WorldWideScience

Sample records for tetraploidy

  1. Induction of triploidy and tetraploidy in Nile tilapia, Oreochromis niloticus (L.)

    Science.gov (United States)

    El Gamal, A.-R.A.; Davis, K.B.; Jenkins, J.A.; Les, Torrans E.

    1999-01-01

    Induction of triploidy and tetraploidy in Nile tilapia, Oreochromis niloticus, was investigated by heat shock, cold shock, hydrostatic pressure, and/ or chemicals (cytochalasin A, B, and D). Additionally, efficacy of combined protocols was determined. Heat shock 10 min after fertilization induced triploidy when incubation temperature was 24 C but not when incubation temperature was 31 C. Heat shock of 40-41 C at 4-6 min after fertilization was effective in inducing up to 100% triploidy with hatchability similar to controls. Cold shock at 13 C for 45 min five min after fertilization induced 85-100% triploids. Heat shock and multiple heat shocking were the most effective treatments for the induction of tetraploidy. Two heat treatments of 41 C applied at 65 and 80 min after fertilization for 5 min each produced approximately 80% tetraploidy in hatched fry. Immersion of fertilized eggs in cytochalasin A, B, or D at concentrations up to 10 ??g/L applied at various times and durations was ineffective in inducing triploidy or tetraploidy.

  2. Near-tetraploidy is associated with Richter transformation in chronic lymphocytic leukemia patients receiving ibrutinib.

    Science.gov (United States)

    Miller, Cecelia R; Ruppert, Amy S; Heerema, Nyla A; Maddocks, Kami J; Labanowska, Jadwiga; Breidenbach, Heather; Lozanski, Gerard; Zhao, Weiqiang; Gordon, Amber L; Jones, Jeffrey A; Flynn, Joseph M; Jaglowski, Samantha M; Andritsos, Leslie A; Blum, Kristie A; T Awan, Farrukh; Rogers, Kerry A; Grever, Michael R; Johnson, Amy J; Abruzzo, Lynne V; Hertlein, Erin K; Blachly, James S; Woyach, Jennifer A; Byrd, John C

    2017-08-22

    Ibrutinib is a highly effective targeted therapy for chronic lymphocytic leukemia (CLL). However, ibrutinib must be discontinued in a subset of patients due to progressive CLL or transformation to aggressive lymphoma (Richter transformation). Transformation occurs early in the course of therapy and has an extremely poor prognosis. Thus, identification of prognostic markers associated with transformation is of utmost importance. Near-tetraploidy (4 copies of most chromosomes within a cell) has been reported in various lymphomas, but its incidence and significance in CLL has not been described. Using fluorescence in situ hybridization, we detected near-tetraploidy in 9 of 297 patients with CLL prior to beginning ibrutinib treatment on 1 of 4 clinical trials (3.0%; 95% confidence interval [CI], 1.4%-5.7%). Near-tetraploidy was associated with aggressive disease characteristics: Rai stage 3/4 ( P = .03), deletion 17p ( P = .03), and complex karyotype ( P = .01). Near-tetraploidy was also associated with ibrutinib discontinuation due to Richter transformation ( P transformation with diffuse large B-cell lymphoma. In a multivariable model, near-tetraploidy (hazard ratio [HR], 8.66; 95% CI, 3.83-19.59; P transformation. Our results suggest that near-tetraploidy is a potential prognostic marker for Richter transformation to assess in patients going on ibrutinib.

  3. [Successful treatment with reduced-intensity cord blood transplantation for acute myeloid leukemia with complete tetraploidy (92, XXXX)].

    Science.gov (United States)

    Iwasaki, Junko; Onozawa, Masahiro; Takahashi, Shojiro; Okada, Kohei; Takahata, Mutsumi; Shigematsu, Akio; Kahata, Kaoru; Kondo, Takeshi; Hashino, Satoshi; Imamura, Masahiro; Asaka, Masahiro

    2011-03-01

    A 56-year-old female was diagnosed with acute myeloid leukemia (FAB: AML-M1). G-banding karyotype of her bone marrow showed complete tetraploidy (92, XXXX [24/24]). Although she achieved complete remission (CR) after induction therapy and maintained CR during consolidation therapy, relapse occurred only 2 months after discharge. When the relapse occurred, bone marrow karyotypic analysis showed complete tetraploidy again. The patient received reduced-intensity cord blood transplantation (RI-CBT), which induced CR for the second time. The patient is currently alive 24 months after transplantation and there have not been any signs of recurrence to date. There have been a few reports of AML with near-tetraploidy, but cases of AML with complete tetraploidy are extremely rare. Tetraploid AML has been reported to have a poor prognosis and there have been very few cases maintaining CR over the long term after chemotherapy alone. This is the first case of complete tetraploid AML successfully treated by RI-CBT. The clinical course of this case suggests that hematopoietic stem cell transplantation during the first CR phase should be considered a treatment option for tetraploid AML.

  4. DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development.

    Directory of Open Access Journals (Sweden)

    Yosuke Ichijima

    Full Text Available During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.

  5. Increased in vitro tetraploidy and mandibular osteomas in patients with and without colorectal diseases

    DEFF Research Database (Denmark)

    Svendsen, L B; Søndergaard, J O; Bülow, Steffen

    1988-01-01

    One hundred and seventy-six individuals with various colorectal diseases were investigated simultaneously for increased in vitro tetraploidy in dermal fibroblast cultures and for occult mandibular osteomas. In only 10 of the 176 persons were both presumed markers of colorectal genetic...

  6. Ancient tetraploidy and slow molecular evolution in Scaphiophryne: ecological correlates of speciation mode in Malagasy relict amphibians.

    Science.gov (United States)

    Vences, Miguel; Aprea, Gennaro; Capriglione, Teresa; Andreone, Franco; Odierna, Gaetano

    2002-01-01

    Karyotypes of three microhylid frog species of the Malagasy relict genus Scaphiophryne were studied: Scaphiophryne gottlebei, S. madagascariensis and S. spinosa. The latter two showed a plesiomorphic ranoid karyotype of 2n = 26. In contrast, tetraploidy was demonstrated in S. gottlebei, which constitutes an exceptional state among Malagasy amphibians. A combination of different banding techniques and of rDNA-FISH provided evidence for allopolyploidy in the species and for a completed subsequent functional and structural diploidization. Phylogenetic analysis of mitochondrial 16S rDNA sequences revealed a significant deceleration of nucleotide substitution rates in Scaphiophryne. The tetraploidy of S. gottlebei probably occurred early in their radiation. Ecological and behavioural patterns of Scaphiophryne probably favoured intraspecific gene flow and hybridization events, thereby leading to slow molecular substitution rates and to allopolyploid chromosome speciation in S. gottlebei.

  7. Radiation damage and induced tetraploidy in mulberry (Morus alba L.)

    International Nuclear Information System (INIS)

    Katagiri, K.

    1976-01-01

    Vigorously growing mulberry shoots were exposed to 5 kR of gamma rays at the rate of 0.2 kR/hr and 5.0 kR/hr and successively pruned three times in two growing seasons. The most radiosensitive part of both the apical and axillary meristems was the second cell layer. The younger axillary bud primordia were more sensitive to radiation then the older ones. Recovery from radiation damage was assumed to be from the flank meristem in the shoot apex. The frequency of mutations was much lower than that of tetraploidy. Among the tetraploids 50% were 2-4-4 chimeras. (author)

  8. Tetraploidy Determination in Rainbow Trout (Oncorhynchus mykiss Based on Erythrocytes Dimensions

    Directory of Open Access Journals (Sweden)

    Ioan Bencsik

    2012-05-01

    Full Text Available Tetraploidy induction at fish is characterized by modification of normal diploid chromosome set (2n into tetraploid set (4n. Experiments were carried out on biological material from rainbow trout (Oncorhynchus mikiss during the natural breeding season. Polyploidy was induced by exposing the eggs to heat shock. Blood smear was used as a technical method, to determine diploid and tetraploid status. Staining of blood smear was performed by Pappenhein method. The erythrocytes area and perimeter measurements done comparatively on tetraploid and diploid individuals may represent an indicator to determine the ploidy level of individuals. Erythrocytes area for tetraploid individuals is 2.18 times higher than at diploid individuals, and perimeter 1.45 times higher than in diploid individuals.

  9. Tetraploidy Enhances Boron-Excess Tolerance in Carrizo Citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.).

    Science.gov (United States)

    Ruiz, Marta; Quiñones, Ana; Martínez-Alcántara, Belén; Aleza, Pablo; Morillon, Raphaël; Navarro, Luis; Primo-Millo, Eduardo; Martínez-Cuenca, Mary-Rus

    2016-01-01

    Tetraploidy modifies root anatomy which may lead to differentiated capacity to uptake and transport mineral elements. This work provides insights into physiological and molecular characters involved in boron (B) toxicity responses in diploid (2x) and tetraploid (4x) plants of Carrizo citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.), a widely used citrus rootstock. With B excess, 2x plants accumulated more B in leaves than 4x plants, which accounted for their higher B uptake and root-to-shoot transport rates. Ploidy did not modify the expression of membrane transporters NIP5 and BOR1 in roots. The cellular allocation of B excess differed between ploidy levels in the soluble fraction, which was lower in 4x leaves, while cell wall-linked B was similar in 2x and 4x genotypes. This correlates with the increased damage and stunted growth recorded in the 2x plants. The 4x roots were found to have fewer root tips, shorter specific root length, longer diameter, thicker exodermis and earlier tissue maturation in root tips, where the Casparian strip was detected at a shorter distance from the root apex than in the 2x roots. The results presented herein suggest that the root anatomical characters of the 4x plants play a key role in their lower B uptake capacity and root-to-shoot transport. Tetraploidy enhances B excess tolerance in citrange CarrizoExpression of NIP5 and BOR1 transporters and cell wall-bounded B are similar between ploidiesB tolerance is attributed to root anatomical modifications induced by genome duplicationThe rootstock 4x citrange carrizo may prevent citrus trees from B excess.

  10. Tetraploidy in monkey kidney epithelial cells exposed to various doses of radiation in vitro and in vivo. Comm.3

    International Nuclear Information System (INIS)

    Machavariani, M.G.

    1979-01-01

    The tetraploidy phenomenon in three and five day cultures of monkey kidney epithelial cells exposed to various doses of X-rays at Gsub(0) stage has been revealed. The data are presented on simple and complex tetraploidal enclo-reduplicated cells in monkey kidney epithelium after whole-body irradiaiton of animals by 60 Co γ-rays in dosage of 620-660 R. The frequency decrease of endoreduplicated cells at the second month coincides with the frequency increase of simple tetraploidal cells. In the investigated culture of monkey kidney epithelial cells, irradiated in vitro, a trend is observed towards the increase of the number of tetraploidal cells. An assumption is made on the possibility of using the frequency of tetraploidal cells ( including lymphocytes) for the purposes of biological dosimetry

  11. Near-tetraploidy clone can evolve from a hyperdiploidy clone and cause resistance to lenalidomide and bortezomib in a multiple myeloma patient.

    Science.gov (United States)

    Yuan, Ji; Shah, Radhika; Kulharya, Anita; Ustun, Celalettin

    2010-07-01

    Aneuploidy is a very common prognostic factor in multiple myeloma (MM). Nonhyperdiploidy including near-tetraploidy (NT) is a poor prognostic indicator, compared to hyperdiploidy in multiple myeloma (MM). NT results from endoduplication of hypodiploidy. We report of a 55-year-old female patient diagnosed with advanced stage MM with hyperdiploidy and t(8;14)(q24;q32). The patient responded well to lenalidomide and dexamethasone for approximately 1 year. At the time of progression, she had become unresponsive to lenalidomide and subsequently bortezomib, and was found to have NT and loss of choromosome 13. There is another reported patient who had a possible interchange from nonhyperdiploidy to hyperdiploidy status, however, artifact could not be ruled out. To our knowledge, this is the first patient in whom evolution of an abnormal clone from a hyperdiploidy to a NT abnormal clone has been confirmed during the natural course of MM. This evolution is associated with resistance to novel drugs and poor prognosis in MM. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Tetraploidy enhances boron-excess tolerance in Carrizo Citrange (Citrus sinensis L. Osb. x Poncirus trifoliata L. Raf.

    Directory of Open Access Journals (Sweden)

    Marta eRuiz

    2016-05-01

    Full Text Available Tetraploidy modifies root anatomy which may lead to differentiated capacity to uptake and transport mineral elements. This work provides insights into physiological and molecular characters involved in boron (B toxicity responses in diploid (2x and tetraploid (4x plants of Carrizo citrange (Citrus sinensis L. Osb. x Poncirus trifoliata L. Raf., a widely used citrus rootstock. With B excess, 2x plants accumulated more B in leaves than 4x plants, which accounted for their higher B uptake and root-to-shoot transport rates. Ploidy did not modify the expression of membrane transporters NIP5 and BOR1 in roots. The cellular allocation of B excess differed between ploidy levels in the soluble fraction, which was lower in 4x leaves, while cell wall-linked B was similar in 2x and 4x genotypes. This correlates with the increased damage and stunted growth recorded in the 2x plants. The 4x roots were found to have fewer root tips, shorter specific root length, longer diameter, thicker exodermis and earlier tissue maturation in root tips, where the Casparian strip was detected at a shorter distance from the root apex than in the 2x roots. The results presented herein suggest that the root anatomical characters of the 4x plants play a key role in their lower B uptake capacity and root-to-shoot transport.

  13. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    FLT3/ITD mutation; p53 tumor suppressor gene; NRAS gene; acute myeloid leukemia (AML); tetraploidy/near-tetraploidy; human genetics. ... Institute of Hematology, Medical School, 11000 Belgrade, Serbia; Institute of Molecular Genetics and Genetic Engineering, Medical School, 11000 Belgrade, Serbia; Institute of ...

  14. Chromosome 13q deletion and IgH abnormalities may be both masked by near-tetraploidy in a high proportion of multiple myeloma patients: a combined morphology and I-FISH analysis.

    Science.gov (United States)

    Koren-Michowitz, Maya; Hardan, Izhar; Berghoff, Janina; Yshoev, Galina; Amariglio, Ninette; Rechavi, Gideon; Nagler, Arnon; Trakhtenbrot, Luba

    2007-10-08

    Ploidy status and chromosomal aberrations involving chromosome 13q and the immunoglobulin heavy chain locus (IgH) are important prognostic features in multiple myeloma (MM). However, conventional cytogenetic studies are often not reveling and determination of plasma cells (PC) ploidy status in MM is technically difficult. We have used a combined cell morphology and interphase FISH (I-FISH) analysis in 184 consecutive BM samples from 136 MM patients for the diagnosis of chromosome 13q deletion [del (13q)] and IgH abnormalities. We have found a high prevalence (37%) of near-tetraploid (NT) PC in the BM samples studied. NT status of PC was verified with DNA index (DI) measurements. del (13q) was found in 69% and a total absence of one IgH copy (loss of IgH) in 20% of NT samples. We have shown that the presence of del (13q) and loss of IgH can be masked in NT cases: in 12 NT samples originally identified as normal for del (13q) the abnormality was obscured in the majority of plasma cells due to the presence of NT. Similarly, loss of IgH was masked in four samples with a large population of NT cells. Moreover, in one case the appearance of a 100% tetraploidy during disease progression masked the presence of del (13q), originally present, and could therefore falsely appear as disappearance of this prognostic marker. In conclusion, we have shown that a combination of three abnormalities, i.e., del (13q), loss of IgH and NT, all of potential prognostic significance, can be overlooked unless NT is specifically searched for and ruled out. Therefore, we suggest that a search for NT should be added to the routine BM assessment in MM patients.

  15. Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours.

    Science.gov (United States)

    Ujvari, Beata; Pearse, Anne-Maree; Swift, Kate; Hodson, Pamela; Hua, Bobby; Pyecroft, Stephen; Taylor, Robyn; Hamede, Rodrigo; Jones, Menna; Belov, Katherine; Madsen, Thomas

    2014-02-01

    The Tasmanian Devil Facial Tumour Disease (DFTD) provides a unique opportunity to elucidate the long-term effects of natural and anthropogenic selection on cancer evolution. Since first observed in 1996, this transmissible cancer has caused local population declines by >90%. So far, four chromosomal DFTD variants (strains) have been described and karyotypic analyses of 253 tumours showed higher levels of tetraploidy in the oldest strain. We propose that increased ploidy in the oldest strain may have evolved in response to effects of genomic decay observed in asexually reproducing organisms. In this study, we focus on the evolutionary response of DFTD to a disease suppression trial. Tumours collected from devils subjected to the removal programme showed accelerated temporal evolution of tetraploidy compared with tumours from other populations where no increase in tetraploid tumours were observed. As ploidy significantly reduces tumour growth rate, we suggest that the disease suppression trial resulted in selection favouring slower growing tumours mediated by an increased level of tetraploidy. Our study reveals that DFTD has the capacity to rapidly respond to novel selective regimes and that disease eradication may result in novel tumour adaptations, which may further imperil the long-term survival of the world's largest carnivorous marsupial.

  16. Selenium, selenoenzymes, oxidative stress and risk of neoplastic progression from Barrett's esophagus: results from biomarkers and genetic variants.

    Directory of Open Access Journals (Sweden)

    Yumie Takata

    Full Text Available Clinical trials have suggested a protective effect of selenium supplementation on the risk of esophageal cancer, which may be mediated through the antioxidant activity of selenoenzymes. We investigated whether serum selenium concentrations, selenoenzyme activity, oxidative stress and genetic variation in selenoenzymes were associated with the risk of neoplastic progression to esophageal adenocarcinoma (EA and two intermediate endpoints, aneuploidy and tetraploidy. In this prospective cohort study, during an average follow-up of 7.3 years, 47 EA cases, 41 aneuploidy cases and 51 tetraploidy cases accrued among 361 participants from the Seattle Barrett's Esophagus Research Study who were free of EA at the time of blood draw and had at least one follow-up visit. Development to EA was assessed histologically and aneuploidy and tetraploidy by DNA content flow cytometry. Serum selenium concentrations were measured using atomic absorption spectrometry, activity of glutathione peroxidase (GPX 1 and GPX3 by substrate-specific coupled test procedures, selenoprotein P (SEPP1 concentrations and protein carbonyl content by ELISA method and malondialdehyde concentrations by HPLC. Genetic variants in GPX1-4 and SEPP1 were genotyped. Serum selenium was not associated with the risk of neoplastic progression to EA, aneuploidy or tetraploidy (P for trend = 0.25 to 0.85. SEPP1 concentrations were positively associated with the risk of EA [hazard ratio (HR = 3.95, 95% confidence intervals (CI = 1.42-10.97 comparing the third tertile with the first] and with aneuploidy (HR = 6.53, 95% CI = 1.31-32.58, but not selenoenzyme activity or oxidative stress markers. No genetic variants, overall, were associated with the risk of neoplastic progression to EA (global p = 0.12-0.69. Our results do not support a protective effect of selenium on risk of neoplastic progression to EA. Our study is the first to report positive associations of plasma SEPP1

  17. Increasing genetic gain by reducing ploidy in potato

    Science.gov (United States)

    While potato cultivars in major world production regions are tetraploid, wild and cultivated potatoes in the crop’s center of origin range from diploid to hexaploid. Landrace potato varieties cannot be distinguished based on ploidy. Contrary to popular belief, tetraploidy does not appear to be neces...

  18. Study on the doubling effect of colchicine on leaves in vitro of apple seedlings

    International Nuclear Information System (INIS)

    Wang Changquan; Li Yazhi; Cui Decai; Su Huairui

    1997-01-01

    Leaves in vitro of two diploid apple cultivars were treated with different concentrations of colchicine and 2% DMSO solution. Among all treatments, 0.5% of colchicine treating for 4 days showed the best effect with variation frequency of 56.1%. Obvious changes occurred in the morphological and cytological aspects of the induced tetraploidy apple plants. In comparison with normal plants, variant plants showed the following features: the stem became dwarf and thick; node was shorten; the leaves' colour appeared dark green. The stomata cell size was larger than that of diploid plants. The number of the stomata per unit area of the leaves in variant plants distinctly reduced. The chromosome number were determined to be 2n = 2x = 34 for diploid plants and 2n = 4x = 68 for variant plants. The nucleolus number of variant plants increased. By the means of section of paraffin-embedded shoot auspices, 86% of variant plants have been identified as solid tetraploidy

  19. A rapid, non-sacrificial chromosome preparation technique for ...

    African Journals Online (AJOL)

    ... centrifuges or sacrificing the specimen. In situations such as the induction of triploidy or tetraploidy, it is necessary to have a quick, reliable method of assessing the results of experimental design. The technique presented in this report provides numerous, well-spread metaphase chromosomes with a tissue handling time ...

  20. Experimental Evolution Reveals Interplay between Sch9 and Polyploid Stability in Yeast.

    Directory of Open Access Journals (Sweden)

    Yi-Jin Lu

    2016-11-01

    Full Text Available Polyploidization has crucial impacts on the evolution of different eukaryotic lineages including fungi, plants and animals. Recent genome data suggest that, for many polyploidization events, all duplicated chromosomes are maintained and genome reorganizations occur much later during evolution. However, newly-formed polyploid genomes are intrinsically unstable and often quickly degenerate into aneuploidy or diploidy. The transition between these two states remains enigmatic. In this study, laboratory evolution experiments were conducted to investigate this phenomenon. We show that robust tetraploidy is achieved in evolved yeast cells by increasing the abundance of Sch9-a protein kinase activated by the TORC1 (Target of Rapamycin Complex 1 and other signaling pathways. Overexpressing SCH9, but not TOR1, allows newly-formed tetraploids to exhibit evolved phenotypes and knocking out SCH9 diminishes the evolved phenotypes. Furthermore, when cells were challenged with conditions causing ancestral cells to evolve aneuploidy, tetraploidy was maintained in the evolved lines. Our results reveal a determinant role for Sch9 during the early stage of polyploid evolution.

  1. Telomere Shortening in Hematological Malignancies with Tetraploidization—A Mechanism for Chromosomal Instability?

    Directory of Open Access Journals (Sweden)

    Eigil Kjeldsen

    2017-11-01

    Full Text Available Aneuploidy, the presence of an abnormal number of chromosomes in a cell, is one of the most obvious differences between normal and cancer cells. There is, however, debate on how aneuploid cells arise and whether or not they are a cause or a consequence of tumorigenesis. Further, it is important to distinguish aneuploidy (the “state” of the karyotype from chromosomal instability (CIN; the “rate” of karyotypic change. Although CIN leads to aneuploidy, not all aneuploid cells exhibit CIN. One proposed route to aneuploid cells is through an unstable tetraploid intermediate because tetraploidy promotes chromosomal aberrations and tumorigenesis. Tetraploidy or near-tetraploidy (T/NT (81–103 chromosomes karyotypes with or without additional structural abnormalities have been reported in acute leukemia, T-cell and B-cell lymphomas, and solid tumors. In solid tumors it has been shown that tetraploidization can occur in response to loss of telomere protection in the early stages of tumorigenesis in colon cancer, Barrett’s esophagus, and breast and cervical cancers. In hematological malignancies T/NT karyotypes are rare and the role of telomere dysfunction for the induction of tetraploidization is less well characterized. To further our understanding of possible telomere dysfunction as a mechanism for tetrapolydization in hematological cancers we here characterized the chromosomal complement and measured the telomere content by interphase nuclei quantitative fluorescence in situ hybridization (iQFISH in seven hematological cancer patients with T/NT karyotypes, and after cytogenetic remission. The patients were identified after a search in our local cytogenetic registry in the 5-year period between June 2012 and May 2017 among more than 12,000 analyzed adult patients in this period. One advantage of measuring telomere content by iQFISH is that it is a single-cell analysis so that the telomere content can be distinguished between normal karyotype

  2. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    Science.gov (United States)

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  3. The Quiescent Cellular State is Arf/p53-Dependent and Associated with H2AX Downregulation and Genome Stability

    Directory of Open Access Journals (Sweden)

    Mitsuko Masutani

    2012-05-01

    Full Text Available Cancer is a disease associated with genomic instability and mutations. Excluding some tumors with specific chromosomal translocations, most cancers that develop at an advanced age are characterized by either chromosomal or microsatellite instability. However, it is still unclear how genomic instability and mutations are generated during the process of cellular transformation and how the development of genomic instability contributes to cellular transformation. Recent studies of cellular regulation and tetraploidy development have provided insights into the factors triggering cellular transformation and the regulatory mechanisms that protect chromosomes from genomic instability.

  4. Widespread triploidy in Western North American aspen (Populus tremuloides.

    Directory of Open Access Journals (Sweden)

    Karen E Mock

    Full Text Available We document high rates of triploidy in aspen (Populus tremuloides across the western USA (up to 69% of genets, and ask whether the incidence of triploidy across the species range corresponds with latitude, glacial history (as has been documented in other species, climate, or regional variance in clone size. Using a combination of microsatellite genotyping, flow cytometry, and cytology, we demonstrate that triploidy is highest in unglaciated, drought-prone regions of North America, where the largest clone sizes have been reported for this species. While we cannot completely rule out a low incidence of undetected aneuploidy, tetraploidy or duplicated loci, our evidence suggests that these phenomena are unlikely to be significant contributors to our observed patterns. We suggest that the distribution of triploid aspen is due to a positive synergy between triploidy and ecological factors driving clonality. Although triploids are expected to have low fertility, they are hypothesized to be an evolutionary link to sexual tetraploidy. Thus, interactions between clonality and polyploidy may be a broadly important component of geographic speciation patterns in perennial plants. Further, cytotypes are expected to show physiological and structural differences which may influence susceptibility to ecological factors such as drought, and we suggest that cytotype may be a significant and previously overlooked factor in recent patterns of high aspen mortality in the southwestern portion of the species range. Finally, triploidy should be carefully considered as a source of variance in genomic and ecological studies of aspen, particularly in western U.S. landscapes.

  5. Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells.

    Science.gov (United States)

    Shin, Dong-Hyuk; Lee, Jeoung-Eun; Eum, Jin Hee; Chung, Young Gie; Lee, Hoon Taek; Lee, Dong Ryul

    2017-12-01

    Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.

  6. Isolation and characterization of 20 microsatellite loci for laurel species (Laurus, Lauraceae).

    Science.gov (United States)

    Arroyo, Juan M; Rigueiro, Cristina; Rodríguez, Rocío; Hampe, Arndt; Valido, Alfredo; Rodríguez-Sánchez, Francisco; Jordano, Pedro

    2010-05-01

    Microsatellite primers were developed for the evergreen tree Laurus to investigate population genetic structure and patterns of gene flow via animal-dispersed pollen and seeds. Twenty polymorphic nuclear microsatellite markers were developed using CA, GA, AAC, and ATG n-enriched genomic libraries. Given the tetraploidy of the sampled populations, we analyzed our data both as dominant loci and as codominant genotypic data to calculate allele frequencies and genetic diversity. A total of 196 and 222 alleles were found in 37 Mediterranean (L. nobilis) and 26 Macaronesian islands (L. azorica) individuals, respectively. Levels of polymorphism of the reported markers are adequate for studies of diversity and parentage in natural populations of this Tertiary relict tree.

  7. Meiosis in radiation induced triploid and tetraploid plants of pearl millet

    International Nuclear Information System (INIS)

    Singh, R.B.; Singh, B.D.; Singh, R.M.; Laxmi, V.

    1977-01-01

    A triploid and a tetraploid plant were isolated from mutagen treated populations of HB3 (Tif23AxJ104) and HBI (Tif23AxBi13B) hybrid pearl millet, respectively. The triploid plant regularly showed univalents (1 to 9 per cell) and trivalents (1 to 6 per cell) at MI. In the case of the tetraploid, only bivalents were observed which showed loose or tight secondary associations at MI; at AI bivalents separated as units (instead of chromosomes) while at AII chromosomes (instead of chromatids) moved to the opposite poles. Although the chromosome behaviour was quite regular, the plant was highly sterile (98%). It is suggested that gamma-rays had induced mutations in a number of genes, including those affecting pairing, concomitant to the induction of tetraploidy. (auth.)

  8. Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos.

    Science.gov (United States)

    Vitale, Ilio; Senovilla, Laura; Jemaà, Mohamed; Michaud, Mickaël; Galluzzi, Lorenzo; Kepp, Oliver; Nanty, Lisa; Criollo, Alfredo; Rello-Varona, Santiago; Manic, Gwenola; Métivier, Didier; Vivet, Sonia; Tajeddine, Nicolas; Joza, Nicholas; Valent, Alexander; Castedo, Maria; Kroemer, Guido

    2010-04-07

    Tetraploidy can constitute a metastable intermediate between normal diploidy and oncogenic aneuploidy. Here, we show that the absence of p53 is not only permissive for the survival but also for multipolar asymmetric divisions of tetraploid cells, which lead to the generation of aneuploid cells with a near-to-diploid chromosome content. Multipolar mitoses (which reduce the tetraploid genome to a sub-tetraploid state) are more frequent when p53 is downregulated and the product of the Mos oncogene is upregulated. Mos inhibits the coalescence of supernumerary centrosomes that allow for normal bipolar mitoses of tetraploid cells. In the absence of p53, Mos knockdown prevents multipolar mitoses and exerts genome-stabilizing effects. These results elucidate the mechanisms through which asymmetric cell division drives chromosomal instability in tetraploid cells.

  9. Chromosomal Abnormalities Associated with Neural Tube Defects (I: Full Aneuploidy

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-12-01

    Full Text Available Fetuses with neural tube defects (NTDs carry a risk of chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with other structural abnormalities, and family history of chromosome aberrations. This article provides an overview of chromosomal abnormalities associated with NTDs in embryos, fetuses, and newborn patients, and a comprehensive review of numerical chromosomal abnormalities associated with NTDs, such as trisomy 18, trisomy 13, triploidy, trisomy 9, trisomy 2, trisomy 21, trisomy 7, trisomy 8, trisomy 14, trisomy 15, trisomy 16, trisomy 5 mosaicism, trisomy 11 mosaicism, trisomy 20 mosaicism, monosomy X, and tetraploidy. NTDs may be associated with aneuploidy. Perinatal identification of NTDs should alert one to the possibility of chromosomal abnormalities and prompt a thorough cytogenetic investigation and genetic counseling.

  10. The effect of tetraploidy induction on morphology and anatomy characteristics of Cannabis sativa L.

    Directory of Open Access Journals (Sweden)

    Hakimeh Mansouri

    2014-12-01

    Full Text Available The production of tetraploid plant was studied in Cannabis sativa L. with colchicine at three different concentrations (i.e., 0.0, 0.1 and 0.2% for about 24 and 48 h through dropping method. Flow cytometry analyses were used to confirm the ploidy level. Morphologic and anatomic characteristics between tetraploid and diploid control plants were compared. The results showed that 0.2% colchicine for 24 h had the best effect. The percentage of tetraploid plants and the survival rate were lowered by increasing the treatment time. In addition, the leaf index and height of tetraploid plants exhibited a significant decrease compared to the diploid plants. The size of leaves' epidermis stomata were larger in tetraploid plant compared to the diploid ones, in spite of their less density of stomata. However, the amount of total chlorophyll and carotenoids were almost the same in both of tetraploid and diploid plants. In addition, some differences were also observed in the cross section of stem of these plants from the descriptive structure point of view. On the whole, the results introduced usage of the stomata parameters as an effective and convenient method for detecting the tetraploid plants however, the flow cytometry analysis was more effective in assessing the ploidy percentage.

  11. Constitutive Cdk2 activity promotes aneuploidy while altering the spindle assembly and tetraploidy checkpoints

    DEFF Research Database (Denmark)

    Jahn, Stephan C; Corsino, Patrick E; Davis, Bradley J

    2013-01-01

    instability. Expression of these complexes in the MCF10A cell line leads to retinoblastoma protein (Rb) hyperphosphorylation, a subsequent increase in proliferation rate, and increased expression of the spindle assembly checkpoint protein Mad2. This results in a strengthening of the spindle assembly...

  12. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Patricia C Galipeau

    2007-02-01

    Full Text Available Somatic genetic CDKN2A, TP53, and DNA content abnormalities are common in many human cancers and their precursors, including esophageal adenocarcinoma (EA and Barrett's esophagus (BE, conditions for which aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs have been proposed as possible chemopreventive agents; however, little is known about the ability of a biomarker panel to predict progression to cancer nor how NSAID use may modulate progression. We aimed to evaluate somatic genetic abnormalities with NSAIDs as predictors of EA in a prospective cohort study of patients with BE.Esophageal biopsies from 243 patients with BE were evaluated at baseline for TP53 and CDKN2A (p16 alterations, tetraploidy, and aneuploidy using sequencing; loss of heterozygosity (LOH; methylation-specific PCR; and flow cytometry. At 10 y, all abnormalities, except CDKN2A mutation and methylation, contributed to EA risk significantly by univariate analysis, ranging from 17p LOH (relative risk [RR] = 10.6; 95% confidence interval [CI] 5.2-21.3, p < 0.001 to 9p LOH (RR = 2.6; 95% CI 1.1-6.0, p = 0.03. A panel of abnormalities including 17p LOH, DNA content tetraploidy and aneuploidy, and 9p LOH was the best predictor of EA (RR = 38.7; 95% CI 10.8-138.5, p < 0.001. Patients with no baseline abnormality had a 12% 10-y cumulative EA incidence, whereas patients with 17p LOH, DNA content abnormalities, and 9p LOH had at least a 79.1% 10-y EA incidence. In patients with zero, one, two, or three baseline panel abnormalities, there was a significant trend toward EA risk reduction among NSAID users compared to nonusers (p = 0.01. The strongest protective effect was seen in participants with multiple genetic abnormalities, with NSAID nonusers having an observed 10-y EA risk of 79%, compared to 30% for NSAID users (p < 0.001.A combination of 17p LOH, 9p LOH, and DNA content abnormalities provided better EA risk prediction than any single TP53, CDKN2A, or DNA content

  13. The c-Myc target glycoprotein1balpha links cytokinesis failure to oncogenic signal transduction pathways in cultured human cells.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    2010-05-01

    Full Text Available An increase in chromosome number, or polyploidization, is associated with a variety of biological changes including breeding of cereal crops and flowers, terminal differentiation of specialized cells such as megakaryocytes, cellular stress and oncogenic transformation. Yet it remains unclear how cells tolerate the major changes in gene expression, chromatin organization and chromosome segregation that invariably accompany polyploidization. We show here that cancer cells can initiate increases in chromosome number by inhibiting cell division through activation of glycoprotein1b alpha (GpIbalpha, a component of the c-Myc signaling pathway. We are able to recapitulate cytokinesis failure in primary cells by overexpression of GpIbalpha in a p53-deficient background. GpIbalpha was found to localize to the cleavage furrow by microscopy analysis and, when overexpressed, to interfere with assembly of the cellular cortical contraction apparatus and normal division. These results indicate that cytokinesis failure and tetraploidy in cancer cells are directly linked to cellular hyperproliferation via c-Myc induced overexpression of GpIbalpha.

  14. Animal models for studies of chromosome aberration induction in PHA-stimulated lymphocytes

    International Nuclear Information System (INIS)

    Liniecki, J.; Bajerska, A.; Wyszynskaa, K.

    1978-01-01

    To assess the appropriate time for harvesting cultures of rabbit and swine lymphocytes, whole blood of these animals was irradiated with 300 rad γ-rays and microcultures were established using Ham's F-10 medium. Mitotic and tetraploidy indices, dicentrics per cell and the percentage of dicentric or ring-carrying cells, unaccompanied by acentrics, were determined as a function of culture duration. The same procedure was applied to human blood. The percentage of cells in first and second mitosis was determined in rabbit and swine lymphocyte cultures at selected times after stimulation using the FPG technique for differential staining of sister chromatids. The first mitotic waves appear at 30 +- 1, 36 +- 2, and 45 +- 1 h after PHA stimulation for pig, rabbit and man respectively. Correspondingly, in the three species a significant percentage of cells in second mitosis is already present by 36, 44 and 48 to 52 h and is accompanied by a steep reduction in the dicentric yields. These proposed culture times for rabbit and swine lymphocytes are shorter than those at which the majority of relevant studies reported in the literature have been performed. (author)

  15. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation

    International Nuclear Information System (INIS)

    Fernandez, Carlos; Lobo, Maria del Val T.; Gomez-Coronado, Diego; Lasuncion, Miguel A.

    2004-01-01

    As an essential component of mammalian cell membranes, cells require cholesterol for proliferation, which is either obtained from plasma lipoproteins or synthesized intracellularly from acetyl-CoA. In addition to cholesterol, other non-sterol mevalonate derivatives are necessary for DNA synthesis, such as the phosphorylated forms of isopentane, farnesol, geranylgeraniol, and dolichol. The aim of the present study was to elucidate the role of cholesterol in mitosis. For this, human leukemia cells (HL-60) were incubated in a cholesterol-free medium and treated with SKF 104976, which inhibits cholesterol biosynthesis by blocking sterol 14α-demethylase, and the expression of relevant cyclins in the different phases of the cell cycle was analyzed by flow cytometry. Prolonged cholesterol starvation induced the inhibition of cytokinesis and the formation of polyploid cells, which were multinucleated and had mitotic aberrations. Supplementing the medium with cholesterol completely abolished these effects, demonstrating they were specifically due to cholesterol deficiency. This is the first evidence that cholesterol is essential for mitosis completion and that, in the absence of cholesterol, the cells fail to undergo cytokinesis, entered G1 phase at higher DNA ploidy (tetraploidy), and then progressed through S (rereplication) into G2, generating polyploid cells

  16. Cytogenetic studies with laser or X-ray exposures

    International Nuclear Information System (INIS)

    Bozduganov, A.; Genkov, P.

    1975-01-01

    Account is given of studies involving a total of 21 peripheral blood cultures given the following treatments: exposure to 20 0.13-joule pulses from an optic quantum generator (ruby), 9; exposure to 1000 R X-rays, 9; and unexposed controls, 3. Exposures were carried out on three cultures from each experimental series at each of three time intervals, namely 24 h, 48 h, and 72 h after initiation of cultures. On any day, 40 well-spread metaphases were examined. High quality metaphases were photographed and karyotyped in conformity to the Chicago Conference criteria. In the laser experiment, chromosome aberrations were observed in 65% of methaphases analyzed vs. 5.3% in controls. Anomalies encountered included aneuploidy, with hypoploid metaphases predominating, polyploidy (triploidy, tetraploidy, and partial endoreduplication), and structural alterations. The following structural chromosome rearrangements are found: acentric fragments, mostly pairs, occasionally single, including minute chromosomes; dicentric and tricentric chromosomes; interstitial deletions; and chromosome translocations. Most varied and abundant chromosome aberrations were seen in 72-h irradiated cultures. The data presented offer a new opportunity for assessing genetic lesions after laser exposure and may help to determine threshold doses. (author)

  17. Androgen responsiveness of the new human endometrial cancer cell line MFE-296.

    Science.gov (United States)

    Hackenberg, R; Beck, S; Filmer, A; Hushmand Nia, A; Kunzmann, R; Koch, M; Slater, E P; Schulz, K D

    1994-04-01

    MFE-296 endometrial cancer cells express androgen receptors in vitro. These cells, which are tumorigenic in nude mice, are derived from a moderately differentiated human endometrial adenocarcinoma. They express vimentin and the cytokeratins 7, 8, 18, and 19. Karyotyping revealed near-tetraploidy for most of the cells. No marker chromosomes were observed. DNA analyses confirmed the genetic identity of the cell line and the patient from whom the cell line was derived. Proliferation of MFE-296 cells was inhibited by the progestin R5020 and the androgen dihydrotestosterone (DHT). The inhibition of proliferation by DHT was antagonized by the antiandrogen Casodex, demonstrating the involvement of the androgen receptor. Androgen binding was determined at 22,000 binding sites per cell using a whole-cell assay (KD = 0.05 nM) and 30 fmol/mg protein with the dextran charcoal method; 7 fmol/mg protein of progesterone receptors were found, whereas estrogen receptors were below 5 fmol/mg protein. The androgen receptor was functionally intact, as demonstrated by transfection experiments with a reporter-gene construct, containing an androgen-responsive element. In MFE-296 cells the content of the androgen receptor was up-regulated by its own ligand.

  18. [Pathology of amniogenesis in the early prenatal period of human development].

    Science.gov (United States)

    Kulazhenko, V P; Bragina, Z N

    1989-08-01

    Morphological and, in a number of cases, cytogenetical investigation has been performed in 420 intact embryonal sacs and in embryos 7-8-week-old, obtained at spontaneous abortions (272) and at tubal pregnancy (148). Among these cases 202 (48.1%) intact empty embryonal sacs, 75 (17.9%) embryos with panorganodysplasia, 25 (6%) embryos with isolated developmental defects and 118 (28%) phenotypically normal embryos have been revealed. Pathology of amniogenesis such as aplasia or hypoplasia of the amniotic cavity is noted in 136 (32.4%) cases. Among 75 embryos with panorganodysplasia anomalies such as hypoplasia of the amniotic cavity in combination with a partial extra-amniotic++ position of the embryos in exocelom (10.7%), aplasia (5.3%) or hypoplasia (17.3%) amniotic peduncle is present in 43 (57.3%) observations. Out of 40 such cases at spontaneous abortions, cytogenetically investigated, in 27 (67.5%) chromosomal disorders (tetraploidy, triploidy, autosomal trisomy and monosomy) are revealed. Aplasia and hypoplasia of the amniotic cavity are considered as pathology of histogenesis at the tissue stage of the early human ontogenesis, that most evidently occurs as a result of asplasia, destruction or anomaly of embryoblast during the first phase of gastrulation on the 7th-11th day of the intrauterine development.

  19. Aneuploidy in immortalized human mesenchymal stem cells with non-random loss of chromosome 13 in culture.

    Science.gov (United States)

    Takeuchi, Masao; Takeuchi, Kikuko; Ozawa, Yutaka; Kohara, Akihiro; Mizusawa, Hiroshi

    2009-01-01

    Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.

  20. New insights into the karyotype evolution of the free-living flatworm Macrostomum lignano (Platyhelminthes, Turbellaria).

    Science.gov (United States)

    Zadesenets, Kira S; Schärer, Lukas; Rubtsov, Nikolay B

    2017-07-20

    The free-living flatworm Macrostomum lignano is a model organism for evolutionary and developmental biology studies. Recently, an unusual karyotypic diversity was revealed in this species. Specifically, worms are either 'normal' 2n = 8, or they are aneuploid with one or two additional large chromosome(s) (i.e. 2n = 9 or 2n = 10, respectively). Aneuploid worms did not show visible behavioral or morphological abnormalities and were successful in reproduction. In this study, we generated microdissected DNA probes from chromosome 1 (further called MLI1), chromosome 2 (MLI2), and a pair of similar-sized smaller chromosomes (MLI3, MLI4). FISH using these probes revealed that MLI1 consists of contiguous regions homologous to MLI2-MLI4, suggesting that MLI1 arose due to the whole genome duplication and subsequent fusion of one full chromosome set into one large metacentric chromosome. Therefore, one presumably full haploid genome was packed into MLI1, leading to hidden tetraploidy in the M. lignano genome. The study of Macrostomum sp. 8 - a sibling species of M. lignano - revealed that it usually has one additional pair of large chromosomes (2n = 10) showing a high homology to MLI1, thus suggesting hidden hexaploidy in its genome. Possible evolutionary scenarios for the emergence of the M. lignano and Macrostomum sp. 8 genomes are discussed.

  1. Massive immunoglobulin treatment in women with four or more recurrent spontaneous primary abortions of unexplained aetiology.

    Science.gov (United States)

    Yamada, H; Kishida, T; Kobayashi, N; Kato, E H; Hoshi, N; Fujimoto, S

    1998-09-01

    The aim of this trial was to investigate the efficacy of massive i.v. immunoglobulin (MIVIg) treatment for women with a history of recurrent spontaneous abortion (RSA) due to unexplained aetiology. The study included nine women (11 pregnancies) with a history of four or more consecutive RSA with unexplained aetiology and no live births. The mean number of fetal losses was 4.5 (range 4-6 abortions). Over the course of 5 days, immunoglobulin (20 g/day) was infused i.v. at gestational weeks 4-7. No additional infusions were carried out. Two pregnancies out of the 11 conceptions resulted in missed abortions at gestational weeks 6 and 7 respectively. Mosaicism (46XX/ 48XX, +16, +20), and tetraploidy (92XXXX) were found by chromosome analyses of the two aborti. Eight out of the other nine pregnancies resulted in full term deliveries of healthy neonates. One pregnancy developed intrauterine growth retardation and fetal distress, resulting in a premature delivery (30 gestational weeks) by Caesarean section. Thus, excluding the two abortions with chromosome aberrations, the MIVIg treatment was effective in all nine pregnancies of RSA women with unexplained aetiology. This MIVIg treatment (100 g administered in early gestation) may be a beneficial alternative to previous IVIg infusion methods, and should be further evaluated in a multicentric, placebo-controlled study, employing a larger number of homogeneous patients who fall into a high risk category of first trimester abortions.

  2. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production.

    Science.gov (United States)

    Allario, Thierry; Brumos, Javier; Colmenero-Flores, Jose M; Iglesias, Domingo J; Pina, Jose A; Navarro, Luis; Talon, Manuel; Ollitrault, Patrick; Morillon, Raphaël

    2013-04-01

    Whole-genome duplication, or polyploidy, is common in many plant species and often leads to better adaptation to adverse environmental condition. However, little is known about the physiological and molecular determinants underlying adaptation. We examined the drought tolerance in diploid (2x) and autotetraploid (4x) clones of Rangpur lime (Citrus limonia) rootstocks grafted with 2x Valencia Delta sweet orange (Citrus sinensis) scions, named V/2xRL and V/4xRL, respectively. Physiological experiments to study root-shoot communication associated with gene expression studies in roots and leaves were performed. V/4xRL was much more tolerant to water deficit than V/2xRL. Gene expression analysis in leaves and roots showed that more genes related to the response to water stress were differentially expressed in V/2xRL than in V/4xRL. Prior to the stress, when comparing V/4xRL to V/2xRL, V/4xRL leaves had lower stomatal conductance and greater abscisic acid (ABA) content. In roots, ABA content was higher in V/4xRL and was associated to a greater expression of drought responsive genes, including CsNCED1, a pivotal regulatory gene of ABA biosynthesis. We conclude that tetraploidy modifies the expression of genes in Rangpur lime citrus roots to regulate long-distance ABA signalling and adaptation to stress. © 2012 Blackwell Publishing Ltd.

  3. Investigation of confined placental mosaicism (CPM) at multiple sites in post-delivery placentas derived through intracytoplasmic sperm injection (ICSI).

    Science.gov (United States)

    Minor, Agata; Harmer, Karynn; Peters, Nicole; Yuen, Basil Ho; Ma, Sai

    2006-01-01

    Although earlier studies on pregnancies derived through intracytoplasmic sperm injection (ICSI) reported increased non-mosaic aneuploidy among ICSI children, undetected mosaicism, such as confined placental mosaicism (CPM) has not been evaluated. We investigated the incidence of CPM in post-delivery placentas derived from ICSI, evaluated whether CPM was increased and whether it was a contributing factor to negative pregnancy outcome. [Fifty-one post-delivery placentas were collected from patients who underwent ICSI with a normal or negative pregnancy outcome]. Trophoblast and chorionic stroma from three sites were analyzed by comparative genomic hybridization (CGH) and flow cytometry. Detected abnormalities were confirmed by fluorescence in situ hybridization (FISH). The incidence of CPM in the ICSI population was compared to the general population from published data. We detected three cases of CPM in our study. One abnormality was found by CGH analysis; partial trisomy 7q and a partial monosomy Xp limited to the trophoblast at two sites. The abnormality was associated with a child affected by spina bifida. Two cases of mosaic tetraploidy were observed by flow cytometry in pregnancies with a normal outcome. All three abnormalities were confirmed by FISH analysis. The incidence of CPM in the ICSI study population was 5.88% (3/51), which was not statistically different from published reports in the general population (5.88% (42/714), Chi square, P > 0.05). The post-ICSI population was not at risk for CPM in this study. (c) 2005 Wiley-Liss, Inc.

  4. Roles of Rad51 protein in homologous recombination in mammalian cells: relation with repair, replication and cell cycle

    International Nuclear Information System (INIS)

    Lambert, S.

    2001-01-01

    Homologous recombination (HR) is a fundamental process, allowing a faithful repair. In mammalian, MmRAD51, which is the homologue of Saccharomyces cerevisiae ScRAD51 key protein for HR, is an essential gene. This work is based on the characterisation of viable hyper and hypo-recombinant cell lines specifically affected in the Rad51 pathway. By expressing wild type and dominant negative forms of MmRad51, we demonstrated that Rad51 pathway participates to the repair by HR to induced DNA damages. However, inhibition of the Rad 51 pathway does not affect cell viability, spontaneously or after irradiation, whereas, radiation induced HR is inhibited. In the presence of DNA damages during late S and G2/M phase, inhibition of Rad51 pathway induced chromosomal aberrations, leading to a transient arrest in mitosis. This arrest is associated with an increased of cell death. However, a fraction of cells can escape from this transient arrest by forming tetraploid cells, associated with an absence of chromalid separation. Thus, in response to impaired Rad51 pathway, mitotic checkpoints seems to play an essential role. In line with this, we showed that the essential function of Rad51 is p53-dependent, which is in agreement with the role of p53 in tetraploidy inhibition. Our results suggest that the Rad51 protein could participate to the control of mitotic checkpoints and thus to the maintenance of genetic stability. This function could involve other Rad51 partners such as the tumour suppressors BRCA1, BRCA2 and p53. (author) [fr

  5. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy

    Science.gov (United States)

    Gopalan, Anuradha; Leversha, Margaret A.; Satagopan, Jaya M.; Zhou, Qin; Al-Ahmadie, Hikmat A.; Fine, Samson W.; Eastham, James A.; Scardino, Peter T.; Scher, Howard I.; Tickoo, Satish K.; Reuter, Victor E.; Gerald, William L.

    2009-01-01

    A significant number of prostate cancers have been shown to have recurrent chromosomal rearrangements resulting in the fusion of the androgen regulated TMPRSS2 promoter to a member of the ETS transcription factor family, most commonly ERG. This results in ERG overexpression which may have a direct causal role in prostate tumorigenesis or progression. However, the clinical significance of the rearrangement is unclear and, in particular, relationship to outcome has been inconsistent in recent reports. We analyzed TMPRSS2-ERG gene rearrangement status by fluorescence in situ hybridization (FISH) in 521 cases of clinically localized surgically treated prostate cancer with 95 months median follow-up and also in 40 unmatched metastases. 42% of primary tumors and 40% of metastases had rearrangements. 11% had copy number increase (CNI) of the TMPRRS2-ERG region. Rearrangement alone was associated with lower grade, but not with stage, biochemical recurrence, metastases or death. CNI with and without rearrangement was associated with high grade and advanced stage. Further, a subgroup of cancers with CNI and rearrangement by deletion, with two or more copies of the deleted locus, tended to be more clinically aggressive. DNA index assessment revealed that the majority of tumors with CNI of TMPRSS2-ERG had generalized aneuploidy/ tetraploidy in contrast to tumors without TMPRSS2-ERG CNI, which were predominantly diploid. We therefore conclude that translocation of TMPRSS2-ERG is not associated with outcome and the aggressive clinical features associated with CNI of chromosome 21 reflect generalized aneuploidy and are not due to CNI specifically of rearranged TMPRSS2-ERG. PMID:19190343

  6. Karyotype asymmetry in Cynodon Rich. (Poaceae) accessions.

    Science.gov (United States)

    Chiavegatto, R B; Paula, C M P; Souza Sobrinho, F; Benites, F R G; Techio, V H

    2016-12-02

    Cynodon is a genus of plants with forage potential that has attracted the interest of breeders. These species have high morphological variability in a large number of varieties and cytotypes, hampering identification. This study aimed to determine the karyotype asymmetry index among accessions of Cynodon to discriminate between them. Karyotype symmetry was based on three estimates, which were compared. The basic number for the genus is x = 9. The results of the chromosome count and DNA quantification, respectively, were as follows: two diploid accessions (2n = 2x = 18 and 1.08 ± 0.094 to 1.17 ± 0.036 pg DNA and ± standard deviation), one triploid accession (2n = 3x = 27 and 1.63 ± 0.017 pg DNA), four tetraploid accessions (2n = 4x = 36 and 1.88 ± 0.069 to 2.10 ± 0.07 pg DNA), and one pentaploid accession (2n = 5x = 45 and 2.55 ± 0.098 pg DNA). C. incompletus var. hirsutus had the longest total length of the haploid lot (29.05 µm), with chromosomes that ranged from 1.7 to 6.2 µm in length. On the basis of the karyotype asymmetry indices, the accessions were divided into two groups: 1) C. dactylon var. dactylon, C. transvaalensis, C. dactylon var. polevansii, three accessions of Cynodon sp, and C. nlemfuensis; and 2) C. incompletus var. hirsutus. This is the first description of tetraploidy in C. transvaalensis. The karyotypic data facilitated a determination of the degree of proximity between the accessions.

  7. Análise citogenética em material de abortamento espontâneo Cytogenetic analysis of material from spontaneous abortion

    Directory of Open Access Journals (Sweden)

    Daniel Lorber Rolnik

    2010-01-01

    Full Text Available OBJETIVO: Descrever as anormalidades cromossômicas em material de abortamento espontâneo. MÉTODOS: Realizou-se compilação retrospectiva da análise de cariótipo em lâmina corada com Banda G por microscopia óptica e em material de 428 produtos de abortamento encaminhados para estudo. RESULTADOS: Foram observados 145 resultados normais (33,9% e 237 resultados anormais (55,4%. Em 46 amostras não houve crescimento celular (10,7%. As anormalidades numéricas foram as mais frequentes, destacando-se a trissomia do 16 (41 casos, a triplodia (27 casos, a monossomia do X (26 casos, a tetraploidia (13 casos e a trissomia do 15 (13 casos. CONCLUSÃO: As alterações citogenéticas representam importante causa de perdas gestacionais e sua detecção auxilia o aconselhamento genético do casal. A trissomia do cromossomo 16 é a alteração mais frequentemente encontrada.OBJECTIVE: To describe chromosomal abnormalities in spontaneous abortion material. METHODS: A retrospective compilation of karyotype analysis of slides stained with Band G was carried out by optical microscopy with materials of 428 abortion products referred for study. RESULTS: There were 145 normal results (33.9% and 237 abnormal results (55.4%. In 46 samples there was no cell growth (10.7%. Numerical abnormalities were the most frequent, especially trisomy 16 (41 cases, triplodia (27 cases, monosomy X (26 cases, tetraploidy (13 cases and trisomy 15 (13 cases. CONCLUSION: Cytogenetic alterations are an important cause of pregnancy loss and their detection helps the genetic counseling to the couple. Trisomy 16 is the most often found change.

  8. The Effects of Low LET Radiation and Aging on DNA Content in Rats Hepatocytes

    International Nuclear Information System (INIS)

    Ekhtiar, A. M.

    2004-01-01

    It has been shown that the polyploidization levels in rat's hepatocytes increased with aging. The high LET ionizing radiation also induce cell polyploidization by two different means: cells and nuclei fusion, and mitosis restriction after DNA replication. The purpose of the present study was to determine the kinetic of rat's hepatocytes polyploidization with aging, and the late effects of low doses of gamma irradiation on polyploidization. Two groups of rats were used. Each group composed of 150 four weeks old animals. The first group was served as a control, and the second was irradiated with 4 Gy of gamma irradiation at the age of one month. Of each group, 7-8 animals were monthly scarified (for two years), and their liver tissues were used to obtain cell suspensions which were further fixed in gradual series concentrations of ethanol. After staining with Propidum Iodide PI (10 6 cells per ml of PI used at 10 - 5 M final concentration), the cells were analyzed on a FACS Vantage Flow Cytometer (Becton Dickinson). With the control group, the results showed: 1) A decrease of cell fraction that contained normal diploid until steady level. 2) Biphasic changes of fraction tetraploidy cells (increase until age of 4 month followed by decrease). 3) The fraction of octaploidy cells appeared at age of 3-4 month and increased continuously by the aging. In regard to life-span reductions of irradiated animals, the DNA contents were similar to those in control groups in addition to some variation due to a programmed cell death (Apoptosis) induced by irradiation and regenerations. These variations persisted till the age of 7 month. It was concluded that the level of DNA content might be used to determine the rat's age, and the low LET radiation had no effect on the phenomenon of polyploidization. (author)

  9. Poliploidização em berinjela (Solanum melongena L.: II - Observações em plantas resultantes de tratamentos com colquicina Polyploidization in egg-plant (Solanum melongena L.: II - Observation in plants resulting from colchicine treatments

    Directory of Open Access Journals (Sweden)

    Dixier M. Medina

    1972-01-01

    Full Text Available As observações de diversos caracteres morfológicos em plantas de berinjela (Solatium melongena L. provenientes de tratamentos com colquicina levaram à separação de razoável número de possíveis poliplóides. O número de cromossomos determinado em células-mães de pólen revelou a existência de plantas tetraplóides e plantas quiméricas, além das normais diplóides. Numa amostra representando os diferentes tratamentos, encontrou-se uma associação quase perfeita entre a natureza tetraplóide ou quimérica da planta e a irregularidade do tamanho do pólen; tal associação não foi encontrada quando se analisou a quantidade de pólen vazio. Os frutos tetraplóides obtidos produziram sementes maiores e em número bem menor que os diplóides de pesos equivalentes.The observations on several morphological characteristics made on plants derived from treatments of seed with colchicine in the egg-plant (Solatium melongena L. led to separation of a reasonable number of possible polyploids. Chromosome number determined in P.M.C. indicated the existence of tetraploid plants, chimeric plants at level 24-48 and at level 48-96 beside the diploid normal ones. In a certain number of plants representing the different treatments, it was found an almost perfect association between tetraploidy and chimeric condition of the plants at one side and irregular size of the pollen at the other side; such an association was not found when the amount of empty pollen was analysed. The tetraploid fruits produced low number of seeds which were not uniform in size but were larger and in general heavier than the diploid ones.

  10. Flow cytometric characterization of phenotype, DNA indices and p53 gene expression in 55 cases of acute leukemia.

    Science.gov (United States)

    Powari, Manish; Varma, Neelam; Varma, Subhash; Marwaha, Ram Kumar; Sandhu, Harpreet; Ganguly, Nirmal Kumar

    2002-06-01

    To characterize the phenotype of acute leukemia cases using flow cytometry, to detect mixed lineage cases and to use DNA index determination, including S-phase fraction (SPF) and p53 detection, to find if there was any correlation of SPF and p53 expression with outcome. Fifty-five cases of acute leukemia were enrolled in this study. A complete hemogram and routine bone marrow examination, including cytochemistry, was done. Mycloperoxidase-negative cases were evaluated on a flow cytometer using monoclonal antibodies. DNA indices were determined by flow cytometry in all cases, and p53 was detected immunohistochemically using the alkaline phosphatase/antialkaline phosphatase technique. Acute myeloblastic leukemia (AML) was diagnosed in 32 cases; acute lymphoblastic leukemia (ALL) was diagnosed in 18 (14 B lineage and 4 T line age). Four cases showed mixed lineage leukemia, and undifferentiated acute leukemia was diagnosed in one case. The mean/range of SPF for these groups were 3.76/0.33-6.91, 6.25/0.15-21.4, 2.89/0.35-10.64, 2.60/0.72-6.94 and 7.34, respectively. Aneuploidy was detected in two cases of B-lineage ALL and tetraploidy in a case of AML-M7, while all others were diploid p53. Was detected in 6 of 55 cases (10.90%). Follow-up was available for 24 patients. Five patients relapsed, and four had B-cell type ALL and were diploid and expressed no p53 gene. SPF% did not show any correlation with outcome. These data suggest that within acute leukemia subtypes, there is a wide variation in SPF. SPF does not seem to correlate with outcome. Immunophenotyping is essential to determine the lineage in myeloperoxidase-negative cases. It is perhaps the only way to diagnose mixed lineage leukemia and aberrant expression of markers presently. The p53 gene was detected less frequently. However, more studies are required from different centers with longer follow-up to evaluate prognostic significance.

  11. A monoclonal antibody distinguishes between two IgM heavy chain isotypes in Atlantic salmon and brown trout: protein characterization, 3D modeling and epitope mapping.

    Science.gov (United States)

    Kamil, Atif; Falk, Knut; Sharma, Animesh; Raae, Arnt; Berven, Frode; Koppang, Erling Olaf; Hordvik, Ivar

    2011-09-01

    Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) possess two distinct subpopulations of IgM which can be separated by anion exchange chromatography. Accordingly, there are two isotypic μ genes in these species, related to ancestral tetraploidy. In the present work it was verified by mass spectrometry that IgM of peak 1 (subpopulation 1) have heavy chains previously designated as μB type whereas IgM of peak 2 (subpopulation 2) have heavy chains of μA type. Two adjacent cysteine residues are present near the C-terminal part of μB, in contrast to one cysteine residue in μA. Salmon IgM of both peak 1 and peak 2 contain light chains of the two most common isotypes: IgL1 and IgL3. In contrast to salmon and brown trout, IgM of rainbow trout (Oncorhynchus mykiss) is eluted in a single peak when subjected to anion exchange chromatography. Surprisingly, a monoclonal antibody MAb4C10 against rainbow trout IgM, reacted with μA in salmon, whereas in brown trout it reacted with μB. It is plausible to assume that DNA has been exchanged between the paralogous A and B loci during evolution while maintaining the two sub-variants, with and without the extra cysteine. MAb4C10 was conjugated to magnetic beads and used to separate cells, demonstrating that μ transcripts residing from captured cells were primarily of A type in salmon and B type in brown trout. An analysis of amino acid substitutions in μA and μB of salmon and brown trout indicated that the third constant domain is essential for MAb4C10 binding. This was supported by 3D modeling and was finally verified by studies of MAb4C10 reactivity with a series of recombinant μ3 constructs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Identification of the relationship between Chinese Adiantum reniforme var. sinense and Canary Adiantum reniforme.

    Science.gov (United States)

    Wang, Ai-Hua; Sun, Ye; Schneider, Harald; Zhai, Jun-Wen; Liu, Dong-Ming; Zhou, Jin-Song; Xing, Fu-Wu; Chen, Hong-Feng; Wang, Fa-Guo

    2015-02-05

    There are different opinions about the relationship of two disjunctively distributed varieties Adiantum reniforme L. var. sinense Y.X.Lin and Adiantum reniforme L. Adiantum reniforme var. sinense is an endangered fern only distributed in a narrowed region of Chongqing city in China, while Adiantum reniforme var. reniforme just distributed in Canary Islands and Madeira off the north-western African coast. To verify the relationship of these two taxa, relative phylogenetic analyses, karyotype analyses, microscopic spore observations and morphological studies were performed in this study. Besides, divergence time between A. reniforme var. sinense and A. reniforme var. reniforme was estimated using GTR model according to a phylogeny tree constructed with the three cpDNA markers atpA, atpB, and rbcL. Phylogenetic results and divergence time analyses--all individuals of A. reniforme var. sinense from 4 different populations (representing all biogeographic distributions) were clustered into one clade and all individuals of A. reniforme var. reniforme from 7 different populations (all biogeographic distributions are included) were clustered into another clade. The divergence between A. reniforme var. reniforme and A. reniforme var. sinense was estimated to be 4.94 (2.26-8.66) Myr. Based on karyotype analyses, A. reniforme var. reniforme was deduced to be hexaploidy with 2n = 180, X = 30, while A. reniforme var. sinense was known as tetraploidy. Microscopic spore observations suggested that surface ornamentation of A. reniforme var. reniforme is psilate, but that of A. reniforme var. sinense is rugate. Leaf blades of A. reniforme var. sinense are membranous and reniform and with several obvious concentric rings, and leaves of A. reniforme var. reniforme are pachyphyllous and coriaceous and are much rounder and similar to palm. Adiantum reniforme var. sinense is an independent species rather than the variety of Adiantum reniforme var. reniforme. As a result, we

  13. The effect of sub-lethal doses on the ploidy level in rats hepatocytes with aging

    International Nuclear Information System (INIS)

    Ekhtiar, A. M.

    2004-11-01

    It has been shown that the polyploidization levels in rat's hepatocytes increased with aging. The high LET ionizing radiation also induce cell polyploidization by two different means: cells and nuclei fusion, and mitosis restriction after DNA replication. The purpose of the present study was to determine the kinetic of rat's hepatocytes polyploidization with ageing, and the late effects of low doses of gamma irradiation on polyploidization. To this end, three groups of rats were used. Each group composed of 175 four weeks old animals. The first was served as a control, the second and the third groups were irradiated with 4 and 2 Gy respectively, of gamma irradiation at the age of one month. Of each group, 7-8 animals were monthly scarified (for two years), and their liver tissues were used to obtain cell suspensions which were further fixed in gradual series concentrations of ethanol. After staining with Propidum Iodide 'PI' (10 6 cells per ml of PI used at 10 - 5 M final concentration), the cells were analyzed on a FACS Vantage Flow Cytometer (Becton Dickinson). In the control, the results showed: 1) A decrease of cell fraction that contained normal diploid until steady level. 2) Biphasic changes of fraction tetraploidy cells (increase until age of 4 month followed by decrease). 3) The fraction of octaploidy cells appeared at age of 3-4 month and increased continuously with the aging. In accompanied to life-span reductions of 4 Gy irradiated animals, the DNA contents were similar to those in control groups in addition to some quantities variation due to a programmed cell death (Apoptosis) induced by irradiation and regenerations. These variations persisted till the age of 7 month, in additional to reduce the spin-life of irradiated animals. The irradiation with 2 Gy induced some quantities variation in comparison with nonirradiated group, appeared in the reduction of rate conversion from one ploidy class to another, and in shift with 2-3 months of the second pike

  14. [Investigations on the inheritance of the charactergrandiflora inPetunia×hybrida Vilm : II. The use of tetraploidgrandiflora lines for the breeding of newsuperbissima forms, especially those with yellow flowers].

    Science.gov (United States)

    Reimann-Philipp, R

    1968-01-01

    transferring some desired characters, as for example the linkage groupgl or the yellow flower color to the latter, determine the value of the newly produced tetraploid material. Since some of the typical characters ofSuperbissima petunias, particularly those concerning flower shape, do not occur in the new tetraploid material the latter is of no direct ornamental interest, except for the yellow-flowered lines. 6. The alleleG which produces large flowers both insuperbissima and in the new tetraploid material brightens, in addition, the leaf color in the new tetraploid material. Since the degree of brightness increases with the number ofG alleles in the genotype, it is rather easy to identify the different tetraploid heterozygotes in the new material. 7. Yellow-flowered lines were also produced as starting material for the polyploidization of the genotypeGL/gl. Tetraploid yellow-flowered lines were produced in order to examine whether the tint of the yellow flower color, unsatisfactory in large-flowered diploid varieties, could be intensified by tetraploidy. Because the yellow flower color did occur insuperbissima, the newly produced tetraploid yellow-flowered material is important also for transmission of this character to the latter. The experiments showed that the intensity of yellow flower color in the new tetraploid yellow-flowered and very large-flowered material still does not reach that of modern diploid small-floweredmultiflora petunias. However, for the production of both practically pure, large, and yellow-flowered tetraploid varieties and of tetraploid large and yellow-flowered F1-hybrids the new material offers interesting possibilities, which are discussed in detail.