was investigated. The study then focused on solar gasification during continuous biomass particle injection for demonstrating the feasibility of a continuous process. Regarding the energy conversion efficiency of the lab scale reactor, energy upgrade factor of 1.21 and solar-to-fuel thermochemical efficiency up to 28% were achieved using wood heated up to 1400°C.

  7. Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Buljit [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Chakma, Sankar; Kumar, Peeush [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Mahanta, Pinakeswar [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India)

    2013-07-01

    Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.

  8. Techno-economic assessment of FT unit for synthetic diesel production in existing stand-alone biomass gasification plant using process simulation tool

    DEFF Research Database (Denmark)

    Hunpinyo, Piyapong; Narataruksa, Phavanee; Tungkamani, Sabaithip

    2014-01-01

    such as Fischer-Tropsch (FT) diesel. The embedding of the FT plant into the stand-alone based on power mode plants for production of a synthetic fuel is a promising practice, which requires an extensive adaptation of conventional techniques to the special chemical needs found in a gasified biomass. Because...... by commercial software. The aim of this work is to develop detailed process flow diagram for the FT technology in order to subsequently study the economic feasibility based on once-Through mode. A cost analysis is performed to find out the convenience of the proposed solutions....

  9. The influence of partial oxidation mechanisms on tar destruction in TwoStage biomass gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Egsgaard, Helge; Stelte, Wolfgang

    2013-01-01

    TwoStage gasification of biomass results in almost tar free producer gas suitable for multiple end-use purposes. In the present study, it is investigated to what extent the partial oxidation process of the pyrolysis gas from the first stage is involved in direct and in-direct tar destruction....... The resulting PAH tar compounds are readily converted in the subsequent char-bed of the TwoStage gasification process and the partial oxidation process thus contributes directly as well as in-directly to the overall tar destruction. A high temperature and excess air ratios contribute positively to the direct...... tar destruction and a high moisture content of the biomass enhances the decomposition of phenol and inhibits the formation of naphthalene. This enhances tar conversion and gasification in the char-bed, and thus contributes in-directly to the tar destruction....

  10. Rate determination of supercritical water gasification of primary sewage sludge as a replacement for anaerobic digestion.

    Science.gov (United States)

    Wilkinson, Nikolas; Wickramathilaka, Malithi; Hendry, Doug; Miller, Andrew; Espanani, Reza; Jacoby, William

    2012-11-01

    Supercritical water gasification of primary sewage sludge sampled from a local facility was undertaken at different solids content. The performance of the process was compared with the anaerobic digestion system in use at the facility where the samples were taken. The mass and composition of the vapor products documented showed that the process generates more energy per gram of feed while rapidly destroying more volatile solids relative to the anaerobic digestion process. However, the energy input requirements are greater for supercritical water gasification. This study defines parameters for a model of the gasification reaction using the power law and Arrhenius equation. The activation energy was estimated to be 15 kJ/mol, and the reaction order was estimated to be 0.586. This model allows estimation of the size of a supercritical water reactor needed to replace the anaerobic digesters that are currently used at the wastewater treatment plant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Effect of biomass containing zinc metal at different operating parameters on gasification efficiency.

    Science.gov (United States)

    Lin, Chiou-Liang; Chen, Hsien

    2015-01-01

    This paper describes the effect of Zn on the gas production of a fluidized-bed gasifier to determine the relationship between Zn and the gasification process. Different concentrations of Zn were used in the preparation of artificial waste to elucidate the effect on gas product composition, gas product heat value, gas production rate, and H2 yield in the gasification process. Zn served to increase H2 generation during the gasification process. The molar percentage of H2 with more than 0.1 wt% additional Zn increased by 33.02% and the H2 yield was increased by 11.34% compared to that without Zn. However, the gas heat value decreased, and no significant change in the gas production rate was noted.

  12. Development of an advanced, continuous mild gasification process for the production of co-products. Task 4.6, Economic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, L.R. [Xytel-Bechtel, Inc. (United States); Hogsett, R.F. [AMAX Research and Development Center, Golden, CO (United States); Sinor, J.E. [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States); Ness, R.O. Jr.; Runge, B.D. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

    1992-10-01

    The principal finding of this study was the high capital cost and poor financial performance predicted for the size and configuration of the plant design presented. The XBi financial assessment gave a disappointingly low base-case discounted cash flow rate of return (DCFRR) of only 8.1% based on a unit capital cost of $900 per ton year (tpy) for their 129,000 tpy design. This plant cost is in reasonable agreement with the preliminary estimates developed by J.E. Sinor Associates for a 117,000 tpy plant based on the FMC process with similar auxiliaries (Sinor, 1989), for which a unit capital costs of $938 tpy was predicted for a design that included char beneficiation and coal liquids upgrading--or about $779 tpy without the liquid upgrading facilities. The XBi assessment points out that a unit plant cost of $900 tpy is about three times the cost for a conventional coke oven, and therefore, outside the competitive range for commercialization. Modifications to improve process economics could involve increasing plant size, expanding the product slate that XBi has restricted to form coke and electricity, and simplifying the plant flow sheet by eliminating marginally effective cleaning steps and changing other key design parameters. Improving the financial performance of the proposed formed coke design to the level of a 20% DCFRR based on increased plant size alone would require a twenty-fold increase to a coal input of 20,000 tpd and a coke production of about 2.6 minion tpy--a scaling exponent of 0.70 to correct plant cost in relation to plant size.

  13. Gasification of empty fruit bunch with carbon dioxide in an entrained flow gasifier for syngas production

    Science.gov (United States)

    Rahmat, N. F. H.; Rasid, R. A.

    2017-06-01

    The main objectives of this work are to study the gasification of EFB in an atmospheric entrained flow gasifier, using carbon dioxide (CO2) as its gasifying agent and to determine the optimum gasification operating conditions, which includes temperature and the oxidant to fuel (OTF) ratio. These were evaluated in terms of important gasification parameters such as the concentration of hydrogen (H2) and carbon monoxide (CO) produced the syngas ratio H2/CO and carbon conversion. The gasification reactions take place in the presence of CO2 at very high reaction rate because of the high operating temperature (700°C - 900°C). The use of CO2 as the oxidant for gasification process can improve the composition of syngas produced as in the Boudouard reaction. Rise of reaction temperature which is 900°C will increase the concentration of both H2 & CO by up to 81 and 30 respectively, though their production were decreased after the OTF ratio of 0.6 for temperature 700°C & 800°C and OTF ratio 0.8 for temperature 750°C. The operating temperature must be higher than 850°C to ensure the Boudouard reaction become the more prominent reaction for the biomass gasification. The syngas ratio obtained was in the range of ≈ 0.6 - 2.4 which is sufficient for liquid fuel synthesis. For the carbon conversion, the highest fuel conversion recorded at temperature 850°C for all OTF ratios. As the OTF ratio increases, it was found that there was an increase in the formation of CO and H2. This suggests that to achieve higher carbon conversion, high operating temperature and OTF ratio are preferable. This study provides information on the optimum operating conditions for the gasification of biomass, especially the EFB, hence may upsurge the utilization of biomass waste as an energy source.

  14. Development of an advanced, continuous mild gasification process for the production of co-products. Quarterly report, October 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    O`Neal, G.W.

    1992-12-31

    A 70-pound continuous coke sample was prepared for testing by a major conventional coke producer. Test results were encouraging, but a suggestion was made to produce larger briquettes. Work is underway to produce 6in. {times} 5in. {times} 3.75in. briquettes with plans to crush these briquettes to plus 2-inch {times} minus 3-inch irregular shaped coke. Work continued to provide a coke reactivity test instrument at CTC. A new vessel was fabricated of Haynes HR-160 which will withstand temperatures up to 2300{degree}F. A total of 11 CMGU test runs were completed. Coal feed rates of over 1000 pounds per hour for short periods were obtained. Average feed rates of over 800 pounds per hour were reached for two test runs. The jet burners heating the insides of the screws` shafts made these higher rates possible. Three test runs were made using 28 {times} 100 mesh Penelec filter cake with the objective of upgrading this coal processing byproduct to coke. Improvements to the PDU continued with two condensers` modifications and improved packing gland seals.

  15. Development of an advanced continuous mild gasification process for the production of co-products. Quarterly report, January--March, 1996

    Energy Technology Data Exchange (ETDEWEB)

    O`Neal, G.W.

    1996-04-01

    Determination of the best furnace for a commercial coke plant is underway. A shuttle or tunnel kiln has economic advantage over a rotary hearth design. Production of 20 tons of coke in a small shuttle kiln is near completion which will provide experience for this design. Twenty tons of CTC continuous coke are being produced for testing at a General Motors` foundry. The production is approximately 75 percent complete. During this production, variables of the process are being studied to aid in design of a commercial coke plant. Raw material composition, blending, briquetting variables, and calcining heat profile are the major areas of interest. Western SynCoal Company produces a dried coal product from sub-bituminous coal. This upgraded product was evaluated for producing coke products by blending char from this coal product with the coal product along with suitable binders. The green briquettes were then calcined to produce coke. The resulting coke was judged to be usable as part of a cupola coke charge or as a fuel in cement kilns and sugar beet furnaces.

  16. Aspen Process Flowsheet Simulation Model of a Battelle Biomass-Based Gasification, Fischer-Tropsch Liquefaction and Combined-Cycle Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-10-30

    This study was done to support the research and development program of the National Renewable Energy Laboratory (NREL) in the thermochemical conversion of biomass to liquid transportation fuels using current state-of-the-art technology. The Mitretek study investigated the use of two biomass gasifiers; the RENUGAS gasifier being developed by the Institute of Gas Technology, and the indirectly heated gasifier being developed by Battelle Columbus. The Battelle Memorial Institute of Columbus, Ohio indirectly heated biomass gasifier was selected for this model development because the syngas produced by it is better suited for Fischer-Tropsch synthesis with an iron-based catalyst for which a large amount of experimental data are available. Bechtel with Amoco as a subcontractor developed a conceptual baseline design and several alternative designs for indirect coal liquefaction facilities. In addition, ASPEN Plus process flowsheet simulation models were developed for each of designs. These models were used to perform several parametric studies to investigate various alternatives for improving the economics of indirect coal liquefaction.

  17. Numerical and experimental study of strata behavior and land subsidence in an underground coal gasification project

    Directory of Open Access Journals (Sweden)

    N. N. Sirdesai

    2015-11-01

    Full Text Available Underground Coal Gasification, with enhanced knowledge of hydrogeological, geomechanical and environmental aspects, can be an alternative technique to exploit the existing unmineable reserves of coal. During the gasification process, petro-physical and geomechanical properties undergo a drastic change due to heating to elevated temperatures. These changes, caused due to the thermal anisotropy of various minerals, result in the generation of thermal stresses; thereby developing new fracture pattern. These fractures cause the overhead rock strata to cave and fill the gasification chamber thereby causing subsidence. The degree of subsidence, change in fluid transport and geomechanical properties of the rock strata, in and around the subsidence zone, can affect the groundwater flow. This study aims to predict the thermo-geomechanical response of the strata during UCG. Petro-physical and geomechanical properties are incorporated in the numerical modelling software COMSOL Multiphysics and an analytical strength model is developed to validate and further study the mechanical response and heat conduction of the host rock around the gasification chamber. Once the problems are investigated and solved, the enhanced efficiency and the economic exploitation of gasification process would help meet country's energy demand.

  18. Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier.

    Science.gov (United States)

    Werle, Sebastian

    2014-10-01

    This work presents results of experimental studies on the gasification process of granulated sewage sludge in a laboratory fixed bed gasifier. Nowadays, there is a large and pressing need for the development of thermal methods for sewage sludge disposal. Gasification is an example of thermal method that has several advantages over the traditional combustion. Gasification leads to a combustible gas, which can be used for the generation of useful forms of final energy. It can also be used in processes, such as the drying of sewage sludge directly in waste treatment plant. In the present work, the operating parameters were varied over a wide range. Parameters, such as air ratio λ = 0.12 to 0.27 and the temperature of air preheating t = 50 °C to 250 °C, were found to influence temperature distribution and syngas properties. The results indicate that the syngas heating value decreases with rising air ratio for all analysed cases: i.e. for both cold and preheated air. The increase in the concentration of the main combustible components was accompanied by a decrease in the concentration of carbon dioxide. Preheating of the gasification agent supports the endothermic gasification and increases hydrogen and carbon monoxide production. © The Author(s) 2014.

  19. High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification. Part II: Exergy analysis

    Science.gov (United States)

    Panopoulos, K. D.; Fryda, L.; Karl, J.; Poulou, S.; Kakaras, E.

    Biomass gasification derived gas is a renewable fuel, which can be used for SOFC applications. This work investigates the integration of a near atmospheric solid oxide fuel cell (SOFC) with a novel allothermal biomass steam gasification process into a combined heat and power (CHP) system of less than MW e range. Heat for steam gasification is supplied from SOFC depleted fuel in a fluidised bed (FB) combustor via high temperature sodium heat pipes. In the first paper, the integrated system was modelled in Aspen Plus™ and critical aspects for its feasibility were identified. The aim of this second part is the evaluation of the integrated system in exergy terms. Satisfying allothermal gasification heat demand is illustrated by examining each sub-process involved separately as well as combined. For a relatively low STBR = 0.6, the SOFC fuel utilisation for which the system operates under optimum conditions is U f = 0.7. Above that value additional biomass has to be used in the FB combustor to provide gasification heat with considerable exergy losses. For SOFC operation at current density 2500 A m -2, the system uses 90 kg h -1 biomass, operates with electrical exergetic efficiency 32% producing 140 kW e, while the combined electrical and thermal exergetic efficiency is 35%.

  20. Effects of coal combustion and gasification process contaminants on the neuromuscular system. Sub-task on peripheral nervous system effects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Franz, G.N.

    1979-01-01

    This study is a preliminary investigation of the possible toxic effects of flyash particles from an experimental fluidized-bed combustion process at the Morgantown Energy Research Center. Emphasis has been placed on the action of trace metals present on the surface and in the matrix of the particulates emissions, since these elements may be toxic in low dosages. It is well established that external calcium (Ca/sup 2 +/) is essential for neuromuscular transmission. In the absence of Ca/sup 2 +/ from the external medium, nerve impulses continue to invade the terminal but do not evoke transmitter release. Many of the di- and trivalent metal ions have been tested for their ability to substitute for Ca/sup 2 +/ and have been shown to affect evoked and spontaneous transmitter release. Many of these ions cause a decrease in amplitude of the evoked end-plate potential (e.p.p.), but raise the frequency of spontaneously occurring miniature end-plate potentials (m.e.p.p.s). Several investigators have found that the effective concentration necessary to cause an increase in m.e.p.p. frequency is far greater than that which decreases the e.p.p. amplitude. The neuromuscular junction of the frog was selected to test the effects of flyash particles and pure metal ions, since its general characteristics are well documented and its sensitivity to metal ions is well known. Cadmium (Cd/sup 2 +/) was chosen for our investigation because it had previously been reported to be a highly potent inhibitor of evoked release, yet having no significant effect on spontaneous release even at high concentrations. In this report it was shown that the effective concentrations necessary to increase m.e.p.p. frequency are in the same range as those which decrease e.p.p. amplitude.

  1. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  2. State of the art on reactor designs for solar gasification of carbonaceous feedstock

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Tora, E.A.; Bruno, J.C.

    2013-01-01

    The association of concentrated solar energy and biomass gasification has often been suggested as an interesting alternative to conventional autothermal processes where a significant portion of the biomass has to be used for heat generation to drive endothermic reactions. It is a clean process able...... to produce high quality synthesis gas with a higher output per unit of feedstock and that allows for the chemical storage of solar energy in the form of a readily transportable fuel, among other advantages. The present paper describes the latest advances in solar thermochemical reactors for gasification...

  3. ZERO-DIMENSIONAL MODEL OF A DIMETHYL ETHER (DME) PLANT BASED ON GASIFICATION OF TORREFIED BIOMASS

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard; Elmegaard, Brian; Houbak, Niels

    2009-01-01

    A model of a DME fuel production plant was designed and analyzed in Aspen Plus. The plant produces DME by catalytic conversion of a syngas generated by gasification of torrefied woody biomass. Torrefication is a mild pyrolysis process that takes place at 200-300°C. Torrefied biomass has properties...... similar to coal, which enables the use of commercially available coal gasification processing equipment. The DME plant model is integrated with a steam cycle that utilizes waste heat from the plant and covers the on-site electricity consumption. The plant model predicts a fuel production efficiency of 67...

  4. 3rd international conference on coal gasification and liquefaction, University of Pittsburgh

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-01-01

    The third annual international conference on ''Coal Gasification and Liquefaction: What Needs to be Done Now'' was held at the University of Pittsburgh, Pittsburgh, PA on August 3-5, 1976. The majority of the papers dealt with coal gasification and liquefaction (often on the basis of process pilot plant experience) and on flue gas desulfurization by a variety of processes; fewer papers involved fluidized bed combustion, combined cycle power plants, coal desulfurization, government policy on environmental effects and on synthetic fuels, etc. Twenty-eight papers have been entered individually into EDB and ERA. (LTN)

  5. Economic and Technical Assessment of Wood Biomass Fuel Gasification for Industrial Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia M. Gribik; Ronald E. Mizia; Harry Gatley; Benjamin Phillips

    2007-09-01

    This project addresses both the technical and economic feasibility of replacing industrial gas in lime kilns with synthesis gas from the gasification of hog fuel. The technical assessment includes a materials evaluation, processing equipment needs, and suitability of the heat content of the synthesis gas as a replacement for industrial gas. The economic assessment includes estimations for capital, construction, operating, maintenance, and management costs for the reference plant. To perform these assessments, detailed models of the gasification and lime kiln processes were developed using Aspen Plus. The material and energy balance outputs from the Aspen Plus model were used as inputs to both the material and economic evaluations.

  6. Municipal Solid Waste Gasification with Solid Oxide Fuel Cells and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    storage in landfills and devote these spaces to other human activities. It is also important to point out that this kind of renewable energy suffers significantly less availabilit y which characterizes other type o f renewable energy sources such as in wind and solar energy. In a gasification process....... The gasification process is usually based on an atmospheric - pressure circulating fluidized bed gasifier coupled to a tar - crac king vessel. Syngas can be used as fuel in different kind of power plant such as gas turbine cycle, steam cycle, combined cycle, internal and external combustion engine and Solid Oxide...... Fuel Cell (SOFC). In the present study, a MSW gasification plant int egrated with SOFC is combined with a Stirling engine to recover the energy of the off - gases from the topping SOFC cycle. Detailed plant design is proposed and thermodynamic analysis is performed. Relevant parameters have been...

  7. Closing the Loop - Utilization of Secondary Resources by Low Temperature Thermal Gasification

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape

    application of low temperature thermal gasification could be applied to reduce the environmental impact of such management systems and increase the value and positive awareness of the resources in question. In the first part of this study, the Low Temperature Circulating Fluidized Bed (LT‐CFB gasifier......) is described.The LT‐CFB gasifier is a technology originally developed for pre‐processing of biomass fuels like cereal straw. In popular terms, the LT‐CFB gasification process separates the inorganic and organic fractions of the straw. The majority of the inorganic material is extracted in one or several...... different ash fractions and the organic material is converted into a hot combustible gas product, which is subsequently combusted in an adjacent boiler. This substantially reduces the influence of the fuels inorganic composition on thecombustion properties. When combining LT‐CFB gasification with existing...

  8. Fluidised bed gasification of low grade South African coals

    CSIR Research Space (South Africa)

    North, BC

    2006-09-01

    Full Text Available -going investigation into one potential Clean Coal Technology (CCT), namely fluidised bed gasification. Coal gasification holds the potential benefits of increased efficiency, reduced water consumption and co-production of liquid and gaseous fuels and chemicals...

  9. Fluidized bed gasification of selected South African coals

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-05-01

    Full Text Available An investigation was undertaken to ascertain the suitability of four selected low grade, South African coals for gasification in a bubbling fluidized bed for production of synthesis gas and for the development of integrated gasification combined...

  10. Potassium dichromate method of coal gasification the study of the typical organic compounds in water

    Science.gov (United States)

    Quan, Jiankang; Qu, Guangfei; Dong, Zhanneng; Lu, Pei; Cai, Yingying; Wang, Shibo

    2017-05-01

    The national standard method is adopted in this paper the water - digestion spectrophotometry for determination of the chemical oxygen demand (COD), after ultrasonic processing of coal gasification water for CODCr measurement. Using the control variable method, measured in different solution pH, ultrasonic frequency, ultrasonic power, reaction conditions of different initial solution concentration, the change of coal gasification water CODCr value under the action of ultrasonic, the experimental results shows that appear when measurement is allowed to fluctuate, data, in order to explain the phenomenon we adopt the combination of the high performance liquid chromatography and mass spectrometry before and after ultrasonic coal gasification qualitative analysis on composition of organic matter in water. To raw water sample chromatography - mass spectrometry (GC/MS) analysis, combined with the spectra analysis of each peak stands for material, select coal gasification typical organic substances in water, with the method of single digestion, the equivalent CODCr values measured after digestion. Order to produce, coal gasification water contained high concentration organic wastewater, such as the national standard method is adopted to eliminate the organic material, therefore to measure the CODCr value is lower than actual CODCr value of the emergence of the phenomenon, the experiment of the effect of ultrasound [9-13] is promote the complex organic chain rupture, also explains the actual measurement data fluctuation phenomenon in the experiment.

  11. Interaction and kinetic analysis for coal and biomass co-gasification by TG-FTIR.

    Science.gov (United States)

    Xu, Chaofen; Hu, Song; Xiang, Jun; Zhang, Liqi; Sun, Lushi; Shuai, Chao; Chen, Qindong; He, Limo; Edreis, Elbager M A

    2014-02-01

    This study aims to investigate the interaction and kinetic behavior of CO2 gasification of coal, biomass and their blends by thermogravimetry analysis (TG). The gas products evolved from gasification were measured online with Fourier Transform Infrared Spectroscopy (FTIR) coupled with TG. Firstly, TG experiments indicated that interaction between the coals and biomasses mainly occurred during co-gasification process. The most significant synergistic interaction occurred for LN with SD at the blending mass ratio 4:1. Furthermore, thermal kinetic analysis indicated that the activation energy involved in co-gasification decreased as the SD content increased until the blending ratio of SD with coal reached 4:1. The rise of the frequency factor indicated that the increase of SD content favored their synergistic interaction. Finally, FTIR analysis of co-gasification of SD with LN indicated that except for CO, most gases including CH3COOH, C6H5OH, H2O, etc., were detected at around 50-700°C. Copyright © 2014. Published by Elsevier Ltd.

  12. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash.

    Science.gov (United States)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M; Thomsen, Tobias P; Ahrenfeldt, Jesper; Hauggaard-Nielsen, Henrik

    2017-03-01

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ashes, a material that is rich in phosphorus, but which is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock supply, phosphorus recovery from sewage sludge ashes has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of phosphorus extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of phosphorus were achieved with a single ED step for incineration ashes and a sequential combination of two ED steps for gasification ashes, which was due to a higher influence of iron and/or aluminium in phosphorus solubility for the latter. A product with lower level of metallic impurities and comparable to wet process phosphoric acid was eventually obtained from gasification ashes. Thus, gasification becomes an interesting alternative to incineration also in terms of phosphorus separation.

  13. Bio-syngas production from agro-industrial biomass residues by steam gasification.

    Science.gov (United States)

    Pacioni, Tatiana Ramos; Soares, Diniara; Domenico, Michele Di; Rosa, Maria Fernanda; Moreira, Regina de Fátima Peralta Muniz; José, Humberto Jorge

    2016-12-01

    This study evaluated the steam gasification potential of three residues from Brazilian agro-industry by assessing their reaction kinetics and syngas production at temperatures from 650 to 850°C and a steam partial pressure range of 0.05 to 0.3bar. The transition temperature between kinetic control and diffusion control regimes was identified. Prior to the gasification tests, the raw biomasses, namely apple pomace, spent coffee grounds and sawdust, were pyrolyzed in a fixed-bed quartz tubular reactor under controlled conditions. Gasification tests were performed isothermally in a magnetic suspension thermobalance and the reaction products were analyzed by a gas chromatograph with TCD/FID detectors. According to the characterization results, the samples presented higher carbon and lower volatile matter contents than the biomasses. Nevertheless, all of the materials had high calorific value. Syngas production was influenced by both temperature and steam partial pressure. Higher concentrations of H 2 and CO were found in the conversion range of 50-80% and higher concentrations of CO 2 in conversions around 10%, for all the gasified biochars. The H 2 /CO decreased with increasing temperature, mainly in kinetic control regime, in the lower temperature range. The results indicate the gasification potential of Brazilian biomass residues and are an initial and important step in the development of gasification processes in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Japan`s sunshine project. 17.. 1992 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report describes the achievement of coal liquefaction and gasification technology development in the Sunshine Project for FY 1992. It presents the research and development of coal liquefaction which includes studies on reaction mechanism of coal liquefaction and catalysts for coal liquefaction, the research and development of coal gasification technologies which includes studies on gasification characteristics of various coals and improvement of coal gasification efficiency, the development of bituminous coal liquefaction which includes engineering, construction and operation of a bituminous coal liquefaction pilot plant and research by a process supporting unit (PSU), the development of brown coal liquefaction which includes research on brown coal liquefaction with a pilot plant and development of techniques for upgrading coal oil from brown coal, the development of common base technologies which includes development of slurry letdown valves and study on upgrading technology of coal-derived distillates, the development of coal-based hydrogen production technology with a pilot plant, the development of technology for entrained flow coal gasification, the assessment of coal hydrogasification, and the international co-operation. 4 refs., 125 figs., 39 tabs.

  15. Ab initio calculations and kinetic modeling of thermal conversion of methyl chloride: implications for gasification of biomass

    DEFF Research Database (Denmark)

    Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid

    2018-01-01

    Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride....... In the present work, the thermal conversion of CH3Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH2Cl with O2 and C2H4...... for which data are scarce were studied by ab initio methods. The model was used to analyze the fate of methyl chloride in gasification processes. The results indicate that CH3Cl emissions will be negligible for most gasification technologies, but could be a concern for fluidized bed gasifiers, in particular...

  16. The influence of chlorine on the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Scala, C. von; Struis, R.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Chlorides of the heavy metals copper, lead and zinc inhibit the CO{sub 2}-gasification reaction of charcoal. This is observed either by impregnation the wood with the salts before pyrolysis or by mechanically mixing the salts with the charcoal before gasification. Charcoal impregnated or mixed with ammonium chloride reacts more slowly than untreated charcoal. Treating the charcoal with HCl also influences negatively the gasification reactivity, indicating that chlorine plays an important role in the gasification. (author) 2 figs., 4 refs.

  17. Gasification of wood in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, L.C. de; Marti, T.; Frankenhaeuser, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A first series of gasification experiments with our fluidized bed gasifier was performed using clean sawdust as fuel. The installation and the analytical systems were tested in a parametric study in which gasification temperature and equivalence ratio were varied. The data acquired will serve to establish the differences between the gasification of clean wood and the gasification of Altholz (scrapwood) and wood/plastics mixtures. (author) 1 fig., 3 tabs., 5 refs.

  18. Advanced geophysical underground coal gasification monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, Robert; Yang, X.; White, J. A.; Ramirez, A.; Wagoner, J.; Camp, D. W.

    2014-07-01

    Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Active and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.

  19. Co-gasification of pelletized wood residues

    Energy Technology Data Exchange (ETDEWEB)

    Carlos A. Alzate; Farid Chejne; Carlos F. Valdes; Arturo Berrio; Javier De La Cruz; Carlos A. Londono [Universidad Nacional de Colombia, Antioquia (Colombia). Grupo de Termodinamica Aplicada y Energias Alternativas

    2009-03-15

    A pelletization process was designed which produces cylindrical pellets 8 mm in length and 4 mm in diameter. These ones were manufactured using a blend of Pinus Patula and Cypress sawdust and coal in proportions of 0%, 5%, 10%, 20%, and 30% v/v of coal of rank sub-bituminous extracted from the Nech mine (Amaga-Antioquia). For this procedure, sodium carboxymethyl cellulose (CMC) was used as binder at three different concentrations. The co-gasification experiments were carried out with two kinds of mixtures, the first one was composed of granular coal and pellets of 100% wood and the second one was composed of pulverized wood and granular coal pellets. All samples were co-gasified with steam by using an electrical heated fluidized-bed reactor, operating in batches, at 850{sup o}C. The main components of the gaseous product were H{sub 2}, CO, CO{sub 2}, CH{sub 4}, and N{sub 2} with approximate quantities of 59%, 6.0%, 20%, 5.0%, and 9.0% v/v, respectively, and the higher heating values ranged from between 7.1 and 9.5 MJ/Nm{sup 3}.

  20. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  1. A Study on the Applicability of Kinetic Models for Shenfu Coal Char Gasification with CO2 at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Jinsheng Gao

    2009-07-01

    Full Text Available In this paper, measurements of the CO2 gasification kinetics for two types of Shenfu coal chars, which were respectively prepared by slow and rapid pyrolysis at temperatures of 950 °C and 1,400 °C, were performed by an isothermal thermo-gravimetric analysis under ambient pressure and elevated temperature conditions. Simultaneously, the applicability of the kinetic model for the CO2 gasification reaction of Shenfu coal chars was discussed. The results showed: (i the shrinking un-reacted core model was not appropriate to describe the gasification reaction process of Shenfu coal chars with CO2 in the whole experimental temperature range; (ii at the relatively low temperatures, the modified volumetric model was as good as the random pore model to simulate the CO2 gasification reaction of Shenfu coal chars, while at the elevated temperatures, the modified volumetric model was superior to the random pore model for this process; (iii the integral expression of the modified volumetric model was more favorable than the differential expression of that for fitting the experimental data. Moreover, by simply introducing a function: A = A★exp(ft, it was found that the extensive model of the modified volumetric model could make much better predictions than the modified volumetric model. It was recommended as a convenient empirical model for comprehensive simulation of Shenfu coal char gasification with under conditions close to those of entrained flow gasification.

  2. Performance of HT-WGS Catalysts for Upgrading of Syngas Obtained from Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Marano Bujan, M.; Sanchez Hervas, J. M.

    2009-05-21

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology is being investigated under the scope of the VI FP CHRISGAS project, which has started in September 2004 and has a duration of five years. The Division of Combustion and Gasification of CIEMAT participates in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the period 2005-2007 regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification. (Author) 28 refs.

  3. Gasification of waste. Summary and conclusions of twenty-five years of development

    Energy Technology Data Exchange (ETDEWEB)

    Rensfelt, Erik [TPS Termiska Processer AB, Nykoeping (Sweden); Oestman, Anders [Kemiinformation AB, Stockholm (Sweden)

    2000-04-01

    An overview of nearly thirty years development of waste gasification and pyrolysis technology is given, and some major general conclusions are drawn. The aim has been to give new developers an overview of earlier major attempts to treat MSW/RDF with thermochemical processes, gasification or pyrolysis. Research work in general is not covered, only R and D efforts that have led to substantial testing in pilot scale or demonstration. For further details, especially related to ongoing R and D, readers are referred to other recent reviews. The authors' view is that gasification of RDF with appropriate gas cleaning can play an important role in the future, for environmentally acceptable and efficient energy production. A prerequisite is that some of the major mistakes can be avoided, such as: (1) too rapid scale-up without experimental base, (2) unsuitable pretreatment of MSW to RDF and poor integration with material recycling, and (3) too limited gas/flue gas cleaning.

  4. Pengembangan Tungku Gasifikasi Arang Biomassa Tipe Natural Draft Gasification Berdasarkan Analisis Computational Fluid Dynamics (CFD

    Directory of Open Access Journals (Sweden)

    Erlanda Augupta Pane

    2014-10-01

    Full Text Available A biomass stove based on natural draft gasification (NDG has been developed in a previous study (Nelwa, et al. 2013 by using simulation based on heat transfer and equilibrium modeling. In this study, a CFD simulation was performed in order to analyze the effect of chimney height, and inlet hole diameter of the stove to the performance of the stove. The results of simulation showed that power produced by stove was between 1863.9 J/s until 2585.7 J/s, and its gasification efficiency was 67.11%. The results of simulation also showed that charcoal gasification produces combustible gases (CO, CH4, and H2 at the bottom and the center of stove, and then they were oxidized by secondary air at the top of stove. This oxidation reaction produces sufficient heat energy which can be used for cooking process.

  5. Biomass gasification cogeneration – A review of state of the art technology and near future perspectives

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Thomsen, Tobias; Henriksen, Ulrik Birk

    2013-01-01

    in future energy systems. Thermal gasification of biomass is proved throughout this article to be both highly flexible and efficient if used optimally. Cogeneration processes with production of heat-and-power, heat-power-and-fuel or heat-power-and-fertilizer are described and compared. The following...... gasification platforms are included in the assessment: The Harboøre up draft gasifier with gas engine, the Güssing FICFB gasifier with gas engine or PDU, the LT-CFB gasifier with steam cycle and nutrient recycling and finally the TwoStage down draft gasifier with gas engine, micro gas turbine (MGT), SOFC, SOFC...

  6. Combustion and Gasification Collection of Diesel Soot by Means of Microwave Heating

    Directory of Open Access Journals (Sweden)

    Xueshi YAO

    2014-06-01

    Full Text Available The experiment of integrated purification of diesel soot was made by means of microwave heating. The experiment includes combustion and gasification collection. The catalytic effect of ceramic carrier was used in the combustion process. In order to improve the purification efficiency of PM2.5 particles, the surfactants were used in gasification collection. The model of computer control was set up so that the purification course could be controlled. The experimental principle was analyzed. Experiment result indicated that the diesel soot purifying efficiency is more than 90 %. The purification efficiency can be improved further by the optimization design of experimental device.

  7. A semi-empirical model for pressurised air-blown fluidized-bed gasification of biomass.

    Science.gov (United States)

    Hannula, Ilkka; Kurkela, Esa

    2010-06-01

    A process model for pressurised fluidized-bed gasification of biomass was developed using Aspen Plus simulation software. Eight main blocks were used to model the fluidized-bed gasifier, complemented with FORTRAN subroutines nested in the programme to simulate hydrocarbon and NH(3) formation as well as carbon conversion. The model was validated with experimental data derived from a PDU-scale test rig operated with various types of biomass. The model was shown to be suitable for simulating the gasification of pine sawdust, pine and eucalyptus chips as well as forest residues, but not for pine bark or wheat straw. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Oil-shale gasification for obtaining of gas for synthesis of aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Strizhakova, Yu. [Samara State Univ. (Russian Federation); Avakyan, T.; Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Nowadays, the problem of qualified usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. Gasification with further processing of gaseous products is a one of possible ways of their use. Production of synthesis gas with H{sub 2}/CO ratio equal 2 is possible by gasification of oil-shale. This gas is converted into the mixture of hydrocarbons over cobalt catalyst at temperature from 160 to 210 C at atmospheric pressure. The hydrocarbons can be used as motor, including diesel, or reactive fuel. (orig.)

  9. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS ...

    Science.gov (United States)

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multiple waste types in a 7-day period at the Kilauea Military Camp in Hawai’i. The emissions characterized were chosen based on regulatory emissions limits as well as their ability to cause adverse health effects on humans: particulate matter (PM), mercury, heavy metals, volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Three military waste feedstock compositions reflecting the variety of wastes to be encountered in theatre were investigated: standard waste (SW), standard waste with increased plastic content (HP), standard waste without SW food components but added first strike ration (FSR) food and packaging material (termed FSR). A fourth waste was collected from the Kilauea dumpster that served the dining facility and room lodging (KMC). Limited scrubber water and solid ash residue samples were collected to obtain a preliminary characterization of these effluents/residues.Gasifying SW, HP, and KMC resulted in similar PCDD/PCDF stack concentrations, 0.26-0.27 ng TEQ/m3 at 7% O2, while FSR waste generated a notably higher stack concentration of 0.68 ng TEQ/m3 at 7% O2. The PM emission

  10. Gasification from waste organic materials

    Directory of Open Access Journals (Sweden)

    Santiago Ramírez Rubio

    2011-09-01

    Full Text Available This article describes the fixed bed biomass gasifier operation designed and built by the Clean Development Mechanisms and Energy Management research group, the gasifier equipment and the measurement system. The experiment involved agro-industrial residues (biomass such wood chips, coconut shell, cocoa and coffee husk; some temperatures along the bed, its pressure, inlet air flow and the percentage of carbon monoxide and carbon dioxide in the syngas composition were measured. The test results showed that a fuel gas was being obtained which was suitable for use with an internal combustion engine for generating electricity because more carbon monoxide than carbon dioxide was being obtained during several parts of the operation. The gasification experimentation revealed that a gasifier having these characteristics should be ideal for bringing energy to areas where it is hard to obtain it (such as many rural sites in Latin-America or other places where large amounts of agro-industrial wastes are produced. Temperatures of around 1,000°C were obtained in the combustion zone, generating a syngas having more than 20% carbon monoxide in its composition, thereby leading to obtaining combustible gas.

  11. Gasification from waste organic materials

    Directory of Open Access Journals (Sweden)

    Santiago Ramírez Rubio

    2011-08-01

    Full Text Available This article describes the fixed bed biomass gasifier operation designed and built by the Clean Development Mechanisms and Energy Management research group, the gasifier equipment and the measurement system. The experiment involved agro-industrial residues (biomass such wood chips, coconut shell, cocoa and coffee husk; some temperatures along the bed, its pressure, inlet air flow and the percentage of carbon monoxide and carbon dioxide in the syngas composition were measured. The test results showed that a fuel gas was being obtained which was suitable for use with an internal combustion engine for generating electricity because more carbon monoxide than carbon dioxide was being obtained during several parts of the operation. The gasification experimentation revealed that a gasifier having these characteristics should be ideal for bringing energy to areas where it is hard to obtain it (such as many rural sites in Latin-America or other places where large amounts of agro-industrial wastes are produced. Temperatures of around 1,000°C were obtained in the combustion zone, generating a syngas having more than 20% carbon monoxide in its composition, thereby leading to obtaining combustible gas.

  12. Diesel power plants based on biomass gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y.; Wilen, C.

    1996-12-31

    The aim of the project was to assess the competitiveness and market potential of small-scale power plant concepts based on biomass gasification and on diesel/gas engines, and to study the effect of process parameters on the efficiency of the circulating fluidized-bed gasifier and on the formation of tarry impurities. Alternative diesel/gas engine power plant concepts based on gasification in scale 6-50 MW{sub e} were assessed. In the basic version, where the electricity is generated only by the a diesel/gas engine, the efficiency level of 37 % is achieved in power generation. When steam cycle is added to the process the efficiency of power generation increases to 44-48 %. The efficiencies achieved in the process are very high compared with those of biomass power plant processes on a commercial level or under development. The most significant potential of biomass-based power generation is made up by wastes of sugar industries in south and Central America and in Asia. There are also very extensive growth potentials of bioenergy use in the NAFTA countries (USA, Canada and Mexico) and in Europe. In Europe, the bioenergy use is expected to grow most sharply in Italy, Spain, Germany and Poland. Carbon conversion obtained in the gasifier was in the range of 99.0-99.9 % for sawdust and 96-98 % for forest residue chips. The tar content of the product gas 10-15 g/m- m{sup 3}{sub n}, for sawdust in the gasification temperature of 830-930 deg C and with sand as circulating fluid-bed. When dolomite was used as circulating fluid-bed, the tar contents were 2-3 g/m{sup 3}{sub n} at as low temperatures as 880-890 deg C. The tar content of gas can be reduced sharply by phasing of gasification air and by using catalytic circulating fluid-bed material Bioenergy Research Programme; LIEKKI 2 Research Programme. 26 refs., 40 figs.

  13. Advancement of High Temperature Black Liquor Gasification Technology

    Energy Technology Data Exchange (ETDEWEB)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the

  14. Fixed-bed gasification research using US coals. Volume 14. Gasification of Kemmerer subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the fourteen volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Kemmerer subbituminous coal, from August 11, 1984 to August 15, 1984. 4 refs., 20 figs., 13 tabs.

  15. Fixed-bed gasification research using US coals. Volume 13. Gasification of Blind Canyon bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the thirteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Blind Canyon bituminous coal, from July 31, 1984 to August 11, 1984. 6 refs., 22 figs., 20 tabs.

  16. Biomass Gasification Technology Assessment: Consolidated Report

    Energy Technology Data Exchange (ETDEWEB)

    Worley, M.; Yale, J.

    2012-11-01

    Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

  17. ADVANCED GASIFICATION BY-PRODUCT UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; M. Mercedes Maroto-Valer; Zhe Lu; Harold Schobert

    2005-04-01

    The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2003 to August 31, 2004. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  18. Steam jacket dynamics in underground coal gasification

    Science.gov (United States)

    Otto, Christopher; Kempka, Thomas

    2017-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide hydrocarbon reserves by utilization of deposits not economically mineable by conventional methods. In this context, UCG involves combusting coal in-situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from high economic potentials, in-situ combustion may cause environmental impacts such as groundwater pollution by by-product leakage. In order to prevent or significantly mitigate these potential environmental concerns, UCG reactors are generally operated below hydrostatic pressure to limit the outflow of UCG process fluids into overburden aquifers. This pressure difference effects groundwater inflow into the reactor and prevents the escape of product gas. In the close reactor vicinity, fluid flow determined by the evolving high reactor temperatures, resulting in the build-up of a steam jacket. Numerical modeling is one of the key components to study coupled processes in in-situ combustion. We employed the thermo-hydraulic numerical simulator MUFITS (BINMIXT module) to address the influence of reactor pressure dynamics as well as hydro-geological coal and caprock parameters on water inflow and steam jacket dynamics. The US field trials Hanna and Hoe Creek (Wyoming) were applied for 3D model validation in terms of water inflow matching, whereby the good agreement between our modeling results and the field data indicates that our model reflects the hydrothermal physics of the process. In summary, our validated model allows a fast prediction of the steam jacket dynamics as well as water in- and outflows, required to avoid aquifer contamination during the entire life cycle of in-situ combustion operations.

  19. Power Systems Development Facility Gasification Test Campaign TC25

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  20. Power Systems Development Facility Gasification Test Campaign TC24

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-03-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

  1. Energy from waste by gasification; Energi ur avfall genom foergasning

    Energy Technology Data Exchange (ETDEWEB)

    Padban, Nader; Nilsson, Torbjoern; Berge, Niklas [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-12-01

    At present the investigation on alternative techniques to solve the problem with the growing amount of the wastes within European countries is a highly propitiated research area. The driving forces behind this priority are the current EU-legislations regarding the ban on landfill of combustible wastes and also the regulation on emission limits from waste treatment plants. The alternatives for waste treatment besides recycling are incineration, direct co-combustion and gasification. Co-combustion of waste with biomass can be considered a short-term solution for the problem but has the disadvantages of decreasing the capacity for clean fuels such as biomass and set demands on intensive modifications in the existing heat or heat and power plants. Waste gasification is an attractive alternative that can compete with incineration and co-combustion processes when the environmental and economical aspects are concerned. The product gas from a waste gasifier can be burned alone in conventional oil fired boilers or be co-fired with biomass in biomass plant. Fuel quality, gas cleaning system and questions related to ash treatment are the key parameters that must be considered in design and construction of a waste gasification process. Gasification of waste fractions that have limited contents of contaminants such as nitrogen, sulfur and chlorine will simplify the gas cleaning procedure and increase the competitiveness of the process. Heavy metals will be in captured in the fly ash if a gas filtering temperature below 200 deg C is applied. Activated carbon can be used as a sorbent for mercury, lime or alkali for capturing chlorine. For fuels with low Zn content a higher gas filtering temperature can be applied. Direct co-combustion or gasification/co-combustion of a fuel with low heating value affects two main parameters in the boiler: the adiabatic combustion temperature and the total capacity of the boiler. It is possible to co-fire: a) sorted MSW: 25%, b) sorted industrial

  2. Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles

    Directory of Open Access Journals (Sweden)

    Saeed Soltani

    2015-01-01

    Full Text Available In the present work, the results are reported of the energy and exergy analyses of three biomass-related processes for electricity generation: the biomass gasification integrated externally fired combined cycle, the biomass gasification integrated dual-fuel combined cycle, and the biomass gasification integrated post-firing combined cycle. The energy efficiency for the biomass gasification integrated post-firing combined cycle is 3% to 6% points higher than for the other cycles. Although the efficiency of the externally fired biomass combined cycle is the lowest, it has an advantage in that it only uses biomass. The energy and exergy efficiencies are maximized for the three configurations at particular values of compressor pressure ratios, and increase with gas turbine inlet temperature. As pressure ratio increases, the mass of air per mass of steam decreases for the biomass gasification integrated post-firing combined cycle, but the pressure ratio has little influence on the ratio of mass of air per mass of steam for the other cycles. The gas turbine exergy efficiency is the highest for the three configurations. The combustion chamber for the dual-fuel cycle exhibits the highest exergy efficiency and that for the post-firing cycle the lowest. Another benefit of the biomass gasification integrated externally fired combined cycle is that it exhibits the highest air preheater and heat recovery steam generator exergy efficiencies.

  3. Production of Hydrogen from Underground Coal Gasification

    Science.gov (United States)

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  4. How much biochar does gasification energy need to be carbon neutral?

    DEFF Research Database (Denmark)

    Saez de Bikuna Salinas, Koldo; Ibrom, Andreas; Hauschild, Michael Zwicky

    and arable land scenarios. Specific soil types and their estimated SOC changes have been considered [9], as well as iLUC emissions for the arable case. Taking the study case of a willow plantation combined with a medium-scale gasification plant in Denmark, we illustrate the biochar needed from the process...

  5. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles

    2013-01-01

    Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...

  6. 75 FR 17397 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project, Kern County, CA...

    Science.gov (United States)

    2010-04-06

    ... Hydrogen Energy California's Integrated Gasification Combined Cycle Project, Kern County, CA--Notice of... by Hydrogen Energy California LLC (HECA). DOE selected this project for an award of financial... produce synthesis gas (syngas), which would then be processed and purified to produce a hydrogen-rich fuel...

  7. Supercritical water gasification of biomass: an experimental study of model compounds and potential biomass feeds

    NARCIS (Netherlands)

    Chakinala, A.G.

    2013-01-01

    Gasification of biomass in supercritical water is a complex process. In supercritical water ideally the biomass structure and the larger molecules are broken down into smaller, gaseous components under the influence of radicals. However, the biomass is normally fed to the system at low temperature

  8. Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification

    Science.gov (United States)

    Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.

    Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.

  9. Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

  10. Fixed-bed gasification research using US coals. Volume 7. Gasification of Piney Tipple bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the seventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Piney Tipple bituminous coal. The period of the gasification test was July 18-24, 1983. 6 refs., 20 figs., 17 tabs.

  11. Experimental investigation of small-scale gasification of woody biomass

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, Maria

    2002-05-01

    A small-scale stratified down draft gasifier has been built and operated under stable conditions using wood pellets as fuel and air as gasification agent. The problems observed during the preliminary experiments have been described and explained; they are mainly related to the stability of the process. The stable operation of the gasifier has been characterised by the gas composition and the product gas tar and particle content. The biomass feeding rate has varied between 4,5 and 6,5 kg/h. The CO content of the product gas (23-26 % vol.) is higher than in similar gasifiers and the H{sub 2} content has been found to vary between 14 and 16 % vol. The tar content in the product gas (Ca. 3 g/Nm{sup 3}) is rather high compared with similar gasifiers. The temperature profile, together with other relevant parameters like the air-excess ratio, the air to fuel ratio and gas to fuel ratio have been calculated. The experiments show that the air excess ratio is rather constant, varying between 0,25 and 0,3. Experiments have been conducted with a gas engine using mixtures of CH{sub 4}, CO, H{sub 2}, CO{sub 2} and N{sub 2} as a fuel. NO{sub x} and CO emissions are analysed. The char gasification process has been studied in detail by means of Thermogravimetric Analysis. The study comprises the chemical kinetics of the gasification reactions of wood char in CO{sub 2} and H{sub 2}O, including the inhibition effect of CO and H{sub 2}. A kinetic model based on Langmuir-Hinshelwood kinetics has been found which relates the mass loss rate to the temperature, gas composition and degree of conversion for each reaction. The ratio CO/CO{sub 2} has been found to be a relevant parameter for reactivity. The gasification experiments in mixtures of CO{sub 2} and H{sub 2}O give reasons to believe that the rate of desorption for the complex C(O) varies depending on the gas mixture surrounding the char. It has been found that if the experimental data are obtained from separate H{sub 2}O/N{sub 2

  12. Commercialization Development of Crop Straw Gasification Technologies in China

    Directory of Open Access Journals (Sweden)

    Zhengfeng Zhang

    2014-12-01

    Full Text Available Crop straw gasification technologies are the most promising biomass gasification technologies and have great potential to be further developed in China. However, the commercialization development of gasification technology in China is slow. In this paper, the technical reliability and practicability of crop straw gasification technologies, the economic feasibility of gas supply stations, the economic feasibility of crop straw gasification equipment manufacture enterprises and the social acceptability of crop straw gasification technologies are analyzed. The results show that presently both the atmospheric oxidation gasification technology and the carbonization pyrolysis gasification technology in China are mature and practical, and can provide fuel gas for households. However, there are still a series of problems associated with these technologies that need to be solved for the commercialization development, such as the high tar and CO content of the fuel gas. The economic feasibility of the gas supply stations is different in China. Parts of gas supply stations are unprofitable due to high initial investment, the low fuel gas price and the small numbers of consumers. In addition, the commercialization development of crop straw gasification equipment manufacture enterprises is hindered for the low market demand for gasification equipment which is related to the fund support from the government. The acceptance of the crop straw gasification technologies from both the government and the farmers in China may be a driving force of further commercialization development of the gasification technologies. Then, the crop straw gasification technologies in China have reached at the stage of pre-commercialization. At this stage, the gasification technologies are basically mature and have met many requirements of commercialization, however, some incentives are needed to encourage their further development.

  13. Underground Coal Gasification - Experience of ONGC

    Science.gov (United States)

    Jain, P. K.

    2017-07-01

    Underground Coal Gasification (UCG) is expected to be game changer for nation like ours that requires large amounts of energy but have few natural resources other than coal. ONGC, being an integrated energy company and due to synergy between E & P operations and UCG, envisaged opportunities in UCG business. Its first campaign on UCG started in 1980s. With its initiative, a National Committee for UCG was constituted with representatives from Ministry of Petroleum, Dept. of Coal, CSIR, CMPDIL, State of Gujarat and ONGC for experimenting a pilot. It was decided in mid-1986 to carry out a UCG pilot in Sobhasan area of Mehsana district which was to be funded by OIDB. Two information wells were drilled to generate geological, geophysical, geo-hydrological data and core/coal samples. 3-D seismic survey data of Mehsana area was processed and interpreted and geological model was prepared. Basic designing of pilot project, drilling and completion, strategy of process wells and designing of surface facilities were carried out. The project could not be pursued further due to escalation in cost and contractual difficulty with design consultant. ONGC second UCG campaign commenced with signing of an agreement of collaboration (AOC) with Skochinsky Institute of Mining (SIM), Russia on 25th November 2004 for Underground Coal Gasification (UCG). In parallel, MOUs were signed with major coal and power companies, namely, Gujarat Industries Power Company Ltd (GIPCL), Gujarat Mineral Development Corporation Ltd (GMDC), Coal India Ltd (CIL), Singareni Colliery Company Ltd (SCCL) and NLC India Ltd. Under the AOC, suitability study was carried out for different sites belonging to MOU companies. Only Vastan mine block, Nani Naroli, Surat, Gujarat was found to be suitable for UCG. Therefore, subsequent stages of detailed characterization & pilot layout, detailed engineering design were taken up for Vastan site. After enormous efforts for quite long since 2006, in the absence of UCG policy

  14. Catalytic gasification studies in a pressurized fluid-bed unit

    Energy Technology Data Exchange (ETDEWEB)

    Mudge, L.K.; Baker, E.G.; Mitchell, D.H.; Robertus, R.J.; Brown, M.D.

    1983-07-01

    The purpose of the project is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from October 1980 to November 1982. In the laboratory scale studis, active catalysts were developed for generation of synthesis gases from wood by steam gasification. A trimetallic catalyst, Ni-Co-Mo on silica-alumina doped with 2 wt % Na, was found to retain activity indefinitely for generation of a methanol synthesis gas from wood at 1380/sup 0/F (750/sup 0/C) and 1 atm (100 kPa) absolute pressure. Catalysts for generation of a methane-rich gas were deactivated rapidly and could not be regenerated as required for economic application. Sodium carbonate and potassium carbonate were effective as catalysts for conversion of wood to synthesis gases and methane-rich gas and should be economically viable. Catalytic gasification conditions were found to be suitable for processing of alternative feedstocks: bagasse, alfalfa, rice hulls, and almond hulls. The PDU was operated successfully at absolute pressures of up to 10 atm (1000 kPa) and temperatures of up to 1380/sup 0/F (750/sup 0/C). Yields of synthesis gases at elevated pressure were greater than those used for previous economic evaluations. A trimetallic catalyst, Ni-Cu-Mo on silica-alumina, did not display a long life as did the doped trimetallic catalyst used in laboratory studies. A computer program for a Radio Shack TRS-80 Model I microcomputer was developed to evaluate rapidly the economics of producing either methane or methanol from wood. The program is based on economic evaluations reported in previous studies. Improved yields from the PDU studies were found to result in a reduction of about 9 cents/gal in methanol cost.

  15. Gasification of Nickel-Preloaded Oil Palm Biomass with Air

    Directory of Open Access Journals (Sweden)

    Syed Shatir A. Syed-Hassan

    2016-10-01

    Full Text Available This study experimentally investigates the gasification of nickel-preloaded oil palm biomass as an alternative catalytic approach to produce clean syngas. To eliminate the use of catalyst support, nickel was added directly to the oil palm mesocarp fiber via ion-exchange using an aqueous solution of nickel nitrate. Nickel species was found to disperse very well on the biomass at a nano-scale dispersion. The presence of the finely dispersed nickels on biomass enhanced syngas production and reduced tar content in the producer gas during the air gasification of biomass. It is believed that nickel particles attached on the biomass and its char promote the catalytic cracking of tar on their surface and supply free radicals to the gas phase to enhance the radical-driven gas-phase reactions for the reforming of high molecular weight hydrocarbons. The unconsumed nickel-containing char shows great potential to be re-utilised as a catalyst to further enhance the destruction of tar components in the secondary tar reduction process. Copyright © 2016 BCREC GROUP. All rights reserved Received: 12nd September 2015; Revised: 10th January 2016; Accepted:16th January 2016 How to Cite: Syed-Hassan, S.S.A., Nor-Azemi, S. (2016. Gasification of Nickel-Preloaded Oil Palm Biomass with Air. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 262-272 (doi:10.9767/bcrec.11.3.566.262-272 Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.566.262-272

  16. Demonstration plasma gasification/vitrification system for effective hazardous waste treatment.

    Science.gov (United States)

    Moustakas, K; Fatta, D; Malamis, S; Haralambous, K; Loizidou, M

    2005-08-31

    Plasma gasification/vitrification is a technologically advanced and environmentally friendly method of disposing of waste, converting it to commercially usable by-products. This process is a drastic non-incineration thermal process, which uses extremely high temperatures in an oxygen-starved environment to completely decompose input waste material into very simple molecules. The intense and versatile heat generation capabilities of plasma technology enable a plasma gasification/vitrification facility to treat a large number of waste streams in a safe and reliable manner. The by-products of the process are a combustible gas and an inert slag. Plasma gasification consistently exhibits much lower environmental levels for both air emissions and slag leachate toxicity than other thermal technologies. In the framework of a LIFE-Environment project, financed by Directorate General Environment and Viotia Prefecture in Greece, a pilot plasma gasification/vitrification system was designed, constructed and installed in Viotia Region in order to examine the efficiency of this innovative technology in treating industrial hazardous waste. The pilot plant, which was designed to treat up to 50kg waste/h, has two main sections: (i) the furnace and its related equipment and (ii) the off-gas treatment system, including the secondary combustion chamber, quench and scrubber.

  17. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has

  18. Pressured fluidized-bed gasification experiments with wood, peat and coal at VTT in 1991-1992. Test facilities and gasification experiments with sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Laatikainen, J. [Technical Research Centre of Finland, Espoo (Finland). Lab. of Fuel and Process Technology

    1993-12-31

    Fluidized-bed air gasification of Finnish pine saw dust was studied in the PDU-scale test facilities of VTT to support the development of simplified integrated gasification combined-cycle processes by providing new information on the formation and behaviour of different gas impurities in wood gasification. The gasifier was operated at 4-5 bar pressure and at 880-1 020 deg C Product gas was cleaned by ceramic candle filters operated at 490-715 deg C. Concentrations of tars, fixed nitrogen species and vapour-phase alkali metals were determined in different operating conditions. Carbon conversion exceeded 95 deg C in all test periods although the gasifier was operated without recycling the cyclone or filter fines back to the reactor. However, at the gasification temperature of 880-900 deg C more than 5 deg C of the wood carbon was converted to tars. The total concentration of tars (compounds heavier than benzene) was reduced from 6 000 to 3 000 mg/m{sup 3}n by increasing the gasification temperature from 880 deg C to 1 000 deg C. The expected catalytic effects of calcium on tar decomposition could not be achieved in these experiments by feeding coarse dolomite into the bed. The use of sand or aluminium oxide as an inert bed material did neither lead to any decrease in tar concentrations. However, the tar concentrations were dramatically reduced in the cogasification experiments, when a mixture of approximately 50 deg C/50 deg C wood and coal was used as the feed stock. Wood nitrogen was mainly converted into ammonia, while the concentrations of HCN and organic nitrogen containing compounds were very low

  19. Downstream, catalyst companies ally with gas-to-liquids process developer

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, A.K.

    1996-12-30

    Texaco Natural Gas, Houston, and Syntroleum Corp., Tulsa, have struck two agreements regarding Syntroleum`s modified Fischer-Tropsch (F-T) process for producing fuels from natural gas. The first, a nonexclusive master license agreement, grants Texaco broad rights to use the process, according to Syntroleum. The companies also have agreed to work jointly to accelerate development of cost-savings improvements to Syntroleum`s synthetic fuels process. Product yields and qualities have been confirmed in large-scale pilot plant studies using the Criterion catalyst. Syntroleum`s 2 b/d pilot plant has been operating since 1990. The paper discusses gas-to-liquids processes, economics, the Syntroleum process modifications, and synthetic lubricants.

  20. Catalytic and noncatalytic gasification of pyrolysis oil

    NARCIS (Netherlands)

    van Rossum, G.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2007-01-01

    Gasification of pyrolysis oil was studied in a fluidized bed over a wide temperature range (523−914 °C) with and without the use of nickel-based catalysts. Noncatalytically, a typical fuel gas was produced. Both a special designed fluid bed catalyst and a crushed commercial fixed bed catalyst showed

  1. Catalytic gasification of dry and wet biomass

    NARCIS (Netherlands)

    van Rossum, G.; Potic, B.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2009-01-01

    Catalytic gasification of dry biomass and of wet biomass streams in hot compressed water are reviewed and discussed as potential technologies for the production of synthesis gas, hydrogen- and methane-rich gas. Next to literature data also new experimental results from our laboratory on catalytic

  2. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS CHARACTERIZATION

    Science.gov (United States)

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multipl...

  3. An overview of the geological controls in underground coal gasification

    Science.gov (United States)

    Mohanty, Debadutta

    2017-07-01

    Coal’s reign will extend well into this millennium as the global demand for coal is expected to increase on average by 2-1% per year through 2019. Enhanced utilization of the domestic coal resource through clean coal technologies is necessary to meet the energy needs while achieving reduced emissions. Underground coal gasification (UCG) is one of such potential technologies. Geology of the area plays decisive role throughout the life of a UCG project and imperative for every phase of the project cycle starting from planning, site selection, design to cessation of operations and restoration of the site. Impermeable over/underlying strata with low porosity and less deformation are most suitable for UCG processes as they act as seal between the coal seam and the surrounding aquifers while limiting the degree of subsidence. Inrush of excess water into the gasification chamber reduces the efficacy of the process and may even quench the reactions in progress. Presence of fresh water aquifer in the vicinity of target coal seam should be abandoned in order to avoid groundwater contamination. UCG is not a proven technology that is still evolving and there are risks that need to be monitored and managed. Effective shutdown programme should intend at minimising the post-burn contaminant generation by flushing out potential organic and inorganic contaminants from the underground strata and treating contaminants, and to restore ground water quality to near baseline conditions.

  4. Environmental and economic performance of plasma gasification in Enhanced Landfill Mining.

    Science.gov (United States)

    Danthurebandara, Maheshi; Van Passel, Steven; Vanderreydt, Ive; Van Acker, Karel

    2015-11-01

    This paper describes an environmental and economic assessment of plasma gasification, one of the viable candidates for the valorisation of refuse derived fuel from Enhanced Landfill Mining. The study is based on life cycle assessment and life cycle costing. Plasma gasification is benchmarked against conventional incineration, and the study indicates that the process could have significant impact on climate change, human toxicity, particulate matter formation, metal depletion and fossil depletion. Flue gas emission, oxygen usage and disposal of residues (plasmastone) are the major environmental burdens, while electricity production and metal recovery represent the major benefits. Reductions in burdens and improvements in benefits are found when the plasmastone is valorised in building materials instead of landfilling. The study indicates that the overall environmental performance of plasma gasification is better than incineration. The study confirms a trade-off between the environmental and economic performance of the discussed scenarios. Net electrical efficiency and investment cost of the plasma gasification process and the selling price of the products are the major economic drivers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Influence of operating conditions on the air gasification of dry refinery sludge in updraft gasifier

    Science.gov (United States)

    Ahmed, R.; Sinnathambi, C. M.

    2013-06-01

    In the present work, details of the equilibrium modeling of dry refinery sludge (DRS) are presented using ASPEN PLUS Simulator in updraft gasifier. Due to lack of available information in the open journal on refinery sludge gasification using updraft gasifier, an evaluate for its optimum conditions on gasification is presented in this paper. For this purpose a Taguchi Orthogonal array design, statistical software is applied to find optimum conditions for DRS gasification. The goal is to identify the most significant process variable in DRS gasification conditions. The process variables include; oxidation zone temperature, equivalent ratio, operating pressure will be simulated and examined. Attention was focused on the effect of optimum operating conditions on the gas composition of H2 and CO (desirable) and CO2 (undesirable) in terms of mass fraction. From our results and finding it can be concluded that the syngas (H2 & CO) yield in term of mass fraction favors high oxidation zone temperature and at atmospheric pressure while CO2 acid gas favor at a high level of equivalent ratio as well as air flow rate favoring towards complete combustion.

  6. Underground coal gasification - the Velenje Coal Mine energy and economic calculations

    Directory of Open Access Journals (Sweden)

    Konovšek Damjan

    2017-01-01

    Full Text Available Underground coal gasification (UCG is a viable possibility for the exploitation of vast coal deposits that are unreachable by conventional mining and can meet the energy, economic and environmental demands of the 21st century. Due to the complexity of the process, and the site-specific coal and seam properties, it is important to acknowledge all the available data and past experiences, in order to conduct a successful UCG operation. Slovenia has huge unmined reserves of coal, and therefore offers the possibility of an alternative use of this domestic primary energy source. According to the available underground coal gasification technology, the energy and economic assessment for the exploitation of coal to generate electricity and heat was made. A new procedure for the estimation of the energy efficiency of the coal gasification process, which is also used to compare the energy analyses for different examples of coal exploitation, was proposed, as well as the technological schemes and plant operating mode in Velenje, and the use of produced synthetic coal gas (syngas. The proposed location for the pilot demonstration experiment in Velenje Coal Mine was reviewed and the viability of the underground coal gasification project in Velenje was determined.

  7. Techno-economic analysis of wastewater sludge gasification: a decentralized urban perspective.

    Science.gov (United States)

    Lumley, Nicholas P G; Ramey, Dotti F; Prieto, Ana L; Braun, Robert J; Cath, Tzahi Y; Porter, Jason M

    2014-06-01

    The successful management of wastewater sludge for small-scale, urban wastewater treatment plants, (WWTPs), faces several financial and environmental challenges. Common management strategies stabilize sludge for land disposal by microbial processes or heat. Such approaches require large footprint processing facilities or high energy costs. A new approach considers converting sludge to fuel which can be used to produce electricity on-site. This work evaluated several thermochemical conversion (TCC) technologies from the perspective of small urban WWTPs. Among TCC technologies, air-blown gasification was found to be the most suitable approach. A gasification-based generating system was designed and simulated in ASPEN Plus® to determine net electrical and thermal outputs. A technical analysis determined that such a system can be built using currently available technologies. Air-blown gasification was found to convert sludge to electricity with an efficiency greater than 17%, about triple the efficiency of electricity generation using anaerobic digester gas. This level of electricity production can offset up to 1/3 of the electrical demands of a typical WWTP. Finally, an economic analysis concluded that a gasification-based power system can be economically feasible for WWTPs with raw sewage flows above 0.093m(3)/s (2.1 million gallons per day), providing a profit of up to $3.5 million over an alternative, thermal drying and landfill disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Alternative route of process modification for biofuel production by embedding the Fischer-Tropsch plant in existing stand-alone power plant (10 MW) based on biomass gasification - Part I: A conceptual modeling and simulation approach (a case study in Thailand)

    DEFF Research Database (Denmark)

    Hunpinyo, Piyapong; Cheali, Peam; Narataruksa, Phavanee

    2014-01-01

    The utilization of syngas shows a highly potential to improve the economic potential of the stand-alone power unit-based gasification plants as well as enhancing the growing demand of transportation fuels. The thermochemical conversion of biomass via gasification to heat and power generations fro...

  9. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Science.gov (United States)

    2013-07-22

    ... of Availability Hydrogen Energy California's Integrated Gasification Combined Cycle Project... availability of the Hydrogen Energy California's Integrated Gasification Combined Cycle Project Preliminary... the Hydrogen Energy California's (HECA) Integrated Gasification Combined Cycle Project, which would be...

  10. Biomass Gasification. The characteristics of technology development and the rate of learning

    Energy Technology Data Exchange (ETDEWEB)

    Dorca Duch, Andreu; Huertas Bermejo, Javier

    2008-09-15

    Gasification is considered one of the most promising technologies in biomass applications. The higher efficiency compared to boiler power systems, the perspectives in fuel synthesis and its environmental friendly features are some examples of its potential. Biomass gasification has evolved since its first applications, but it has not been possible to reach a solid commercial stage, except during periods of crises and only for some specific applications. Meanwhile, other gasification technologies, fed by fossil fuels, are currently widely used on industrial scales. This thesis aims to analyze the knowledge development and diffusion patterns of the biomass gasification technology since 1970s in Austria, Finland, Germany and Sweden. Additionally, it seeks to identify the factors that strengthen and weaken the learning process. Finally, the concept of learning curve will be used to numerically assess the rate of learning in small scale biomass gasification for electricity generation. The feasibility of various future scenarios will be evaluated in order to know what is the likelihood for the technology to become competitive in the short term. To do so, the historical evolution of biomass gasification in Austria, Finland, Germany and Sweden has been analyzed. These countries have been selected due to the increasing number of ongoing projects and initiatives since 1970. Subsequently, the development of this technology has been encouraged by two historical facts. Initially, the price of fossil fuels grew in 1973 and 1979 enhancing the interest for biomass gasification as a future alternative. Afterwards, the willingness, shown by the mentioned countries, to reduce greenhouse gases emissions following the Kyoto protocol has revived the interest in biomass gasification. However, none of these two events has driven this technology sufficiently to achieve a sustainable commercial status. In addition, small and large scale projects have followed different development processes

  11. Gas, power and heat generation from biomass by allothermal gasification; Gas-, Strom- und Waermeerzeugung aus Biomasse durch allotherme Vergasung

    Energy Technology Data Exchange (ETDEWEB)

    Yaqub Chughtai, M. [H und C Engineering GmbH, Gummersbach (Germany); Muehlen, H.J. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1998-09-01

    The allothermal DMT gasification process for biomass is a newcomer. The process, its initial materials, the uses of the product gas, and advantages of the allothermal process are described here. (orig./SR) [Deutsch] Der Einsatz des allothermen DMT-Vergasungsverfahrens fuer Biomasse ist neu. Verfahren, Einsatzstoffe und Produktgasnutzung, sowie Vorteile des allothermen Verfahrens werden hier beschrieben. (orig./SR)

  12. Catalytic gasification of wet biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Matsumura, Yukihiko; Xu, Xiaodong [Univ. of Hawaii, Honolulu, HI (United States)] [and others

    1995-12-31

    Wet biomass (water hyacinth, banana trees, cattails, green algae, kelp, etc.) grows rapidly and abundantly around the world. As a biomass crop, aquatic species are particularly attractive because their cultivation does not compete with land-based agricultural activities designed to produce food for consumption or export. However, wet biomass is not regarded as a promising feed for conventional thermochemical conversion processes because the cost associated with drying it is too high. This research seeks to address this problem by employing water as the gasification medium. Prior work has shown that low concentrations of glucose (a model compound for whole biomass) can be completely gasified in supercritical water at 600{degrees}C and 34.5 Wa after a 30 s reaction time. Higher concentrations of glucose (up to 22% by weight in water) resulted in incomplete conversion under these conditions. The gas contained hydrogen, carbon dioxide, carbon monoxide, methane, ethane, propane, and traces of other hydrocarbons. The carbon monoxide and hydrocarbons are easily converted to hydrogen by commercial technology available in most refineries. This prior work utilized capillary tube reactors with no catalyst. A larger reactor system was fabricated and the heterogeneous catalytic gasification of glucose and wet biomass slurry of higher concentration was studied to attain higher conversions.

  13. Current experiences in applied underground coal gasification

    Science.gov (United States)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is

  14. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

  15. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars

    Energy Technology Data Exchange (ETDEWEB)

    E. Cetin; B. Moghtaderi; R. Gupta; T.F. Wall [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, Faculty of Engineering and Built Environment, School of Engineering

    2004-11-01

    The physical and chemical structure as well as gasification reactivities of chars generated from several biomass species (i.e. pinus radiata, eucalyptus maculata and sugar cane bagasse) were studied to gain insight into the role of heating rate and pressure on the gasification characteristics of biomass chars. Char samples were generated in a suite of reactors including a wire mesh reactor, a tubular reactor, and a drop tube furnace. Scanning electron microscopy analysis, X-ray diffractometry, digital cinematography and surface area analysis were employed to determine the impact of operating conditions on the char structure. The global gasification reactivities of char samples were also determined for a range of pressures between 1 and 20 bar using pressurised thermogravimetric analysis technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure. It was found that under high heating rates the char particles underwent plastic deformation (i.e. melted) developing a structure different to that of the virgin biomass. Pressure was also found to influence the physical and chemical structures of char particles. The difference in the gasification reactivities of biomass chars at pressure was found to correlate well with the effect of pyrolysis pressure on the graphitisation process in the biomass char structure. 29 refs., 18 figs., 2 tabs.

  16. Gasification of torrefied Miscanthus × giganteus in an air-blown bubbling fluidized bed gasifier.

    Science.gov (United States)

    Xue, G; Kwapinska, M; Horvat, A; Kwapinski, W; Rabou, L P L M; Dooley, S; Czajka, K M; Leahy, J J

    2014-05-01

    Torrefaction is suggested to be an effective method to improve the fuel properties of biomass and gasification of torrefied biomass should provide a higher quality product gas than that from unprocessed biomass. In this study, both raw and torrefied Miscanthus × giganteus (M×G) were gasified in an air-blown bubbling fluidized bed (BFB) gasifier using olivine as the bed material. The effects of equivalence ratio (ER) (0.18-0.32) and bed temperature (660-850°C) on the gasification performance were investigated. The results obtained suggest the optimum gasification conditions for the torrefied M × G are ER 0.21 and 800°C. The product gas from these process conditions had a higher heating value (HHV) of 6.70 MJ/m(3), gas yield 2m(3)/kg biomass (H2 8.6%, CO 16.4% and CH4 4.4%) and cold gas efficiency 62.7%. The comparison between raw and torrefied M × G indicates that the torrefied M × G is more suitable BFB gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Study on CO₂ gasification properties and kinetics of biomass chars and anthracite char.

    Science.gov (United States)

    Wang, Guangwei; Zhang, Jianliang; Hou, Xinmei; Shao, Jiugang; Geng, Weiwei

    2015-02-01

    The CO2 gasification properties and kinetics of three biomass chars (WS-char, RL-char and PS-char) and anthracite char (AC-char) were investigated by thermogravimetric analysis method. Three nth-order representative gas-solid reaction models, random pore model (RPM), volume reaction model (VM) and unreacted core model (URCM) were employed to describe the reactive behavior of chars. Results show that gasification reactivity order of different chars from high to low was WS-char, PS-char, RL-char and AC-char. In addition, the chemical components as well as physical structures of four chars were systematically tested. It was found that gasification properties of char were determined by carbonaceous structure. It was concluded from kinetics analysis that RPM model was the best model for describing the reactivities of biomass chars and VM was the model that best fitted the gasification process of anthracite char. The activation energies obtained for the biomass and anthracite char samples lie in the range of 236.4-284.9 kJ/mol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    Science.gov (United States)

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg -1 to 16.60 MJ kg -1 depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm -3 at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kW e . The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  19. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    Science.gov (United States)

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste.

  20. Experimental and predicted approaches for biomass gasification with enriched air-steam in a fluidised bed.

    Science.gov (United States)

    Fu, Qirang; Huang, Yaji; Niu, Miaomiao; Yang, Gaoqiang; Shao, Zhiwei

    2014-10-01

    Thermo-chemical gasification of sawdust refuse-derived fuel was performed on a bench-scale fluidised bed gasifier with enriched air and steam as fluidising and oxidising agents. Dolomite as a natural mineral catalyst was used as bed material to reform tars and hydrocarbons. A series of experiments were carried out under typical operating conditions for gasification, as reported in the article. A modified equilibrium model, based on equilibrium constants, was developed to predict the gasification process. The sensitivity analysis of operating parameters, such as the fluidisation velocity, oxygen percentage of the enriched air and steam to biomass ratios on the produced gas composition, lower heating value, carbon conversion and cold gas efficiency was investigated. The results showed that the predicted syngas composition was in better agreement with the experimental data compared with the original equilibrium model. The higher fluidisation velocity enhanced gas-solid mixing, heat and mass transfers, and carbon fines elutriation, simultaneously. With the increase of oxygen percentage from 21% to 45%, the lower heating value of syngas increased from 5.52 MJ m(-3) to 7.75 MJ m(-3) and cold gas efficiency from 49.09% to 61.39%. The introduction of steam improved gas quality, but a higher steam to biomass ratio could decrease carbon conversion and gasification efficiency owing to a low steam temperature. The optimal value of steam to biomass ratio in this work was 1.0. © The Author(s) 2014.

  1. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

  2. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu. [Inst. of Chemistry of Natural Organic Materials, Academgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  3. Biomass Gasification Research Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-02GO12024 and DE-FC36-03GO13175) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. The primary objectives of Cooperative Agreement DE-FC36-02GO12024 were the selection, acquisition, and application of a suite of gas analyzers capable of providing near real-time gas analyses to suitably conditioned syngas streams. A review was conducted of sampling options, available analysis technologies, and commercially available analyzers, that could be successfully applied to the challenging task of on-line syngas characterization. The majority of thermochemical process streams comprise multicomponent gas mixtures that, prior to crucial, sequential cleanup procedures, include high concentrations of condensable species, multiple contaminants, and are often produced at high temperatures and pressures. Consequently, GTI engaged in a concurrent effort under Cooperative Agreement DE-FC36-03GO13175 to develop the means to deliver suitably prepared, continuous streams of extracted syngas to a variety of on-line gas analyzers. The review of candidate analysis technology

  4. Preliminary studies on the treatment of wastewater from biomass gasification.

    Science.gov (United States)

    Muzyka, Roksana; Chrubasik, Maciej; Stelmach, Sławomir; Sajdak, Marcin

    2015-10-01

    This paper presents completed research on the purification of undiluted raw water and organic condensates obtained in biomass thermal conversion processes such as gasification, which are rarely addressed in published studies. However, similar studies involving the characterization and purification of aqueous solutions obtained from process gas treatment after the gasification of biomass are available. Condensation of water-organic condensate from process gas helps to reduce the amount of water required by the purification process and the cost of the process technology and water consumption. Oil scrubbers can be used in this case instead of water scrubbers. In this case, the obtained condensate must be subjected to purification processes. This paper presents the results of our research, possible methods of treatment (chemical and biological methods), and the approximate cost of the reagents required for the purification of condensate for specific assumed degrees of purification. The best results from the chemical purification using the Fenton method were obtained with the ratio V(H2O2)/V(cond.) = 6.0 and the ratio V(H2O2)/Fe = 0.0375. To prevent precipitation of ferric hydroxide, this value can be reduced 20-fold, which reduces the total degree of purification to 90%. The cost of almost complete cleaning of tested condensates was calculated to be approximately 2000 USD per/m(3). This cost can be reduced by a factor of approximately four assuming 100% cleaning for 2-furaldehyde, furfuryl alcohol and phenol; acetaldehyde, propane-2-one (acetone), methanol and acetic acid are oxidized by 50%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The ENCOAL Mild Coal Gasification Project, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-03-15

    This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall

  6. Ab initio calculations and kinetic modeling of thermal conversion of methyl chloride: implications for gasification of biomass.

    Science.gov (United States)

    Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid; Wu, Hao; Glarborg, Peter; Pelucchi, Matteo; Faravelli, Tiziano; Marshall, Paul

    2018-01-24

    Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride. In the present work, the thermal conversion of CH 3 Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH 2 Cl with O 2 and C 2 H 4 for which data are scarce were studied by ab initio methods. The model was used to analyze the fate of methyl chloride in gasification processes. The results indicate that CH 3 Cl emissions will be negligible for most gasification technologies, but could be a concern for fluidized bed gasifiers, in particular in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale.

  7. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  8. Operating and environmental performances of commercial-scale waste gasification and melting technology.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Fujinaga, Yasuka; Kajiyama, Hirohisa; Ishida, Yoshihiro

    2013-11-01

    Gasification technologies for waste processing are receiving increased interest. A lot of gasification technologies, including gasification and melting, have been developed in Japan and Europe. However, the flue gas and heavy metal behaviors have not been widely reported, even though those of grate furnaces have been reported. This article reports flue gas components of gasification and melting technology in different flue gas treatment systems. Hydrogen chloride concentrations at the inlet of the bag filter ranged between 171 and 180 mg Nm(-3) owing to de-acidification by limestone injection to the gasifier. More than 97.8% of hydrogen chlorides were removed by a bag filter in both of the flue gas treatment systems investigated. Sulfur dioxide concentrations at the inlet of the baghouse were 4.8 mg Nm(-3) and 12.7 mg Nm(-3), respectively. Nitrogen oxides are highly decomposed by a selective catalytic reduction system. Owing to the low regenerations of polychlorinated dibenzo-p-dioxins and furans, and the selective catalytic reduction system, the concentrations of polychlorinated dibenzo-p-dioxins and furans at the stacks were significantly lower without activated carbon injection. More than 99% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 97.6% and 96.5%, respectively. Most high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that the slag is stable and contains few harmful heavy metals, such as lead. The heavy metal distribution behaviors are almost the same regardless of the compositions of the processed waste. These results indicate that the gasification of municipal solid waste constitutes an ideal approach to environmental conservation and resource recycling.

  9. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, R.K.; Halvorsen, B.M. [Telemark University College, Kjolnes ring 56, P.O. Box 203, 3901 Porsgrunn (Norway); Pfeifer, C. [University of Natural Resources and Life Sciences, Vienna (Austria)

    2013-07-01

    Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Gussing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2). The combustible gases are mainly hydrogen (H2), carbon monoxide (CO) and methane (CH4). The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  10. A Modified Gibbs Free Energy Minimisation Model for Fluid Bed Coal Gasification

    National Research Council Canada - National Science Library

    Marek Ściążko; Leszek Stępień

    2015-01-01

    A modified approach to equilibrium modelling of coal gasification is presented, based on global thermodynamic analysis of both homogeneous and heterogeneous reactions occurring during a gasification...

  11. A review of biomass gasification technologies in Denmark and Sweden

    DEFF Research Database (Denmark)

    Ridjan, Iva; Mathiesen, Brian Vad; Connolly, David

    This report provides an overview of existing technologies and projects in Denmark and Sweden with a focus on the Öresund region. Furthermore it presents the research and development of biomass gasification in the region and these two countries. The list of existing gasification plants from...... laboratory scale projects to big scale plants is given. The report ends with an overview of future gasification projects as well as potential experience exchanges that could occur between the countries. We regard biomass gasification as one of the key technologies in future renewable energy systems....

  12. Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard; Elmegaard, Brian; Houbak, Niels

    2010-01-01

    Two models of a dimethyl ether (DME) fuel production plant were designed and analyzed in DNA and Aspen Plus. The plants produce DME by either recycle (RC) or once through (OT) catalytic conversion of a syngas generated by gasification of torrefied woody biomass. Torrefication is a mild pyrolysis...... process that takes place at 200–300°C. Torrefied biomass has properties similar to coal, which enables the use of commercially available coal gasification processing equipment. The DME plants are designed with focus on lowering the total CO2 emissions from the plants; this includes e.g. a recycle of a CO2...

  13. Application of a validated gasification model to determine the impact of coal particle grinding size on carbon conversion

    KAUST Repository

    Kumar, Mayank

    2013-06-01

    In this paper, we describe the implementation of a comprehensive, previously validated multiscale model of entrained flow gasification to examine the impact of particle size on the gasification process in two different gasifier designs; the MHI and the GE gasifier. We show that the impact of the particle size depends on whether the char conversion process is kinetically limited or boundary layer diffusion-limited. Fine grinding helps accelerate char conversion under diffusion-control conditions, whereas the impact is not as noticeable under kinetic-control operation. The availability of particular gasification agents, namely O2 in the earlier sections of the gasifier or CO2 and H2O in the latter sections, as well as the temperature, are shown to have an impact on the relative importance of kinetics versus diffusion limitation. © 2013 Elsevier Ltd. All rights reserved.

  14. Development of catalytic gas cleaning in gasification

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P.; Kurkela, E.; Staahlberg, P.; Hepola, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas containing dust can be efficiently purified from tars and ammonia with a nickel monolith catalyst. Temperatures of >900 deg C and a residence time of about 1 s (SV 2 500 1/h) were needed at 5 bar pressure to achieve complete tar decomposition and 80 % ammonia conversion. Catalyst deactivation was not observed during test runs of 100 h. At lower pressures dolomites and limestones can also be applied for tar removal at about 900 deg C temperatures. (orig.) 12 refs.

  15. Pilot-scale gasification of woody biomass

    Science.gov (United States)

    Thomas Elder; Leslie H. Groom

    2011-01-01

    The gasification of pine and mixed-hardwood chips has been carried out in a pilot-scale system at a range of gas flow rates. Consuming ~17-30 kgh-1 of feedstock, the producer gas was composed of ~200 dm3 m-3 carbon monoxide, 12 dm3 m-3 carbon dioxide, 30 dm3 m-3 methane and 190 dm3 m-3 hydrogen, with an energy content of ~6 MJ m-3 for both feedstocks. It was found that...

  16. UK wood gasification project under way

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-24

    It is reported that a wood gasification pilot plant will be built in the UK by John Brown and Wellman Engineering as part of the EEC solar energy programme. The construction of the plant is scheduled to start in November 1982 and will convert up to 12 ton/day of biomass into around 20 ton/day of synthesis gas suitable for methanol production.

  17. Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

  18. Thermochemical Conversion of Biomass to Fuels and Chemicals - Pyrolysis and Gasification

    OpenAIRE

    Mante, Nii Ofei

    2011-01-01

    The development of advance thermochemical technologies is critical for sustainable production of affordable biofuel, biopower and bioproduct from biomass. Thermochemical conversion processes are flexible and independent of feedstock. Currently, pyrolysis and gasification are promising thermochemical conversion processes that use heat and chemistry to produce bio-oil, syngas, bio-char and chemicals from a wide spectrum of biomass feedstocks, varying from woody and herbaceous biomass to ...

  19. Active sites in char gasification: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  20. Simulation of circulating fluidized bed gasification for characteristic study of pakistani coal

    Directory of Open Access Journals (Sweden)

    Ramzan Naveed

    2015-03-01

    Full Text Available A process model for turbulent pressurized circulating fluidized-bed coal gasifier is created using ASPEN PLUS software. Both hydrodynamic and reaction kinetics parameter are taken into account, whose expressions for fluidized bed are adopted from the literature. Various reactor models available in ASPEN PLUS with calculator as External Block are nested to solve hydrodynamics and kinetics. Multiple operational parameters for a pilot-plant circulating fluidized-bed coal gasifier are used to demonstrate the effects on coal gasification characteristics. This paper presents detailed information regarding the simulation model, including robust analysis of the effect of stoichiometric ratio, steam to coal ratio, gasification temperature and gasification agent temperature. It is observed that, with the increase in the flow rate of air, the components hydrogen, carbon monoxide, carbon dioxide and methane reduce, which causes the Lower Heating Value (LHV of synthesis gas (Syn. Gas to decrease by about 29.3%, while increment in the steam flow rate shows a minute increase in heating value of only 0.8%. Stoichiometric ratio has a direct relationship to carbon conversion efficiency and carbon dioxide production. Increasing the steam to coal ratio boosts the production of hydrogen and carbon monoxide, and causes a drop in both carbon dioxide concentration and the conversion efficiency of carbon. High gasifying agent temperature is desired because of high concentration of CO and H2, increasing carbon conversion and LHV. A high gasifying agent temperature is the major factor that affects the coal gasification to enhance H2 and CO production rapidly along with other gasification characteristics.

  1. Co-gasification of coal and wood in a dual fluidized bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Isabella Aigner; Christoph Pfeifer; Hermann Hofbauer [Vienna University of Technology (VUT), Vienna (Austria). Institute of Chemical Engineering

    2011-07-15

    In the last decade the reduction of CO{sub 2} emissions from fossil fuels became a worldwide topic. Co-gasification of coal and wood provides an opportunity to combine the advantages of the well-researched usage of fossil fuels such as coal with CO{sub 2}-neutral biomass. Gasification itself is a technology with many advantages. The producer gas can be used in many ways; for electric power generation in a gas engine or gas turbine, for Fischer-Tropsch synthesis of liquid fuels and also for production of gaseous products such as synthetic natural gas (bio SNG). Moreover, the use of the producer gas in fuel cells is under investigation. The mixture of coal and wood leads to the opportunity to choose the gas composition as best befits the desired process. Within this study the focus of investigation was of gasification of coal and wood in various ratios and the resulting changes in producer gas composition. Co-gasification of coal and wood leads to linear producer gas composition changes with linear changing load ratios (coal/wood). Hydrogen concentrations rise with increasing coal ratio, while CO concentrations decrease. Due to the lower sulfur and nitrogen content of wood, levels of the impurities NH{sub 3} and H{sub 2}S in the producer gas fall with decreasing coal ratio. It is also shown that the majority of sulfur is released in the gasification zone and, therefore, no further cleaning of the flue gas is necessary. All mixture ratios, from 100 energy% to 0 energy% coal, performed well in the 100 kW dual fluidized bed gasifier. Although the gasifier was originally designed for wood, an addition of coal as fuel in industrial sized plants based on the same technology should pose no problems. 24 refs., 20 figs., 3 tabs.

  2. Determination of the intrinsic reactivities for carbon dioxide gasification of rice husk chars through using random pore model.

    Science.gov (United States)

    Gao, Xiaoyan; Zhang, Yaning; Li, Bingxi; Zhao, Yijun; Jiang, Baocheng

    2016-10-01

    Rice husk is abundantly available and environmentally friendly, and char-CO2 gasification is of great importance for the biomass gasification process. The intrinsic reaction rates of carbon dioxide gasification with rice husk chars derived from different pyrolysis temperatures were investigated in this study by conducting thermogravimetric analysis (TGA) measurements. The effects of gasification temperature and reactant partial pressure on the char-CO2 gasification were investigated and the random pore model (RPM) was used to determine the intrinsic kinetic parameters based on the experimental data. The results obtained from this study show that the activation energy, reaction order and pre-exponential factor varied in the ranges of 226.65-232.28kJ/mol, 0.288-0.346 and 2.38×10(5)-2.82×10(5)1/sPa(n) for the rice husk chars pyrolyzed at 700-900°C, respectively. All the determination coefficients between the RPM predictions and experimental results were higher than 0.906, indicating the RPM is reliable for determining and evaluating the intrinsic reactivities of rice husk chars. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Measurements of Gasification Characteristics of Coal and Char in CO2-Rich Gas Flow by TG-DTA

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-01-01

    Full Text Available Pyrolysis, combustion, and gasification properties of pulverized coal and char in CO2-rich gas flow were investigated by using gravimetric-differential thermal analysis (TG-DTA with changing O2%, heating temperature gradient, and flow rate of CO2-rich gases provided. Together with TG-DTA, flue gas generated from the heated coal, such as CO, CO2, and hydrocarbons (HCs, was analyzed simultaneously on the heating process. The optimum O2% in CO2-rich gas for combustion and gasification of coal or char was discussed by analyzing flue gas with changing O2 from 0 to 5%. The experimental results indicate that O2% has an especially large effect on carbon oxidation at temperature less than 1100°C, and lower O2 concentration promotes gasification reaction by producing CO gas over 1100°C in temperature. The TG-DTA results with gas analyses have presented basic reference data that show the effects of O2 concentration and heating rate on coal physical and chemical behaviors for the expected technologies on coal gasification in CO2-rich gas and oxygen combustion and underground coal gasification.

  4. High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification. Part I: Modelling and feasibility study

    Science.gov (United States)

    Panopoulos, K. D.; Fryda, L. E.; Karl, J.; Poulou, S.; Kakaras, E.

    Biomass gasification derived fuel gas is a renewable fuel that can be used by high temperature fuel cells. In this two-part work an attempt is made to investigate the integration of a near atmospheric pressure solid oxide fuel cell (SOFC) with a novel allothermal biomass steam gasification process into a combined heat and power (CHP) system of less than MW e nominal output range. Heat for steam gasification is supplied from SOFC depleted fuel into a fluidised bed combustor via high temperature sodium heat pipes. The integrated system model was built in Aspen Plus™ simulation software and is described in detail. Part I investigates the feasibility and critical aspects of the system based on modelling results. A low gasification steam to biomass ratio (STBR = 0.6) is used to avoid excess heat demands and to allow effective H 2S high temperature removal. Water vapour is added prior to the anode to avoid carbon deposition. The SOFC off gases adequately provide gasification heat when fuel utilisation factors are electrical efficiency is estimated at 36% while thermal efficiency at 14%. An exergy analysis is presented in Part II.

  5. Technical and economic analyses of hydrogen production via indirectly heated gasification and pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-09-01

    Technoeconomic analyses have been conducted on two processes to produce hydrogen from biomass: indirectly-heated gasification of biomass followed by steam reforming of the syngas, and biomass pyrolysis followed by steam reforming of the pyrolysis oil. The analysis of the gasification-based process was highly detailed, including a process flowsheet, material and energy balances calculated with a process simulation program, equipment cost estimation, and the determination of the necessary selling price of hydrogen. The pyrolysis-based process analysis was of a less detailed nature, as all necessary experimental data have not been obtained; this analysis is a follow-up to the preliminary economic analysis presented at the 1994 Hydrogen Program Review. A coproduct option in which pyrolysis oil is used to produce hydrogen and a commercial adhesive was also studied for economic viability. Based on feedstock availability estimates, three plant sizes were studied: 907 T/day, 272 T/day, and 27 T/day. The necessary selling price of hydrogen produced by steam reforming syngas from the Battelle Columbus Laboratories indirectly heated biomass gasifier falls within current market values for the large and medium size plants within a wide range of feedstock costs. Results show that the small scale plant does not produce hydrogen at economically competitive prices, indicating that if gasification is used as the upstream process to produce hydrogen, local refueling stations similar to current gasoline stations, would probably not be feasible.

  6. Generation of hydrogen rich gas through fluidized bed gasification of biomass.

    Science.gov (United States)

    Karmakar, M K; Datta, A B

    2011-01-01

    The objective of this study was to investigate the process of generating hydrogen rich syngas through thermo chemical fluidized bed gasification of biomass. The experiments were performed in a laboratory scale externally heated biomass gasifier. Rice husk had been taken as a representative biomass and, steam had been used as the fluidizing and gasifying media. A thermodynamic equilibrium model was used to predict the gasification process. The work included the parametric study of process parameters such as reactor temperature and steam biomass ratio which generally influence the percentage of hydrogen content in the product gas. Steam had been used here to generate nitrogen free product gas and also to increase the hydrogen concentration in syngas with a medium range heating value of around 12 MJ/Nm3. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Modified Thermodynamic Equilibrium Model for Biomass Gasification: A Study of the Influence of Operating Conditions

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Juan Carlos; Coronas, Alberto

    2012-01-01

    This paper presents a mathematical model for biomass gasification processes developed in the equation solver program Engineering Equation Solver (EES) with an implemented user-friendly interface. It is based on thermodynamic equilibrium calculations and includes some modifications to be adapted......, and oxygen enrichment] on producer gas. The model predicts the behavior of different kinds of biomass and becomes a useful tool to simulate the biomass gasification process by allowing its integration in complete energy supply systems, such as co-generation plants....... to a real process, in which only a partial approach to chemical equilibrium is achieved. The model can be used to predict the producer gas composition, yield, and heating value for a certain biomass with a specific ultimate composition and moisture content. It has been validated with published experimental...

  8. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  9. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants.

    Science.gov (United States)

    Dong, Jun; Tang, Yuanjun; Nzihou, Ange; Chi, Yong; Weiss-Hortala, Elsa; Ni, Mingjiang

    2018-01-19

    Municipal solid waste (MSW) pyrolysis and gasification are in development, stimulated by a more sustainable waste-to-energy (WtE) option. Since comprehensive comparisons of the existing WtE technologies are fairly rare, this study aims to conduct a life cycle assessment (LCA) using two sets of data: theoretical analysis, and case studies of large-scale commercial plants. Seven systems involving thermal conversion (pyrolysis, gasification, incineration) and energy utilization (steam cycle, gas turbine/combined cycle, internal combustion engine) are modeled. Theoretical analysis results show that pyrolysis and gasification, in particular coupled with a gas turbine/combined cycle, have the potential to lessen the environmental loadings. The benefits derive from an improved energy efficiency leading to less fossil-based energy consumption, and the reduced process emissions by syngas combustion. Comparison among the four operating plants (incineration, pyrolysis, gasification, gasification-melting) confirms a preferable performance of the gasification plant attributed to syngas cleaning. The modern incineration is superior over pyrolysis and gasification-melting at present, due to the effectiveness of modern flue gas cleaning, use of combined heat and power (CHP) cycle, and ash recycling. The sensitivity analysis highlights a crucial role of the plant efficiency and pyrolysis char land utilization. The study indicates that the heterogeneity of MSW and syngas purification technologies are the most relevant impediments for the current pyrolysis/gasification-based WtE. Potential development should incorporate into all process aspects to boost the energy efficiency, improve incoming waste quality, and achieve efficient residues management. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar.

    Science.gov (United States)

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm(3) at a gasification temperature of 1500 K and equivalence ratio of 0.15.

  11. Policy and Regulatory Issues for Underground Coal Gasification in India

    Science.gov (United States)

    Singh, Sunil K.

    2017-07-01

    Underground coal gasification (UCG) is in its nascent stage of development. Most of the projects are in the nature of pilot projects. UCG technology requires acceptance in general commercial framework as it matures with the progress of time. Policy and regulatory framework, therefore, is considered here only in the expectation that UCG technology may finally be rolled out sooner than later. India is actively pursuing consultations with major countries which have recorded successes in implementing UCG technology in varying measures. In this background, the discussion on policy and regulatory framework is essentially an effort to capture the broad outline of the understanding of the UCG process in a regulatory construct as compared with other regulatory regimes of similar nature.

  12. Proceedings of the ninth annual underground coal gasification symposium

    Energy Technology Data Exchange (ETDEWEB)

    Wieber, P.R.; Martin, J.W.; Byrer, C.W. (eds.)

    1983-12-01

    The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

  13. Plant Availability of Phosphorus in Five Gasification Biochars

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Rubæk, Gitte H.; Müller-Stöver, Dorette S.

    2017-01-01

    energy and agriculture systems. In this study, the P availability was tested in five gasification biochars (GBs) produced via a novel low-temperature (gasification technology. The feedstocks used were wheat straw (STR), shea nut shells (NUT), poultry manure (POUL), and two types of sewage sludge...

  14. Methods for sequestering carbon dioxide into alcohols via gasification fermentation

    Science.gov (United States)

    Gaddy, James L; Ko, Ching-Whan; Phillips, J. Randy; Slape, M. Sean

    2013-11-26

    The present invention is directed to improvements in gasification for use with synthesis gas fermentation. Further, the present invention is directed to improvements in gasification for the production of alcohols from a gaseous substrate containing at least one reducing gas containing at least one microorganism.

  15. Research of forming of the system of transport pores in the structure of carbon composites by their gasification