WorldWideScience

Sample records for tetramethylpyrazine inhibits activities

  1. Tetramethylpyrazine reverses intracerebroventricular streptozotocin-induced memory deficits by inhibiting GSK-3β.

    Science.gov (United States)

    Lu, Fen; Li, Xu; Li, Wei; Wei, Ke; Yao, Yong; Zhang, Qianlin; Liang, Xinliang; Zhang, Jiewen

    2017-08-01

    Brain dysfunction, especially cognitive impairment, is one of the main complications in Alzheimer's disease (AD), which threatens the health of 46.8 million people worldwide. At present, the pathogenesis of cognitive dysfunction is only partially understood, and effective therapies for memory loss in AD remain elusive. Tetramethylpyrazine (TMP) is one of the major bioactive compounds purified from Chuanxiong, a Chinese herb used for the treatment of neurovascular and cardiovascular diseases. The neuroprotective properties of TMP are evident in some neurodegenerative diseases, including Parkinson's disease. However, whether TMP plays a neuroprotective role in AD is still unknown. Here, we report that 2-week treatment with TMP rescued both short-term and long-term fear memory impairment induced by intracerebroventricular injection of streptozotocin in a well-known AD rat model. Administration of TMP also restored spatial learning and memory retention abilities in streptozotocin-injected rats. Furthermore, TMP inhibited the activity of GSK-3β, an important kinase that mediates hippocampal synaptic and memory disorders in diabetes mellitus. Finally, we found that TMP treatment restored the function of cholinergic neurons. Our data suggest that dietary uptake of TMP can provide protection against memory loss in AD, and the inhibition of GSK-3β may play an important role in this protective effect. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Evaluating the feasibility of fermentation starter inoculated with Bacillus amyloliquefaciens for improving acetoin and tetramethylpyrazine in Baoning bran vinegar.

    Science.gov (United States)

    Zhang, Liqiang; Huang, Jun; Zhou, Rongqing; Wu, Chongde

    2017-08-16

    Fermentation starters (Daqu) used in present study included traditional herb Daqu (C Daqu), modified Daqu without herbs (M Daqu) and S Daqu fermented by inoculating acetoin and tetramethylpyrazine high-producing bacterium Bacillus amyloliquefaciens into M Daqu. To evaluate the feasibility of S Daqu combined with M Daqu applied for improving contents of acetoin and tetramethylpyrazine in Baoning bran vinegar without remarkably changing the original microbial community and the other volatiles contents compared with C Daqu, vinegar Pei C, M, M1, M2 and S were correspondingly prepared in lab scale using C Daqu, M Daqu, M1 Daqu (S Daqu: M Daqu=1:9, w/w), M2 Daqu (S Daqu: M Daqu=5:5) and S Daqu. PCR-DGGE suggested that Bacillus, Lactobacillus, Oceanobacillus, Acetobacter, Pichia, Geotrichum and Trichoderma were dominant microbes. Microbial community of M were similar with M1, while that of the others were similar. Differences in physicochemical properties among samples may be ascribed to different enzymes activities of Daqu and bioactivities of microbial metabolism during fermentation. Moreover, total contents of organic acids in M, M1, M2 and S increased by 33.10%, 25.77%, 4.32% and 7.74% relative to C, respectively. Volatiles and PLS-DA analysis suggested that volatile profiles of M were similar with M1, that of M2 were similar with C, while that of S were significantly different with the others. Both M2 Daqu and S Daqu facilitated the formation of acetoin and tetramethylpyrazine. However, M2 Daqu was more efficient for enhancing acetoin and tetramethylpyrazine contents by 191.84% and 123.17% respectively, without significantly changing the other volatiles contents. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Assay of Tetramethylpyrazine in Szechwan Lovage Rhizome and Cnidium Rhizome by HPLC-DAD-MS].

    Science.gov (United States)

    Hong, Yuan-lin; Jin, Yu-qing; Yao, Yi-xin; Lin, Mao-yi; Wei, Bo-ping; Jiang, Wei-dong; Lu, Guang-hua

    2015-01-01

    To quantity the amount of tetramethylpyrazine in Szechwan Lovage Rhizome (Chuanxiong, the rhizome of Ligusticum chuanxiong Hort., CX) and Cnidium Rhizome(Japanese Chuanxiong, the rhizome of Cnidium officinale Makino, JCX) for quality assessment. An HPLC-DAD-MS technique was employed to detect tetramethylpyrazine in 27 CX and 10 JCX samples. Tetramethylpyrazine was separated on a Waters Symmetry C,, column (250 mm x 4. 6 mm, 5 µm). The mobile phase was methanol-acetonitrile-water(27: 1: 72) at a flow rate of 1. 0 mL/min. The column temperature was 35 °C. DAD detection wavelength was 280 nm, while electrospray ionization detector was set at positive mode to collect MS spectrum. In the total of 37 herb samples, 11 samples were found to contain tetramethylpyrazine with the mean amount of 2. 19 µg/g(n = 11). 6 of 27 CX samples and 5 of 10 JCX sample were found the existence of tetramethylpyrazine with the amount of 0. 60 - 11. 75 µg and 0. 61 - 3. 05 µg/g,respectively. The correlation was not found between tetramethylpyrazine and the cultivation area, morphological character, processing or storage method for CX and JCX samples. It was possible that tetramethylpyrazine resulted from the microbes in soil. The developed method is accurate to quantify tetramethylpyrazine in CX and JCX herbs. Both the two herbs indeed contain tetramethylpyrazine, but it is not suitable to be a chemical marker to assess the quality of CX and JCX owing to low content.

  4. Protective action of tetramethylpyrazine on the medulla oblongata in rats with chronic hypoxia.

    Science.gov (United States)

    Ding, Yan; Hou, Xuefei; Chen, Li; Li, Hui; Tang, Yuhong; Zhou, Hua; Zhao, Shu; Zheng, Yu

    2013-01-01

    Tetramethylpyrazine (TMP), one of the active ingredients of the Chinese herb Lingusticum Wallichii Frantchat (Chuan Xiong), plays an important role in neuroprotection. However, the protective effect of TMP on the medulla oblongata, the most important region of the brain for cardiovascular and respiratory control, during chronic hypoxia remains unclear. In this study, we examined the neuroprotective effect of TMP on the medulla oblongata after chronic hypoxic injury in rats. Male Sprague-Dawley rats were randomly divided into four groups: control group, TMP group, chronic hypoxia group, and chronic hypoxia+TMP group. Rats were exposed to hypoxia (10% (v/v) O₂) or normoxia for 6 h daily for 14 days. TMP (80 mg/kg) or vehicle (saline) was injected intraperitoneally 30 min before experimentation. Loss of neurons in the pre-Bötzinger complex, the nucleus ambiguus, the nucleus tractus solitarius, the hypoglossal nucleus and the facial nucleus were evaluated by Nissl staining. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were measured, and apoptosis was monitored using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. The level of Bcl-2 mRNA and Bax mRNA was quantitatively measured by RT-PCR analysis. TMP protected Nissl bodies of neurons from injury in all nuclei observed, and reduced the loss of neurons in the nucleus ambiguus, the nucleus tractus solitarius, and the hypoglossal nucleus in rats subjected to chronic hypoxia. TMP upregulated SOD activity and inhibited the increase in MDA content in the medulla oblongata of hypoxic rats. In addition, TMP decreased the rate of apoptosis index (the percentage of apoptotic cells against the total number of cells) in all medullary structures examined, excepting the nucleus ambiguus and inhibited the decrease in Bcl-2 mRNA levels in the medulla oblongata following hypoxia. Our findings indicate that TMP may protect the medullary structures that are involved in

  5. Anti-inflammatory effect of combined tetramethylpyrazine, resveratrol and curcumin in vivo.

    Science.gov (United States)

    Chen, Long; Liu, Tianjun; Wang, Qiangsong; Liu, Juan

    2017-04-27

    Resveratrol and curcumin, as natural flavones products, have good therapeutic effect in acute and chronic inflammation; on the other hand, tetramethylpyrazine (TMP) has angiogenesis and vessel protection effect as well as anti-inflammatory function. In this paper, the anti-inflammatory effect of the tetramethylpyrazine, resveratrol and curcumin (TRC) combination in acute and chronic inflammation was reported in vivo. The dose of the combined three natural products was optimized based on the acute paw swelling mouse model with a Uniform Design methodology. The therapeutic effect of TRC combination on chronic inflammation was investigated by using the collagen-induced arthritis (CIA) rat model based upon the following indexes: the volume of paw swelling, arthritis score, serum mediators and histological examination as well as immunohistochemical staining. The levels of alanine aminotransferase (ALT) and aspartate transaminase (AST) in serum were measured and the pathological sections of liver and kidney were analysed. LD 50 was measured based on the acute oral toxicity (AOT) standard method. The best formulation was the three components combined at the same mass proportion revealed by the Uniform Design methodology. This combination could significantly reduce the paw swelling in acute paw swelling mouse model, could reduce paw swelling and alleviate the damage in joint structural of ankle, cartilages and fibrous tissue in CIA rat model. The dose relationship was clear in both cases. Immunohistochemical staining of ankle tissue revealed that TRC combination was able to inhibit the expression of NF-κB p65 and TNF-α which were closely related to the inflammatory process. Analysis of serum mediators revealed TRC combination could inhibit the production of TNF-α, IL-1β, and IL-6 in the serum. Toxic study revealed this formulation was low toxic, LD 50 was larger than 5 g/kg, both the level of ALT and AST and histopathology in the liver and kidney exhibited no

  6. PROTECTIVE EFFECT OF TETRAMETHYLPYRAZINE ON LEARNING AND MEMORY FUNCTION IN D-GALACTOSE-LESIONED MICE

    Institute of Scientific and Technical Information of China (English)

    Chun Zhang; Shi-zhen Wang; Ping-ping Zuo; Xu Cui; Jiong Cai

    2004-01-01

    Objective To explore the protective effect of tetramethylpyrazine (TMP) on the learning and memory function in D-galactose (D-gal)-lesioned mice.zine A were respectively given by intragastric administration in different groups from the third week. Learning and memory ability was tested with Morris water maze for 5 days at the sixth week. After completion of behavioral test, the mice were sacrificed by decapitation. The brain was rapidly removed, and the cortex and hippocampus were separated. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in the cortex were determined. At the same time, the activity of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), the binding sites (Bmax) and the affinity (KD) of M-cholinergic receptor in the cortex, and Bmax and KD of N-methyl-D-aspartate (NMDA) receptor in the hippocampus were determined.Results In this model group, (1) The deficit of learning and memory ability, (2) elevated MDA content and lowered SOD activity, (3) decreased AChE activity and M-cholinergic receptor binding sites in the cortex, and (4) lowered NMDA receptor binding sites were observed in the hippocampus, as compared with the normal control. TMP could markedly (1)attenuate cognitive dysfunction, (2) lower MDA content and elevate SOD activity, (3) increase the activity of ChAT and AChE, and M-cholinergic receptor binding sites in the cortex in the mice treated with D-gal. NMDA receptor binding sites were also increased in the hippocampus in the treated mice.Conclusion TMP can significantly strengthen antioxidative function, improve central cholinergic system function, protect NMDA receptor activity, and thus enhance the learning and memory ability in D-gal-lesioned mice.

  7. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    Science.gov (United States)

    Gong, Gu; Yuan, Libang; Cai, Lin; Ran, Maorong; Zhang, Yulan; Gong, Huaqu; Dai, Xuemei; Wu, Wei; Dong, Hailong

    2014-01-01

    Tetramethylpyrazine (TMP) has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD). The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32) induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  8. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Gu Gong

    Full Text Available Tetramethylpyrazine (TMP has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD. The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32 induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  9. Heme oxygenase-1 dependant pathway contributes to protection by tetramethylpyrazine against chronic hypoxic injury on medulla oblongata in rats.

    Science.gov (United States)

    Ding, Yan; Hou, Xuefei; Chen, Li; Zhou, Hua; Gong, Yanju; Dai, Liqun; Zheng, Yu

    2016-02-15

    Tetramethylpyrazine (TMP), one of the active ingredients of the Chinese herb Lingusticum Wallichii (Chuan Xiong) has been proved to protect the medulla oblongata from chronic hypoxia injury. However, the underlying mechanism remains unclear. The purpose of this study was to determine whether the protective effects of TMP are associated with the heme oxygenase-1 (HO-1) dependant pathway in adult rats. The morphological changes of neurons in the hypoglossal nucleus (12N), the nucleus ambiguus (Amb), the nucleus tractus solitarius (NTS), and the pre-Bötzinger complex (pre-BötC) were investigated by Nissl staining; the malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were measured to evaluate the anti-oxidant effect; some apoptosis parameters, Bax mRNA and Bcl-2 mRNA, were tested; and the double immunochemistry staining of active caspase-3/NeuN was performed. Meanwhile, the HO-1 protein expression and heme oxygenase (HO) activity were examined. Tin-protoporphyrin (SnPP), a potent inhibitor of HO, was used to further confirm the effect of HO-1. We found that TMP ameliorated the neuron loss in 12N, Amb and NTS, the decrease in SOD activity and the increase in MDA content, the decrease in Bcl-2 mRNA of medulla oblongata (Pmedulla oblongata in the rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mechanisms and Clinical Application of Tetramethylpyrazine (an Interesting Natural Compound Isolated from Ligusticum Wallichii): Current Status and Perspective.

    Science.gov (United States)

    Zhao, Yingke; Liu, Yue; Chen, Keji

    Tetramethylpyrazine, a natural compound from Ligusticum wallichii ( Chuan Xiong ), has been extensively used in China for cardiovascular and cerebrovascular diseases for about 40 years. Because of its effectiveness in multisystems, especially in cardiovascular, its pharmacological action, clinical application, and the structural modification have attracted broad attention. In this paper its mechanisms of action, the clinical status, and synthetic derivatives will be reviewed briefly.

  11. Inhibition of intestinal disaccharidase activity by pentoses

    DEFF Research Database (Denmark)

    Halschou-Jensen, Kia

    on carbohydrate- ingesting enzymes activity in vitro and possible effects on human postprandial blood response. In paper 1 the effects of sugar beet polyphenols from molasses and the potential inhibition of sucrase activity in vitro, was investigated. Two different polyphenol-rich fractions from chromatographic...... separation of molasses from sugar beets and pure ferulic acid were tested. We found no effects of the two fractions of molasses. The pure ferulic acid indicated an inhibition of sucrase in vitr. Both in vitro and in vivo studies have investigated the effects of L-arabinose and D-xylose on carbohydrate...

  12. Na+/K+-ATPase: Activity and inhibition

    Science.gov (United States)

    Čolović, M.; Krstić, D.; Krinulović, K.; Momić, T.; Savić, J.; Vujačić, A.; Vasić, V.

    2009-09-01

    The aim of the study was to give an overview of the mechanism of inhibition of Na+/K+-ATPase activity induced by some specific and non specific inhibitors. For this purpose, the effects of some ouabain like compounds (digoxin, gitoxin), noble metals complexes ([PtCl2DMSO2], [AuCl4]-, [PdCl4]2-, [PdCl(dien)]+, [PdCl(Me4dien)]+), transition metal ions (Cu2+, Zn2+, Fe2+, Co2+), and heavy metal ions (Hg2+, Pb2+, Cd2+) on the activity of Na+/K+-ATPase from rat synaptic plasma membranes (SPM), porcine cerebral cortex and human erythrocytes were discussed.

  13. Theobromine inhibits sensory nerve activation and cough.

    Science.gov (United States)

    Usmani, Omar S; Belvisi, Maria G; Patel, Hema J; Crispino, Natascia; Birrell, Mark A; Korbonits, Márta; Korbonits, Dezso; Barnes, Peter J

    2005-02-01

    Cough is a common and protective reflex, but persistent coughing is debilitating and impairs quality of life. Antitussive treatment using opioids is limited by unacceptable side effects, and there is a great need for more effective remedies. The present study demonstrates that theobromine, a methylxanthine derivative present in cocoa, effectively inhibits citric acid-induced cough in guinea-pigs in vivo. Furthermore, in a randomized, double-blind, placebo-controlled study in man, theobromine suppresses capsaicin-induced cough with no adverse effects. We also demonstrate that theobromine directly inhibits capsaicin-induced sensory nerve depolarization of guinea-pig and human vagus nerve suggestive of an inhibitory effect on afferent nerve activation. These data indicate the actions of theobromine appear to be peripherally mediated. We conclude theobromine is a novel and promising treatment, which may form the basis for a new class of antitussive drugs.

  14. Kaempferol inhibits thrombosis and platelet activation.

    Science.gov (United States)

    Choi, Jun-Hui; Park, Se-Eun; Kim, Sung-Jun; Kim, Seung

    2015-08-01

    The objectives of the present study were to investigate whether kaempferol affects pro-coagulant proteinase activity, fibrin clot formation, blood clot and thrombin (or collagen/epinephrine)-stimulated platelet activation, thrombosis, and coagulation in ICR (Imprinting Control Region) mice and SD (Sprague-Dawley) rats. Kaempferol significantly inhibited the enzymatic activities of thrombin and FXa by 68 ± 1.6% and 52 ± 2.4%, respectively. Kaempferol also inhibited fibrin polymer formation in turbidity. Microscopic analysis was performed using a fluorescent conjugate. Kaempferol completely attenuated phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and phosphoinositide 3-kinase (PI3K)/PKB (AKT) in thrombin-stimulated platelets and delayed aggregation time (clotting) by 34.6% in an assay of collagen/epinephrine-stimulated platelet activation. Moreover, kaempferol protected against thrombosis development in 3 animal models, including collagen/epinephrine- and thrombin-induced acute thromboembolism models and an FeCl3-induced carotid arterial thrombus model. The ex vivo anticoagulant effect of kaempferol was further confirmed in ICR mice. This study demonstrated that kaempferol may be clinically useful due to its ability to reduce or prevent thrombotic challenge. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Trace element inhibition of phytase activity.

    Science.gov (United States)

    Santos, T; Connolly, C; Murphy, R

    2015-02-01

    Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.

  16. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity to chemi......Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity...... to chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity......-polar liquids were applied to challenge the chemical activity range for baseline toxicity. For each compound, the effective activity (Ea50) was estimated as the ratio of the effective concentration (EC50) and water solubility. Of these ratios, 90% were within the expected chemical activity range of 0.01 to 0...

  17. Tetramethylpyrazine Protects Against Oxygen-Glucose Deprivation-Induced Brain Microvascular Endothelial Cells Injury via Rho/Rho-kinase Signaling Pathway.

    Science.gov (United States)

    Yang, Guang; Qian, Chen; Wang, Ning; Lin, Chenyu; Wang, Yan; Wang, Guangyun; Piao, Xinxin

    2017-05-01

    Tetramethylpyrazine (TMP, also known as Ligustrazine), which is isolated from Chinese Herb Medicine Ligustium wollichii Franchat (Chuan Xiong), has been widely used in China for the treatment of ischemic stroke by Chinese herbalists. Brain microvascular endothelial cells (BMECs) are the integral parts of the blood-brain barrier (BBB), protecting BMECs against oxygen-glucose deprivation (OGD) which is important for the treatment of ischemic stroke. Here, we investigated the protective mechanisms of TMP, focusing on OGD-injured BMECs and the Rho/Rho-kinase (Rho-associated kinases, ROCK) signaling pathway. The model of OGD-injured BMECs was established in this study. BMECs were identified by von Willebrand factor III staining and exposed to fasudil, or TMP at different concentrations (14.3, 28.6, 57.3 µM) for 2 h before 24 h of OGD injury. The effect of each treatment was examined by cell viability assays, measurement of intracellular reactive oxygen species (ROS), and transendothelial electric resistance and western blot analysis (caspase-3, endothelial nitric oxide synthase (eNOS), RhoA, Rac1). Our results show that TMP significantly attenuated apoptosis and the permeability of BMECs induced by OGD. In addition, TMP could notably down-regulate the characteristic proteins in Rho/ROCK signaling pathway such as RhoA and Rac1, which triggered abnormal changes of eNOS and ROS, respectively. Altogether, our results show that TMP has a strong protective effect against OGD-induced BMECs injury and suggest that the mechanism might be related to the inhibition of the Rho/ROCK signaling pathway.

  18. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    Science.gov (United States)

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL.

  19. Microneedle-Assisted Percutaneous Delivery of a Tetramethylpyrazine-Loaded Microemulsion

    Directory of Open Access Journals (Sweden)

    Qiang Zu

    2017-11-01

    Full Text Available This study examined the efficacy of the percutaneous delivery of a tetramethylpyrazine-loaded microemulsion (TMP-ME on skin pretreated with microneedles (MN. The TMP-ME formulation was optimized in vitro with skin permeation experiments, using a uniform experimental design, guided by a pseudo-ternary phase diagram, in which the TMP skin permeation level and mean particle size were indices. The effects of MN pretreatment on skin permeation by TMP-ME were assessed using in vitro skin permeation, in vivo skin microdialysis, and pharmacokinetic studies in rats. The influence of MN pretreatment on the skin barrier function was evaluated by measuring the electrical resistance of rat skin before and after MN insertion. In the optimal formulation of TMP-ME, the weight percentages of Maisine® 35-1 (oil phase, Labrasol® (surfactant, and Transcutol® P (co-surfactant were 7%, 30% and 10%, respectively, with 1.5% TMP loading. In the in vitro skin permeation study, MN-assisted TMP-ME exhibited a two-fold increase in a 24-h cumulative TMP permeation compared with TMP-ME alone (p < 0.05. In the skin microdialysis study, TMP in MN-assisted TMP-ME exhibited a 1.25-fold increase in Cmax, a 0.93-fold decrease in Tmax, and a 0.88-fold increase in AUC0–t (p < 0.05. Similarly, in the pharmacokinetic study, TMP in MN-assisted TMP-ME exhibited a 2.11-fold increase in Cmax, a 0.67-fold decrease in Tmax, and a 1.07-fold increase in AUC0–t (p < 0.05. The percutaneous electrical resistance of rat skin before and after MN insertion was 850 ± 50 Ω/cm2 and 283 ± 104 Ω/cm2 respectively, indicating that MN dramatically compromises the skin barrier. These results suggest that MN assistance increases the skin permeation rate and the extent of percutaneous absorption of TMP-ME, and that the mechanism may involve the reversible barrier perturbation effect. The rate and extent of percutaneous absorption of TMP-ME can be significantly enhanced by MN assistance, possibly

  20. The Reversal Effect and Its Mechanisms of Tetramethylpyrazine on Multidrug Resistance in Human Bladder Cancer.

    Directory of Open Access Journals (Sweden)

    Shanshan Wang

    Full Text Available Chemotherapy is an important strategy for the treatment of bladder cancer. However, the main problem limiting the success of chemotherapy is the development of multidrug resistance (MDR. To improve the management of bladder cancer, it is an urgent matter to search for strategies to reverse MDR. We chose three kinds of herbal medicines including ginsenoside Rh2, (--Epigallocatechin gallate (EGCG and Tetramethylpyrazine (TMP to detect their effects on bladder cancer. Reversal effects of these three herbal medicines for drug resistance in adriamycin (ADM-resistant Pumc-91 cells (Pumc-91/ADM were assessed by Cell Counting Kit-8 (CCK-8 cell proliferation assay system. The mechanisms of reversal effect for TMP were explored in Pumc-91/ADM and T24/DDP cells. After Pumc-91/ADM and T24/DDP cells were treated with TMP, cell cycle distribution analysis was performed by flow cytometry. The expression of MRP1, GST, BCL-2, LRP and TOPO-II was evaluated using quantitative real-time polymerase chain reaction (qRT-PCR, immunefluorescence assay and western blot. It was observed that TMP was capable of enhancing the cytotoxicity of anticancer agents on Pumc-91/ADM cells in response to ADM, however Rh2 and EGCG were unable to. The reversal effect of TMP was also demonstrated in T24/DDP cells. Moreover, the treatment with TMP in Pumc-91/ADM and T24/DDP cells led to an increased of G1 phase accompanied with a concomitant decrease of cell numbers in S phase. Compared to the control group, an obvious decrease of MRP1, GST, BCL-2 and an increase of TOPO-II were shown in TMP groups with a dose-dependency in mRNA and protein levels. However, there was no difference on LRP expression between TMP groups and the control group. TMP could effectively reverse MDR of Pumc-91/ADM and T24/DDP cells and its mechanisms might be correlated with the alteration of MRP1, GST, BCL-2 and TOPO-II. TMP might be a potential candidate for reversing drug resistance in bladder cancer

  1. Microneedle-Assisted Percutaneous Delivery of a Tetramethylpyrazine-Loaded Microemulsion.

    Science.gov (United States)

    Zu, Qiang; Yu, Yanyan; Bi, Xiaolin; Zhang, Ren; Di, Liuqing

    2017-11-21

    This study examined the efficacy of the percutaneous delivery of a tetramethylpyrazine-loaded microemulsion (TMP-ME) on skin pretreated with microneedles (MN). The TMP-ME formulation was optimized in vitro with skin permeation experiments, using a uniform experimental design, guided by a pseudo-ternary phase diagram, in which the TMP skin permeation level and mean particle size were indices. The effects of MN pretreatment on skin permeation by TMP-ME were assessed using in vitro skin permeation, in vivo skin microdialysis, and pharmacokinetic studies in rats. The influence of MN pretreatment on the skin barrier function was evaluated by measuring the electrical resistance of rat skin before and after MN insertion. In the optimal formulation of TMP-ME, the weight percentages of Maisine ® 35-1 (oil phase), Labrasol ® (surfactant), and Transcutol ® P (co-surfactant) were 7%, 30% and 10%, respectively, with 1.5% TMP loading. In the in vitro skin permeation study, MN-assisted TMP-ME exhibited a two-fold increase in a 24-h cumulative TMP permeation compared with TMP-ME alone ( p < 0.05). In the skin microdialysis study, TMP in MN-assisted TMP-ME exhibited a 1.25-fold increase in C max , a 0.93-fold decrease in T max , and a 0.88-fold increase in AUC 0-t ( p < 0.05). Similarly, in the pharmacokinetic study, TMP in MN-assisted TMP-ME exhibited a 2.11-fold increase in C max , a 0.67-fold decrease in T max , and a 1.07-fold increase in AUC 0-t ( p < 0.05). The percutaneous electrical resistance of rat skin before and after MN insertion was 850 ± 50 Ω/cm² and 283 ± 104 Ω/cm² respectively, indicating that MN dramatically compromises the skin barrier. These results suggest that MN assistance increases the skin permeation rate and the extent of percutaneous absorption of TMP-ME, and that the mechanism may involve the reversible barrier perturbation effect. The rate and extent of percutaneous absorption of TMP-ME can be significantly enhanced by MN assistance, possibly

  2. Hyperoxia Inhibits T Cell Activation in Mice

    Science.gov (United States)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  3. Inhibition of PTEN and activation of Akt by menadione

    OpenAIRE

    Yoshikawa, Kyoko; Nigorikawa, Kiyomi; Tsukamoto, Mariko; Tamura, Namiko; Hazeki, Kaoru; Hazeki, Osamu

    2007-01-01

    Menadione (vitamin K3) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an...

  4. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    2015-01-01

    for baseline toxicity. First, the reported effective concentrations (EC50) were divided by the respective water solubilities (Swater), since the obtained EC50/Swater ratio essentially equals the effective chemical activity (Ea50). The majority of EC50/Swater ratios were within the expected chemical activity...

  5. Inhibition of PTEN and activation of Akt by menadione.

    Science.gov (United States)

    Yoshikawa, Kyoko; Nigorikawa, Kiyomi; Tsukamoto, Mariko; Tamura, Namiko; Hazeki, Kaoru; Hazeki, Osamu

    2007-04-01

    Menadione (vitamin K(3)) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an intact cell system, menadione inhibited the effect of transfected PTEN on Akt. Thus, one mechanism of its action was considered the accelerated activation of Akt through inhibition of PTEN. This was not the sole mechanism responsible for the EGFR-independent activation of Akt, because menadione attenuated the rate of Akt dephosphorylation even in PTEN-null PC3 cells. The decelerated inactivation of Akt, probably through inhibition of some tyrosine phosphatases, was considered another mechanism of its action.

  6. Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Magdalena Markowicz-Piasecka

    2017-01-01

    Full Text Available The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM may predispose to Alzheimer’s disease (AD. The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35 μmol/mL, mixed type of inhibition and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC50 = 890 nmol/mL, noncompetitive inhibition and BuChE (IC50 = 28 nmol/mL, mixed type inhibition, while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC50 = 184 nmol/mL. Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future.

  7. Complement activation and inhibition: a delicate balance

    DEFF Research Database (Denmark)

    Sjöberg, A P; Trouw, L A; Blom, A M

    2009-01-01

    proteins, pentraxins, amyloid deposits, prions and DNA, all bind the complement activator C1q, but also interact with complement inhibitors C4b-binding protein and factor H. This contrasts to the interaction between C1q and immune complexes, in which case no inhibitors bind, resulting in full complement...

  8. Novel Tandem Biotransformation Process for the Biosynthesis of a Novel Compound, 4-(2,3,5,6-Tetramethylpyrazine-1)-4′-Demethylepipodophyllotoxin▿

    Science.gov (United States)

    Tang, Ya-Jie; Zhao, Wei; Li, Hong-Mei

    2011-01-01

    According to the structure of podophyllotoxin and its structure-function relationship, a novel tandem biotransformation process was developed for the directional modification of the podophyllotoxin structure to directionally synthesize a novel compound, 4-(2,3,5,6-tetramethylpyrazine-1)-4′-demethylepipodophyllotoxin (4-TMP-DMEP). In this novel tandem biotransformation process, the starting substrate of podophyllotoxin was biotransformed into 4′-demethylepipodophyllotoxin (product 1) with the demethylation of the methoxyl group at the 4′ position by Gibberella fujikuroi SH-f13, which was screened out from Shennongjia prime forest humus soil (Hubei, China). 4′-Demethylepipodophyllotoxin (product 1) was then biotransformed into 4′-demethylpodophyllotoxone (product 2) with the oxidation of the hydroxyl group at the 4 position by Alternaria alternata S-f6, which was screened out from the gathered Dysosma versipellis plants in the Wuhan Botanical Garden, Chinese Academy of Sciences. Finally, 4′-demethylpodophyllotoxone (product 2) and ligustrazine were linked with a transamination reaction to synthesize the target product 4-TMP-DMEP (product 3) by Alternaria alternata S-f6. Compared with podophyllotoxin (i.e., a 50% effective concentration [EC50] of 529 μM), the EC50 of 4-TMP-DMEP against the tumor cell line BGC-823 (i.e., 0.11 μM) was significantly reduced by 5,199 times. Simultaneously, the EC50 of 4-TMP-DMEP against the normal human proximal tubular epithelial cell line HK-2 (i.e., 0.40 μM) was 66 times higher than that of podophyllotoxin (i.e., 0.006 μM). Furthermore, compared with podophyllotoxin (i.e., log P = 0.34), the water solubility of 4-TMP-DMEP (i.e., log P = 0.66) was significantly enhanced by 94%. For the first time, the novel compound 4-TMP-DMEP with superior antitumor activity was directionally synthesized from podophyllotoxin by the novel tandem biotransformation process developed in this work. PMID:21398491

  9. Effect of tetramethylpyrazine on the spatial learning and memory function of rats after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Jianjun Zhao; Yong Liu; Xinlin Chen; Jianxin Liu; Yingfang Tian; Pengbo Zhang; Qianyan Kang; Fen Qiu

    2006-01-01

    BACKGROUND: Tetramethylpyrazine (TMP) presents the effect of anti-platelet aggregation, reduces arterial resistance, increases cerebral blood flow, and improves microcirculation.OBJECTIVE: To observe the effects of TMP on the learning and memory abilities and the number of neurons in cortex and hippocampus after focal cerebral ischemia in rats DESIGN: A randomized controlled trial.SETTING: Department of Human Anatomy and Histological Embryology, School of Medicine, Xi'an Jiaotong University.MATERIALS: Fifty adult male Sprague-Dawley rats, weighing 250-300 g were supplied by the Experimental Animal Center, School of Medicine, Xi'an Jiaotong University. TMP was purchased from Wuxi Seventh Pharmaceutical Co. Ltd (Lot Number: 2004051106, Specification: 2 mL/piece).METHODS: The experiments were carried out in School of Medicine of Xi'an Jiaotong University from June 2004 to May 2005. The 50 rats were randomly divided into five groups according to the random number table method: sham-operated group, cerebral ischemia control group, Iow-dose TMP group, middle-dose TMP group and high-dose TMP group, 10 rats in each group. Rats in the TMP groups were immediately treated with intraperitoneal injection of TMP of 40, 80 and 120 mg/kg respectively, and those in the sham-operated group and cerebral ischemia control group were injected intraperitoneally by isovolume saline, once a day for 14 days successively. On the 15th day, the spatial learning and memory abilities of the rats were assessed with the Morris water maze test, and then the changes of neuron numbers in cortex and hippocampus were observed by Nissl staining of brain sections.MAIN OUTCOME MEASURES: The results of Morris water maze test and the changes of neuron numbers in cortex and hippocampus by Nissl staining of brain sections were observed,RESULTS : Finally 39 rats were involved in the analysis of results, and the other 11 died of excessive anesthesia or failure in model establishment. ① The rats in the

  10. Hili Inhibits HIV Replication in Activated T Cells.

    Science.gov (United States)

    Peterlin, B Matija; Liu, Pingyang; Wang, Xiaoyun; Cary, Daniele; Shao, Wei; Leoz, Marie; Hong, Tian; Pan, Tao; Fujinaga, Koh

    2017-06-01

    P-element-induced wimpy-like (Piwil) proteins restrict the replication of mobile genetic elements in the germ line. They are also expressed in many transformed cell lines. In this study, we discovered that the human Piwil 2 (Hili) protein can also inhibit HIV replication, especially in activated CD4 + T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express Hili, its expression was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of Hili increased levels of viral proteins and new viral particles. Further studies revealed that Hili binds to tRNA. Some of the tRNAs represent rare tRNA species, whose codons are overrepresented in the viral genome. Targeting tRNA Arg (UCU) with an antisense oligonucleotide replicated effects of Hili and also inhibited HIV replication. Finally, Hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, Hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements. IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germ line. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small Piwi-interacting RNAs (piRNAs). However, in some species and in human somatic cells, Piwil proteins bind primarily to tRNA. In this report, we demonstrate that human Piwil proteins, especially Hili, not only bind to select tRNA species, including rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of Hili in CD4 + T cells. Since Hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements. Copyright © 2017 American Society for Microbiology.

  11. Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Fu, H.; Burris, R.H. (Univ. of Wisconsin, Madison (USA))

    1989-06-01

    The effect of oxygen, ammonium ion, and amino acids on nitrogenase activity in the root-associated N{sub 2}-fixing bacterium Herbaspirillum seropedicae was investigated in comparison with Azospirillum spp. and Rhodospirillum rubrum. H. seropedicae is microaerophilic, and its optimal dissolved oxygen level is from 0.04 to 0.2 kPa for dinitrogen fixation but higher when it is supplied with fixed nitrogen. No nitrogenase activity was detected when the dissolved O{sub 2} level corresponded to 4.0 kPa. Ammonium, a product of the nitrogenase reaction, reversible inhibited nitrogenase activity when added to derepressed cell cultures. However, the inhibition of nitrogenase activity was only partial even with concentrations of ammonium chloride as high as 20 mM. Amides such as glutamine and asparagine partially inhibited nitrogenase activity, but glutamate did not. Nitrogenase in crude extracts prepared from ammonium-inhibited cells showed activity as high as in extracts from N{sub 2}-fixing cells. The pattern of the dinitrogenase and the dinitrogenase reductase revealed by the immunoblotting technique did not change upon ammonium chloride treatment of cells in vivo. No homologous sequences were detected with the draT-draG probe from Azospirillum lipoferum. There is no clear evidence that ADP-ribosylation of the dinitrogenase reductase is involved in the ammonium inhibition of H. seropedicae. The uncoupler carbonyl cyanide m-chlorophenylhydrazone decreased the intracellular ATP concentration and inhibited the nitrogenase activity of whole cells. The ATP pool was significantly disturbed when cultures were treated with ammonium in vivo.

  12. Enhanced production of tetramethylpyrazine in Bacillus licheniformis BL1 by bdhA disruption and 2,3-butanediol supplementation.

    Science.gov (United States)

    Meng, Wu; Xiao, Dongguang; Wang, Ruiming

    2016-03-01

    The 2,3-butanediol (2,3-BD) dehydrogenase gene (bdhA) of Bacillus licheniformis BL1 was disrupted to construct the tetramethylpyrazine (TMP)-producing BLA strain. During microaerobic fermentation, the bdhA-disrupted BLA strain produced 46.98 g TMP/l, and this yield was 23.99% higher than that produced by the parent BL1 strain. In addition, the yield of acetoin, which is a TMP precursor, also increased by 28.98% in BLA. The TMP production by BL1 was enhanced by supplementing the fermentation medium with 2,3-BD. The yield of TMP improved from 37.89 to 44.77 g/l as the concentration of 2,3-BD increased from 0 to 2 g/l. The maximum TMP and acetoin yields increased by 18.16 and 17.87%, respectively with the increase in 2,3-BD concentration from 0 to 2 g/l. However, no increase was observed when the concentration of 2,3-BD in the matrix was ≥3 g/l. This study provides a valuable strategy to enhance TMP and acetoin productivity of mutagenic strains by gene manipulation and optimizing fermentation conditions.

  13. Cysteine-independent activation/inhibition of heme oxygenase-2

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2016-01-01

    Full Text Available Reactive thiols of cysteine (cys residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2 isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2 and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  14. Inhibition of existing denitrification enzyme activity by chloramphenicol

    Science.gov (United States)

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  15. Cysteine-independent activation/inhibition of heme oxygenase-2.

    Science.gov (United States)

    Vukomanovic, Dragic; Rahman, Mona N; Maines, Mahin D; Ozolinš, Terence Rs; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2016-03-01

    Reactive thiols of cysteine (cys) residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2) isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2) and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD) and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  16. Aspergillus ficuum phytase activity is inhibited by cereal grain components.

    Science.gov (United States)

    Bekalu, Zelalem Eshetu; Madsen, Claus Krogh; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2017-01-01

    In the current study, we report for the first time that grain components of barley, rice, wheat and maize can inhibit the activity of Aspergillus ficuum phytase. The phytase inhibition is dose dependent and varies significantly between cereal species, between cultivars of barley and cultivars of wheat and between Fusarium graminearum infected and non-infected wheat grains. The highest endpoint level of phytase activity inhibition was 90%, observed with grain protein extracts (GPE) from F. graminearum infected wheat. Wheat GPE from grains infected with F. graminearum inhibits phytase activity significantly more than GPE from non-infected grains. For four barley cultivars studied, the IC50 value ranged from 0.978 ± 0.271 to 3.616 ± 0.087 mg×ml-1. For two non-infected wheat cultivars investigated, the IC50 values were varying from 2.478 ± 0.114 to 3.038 ± 0.097 mg×ml-1. The maize and rice cultivars tested gaveIC50 values on 0.983 ± 0.205 and 1.972 ± 0.019 mg×ml-1, respectively. After purifying the inhibitor from barley grains via Superdex G200, an approximately 30-35 kDa protein was identified. No clear trend for the mechanism of inhibition could be identified via Michaelis-Menten kinetics and Lineweaver-Burk plots. However, testing of the purified phytase inhibitor together with the A. ficuum phytase and the specific protease inhibitors pepstatin A, E64, EDTA and PMSF revealed that pepstatin A repealed the phytase inhibition. This indicates that the observed inhibition of A. ficuum phytase by cereal grain extracts is caused by protease activity of the aspartic proteinase type.

  17. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    Science.gov (United States)

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  18. Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro.

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    Full Text Available It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs. Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.

  19. Thrombomodulin inhibits the activation of eosinophils and mast cells.

    Science.gov (United States)

    Roeen, Ziaurahman; Toda, Masaaki; D'Alessandro-Gabazza, Corina N; Onishi, Masahiro; Kobayashi, Tetsu; Yasuma, Taro; Urawa, Masahito; Taguchi, Osamu; Gabazza, Esteban C

    2015-01-01

    Eosinophils and mast cells play critical roles in the pathogenesis of bronchial asthma. Activation of both cells leads to the release of pro-inflammatory mediators in the airway of asthmatic patients. Recently, we have shown that inhaled thrombomodulin inhibits allergic bronchial asthma in a mouse model. In the present study, we hypothesize that thrombomodulin can inhibit the activation of eosinophils and mast cells. The effect of thrombomodulin on the activation and release of inflammatory mediators from eosinophils and mast cells was evaluated. Thrombomodulin inhibited the eotaxin-induced chemotaxis, upregulation of CD11b and degranulation of eosinophils. Treatment with thrombomodulin also significantly suppressed the degranulation and synthesis of inflammatory cytokines and chemokines in eosinophils and mast cells. Mice treated with a low-dose of inhaled thrombomodulin have decreased number of eosinophils and activated mast cells and Th2 cytokines in the lungs compared to untreated mice. The results of this study suggest that thrombomodulin may modulate allergic responses by inhibiting the activation of both eosinophils and mast cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism.

    Science.gov (United States)

    Lin, Suyun; Zhang, Guowen; Liao, Yijing; Pan, Junhui

    2015-11-01

    Chrysin, a bioactive flavonoid, was investigated for its potential to inhibit the activity of xanthine oxidase (XO), a key enzyme catalyzing xanthine to uric acid and finally causing gout. The kinetic analysis showed that chrysin possessed a strong inhibition on XO ability in a reversible competitive manner with IC50 value of (1.26±0.04)×10(-6)molL(-1). The results of fluorescence titrations indicated that chrysin bound to XO with high affinity, and the interaction was predominately driven by hydrogen bonds and van der Waals forces. Analysis of circular dichroism demonstrated that chrysin induced the conformational change of XO with increases in α-helix and β-sheet and reductions in β-turn and random coil structures. Molecular simulation revealed that chrysin interacted with the amino acid residues Leu648, Phe649, Glu802, Leu873, Ser876, Glu879, Arg880, Phe1009, Thr1010, Val1011 and Phe1013 located within the active cavity of XO. The mechanism of chrysin on XO activity may be the insertion of chrysin into the active site occupying the catalytic center of XO to avoid the entrance of xanthine and causing conformational changes in XO. Furthermore, the interaction assays indicated that chrysin and its structural analog apigenin exhibited an additive effect on inhibition of XO. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. DNA damage protection and 5-lipoxygenase inhibiting activity of ...

    African Journals Online (AJOL)

    DNA damage caused by free radical is associated with mutation-based health impairment. The protective effect on DNA damage mediated by hydroxyl radical and peroxynitrite radical, and the inhibiting activity on 5-lipoxygenase of areca inflorescence extracts were studied in vitro. The results show that the boiling water ...

  2. Irregular activity arises as a natural consequence of synaptic inhibition

    International Nuclear Information System (INIS)

    Terman, D.; Rubin, J. E.; Diekman, C. O.

    2013-01-01

    Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the irregular activity occurring in our simulations of conductance-based differential equations and mathematically analyze the instability of fixed points corresponding to synchronous and antiphase spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction, and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in a conductance-based framework and provides precise conditions on parameters that ensure that irregular activity will occur. In particular, the temporal details of spiking dynamics must be present for a model to exhibit this irregularity mechanism and must be considered analytically to capture these effects

  3. Irregular activity arises as a natural consequence of synaptic inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Terman, D., E-mail: terman@math.ohio-state.edu [Department of Mathematics, The Ohio State University, Columbus, Ohio 43210 (United States); Rubin, J. E., E-mail: jonrubin@pitt.edu [Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Diekman, C. O., E-mail: diekman@njit.edu [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2013-12-15

    Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the irregular activity occurring in our simulations of conductance-based differential equations and mathematically analyze the instability of fixed points corresponding to synchronous and antiphase spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction, and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in a conductance-based framework and provides precise conditions on parameters that ensure that irregular activity will occur. In particular, the temporal details of spiking dynamics must be present for a model to exhibit this irregularity mechanism and must be considered analytically to capture these effects.

  4. Luteolin, a flavonoid, inhibits AP-1 activation by basophils

    International Nuclear Information System (INIS)

    Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Matsuda, Hisashi; Yoshikawa, Masayuki; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Kawase, Ichiro; Tanaka, Toshio

    2006-01-01

    Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1

  5. Spillover-mediated feedforward-inhibition functionally segregates interneuron activity

    Science.gov (United States)

    Coddington, Luke T.; Rudolph, Stephanie; Lune, Patrick Vande; Overstreet-Wadiche, Linda; Wadiche, Jacques I.

    2013-01-01

    Summary Neurotransmitter spillover represents a form of neural transmission not restricted to morphologically defined synaptic connections. Communication between climbing fibers (CFs) and molecular layer interneurons (MLIs) in the cerebellum is mediated exclusively by glutamate spillover. Here, we show how CF stimulation functionally segregates MLIs based on their location relative to glutamate release. Excitation of MLIs that reside within the domain of spillover diffusion coordinates inhibition of MLIs outside the diffusion limit. CF excitation of MLIs is dependent on extrasynaptic NMDA receptors that enhance the spatial and temporal spread of CF signaling. Activity mediated by functionally segregated MLIs converges onto neighboring Purkinje cells (PCs) to generate a long-lasting biphasic change in inhibition. These data demonstrate how glutamate release from single CFs modulates excitability of neighboring PCs, thus expanding the influence of CFs on cerebellar cortical activity in a manner not predicted by anatomical connectivity. PMID:23707614

  6. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  7. Artemisinin inhibits chloroplast electron transport activity: mode of action.

    Directory of Open Access Journals (Sweden)

    Adyasha Bharati

    Full Text Available Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo, behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the Q(B; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth.

  8. Emotion potentiates response activation and inhibition in masked priming.

    Science.gov (United States)

    Bocanegra, Bruno R; Zeelenberg, René

    2012-01-01

    Previous studies have shown that emotion can have 2-fold effects on perception. At the object-level, emotional stimuli benefit from a stimulus-specific boost in visual attention at the relative expense of competing stimuli. At the visual feature-level, recent findings indicate that emotion may inhibit the processing of small visual details and facilitate the processing of coarse visual features. In the present study, we investigated whether emotion can boost the activation and inhibition of automatic motor responses that are generated prior to overt perception. To investigate this, we tested whether an emotional cue affects covert motor responses in a masked priming task. We used a masked priming paradigm in which participants responded to target arrows that were preceded by invisible congruent or incongruent prime arrows. In the standard paradigm, participants react faster, and commit fewer errors responding to the directionality of target arrows, when they are preceded by congruent vs. incongruent masked prime arrows (positive congruency effect, PCE). However, as prime-target SOAs increase, this effect reverses (negative congruency effect, NCE). These findings have been explained as evidence for an initial activation and a subsequent inhibition of a partial response elicited by the masked prime arrow. Our results show that the presentation of fearful face cues, compared to neutral face cues, increased the size of both the PCE and NCE, despite the fact that the primes were invisible. This is the first demonstration that emotion prepares an individual's visuomotor system for automatic activation and inhibition of motor responses in the absence of visual awareness.

  9. COBRA1 inhibits AP-1 transcriptional activity in transfected cells

    International Nuclear Information System (INIS)

    Zhong Hongjun; Zhu Jianhua; Zhang Hao; Ding Lihua; Sun Yan; Huang Cuifen; Ye Qinong

    2004-01-01

    Mutations in the breast cancer susceptibility gene (BRCA1) account for a significant proportion of hereditary breast and ovarian cancers. Cofactor of BRCA1 (COBRA1) was isolated as a BRCA1-interacting protein and exhibited a similar chromatin reorganizing activity to that of BRCA1. However, the biological role of COBRA1 remains largely unexplored. Here, we report that ectopic expression of COBRA1 inhibited activator protein 1 (AP-1) transcriptional activity in transfected cells in a dose-dependent manner, whereas reduction of endogenous COBRA1 with a small interfering RNA significantly enhanced AP-1-mediated transcriptional activation. COBRA1 physically interacted with the AP-1 family members, c-Jun and c-Fos, and the middle region of COBRA1 bound to c-Fos. Lack of c-Fos binding site in the COBRA1 completely abolished the COBRA1 inhibition of AP-1 trans-activation. These findings suggest that COBRA1 may directly modulate AP-1 pathway and, therefore, may play important roles in cell proliferation, differentiation, apoptosis, and oncogenesis

  10. MMS 1001 inhibits melanin synthesis via ERK activation.

    Science.gov (United States)

    Lee, Hyun-E; Song, Jiho; Kim, Su Yeon; Park, Kyoung-Chan; Min, Kyung Hoon; Kim, Dong-Seok

    2013-03-01

    Melanin plays major a role in pigmentation of hair, eyes, and skin in mammals. In this study, the inhibitory effects of MMS 1001 on alpha-MSH-stimulated melanogenesis were investigated in B16F10 melanoma cells. MMS 1001 did not show cytotoxic effects up to 10 microM. Melanin content and intracellular tyrosinase activity were inhibited by MMS 1001 treatment in a dose-dependent manner. In Western blot analysis, MITF expression was decreased by MMS 1001. In addition, tyrosinase expressions were also reduced after MMS 1001 treatment. Further results showed that the phosphorylation of ERK was induced by MMS 1001. Moreover, a specific MEK inhibitor, PD98059, abrogated the inhibitory effects of MMS 1001 on melanin production and tyrosinase expression. These results indicate that the hypopigmentary effects of MMS 1001 resulted from the inhibition of MITF and tyrosinase expression via phosphorylation of ERK. Thus, MMS 1001 could be developed as a new effective skin-whitening agent.

  11. Pathological histone acetylation in Parkinson's disease: Neuroprotection and inhibition of microglial activation through SIRT 2 inhibition.

    Science.gov (United States)

    Harrison, Ian F; Smith, Andrew D; Dexter, David T

    2018-02-14

    Parkinson's disease (PD) is associated with degeneration of nigrostriatal neurons due to intracytoplasmic inclusions composed predominantly of a synaptic protein called α-synuclein. Accumulations of α-synuclein are thought to 'mask' acetylation sites on histone proteins, inhibiting the action of histone acetyltransferase (HAT) enzymes in their equilibrium with histone deacetylases (HDACs), thus deregulating the dynamic control of gene transcription. It is therefore hypothesised that the misbalance in the actions of HATs/HDACs in neurodegeneration can be rectified with the use of HDAC inhibitors, limiting the deregulation of transcription and aiding neuronal homeostasis and neuroprotection in disorders such as PD. Here we quantify histone acetylation in the Substantia Nigra pars compacta (SNpc) in the brains of control, early and late stage PD cases to determine if histone acetylation is a function of disease progression. PD development is associated with Braak-dependent increases in histone acetylation. Concurrently, we show that as expected disease progression is associated with reduced markers of dopaminergic neurons and increased markers of activated microglia. We go on to demonstrate that in vitro, degenerating dopaminergic neurons exhibit histone hypoacetylation whereas activated microglia exhibit histone hyperacetylation. This suggests that the disease-dependent increase in histone acetylation observed in human PD cases is likely a combination of the contributions of both degenerating dopaminergic neurons and infiltrating activated microglia. The HDAC SIRT 2 has become increasingly implicated as a novel target for mediation of neuroprotection in PD: the neuronal and microglial specific effects of its inhibition however remain unclear. We demonstrate that SIRT 2 expression in the SNpc of PD brains remains relatively unchanged from controls and that SIRT 2 inhibition, via AGK2 treatment of neuronal and microglial cultures, results in neuroprotection of

  12. Metformin inhibits glutaminase activity and protects against hepatic encephalopathy.

    Directory of Open Access Journals (Sweden)

    Javier Ampuero

    Full Text Available AIM: To investigate the influence of metformin use on liver dysfunction and hepatic encephalopathy in a retrospective cohort of diabetic cirrhotic patients. To analyze the impact of metformin on glutaminase activity and ammonia production in vitro. METHODS: Eighty-two cirrhotic patients with type 2 diabetes were included. Forty-one patients were classified as insulin sensitizers experienced (metformin and 41 as controls (cirrhotic patients with type 2 diabetes mellitus without metformin treatment. Baseline analysis included: insulin, glucose, glucagon, leptin, adiponectin, TNFr2, AST, ALT. HOMA-IR was calculated. Baseline HE risk was calculated according to minimal hepatic encephalopathy, oral glutamine challenge and mutations in glutaminase gene. We performed an experimental study in vitro including an enzymatic activity assay where glutaminase inhibition was measured according to different metformin concentrations. In Caco2 cells, glutaminase activity inhibition was evaluated by ammonia production at 24, 48 and 72 hours after metformina treatment. RESULTS: Hepatic encephalopathy was diagnosed during follow-up in 23.2% (19/82: 4.9% (2/41 in patients receiving metformin and 41.5% (17/41 in patients without metformin treatment (logRank 9.81; p=0.002. In multivariate analysis, metformin use [H.R.11.4 (95% CI: 1.2-108.8; p=0.034], age at diagnosis [H.R.1.12 (95% CI: 1.04-1.2; p=0.002], female sex [H.R.10.4 (95% CI: 1.5-71.6; p=0.017] and HE risk [H.R.21.3 (95% CI: 2.8-163.4; p=0.003] were found independently associated with hepatic encephalopathy. In the enzymatic assay, glutaminase activity inhibition reached 68% with metformin 100 mM. In Caco2 cells, metformin (20 mM decreased glutaminase activity up to 24% at 72 hours post-treatment (p<0.05. CONCLUSIONS: Metformin was found independently related to overt hepatic encephalopathy in patients with type 2 diabetes mellitus and high risk of hepatic encephalopathy. Metformin inhibits glutaminase

  13. Diethyl 2-(Phenylcarbamoylphenyl Phosphorothioates: Synthesis, Antimycobacterial Activity and Cholinesterase Inhibition

    Directory of Open Access Journals (Sweden)

    Jarmila Vinšová

    2014-05-01

    Full Text Available A new series of 27 diethyl 2-(phenylcarbamoylphenyl phosphorothioates (thiophosphates was synthesized, characterized by NMR, IR and CHN analyses and evaluated against Mycobacterium tuberculosis H37Rv, Mycobacterium avium and two strains of Mycobacterium kansasii. The best activity against M. tuberculosis was found for O-{4-bromo-2-[(3,4-dichlorophenylcarbamoyl]phenyl} O,O-diethyl phosphorothioate (minimum inhibitory concentration of 4 µM. The highest activity against nontuberculous mycobacteria was exhibited by O-(5-chloro-2-{[4-(trifluoromethylphenyl]carbamoyl}-phenyl O,O-diethyl phosphorothioate with MIC values from 16 µM. Prepared thiophosphates were also evaluated against acetylcholinesterase from electric eel and butyrylcholinesterase from equine serum. Their inhibitory activity was compared to that of the known cholinesterases inhibitors galanthamine and rivastigmine. All tested compounds showed a higher (for AChE inhibition and comparable (for BChE inhibition activity to that of rivastigmine, with IC50s within the 8.04 to 20.2 µM range.

  14. AVS-1357 inhibits melanogenesis via prolonged ERK activation.

    Science.gov (United States)

    Kim, Dong-Seok; Lee, Hyun-Kyung; Park, Seo-Hyoung; Chae, Chong Hak; Park, Kyoung-Chan

    2009-08-01

    In this study, we demonstrated that a derivative of imidazole, AVS-1357, is a novel skin-whitening compound. AVS-1357 was found to significantly inhibit melanin production in a dose-dependent manner; however, it did not directly inhibit tyrosinase. Furthermore, we found that AVS-1357 induced prolonged activation of extracellular signal-regulated kinase (ERK) and Akt, while it downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase. It has been reported that the activation of ERK and/or Akt is involved in melanogenesis. Therefore, we examined the effects of AVS-1357 on melanogenesis in the absence or presence of PD98059 (a specific inhibitor of the ERK pathway) and/or LY294002 (a specific inhibitor of the Akt pathway). PD98059 dramatically increased melanogenesis, whereas LY294002 had no effect. Furthermore, PD98059 attenuated AVS-1357 induced ERK activation, as well as the downregulation of MITF and tyrosinase. These findings suggest that the effects of AVS-1357 occur via downregulation of MITF and tyrosinase, which is caused by AVS-1357-induced prolonged ERK activation. Taken together, our results indicate that AVS-1357 has the potential as a new skin whitening agent.

  15. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    International Nuclear Information System (INIS)

    Asmis, Lars; Tanner, Felix C.; Sudano, Isabella; Luescher, Thomas F.; Camici, Giovanni G.

    2010-01-01

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysis showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 ± 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% ± 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 ± 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.

  16. Hypoxia inhibits colonic ion transport via activation of AMP kinase.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    BACKGROUND AND AIMS: Mucosal hypoxia is a common endpoint for many pathological processes including ischemic colitis, colonic obstruction and anastomotic failure. Previous studies suggest that hypoxia modulates colonic mucosal function through inhibition of chloride secretion. However, the molecular mechanisms underlying this observation are poorly understood. AMP-activated protein kinase (AMPK) is a metabolic energy regulator found in a wide variety of cells and has been linked to cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride secretion in several different tissues. We hypothesized that AMPK mediates many of the acute effects of hypoxia on human and rat colonic electrolyte transport. METHODS: The fluorescent chloride indicator dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used to measure changes in intracellular chloride concentrations in isolated single rat colonic crypts. Ussing chamber experiments in human colonic mucosa were conducted to evaluate net epithelial ion transport. RESULTS: This study demonstrates that acute hypoxia inhibits electrogenic chloride secretion via AMPK mediated inhibition of CFTR. Pre-treatment of tissues with the AMPK inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo [1,5-a] pyrimidine (compound C) in part reversed the effects of acute hypoxia on chloride secretion. CONCLUSION: We therefore suggest that AMPK is a key component of the adaptive cellular response to mucosal hypoxia in the colon. Furthermore, AMPK may represent a potential therapeutic target in diseased states or in prevention of ischemic intestinal injury.

  17. Antioxidant Activity and Acetylcholinesterase Inhibition of Grape Skin Anthocyanin (GSA

    Directory of Open Access Journals (Sweden)

    Mehnaz Pervin

    2014-07-01

    Full Text Available We aimed to investigate the antioxidant and acetylcholinesterase inhibitory activities of the anthocyanin rich extract of grape skin. Grape skin anthocyanin (GSA neutralized free radicals in different test systems, such as 2,-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and 2,2-diphenyl-1-picrylhydrazyl (DPPH assays, to form complexes with Fe2+ preventing 2,2'-azobis(2-amidinopropane dihydrochloride (AAPH-induced erythrocyte hemolysis and oxidative DNA damage. Moreover, GSA decreased reactive oxygen species (ROS generation in isolated mitochondria thus inhibiting 2',-7'-dichlorofluorescin (DCFH oxidation. In an in vivo study, female BALB/c mice were administered GSA, at 12.5, 25, and 50 mg per kg per day orally for 30 consecutive days. Herein, we demonstrate that GSA administration significantly elevated the level of antioxidant enzymes in mice sera, livers, and brains. Furthermore, GSA inhibited acetylcholinesterase (AChE in the in vitro assay with an IC50 value of 363.61 µg/mL. Therefore, GSA could be an excellent source of antioxidants and its inhibition of cholinesterase is of interest with regard to neurodegenerative disorders such as Alzheimer’s disease.

  18. Acupuncture inhibits cue-induced heroin craving and brain activation.

    Science.gov (United States)

    Cai, Xinghui; Song, Xiaoge; Li, Chuanfu; Xu, Chunsheng; Li, Xiliang; Lu, Qi

    2012-11-25

    Previous research using functional MRI has shown that specific brain regions associated with drug dependence and cue-elicited heroin craving are activated by environmental cues. Craving is an important trigger of heroin relapse, and acupuncture may inhibit craving. In this study, we performed functional MRI in heroin addicts and control subjects. We compared differences in brain activation between the two groups during heroin cue exposure, heroin cue exposure plus acupuncture at the Zusanli point (ST36) without twirling of the needle, and heroin cue exposure plus acupuncture at the Zusanli point with twirling of the needle. Heroin cue exposure elicited significant activation in craving-related brain regions mainly in the frontal lobes and callosal gyri. Acupuncture without twirling did not significantly affect the range of brain activation induced by heroin cue exposure, but significantly changed the extent of the activation in the heroin addicts group. Acupuncture at the Zusanli point with twirling of the needle significantly decreased both the range and extent of activation induced by heroin cue exposure compared with heroin cue exposure plus acupuncture without twirling of the needle. These experimental findings indicate that presentation of heroin cues can induce activation in craving-related brain regions, which are involved in reward, learning and memory, cognition and emotion. Acupuncture at the Zusanli point can rapidly suppress the activation of specific brain regions related to craving, supporting its potential as an intervention for drug craving.

  19. Investigating the Antioxidant and Acetylcholinesterase Inhibition Activities of Gossypium herbaceam

    Directory of Open Access Journals (Sweden)

    Haji Akber Aisa

    2013-01-01

    Full Text Available Our previous research showed that standardized extract from the flowers of the Gossypium herbaceam labeled GHE had been used in clinical trials for its beneficial effects on brain functions, particularly in connection with age-related dementia and Alzheimer’s disease (AD. The aim of this work was to determine the components of this herb and the individual constituents of GHE. In order to better understand this herb for AD treatment, we investigated the acetylcholinesterase (AChE inhibition and antioxidant activity of GHE as well as the protective effects to PC12 cells against cytotoxicity induced by tertiary butyl hydroperoxide (tBHP using in vitro assays. The antioxidant activities were assessed by measuring their capabilities for scavenging 1,1-diphenyl-2-picylhydrazyl (DPPH and 2-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS free radical as well as in inhibiting lipid peroxidation. Our data showed that GHE exhibited certain activities against AChE and also is an efficient free radical scavenger, which may be helpful in preventing or alleviating patients suffering from AD.

  20. Zeno inhibition of polarization rotation in an optically active medium

    International Nuclear Information System (INIS)

    Gonzalo, Isabel; Luis, Alfredo; Porras, Miguel A

    2015-01-01

    We describe an experiment in which the rotation of the polarization of light propagating in an optically active water solution of D-fructose tends to be inhibited by frequent monitoring whether the polarization remains unchanged. This is an example of the Zeno effect that has remarkable pedagogical interest because of its conceptual simplicity, easy implementation, low cost, and because the same the Zeno effect holds at classical and quantum levels. An added value is the demonstration of the Zeno effect beyond typical idealized assumptions in a practical setting with real polarizers. (paper)

  1. Virulent poxviruses inhibit DNA sensing by preventing STING activation.

    Science.gov (United States)

    Georgana, Iliana; Sumner, Rebecca P; Towers, Greg J; Maluquer de Motes, Carlos

    2018-02-28

    Cytosolic recognition of DNA has emerged as a critical cellular mechanism of host immune activation upon pathogen invasion. The central cytosolic DNA sensor cGAS activates STING, which is phosphorylated, dimerises and translocates from the ER to a perinuclear region to mediate IRF-3 activation. Poxviruses are dsDNA viruses replicating in the cytosol and hence likely to trigger cytosolic DNA sensing. Here we investigated the activation of innate immune signalling by 4 different strains of the prototypic poxvirus vaccinia virus (VACV) in a cell line proficient in DNA sensing. Infection with the attenuated VACV strain MVA activated IRF-3 via cGAS and STING, and accordingly STING dimerised and was phosphorylated during MVA infection. Conversely, VACV strains Copenhagen and Western Reserve inhibited STING dimerisation and phosphorylation during infection and in response to transfected DNA and cGAMP, thus efficiently suppressing DNA sensing and IRF-3 activation. A VACV deletion mutant lacking protein C16, thought to be the only viral DNA sensing inhibitor acting upstream of STING, retained the ability to block STING activation. Similar inhibition of DNA-induced STING activation was also observed for cowpox and ectromelia viruses. Our data demonstrate that virulent poxviruses possess mechanisms for targeting DNA sensing at the level of the cGAS-STING axis and that these mechanisms do not operate in replication-defective strains such as MVA. These findings shed light on the role of cellular DNA sensing in poxvirus-host interactions and will open new avenues to determine its impact on VACV immunogenicity and virulence. IMPORTANCE Poxviruses are dsDNA viruses infecting a wide range of vertebrates and include the causative agent of smallpox (variola virus) and its vaccine vaccinia virus (VACV). Despite smallpox eradication VACV remains of interest as a therapeutic. Attenuated strains are popular vaccine candidates, whereas replication-competent strains are emerging as

  2. Fast inhibition of glutamate-activated currents by caffeine.

    Directory of Open Access Journals (Sweden)

    Nicholas P Vyleta

    Full Text Available BACKGROUND: Caffeine stimulates calcium-induced calcium release (CICR in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. METHODOLOGY/PRINCIPAL FINDINGS: Using the whole-cell patch-clamp technique we found that caffeine (20 mM reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. CONCLUSIONS/SIGNIFICANCE: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.

  3. Angiopoietin1 inhibits mast cell activation and protects against anaphylaxis.

    Directory of Open Access Journals (Sweden)

    Jun-Hua Yao

    Full Text Available Since morbidity and mortality rates of anaphylaxis diseases have been increasing year by year, how to prevent and manage these diseases effectively has become an important issue. Mast cells play a central regulatory role in allergic diseases. Angiopoietin1 (Ang-1 exhibits anti-inflammatory properties by inhibiting vascular permeability, leukocyte migration and cytokine production. However, Ang-1's function in mast cell activation and anaphylaxis diseases is unknown. The results of our study suggest that Ang-1 decreased lipopolysaccharide (LPS-induced pro-inflammatory cytokines production of mast cells by suppressing IκB phosphorylation and NF-κB nuclear translocation. Ang-1 also strongly inhibited compound 48/80 induced and FcεRI-mediated mast cells degranulation by decreasing intracellular calcium levels in vitro. In vivo lentivirus-mediated delivery of Ang-1 in mice exhibited alleviated leakage in IgE-dependent passive cutaneous anaphylaxis (PCA. Furthermore, exogenous Ang-1 intervention treatment prevented mice from compound 48/80-induced mesentery mast cell degranulation, attenuated increases in pro-inflammatory cytokines, relieved lung injury, and improved survival in anaphylaxis shock. The results of our study reveal, for the first time, the important role of Ang-1 in the activation of mast cells, and identify a therapeutic effect of Ang-1 on anaphylaxis diseases.

  4. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Ahnen Dennis

    2005-01-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  5. Inhibition of myeloperoxidase and antioxidative activity of Gentiana lutea extracts.

    Science.gov (United States)

    Nastasijević, Branislav; Lazarević-Pašti, Tamara; Dimitrijević-Branković, Suzana; Pašti, Igor; Vujačić, Ana; Joksić, Gordana; Vasić, Vesna

    2012-07-01

    The aim of this study was to investigate the inhibitory activity of Gentiana lutea extracts on the enzyme myeloperoxidase (MPO), as well as the antioxidant activity of these extracts and their correlation with the total polyphenol content. Extracts were prepared using methanol (100%), water and ethanol aqueous solutions (96, 75, 50 and 25%v/v) as solvents for extraction. Also, isovitexin, amarogentin and gentiopicroside, pharmacologically active constituents of G. lutea were tested as potential inhibitors of MPO. Antioxidant activity of extracts was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging test and also using cyclic voltammetry (CV). Among all extracts, the antioxidant capacity of 50% ethanol aqueous extract was the highest, both when measured using the DPPH test, with IC(50)=20.6 μg/ml, and when using CV. Also, 50% ethanol extract, showed the best inhibition of MPO activity in comparison with other extracts. In the group of the selected G. lutea constituents, gentiopicroside has proved to be the strongest inhibitor of MPO, with IC(50)=0.8 μg/ml. Also, the concentration of G. lutea constituents were determined in all extracts, using Ultra Performance Liquid Chromatography (UPLC). Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells.

    Science.gov (United States)

    Sozio, Margaret S; Lu, Changyue; Zeng, Yan; Liangpunsakul, Suthat; Crabb, David W

    2011-10-01

    AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α) are critical regulators of short-term and long-term fatty acid oxidation, respectively. We examined whether the activities of these molecules were coordinately regulated. H4IIEC3 cells were transfected with PPAR-α and PPAR-γ expression plasmids and a peroxisome-proliferator-response element (PPRE) luciferase reporter plasmid. The cells were treated with PPAR agonists (WY-14,643 and rosiglitazone), AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAR) and metformin, and the AMPK inhibitor compound C. Both AICAR and metformin decreased basal and WY-14,643-stimulated PPAR-α activity; compound C increased agonist-stimulated reporter activity and partially reversed the effect of the AMPK activators. Similar effects on PPAR-γ were seen, with both AICAR and metformin inhibiting PPRE reporter activity. Compound C increased basal PPAR-γ activity and rosiglitazone-stimulated activity. In contrast, retinoic acid receptor-α (RAR-α), another nuclear receptor that dimerizes with retinoid X receptor (RXR), was largely unaffected by the AMPK activators. Compound C modestly increased AM580 (an RAR agonist)-stimulated activity. The AMPK activators did not affect PPAR-α binding to DNA, and there was no consistent correlation between effects of the AMPK activators and inhibitor on PPAR and the nuclear localization of AMPK-α subunits. Expression of either a constitutively active or dominant negative AMPK-α inhibited basal and WY-14,643-stimulated PPAR-α activity and basal and rosiglitazone-stimulated PPAR-γ activity. We concluded that the AMPK activators AICAR and metformin inhibited transcriptional activities of PPAR-α and PPAR-γ, whereas inhibition of AMPK with compound C activated both PPARs. The effects of AMPK do not appear to be mediated through effects on RXR or on PPAR/RXR binding to DNA. These effects are independent of kinase activity and instead appear to

  7. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    Science.gov (United States)

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  8. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Der-Yuan Chen

    2013-01-01

    Full Text Available Dendritic cells (DCs play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM, a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS, proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs. These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases.

  9. Targeting the urokinase plasminogen activator receptor inhibits ovarian cancer metastasis.

    Science.gov (United States)

    Kenny, Hilary A; Leonhardt, Payton; Ladanyi, Andras; Yamada, S Diane; Montag, Anthony; Im, Hae Kyung; Jagadeeswaran, Sujatha; Shaw, David E; Mazar, Andrew P; Lengyel, Ernst

    2011-02-01

    To understand the functional and preclinical efficacy of targeting the urokinase plasminogen activator receptor (u-PAR) in ovarian cancer. Expression of u-PAR was studied in 162 epithelial ovarian cancers, including 77 pairs of corresponding primary and metastatic tumors. The effect of an antibody against u-PAR (ATN-658) on proliferation, adhesion, invasion, apoptosis, and migration was assessed in 3 (SKOV3ip1, HeyA8, and CaOV3) ovarian cancer cell lines. The impact of the u-PAR antibody on tumor weight, number, and survival was examined in corresponding ovarian cancer xenograft models and the mechanism by which ATN-658 blocks metastasis was explored. Only 8% of all ovarian tumors were negative for u-PAR expression. Treatment of SKOV3ip1, HeyA8, and CaOV3 ovarian cancer cell lines with the u-PAR antibody inhibited cell invasion, migration, and adhesion. In vivo, anti-u-PAR treatment reduced the number of tumors and tumor weight in CaOV3 and SKOV3ip1 xenografts and reduced tumor weight and increased survival in HeyA8 xenografts. Immunostaining of CaOV3 xenograft tumors and ovarian cancer cell lines showed an increase in active-caspase 3 and TUNEL staining. Treatment with u-PAR antibody inhibited α(5)-integrin and u-PAR colocalization on primary human omental extracellular matrix. Anti-u-PAR treatment also decreased the expression of urokinase, u-PAR, β(3)-integrin, and fibroblast growth factor receptor-1 both in vitro and in vivo. This study shows that an antibody against u-PAR reduces metastasis, induces apoptosis, and reduces the interaction between u-PAR and α(5)-integrin. This provides a rationale for targeting the u-PAR pathway in patients with ovarian cancer and for further testing of ATN-658 in this indication. ©2010 AACR.

  10. Activation of ice recrystallization inhibition activity of poly(vinyl alcohol) using a supramolecular trigger

    OpenAIRE

    Phillips, Daniel J.; Congdon, Thomas; Gibson, Matthew I.

    2016-01-01

    Antifreeze (glyco)proteins (AF(G)Ps) have potent ice recrystallisation inhibition (IRI) activity – a desirable phenomenon in applications such as cryopreservation, frozen food and more. In Nature AF(G)P activity is regulated by protein expression levels in response to an environmental stimulus; temperature. However, this level of regulation is not possible in synthetic systems. Here, a synthetic macromolecular mimic is introduced, using supramolecular assembly to regulate activity. Catechol-t...

  11. Inhibition of pectin methyl esterase activity by green tea catechins.

    Science.gov (United States)

    Lewis, Kristin C; Selzer, Tzvia; Shahar, Chen; Udi, Yael; Tworowski, Dmitry; Sagi, Irit

    2008-10-01

    Pectin methyl esterases (PMEs) and their endogenous inhibitors are involved in the regulation of many processes in plant physiology, ranging from tissue growth and fruit ripening to parasitic plant haustorial formation and host invasion. Thus, control of PME activity is critical for enhancing our understanding of plant physiological processes and regulation. Here, we report on the identification of epigallocatechin gallate (EGCG), a green tea component, as a natural inhibitor for pectin methyl esterases. In a gel assay for PME activity, EGCG blocked esterase activity of pure PME as well as PME extracts from citrus and from parasitic plants. Fluorometric tests were used to determine the IC50 for a synthetic substrate. Molecular docking analysis of PME and EGCG suggests close interaction of EGCG with the catalytic cleft of PME. Inhibition of PME by the green tea compound, EGCG, provides the means to study the diverse roles of PMEs in cell wall metabolism and plant development. In addition, this study introduces the use of EGCG as natural product to be used in the food industry and agriculture.

  12. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  13. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li

    2014-01-01

    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  14. Vanadate-induced inhibition of renin secretion is unrelated to inhibition Na,K-ATPase activity

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, P.C.; Rossi, N.F.; Churchill, M.C.; Ellis, V.R. (Wayne State Univ. School of Medicine, Detroit, MI (USA))

    1990-01-01

    There is evidence that three inhibitors of Na,K-ATPase activity-ouabain, K-free extracellular fluid, and vanadate--inhibit renin secretion by increasing Ca{sup 2+} concentration in juxtaglomerular cells, but in the case of vanadate, it is uncertain whether the increase in Ca{sup 2+} is due to a decrease in Ca{sup 2+} efflux or to an increase in Ca{sup 2+} influx through potential operated Ca channels. In the present experiments, the rat renal cortical slice preparation was used to compare and contrast the effects of ouabain, of K-free fluid, and of vanadate on renin secretion, in the absence and presence of methoxyverapamil, A Ca channel blocker. Basal renin secretory rate averaged 7.7 {plus minus} 0.3 GU/g/60 min, and secretory rate was reduced to nearly zero by 1 mM ouabain, by K-free fluid, by 0.5 mM vanadate, and by K-depolarization. Although 0.5 {mu}M methoxyverapamil completely blocked the inhibitory effect of K-depolarization, it failed to antagonize the inhibitory effects of ouabain, of K-free fluid, and of vanadate.

  15. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    Directory of Open Access Journals (Sweden)

    E. Kheradpezhouh

    2016-04-01

    Full Text Available Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2 channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E-1,7-bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione, a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.

  16. Inhibition of endothelial lipase activity by sphingomyelin in the lipoproteins.

    Science.gov (United States)

    Yang, Peng; Belikova, Natalia A; Billheimer, Jeff; Rader, Daniel J; Hill, John S; Subbaiah, Papasani V

    2014-10-01

    Endothelial lipase (EL) is a major determinant of plasma HDL concentration, its activity being inversely proportional to HDL levels. Although it is known that it preferentially acts on HDL compared to LDL and VLDL, the basis for this specificity is not known. Here we tested the hypothesis that sphingomyelin, a major phospholipid in lipoproteins is a physiological inhibitor of EL, and that the preference of the enzyme for HDL may be due to low sphingomyelin/phosphatidylcholine (PtdCho) ratio in HDL, compared to other lipoproteins. Using recombinant human EL, we showed that sphingomyelin inhibits the hydrolysis of PtdCho in the liposomes in a concentration-dependent manner. While the enzyme showed lower hydrolysis of LDL PtdCho, compared to HDL PtdCho, this difference disappeared after the degradation of lipoprotein sphingomyelin by bacterial sphingomyelinase. Analysis of molecular species of PtdCho hydrolyzed by EL in the lipoproteins showed that the enzyme preferentially hydrolyzed PtdCho containing polyunsaturated fatty acids (PUFA) such as 22:6, 20:5, 20:4 at the sn-2 position, generating the corresponding PUFA-lyso PtdCho. This specificity for PUFA-PtdCho species was not observed after depletion of sphingomyelin by sphingomyelinase. These results show that sphingomyelin not only plays a role in regulating EL activity, but also influences its specificity towards PtdCho species.

  17. Activation of Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol) using a Supramolecular Trigger†

    OpenAIRE

    Phillips, Daniel J.; Congdon, Thomas R.; Gibson, Matthew I.

    2016-01-01

    Antifreeze (glyco)proteins (AF(G)Ps) have potent ice recrystallisation inhibition (IRI) activity – a desirable phenomenon in applications such as cryopreservation, frozen food and more. In Nature AF(G)P activity is regulated by protein expression levels in response to an environmental stimulus; temperature. However, this level of regulation is not possible in synthetic systems. Here, a synthetic macromolecular mimic is introduced, using supramolecular assembly to regulate ac...

  18. DAX-1 Inhibits Hepatocellular Carcinoma Proliferation by Inhibiting β-Catenin Transcriptional Activity

    Directory of Open Access Journals (Sweden)

    Hong-Lei Jiang

    2014-08-01

    Full Text Available Background/Aims: Hepatocellular carcinoma (HCC represents the most common type of liver cancer. DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1, an atypical member of the nuclear receptor family due to lack of classical DNA-binding domains, has been known for its fundamental roles in the development, especially in the sex determination and steroidogenesis. Previous studies also showed that DAX-1 played a critical role in endocrine and sex steroid-dependent neoplasms such as adrenocortical, pituitary, endometrial, and ovarian tumors. However, its biological roles in the development of HCC remain largely unexplored. Methods: Real-time PCR and Western blot were used to detect the expression of DAX-1 in HCC tissues and cell lines. Immunoprecipitation (IP assay was used to show the interaction between DAX-1 and β-Catenin. Small interfering RNA (siRNA was used to silence the expression of DAX-1. BrdU incorporation and Cell-cycle assays were used to detect the role of DAX-1 in HCC cells proliferation. Migration and invasion assays were carried out to test the metastasis ability of DAX-1 in HCC cells. Results: In the present study, we found that mRNA and protein levels of DAX-1 were down-regulated in HCC tissues and cell lines. Furthermore, overexpression of DAX-1 could inhibit while its knockdown using small interfering RNA promoted cell proliferation in several HCC cell lines. At the molecular level, we demonstrated that DAX-1 could interact with β-Catenin and attenuate its transcriptional activity. Conclusion: Therefore, our results suggest a previously unknown DAX-1/β-Catenin molecular network controlling HCC development.

  19. A rhodanine derivative CCR-11 inhibits bacterial proliferation by inhibiting the assembly and GTPase activity of FtsZ.

    Science.gov (United States)

    Singh, Parminder; Jindal, Bhavya; Surolia, Avadhesha; Panda, Dulal

    2012-07-10

    A perturbation of FtsZ assembly dynamics has been shown to inhibit bacterial cytokinesis. In this study, the antibacterial activity of 151 rhodanine compounds was assayed using Bacillus subtilis cells. Of 151 compounds, eight strongly inhibited bacterial proliferation at 2 μM. Subsequently, we used the elongation of B. subtilis cells as a secondary screen to identify potential FtsZ-targeted antibacterial agents. We found that three compounds significantly increased bacterial cell length. One of the three compounds, namely, CCR-11 [(E)-2-thioxo-5-({[3-(trifluoromethyl)phenyl]furan-2-yl}methylene)thiazolidin-4-one], inhibited the assembly and GTPase activity of FtsZ in vitro. CCR-11 bound to FtsZ with a dissociation constant of 1.5 ± 0.3 μM. A docking analysis indicated that CCR-11 may bind to FtsZ in a cavity adjacent to the T7 loop and that short halogen-oxygen, H-bonding, and hydrophobic interactions might be important for the binding of CCR-11 with FtsZ. CCR-11 inhibited the proliferation of B. subtilis cells with a half-maximal inhibitory concentration (IC(50)) of 1.2 ± 0.2 μM and a minimal inhibitory concentration of 3 μM. It also potently inhibited proliferation of Mycobacterium smegmatis cells. Further, CCR-11 perturbed Z-ring formation in B. subtilis cells; however, it neither visibly affected nucleoid segregation nor altered the membrane integrity of the cells. CCR-11 inhibited HeLa cell proliferation with an IC(50) value of 18.1 ± 0.2 μM (∼15 × IC(50) of B. subtilis cell proliferation). The results suggested that CCR-11 inhibits bacterial cytokinesis by inhibiting FtsZ assembly, and it can be used as a lead molecule to develop FtsZ-targeted antibacterial agents.

  20. Phlorotannins from Alaskan Seaweed Inhibit Carbolytic Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Joshua Kellogg

    2014-10-01

    Full Text Available Global incidence of type 2 diabetes has escalated over the past few decades, necessitating a continued search for natural sources of enzyme inhibitors to offset postprandial hyperglycemia. The objective of this study was to evaluate coastal Alaskan seaweed inhibition of α-glucosidase and α-amylase, two carbolytic enzymes involved in serum glucose regulation. Of the six species initially screened, the brown seaweeds Fucus distichus and Alaria marginata possessed the strongest inhibitory effects. F. distichus fractions were potent mixed-mode inhibitors of α-glucosidase and α-amylase, with IC50 values of 0.89 and 13.9 μg/mL, respectively; significantly more efficacious than the pharmaceutical acarbose (IC50 of 112.0 and 137.8 μg/mL, respectively. The activity of F. distichus fractions was associated with phlorotannin oligomers. Normal-phase liquid chromatography-mass spectrometry (NPLC-MS was employed to characterize individual oligomers. Accurate masses and fragmentation patterns confirmed the presence of fucophloroethol structures with degrees of polymerization from 3 to 18 monomer units. These findings suggest that coastal Alaskan seaweeds are sources of α-glucosidase and α-amylase inhibitory phlorotannins, and thus have potential to limit the release of sugar from carbohydrates and thus alleviate postprandial hyperglycemia.

  1. Phlorotannins from Alaskan Seaweed Inhibit Carbolytic Enzyme Activity

    Science.gov (United States)

    Kellogg, Joshua; Grace, Mary H.; Lila, Mary Ann

    2014-01-01

    Global incidence of type 2 diabetes has escalated over the past few decades, necessitating a continued search for natural sources of enzyme inhibitors to offset postprandial hyperglycemia. The objective of this study was to evaluate coastal Alaskan seaweed inhibition of α-glucosidase and α-amylase, two carbolytic enzymes involved in serum glucose regulation. Of the six species initially screened, the brown seaweeds Fucus distichus and Alaria marginata possessed the strongest inhibitory effects. F. distichus fractions were potent mixed-mode inhibitors of α-glucosidase and α-amylase, with IC50 values of 0.89 and 13.9 μg/mL, respectively; significantly more efficacious than the pharmaceutical acarbose (IC50 of 112.0 and 137.8 μg/mL, respectively). The activity of F. distichus fractions was associated with phlorotannin oligomers. Normal-phase liquid chromatography-mass spectrometry (NPLC-MS) was employed to characterize individual oligomers. Accurate masses and fragmentation patterns confirmed the presence of fucophloroethol structures with degrees of polymerization from 3 to 18 monomer units. These findings suggest that coastal Alaskan seaweeds are sources of α-glucosidase and α-amylase inhibitory phlorotannins, and thus have potential to limit the release of sugar from carbohydrates and thus alleviate postprandial hyperglycemia. PMID:25341030

  2. Inhibition of calmodulin - regulated calcium pump activity in rat brain by toxaphene

    International Nuclear Information System (INIS)

    Trottman, C.H.; Moorthy, K.S.

    1986-01-01

    In vivo effects of toxaphene on calcium pump activity in rat brain synaptosomes was studied. Male Sprague-Dawley rats were dosed with toxaphene at 0,25,50, and 100 mg/kg/day for 3 days and sacrificed 24 h after last dose. Ca 2+ -ATPase activity and 45 Ca uptake were determined in brain P 2 fraction. Toxaphene inhibited both Ca 2+ -ATPase activity and 45 Ca 2+ uptake and the inhibition was dose dependent. Both substrate and Ca 2+ activation kinetics of Ca 2+ -ATPase indicated non-competitive type of inhibition as evidenced by decreased catalytic velocity but not enzyme-substrate affinity. The inhibited Ca 2+ -ATPase activity and Ca 2+ uptake were restored to normal level by exogenously added calmodulin which increased both velocity and affinity. The inhibition of Ca 2+ -ATPase activity and Ca 2+ uptake and restoration by calmodulin suggests that toxaphene may impair active calcium transport mechanisms by decreasing regulator protein calmodulin levels

  3. Melanogenesis inhibition activity of floralginsenoside A from Panax ginseng berry

    Directory of Open Access Journals (Sweden)

    Dae Young Lee

    2017-10-01

    Conclusion: FGA showed the most potent inhibition of melanogenesis in both in vitro and in vivo studies. This study suggests that FGA purified from P. ginseng may be an effective melanogenesis inhibitor.

  4. Inhibition of glutathione S-transferases (GSTs) activity from cowpea ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Inhibition effect of the plant extracts on the GST was studied by spectrophotometric method. The ... of assuring food security in developing countries like ..... studies on African cat fish (Clarias gariepinus) liver glutathione s-.

  5. Buprofezin inhibits acetylcholinesterase activity in B-biotype Bemisia tabaci.

    Science.gov (United States)

    Cottage, Emma L A; Gunning, Robin V

    2006-01-01

    B-biotype Bemisia tabaci is a severe insect pest worldwide in many ornamental, agricultural, and horticultural industries. Control of this insect is hampered by resistance to many acetylcholinesterase (AChE)-inhibiting insecticides, such as organophosphates and carbamates. Consequently, insect growth regulators such as buprofezin, which act by inhibiting chitin synthesis, are being investigated for use against B-biotype B. tabaci in Australia. This study discusses the effects of buprofezin on B. tabaciAChE.

  6. Behavioral inhibition and activation systems in traumatic brain injury.

    Science.gov (United States)

    Wong, Christina G; Rapport, Lisa J; Meachen, Sarah-Jane; Hanks, Robin A; Lumley, Mark A

    2016-11-01

    Personality has been linked to cognitive appraisal and health outcomes; however, research specific to traumatic brain injury (TBI) has been sparse. Gray's theory of behavioral inhibition system and behavioral activation system (BIS/BAS) offers a neurobiologic view of personality that may be especially relevant to neurobehavioral change associated with TBI. The present study examined theoretical and psychometric issues of using the BIS/BAS scale among adults with TBI as well as BIS/BAS personality correlates of TBI. Research Method/Design: Eighty-one adults with complicated-mild to severe TBI and 76 of their significant others (SOs) participated. Measures included the BIS/BAS scale, Positive and Negative Affect Schedule, and Awareness Questionnaire. Among adults with TBI, BIS/BAS internal consistency reliabilities were similar to those found in normative samples of adults without TBI. The TBI group endorsed significantly higher BAS than did the SO group, and injury severity was positively correlated to BAS. The SO group showed expected patterns of correlation between personality and affect; positive affect was associated with BAS, and negative affect with BIS. In contrast, in the TBI group, BAS was positively correlated to both positive and negative affect. Impaired awareness of abilities moderated the intensity of relationships between BIS/BAS and affect. TBI was associated with relatively intensified BAS (approach behavior) but not BIS (avoidance behavior). The observed pattern is consistent with the neurobiology of TBI-related personality change and with theory regarding the independence of the BIS and BAS systems. The BIS/BAS scale shows promise as a personality measure in TBI. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity

    Directory of Open Access Journals (Sweden)

    Dieter Wicher

    2007-12-01

    Full Text Available The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR, we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH: PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage.

  8. Antitumor and antimicrobial activities and inhibition of in-vitro lipid ...

    African Journals Online (AJOL)

    The antitumor activity was measured in DLA cell line induced mice. Inhibition of in vitro lipid peroxidation activity of the D. nobile in both liver homogenate and RBC ghosts was also carried out. The aqueous extracts of stem and flower of D. nobile showed better zone of bacterial inhibition than that of ethanol and chloroform

  9. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease

    NARCIS (Netherlands)

    Hommes, Daan; van den Blink, Bernt; Plasse, Terry; Bartelsman, Joep; Xu, Cuiping; Macpherson, Bret; Tytgat, Guido; Peppelenbosch, Mailkel; van Deventer, Sander

    2002-01-01

    Background & Aims: We investigated if inhibition of mitogen-activated protein kinases (MAPKs) was beneficial in Crohn's disease. Methods: Inhibition of JNK and p38 MAPK activation with CNI-1493, a guanylhydrazone, was tested in vitro. Twelve patients with severe Crohn's disease (mean baseline, CDAI

  10. Enhancement of hypoxia-activated prodrug TH-302 anti-tumor activity by Chk1 inhibition.

    Science.gov (United States)

    Meng, Fanying; Bhupathi, Deepthi; Sun, Jessica D; Liu, Qian; Ahluwalia, Dharmendra; Wang, Yan; Matteucci, Mark D; Hart, Charles P

    2015-05-21

    The hypoxia-activated prodrug TH-302 is reduced at its nitroimidazole group and selectively under hypoxic conditions releases the DNA cross-linker bromo-isophosphoramide mustard (Br-IPM). Here, we have explored the effect of Chk1 inhibition on TH-302-mediated pharmacological activities. We employed in vitro cell viability, DNA damage, cellular signaling assays and the in vivo HT29 human tumor xenograft model to study the effect of Chk1inhibition on TH-302 antitumor activities. TH-302 cytotoxicity is greatly enhanced by Chk1 inhibition in p53-deficient but not in p53-proficient human cancer cell lines. Chk1 inhibitors reduced TH-302-induced cell cycle arrest via blocking TH-302-induced decrease of phosphorylation of histone H3 and increasing Cdc2-Y15 phosphorylation. Employing the single-cell gel electrophoresis (comet) assay, we observed a potentiation of the TH-302 dependent tail moment. TH-302 induced γH2AX and apoptosis were also increased upon the addition of Chk1 inhibitor. Potentiation of TH-302 cytotoxicity by Chk1 inhibitor was only observed in cell lines proficient in, but not deficient in homology-directed DNA repair. We also show that combination treatment led to lowering of Rad51 expression levels as compared to either agent alone. In vivo data demonstrate that Chk1 inhibitor enhances TH-302 anti-tumor activity in p53 mutant HT-29 human tumor xenografts, supporting the hypothesis that these in vitro results can translate to enhanced in vivo efficacy of the combination. TH-302-mediated in vitro and in vivo anti-tumor activities were greatly enhanced by the addition of Chk1 inhibitors. The preclinical data presented in this study support a new approach for the treatment of p53-deficient hypoxic cancers by combining Chk1 inhibitors with the hypoxia-activated prodrug TH-302.

  11. Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro

    DEFF Research Database (Denmark)

    Vinggaard, A.M.; Hnida, C.; Breinholt, V.

    2000-01-01

    than 50 mu M. The positive control 4-hydroxyandrostendione (1 mu M) caused an inhibition of aromatase activity by 74%. The compounds, which did not affect the aromatase activity, were bromopropylate, chlorfenvinphos. chlorobenzilate, chlorpyrifos, diuron, heptachlor, iprodion, linuron, pentachlorphenol...

  12. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation.

    Science.gov (United States)

    Araujo, John C; Poblenz, Ann; Corn, Paul; Parikh, Nila U; Starbuck, Michael W; Thompson, Jerry T; Lee, Francis; Logothetis, Christopher J; Darnay, Bryant G

    2009-11-01

    Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.

  13. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    International Nuclear Information System (INIS)

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-01-01

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies

  14. Zinc ions bind to and inhibit activated protein C

    DEFF Research Database (Denmark)

    Zhu, Tianqing; Ubhayasekera, Wimal; Nickolaus, Noëlle

    2010-01-01

    fold enhanced, presumably due to the Ca2+-induced conformational change affecting the conformation of the Zn2+-binding site. The inhibition mechanism was non-competitive both in the absence and presence of Ca2+. Comparisons of sequences and structures suggested several possible sites for zinc binding...

  15. Inhibition of plasminogen activator inhibitor-1 activity results in promotion of endogenous thrombolysis and inhibition of thrombus extension in models of experimental thrombosis

    NARCIS (Netherlands)

    Levi, M. [=Marcel M.; Biemond, B. J.; van Zonneveld, A. J.; ten Cate, J. W.; Pannekoek, H.

    1992-01-01

    We investigated the effect of inhibition of plasminogen activator inhibitor-1 (PAI-1) activity by a murine monoclonal anti-human PAI-1 antibody (MAI-12) on in vitro thrombolysis and on in vivo thrombolysis and thrombus extension in an experimental animal model for thrombosis. Thrombolysis, mediated

  16. IN VITRO ANTIOXIDANT AND α-AMYLASE INHIBITION ACTIVITIES OF PANCHSAKAR CHURNA

    Directory of Open Access Journals (Sweden)

    Ashok Kumar B.S.

    2013-12-01

    Full Text Available Panchsakar Churna is the composition of Cassia angustifolia, Terminalia chebula, Zingiber officinale, Foeniculum vulgare and Saindhava lavana. Aqueous extract of churna was used to investigate antioxidant activity by ferrous ion chelating assay and ferric reducing power and alpha amylase inhibition activity by dinitrosalicylic acid method (DNSA. Aqueous extract of churna showed maximum ferrous chelating activity - 42.01 and ferric reducing power - 1.5 and 83.33 % of inhibition protein denaturation at 1000 µg/ml. Panchsakar churna showed significant antioxidant and alpha amylase inhibition activities.

  17. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Abhinav [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Venkatachalam, Avanthika [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India); Gideon, Daniel Andrew [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India)

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  18. Reversal of androgen inhibition of estrogen-activated sexual behavior by cholinergic agents.

    Science.gov (United States)

    Dohanich, G P; Cada, D A

    1989-12-01

    Androgens have been found to inhibit lordosis activated by estrogen treatment of ovariectomized female rats. In the present experiments, dihydrotestosterone propionate (200 micrograms for 3 days) inhibited the incidence of lordosis in ovariectomized females treated with estradiol benzoate (1 microgram for 3 days). This inhibition of lordosis was reversed 15 min after bilateral intraventricular infusion of physostigmine (10 micrograms/cannula), an acetylcholinesterase inhibitor, or carbachol (0.5 microgram/cannula), a cholinergic receptor agonist. This reversal of inhibition appears to be mediated by cholinergic muscarinic receptors since pretreatment with scopolamine (4 mg/kg, ip), a muscarinic receptor blocker, prevented the reversal of androgen inhibition by physostigmine. These results indicate that androgens may inhibit estrogen-activated lordosis through interference with central cholinergic muscarinic mechanisms.

  19. There is no free won't: antecedent brain activity predicts decisions to inhibit.

    Directory of Open Access Journals (Sweden)

    Elisa Filevich

    Full Text Available Inhibition of prepotent action is an important aspect of self-control, particularly in social contexts. Action inhibition and its neural bases have been extensively studied. However, the neural precursors of free decisions to inhibit have hardly been studied. We asked participants to freely choose to either make a rapid key press in response to a visual cue, or to transiently inhibit action, and briefly delay responding. The task required a behavioural response on each trial, so trials involving inhibition could be distinguished from those without inhibition as those showing slower reaction times. We used this criterion to classify free-choice trials as either rapid or inhibited/delayed. For 13 participants, we measured the mean amplitude of the ERP activity at electrode Cz in three subsequent 50 ms time windows prior to the onset of the signal that either instructed to respond or inhibit, or gave participants a free choice. In two of these 50 ms time windows (-150 to -100, and -100 to -50 ms relative to action onset, the amplitude of prestimulus ERP differed between trials where participants "freely" chose whether to inhibit or to respond rapidly. Larger prestimulus ERP amplitudes were associated with trials in which participants decided to act rapidly as compared to trials in which they decided to delay their responses. Last-moment decisions to inhibit or delay may depend on unconscious preparatory neural activity.

  20. Inhibition of Rac1 Activity in the Hippocampus Impairs the Forgetting of Contextual Fear Memory.

    Science.gov (United States)

    Jiang, Lizhu; Mao, Rongrong; Zhou, Qixin; Yang, Yuexiong; Cao, Jun; Ding, Yuqiang; Yang, Yuan; Zhang, Xia; Li, Lingjiang; Xu, Lin

    2016-03-01

    Fear is crucial for survival, whereas hypermnesia of fear can be detrimental. Inhibition of the Rac GTPase is recently reported to impair the forgetting of initially acquired memory in Drosophila. Here, we investigated whether inhibition of Rac1 activity in rat hippocampus could contribute to the hypermnesia of contextual fear. We found that spaced but not massed training of contextual fear conditioning caused inhibition of Rac1 activity in the hippocampus and heightened contextual fear. Furthermore, intrahippocampal injection of the Rac1 inhibitor NSC23766 heightened contextual fear in massed training, while Rac1 activator CN04-A weakened contextual fear in spaced training rats. Our study firstly demonstrates that contextual fear memory in rats is actively regulated by Rac1 activity in the hippocampus, which suggests that the forgetting impairment of traumatic events in posttraumatic stress disorder may be contributed to the pathological inhibition of Rac1 activity in the hippocampus.

  1. Mechanisms of Rose Bengal inhibition on SecA ATPase and ion channel activities.

    Science.gov (United States)

    Hsieh, Ying-Hsin; Huang, Ying-Ju; Jin, Jin-Shan; Yu, Liyan; Yang, Hsiuchin; Jiang, Chun; Wang, Binghe; Tai, Phang C

    2014-11-14

    SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG-SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg(2+), mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    Directory of Open Access Journals (Sweden)

    M. Ryan Smith

    2016-08-01

    Full Text Available Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP, decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231 breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC protein levels, although other protein levels were

  3. Inhibition of total oxygen uptake by silica nanoparticles in activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sibag, Mark [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Choi, Byeong-Gyu [School of Civil, Environmental and Architectural Engineering, Korea University, 145, Anam-ro, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Suh, Changwon [Energy Lab, Environment Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Kwan Hyung; Lee, Jae Woo [Department of Environmental Engineering and Program in Environmental Technology and Policy, Korea University, Sejong 339-700 (Korea, Republic of); Maeng, Sung Kyu [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Cho, Jinwoo, E-mail: jinwoocho@sejong.edu [Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of)

    2015-02-11

    Highlights: • Silica nanoparticles (SNP) inhibit total oxygen uptake in activated sludge. • Relatively smaller SNP are inhibitorier than larger SNP. • SNP alters C15:0, C16:0 and C18:0 in activated sludge fatty acid methyl ester profile. - Abstract: Nanoparticle toxicity to biological activities in activated sludge is largely unknown. Among the widely used nanoparticles, silica nanoparticles (SNP) have a limited number of studies associated with inhibition to the activated sludge process (ASP). We demonstrated SNP inhibition of activated sludge respiration through oxygen uptake rate (OUR) measurement. Based on the percentage inhibition of total oxygen consumption (I{sub T}), we observed that smaller SNPs (12 nm, I{sub T} = 33 ± 3%; 151 nm, I{sub T} = 23 ± 2%) were stronger inhibitors than larger SNPs (442 and 683 nm, I{sub T} = 5 ± 1%). Transmission electron micrographs showed that some of the SNPs were adsorbed on and/or apparently embedded somewhere in the microbial cell membrane. Whether SNPs are directly associated with the inhibition of total oxygen uptake warrants further studies. However, it is clear that SNPs statistically significantly altered the composition of microbial membrane lipids, which was more clearly described by principal component analysis and weighted Euclidian distance (PCA-ED) of the fatty acid methyl ester (FAME) data. This study suggests that SNPs potentially affect the biological activity in activated sludge through the inhibition of total oxygen uptake.

  4. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions

    Directory of Open Access Journals (Sweden)

    Tomás Herraiz

    2018-01-01

    Full Text Available Monoamine oxidase (MAO catalyzes the oxidative deamination of amines and neurotransmitters and is involved in mood disorders, depression, oxidative stress, and adverse pharmacological reactions. This work studies the inhibition of human MAO-A by Hypericum perforatum, Peganum harmala, and Lepidium meyenii, which are reported to improve and affect mood and mental conditions. Subsequently, the antioxidant activity associated with the inhibition of MAO is determined in plant extracts for the first time. H. perforatum inhibited human MAO-A, and extracts from flowers gave the highest inhibition (IC50 of 63.6 μg/mL. Plant extracts were analyzed by HPLC-DAD-MS and contained pseudohypericin, hypericin, hyperforin, adhyperforin, hyperfirin, and flavonoids. Hyperforin did not inhibit human MAO-A and hypericin was a poor inhibitor of this isoenzyme. Quercetin and flavonoids significantly contributed to MAO-A inhibition. P. harmala seed extracts highly inhibited MAO-A (IC50 of 49.9 μg/L, being a thousand times more potent than H. perforatum extracts owing to its content of β-carboline alkaloids (harmaline and harmine. L. meyenii root (maca extracts did not inhibit MAO-A. These plants may exert protective actions related to antioxidant effects. Results in this work show that P. harmala and H. perforatum extracts exhibit antioxidant activity associated with the inhibition of MAO (i.e., lower production of H2O2.

  5. ACE inhibition and antioxidant activity of different part of Channa striata prepared by various cooking method

    Science.gov (United States)

    Chasanah, E.; Budiari, S.; Thenawijaya, M.; Palupi, N. S.

    2018-03-01

    Channa striata (snakehead) extract has been known possessing positive activity, one of which is the ability to inhibit Angiotensin Converting Enzyme (ACE) activity in vitro. Aims of this study were to determine the effect of cooking and parts of C. striata, i.e. meat/fillet, gonad, skin, gill against the ACE inhibition activity and antioxidant activity in vitro. Heat processing methods used were direct boiling and indirect boiling and steamed at 100 °C for 10 min. ACE inhibition activity was analyzed using hippuryl-L-histidyl-L-leucine (HHL) as substrate and antioxidant activity was analyzed using DPPH method. The result shows that the higher the concentration of the extract (5 %, 20 %, 35 % and 50 %), the higher the antioxidant activity. The highest antioxidant activity was shown by gonad followed by meat extract, skin, and gill. Cooking treatment affected antioxidant activity, being the detrimental treatment were steam and direct boiling. The egg/gonad of C. striata showed the highest capability to inhibit ACE activity followed by meat/fillet, gill and skin. In concentration of 10 mg, extract of C. striata gonad was comparable to captopril, a commercial hypertension drug. While uncooked fillet showed the highest ACE inhibition activity followed by indirect boiling, direct boiling and steaming.

  6. GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production

    International Nuclear Information System (INIS)

    Wu, Yong-hong; Li, Quan; Li, Ping; Liu, Bei

    2016-01-01

    LPS stimulation in macrophages/monocytes induces TNFα production. We here tested the potential effect of GSK621, a novel AMP-activated protein kinase (AMPK) activator, against the process. In RAW264.7 macrophages, murine bone marrow-derived macrophages (BMDMs), and chronic obstructive pulmonary disease (COPD) patients' monocytes, GSK621 significantly inhibited LPS-induced TNFα protein secretion and mRNA synthesis. Inhibition of AMPK, through AMPKα shRNA knockdown or dominant negative mutation (T172A), almost abolished GSK621's suppression on TNFα in RAW264.7 cells. Reversely, forced-expression of a constitutively-active AMPKα (T172D) mimicked GSK621 actions and reduced LPS-induced TNFα production. Molecularly, GSK621 suppressed LPS-induced reactive oxygen species (ROS) production and nuclear factor kappa B (NFκB) activation. In vivo, GSK621 oral administration inhibited LPS-induced TNFα production and endotoxin shock in mice. In summary, GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production in macrophages/monocytes. - Highlights: • GSK621 inhibits LPS-induced TNFα production/expression in RAW264.7 cells and BMDMs. • GSK621 inhibits LPS-induced TNFα production/expression in COPD patients' PBMCs. • GSK621's inhibition on TNFα production by LPS requires AMPK activation. • GSK621 inhibits LPS-induced ROS production and NFκB activation, dependent on AMPK. • GSK621 oral administration inhibits LPS-induced TNFα production and endotoxin shock in mice.

  7. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas

    DEFF Research Database (Denmark)

    Efsen, Eva; Saermark, Torben; Hansen, Alastair

    2011-01-01

    from six controls were also included. Total functional MMP activity was measured by a high-pressure liquid chromatography (HPLC)-based, fluorogenic MMP-substrate cleavage assay, and the specific activity of MMP-2, -3 and -9 by the MMP Biotrak Activity Assay. The MMP inhibitors comprised ethylene...

  8. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas

    DEFF Research Database (Denmark)

    Efsen, Eva; Saermark, Torben; Hansen, Alastair

    2011-01-01

    Increased expression of matrix metalloproteinase (MMP)-2, -3 and -9 has been demonstrated in Crohn's disease fistulas, but it is unknown whether these enzymes are biologically active and represent a therapeutic target. Therefore, we investigated the proteolytic activity of MMPs in fistula tissue...... from six controls were also included. Total functional MMP activity was measured by a high-pressure liquid chromatography (HPLC)-based, fluorogenic MMP-substrate cleavage assay, and the specific activity of MMP-2, -3 and -9 by the MMP Biotrak Activity Assay. The MMP inhibitors comprised ethylene......-9.83) compared with non-Crohn's fistulas, [0.32 ng/ml, range 0-2.66, (p MMP-9 activity [0.64 ng/ml, range 0-5.66 and 0.17 ng/ml, range 0-1.1, respectively (p MMP activity level by 42% and suppressed the specific MMP-3...

  9. Adenovirus DNA binding protein inhibits SrCap-activated CBP and CREB-mediated transcription

    International Nuclear Information System (INIS)

    Xu Xiequn; Tarakanova, Vera; Chrivia, John; Yaciuk, Peter

    2003-01-01

    The SNF2-related CBP activator protein (SrCap) is a potent activator of transcription mediated by CBP and CREB. We have previously demonstrated that the Adenovirus 2 DNA Binding Protein (DBP) binds to SrCap and inhibits the transcription mediated by the carboxyl-terminal region of SrCap (amino acids 1275-2971). We report here that DBP inhibits the ability of full-length SrCap (1-2971) to activate transcription mediated by Gal-CREB and Gal-CBP. In addition, DBP also inhibits the ability of SrCap to enhance Protein Kinase A (PKA) activated transcription of the enkaphalin promoter. DBP was found to dramatically inhibit transcription of a mammalian two-hybrid system that was dependent on the interaction of SrCap and CBP binding domains. We also found that DBP has no effect on transcription mediated by a transcriptional activator that is not related to SrCap, indicating that our reported transcriptional inhibition is specific for SrCap and not due to nonspecific effects of DBP's DNA binding activity on the CAT reporter plasmid. Taken together, these results suggest a model in which DBP inhibits cellular transcription mediated by the interaction between SrCap and CBP

  10. The role of factor inhibiting HIF (FIH-1 in inhibiting HIF-1 transcriptional activity in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Enfeng Wang

    Full Text Available Glioblastoma multiforme (GBM accounts for about 38% of primary brain tumors in the United States. GBM is characterized by extensive angiogenesis induced by vascular growth factors and cytokines. The transcription of these growth factors and cytokines is regulated by the Hypoxia-Inducible-Factor-1(HIF-1, which is a key regulator mediating the cellular response to hypoxia. It is known that Factor Inhibiting HIF-1, or FIH-1, is also involved in the cellular response to hypoxia and has the capability to physically interact with HIF-1 and block its transcriptional activity under normoxic conditions. Delineation of the regulatory role of FIH-1 will help us to better understand the molecular mechanism responsible for tumor growth and progression and may lead to the design of new therapies targeting cellular pathways in response to hypoxia. Previous studies have shown that the chromosomal region of 10q24 containing the FIH-1 gene is often deleted in GBM, suggesting a role for the FIH-1 in GBM tumorigenesis and progression. In the current study, we found that FIH-1 is able to inhibit HIF-mediated transcription of GLUT1 and VEGF-A, even under hypoxic conditions in human glioblastoma cells. FIH-1 has been found to be more potent in inhibiting HIF function than PTEN. This observation points to the possibility that deletion of 10q23-24 and loss or decreased expression of FIH-1 gene may lead to a constitutive activation of HIF-1 activity, an alteration of HIF-1 targets such as GLUT-1 and VEGF-A, and may contribute to the survival of cancer cells in hypoxia and the development of hypervascularization observed in GBM. Therefore FIH-1 can be potential therapeutic target for the treatment of GBM patients with poor prognosis.

  11. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3 cell-induced osteoclast formation

    Science.gov (United States)

    Araujo, John C.; Poblenz, Ann; Corn, Paul G.; Parikh, Nila U.; Starbuck, Michael W.; Thompson, Jerry T.; Lee, Francis; Logothetis, Christopher J.; Darnay, Bryant G.

    2013-01-01

    Purpose Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Results Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC50 of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. Experimental design We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Conclusion Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases. PMID:19855158

  12. Differential Regulation of Telomerase Reverse Transcriptase Promoter Activation and Protein Degradation by Histone Deacetylase Inhibition.

    Science.gov (United States)

    Qing, Hua; Aono, Jun; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-06-01

    Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors. © 2015 Wiley Periodicals, Inc.

  13. Inhibition of transcriptional activity of c-JUN by SIRT1

    International Nuclear Information System (INIS)

    Gao Zhanguo; Ye Jianping

    2008-01-01

    c-JUN is a major component of heterodimer transcription factor AP-1 (Activator Protein-1) that activates gene transcription in cell proliferation, inflammation and stress responses. SIRT1 (Sirtuin 1) is a histone deacetylase that controls gene transcription through modification of chromatin structure. However, it is not clear if SIRT1 regulates c-JUN activity in the control of gene transcription. Here, we show that SIRT1 associated with c-JUN in co-immunoprecipitation of whole cell lysate, and inhibited the transcriptional activity of c-JUN in the mammalian two hybridization system. SIRT1 was found in the AP-1 response element in the matrix metalloproteinase-9 (MMP9) promoter DNA leading to inhibition of histone 3 acetylation as shown in a ChIP assay. The SIRT1 signal was reduced by the AP-1 activator PMA, and induced by the SIRT1 activator Resveratrol in the promoter DNA. SIRT1-mediaetd inhibition of AP-1 was demonstrated in the MMP9 gene expression at the gene promoter, mRNA and protein levels. In mouse embryonic fibroblast (MEF) with SIRT1 deficiency (SIRT1 -/- ), mRNA and protein of MMP9 were increased in the basal condition, and the inhibitory activity of Resveratrol was significantly attenuated. Glucose-induced MMP9 expression was also inhibited by SIRT1 in response to Resveratrol. These data consistently suggest that SIRT1 directly inhibits the transcriptional activity of AP-1 by targeting c-JUN

  14. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  15. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species

    International Nuclear Information System (INIS)

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg 2+ ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn 2+ ); and (3) by inducing reactive oxygen species (ROS). Hg 2+ causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn 2+ release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn 2+ or Hg 2+ . Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg 2+ -induced oxidation, because phosphatase activity is inhibited at concentrations of Hg 2+ that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system.

  16. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  17. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    International Nuclear Information System (INIS)

    Mena, Natalia P.; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C.; Nunez, Marco T.

    2011-01-01

    Highlights: → Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. → Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. → Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. → Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex

  18. NAC selectively inhibit cancer telomerase activity: A higher redox homeostasis threshold exists in cancer cells

    Directory of Open Access Journals (Sweden)

    Pengying Li

    2016-08-01

    Full Text Available Telomerase activity controls telomere length, and this plays an important role in stem cells, aging and tumors. Antioxidant was shown to protect telomerase activity in normal cells but inhibit that in cancer cells, but the underlying mechanism is elusive. Here we found that 7721 hepatoma cells held a higher redox homeostasis threshold than L02 normal liver cells which caused 7721 cells to have a higher demand for ROS; MnSOD over-expression in 7721 decreased endogenous reactive oxygen species (ROS and inhibited telomerase activity; Akt phosphorylation inhibitor and NAC both inhibited 7721 telomerase activity. The over-elimination of ROS by NAC resulted in the inhibition of Akt pathway. Our results suggest that ROS is involved in the regulation of cancer telomerase activity through Akt pathway. The different intracellular redox homeostasis and antioxidant system in normal cells and tumor cells may be the cause of the opposite effect on telomerase activity in response to NAC treatment. Our results provide a theoretical base of using antioxidants selectively inhibit cancer telomerase activity. Findings of the present study may provide insights into novel approaches for cancer treatment.

  19. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Carmen E Flores

    2014-10-01

    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  20. RKIP Inhibits Local Breast Cancer Invasion by Antagonizing the Transcriptional Activation of MMP13.

    Directory of Open Access Journals (Sweden)

    Ila Datar

    Full Text Available Raf Kinase Inhibitory Protein or RKIP was initially identified as a Raf-1 binding protein using the yeast 2-hybrid screen. RKIP inhibits the activation phosphorylation of MEK by Raf-1 by competitively inhibiting the binding of MEK to Raf-1 and thus exerting an inhibitory effect on the Raf-MEK-Erk pathway. RKIP has been identified as a metastasis suppressor gene. Expression of RKIP is low in cancer metastases. Although primary tumor growth remains unaffected, re- expression of RKIP inhibits cancer metastasis. Mechanistically, RKIP constrains metastasis by inhibiting angiogenesis, local invasion, intravasation, and colonization. The molecular mechanism of how RKIP inhibits these individual steps remains undefined. In our present study, using an unbiased PCR based screening and by analyzing DNA microarray expression datasets we observe that the expression of multiple metalloproteases (MMPs including MMP1, MMP3, MMP10 and MMP13 are negatively correlated with RKIP expression in breast cancer cell lines and clinical samples. Since expression of MMPs by cancer cells is important for cancer metastasis, we hypothesize that RKIP may mediate suppression of breast cancer metastasis by inhibiting multiple MMPs. We show that the expression signature of RKIP and MMPs is better at predicting high metastatic risk than the individual gene. Using a combination of loss- and gain-of-function approaches, we find that MMP13 is the cause of RKIP-mediated inhibition of local cancer invasion. Interestingly expression of MMP13 alone is not sufficient to reverse the inhibition of breast cancer cell metastasis to the lung due to the expression of RKIP. We find that RKIP negatively regulates MMP13 through the Erk2 signaling pathway and the repression of MMP13 by RKIP is transcription factor AP-1 independent. Together, our findings indicate that RKIP inhibits cancer cell invasion, in part, via MMP13 inhibition. These data also implicate RKIP in the regulation of MMP

  1. Sprouty regulates cell migration by inhibiting the activation of Rac1 GTPase

    International Nuclear Information System (INIS)

    Poppleton, Helen M.; Edwin, Francis; Jaggar, Laura; Ray, Ramesh; Johnson, Leonard R.; Patel, Tarun B.

    2004-01-01

    Sprouty (SPRY) protein negatively modulates fibroblast growth factor and epidermal growth factor actions. We showed that human SPRY2 inhibits cell growth and migration in response to serum and several growth factors. Using rat intestinal epithelial (IEC-6) cells, we investigated the involvement of the Rho family of GTPases, RhoA, Rac1, and cdc42 in SPRY2-mediated inhibition of cell migration and proliferation. The ability of TAT-tagged SPRY2 to inhibit proliferation and migration of IEC-6 cells transfected with constitutively active mutants of RhoA(G14V), Rac1(G12V), and cdc42 (F28L) was determined. Constitutively active RhoA(G14V), Rac1(G12V), or cdc42(F28L) did not protect cells from the anti-proliferative actions of TAT-SPRY2. The ability of TAT-hSPRY2 to inhibit migration was not altered by of RhoA(G14V) and cdc42(F28L). However, Rac1(G12V) obliterated the ability of SPRY2 to inhibit cell autonomous or serum-induced migration. Also, the activation of endogenous Rac1 was attenuated by TAT-SPRY2. Thus, SPRY2 mediates its anti-migratory actions by inhibiting Rac1 activation

  2. Comparable cortical activation with inferior performance in women during a novel cognitive inhibition task.

    Science.gov (United States)

    Halari, R; Kumari, V

    2005-03-07

    Men are hypothesised to perform better than women at tasks requiring cognitive inhibition. The present study applied whole-brain functional magnetic resonance imaging to investigate the neural correlates of cognitive inhibition using a novel task, requiring detection of numbers decreasing in numerical order, in relation to sex. The study involved 19 young healthy subjects (9 men, 10 women). Behavioural sex differences favouring men were found on the inhibition, but not on the automatization (i.e. detection of numbers increasing in numerical order), condition of the task. Significant areas of activation associated with cognitive inhibition included the right inferior prefrontal and bilateral dorsolateral prefrontal cortices, left inferior and superior parietal lobes, and bilateral temporal regions across men and women. No brain region was significantly differently activated in men and women. Our findings demonstrate that (a) cognitive inhibition is dependent on intact processes within frontal and parietal regions, and (b) women show inferior cognitive inhibition despite of comparable activation to men in relevant regions. Equated behavioural performance may elicit sex differences in brain activation.

  3. Inhibition of micturition reflex by activation of somatic afferents in posterior femoral cutaneous nerve.

    Science.gov (United States)

    Tai, Changfeng; Shen, Bing; Mally, Abhijith D; Zhang, Fan; Zhao, Shouguo; Wang, Jicheng; Roppolo, James R; de Groat, William C

    2012-10-01

    This study determined if activation of somatic afferents in posterior femoral cutaneous nerve (PFCN) could modulate the micturition reflex recorded under isovolumetric conditions in α-chloralose anaesthetized cats. PFCN stimulation inhibited reflex bladder activity and significantly (P acid (AA). The optimal frequency for PFCN stimulation-induced bladder inhibition was between 3 and 10 Hz, and a minimal stimulation intensity of half of the threshold for inducing anal twitching was required. Bilateral pudendal nerve transection eliminated PFCN stimulation-induced anal twitching but did not change the stimulation-induced bladder inhibition, excluding the involvement of pudendal afferent or efferent axons in PFCN afferent inhibition.Mechanical or electrical stimulation on the skin surface in the PFCN dermatome also inhibited bladder activity. Prolonged (2 × 30 min) PFCN stimulation induced a post-stimulation inhibition that persists for at least 2 h. This study revealed a new cutaneous-bladder reflex activated by PFCN afferents. Although the mechanisms and physiological functions of this cutaneous-bladder reflex need to be further studied, our data raise the possibility that stimulation of PFCN afferents might be useful clinically for the treatment of overactive bladder symptoms.

  4. Reactive oxygen species inhibit catalytic activity of peptidylarginine deiminase

    DEFF Research Database (Denmark)

    Damgaard, Dres; Bjørn, Mads Emil; Jensen, Peter Østrup

    2017-01-01

    on calcium and reducing conditions. However, reactive oxygen species (ROS) have been shown to induce citrullination of histones in granulocytes. Here we examine the ability of H2O2 and leukocyte-derived ROS to regulate PAD activity using citrullination of fibrinogen as read-out. H2O2 at concentrations above...... from stimulated leukocytes was unaffected by exogenously added H2O2 at concentrations up to 1000 µM. The role of ROS in regulating PAD activity may play an important part in preventing hypercitrullination of proteins....

  5. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat.

    Science.gov (United States)

    Choi, Sin Young; Kee, Hae Jin; Jin, Li; Ryu, Yuhee; Sun, Simei; Kim, Gwi Ran; Jeong, Myung Ho

    2018-05-01

    Histone deacetylase (HDAC) inhibitors are gaining increasing attention as potential therapeutics for cardiovascular diseases as well as cancer. We recently reported that the class II HDAC inhibitor, MC1568, and the phytochemical, gallic acid, lowered high blood pressure in mouse models of hypertension. We hypothesized that class II HDACs may be involved in the regulation of hypertension. The aim of this study was to determine and compare the effects of well-known HDAC inhibitors (TMP269, panobinostat, and MC1568), phytochemicals (gallic acid, sulforaphane, and piceatannol), and anti-hypertensive drugs (losartan, carvedilol, and furosemide) on activities of class IIa HDACs (HDAC4, 5, 7, and 9). The selective class IIa HDAC inhibitor, TMP269, and the pan-HDAC inhibitor, panobinostat, but not MC1568, clearly inhibited class IIa HDAC activities. Among the three phytochemicals, gallic acid showed remarkable inhibition, whereas sulforaphane presented mild inhibition of class IIa HDACs. Piceatannol inhibited only HDAC7 activity. As expected, the anti-hypertensive drugs losartan, carvedilol, and furosemide did not affect the activity of any class IIa HDAC. In addition, we evaluated the inhibitory effect of several compounds on the activity of class l HDACs (HDAC1, 2, 3, and 8) and class IIb HDAC (HDAC6). MC1568 did not affect the activities of HDAC1, HDAC2, and HDAC3, but it reduced the activity of HDAC8 at concentrations of 1 and 10 μM. Gallic acid weakly inhibited HDAC1 and HDAC6 activities, but strongly inhibited HDAC8 activity with effectiveness comparable to that of trichostatin A. Inhibition of HDAC2 activity by sulforaphane was stronger than that by piceatnnaol. These results indicated that gallic acid is a powerful dietary inhibitor of HDAC8 and class IIa/b HDAC activities. Sulforaphane may also be used as a dietary inhibitor of HDAC2 and class IIa HDAC. Our findings suggest that the class II HDAC inhibitor, MC1568, does not inhibit class IIa HDAC, but inhibits

  6. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    International Nuclear Information System (INIS)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivates a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release

  7. CYTOTOXIC, α-CHYMOTRYPSIN AND UREASE INHIBITION ACTIVITIES OF THE PLANT Heliotropium dasycarpum L.

    Science.gov (United States)

    Ghaffari, Muhammad Abuzar; Chaudhary, Bashir Ahmed; Uzair, Muhammad; Ashfaq, Khuram

    2016-01-01

    The aim of this study was to investigate Cytotoxic, α-Chymotrypsin and Urease inhibition activities of the plant Heliotropium dasycarpum . Dichloromethane and methanol extracts of the plant were evaluated for cytotoxic, α-Chymotrypsin and Urease inhibition by using in vivo Brine Shrimp lethality bioassay and in vitro enzymatic inhibition assays respectively. The methanol extract of the plant exhibited significant cytotoxic activity. Out of 30 brine shrimp larvae, 2 (6%), 26 (86%) and 28 (93%) larvae were survived at concentration of 1000μg/ml, 100μg/ml and 10μg/ml respectively with LD50; 215.837. Similarly 21 (70%), 25 (83%), 29 (96%) larvae were survived of dichloromethane plant extract with LD50; 6170.64. The methanol and dichloromethane extract exhibited 10.50±0.18% and 41.51±0.15% α-chymotrypsin enzyme inhibition respectively with IC 50 values of greater than 500 μmol. The methanol extract showed 24.39±0.21% Urease enzyme inhibition with IC 50 values of greater than 400 μmol While dichloromethane extract has 11.46±0.09% enzyme inhibition with IC 50 values of greater than 500 μmol. The results clearly indicated that Heliotropium dasycarpum has cytotoxic potential and enzyme inhibition properties. Further study is needed to screen out antitumor and anti-ulcerative agents.

  8. Characterization and Antioxidant Properties of Six Algerian Propolis Extracts: Ethyl Acetate Extracts Inhibit Myeloperoxidase Activity

    Directory of Open Access Journals (Sweden)

    Yasmina Mokhtaria Boufadi

    2014-02-01

    Full Text Available Because propolis contains many types of antioxidant compounds such as polyphenols and flavonoids, it can be useful in preventing oxidative damages. Ethyl acetate extracts of propolis from several Algerian regions show high activity by scavenging free radicals, preventing lipid peroxidation and inhibiting myeloperoxidase (MPO. By fractioning and assaying ethyl acetate extracts, it was observed that both polyphenols and flavonoids contribute to these activities. A correlation was observed between the polyphenol content and the MPO inhibition. However, it seems that kaempferol, a flavonoid, contributes mainly to the MPO inhibition. This molecule is in a high amount in the ethyl acetate extract and demonstrates the best efficiency towards the enzyme with an inhibiting concentration at 50% of 4 ± 2 µM.

  9. Disposition, Metabolism and Histone Deacetylase and Acetyltransferase Inhibition Activity of Tetrahydrocurcumin and Other Curcuminoids

    Directory of Open Access Journals (Sweden)

    Júlia T. Novaes

    2017-10-01

    Full Text Available Tetrahydrocurcumin (THC, curcumin and calebin-A are curcuminoids found in turmeric (Curcuma longa. Curcuminoids have been established to have a variety of pharmacological activities and are used as natural health supplements. The purpose of this study was to identify the metabolism, excretion, antioxidant, anti-inflammatory and anticancer properties of these curcuminoids and to determine disposition of THC in rats after oral administration. We developed a UHPLC–MS/MS assay for THC in rat serum and urine. THC shows multiple redistribution phases with corresponding increases in urinary excretion rate. In-vitro antioxidant activity, histone deacetylase (HDAC activity, histone acetyltransferase (HAT activity and anti-inflammatory inhibitory activity were examined using commercial assay kits. Anticancer activity was determined in Sup-T1 lymphoma cells. Our results indicate THC was poorly absorbed after oral administration and primarily excreted via non-renal routes. All curcuminoids exhibited multiple pharmacological effects in vitro, including potent antioxidant activity as well as inhibition of CYP2C9, CYP3A4 and lipoxygenase activity without affecting the release of TNF-α. Unlike curcumin and calebin-A, THC did not inhibit HDAC1 and PCAF and displayed a weaker growth inhibition activity against Sup-T1 cells. We show evidence for the first time that curcumin and calebin-A inhibit HAT and PCAF, possibly through a Michael-addition mechanism.

  10. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation

    OpenAIRE

    Wang, Gene-Jack; Volkow, Nora D.; Telang, Frank; Jayne, Millard; Ma, Yeming; Pradhan, Kith; Zhu, Wei; Wong, Christopher T.; Thanos, Panayotis K.; Geliebter, Allan; Biegon, Anat; Fowler, Joanna S.

    2009-01-01

    Although impaired inhibitory control is linked to a broad spectrum of health problems, including obesity, the brain mechanism(s) underlying voluntary control of hunger are not well understood. We assessed the brain circuits involved in voluntary inhibition of hunger during food stimulation in 23 fasted men and women using PET and 2-deoxy-2[18F]fluoro-D-glucose (18FDG). In men, but not in women, food stimulation with inhibition significantly decreased activation in amygdala, hippocampus, insul...

  11. Inhibition by AA861 of prostaglandin E2 production by activated peritoneal macrophages of rat

    Energy Technology Data Exchange (ETDEWEB)

    Ohuchi, K; Watanabe, M; Taniguchi, J; Tsurufuji, S; Levine, L

    1983-10-01

    Prostaglandin E2 production by rat peritoneal activated macrophages was inhibited by AA861 which had been reported as a selective inhibitor of 5-lipoxygenase from guinea pig peritoneal leukocytes. At a dose of 3.06 microM, prostaglandin E2 production was decreased to 27% of control. No inhibition of the release of (3H)arachidonic acid from the prelabeled macrophages was observed at the dose.

  12. Inhibition by nucleosides of glucose-transport activity in human erythrocytes.

    OpenAIRE

    Jarvis, S M

    1988-01-01

    The interaction of nucleosides with the glucose carrier of human erythrocytes was examined by studying the effect of nucleosides on reversible cytochalasin B-binding activity and glucose transport. Adenosine, inosine and thymidine were more potent inhibitors of cytochalasin B binding to human erythrocyte membranes than was D-glucose [IC50 (concentration causing 50% inhibition) values of 10, 24, 28 and 38 mM respectively]. Moreover, low concentrations of thymidine and adenosine inhibited D-glu...

  13. Activation of protein kinase C inhibits synthesis and release of decidual prolactin

    International Nuclear Information System (INIS)

    Harman, I.; Costello, A.; Ganong, B.; Bell, R.M.; Handwerger, S.

    1986-01-01

    Activation of calcium-activated, phospholipid-dependent protein kinase C by diacylglycerol and phorbol esters has been shown to mediate release of hormones in many systems. To determine whether protein kinase C activation is also involved in the regulation of prolactin release from human decidual, the authors have examined the effects of various acylglycerols and phorbol esters on the synthesis and release of prolactin from cultured human decidual cells. sn-1,2-Dioctanolyglycerol (diC 8 ), which is known to stimulate protein kinase C in other systems, inhibited prolactin release in a dose-dependent manner with maximal inhibition of 53.1% at 100 μM. Diolein (100 μM), which also stimulates protein kinase C activity in some systems, inhibited prolactin release by 21.3%. Phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-didecanoate, and 4β-phorbol 12,13-dibutyrate, which activate protein kinase C in other systems, also inhibited the release of prolactin, which the protein kinase C inactivate 4α-phorbol-12,13-didecanoate was without effect. The inhibition of prolactin release was secondary to a decrease in prolactin synthesis. Although diC 8 and PMA inhibited the synthesis and release of prolactin, these agents had no effect on the synthesis or release of trichloroacetic acid-precipitable [ 35 S]methionine-labeled decidual proteins and did not cause the release of the cytosolic enzymes lactic dehydrogenase and alkaline phosphatase. DiC 8 and PMA stimulates the specific activity of protein kinase C in decidual tissue by 14.6 and 14.0-fold, respectively. The inhibition of the synthesis and release of prolactin by diC 8 and phorbol esters strongly implicates protein kinase C in the regulation of the production and release of prolactin from the decidua

  14. Inhibition of Pectin Methyl Esterase Activity By Green Tea Catechins

    OpenAIRE

    Sagi, Irit; Lewis, Kristin; Tworowski, Dmitry; Shahar, Chen; Selzer, Tzvia

    2008-01-01

    Pectin methyl esterases (PMEs) and their endogenous inhibitors are involved in the regulation of many processes in plant physiology, ranging from tissue growth and fruit ripening to parasitic plant haustorial formation and host invasion. Thus, control of PME activity is critical for enhancing our understanding of plant physiological processes and regulation. Here we report on the identification of epigallocatechin gallate (EGCG), a green tea component, as a natural inhibitor for pectin ...

  15. BLM and RMI1 alleviate RPA inhibition of TopoIIIα decatenase activity.

    Science.gov (United States)

    Yang, Jay; Bachrati, Csanad Z; Hickson, Ian D; Brown, Grant W

    2012-01-01

    RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIα complex. We investigated the effect of RPA on the ssDNA decatenase activity of topoisomerase IIIα. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIα. Complex formation between BLM, TopoIIIα, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species-specific interactions between RPA and BLM-TopoIIIα-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIα and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIα activity, promoting decatenation in the presence of RPA.

  16. BLM and RMI1 Alleviate RPA Inhibition of TopoIIIa Decatenase Activity

    DEFF Research Database (Denmark)

    Yang, Jay; Bachrati, Csanad Z; Hickson, Ian D

    2012-01-01

    RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIa complex. We investigated the effect of RPA on the ssDNA decatenase activity...... of topoisomerase IIIa. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIa. Complex formation between BLM, TopoIIIa, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species......-specific interactions between RPA and BLM-TopoIIIa-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIa and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIa activity, promoting...

  17. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Mei [Department of Pharmacy, Shanghai Institute of Health Sciences and Health School Attached to SJTU-SM, 279 Zhouzhu Road, Shanghai 201318 (China); Liu, Ya-Rong; Liu, Hai-Jun [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Fang, Chao, E-mail: fangchao100@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Hong-Zhuan, E-mail: hongzhuan_chen@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China)

    2014-11-15

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC.

  18. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    International Nuclear Information System (INIS)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin; Zhao, Mei; Liu, Ya-Rong; Liu, Hai-Jun; Fang, Chao; Chen, Hong-Zhuan

    2014-01-01

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC

  19. Salinity Inhibits Rice Seed Germination by Reducing α-Amylase Activity via Decreased Bioactive Gibberellin Content

    Directory of Open Access Journals (Sweden)

    Li Liu

    2018-03-01

    Full Text Available Seed germination plays important roles in the establishment of seedlings and their subsequent growth; however, seed germination is inhibited by salinity, and the inhibitory mechanism remains elusive. Our results indicate that NaCl treatment inhibits rice seed germination by decreasing the contents of bioactive gibberellins (GAs, such as GA1 and GA4, and that this inhibition can be rescued by exogenous bioactive GA application. To explore the mechanism of bioactive GA deficiency, the effect of NaCl on GA metabolic gene expression was investigated, revealing that expression of both GA biosynthetic genes and GA-inactivated genes was up-regulated by NaCl treatment. These results suggest that NaCl-induced bioactive GA deficiency is caused by up-regulated expression of GA-inactivated genes, and the up-regulated expression of GA biosynthetic genes might be a consequence of negative feedback regulation of the bioactive GA deficiency. Moreover, we provide evidence that NaCl-induced bioactive GA deficiency inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression. Additionally, exogenous bioactive GA rescues NaCl-inhibited seed germination by enhancing α-amylase activity. Thus, NaCl treatment reduces bioactive GA content through promotion of bioactive GA inactivation, which in turn inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression.

  20. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.

    Science.gov (United States)

    Wang, Hong; Hong, Jungil; Yang, Chung S

    2016-11-01

    The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo.

    Science.gov (United States)

    Yin, Gang; Fan, Jin; Zhou, Wei; Ding, Qingfeng; Zhang, Jun; Wu, Xuan; Tang, Pengyu; Zhou, Hao; Wan, Bowen; Yin, Guoyong

    2017-10-10

    mTOR is a valuable oncotarget for osteosarcoma. The anti-osteosarcoma activity by a novel mTOR kinase inhibitor, CZ415, was evaluated. We demonstrated that CZ415 potently inhibited survival and proliferation of known osteosarcoma cell lines (U2OS, MG-63 and SaOs2), and primary human osteosarcoma cells. Further, CZ415 provoked apoptosis and disrupted cell cycle progression in osteosarcoma cells. CZ415 treatment in osteosarcoma cells concurrently blocked mTORC1 and mTORC2 activation. Intriguingly, ERK-MAPK activation could be a major resistance factor of CZ415. ERK inhibition (by MEK162/U0126) or knockdown (by targeted ERK1/2 shRNAs) dramatically sensitized CZ415-induced osteosarcoma cell apoptosis. In vivo , CZ415 oral administration efficiently inhibited U2OS tumor growth in mice. Its activity was further potentiated with co-administration of MEK162. Collectively, we demonstrate that ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo . CZ415 could be further tested as a promising anti-osteosarcoma agent, alone or in combination of ERK inhibition.

  2. Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-alpha

    DEFF Research Database (Denmark)

    Jiang, G; den Hertog, J; Su, J

    1999-01-01

    that dimerization can negatively regulate activity, through the interaction of an inhibitory 'wedge' on one monomer with the catalytic cleft of domain 1 in the other monomer. Here we show that dimerization inhibits the activity of a full-length RPTP in vivo. We generated stable disulphide-bonded full...

  3. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion

    NARCIS (Netherlands)

    Smeets, P.A.M.; Vidarsdottir, S.; Graaf, de C.; Stafleu, A.; Osch, M.J.P.; Viergever, M.A.; Pijl, H.; Grond, van der J.

    2007-01-01

    Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. Am J Physiol Endocrinol Metab 293: E754-E758, 2007. First published June 12, 2007; doi:10.1152/ajpendo.00231.2007. - We previously showed that hypothalamic neuronal activity, as measured by the blood

  4. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition

    Directory of Open Access Journals (Sweden)

    Daniel Simon Razik

    2013-09-01

    Full Text Available In the central nervous system, GABA transporters (GATs very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM, reaching a level of 80% at 500-1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed towards an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.

  5. Toxoplasma gondii Actively Inhibits Neuronal Function in Chronically Infected Mice

    Science.gov (United States)

    Haroon, Fahad; Händel, Ulrike; Angenstein, Frank; Goldschmidt, Jürgen; Kreutzmann, Peter; Lison, Holger; Fischer, Klaus-Dieter; Scheich, Henning; Wetzel, Wolfram; Schlüter, Dirk; Budinger, Eike

    2012-01-01

    Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii–infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca2+) imaging studies revealed that tachyzoites actively manipulated Ca2+ signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca2+ uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca2+ stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host. PMID:22530040

  6. Toxoplasma gondii actively inhibits neuronal function in chronically infected mice.

    Directory of Open Access Journals (Sweden)

    Fahad Haroon

    Full Text Available Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii-infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca(2+ imaging studies revealed that tachyzoites actively manipulated Ca(2+ signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca(2+ uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca(2+ stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host.

  7. General Anesthesia Inhibits the Activity of the "Glymphatic System".

    Science.gov (United States)

    Gakuba, Clement; Gaberel, Thomas; Goursaud, Suzanne; Bourges, Jennifer; Di Palma, Camille; Quenault, Aurélien; de Lizarrondo, Sara Martinez; Vivien, Denis; Gauberti, Maxime

    2018-01-01

    INTRODUCTION: According to the "glymphatic system" hypothesis, brain waste clearance is mediated by a continuous replacement of the interstitial milieu by a bulk flow of cerebrospinal fluid (CSF). Previous reports suggested that this cerebral CSF circulation is only active during general anesthesia or sleep, an effect mediated by the dilatation of the extracellular space. Given the controversies regarding the plausibility of this phenomenon and the limitations of currently available methods to image the glymphatic system, we developed original whole-brain in vivo imaging methods to investigate the effects of general anesthesia on the brain CSF circulation. METHODS: We used magnetic resonance imaging (MRI) and near-infrared fluorescence imaging (NIRF) after injection of a paramagnetic contrast agent or a fluorescent dye in the cisterna magna, in order to investigate the impact of general anesthesia (isoflurane, ketamine or ketamine/xylazine) on the intracranial CSF circulation in mice. RESULTS: In vivo imaging allowed us to image CSF flow in awake and anesthetized mice and confirmed the existence of a brain-wide CSF circulation. Contrary to what was initially thought, we demonstrated that the parenchymal CSF circulation is mainly active during wakefulness and significantly impaired during general anesthesia. This effect was especially significant when high doses of anesthetic agent were used (3% isoflurane). These results were consistent across the different anesthesia regimens and imaging modalities. Moreover, we failed to detect a significant change in the brain extracellular water volume using diffusion weighted imaging in awake and anesthetized mice. CONCLUSION: The parenchymal diffusion of small molecular weight compounds from the CSF is active during wakefulness. General anesthesia has a negative impact on the intracranial CSF circulation, especially when using a high dose of anesthetic agent.

  8. Cocoa Procyanidins Suppress Transformation by Inhibiting Mitogen-activated Protein Kinase Kinase*S⃞

    Science.gov (United States)

    Kang, Nam Joo; Lee, Ki Won; Lee, Dong Eun; Rogozin, Evgeny A.; Bode, Ann M.; Lee, Hyong Joo; Dong, Zigang

    2008-01-01

    Cocoa was shown to inhibit chemically induced carcinogenesis in animals and exert antioxidant activity in humans. However, the molecular mechanisms of the chemopreventive potential of cocoa and its active ingredient(s) remain unknown. Here we report that cocoa procyanidins inhibit neoplastic cell transformation by suppressing the kinase activity of mitogen-activated protein kinase kinase (MEK). A cocoa procyanidin fraction (CPF) and procyanidin B2 at 5 μg/ml and 40 μm, respectively, inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal (JB6 P+) cells by 47 and 93%, respectively. The TPA-induced promoter activity and expression of cyclooxygenase-2, which is involved in tumor promotion and inflammation, were dose-dependently inhibited by CPF or procyanidin B2. The activation of activator protein-1 and nuclear factor-κB induced by TPA was also attenuated by CPF or procyanidin B2. The TPA-induced phosphorylation of MEK, extracellular signal-regulated kinase, and p90 ribosomal s6 kinase was suppressed by CPF or procyanidin B2. In vitro and ex vivo kinase assay data demonstrated that CPF or procyanidin B2 inhibited the kinase activity of MEK1 and directly bound with MEK1. CPF or procyanidin B2 suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are known to be involved in MEK/ERK signal activation. In contrast, theobromine (up to 80 μm) had no effect on TPA-induced transformation, cyclooxygenase-2 expression, the transactivation of activator protein-1 or nuclear factor-κB, or MEK. Notably, procyanidin B2 exerted stronger inhibitory effects compared with PD098059 (a well known pharmacological inhibitor of MEK) on MEK1 activity and neoplastic cell transformation. PMID:18519570

  9. Monoubiquitination Inhibits the Actin Bundling Activity of Fascin.

    Science.gov (United States)

    Lin, Shengchen; Lu, Shuang; Mulaj, Mentor; Fang, Bin; Keeley, Tyler; Wan, Lixin; Hao, Jihui; Muschol, Martin; Sun, Jianwei; Yang, Shengyu

    2016-12-30

    Fascin is an actin bundling protein that cross-links individual actin filaments into straight, compact, and stiff bundles, which are crucial for the formation of filopodia, stereocillia, and other finger-like membrane protrusions. The dysregulation of fascin has been implicated in cancer metastasis, hearing loss, and blindness. Here we identified monoubiquitination as a novel mechanism that regulates fascin bundling activity and dynamics. The monoubiquitination sites were identified to be Lys 247 and Lys 250 , two residues located in a positive charge patch at the actin binding site 2 of fascin. Using a chemical ubiquitination method, we synthesized chemically monoubiquitinated fascin and determined the effects of monoubiquitination on fascin bundling activity and dynamics. Our data demonstrated that monoubiquitination decreased the fascin bundling EC 50 , delayed the initiation of bundle assembly, and accelerated the disassembly of existing bundles. By analyzing the electrostatic properties on the solvent-accessible surface of fascin, we proposed that monoubiquitination introduced steric hindrance to interfere with the interaction between actin filaments and the positively charged patch at actin binding site 2. We also identified Smurf1 as a E3 ligase regulating the monoubiquitination of fascin. Our findings revealed a previously unidentified regulatory mechanism for fascin, which will have important implications for the understanding of actin bundle regulation under physiological and pathological conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Monoubiquitination Inhibits the Actin Bundling Activity of Fascin*

    Science.gov (United States)

    Lin, Shengchen; Lu, Shuang; Mulaj, Mentor; Fang, Bin; Keeley, Tyler; Wan, Lixin; Hao, Jihui; Muschol, Martin; Sun, Jianwei; Yang, Shengyu

    2016-01-01

    Fascin is an actin bundling protein that cross-links individual actin filaments into straight, compact, and stiff bundles, which are crucial for the formation of filopodia, stereocillia, and other finger-like membrane protrusions. The dysregulation of fascin has been implicated in cancer metastasis, hearing loss, and blindness. Here we identified monoubiquitination as a novel mechanism that regulates fascin bundling activity and dynamics. The monoubiquitination sites were identified to be Lys247 and Lys250, two residues located in a positive charge patch at the actin binding site 2 of fascin. Using a chemical ubiquitination method, we synthesized chemically monoubiquitinated fascin and determined the effects of monoubiquitination on fascin bundling activity and dynamics. Our data demonstrated that monoubiquitination decreased the fascin bundling EC50, delayed the initiation of bundle assembly, and accelerated the disassembly of existing bundles. By analyzing the electrostatic properties on the solvent-accessible surface of fascin, we proposed that monoubiquitination introduced steric hindrance to interfere with the interaction between actin filaments and the positively charged patch at actin binding site 2. We also identified Smurf1 as a E3 ligase regulating the monoubiquitination of fascin. Our findings revealed a previously unidentified regulatory mechanism for fascin, which will have important implications for the understanding of actin bundle regulation under physiological and pathological conditions. PMID:27879315

  11. Antimycobacterial and Photosynthetic Electron Transport Inhibiting Activity of Ring-Substituted 4-Arylamino-7-Chloroquinolinium Chlorides

    Directory of Open Access Journals (Sweden)

    Alois Cizek

    2013-09-01

    Full Text Available In this study, a series of twenty-five ring-substituted 4-arylamino-7-chloroquinolinium chlorides were prepared and characterized. The compounds were tested for their activity related to inhibition of photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts and also primary in vitro screening of the synthesized compounds was performed against mycobacterial species. 4-[(2-Bromophenylamino]-7-chloroquinolinium chloride showed high biological activity against M. marinum, M. kansasii, M. smegmatis and 7-chloro-4-[(2-methylphenylamino]quinolinium chloride demonstrated noteworthy biological activity against M. smegmatis and M. avium subsp. paratuberculosis. The most effective compounds demonstrated quite low toxicity (LD50 > 20 μmol/L against the human monocytic leukemia THP-1 cell line within preliminary in vitro cytotoxicity screening. The tested compounds were found to inhibit PET in photosystem II. The PET-inhibiting activity expressed by IC50 value of the most active compound 7-chloro-4-[(3-trifluoromethylphenylamino]quinolinium chloride was 27 μmol/L and PET-inhibiting activity of ortho-substituted compounds was significantly lower than this of meta- and para-substituted ones. The structure-activity relationships are discussed for all compounds.

  12. Genistein inhibited ammonia induced astrocyte swelling by inhibiting NF-κB activation-mediated nitric oxide formation.

    Science.gov (United States)

    Dai, Hongliang; Jia, Guizhi; Wang, Wei; Liang, Chunguang; Han, Siyu; Chu, Minghui; Mei, Xifan

    2017-06-01

    Our previous study has indicated the involvement of epidermal growth factor receptor (EGFR) transactivation in ammonia-induced astrocyte swelling, which represents a major pathogenesis of brain edema in hepatic encephalopathy. In this study, we examined the effect of genistein, a naturally occurred broad-spectrum protein tyrosine kinase (PTK) inhibitor, on ammonia-induced cell swelling. We found that genistein pretreatment significantly prevented ammonia-induced astrocyte swelling. Mechanistically, ammonia triggered EGFR/extracellular signal-regulated kinase (ERK) association and subsequent ERK phosphorylation were alleviated by genistein pretreatment. Moreover, ammonia-induced NF-κB nuclear location, iNOS expression, and consequent NO production were all prevented by AG1478 and genistein pretreatment. This study suggested that genistein could alleviate ammonia-induced astrocyte swelling, which may be, at least partly, related to its PTK-inhibiting activity and repression of NF-κB mediated iNOS-derived NO accumulation.

  13. Triterpenoids from Ganoderma lucidum inhibit the activation of EBV antigens as telomerase inhibitors.

    Science.gov (United States)

    Zheng, Dong-Shu; Chen, Liang-Shu

    2017-10-01

    Nasopharyngeal carcinoma (NPC) is a malignant disease that threatens the health of humans. To find effective agents for the inhibition of Epstein-Barr virus (EBV) infection, which is associated with NPC, a phytochemical investigation of Ganoderma lucidum was carried out in the present study. Five triterpenoids were identified, including ganoderic acid A (compound 1), ganoderic acid B (compound 2), ganoderol B (compound 3), ganodermanontriol (compound 4), and ganodermanondiol (compound 5), on the basis of spectroscopic analysis. An inhibition of EBV antigens activation assay was implemented to elucidate the triterpenoids from G. lucidum and potentially prevent NPC. All the triterpenoids showed significant inhibitory effects on both EBV EA and CA activation at 16 nmol. At 3.2 nmol, all the compounds moderately inhibited the activation of the two antigens. The activity of telomerase was inhibited by these triterpenoids at 10 µM. Molecular docking demonstrated that compound 1 was able to inhibit telomerase as a ligand. In addition, the physicochemical properties of these compounds were calculated to elucidate their drug-like properties. These results provided evidence for the application of these triterpenoids and whole G. lucidum in the treatment of NPC.

  14. Concurrent inhibition of kit- and FcepsilonRI-mediated signaling: coordinated suppression of mast cell activation

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Beaven, Michael A; Iwaki, Shoko

    2008-01-01

    Although primarily required for the growth, differentiation, and survival of mast cells, Kit ligand (stem cell factor) is also required for optimal antigen-mediated mast cell activation. Therefore, concurrent inhibition of Kit- and FcepsilonRI-mediated signaling would be an attractive approach...... characterized Kit inhibitor imatinib mesylate (imatinib). In contrast to imatinib, however, hypothemycin also effectively inhibited FcepsilonRI-mediated degranulation and cytokine production in addition to the potentiation of these responses via Kit. The effect of hypothemycin on Kit-mediated responses could...... be explained by its inhibition of Kit kinase activity, whereas the inhibitory effects on FcepsilonRI-dependent signaling were at the level of Btk activation. Because hypothemycin also significantly reduced the mouse passive cutaneous anaphylaxis response in vivo, these data provide proof of principle...

  15. TRANSCRIPTIONAL INHIBITION OF INTERLEUKIN-12 PROMOTER ACTIVITY IN LEISHMANIA SPP.-INFECTED MACROPHAGES

    Science.gov (United States)

    Jayakumar, Asha; Widenmaier, Robyn; Ma, Xiaojing; McDowell, Mary Ann

    2009-01-01

    To establish and persist within a host, Leishmania spp. parasites delay the onset of cell-mediated immunity by suppressing interleukin-12 (IL-12) production from host macrophages. Although it is established that Leishmania spp.-infected macrophages have impaired IL-12 production, the mechanisms that account for this suppression remain to be completely elucidated. Using a luciferase reporter assay assessing IL-12 transcription, we report here that Leishmania major, Leishmania donovani, and Leishmania chagasi inhibit IL-12 transcription in response to interferon-gamma, lipopolysaccharide, and CD40 ligand and that Leishmania spp. lipophosphoglycan, phosphoglycans, and major surface protein are not necessary for inhibition. In addition, all the Leishmania spp. strains and life-cycle stages tested inhibited IL-12 promoter activity. Our data further reveal that autocrine-acting host factors play no role in the inhibitory response and that phagocytosis signaling is necessary for inhibition of IL-12. PMID:18372625

  16. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    International Nuclear Information System (INIS)

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-01-01

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li 2 CO 3 significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li 2 CO 3 did not affect PI3K-mediated PI(3,4,5)P 3 production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li 2 CO 3 on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li 2 CO 3 significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li 2 CO 3 significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity

  17. Anthrarobin and its derivatives: evaluation of antibacterial and lipoxygenase inhibition activities

    International Nuclear Information System (INIS)

    Lateef, M.; Iqbal, S.

    2013-01-01

    The antibacterial activity of anthrarobin and its synthesized derivatives 1, 10-dihydoxyanthracen-2-0-acetate (1) and anthracen-1, 2-10-tri-O-acetate (2) is determined against two Gram-negative bacteria (Escherichia coli, Pseudomonas aerogenosa) and two Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) along with the lipoxygenase inhibition activity. Gentamycin (0.3 %) was used as standard antibiotic for antibacterial assay. The minimum inhibitory concentration (MIC) was determined by agar well diffusion method. Anthrarobin showed highest antibacterial activity against all the tested bacteria while anthracen-1, 2-10-tri-0-acetate (2) exhibited 97 % activity against Gram-positive bacteria, Staphylococcus aureus, and; 36 % activity against Gram-negative bacteria Escherichia coli. On the other hand, 1, 10-dihydoxyanthracen-2-0-acetate (1) remained non-significant against all the bacteria tested. When anthrarobin and its derivatives were analyzed for lipoxygenase inhibition studies, only anthrarobin showed weak inhibition activity with IC 5 0 value of 65.2 μM. It is concluded that anthrarobin has significant potential for antibacterial activity as compared to its synthesized derivatives. Structure-activity relationship suggests that numbers of hydroxyl group in anthrarobin may be responsible for antimicrobial activity and the activity decreases with the substitution of acyl groups in synthesized derivatives. (author)

  18. Tanshinone IIA attenuates neuropathic pain via inhibiting glial activation and immune response.

    Science.gov (United States)

    Cao, Fa-Le; Xu, Min; Wang, Yan; Gong, Ke-Rui; Zhang, Jin-Tao

    2015-01-01

    Neuropathic pain, characterized by spontaneous pain, hyperalgesia and allodynia, is a devastating neurological disease that seriously affects patients' quality of life. We have previously shown that tanshinone IIA (TIIA), an important lipophilic component of Danshen, had significant anti-nociceptive effect in somatic and visceral pain, it is surprisingly noted that few pharmacological studies have been carried out to explore the possible analgesic action of TIIA on neuropathic pain and the underlying mechanisms. Therefore, in the present study, by using spinal nerve ligation (SNL) pain model, the antinociceptive and antihyperalgesic effects of TIIA on neuropathic pain were evaluated by intraperitoneal administration in rats. The results indicated that TIIA dose-dependently inhibited SNL-induced mechanical hyperalgesia. As revealed by OX42 levels, TIIA effectively repressed the activation of spinal microglial activation in SNL-induced neuropathic pain. Meanwhile, TIIA also decreased the expressions of inflammatory cytokines TNF-α and IL-1β in the spinal cord. Furthermore, TIIA inhibited oxidative stress by significantly rescuing the superoxide dismutase (SOD) activity and decreasing the malondialdehyde (MDA). Moreover, TIIA depressed SNL-induced MAPKs activation in spinal cord. Taken together, our study provides evidence that TIIA inhibited SNL-induced neuropathic pain through depressing microglial activation and immune response by the inhibition of mitogen-activated protein kinases (MAPKs) pathways. Our findings suggest that TIIA might be a promising agent in the treatment of neuropathic pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Punigratane, a novel pyrrolidine alkaloid from Punica granatum rind with putative efflux inhibition activity.

    Science.gov (United States)

    Rafiq, Zumaana; Narasimhan, Sreevidya; Vennila, Rosy; Vaidyanathan, Rama

    2016-02-25

    A new pyrrolidine alkaloid named Punigratane was isolated from the rind of Punica granatum. This is the first report of a pyrrolidine-like structure from the rind. The activity of this compound was tested in a representative MDR Klebsiella pneumoniae strain which exhibited high efflux pump activity. At a concentration of 6 mg, this compound Punigratane was found to have efflux inhibition activity.

  20. Fluoxetine Prevents Oligodendrocyte Cell Death by Inhibiting Microglia Activation after Spinal Cord Injury

    Science.gov (United States)

    Lee, Jee Y.; Kang, So R.

    2015-01-01

    Abstract Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans. PMID:25366938

  1. Liver δ-Aminolevulinate Dehydratase Activity is Inhibited by Neonicotinoids and Restored by Antioxidant Agents

    Directory of Open Access Journals (Sweden)

    Elisa Sauer

    2014-11-01

    Full Text Available Neonicotinoids represent the most used class of insecticides worldwide, and their precursor, imidacloprid, is the most widely marketed. The aim of this study was to evaluate the effect of imidacloprid on the activity of hepatic δ-aminolevulinate dehydratase (δ-ALA-D, protective effect of potential antioxidants against this potential effect and presence of chemical elements in the constitution of this pesticide. We observed that δ-ALA-D activity was significantly inhibited by imidacloprid at all concentrations tested in a dose-dependent manner. The IC50 value was obtained and used to evaluate the restoration of the enzymatic activity. δ-ALA-D inhibition was completely restored by addition of dithiotreitol (DTT and partly by ZnCl2, demonstrating that the inhibition occurs by oxidation of thiol groups and by displacement of the Zn (II, which can be explained by the presence of chemical elements found in the constitution of pesticides. Reduced glutathione (GSH had the best antioxidant effect against to δ-ALA-D inhibition caused by imidacloprid, followed by curcumin and resveratrol. It is well known that inhibition of the enzyme δ-ALA-D may result in accumulation of its neurotoxic substrate (δ-ALA, in this line, our results suggest that further studies are needed to investigate the possible neurotoxicity induced by neonicotinoids and the involvement of antioxidants in cases of poisoning by neonicotinoids.

  2. Potent inhibition of human neutrophil activations by bractelactone, a novel chalcone from Fissistigma bracteolatum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yang-Chang [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan (China); Sureshbabu, Munisamy; Fang, Yao-Ching; Wu, Yi-Hsiu [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Lan, Yu-Hsuan [School of Pharmacy, China Medical University, Taichung 404, Taiwan (China); Chang, Fang-Rong [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Ya-Wen [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China)

    2013-02-01

    Fissistigma bracteolatum is widely used in traditional medicine to treat inflammatory diseases. However, its active components and mechanisms of action remain unclear. In this study, (3Z)-6,7-dihydroxy-4-methoxy-3-(phenylmethylidene)-5-(3-phenylpropanoyl) -1-benzofuran-2(3H) (bractelactone), a novel chalcone from F. bracteolatum, showed potent inhibitory effects against superoxide anion (O{sub 2}{sup ·−}) production, elastase release, and CD11b expression in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced human neutrophils. However, bractelactone showed only weak inhibition of phorbol myristate acetate-caused O{sub 2}{sup ·−} production. The peak cytosolic calcium concentration ([Ca{sup 2+}]{sub i}) was unaltered by bractelactone in FMLP-induced neutrophils, but the decay time of [Ca{sup 2+}]{sub i} was significantly shortened. In a calcium-free solution, changes in [Ca{sup 2+}]{sub i} caused by the addition of extracellular Ca{sup 2+} were inhibited by bractelactone in FMLP-activated cells. In addition, bractelactone did not alter the phosphorylation of p38 MAPK, ERK, JNK, or AKT or the concentration of cAMP. These results suggest that bractelactone selectively inhibits store-operated calcium entry (SOCE). In agreement with this concept, bractelactone suppressed sustained [Ca{sup 2+}]{sub i} changes in thapsigargin-activated neutrophils. Furthermore, bractelactone did not alter FMLP-induced formation of inositol 1,4,5-triphosphate. Taken together, our results demonstrate that the anti-inflammatory effects of bractelactone, an active ingredient of F. bracteolatum, in human neutrophils are through the selective inhibition of SOCE. Highlights: ► Bractelactone isolated from Fissistigma bracteolatum. ► Bractelactone inhibited FMLP-induced human neutrophil activations. ► Bractelactone had no effect on IP3 formation. ► Bractelactone did not alter MAPKs, AKT, and cAMP pathways. ► Bractelactone inhibited store-operated calcium entry.

  3. Glaucocalyxin A inhibits platelet activation and thrombus formation preferentially via GPVI signaling pathway.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Platelets play a pivotal role in atherothrombosis and the antiplatelet agents have been proved to be useful in preventing onset of acute clinical events including myocardial infarction and stroke. Increasing number of natural compounds has been identified to be potential antiplatelet agents. Here we report the antiplatelet effect of glaucocalyxin A (GLA, an ent-diterpenoid that we isolated and purified from the aerial parts of Rabdosia japonica (Burm. f. var. glaucocalyx (Maxim. Hara, and investigate the molecular mechanisms by which GLA inhibits platelet activation and thrombus formation. The effect of GLA on platelet activation was measured using platelets freshly isolated from peripheral blood of healthy donors. Results showed that pretreatment of human platelets with lower concentrations of GLA (0.01 μg/ml, 0.1 μg/ml significantly inhibited platelet aggregation induced by collagen (P<0.001 and CRP (P<0.01, a synthetic GPVI ligand, but not by ADP and U46619. Accordingly, GLA inhibited collagen-stimulated tyrosine phosphorylation of Syk, LAT, and phospholipase Cγ2, the signaling events in collagen receptor GPⅥ pathway. GLA also inhibited platelet p-selectin secretion and integrin activation by convulxin, a GPVI selective ligand. Additionally, GLA was found to inhibit low-dose thrombin-induced platelet activation. Using a flow chamber device, GLA was found to attenuate platelet adhesion on collagen surfaces in high shear condition. In vivo studies showed that GLA administration increased the time for complete occlusion upon vascular injury in mice, but did not extend tail-bleeding time when mice were administered with relatively lower doses of GLA. Therefore, the present results provide the molecular basis for the inhibition effect of GLA on platelet activation and its in vivo effect on thrombus formation, suggesting that GLA could potentially be developed as an antiplatelet and antithrombotic agent.

  4. Locally formed dopamine inhibits Na+-K+-ATPase activity in rat renal cortical tubule cells

    International Nuclear Information System (INIS)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J.

    1988-01-01

    Dopamine, generated locally from L-dopa, inhibits Na + -K + -ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na + -K + -ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate (Qo 2 ) and 86 Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive Qo 2 or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive Qo 2 in a concentration-dependent manner, with half-maximal inhibition (K 0.5 ) of 5 x 10 -7 M and a maximal inhibition of 14.1 ± 1.5% at 10 -4 M. L-Dopa also blunted the nystatin-stimulated Qo 2 in a concentration-dependent manner, indicating the L-dopa directly inhibits Na + -K + -ATPase activity and not sodium entry. Ouabain-sensitive 86 Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive Qo 2 and 86 Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive Qo 2 at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na + -K + -ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner

  5. Costunolide inhibits proinflammatory cytokines and iNOS in activated murine BV2 microglia.

    Science.gov (United States)

    Rayan, Nirmala Arul; Baby, Nimmi; Pitchai, Daisy; Indraswari, Fransisca; Ling, Eng-Ang; Lu, Jia; Dheen, Thameem

    2011-06-01

    Costunolide, a sesquiterpene lactone present in Costus speciosus root exerts a variety of pharmacological activity but its effects on neuroinflammation have not been studied. Microglia, the resident phagocytic cells in the central nervous system respond to neuroinflammation and their overwhelming response in turn aggravate brain damage during infection, ischemia and neurodegenerative diseases. In this study, we report the effect of Costunolide on the production of proinflammatory mediators and mechanisms involved in BV2 microglial cells stimulated with LPS. Costunolide attenuated the expression of tumour necrosis factor-alpha, interleukin-1,6, inducible nitric oxide synthase, monocyte chemotactic protein 1 and cyclooxygenase 2 in activated microglia. This Costunolide-mediated inhibition was correspondent with the inhibition of NFkappaB activation. It has been further shown that Costunolide suppressed MAPK pathway activation by inducing MKP-1 production. Collectively our results suggest that Costunolide shows an ability to inhibit expression of multiple neuroinflammatory mediators and this is attributable to the compounds inhibition of NFkappaB and MAPK activation. This novel role of Costunolide upon investigation may aid in developing better therapeutic strategies for treatment of neuroinflammatory diseases.

  6. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway.

    Science.gov (United States)

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib's anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selecting of regorafenib. The anti-tumor effects of regorafenib on gastric cancer cells were analyzed via cell proliferation and invasion. The underlying mechanisms were demonstrated using molecular biology techniques. We found that regorafenib inhibited cell proliferation and invasion at the concentration of 20μmol/L and in a dose dependent manner. The anti-tumor effects of regorafenib related to the decreased expression of CXCR4, and elevated expression and activation of CXCR4 could reverse the inhibition effect of regorafenib on gastric cancer cells. Further studies revealed that regorafenib reduced the transcriptional activity of Wnt/β-Catenin pathway and led to decreased expression of Wnt pathway target genes, while overexpression and activation of CXCR4 could attenuate the inhibition effect of regorafenib on Wnt/β-Catenin pathway. Our findings demonstrated that regorafenib effectively inhibited cell proliferation and invasion of gastric cancer cells via decreasing the expression of CXCR4 and further reducing the transcriptional activity of Wnt/β-Catenin pathway.

  7. Optimal Fermentation Conditions of Hyaluronidase Inhibition Activity on Asparagus cochinchinensis Merrill by Weissella cibaria.

    Science.gov (United States)

    Kim, Minji; Kim, Won-Baek; Koo, Kyoung Yoon; Kim, Bo Ram; Kim, Doohyun; Lee, Seoyoun; Son, Hong Joo; Hwang, Dae Youn; Kim, Dong Seob; Lee, Chung Yeoul; Lee, Heeseob

    2017-04-28

    This study was conducted to evaluate the hyaluronidase (HAase) inhibition activity of Asparagus cochinchinesis (AC) extracts following fermentation by Weissella cibaria through response surface methodology. To optimize the HAase inhibition activity, a central composite design was introduced based on four variables: the concentration of AC extract ( X 1 : 1-5%), amount of starter culture ( X 2 : 1-5%), pH ( X 3 : 4-8), and fermentation time ( X 4 : 0-10 days). The experimental data were fitted to quadratic regression equations, the accuracy of the equations was analyzed by ANOVA, and the regression coefficients for the surface quadratic model of HAase inhibition activity in the fermented AC extract were estimated by the F test and the corresponding p values. The HAase inhibition activity indicated that fermentation time was most significant among the parameters within the conditions tested. To validate the model, two different conditions among those generated by the Design Expert program were selected. Under both conditions, predicted and experimental data agreed well. Moreover, the content of protodioscin (a well-known compound related to anti-inflammation activity) was elevated after fermentation of the AC extract at the optimized fermentation condition.

  8. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis

    Science.gov (United States)

    Takamura, Takeyuki; Harama, Daisuke; Fukumoto, Suguru; Nakamura, Yuki; Shimokawa, Naomi; Ishimaru, Kayoko; Ikegami, Shuji; Makino, Seiya; Kitamura, Masanori; Nakao, Atsuhito

    2011-01-01

    Increasing evidence suggests that the aryl hydrocarbon receptor (AhR) pathway has an important role in the regulation of inflammatory responses. Most recently, we have shown that the activation of the AhR pathway by a potent AhR agonist inhibits the development of dextran sodium sulfate (DSS)-induced colitis, a model of human ulcerative colitis, by the induction of prostaglandin E2 (PGE2) in the large intestine. Because several strains of probiotic lactic acid bacteria have been reported to inhibit DSS-induced colitis by unidentified mechanisms, we hypothesized that particular strains of lactic acid bacterium might have the potential to activate the AhR pathway, thereby inhibiting DSS-induced colitis. This study investigated whether there are specific lactic acid bacterial strains that can activate the AhR pathway, and if so, whether this AhR-activating potential is associated with suppression of DSS-induced colitis. By using AhR signaling reporter cells, we found that Lactobacillus bulgaricus OLL1181 had the potential to activate the AhR pathway. OLL1181 also induced the mRNA expression of cytochrome P450 family 1A1 (CYP1A1), a target gene of the AhR pathway, in human colon cells, which was inhibited by the addition of an AhR antagonist, α-naphthoflavon (αNF). In addition, mice treated orally with OLL1181 showed an increase in CYP1A1 mRNA expression in the large intestine and amelioration of DSS-induced colitis. Thus, OLL1181 can induce activation of the intestinal AhR pathway and inhibit DSS-induced colitis in mice. This strain of lactic acid bacterium has therefore the potential to activate the AhR pathway, which may be able to suppress colitis. PMID:21321579

  9. Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells.

    Science.gov (United States)

    Vitale, Ilio; Senovilla, Laura; Galluzzi, Lorenzo; Criollo, Alfredo; Vivet, Sonia; Castedo, Maria; Kroemer, Guido

    2008-07-01

    We have previously shown that tetraploid cancer cells succumb through a p53-dependent apoptotic pathway when checkpoint kinase 1 (Chk1) is depleted by small interfering RNAs (siRNAs) or inhibited with 7-hydroxystaurosporine (UCN-01). Here, we demonstrate that Chk1 inhibition results in the activating phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Depletion of p38 MAPK by transfection with a siRNA targeting the alpha isoform of p38 MAPK (p38alpha MAPK) abolishes the phosphorylation of p53 on serines 15 and 46 that is induced by Chk1 knockdown. The siRNA-mediated downregulation and pharmacological inhibition of p38alpha MAPK (with SB 203580) also reduces cell death induced by Chk1 knockdown or UCN-01. These results underscore the role of p38 MAPK as a pro-apoptotic kinase in the p53-dependant pathway for the therapeutic elimination of polyploidy cells.

  10. The inhibition of the Human Immunodeficiency Virus type 1 activity by crude and purified human pregnancy plug mucus and mucins in an inhibition assay

    Directory of Open Access Journals (Sweden)

    Schoeman Leann

    2008-05-01

    Full Text Available Abstract Background The female reproductive tract is amongst the main routes for Human Immunodeficiency Virus (HIV transmission. Cervical mucus however is known to protect the female reproductive tract from bacterial invasion and fluid loss and regulates and facilitates sperm transport to the upper reproductive tract. The purpose of this study was to purify and characterize pregnancy plug mucins and determine their anti-HIV-1 activity in an HIV inhibition assay. Methods Pregnancy plug mucins were purified by caesium chloride density-gradient ultra-centrifugation and characterized by Western blotting analysis. The anti-HIV-1 activities of the crude pregnancy plug mucus and purified pregnancy plug mucins was determined by incubating them with HIV-1 prior to infection of the human T lymphoblastoid cell line (CEM SS cells. Results The pregnancy plug mucus had MUC1, MUC2, MUC5AC and MUC5B. The HIV inhibition assay revealed that while the purified pregnancy plug mucins inhibit HIV-1 activity by approximately 97.5%, the crude pregnancy plug mucus failed to inhibit HIV-1 activity. Conclusion Although it is not clear why the crude sample did not inhibit HIV-1 activity, it may be that the amount of mucins in the crude pregnancy plug mucus (which contains water, mucins, lipids, nucleic acids, lactoferrin, lysozyme, immunoglobulins and ions, is insufficient to cause viral inhibition or aggregation.

  11. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    Science.gov (United States)

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity. Copyright (c) 2006 John Wiley & Sons, Ltd.

  12. Resveratrol inhibits Cdk5 activity through regulation of p35 expression

    Directory of Open Access Journals (Sweden)

    Kulkarni Ashok B

    2011-07-01

    Full Text Available Abstract Background We have previously reported that cyclin-dependent kinase 5 (Cdk5 participates in the regulation of nociceptive signaling. Through activation of the ERK1/2 pathway, Tumor Necrosis Factor-α (TNF-α induces expression of Egr-1. This results in the sustained and robust expression of p35, a coactivator of Cdk5, in PC12 cells, thereby increasing Cdk5 kinase activity. The aim of our present study was to test whether resveratrol, a polyphenolic compound with known analgesic activity, can regulate Cdk5/p35 activity. Results Here we used a cell-based assay in which a p35 promoter-luciferase construct was stably transfected in PC12 cells. Our studies demonstrate that resveratrol inhibits p35 promoter activity and also blocks the TNF-α mediated increase in Cdk5 activity in PC12 cells. Resveratrol also inhibits p35 expression and blocks the TNF-α mediated increase in Cdk5 activity in DRG neurons. In the presence of resveratrol, the MEK inhibitor decreased p35 promoter activity, whereas the inhibitors of p38 MAPK, JNK and NF-κB increased p35 promoter activity, indicating that these pathways regulate p35 expression differently. The TNF-α-mediated increase in Egr-1 expression was decreased by resveratrol treatment with a concomitant reduction in p35 expression and protein levels, resulting in reduced Cdk5 kinase activity. Conclusions We demonstrate here that resveratrol regulates p35 promoter activity in PC12 cells and DRG neurons. Most importantly, resveratrol blocks the TNF-α-mediated increase in p35 promoter activity, thereby reducing p35 expression and subsequent Cdk5 kinase activity. This new molecular mechanism adds to the known analgesic effects of resveratrol and confirms the need for identifying new analgesics based on their ability to inhibit Cdk5 activity for effective treatment of pain.

  13. Caffeine inhibition of GLUT1 is dependent on the activation state of the transporter.

    Science.gov (United States)

    Gunnink, Leesha K; Busscher, Brianna M; Wodarek, Jeremy A; Rosette, Kylee A; Strohbehn, Lauren E; Looyenga, Brendan D; Louters, Larry L

    2017-06-01

    Caffeine has been shown to be a robust uncompetitive inhibitor of glucose uptake in erythrocytes. It preferentially binds to the nucleotide-binding site on GLUT1 in its tetrameric form and mimics the inhibitory action of ATP. Here we demonstrate that caffeine is also a dose-dependent, uncompetitive inhibitor of 2-deoxyglucose (2DG) uptake in L929 fibroblasts. The inhibitory effect on 2DG uptake in these cells was reversible with a rapid onset and was additive to the competitive inhibitory effects of glucose itself, confirming that caffeine does not interfere with glucose binding. We also report for the first time that caffeine inhibition was additive to inhibition by curcumin, suggesting distinct binding sites for curcumin and caffeine. In contrast, caffeine inhibition was not additive to that of cytochalasin B, consistent with previous data that reported that these two inhibitors have overlapping binding sites. More importantly, we show that the magnitude of maximal caffeine inhibition in L929 cells is much lower than in erythrocytes (35% compared to 90%). Two epithelial cell lines, HCLE and HK2, have both higher concentrations of GLUT1 and increased basal 2DG uptake (3-4 fold) compared to L929 cells, and subsequently display greater maximal inhibition by caffeine (66-70%). Interestingly, activation of 2DG uptake (3-fold) in L929 cells by glucose deprivation shifted the responsiveness of these cells to caffeine inhibition (35%-70%) without a change in total GLUT1 concentration. These data indicate that the inhibition of caffeine is dependent on the activity state of GLUT1, not merely on the concentration. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation.

    Directory of Open Access Journals (Sweden)

    Nishi R Sharma

    2017-10-01

    Full Text Available TIA-1 positive stress granules (SG represent the storage sites of stalled mRNAs and are often associated with the cellular antiviral response. In this report, we provide evidence that Kaposi's sarcoma-associated herpesvirus (KSHV overcomes the host antiviral response by inhibition of SG formation via a viral lytic protein ORF57. By immunofluorescence analysis, we found that B lymphocytes with KSHV lytic infection are refractory to SG induction. KSHV ORF57, an essential post-transcriptional regulator of viral gene expression and the production of new viral progeny, inhibits SG formation induced experimentally by arsenite and poly I:C, but not by heat stress. KSHV ORF37 (vSOX bearing intrinsic endoribonuclease activity also inhibits arsenite-induced SG formation, but KSHV RTA, vIRF-2, ORF45, ORF59 and LANA exert no such function. ORF57 binds both PKR-activating protein (PACT and protein kinase R (PKR through their RNA-binding motifs and prevents PACT-PKR interaction in the PKR pathway which inhibits KSHV production. Consistently, knocking down PKR expression significantly promotes KSHV virion production. ORF57 interacts with PKR to inhibit PKR binding dsRNA and its autophosphorylation, leading to inhibition of eIF2α phosphorylation and SG formation. Homologous protein HSV-1 ICP27, but not EBV EB2, resembles KSHV ORF57 in the ability to block the PKR/eIF2α/SG pathway. In addition, KSHV ORF57 inhibits poly I:C-induced TLR3 phosphorylation. Altogether, our data provide the first evidence that KSHV ORF57 plays a role in modulating PKR/eIF2α/SG axis and enhances virus production during virus lytic infection.

  15. Novel dimeric bis(7)-tacrine proton-dependently inhibits NMDA-activated currents

    International Nuclear Information System (INIS)

    Luo, Jialie; Li, Wenming; Liu, Yuwei; Zhang, Wei; Fu, Hongjun; Lee, Nelson T.K.; Yu, Hua; Pang, Yuanping; Huang, Pingbo; Xia, Jun; Li, Zhi-Wang; Li, Chaoying; Han, Yifan

    2007-01-01

    Bis(7)-tacrine has been shown to prevent glutamate-induced neuronal apoptosis by blocking NMDA receptors. However, the characteristics of the inhibition have not been fully elucidated. In this study, we further characterize the features of bis(7)-tacrine inhibition of NMDA-activated current in cultured rat hippocampal neurons. The results show that with the increase of extracellular pH, the inhibitory effect decreases dramatically. At pH 8.0, the concentration-response curve of bis(7)-tacrine is shifted rightwards with the IC 50 value increased from 0.19 ± 0.03 μM to 0.41 ± 0.04 μM. In addition, bis(7)-tacrine shifts the proton inhibition curve rightwards. Furthermore, the inhibitory effect of bis(7)-tacrine is not altered by the presence of the NMDA receptor proton sensor shield spermidine. These results indicate that bis(7)-tacrine inhibits NMDA-activated current in a pH-dependent manner by sensitizing NMDA receptors to proton inhibition, rendering it potentially beneficial therapeutic effects under acidic conditions associated with stroke and ischemia

  16. Lactadherin inhibits secretory phospholipase A2 activity on pre-apoptotic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Steffen Nyegaard

    Full Text Available Secretory phospholipase A2 (sPLA2 is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2's do not bind to plasma membranes of quiescent cells but bind and digest phospholipids on the membranes of stimulated or apoptotic cells. The capacity of these phospholipases to digest membranes of stimulated or apoptotic cells correlates to the exposure of phosphatidylserine. In the present study, the ability of the phosphatidyl-L-serine-binding protein, lactadherin to inhibit phospholipase enzyme activity has been assessed. Inhibition of human secretory phospholipase A2-V on phospholipid vesicles exceeded 90%, whereas inhibition of Naja mossambica sPLA2 plateaued at 50-60%. Lactadherin inhibited 45% of activity of Naja mossambica sPLA2 and >70% of human secretory phospholipase A2-V on the membranes of human NB4 leukemia cells treated with calcium ionophore A23187. The data indicate that lactadherin may decrease inflammation by inhibiting sPLA2.

  17. Inhibition of APOBEC3G Activity Impedes Double-Strand DNA Repair

    Science.gov (United States)

    Prabhu, Ponnandy; Shandilya, Shivender; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A.; Kotler, Moshe

    2015-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in dsDNA damage, such as ionizing irradiation (IR) and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases sensitivity of lymphoma cells to IR. In the current study, we show that additional peptides derived from Vif, A3G and A3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, while, replacing a single amino acid in the LYYF motif completely abrogate inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break (DSB) repair after radiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit DSB repair halts their propagation. These results suggest that A3G may be a potential therapeutic target amenable to peptide and peptidomimetic inhibition. PMID:26460502

  18. Inhibition of APOBEC3G activity impedes double-stranded DNA repair.

    Science.gov (United States)

    Prabhu, Ponnandy; Shandilya, Shivender M D; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A; Kotler, Moshe

    2016-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ionizing radiation. In the current study, we show that additional peptides derived from Vif, A3G, and APOBEC3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, whereas replacing a single residue in the LYYF motif completely abrogates inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break repair after irradiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit double-strand break repair halts their propagation. These results suggest that A3G may be a potential therapeutic target that is amenable to peptide and peptidomimetic inhibition. © 2015 FEBS.

  19. B7-H4 Treatment of T Cells Inhibits ERK, JNK, p38, and AKT Activation.

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    Full Text Available B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3(+ T cells with a B7-H4.Ig fusion protein inhibits anti-CD3 elicited T-cell receptor (TCR/CD28 signaling events, including phosphorylation of the MAP kinases, ERK, p38, and JNK. B7-H4.Ig treatment also inhibited the phosphorylation of AKT kinase and impaired its kinase activity as assessed by the phosphorylation of its endogenous substrate GSK-3. Expression of IL-2 is also reduced by B7-H4. In contrast, the phosphorylation state of the TCR proximal tyrosine kinases ZAP70 and lymphocyte-specific protein tyrosine kinase (LCK are not affected by B7-H4 ligation. These results indicate that B7-H4 inhibits T-cell proliferation and IL-2 production through interfering with activation of ERK, JNK, and AKT, but not of ZAP70 or LCK.

  20. Speed-accuracy modulation in case of conflict: The roles of activation and inhibition

    NARCIS (Netherlands)

    Band, G.P.; Ridderinkhof, K.R.; van der Molen, M.W.

    2003-01-01

    This study investigated how the speed-accuracy balance is modulated by changes in the time course of motor activation and inhibition of a primed response. Responses and event-related brain potentials were recorded in a paradigm in which the first stimulus indicated the correct response with 80%

  1. Tiamulin inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of CD73.

    Science.gov (United States)

    Yang, Xu; Pei, Shimin; Wang, Huanan; Jin, Yipeng; Yu, Fang; Zhou, Bin; Zhang, Hong; Zhang, Di; Lin, Degui

    2017-04-11

    Metastasis is the leading cause of death in breast cancer patients. CD73, also known as ecto-5'-nucleotidase, plays a critical role in cancer development including metastasis. The existing researches indicate that overexpression of CD73 promotes growth and metastasis of breast cancer. Therefore, CD73 inhibitor can offer a promising treatment for breast cancer. Here, we determined whether tiamulin, which was found to inhibit CD73, was able to suppress breast cancer development and explored the related mechanisms. We firstly measured the effect of tiamulin hydrogen fumarate (THF) on CD73 using high performance liquid chromatography (HPLC). Then, we investigated cell proliferation, migration and invasion in MDA-MB-231 human breast cancer cell line and 4 T1 mouse breast cancer cell line treated with THF by migration assay, invasion assay and activity assay. Besides, we examined the effect of THF on syngeneic mammary tumors of mice by immunohistochemistry. Our data demonstrated that THF inhibited CD73 by decreasing the activity instead of the expression of CD73. In vitro, THF inhibited the proliferation, migration and invasion of MDA-MB-231 and 4 T1 cells by suppressing CD73 activity. In vivo, animal experiments showed that THF treatment resulted in significant reduction in syngeneic tumor growth, microvascular density and lung metastasis rate. Our results indicate that THF inhibits growth and metastasis of breast cancer by blocking the activity of CD73, which may offer a promising treatment for breast cancer therapy.

  2. Effect of pH, temperature and water activity on the inhibition of ...

    African Journals Online (AJOL)

    WiN 7

    2012-01-31

    Jan 31, 2012 ... Low values of water activity and acid pH were unfavourable for the growth inhibition. ... treatments, such as surface sterilization and high-dose irradiation ..... biological control of grey mould (Botrytis cinerea Pers.:Fr.) on fresh-.

  3. Potassium humate inhibits complement activation and the production of inflammatory cytokines in vitro

    Energy Technology Data Exchange (ETDEWEB)

    van Rensburg, C.E.J.; Naude, P.J. [University of Pretoria, Pretoria (South Africa)

    2009-08-15

    The effects of brown coal derived potassium humate on lymphocyte proliferation, cytokine production and complement activation were investigated in vitro. Potassium humate increased lymphocyte proliferation of phytohaemaglutinin A (PHA) and pokeweed mitogen (PWM) stimulated mononuclear lymphocytes (MNL) in vitro from concentrations of 20 to 80 {mu} g/ml, in a dose dependant manner. On the other hand potassium humate, at 40 {mu} g/ml, significantly inhibited the release of TNF-alpha, IL-1 beta, IL-6 and IL-10 by PHA stimulated MNL. Regarding complement activation it was found that potassium humate inhibits the activation of both the alternative and classical pathways without affecting the stability of the red blood cell membranes. These results indicate that the anti-inflammatory potential of potassium humate could be partially due to the inhibition of pro-inflammatory cytokines responsible for the initiation of these reactions as well as inhibition of complement activation. The increased lymphocyte proliferation observed, might be due to increased IL-2 production as previously been documented.

  4. Behavioral inhibition system (BIS), Behavioral activation system (BAS) and schizophrenia : Relationship with psychopathology and physiology

    NARCIS (Netherlands)

    Scholten, Marion R. M.; van Honk, Jack; Aleman, Andre; Kahn, Rene S.

    2006-01-01

    Objective: The Behavioral Inhibition System (BIS) and the Behavioral Activation System (BAS) have been conceptualized as two neural motivational systems that regulate sensitivity to punishment (BIS) and reward (BAS). Imbalance in BIS and BAS levels has been reported to be related to various forms of

  5. Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi

    Directory of Open Access Journals (Sweden)

    Matheus Thomaz Nogueira Silva Lima

    Full Text Available ABSTRACT Major health challenges as the increasing number of cases of infections by antibiotic multiresistant microorganisms and cases of Alzheimer's disease have led to searching new control drugs. The present study aims to verify a new way of obtaining bioactive extracts from filamentous fungi with potential antimicrobial and acetylcholinesterase inhibitory activities, using epigenetic modulation to promote the expression of genes commonly silenced. For such finality, five filamentous fungal species (Talaromyces funiculosus, Talaromyces islandicus, Talaromyces minioluteus, Talaromyces pinophilus, Penicillium janthinellum were grown or not with DNA methyltransferases inhibitors (procainamide or hydralazine and/or a histone deacetylase inhibitor (suberohydroxamic acid. Extracts from T. islandicus cultured or not with hydralazine inhibited Listeria monocytogenes growth in 57.66 ± 5.98% and 15.38 ± 1.99%, respectively. Increment in inhibition of acetylcholinesterase activity was observed for the extract from P. janthinellum grown with procainamide (100%, when compared to the control extract (39.62 ± 3.76%. Similarly, inhibition of acetylcholinesterase activity increased from 20.91 ± 3.90% (control to 92.20 ± 3.72% when the tested extract was obtained from T. pinophilus under a combination of suberohydroxamic acid and procainamide. Concluding, increases in antimicrobial activity and acetylcholinesterase inhibition were observed when fungal extracts in the presence of DNA methyltransferases and/or histone deacetylase modulators were tested.

  6. CCR 20th anniversary commentary: a chimeric antibody, C225, inhibits EGFR activation and tumor growth.

    Science.gov (United States)

    Mendelsohn, John; Prewett, Marie; Rockwell, Patricia; Goldstein, Neil I

    2015-01-15

    Murine mAb 225 was effective against the EGFR tyrosine kinase and inhibited tumor growth in preclinical studies. A phase I trial showed safety, tumor localization, and satisfactory pharmacokinetics. Human:murine chimeric C225 retained biologic activity, which was essential for the conduct of subsequent combination therapy trials and eventual regulatory approval. ©2015 American Association for Cancer Research.

  7. In vitro antioxidant and α-amylase inhibition activities of spiced red ...

    African Journals Online (AJOL)

    Spiced chili paste (green or red), locally known as Datta, is a traditional popular spicy paste consumed in Ethiopia. This study investigated the total phenolic contents (TPC), total flavonoid contents (TFC), in vitro antioxidant, and α-amylase inhibition activities of water, acetone, petroleum ether, methanol, and 80% methanol ...

  8. Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea

    Science.gov (United States)

    Li, Wenyan; Chen, Yan; Zhang, Shasha; Tang, Mingliang; Sun, Shan; Chai, Renjie; Li, Huawei

    2016-01-01

    Hair cell (HC) loss is the main cause of permanent hearing loss in mammals. Previous studies have reported that in neonatal mice cochleae, Wnt activation promotes supporting cell (SC) proliferation and Notch inhibition promotes the trans-differentiation of SCs into HCs. However, Wnt activation alone fails to regenerate significant amounts of new HCs, Notch inhibition alone regenerates the HCs at the cost of exhausting the SC population, which leads to the death of the newly regenerated HCs. Mitotic HC regeneration might preserve the SC number while regenerating the HCs, which could be a better approach for long-term HC regeneration. We present a two-step gene manipulation, Wnt activation followed by Notch inhibition, to accomplish mitotic regeneration of HCs while partially preserving the SC number. We show that Wnt activation followed by Notch inhibition strongly promotes the mitotic regeneration of new HCs in both normal and neomycin-damaged cochleae while partially preserving the SC number. Lineage tracing shows that the majority of the mitotically regenerated HCs are derived specifically from the Lgr5+ progenitors with or without HC damage. Our findings suggest that the co-regulation of Wnt and Notch signaling might provide a better approach to mitotically regenerate HCs from Lgr5+ progenitor cells. PMID:27564256

  9. Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats

    NARCIS (Netherlands)

    van Westerloo, D. J.; Giebelen, I. A. J.; Meijers, J. C. M.; Daalhuisen, J.; de Vos, A. F.; Levi, M. [=Marcel M.; van der Poll, T.

    2006-01-01

    BACKGROUND: Sepsis and endotoxemia are associated with concurrent activation of inflammation and the hemostatic mechanism, which both contribute to organ dysfunction and death. Electrical vagus nerve stimulation (VNS) has been found to inhibit tumor necrosis factor (TNF)-alpha release during

  10. Effects on atrial fibrillation in aged hypertensive rats by Ca(2+)-activated K(+) channel inhibition

    DEFF Research Database (Denmark)

    Diness, Jonas Goldin; Skibsbye, Lasse; Jespersen, Thomas

    2011-01-01

    We have shown previously that inhibition of small conductance Ca(2+)-activated K(+) (SK) channels is antiarrhythmic in models of acutely induced atrial fibrillation (AF). These models, however, do not take into account that AF derives from a wide range of predisposing factors, the most prevalent ...

  11. The dynamical mechanism of auto-inhibition of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Cheng Peng

    2011-07-01

    Full Text Available We use a novel normal mode analysis of an elastic network model drawn from configurations generated during microsecond all-atom molecular dynamics simulations to analyze the mechanism of auto-inhibition of AMP-activated protein kinase (AMPK. A recent X-ray and mutagenesis experiment (Chen, et al Nature 2009, 459, 1146 of the AMPK homolog S. Pombe sucrose non-fermenting 1 (SNF1 has proposed a new conformational switch model involving the movement of the kinase domain (KD between an inactive unphosphorylated open state and an active or semi-active phosphorylated closed state, mediated by the autoinhibitory domain (AID, and a similar mutagenesis study showed that rat AMPK has the same auto-inhibition mechanism. However, there is no direct dynamical evidence to support this model and it is not clear whether other functionally important local structural components are equally inhibited. By using the same SNF1 KD-AID fragment as that used in experiment, we show that AID inhibits the catalytic function by restraining the KD into an unproductive open conformation, thereby limiting local structural rearrangements, while mutations that disrupt the interactions between the KD and AID allow for both the local structural rearrangement and global interlobe conformational transition. Our calculations further show that the AID also greatly impacts the structuring and mobility of the activation loop.

  12. Inhibitory effect of ebselen on cerebral acetylcholinesterase activity in vitro: kinetics and reversibility of inhibition.

    Science.gov (United States)

    Martini, Franciele; Bruning, César Augusto; Soares, Suelen Mendonca; Nogueira, Cristina Wayne; Zeni, Gilson

    2015-01-01

    Ebselen is a synthetic organoselenium compound that has been considered a potential pharmacological agent with low toxicity, showing antioxidant, anti-inflammatory and neuroprotective effects. It is bioavailable, blood-brain barrier permeant and safe based on cellular toxicity and Phase I-III clinical trials. There is evidence that ebselen inhibits acetylcholinesterase (AChE) activity, an enzyme that plays a key role in the cholinergic system by hydrolyzing acetylcholine (ACh), in vitro and ex vivo. This system has a well-known relationship with cognitive process, and AChE inhibitors, such as donepezil and galantamine, have been used to treat cognitive deficits, mainly in the Alzheimer's Disease (AD). However, these drugs have poor bioavailability and a number of side effects, including gastrointestinal upsets and hepatotoxicity. In this way, this study aimed to evaluate the effect of ebselen on cerebral AChE activity in vitro and to determine the kinetic profile and the reversibility of inhibition by dialysis. Ebselen inhibited the cerebral AChE activity with an IC50 of 29 µM, similar to IC50 found with pure AChE from electric eel, demonstrating a mixed and reversible inhibition of AChE, since it increased Km and decreased Vmax. The AChE activity was recovered within 60 min of dialysis. Therefore, the use of ebselen as a therapeutic agent for treatment of AD should be considered, although memory behavior tasks are needed to support such hypothesis.

  13. Testosterone is inversely related to brain activity during emotional inhibition in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Ans Vercammen

    Full Text Available Sex steroids affect cognitive function as well as emotion processing and regulation. They may also play a role in the pathophysiology of schizophrenia. However, the effects of sex steroids on cognition and emotion-related brain activation in schizophrenia are poorly understood. Our aim was to determine the extent to which circulating testosterone relates to brain activation in men with schizophrenia compared to healthy men during cognitive-emotional processing. We assessed brain activation in 18 men with schizophrenia and 22 age-matched healthy men during an emotional go/no-go task using fMRI and measured total serum testosterone levels on the same morning. We performed an ROI analysis to assess the relationship between serum testosterone and brain activation, focusing on cortical regions involved the emotional go/no-go task. Slower RT and reduced accuracy was observed when participants responded to neutral stimuli, while inhibiting responses to negative stimuli. Healthy men showed a robust increase in activation of the middle frontal gyrus when inhibiting responses to negative stimuli, but there was no significant association between activation and serum testosterone level in healthy men. Men with schizophrenia showed a less pronounced increase in activation when inhibiting responses to negative stimuli; however, they did show a strong inverse association between serum testosterone level and activation of the bilateral middle frontal gyrus and left insula. Additionally, increased accuracy during inhibition of response to negative words was associated with both higher serum testosterone levels and decreased activation of the middle frontal gyrus in men with schizophrenia only. We conclude that endogenous hormone levels, even within the normal range, may play an enhanced modulatory role in determining the neural and behavioural response during cognitive-emotional processing in schizophrenia.

  14. 3-Bromopyruvate inhibits calcium uptake by sarcoplasmic reticulum vesicles but not SERCA ATP hydrolysis activity.

    Science.gov (United States)

    Jardim-Messeder, Douglas; Camacho-Pereira, Juliana; Galina, Antonio

    2012-05-01

    3-Bromopyruvate (3BrPA) is an antitumor agent that alkylates the thiol groups of enzymes and has been proposed as a treatment for neoplasias because of its specific reactivity with metabolic energy transducing enzymes in tumor cells. In this study, we show that the sarco/endoplasmic reticulum calcium (Ca(2+)) ATPase (SERCA) type 1 is one of the target enzymes of 3BrPA activity. Sarco/endoplasmic reticulum vesicles (SRV) were incubated in the presence of 1mM 3BrPA, which was unable to inhibit the ATPase activity of SERCA. However, Ca(2+)-uptake activity was significantly inhibited by 80% with 150 μM 3BrPA. These results indicate that 3BrPA has the ability to uncouple the ATP hydrolysis from the calcium transport activities. In addition, we observed that the inclusion of 2mM reduced glutathione (GSH) in the reaction medium with different 3BrPA concentrations promoted an increase in 40% in ATPase activity and protects the inhibition promoted by 3BrPA in calcium uptake activity. This derivatization is accompanied by a decrease of reduced cysteine (Cys), suggesting that GSH and 3BrPA increases SERCA activity and transport by pyruvylation and/or S-glutathiolation mediated by GSH at a critical Cys residues of the SERCA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    OpenAIRE

    Gideon C. Okpokwasili; Christian Okechukwu Nweke

    2010-01-01

    The toxicity of phenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol on Pseudomonas, Bacillus and Escherichia species isolated from petroleum refinery wastewater was assessed via inhibition of dehydrogenase enzyme activity. At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds inhibi...

  16. Dehydration-induced modulation of κ-opioid inhibition of vasopressin neurone activity

    Science.gov (United States)

    Scott, Victoria; Bishop, Valerie R; Leng, Gareth; Brown, Colin H

    2009-01-01

    Dehydration increases vasopressin (antidiuretic hormone) secretion from the posterior pituitary gland to reduce water loss in the urine. Vasopressin secretion is determined by action potential firing in vasopressin neurones, which can exhibit continuous, phasic (alternating periods of activity and silence), or irregular activity. Autocrine κ-opioid inhibition contributes to the generation of activity patterning of vasopressin neurones under basal conditions and so we used in vivo extracellular single unit recording to test the hypothesis that changes in autocrine κ-opioid inhibition drive changes in activity patterning of vasopressin neurones during dehydration. Dehydration increased the firing rate of rat vasopressin neurones displaying continuous activity (from 7.1 ± 0.5 to 9.0 ± 0.6 spikes s−1) and phasic activity (from 4.2 ± 0.7 to 7.8 ± 0.9 spikes s−1), but not those displaying irregular activity. The dehydration-induced increase in phasic activity was via an increase in intraburst firing rate. The selective κ-opioid receptor antagonist nor-binaltorphimine increased the firing rate of phasic neurones in non-dehydrated rats (from 3.4 ± 0.8 to 5.3 ± 0.6 spikes s−1) and dehydrated rats (from 6.4 ± 0.5 to 9.1 ± 1.2 spikes s−1), indicating that κ-opioid feedback inhibition of phasic bursts is maintained during dehydration. In a separate series of experiments, prodynorphin mRNA expression was increased in vasopressin neurones of hyperosmotic rats, compared to hypo-osmotic rats. Hence, it appears that dynorphin expression in vasopressin neurones undergoes dynamic changes in proportion to the required secretion of vasopressin so that, even under stimulated conditions, autocrine feedback inhibition of vasopressin neurones prevents over-excitation. PMID:19822541

  17. Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif.

    Directory of Open Access Journals (Sweden)

    Mei Ying Ng

    Full Text Available Cycle inhibiting factors (Cifs are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK signaling without significant activation of other signaling pathways downstream of receptor tyrosine kinases. Importantly, we found that the ability of Cif to activate ERK is dependent on its deamidase activity, but independent of Cullin E3 ligase inhibition. This suggests that apart from Nedd8, other cellular targets of Cif-dependent deamidation exist. We provide evidence that the mechanism involved in Cif-mediated ERK activation is dependent on recruitment of the Grb2-SOS1 complex to the plasma membrane. Further investigation revealed that Cif appears to modify the phosphorylation status of SOS1 in a region containing the CDC25-H and proline-rich domains. It is known that prolonged Cullin E3 ligase inhibition leads to cellular apoptosis. Therefore, we hypothesize that ERK activation is an important mechanism to counter the pro-apoptotic effects of Cif. Indeed, we show that Cif dependent ERK activation promotes phosphorylation of the proapoptotic protein Bim, thereby potentially conferring a pro-survival signal. In summary, we identified a novel deamidation-dependent mechanism of action of the B. pseudomallei virulence factor Cif/CHBP to activate MAPK/ERK signaling. Our study demonstrates that bacterial proteins such as Cif can serve as useful molecular tools to uncover novel aspects of mammalian signaling pathways.

  18. Rheb Inhibits Protein Synthesis by Activating the PERK-eIF2α Signaling Cascade

    Directory of Open Access Journals (Sweden)

    Richa Tyagi

    2015-02-01

    Full Text Available Rheb, a ubiquitous small GTPase, is well known to bind and activate mTOR, which augments protein synthesis. Inhibition of protein synthesis is also physiologically regulated. Thus, with cell stress, the unfolded protein response system leads to phosphorylation of the initiation factor eIF2α and arrest of protein synthesis. We now demonstrate a major role for Rheb in inhibiting protein synthesis by enhancing the phosphorylation of eIF2α by protein kinase-like ER kinase (PERK. Interplay between the stimulatory and inhibitory roles of Rheb may enable cells to modulate protein synthesis in response to varying environmental stresses.

  19. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    Science.gov (United States)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  20. Revisiting the mechanistic basis of the French Paradox: red wine inhibits the activity of protein disulfide isomerase in vitro

    Science.gov (United States)

    Galinski, Christine N.; Zwicker, Jeffrey I.; Kennedy, Daniel R.

    2015-01-01

    Introduction Although epidemiologic evidence points to cardioprotective activity of red wine, the mechanistic basis for antithrombotic activity has not been established. Quercetin and related flavonoids are present in high concentrations in red but not white wine. Quercetin-glycosides were recently shown to prevent thrombosis in animal models through the inhibition of extracellular protein disulfide isomerase (PDI). We evaluated whether red or white wine inhibited PDI activity in vitro. Methods Quercetin levels in red and white wines were measured by HPLC analysis. Inhibition of PDI activity by red and white wines was assessed by an insulin reduction turbidity assay at various concentrations of wine. PDI inhibition was confirmed using a reduced peptide that contained a disulfide containing peptide as a substrate. The inhibition of PDI related thiol isomerases ERp5 and ERp57 was also assessed. Results We observed a dose-dependent decrease of PDI activity for a variety of red but not white wines. Red wine diluted to 3% final concentration resulted in over 80% inhibition of PDI activity by insulin reductase assay for all varieties tested. This inhibition was also observed in the peptide based assay. Red grape juice yielded similar results but ethanol alone did not affect PDI activity. Interestingly, red wine also inhibited the PDI related thiol isomerases ERp5 and ERp57, albeit to a lesser degree than PDI. Conclusions PDI activity is inhibited by red wine and grape juice, identifying a potentially novel mechanism underlying the cardiovascular benefits attributed to wine consumption. PMID:26585763

  1. Scoparone exerts anti-tumor activity against DU145 prostate cancer cells via inhibition of STAT3 activity.

    Directory of Open Access Journals (Sweden)

    Jeong-Kook Kim

    Full Text Available Scoparone, a natural compound isolated from Artemisia capillaris, has been used in Chinese herbal medicine to treat neonatal jaundice. Signal transducer and activator of transcription 3 (STAT3 contributes to the growth and survival of many human tumors. This study was undertaken to investigate the anti-tumor activity of scoparone against DU145 prostate cancer cells and to determine whether its effects are mediated by inhibition of STAT3 activity. Scoparone inhibited proliferation of DU145 cells via cell cycle arrest in G1 phase. Transient transfection assays showed that scoparone repressed both constitutive and IL-6-induced transcriptional activity of STAT3. Western blot and quantitative real-time PCR analyses demonstrated that scoparone suppressed the transcription of STAT3 target genes such as cyclin D1, c-Myc, survivin, Bcl-2, and Socs3. Consistent with this, scoparone decreased phosphorylation and nuclear accumulation of STAT3, but did not reduce phosphorylation of janus kinase 2 (JAK2 or Src, the major upstream kinases responsible for STAT3 activation. Moreover, transcriptional activity of a constitutively active mutant of STAT3 (STAT3C was inhibited by scoparone, but not by AG490, a JAK2 inhibitor. Furthermore, scoparone treatment suppressed anchorage-independent growth in soft agar and tumor growth of DU145 xenografts in nude mice, concomitant with a reduction in STAT3 phosphorylation. Computational modeling suggested that scoparone might bind the SH2 domain of STAT3. Our findings suggest that scoparone elicits an anti-tumor effect against DU145 prostate cancer cells in part through inhibition of STAT3 activity.

  2. Selective antibacterial activity of patchouli alcohol against Helicobacter pylori based on inhibition of urease.

    Science.gov (United States)

    Yu, Xiao-Dan; Xie, Jian-Hui; Wang, Yong-Hong; Li, Yu-Cui; Mo, Zhi-Zhun; Zheng, Yi-Feng; Su, Ji-Yan; Liang, Ye-er; Liang, Jin-Zhi; Su, Zi-Ren; Huang, Ping

    2015-01-01

    The aim of this study is to evaluate the antibacterial activity and urease inhibitory effects of patchouli alcohol (PA), the bioactive ingredient isolated from Pogostemonis Herba, which has been widely used for the treatment of gastrointestinal disorders. The activities of PA against selected bacteria and fungi were determined by agar dilution method. It was demonstrated that PA exhibited selective antibacterial activity against Helicobacter pylori, without influencing the major normal gastrointestinal bacteria. Noticeably, the antibacterial activity of PA was superior to that of amoxicillin, with minimal inhibition concentration value of 78 µg/mL. On the other hand, PA inhibited ureases from H.pylori and jack bean in concentration-dependent fashion with IC50 values of 2.67 ± 0.79 mM and 2.99 ± 0.41 mM, respectively. Lineweaver-Burk plots indicated that the type of inhibition was non-competitive against H.pylori urease whereas uncompetitive against jack bean urease. Reactivation of PA-inactivated urease assay showed DL-dithiothreitol, the thiol reagent, synergistically inactivated urease with PA instead of enzymatic activity recovery. In conclusion, the selective H.pylori antibacterial activity along with urease inhibitory potential of PA could make it a possible drug candidate for the treatment of H.pylori infection. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Thiazolidinediones inhibit TNFα induction of PAI-1 independent of PPARγ activation

    International Nuclear Information System (INIS)

    Liu, H.B.; Hu, Y.S.; Medcalf, R.L.; Simpson, R.W.; Dear, A.E.

    2005-01-01

    Increased plasminogen activator inhibitor type 1 (PAI-1) levels are observed in endothelial cells stimulated by tumour necrosis factor α (TNFα). Thiazolidinediones (TZDs) may inhibit elevated endothelial cell PAI-1 accounting, in part, for the putative atheroprotective effects of TZDs. In an endothelial cell line, Rosiglitazone (RG) and Pioglitazone (PG) inhibited induction of PAI-1 by TNFα. The specific peroxisome proliferator-activated receptor γ (PPARγ) inhibitor, SR-202, failed to modulate this effect. RG also inhibited the effect of TNFα on a reporter gene construct harbouring the proximal PAI-1 promoter and PAI-1 mRNA in cells co-transfected with a dominant-negative PPARγ construct. RG and PG attenuated TNFα-mediated induction of trans-acting factor(s) Nur77/Nurr1 and binding of nuclear proteins (NP) to the cis-acting element (NBRE). SR-202 failed to modulate these effects. The observations suggest TZDs inhibit TNFα-mediated PAI-1 induction independent of inducible PPARγ activation and this may involve in the modulation of Nur77/Nurr1 expression and NP binding to the PAI-1 NBRE

  4. Brain activation for response inhibition under gaming cue distraction in internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Gin-Chung Liu

    2014-01-01

    Full Text Available We evaluated neural substrates related to the loss of control in college students with internet gaming disorder (IGD. We hypothesized that deficit in response inhibition under gaming cue distraction was the possible mechanism for the loss of control internet use. Eleven cases of IGD and 11 controls performed Go/NoGo tasks with/without gaming distraction in the functional magnetic resonance imaging scanner. When the gaming picture was shown as background while individuals were performing Go/NoGo tasks, the IGD group committed more commission errors. The control group increased their brain activations more over the right dorsolateral prefrontal cortex (DLPFC and superior parietal lobe under gaming cue distraction in comparison with the IGD group. Furthermore, brain activation of the right DLPFC and superior parietal lobe were negatively associated with performance of response inhibition among the IGD group. The results suggest that the function of response inhibition was impaired under gaming distraction among the IGD group, and individuals with IGD could not activate right DLPFC and superior parietal lobe to keep cognitive control and attention allocation for response inhibition under gaming cue distraction. This mechanism should be addressed in any intervention for IGD.

  5. Effects of protease-activated receptor 1 inhibition on anxiety and fear following status epilepticus.

    Science.gov (United States)

    Bogovyk, Ruslan; Lunko, Oleksii; Fedoriuk, Mihail; Isaev, Dmytro; Krishtal, Oleg; Holmes, Gregory L; Isaeva, Elena

    2017-02-01

    Protease-activated receptor 1 (PAR1) is an important contributor to the pathogenesis of a variety of brain disorders associated with a risk of epilepsy development. Using the lithium-pilocarpine model of temporal lobe epilepsy (TLE), we recently showed that inhibition of this receptor during the first ten days after pilocarpine-induced status epilepticus (SE) results in substantial anti-epileptogenic and neuroprotective effects. As PAR1 is expressed in the central nervous system regions of importance for processing emotional reactions, including amygdala and hippocampus, and TLE is frequently associated with a chronic alteration of the functions of these regions, we tested the hypothesis that PAR1 inhibition could modulate emotionally driven behavioral responses of rats experiencing SE. We showed that SE induces a chronic decrease in the animals' anxiety-related behavior and an increase of locomotor activity. PAR1 inhibition after SE abolished the alteration of the anxiety level but does not affect the increase of locomotor activity in the open field and elevated plus maze tests. Moreover, while PAR1 inhibition produces an impairment of memory recall in the context fear conditioning paradigm in the control group, it substantially improves contextual and cued fear learning in rats experiencing SE. These data suggest that PAR1-dependent signaling is involved in the mechanisms underlying emotional disorders in epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Pyridine-substituted thiazolylphenol derivatives: Synthesis, modeling studies, aromatase inhibition, and antiproliferative activity evaluation.

    Science.gov (United States)

    Ertas, Merve; Sahin, Zafer; Berk, Barkin; Yurttas, Leyla; Biltekin, Sevde N; Demirayak, Seref

    2018-04-01

    Drugs used in breast cancer treatments target the suppression of estrogen biosynthesis. During this suppression, the main goal is to inhibit the aromatase enzyme that is responsible for the cyclization and structuring of estrogens either with steroid or non-steroidal-type inhibitors. Non-steroidal derivatives generally have a planar aromatic structure attached to the triazole ring system in their structures, which inhibits hydroxylation reactions during aromatization by coordinating the heme group. Bioisosteric replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase the selectivity for aromatase enzyme inhibition. In this study, pyridine-substituted thiazolylphenol derivatives, which are non-steroidal triazole bioisosteres, were synthesized using the Hantzsch method, and physical analysis and structural determination studies were performed. The IC 50 values of the compounds were determined by a fluorescence-based aromatase inhibition assay. Then, their antiproliferative activities on the MCF7 and HEK 293 cell lines were evaluated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, the crystal structure of human placental aromatase was subjected to a series of docking experiments to identify the possible interactions between the most active structure and the active site. Lastly, an in silico technique was performed to analyze and predict the drug-likeness, molecular and ADME properties of the synthesized molecules. © 2018 Deutsche Pharmazeutische Gesellschaft.

  7. Survivin inhibits anti-growth effect of p53 activated by aurora B

    International Nuclear Information System (INIS)

    Jung, Ji-Eun; Kim, Tae-Kyung; Lee, Joong-Seob; Oh, Se-Yeong; Kwak, Sungwook; Jin, Xun; Sohn, Jin-Young; Song, Min-Keun; Sohn, Young-Woo; Lee, Soo-Yeon; Pian, Xumin; Lee, Jang-Bo; Chung, Yong Gu; Choi, Young Ki; You, Seungkwon; Kim, Hyunggee

    2005-01-01

    Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated β-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53 -/- mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53 -/- astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53

  8. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants.

    Directory of Open Access Journals (Sweden)

    Lorena Olivares-González

    Full Text Available Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2 for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions.

  9. Cytostatic versus cytocidal activities of chloroquine analogues and inhibition of hemozoin crystal growth.

    Science.gov (United States)

    Gorka, Alexander P; Alumasa, John N; Sherlach, Katy S; Jacobs, Lauren M; Nickley, Katherine B; Brower, Jonathan P; de Dios, Angel C; Roepe, Paul D

    2013-01-01

    We report an improved, nonhazardous, high-throughput assay for in vitro quantification of antimalarial drug inhibition of β-hematin (hemozoin) crystallization performed under conditions that are more physiological relative to previous assays. The assay uses the differential detergent solubility of crystalline and noncrystalline forms of heme and is optimized via the use of lipid catalyst. Using this assay, we quantify the effect of pH on the crystal growth-inhibitory activities of current quinoline antimalarials, evaluate the catalytic efficiencies of different lipids, and test for a possible correlation between hemozoin inhibition by drugs versus their antiplasmodial activity. Consistent with several previous reports, we found a good correlation between hemozoin inhibition potency versus cytostatic antiplasmodial potency (50% inhibitory concentration) for a series of chloroquine (CQ) analogues. However, we found no correlation between hemozoin inhibition potency and cytocidal antiplasmodial potency (50% lethal dose) for the same drugs, suggesting that cellular targets for these two layers of 4-aminoquinoline drug activity differ. This important concept is also explored further for QN and its stereoisomers in the accompanying paper (A. P. Gorka, K. S. Sherlach, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:365-374, 2013).

  10. O-sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis.

    Science.gov (United States)

    Borgenström, Marjut; Wärri, Anni; Hiilesvuo, Katri; Käkönen, Rami; Käkönen, Sanna; Nissinen, Liisa; Pihlavisto, Marjo; Marjamäki, Anne; Vlodavsky, Israel; Naggi, Annamaria; Torri, Giangiacomo; Casu, Benito; Veromaa, Timo; Salmivirta, Markku; Elenius, Klaus

    2007-07-01

    Heparin-like polysaccharides possess the capacity to inhibit cancer cell proliferation, angiogenesis, heparanase-mediated cancer cell invasion, and cancer cell adhesion to vascular endothelia via adhesion receptors, such as selectins. The clinical applicability of the antitumor effect of such polysaccharides, however, is compromised by their anticoagulant activity. We have compared the potential of chemically O-sulfated and N,O-sulfated bacterial polysaccharide (capsular polysaccharide from E. COLI K5 [K5PS]) species to inhibit metastasis of mouse B16-BL6 melanoma cells and human MDA-MB-231 breast cancer cells in two in vivo models. We demonstrate that in both settings, O-sulfated K5PS was a potent inhibitor of metastasis. Reducing the molecular weight of the polysaccharide, however, resulted in lower antimetastatic capacity. Furthermore, we show that O-sulfated K5PS efficiently inhibited the invasion of B16-BL6 cells through Matrigel and also inhibited the in vitro activity of heparanase. Moreover, treatment with O-sulfated K5PS lowered the ability of B16-BL6 cells to adhere to endothelial cells, intercellular adhesion molecule-1, and P-selectin, but not to E-selectin. Importantly, O-sulfated K5PSs were largely devoid of anticoagulant activity. These findings indicate that O-sulfated K5PS polysaccharide should be considered as a potential antimetastatic agent.

  11. Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation.

    Science.gov (United States)

    Wang, S; Wang, H; Guo, H; Kang, L; Gao, X; Hu, L

    2011-06-30

    Inhibition of microglial over-reaction and the inflammatory processes may represent a therapeutic target to alleviate the progression of neurological diseases, such as neurodegenerative diseases and stroke. Scutellarin is the major active component of Erigeron breviscapus (Vant.) Hand-Mazz, a herbal medicine in treatment of cerebrovascular diseases for a long time in the Orient. In this study, we explored the mechanisms of neuroprotection by Scutellarin, particularly its anti-inflammatory effects in microglia. We observed that Scutellarin inhibited lipopolysaccharide (LPS)-induced production of proinflammatory mediators such as nitric oxide (NO), tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and reactive oxygen species (ROS), suppressed LPS-stimulated inducible nitric oxide synthase (iNOS), TNFα, and IL-1β mRNA expression in rat primary microglia or BV-2 mouse microglial cell line. Scutellarin inhibited LPS-induced nuclear translocation and DNA binding activity of nuclear factor κB (NF-κB). It repressed the LPS-induced c-Jun N-terminal kinase (JNK) and p38 phosphorylation without affecting the activity of extracellular signal regulated kinase (ERK) mitogen-activated protein kinase. Moreover, Scutellarin also inhibited interferon-γ (IFN-γ)-induced NO production, iNOS mRNA expression and transcription factor signal transducer and activator of transcription 1α (STAT1α) activation. Concomitantly, conditioned media from Scutellarin pretreated BV-2 cells significantly reduced neurotoxicity compared with conditioned media from LPS treated alone. Together, the present study reported the anti-inflammatory activity of Scutellarin in microglial cells along with their underlying molecular mechanisms, and suggested Scutellarin might have therapeutic potential for various microglia mediated neuroinflammation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Hydrogenase activity in Azospirillum brasilense is inhibited by nitrite, nitric oxide, carbon monoxide, and acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Tibelius, K.H.; Knowles, R.

    1984-10-01

    Nitrite, NO, CO, and C/sub 2/H/sub 2/ inhibited O/sub 2/-dependent H/sub 2/ uptake (H/sup 3/H oxidation) in denitrifying Azospirillum brasilense Sp7 grown anaerobically on N/sub 2/O or NO/sub 3//sup -/. The apparent K/sub i/ values for inhibition of O/sub 2/-dependent H/sub 2/ uptake were 20 ..mu..M for NO/sub 2//sup -/, 0.4 ..mu..M for NO, 28 ..mu..M for CO, and 88 ..mu..M for C/sub 2/H/sub 2/. These inhibitors also affected methylene blue-dependent H/sub 2/ uptake, presumably by acting directly on the hydrogenase. Nitrite and NO inhibited H/sub 2/ uptake irreversibly, whereas inhibition due to CO was easily reversed by repeatedly evacuating and backfilling with N/sub 2/. The C/sub 2/H/sub 2/ inhibition was not readily reversed, partly due to difficulty in removing the last traces of this gas from solution. The NO/sub 2//sup -/ inhibition of malate-dependent respiration was readily reversed by repeatedly washing the cells, in contrast to the effect of NO/sub 2//sup -/ on H/sub 2/-dependent respiration. These results suggest that the low hydrogenase activities observed in NO/sub 3//sup -/-grown cultures of A. brasilense may be due to the irreversible inhibition of hydrogenase by NO/sub 2//sup -/ and NO produced by NO/sub 3//sup -/ reduction.

  13. Inhibition of enzyme activity by nanomaterials: potential mechanisms and implications for nanotoxicity testing.

    Science.gov (United States)

    Maccormack, Tyson J; Clark, Rhett J; Dang, Michael K M; Ma, Guibin; Kelly, Joel A; Veinot, Jonathan G C; Goss, Greg G

    2012-08-01

    The objective of this study was to investigate whether nanoparticle-exposure affects enzyme function and to determine the mechanisms responsible. Silicon, Au, and CdSe nanoparticles were synthesized in house and their physicochemical properties were characterized. The activity of purified lactate dehydrogenase (LDH) was inhibited or abolished by all nanoparticles tested. Inhibition was dependent upon particle core and surface-functional group composition. Inhibition of LDH was absent in crude tissue homogenates, in the presence of albumin, and at the isoelectric point of the protein, indicating that nanoparticles bind non-specifically to abundant proteins via a charge interaction. Circular dichroism spectroscopy suggests that the structure of LDH may be altered by nanoparticles in a manner different from that of bulk controls. We present new data on the specific physicochemical properties of nanoparticles that may lead to bioactivity and highlight a number of potentially serious problems with common nanotoxicity testing methods.

  14. Free radical scavenging activity and lipoxygenase inhibition of Mahonia aquifolium extract and isoquinoline alkaloids

    Directory of Open Access Journals (Sweden)

    Kettmann Viktor

    2007-07-01

    Full Text Available Abstract Roots and stem-bark of Mahonia aquifolium (Oregon grape (Berberidaceae are effectively used in the treatment of skin inflammatory conditions. In the present study, the effect of Mahonia aquifolium crude extract and its two representative alkaloid fractions containing protoberberine and bisbenzylisoquinoline (BBIQ alkaloids on activity of 12-lipoxygenase (12-LOX, was studied. The reactivity with 1,1-diphenyl-2-picryl-hydrazyl (DPPH, a free stable radical, was evaluated to elucidate the rate of possible lipid-derived radical scavenging in the mechanism of the enzyme inhibition. The results indicate that although the direct radical scavenging mechanism cannot be ruled out in the lipoxygenase inhibition by Mahonia aquifolium and its constituents, other mechanisms based on specific interaction between enzyme and alkaloids could play the critical role in the lipoxygenase inhibition rather than non-specific reactivity with free radicals.

  15. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.

    Directory of Open Access Journals (Sweden)

    Beth S Zha

    Full Text Available HIV protease inhibitors (PI are core components of Highly Active Antiretroviral Therapy (HAART, the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome.Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/- mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes.Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.

  16. Lipid peroxidation inhibition and antiradical activities of some leaf fractions of Mangifera indica.

    Science.gov (United States)

    Badmus, Jelili A; Adedosu, Temitope O; Fatoki, John O; Adegbite, Victor A; Adaramoye, Oluwatosin A; Odunola, Oyeronke A

    2011-01-01

    This study was undertaken to assess in vitro lipid peroxidation inhibitions and anti-radical activities of methanolic, chloroform, ethyl acetate and water fractions of Mangifera indica leaf. Inhibition of Fe(2+)-induced lipid peroxidation (LPO) in egg, brain, and liver homogenates, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl (OH-) radical scavenging activities were evaluated. Total phenol was assessed in all fractions, and the reducing power of methanolic fraction was compared to gallic acid and ascorbic acid. The results showed that Fe2+ induced significant lipid peroxidation (LPO) in all the homogenates. Ethyl acetate fraction showed the highest percentage inhibition of LPO in both egg yolk (68.3%) and brain (66.3%), while the aqueous fraction exerted the highest inhibition in liver homogenate (89.1%) at a concentration of 10 microg/mL. These observed inhibitions of LPO by these fractions were higher than that of ascorbic acid used as a standard. The DPPH radical scavenging ability exhibited by ethyl acetate fraction was found to be the highest with IC50 value of 1.5 microg/mL. The ethyl acetate and methanolic fractions had the highest OH- radical scavenging ability with the same IC50 value of 5 microg/mL. The total phenol content of ethyl acetate fraction was the highest with 0.127 microg/mg gallic acid equivalent (GAE). The reductive potential of methanolic fraction showed a concentration-dependent increase. This study showed that inhibition of LPO and the DPPH and OH- radicals scavenging abilities of Mangifera indica leaf could be related to the presence of phenolic compounds. Therefore, the ethyl acetate fraction of the leaf may be a good source of natural antioxidative agent.

  17. Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone.

    Science.gov (United States)

    Rückriemen, Jana; Klemm, Oliver; Henle, Thomas

    2017-09-01

    Manuka honey (Leptospermum scoparium) exerts a strong antibacterial effect. Bacterial enzymes are an important target for antibacterial compounds. The enzyme urease produces ammonia and enables bacteria to adapt to an acidic environment. A new enzymatic assay, based on photometric detection of ammonia with ninhydrin, was developed to study urease activity. Methylglyoxal (MGO) and its precursor dihydroxyacetone (DHA), which are naturally present in manuka honey, were identified as jack bean urease inhibitors with IC 50 values of 2.8 and 5.0mM, respectively. Urease inhibition of manuka honey correlates with its MGO and DHA content. Non-manuka honeys, which lack MGO and DHA, showed significantly less urease inhibition. MGO depletion from manuka honey with glyoxalase reduced urease inhibition. Therefore, urease inhibition by manuka honey is mainly due to MGO and DHA. The results obtained with jack bean urease as a model urease, may contribute to the understanding of bacterial inhibition by manuka honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Isolation, Identification, and Xanthine Oxidase Inhibition Activity of Alkaloid Compound from Peperomia pellucida

    Science.gov (United States)

    Fachriyah, E.; Ghifari, M. A.; Anam, K.

    2018-04-01

    The research of the isolation and xanthine oxidation inhibition activity of alkaloid compound from Peperomia pellucida has been carried out. Alkaloid extract is isolated by column chromatography and preparative TLC. Alkaloid isolate is identified spectroscopically by UV-Vis spectrophotometer, FT-IR, and LC-MS/MS. Xanthine oxidase inhibition activity is carried out by in vitro assay. The result showed that the alkaloid isolated probably has piperidine basic structure. The alkaloid isolate has N-H, C-H, C = C, C = O, C-N, C-O-C groups and the aromatic ring. The IC50 values of ethanol and alkaloid extract are 71.6658 ppm and 76.3318 ppm, respectively. Alkaloid extract of Peperomia pellucida showed higher activity than ethanol extract.

  19. Inhibition of NF-κB activity in rabbit vascular smooth muscle cells by lovastatin

    International Nuclear Information System (INIS)

    Luan Zhaoxia; Lan Xiaoli

    2003-01-01

    Nuclear factor NF-κB is believed to play an important role in regulating the production of matrix metalloproteinase (MMPs), which induce atherosclerosis, restenosis and plaque rupture. We incubated rabbit vascular smooth muscle cells (RVSMCs) with 5 μmol/L lovastatin in the presence of IL-1-α and PDGF BB (20 μg/L, respectively) to study whether lovastatin inhibited NF-κB binding activity induced by IL-1 and PDGF. The NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); MMP-1 and MMP-3 were measured by western blotting; and MMP-9 was detected by zymography. The result showed that lovastatin strongly reduced NF-κB activity upregulated by IL-1 combined with PDGF, and lovastatin also dose-dependently inhibited the expression of MMP-1, -3 and -9 induced by IL-1 and PDGF. It suggested that the beneficial effects of statins may extend to mechanisms beyond cholesterol reduction

  20. Apigenin Restricts FMDV Infection and Inhibits Viral IRES Driven Translational Activity

    Directory of Open Access Journals (Sweden)

    Suhong Qian

    2015-03-01

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of domestic and wild ruminants that is caused by FMD virus (FMDV. FMD outbreaks have occurred in livestock-containing regions worldwide. Apigenin, which is a flavonoid naturally existing in plant, possesses various pharmacological effects, including anti-inflammatory, anticancer, antioxidant and antiviral activities. Results show that apigenin can inhibit FMDV-mediated cytopathogenic effect and FMDV replication in vitro. Further studies demonstrate the following: (i apigenin inhibits FMDV infection at the viral post-entry stage; (ii apigenin does not exhibit direct extracellular virucidal activity; and (iii apigenin interferes with the translational activity of FMDV driven by internal ribosome entry site. Studies on applying apigein in vivo are required for drug development and further identification of potential drug targets against FDMV infection.

  1. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    International Nuclear Information System (INIS)

    Niles, L.P.; Hashemi, F.

    1990-01-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [ 125 I]iodomelatonin, was examined using an incubation temperature (30 degree C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [ 125 I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus

  2. Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity.

    Science.gov (United States)

    Qian, Suhong; Fan, Wenchun; Qian, Ping; Zhang, Dong; Wei, Yurong; Chen, Huanchun; Li, Xiangmin

    2015-03-31

    Foot-and-mouth disease (FMD) is a highly contagious disease of domestic and wild ruminants that is caused by FMD virus (FMDV). FMD outbreaks have occurred in livestock-containing regions worldwide. Apigenin, which is a flavonoid naturally existing in plant, possesses various pharmacological effects, including anti-inflammatory, anticancer, antioxidant and antiviral activities. Results show that apigenin can inhibit FMDV-mediated cytopathogenic effect and FMDV replication in vitro. Further studies demonstrate the following: (i) apigenin inhibits FMDV infection at the viral post-entry stage; (ii) apigenin does not exhibit direct extracellular virucidal activity; and (iii) apigenin interferes with the translational activity of FMDV driven by internal ribosome entry site. Studies on applying apigein in vivo are required for drug development and further identification of potential drug targets against FDMV infection.

  3. Kynurenic acid inhibits intestinal hypermotility and xanthine oxidase activity during experimental colon obstruction in dogs.

    Science.gov (United States)

    Kaszaki, J; Palásthy, Z; Erczes, D; Rácz, A; Torday, C; Varga, G; Vécsei, L; Boros, M

    2008-01-01

    Kynurenic acid (KynA), an endogenous antagonist of N-methyl-d-aspartate (NMDA) glutamate receptors, protects the central nervous system in excitotoxic neurological diseases. We hypothesized that the inhibition of enteric glutamate receptors by KynA may influence dysmotility in the gastrointestinal tract. Group 1 of healthy dogs served as the sham-operated control, in group 2, the animals were treated with KynA, while in groups 3 and 4 mechanical colon obstruction was maintained for 7 h. Group 4 was treated with KynA at the onset of ileus. Hemodynamics and motility changes were monitored, and the activities of xanthine oxidoreductase (XOR) and myeloperoxidase (MPO) were determined from tissue samples. Colon obstruction induced a hyperdynamic circulatory reaction, significantly elevated the motility index and increased the mucosal leucocyte accumulation and the XOR activity. The KynA treatment augmented the tone of the colon, permanently decreased the motility index of the giant colonic contractions and reduced the increases in XOR and MPO activities. These effects were concomitant with the in vitro inhibition of XOR activity. In conclusion, KynA antagonizes the obstruction-induced motility responses and XOR activation in the colon. Inhibition of enteric NMDA receptors may provide an option to influence intestinal hypermotility and inflammatory changes.

  4. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cawley, George F.; Ardoin, Taylor G. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Backes, Wayne L. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  5. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    International Nuclear Information System (INIS)

    Reed, James R.; Cawley, George F.; Ardoin, Taylor G.; Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W.; Backes, Wayne L.

    2014-01-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  6. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Susanne, E-mail: Susanne.Schuster@medizin.uni-leipzig.de [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Penke, Melanie; Gorski, Theresa [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Gebhardt, Rolf [Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Weiss, Thomas S. [Children' s University Hospital, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany); Kiess, Wieland; Garten, Antje [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany)

    2015-03-06

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  7. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    International Nuclear Information System (INIS)

    Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Gebhardt, Rolf; Weiss, Thomas S.; Kiess, Wieland; Garten, Antje

    2015-01-01

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  8. Crystal structure, phytochemical study and enzyme inhibition activity of Ajaconine and Delectinine

    Science.gov (United States)

    Ahmad, Shujaat; Ahmad, Hanif; Khan, Hidayat Ullah; Shahzad, Adnan; Khan, Ezzat; Ali Shah, Syed Adnan; Ali, Mumtaz; Wadud, Abdul; Ghufran, Mehreen; Naz, Humera; Ahmad, Manzoor

    2016-11-01

    The Crystal structure, comparative DFT study and phytochemical investigation of atisine type C-20 diterpenoid alkaloid ajaconine (1) and lycoctonine type C-19 diterpenoid alkaloid delectinine (2) is reported here. These compounds were isolated from Delphinium chitralense. Both the natural products 1 and 2 crystallize in orthorhombic crystal system with identical space group of P212121. The geometric parameters of both compounds were calculated with the help of DFT using B3LYP/6-31+G (p) basis set and HOMO-LUMO energies, optimized band gaps, global hardness, ionization potential, electron affinity and global electrophilicity are calculated. The compounds 1 and 2 were screened for acetyl cholinesterase and butyryl cholinesterase inhibition activities in a dose dependent manner followed by molecular docking to explore the possible inhibitory mechanism of ajaconine (1) and delectinine (2). The IC50 values of tested compounds against AChE were observed as 12.61 μM (compound 1) and 5.04 μM (compound 2). The same experiments were performed for inhibition of BChE and IC50 was observed to be 10.18 μM (1) and 9.21 μM (2). Promising inhibition activity was shown by both the compounds against AChE and BChE in comparison with standard drugs available in the market such as allanzanthane and galanthamine. The inhibition efficiency of both the natural products was determined in a dose dependent manner.

  9. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity.

    Science.gov (United States)

    Kim, Ji-Young; Lee, Kyu-Sun; Seol, Jin-Ee; Yu, Kweon; Chakravarti, Debabrata; Seo, Sang-Beom

    2012-01-01

    The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ.

  10. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation.

    Science.gov (United States)

    Wang, Gene-Jack; Volkow, Nora D; Telang, Frank; Jayne, Millard; Ma, Yeming; Pradhan, Kith; Zhu, Wei; Wong, Christopher T; Thanos, Panayotis K; Geliebter, Allan; Biegon, Anat; Fowler, Joanna S

    2009-01-27

    Although impaired inhibitory control is linked to a broad spectrum of health problems, including obesity, the brain mechanism(s) underlying voluntary control of hunger are not well understood. We assessed the brain circuits involved in voluntary inhibition of hunger during food stimulation in 23 fasted men and women using PET and 2-deoxy-2[(18)F]fluoro-D-glucose ((18)FDG). In men, but not in women, food stimulation with inhibition significantly decreased activation in amygdala, hippocampus, insula, orbitofrontal cortex, and striatum, which are regions involved in emotional regulation, conditioning, and motivation. The suppressed activation of the orbitofrontal cortex with inhibition in men was associated with decreases in self-reports of hunger, which corroborates the involvement of this region in processing the conscious awareness of the drive to eat. This finding suggests a mechanism by which cognitive inhibition decreases the desire for food and implicates lower ability to suppress hunger in women as a contributing factor to gender differences in obesity.

  11. Chinese medicinal formula Fufang Xueshuantong capsule could inhibit the activity of angiotensin converting enzyme

    Science.gov (United States)

    Sheng, Shujing; Wang, Yonggang; Long, Chaofeng; Su, Weiwei; Rong, Xia

    2014-01-01

    Fufang Xueshuantong (FXST) capsule, a Chinese medicinal formula composed of four herbals – Panax notoginseng, Radix Astragali, Radix Salvia Miltiorrhizae and Radix Scrophulariaceae, has been used to treat cardiovascular diseases for many years, but the pharmacological mechanisms underlying its effects has not been clarified. This study investigates if a connection between FXST and angiotensin converting enzyme (ACE) might be an explanation for its pharmacological effects. ACE inhibition assay was performed on FXST capsule, 50% ethanol extracts from the four herbals and three selected saponins most abundant in P. notoginseng (Ginsenoside Rg1, Ginsenoside Rb1 and Notoginsenoside R1) using a biochemical test. Reversed-phase high-performance liquid chromatography of liberated hippuric acid from the ACE assay was conducted to determine the inhibitory effect. As a result, FXST and extracts from P. notoginseng showed a significant and dose-dependent inhibition on ACE activity with the IC50 values of 115 μg/ml and 179 μg/ml, respectively. But extracts from the other three herbals and the three selected saponins had no significant effect on ACE inhibition. Compared to other reported plant extracts, FXST could be considered as an effective ACE inhibitor. The inhibition of ACE activity supports the traditional use of FXST on blood circulation and the inhibitory property of FXST is mainly caused by P. notoginseng. PMID:26019516

  12. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    Directory of Open Access Journals (Sweden)

    Xiyuan Bai

    Full Text Available Nuclear factor-kappa B (NFκB is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB. However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy.

  13. Propranolol, but not naloxone, enhances spinal reflex bladder activity and reduces pudendal inhibition in cats.

    Science.gov (United States)

    Rogers, Marc J; Xiao, Zhiying; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-01-01

    This study examined the role of β-adrenergic and opioid receptors in spinal reflex bladder activity and in the inhibition induced by pudendal nerve stimulation (PNS) or tibial nerve stimulation (TNS). Spinal reflex bladder contractions were induced by intravesical infusion of 0.25% acetic acid in α-chloralose-anesthetized cats after an acute spinal cord transection (SCT) at the thoracic T9/T10 level. PNS or TNS at 5 Hz was applied to inhibit these spinal reflex contractions at 2 and 4 times the threshold intensity (T) for inducing anal or toe twitch, respectively. During a cystrometrogram (CMG), PNS at 2T and 4T significantly (P reflex bladder contractions. After administering propranolol (3 mg/kg iv, a β₁/β₂-adrenergic receptor antagonist), the effects of 2T and 4T PNS on bladder capacity were significantly (P reflex bladder contractions or PNS inhibition. At the end of experiments, hexamethonium (10 mg/kg iv, a ganglionic blocker) significantly (P reflex bladder contractions. This study indicates an important role of β₁/β₂-adrenergic receptors in pudendal inhibition and spinal reflex bladder activity. Copyright © 2015 the American Physiological Society.

  14. Inhibition of Anaerobic Phosphate Release by Nitric Oxide in Activated Sludge

    Science.gov (United States)

    Van Niel, E. W. J.; Appeldoorn, K. J.; Zehnder, A. J. B.; Kortstee, G. J. J.

    1998-01-01

    Activated sludge not containing significant numbers of denitrifying, polyphosphate [poly(P)]-accumulating bacteria was grown in a fill-and-draw system and exposed to alternating anaerobic and aerobic periods. During the aerobic period, poly(P) accumulated up to 100 mg of P · g of (dry) weight. When portions of the sludge were incubated anaerobically in the presence of acetate, 80 to 90% of the intracellular poly(P) was degraded and released as orthophosphate. Degradation of poly(P) was mainly catalyzed by the concerted action of polyphosphate:AMP phosphotransferase and adenylate kinase, resulting in ATP formation. In the presence of 0.3 mM nitric oxide (NO) in the liquid-phase release of phosphate, uptake of acetate, formation of poly-β-hydroxybutyrate, utilization of glycogen, and formation of ATP were severely inhibited or completely abolished. In cell extracts of the sludge, adenylate kinase activity was completely inhibited by 0.15 mM NO. The nature of this inhibition was probably noncompetitive, similar to that with hog adenylate kinase. Activated sludge polyphosphate glucokinase was also completely inhibited by 0.15 mM NO. It is concluded that the inhibitory effect of NO on acetate-mediated phosphate release by the sludge used in this study is due to the inhibition of adenylate kinase in the phosphate-releasing organisms. The inhibitory effect of nitrate and nitrite on phosphate release is probably due to their conversion to NO. The lack of any inhibitory effect of NO on adenylate kinase of the poly(P)-accumulating Acinetobacter johnsonii 210A suggests that this type of organism is not involved in the enhanced biological phosphate removal by the sludges used. PMID:9687452

  15. Modulation of Olfactory Bulb Network Activity by Serotonin: Synchronous Inhibition of Mitral Cells Mediated by Spatially Localized GABAergic Microcircuits

    Science.gov (United States)

    Schmidt, Loren J.; Strowbridge, Ben W.

    2014-01-01

    Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles…

  16. Fern extracts potentiate fluconazole activity and inhibit morphological changes in Candida species

    Directory of Open Access Journals (Sweden)

    Maria A. Freitas

    2017-11-01

    Conclusions: The extracts obtained from the fern species L. venustum and P. calomelanos dose not present significant antifungal activity. However, P. calomelanos potentiates the activity of fluconazole and both extracts inhibits the morphological changes in Candida species, indicating that they have potential pharmacological activity as modulators of fungal biology. Therefore, novel studies are required to characterize the interference of these extracts in the virulence and pathogenicity of Candida species as well as the potential of fern species to treat fungal infections.

  17. Synthesis, anticancer activity, and inhibition of tubulin polymerization by conformationally restricted analogues of lavendustin A.

    Science.gov (United States)

    Mu, Fanrong; Hamel, Ernest; Lee, Debbie J; Pryor, Donald E; Cushman, Mark

    2003-04-24

    Compounds in the lavendustin A series have been shown to inhibit both protein-tyrosine kinases (PTKs) and tubulin polymerization. Since certain lavendustin A derivatives can exist in conformations that resemble both the trans-stilbene structure of the PTK inhibitor piceatannol and the cis-stilbene structure of the tubulin polymerization inhibitor combretastatin A-4, the possibility exists that the ratio of the two types of activities of the lavendustins could be influenced through the synthesis of conformationally restricted analogues. Accordingly, the benzylaniline structure of a series of pharmacologically active lavendustin A fragments was replaced by either their cis- or their trans-stilbene relatives, and effects on both inhibition of tubulin polymerization and cytotoxicity in cancer cell cultures were monitored. Both dihydrostilbene and 1,2-diphenylalkyne congeners were also prepared and evaluated biologically. Surprisingly, conformational restriction of the bridge between the two aromatic rings of the lavendustins had no significant effect on biological activity. On the other hand, conversion of the three phenolic hydroxyl groups of the lavendustin A derivatives to their corresponding methyl ethers consistently abolished their ability to inhibit tubulin polymerization and usually decreased cytotoxicity in cancer cell cultures as well, indicating the importance of at least one of the phenolic hydroxyl groups. Further investigation suggested that the phenolic hydroxyl group in the salicylamide ring was required for activity, while the two phenol moieties in the hydroquinone ring could be methylated with retention of activity. Two of the lavendustin A derivatives displayed IC(50) values of 1.4 microM for inhibition of tubulin polymerization, which ranks them among the most potent of the known tubulin polymerization inhibitors.

  18. Inhibition of DNA topoisomerase I activity and induction of apoptosis by thiazacridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Francisco W.A. [Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará (Brazil); Bezerra, Daniel P., E-mail: danielpbezerra@gmail.com [Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe (Brazil); Ferreira, Paulo M.P. [Department of Biological Sciences, Federal University of Piauí, Picos, Piauí (Brazil); Cavalcanti, Bruno C. [Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará (Brazil); Silva, Teresinha G.; Pitta, Marina G.R.; Lima, Maria do C.A. de; Galdino, Suely L.; Pitta, Ivan da R. [Department of Antibiotics, Federal, University of Pernambuco, Recife, Pernembuco (Brazil); Costa-Lotufo, Letícia V.; Moraes, Manoel O. [Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará (Brazil); Burbano, Rommel R. [Institute of Biological Sciences, Federal University of Pará, Belém, Pará (Brazil); Guecheva, Temenouga N.; Henriques, João A.P. [Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul (Brazil); Pessoa, Cláudia, E-mail: cpessoa@ufc.br [Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará (Brazil)

    2013-04-01

    Thiazacridine derivatives (ATZD) are a novel class of cytotoxic agents that combine an acridine and thiazolidine nucleus. In this study, the cytotoxic action of four ATZD were tested in human colon carcinoma HCT-8 cells: (5Z)-5-acridin-9-ylmethylene-3-(4-methylbenzyl)-thiazolidine-2,4-dione — AC-4; (5ZE)-5-acridin-9-ylmethylene-3-(4-bromo-benzyl)-thiazolidine-2,4-dione — AC-7; (5Z)-5-(acridin-9-ylmethylene)-3-(4-chloro-benzyl) -1,3-thiazolidine-2,4-dione — AC-10; and (5ZE)-5-(acridin-9-ylmethylene)-3-(4-fluoro-benzyl)-1,3-thiazolidine-2, 4-dione — AC-23. All of the ATZD tested reduced the proliferation of HCT-8 cells in a concentration- and time-dependent manner. There were significant increases in internucleosomal DNA fragmentation without affecting membrane integrity. For morphological analyses, hematoxylin–eosin and acridine orange/ethidium bromide were used to stain HCT-8 cells treated with ATZD, which presented the typical hallmarks of apoptosis. ATZD also induced mitochondrial depolarisation and phosphatidylserine exposure and increased the activation of caspases 3/7 in HCT-8 cells, suggesting that this apoptotic cell death was caspase-dependent. In an assay using Saccharomyces cerevisiae mutants with defects in DNA topoisomerases 1 and 3, the ATZD showed enhanced activity, suggesting an interaction between ATZD and DNA topoisomerase enzyme activity. In addition, ATZD inhibited DNA topoisomerase I action in a cell-free system. Interestingly, these ATZD did not cause genotoxicity or inhibit the telomerase activity in human lymphocyte cultures at the experimental levels tested. In conclusion, the ATZD inhibited the DNA topoisomerase I activity and induced tumour cell death through apoptotic pathways. - Highlights: ► Thiazacridine derivatives induce mitochondrial-dependent apoptotic cell death. ► Thiazacridine derivatives inhibit DNA topoisomerase I action. ► Thiazacridine derivatives failed to cause genotoxicity on human lymphocytes.

  19. Inhibition of DNA topoisomerase I activity and induction of apoptosis by thiazacridine derivatives

    International Nuclear Information System (INIS)

    Barros, Francisco W.A.; Bezerra, Daniel P.; Ferreira, Paulo M.P.; Cavalcanti, Bruno C.; Silva, Teresinha G.; Pitta, Marina G.R.; Lima, Maria do C.A. de; Galdino, Suely L.; Pitta, Ivan da R.; Costa-Lotufo, Letícia V.; Moraes, Manoel O.; Burbano, Rommel R.; Guecheva, Temenouga N.; Henriques, João A.P.; Pessoa, Cláudia

    2013-01-01

    Thiazacridine derivatives (ATZD) are a novel class of cytotoxic agents that combine an acridine and thiazolidine nucleus. In this study, the cytotoxic action of four ATZD were tested in human colon carcinoma HCT-8 cells: (5Z)-5-acridin-9-ylmethylene-3-(4-methylbenzyl)-thiazolidine-2,4-dione — AC-4; (5ZE)-5-acridin-9-ylmethylene-3-(4-bromo-benzyl)-thiazolidine-2,4-dione — AC-7; (5Z)-5-(acridin-9-ylmethylene)-3-(4-chloro-benzyl) -1,3-thiazolidine-2,4-dione — AC-10; and (5ZE)-5-(acridin-9-ylmethylene)-3-(4-fluoro-benzyl)-1,3-thiazolidine-2, 4-dione — AC-23. All of the ATZD tested reduced the proliferation of HCT-8 cells in a concentration- and time-dependent manner. There were significant increases in internucleosomal DNA fragmentation without affecting membrane integrity. For morphological analyses, hematoxylin–eosin and acridine orange/ethidium bromide were used to stain HCT-8 cells treated with ATZD, which presented the typical hallmarks of apoptosis. ATZD also induced mitochondrial depolarisation and phosphatidylserine exposure and increased the activation of caspases 3/7 in HCT-8 cells, suggesting that this apoptotic cell death was caspase-dependent. In an assay using Saccharomyces cerevisiae mutants with defects in DNA topoisomerases 1 and 3, the ATZD showed enhanced activity, suggesting an interaction between ATZD and DNA topoisomerase enzyme activity. In addition, ATZD inhibited DNA topoisomerase I action in a cell-free system. Interestingly, these ATZD did not cause genotoxicity or inhibit the telomerase activity in human lymphocyte cultures at the experimental levels tested. In conclusion, the ATZD inhibited the DNA topoisomerase I activity and induced tumour cell death through apoptotic pathways. - Highlights: ► Thiazacridine derivatives induce mitochondrial-dependent apoptotic cell death. ► Thiazacridine derivatives inhibit DNA topoisomerase I action. ► Thiazacridine derivatives failed to cause genotoxicity on human lymphocytes

  20. Synthetic secoisolariciresinol diglucoside (LGM2605) inhibits myeloperoxidase activity in inflammatory cells.

    Science.gov (United States)

    Mishra, Om P; Popov, Anatoliy V; Pietrofesa, Ralph A; Nakamaru-Ogiso, Eiko; Andrake, Mark; Christofidou-Solomidou, Melpo

    2018-06-01

    Myeloperoxidase (MPO) generates hypochlorous acid (HOCl) during inflammation and infection. We showed that secoisolariciresinol diglucoside (SDG) scavenges radiation-induced HOCl in physiological solutions. However, the action of SDG and its synthetic version, LGM2605, on MPO-catalyzed generation of HOCl is unknown. The present study evaluated the effect of LGM2605 on human MPO, and murine MPO from macrophages and neutrophils. MPO activity was determined fluorometrically using hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF). The effect of LGM2605 on (a) the peroxidase cycle of MPO was determined using Amplex Red while the effect on (b) the chlorination cycle was determined using a taurine chloramine assay. Using electron paramagnetic resonance (EPR) spectroscopy we determined the effect of LGM2605 on the EPR signals of MPO. Finally, computational docking of SDG was used to identify energetically favorable docking poses to enzyme's active site. LGM2605 inhibited human and murine MPO activity. MPO inhibition was observed in the absence and presence of Cl - . EPR confirmed that LGM2605 suppressed the formation of Compound I, an oxoiron (IV) intermediate [Fe(IV)O] containing a porphyrin π-radical of MPO's catalytic cycle. Computational docking revealed that SDG can act as an inhibitor by binding to the enzyme's active site. We conclude that LGM2605 inhibits MPO activity by suppressing both the peroxidase and chlorination cycles. EPR analysis demonstrated that LGM2605 inhibits MPO by decreasing the formation of the highly oxidative Compound I. This study identifies a novel mechanism of LGM2605 action as an inhibitor of MPO and indicates that LGM2605 may be a promising attenuator of oxidant-dependent inflammatory tissue damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    Science.gov (United States)

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  2. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity

    Science.gov (United States)

    Liu, Daofeng; Song, Liping; Wei, Jie; Courtney, Amy N.; Gao, Xiuhua; Marinova, Ekaterina; Guo, Linjie; Heczey, Andras; Asgharzadeh, Shahab; Kim, Eugene; Dotti, Gianpietro; Metelitsa, Leonid S.

    2012-01-01

    Vα24-invariant NKT cells inhibit tumor growth by targeting tumor-associated macrophages (TAMs). Tumor progression therefore requires that TAMs evade NKT cell activity through yet-unknown mechanisms. Here we report that a subset of cells in neuroblastoma (NB) cell lines and primary tumors expresses membrane-bound TNF-α (mbTNF-α). These proinflammatory tumor cells induced production of the chemokine CCL20 from TAMs via activation of the NF-κB signaling pathway, an effect that was amplified in hypoxia. Flow cytometry analyses of human primary NB tumors revealed selective accumulation of CCL20 in TAMs. Neutralization of the chemokine inhibited in vitro migration of NKT cells toward tumor-conditioned hypoxic monocytes and localization of NKT cells to NB grafts in mice. We also found that hypoxia impaired NKT cell viability and function. Thus, CCL20-producing TAMs served as a hypoxic trap for tumor-infiltrating NKT cells. IL-15 protected antigen-activated NKT cells from hypoxia, and transgenic expression of IL-15 in adoptively transferred NKT cells dramatically enhanced their antimetastatic activity in mice. Thus, tumor-induced chemokine production in hypoxic TAMs and consequent chemoattraction and inhibition of NKT cells represents a mechanism of immune escape that can be reversed by adoptive immunotherapy with IL-15–transduced NKT cells. PMID:22565311

  3. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity.

    Science.gov (United States)

    Liu, Daofeng; Song, Liping; Wei, Jie; Courtney, Amy N; Gao, Xiuhua; Marinova, Ekaterina; Guo, Linjie; Heczey, Andras; Asgharzadeh, Shahab; Kim, Eugene; Dotti, Gianpietro; Metelitsa, Leonid S

    2012-06-01

    Vα24-invariant NKT cells inhibit tumor growth by targeting tumor-associated macrophages (TAMs). Tumor progression therefore requires that TAMs evade NKT cell activity through yet-unknown mechanisms. Here we report that a subset of cells in neuroblastoma (NB) cell lines and primary tumors expresses membrane-bound TNF-α (mbTNF-α). These proinflammatory tumor cells induced production of the chemokine CCL20 from TAMs via activation of the NF-κB signaling pathway, an effect that was amplified in hypoxia. Flow cytometry analyses of human primary NB tumors revealed selective accumulation of CCL20 in TAMs. Neutralization of the chemokine inhibited in vitro migration of NKT cells toward tumor-conditioned hypoxic monocytes and localization of NKT cells to NB grafts in mice. We also found that hypoxia impaired NKT cell viability and function. Thus, CCL20-producing TAMs served as a hypoxic trap for tumor-infiltrating NKT cells. IL-15 protected antigen-activated NKT cells from hypoxia, and transgenic expression of IL-15 in adoptively transferred NKT cells dramatically enhanced their antimetastatic activity in mice. Thus, tumor-induced chemokine production in hypoxic TAMs and consequent chemoattraction and inhibition of NKT cells represents a mechanism of immune escape that can be reversed by adoptive immunotherapy with IL-15-transduced NKT cells.

  4. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity.

    Science.gov (United States)

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-05-31

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs.

  5. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    Directory of Open Access Journals (Sweden)

    Gideon C. Okpokwasili

    2010-04-01

    Full Text Available The toxicity of phenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol on Pseudomonas, Bacillus and Escherichia species isolated from petroleum refinery wastewater was assessed via inhibition of dehydrogenase enzyme activity. At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds inhibited dehydrogenase activities. Generally, phenol is less toxic than substituted phenols. Estimations of the degree of inhibition/stimulation of dehydrogenase activities showed significant dose-dependent responses that are describable by logistic functions. The toxicity thresholds varied significantly (P < 0.05 among the bacterial strains and phenolic compounds. The median inhibitory concentrations (IC50s ranged from 4.118 ± 0.097 mg.L-1 for 4-nitrophenol against Pseudomonas sp. DAF1 to 1407.997 ± 7.091 mg.L-1 for phenol against Bacillus sp. DISK1. This study suggested that the organisms have moderate sensitivity to phenols and have the potential to be used as indicators for assessment of chemical toxicity. They could also be used as catalysts for degradation of phenols in effluents.

  6. Inhibition of proteases activity in intestine needs a sustainable acidic environment rather than a transient.

    Science.gov (United States)

    Xing, Chang; Xing, Jin-Feng; Ge, Zhi-Qiang

    2017-10-01

    α-Chymotrypsin (α-CT) and trypsin are important components of the enzymatic barrier. They could degrade the therapeutic proteins and peptides, inhibit their activity consequently, and thereby reduce their oral bioavailability. Acidic agents, as one type of indirect protease inhibitors, have shown proof of concept in clinical trials. We report here the inactivated proteases due to acid influence can be reactivated immediately by environmental pH recovery regardless of how long the inactivation last. To keep the inactivation time of proteases for 4-5 h, we designed and prepared a sustained-release tablet containing citric acid (CA) which can effectively reduce the pH below 5.0 and maintain it for 5 h in the dissolution-reaction medium. The activity of α-CT and trypsin was quantified by analyzing the residual amount of their respective substrates BTEE and TAME. More than 80% of the substrates were survived in 5.0 h of incubation, whereas the common tablet inhibited the proteases activity for only two hours in the same experimental medium. It indicates that the sustained-release tablet loaded with CA can efficiently inhibit the α-CT and trypsin activity longer than the common tablet. The results will be beneficial for designing and formulating the peroral administration of peptide and protein drugs.

  7. Locally formed dopamine inhibits Na sup + -K sup + -ATPase activity in rat renal cortical tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J. (Harvard Medical School, Boston, MA (USA) Karolinska Institute, Stockholm (Sweden))

    1988-10-01

    Dopamine, generated locally from L-dopa, inhibits Na{sup +}-K{sup +}-ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na{sup +}-K{sup +}-ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate ({dot Q}o{sub 2}) and {sup 86}Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive {dot Q}o{sub 2} or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive {dot Q}o{sub 2} in a concentration-dependent manner, with half-maximal inhibition (K{sub 0.5}) of 5 {times} 10{sup {minus}7} M and a maximal inhibition of 14.1 {plus minus} 1.5% at 10{sup {minus}4}M. L-Dopa also blunted the nystatin-stimulated {dot Q}o{sub 2} in a concentration-dependent manner, indicating the L-dopa directly inhibits Na{sup +}-K{sup +}-ATPase activity and not sodium entry. Ouabain-sensitive {sup 86}Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} and {sup 86}Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na{sup +}-K{sup +}-ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner.

  8. Selective inhibition by harmane of the apurinic apyrimidinic endonuclease activity of phage T4-induced UV endonuclease.

    Science.gov (United States)

    Warner, H R; Persson, M L; Bensen, R J; Mosbaugh, D W; Linn, S

    1981-11-25

    1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not inhibited by harmane. Human fibroblast AP endonucleases I and II also were only slightly inhibited. Therefore, harmane is neither a general inhibitor of AP endonucleases, nor a general inhibitor of Class I AP endonucleases which incise DNA on the 3'-side of AP sites. However, E. coli endonuclease III and its associated dihydroxythymine-DNA glycosylase activity were both inhibited by harmane. This observation suggests that harmane may inhibit only AP endonucleases which have associated glycosylase activities.

  9. Heritability of brain activity related to response inhibition: a longitudinal genetic study in adolescent twins

    Science.gov (United States)

    Anokhin, Andrey P.; Golosheykin, Simon; Grant, Julia D.; Heath, Andrew C.

    2017-01-01

    The ability to inhibit prepotent but context- or goal-inappropriate responses is essential for adaptive self-regulation of behavior. Deficits in response inhibition, a key component of impulsivity, have been implicated as a core dysfunction in a range of neuropsychiatric disorders such as ADHD and addictions. Identification of genetically transmitted variation in the neural underpinnings of response inhibition can help to elucidate etiological pathways to these disorders and establish the links between genes, brain, and behavior. However, little is known about genetic influences on the neural mechanisms of response inhibition during adolescence, a developmental period characterized by weak self-regulation of behavior. Here we investigated heritability of ERPs elicited in a Go/No-Go task in a large sample of adolescent twins assessed longitudinally at ages 12, 14, and 16. Genetic analyses showed significant heritability of inhibition-related frontal N2 and P3 components at all three ages, with 50 to 60% of inter-individual variability being attributable to genetic factors. These genetic influences included both common genetic factors active at different ages and novel genetic influences emerging during development. Finally, individual differences in the rate of developmental changes from age 12 to age 16 were significantly influenced by genetic factors. In conclusion, the present study provides the first evidence for genetic influences on neural correlates of response inhibition during adolescence and suggests that ERPs elicited in the Go/No-Go task can serve as intermediate neurophysiological phenotypes (endophenotypes) for the study of disinhibition and impulse control disorders. PMID:28300615

  10. The dual action of poly(ADP-ribose polymerase -1 (PARP-1 inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity

    Directory of Open Access Journals (Sweden)

    Slava eRom

    2015-08-01

    Full Text Available The transcription of HIV-1 (HIV is regulated by complex mechanisms involving various cellular factors and virus-encoded transactivators. Poly(ADP-ribose polymerase 1 (PARP-1 inhibition has emerged recently as a potent anti-inflammatory tool, since PARP-1 is involved in the regulation of some genes through its interaction with various transcription factors. We propose a novel approach to diminish HIV replication via PARP-1 inhibition using human primary monocyte-derived macrophages (MDM as an in vitro model system. PARP-1 inhibitors were able to reduce HIV replication in MDM by 60-80% after 7 days infection. Long Terminal Repeat (LTR acts as a switch in virus replication and can be triggered by several agents such as: Tat, tumor necrosis factor α (TNFα, and phorbol 12-myristate 13-acetate (PMA. Overexpression of Tat in MDM transfected with an LTR reporter plasmid led to a 4.2-fold increase in LTR activation; PARP inhibition resulted in 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85-95%. MDM treated with PARP inhibitors showed 90% reduction in NFκB activity (known to mediate PMA- and TNFα-induced HIV LTR activation. Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These findings suggest that HIV replication in MDM could be suppressed by PARP inhibition via NFκB suppression, diminution of LTR activation and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide a potent approach to treatment of HIV infection.

  11. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    Science.gov (United States)

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC.

  12. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    Science.gov (United States)

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  13. Cadmium exposure inhibits MMP2 and MMP9 activities in the prostate and testis

    International Nuclear Information System (INIS)

    Lacorte, Livia M.; Rinaldi, Jaqueline C.; Justulin, Luis A.; Delella, Flávia K.; Moroz, Andrei; Felisbino, Sérgio L.

    2015-01-01

    Matrix metalloproteinases (MMPs) are zinc (Zn 2+ ) and calcium (Ca 2+ ) dependant endopeptidases, capable of degradation of numerous components of the extracellular matrix. Cadmium (Cd 2+ ) is a well known environmental contaminant which could impair the activity of MMPs. In this sense, this study was conducted to evaluate if Cd 2+ intake inhibits these endopeptidases activities at the rat prostate and testicles and if it directly inhibits the activity of MMP2 and MMP9 at gelatinolytic assays when present in the incubation buffer. To investigate this hypothesis, Wistar rats (5 weeks old), were given tap water (untreated, n = 9), or 15 ppm CdCl 2 diluted in drinking water, during 10 weeks (n = 9) and 20 weeks (n = 9). The animals were euthanized and their ventral prostate, dorsal prostate, and testicles were removed. These tissue samples were processed for protein extraction and subjected to gelatin zymography evaluation. Additionally, we performed an experiment of gelatin zymography in which 5 μM or 2 mM cadmium chloride (CdCl 2 ) was directly dissolved at the incubation buffer, using the prostatic tissue samples from untreated animals that exhibited the highest MMP2 and MMP9 activities in the previous experiment. We have found that CdCl 2 intake in the drinking water led to the inhibition of 35% and 30% of MMP2 and MMP9 (p < 0.05) at the ventral prostate and testis, respectively, in Cd 2+ treated animals when compared to controls. Moreover, the activities of the referred enzymes were 80% and 100% inhibited by 5 μM and 2 mM of CdCl 2 , respectively, even in the presence of 10 mM of CaCl 2 within the incubation buffer solution. These important findings demonstrate that environmental cadmium contamination may deregulate the natural balance in the extracellular matrix turnover, through MMPs downregulation, which could contribute to the toxic effects observed in prostatic and testicular tissue after its exposure. - Highlights: • Wistar rats were given

  14. A novel role of sesamol in inhibiting NF-κB-mediated signaling in platelet activation

    Directory of Open Access Journals (Sweden)

    Chang Chao-Chien

    2011-12-01

    Full Text Available Abstract Background Platelet activation is relevant to a variety of coronary heart diseases. Our previous studies revealed that sesamol possesses potent antiplatelet activity through increasing cyclic AMP formation. Although platelets are anucleated cells, they also express the transcription factor, NF-κB, that may exert non-genomic functions in platelet activation. Therefore, we further investigated the inhibitory roles of sesamol in NF-κB-mediated platelet function. Methods Platelet aggregation, Fura 2-AM fluorescence, and immunoblotting analysis were used in this study. Results NF-κB signaling events, including IKKβ phosphorylation, IκBα degradation, and p65 phosphorylation, were markedly activated by collagen (1 μg/ml in washed human platelets, and these signaling events were attenuated by sesamol (2.5~25 μM. Furthermore, SQ22536 and ODQ, inhibitors of adenylate cyclase and guanylate cyclase, respectively, strongly reversed the sesamol (25 μM-mediated inhibitory effects of IKKβ phosphorylation, IκBα degradation, and p65 phosphorylation stimulated by collagen. The protein kinase A (PKA inhibitor, H89, also reversed sesamol-mediated inhibition of IκBα degradation. Moreover, BAY11-7082, an NF-κB inhibitor, abolished IκBα degradation, phospholipase C (PLCγ2 phosphorylation, protein kinase C (PKC activation, [Ca2+]i mobilization, and platelet aggregation stimulated by collagen. Preincubation of platelets with the inhibitors, SQ22536 and H89, both strongly reversed sesamol-mediated inhibition of platelet aggregation and [Ca2+]i mobilization. Conclusions Sesamol activates cAMP-PKA signaling, followed by inhibition of the NF-κB-PLC-PKC cascade, thereby leading to inhibition of [Ca2+]i mobilization and platelet aggregation. Because platelet activation is not only linked to hemostasis, but also has a relevant role in inflammation and metastasis, our data demonstrating that inhibition of NF-κB interferes with platelet function may

  15. Cadmium exposure inhibits MMP2 and MMP9 activities in the prostate and testis

    Energy Technology Data Exchange (ETDEWEB)

    Lacorte, Livia M.; Rinaldi, Jaqueline C.; Justulin, Luis A.; Delella, Flávia K. [Univ Estadual Paulista – UNESP, Institute of Biosciences, Department of Morphology, Extracellular Matrix Laboratory, Botucatu, SP (Brazil); Moroz, Andrei [Univ Estadual Paulista – UNESP, School of Pharmaceutical Sciences, Department of Bioprocess and Biotechnology, Cell Culture Laboratory, Araraquara, SP (Brazil); Felisbino, Sérgio L., E-mail: felisbin@ibb.unesp.br [Univ Estadual Paulista – UNESP, Institute of Biosciences, Department of Morphology, Extracellular Matrix Laboratory, Botucatu, SP (Brazil)

    2015-02-20

    Matrix metalloproteinases (MMPs) are zinc (Zn{sup 2+}) and calcium (Ca{sup 2+}) dependant endopeptidases, capable of degradation of numerous components of the extracellular matrix. Cadmium (Cd{sup 2+}) is a well known environmental contaminant which could impair the activity of MMPs. In this sense, this study was conducted to evaluate if Cd{sup 2+} intake inhibits these endopeptidases activities at the rat prostate and testicles and if it directly inhibits the activity of MMP2 and MMP9 at gelatinolytic assays when present in the incubation buffer. To investigate this hypothesis, Wistar rats (5 weeks old), were given tap water (untreated, n = 9), or 15 ppm CdCl{sub 2} diluted in drinking water, during 10 weeks (n = 9) and 20 weeks (n = 9). The animals were euthanized and their ventral prostate, dorsal prostate, and testicles were removed. These tissue samples were processed for protein extraction and subjected to gelatin zymography evaluation. Additionally, we performed an experiment of gelatin zymography in which 5 μM or 2 mM cadmium chloride (CdCl{sub 2}) was directly dissolved at the incubation buffer, using the prostatic tissue samples from untreated animals that exhibited the highest MMP2 and MMP9 activities in the previous experiment. We have found that CdCl{sub 2} intake in the drinking water led to the inhibition of 35% and 30% of MMP2 and MMP9 (p < 0.05) at the ventral prostate and testis, respectively, in Cd{sup 2+} treated animals when compared to controls. Moreover, the activities of the referred enzymes were 80% and 100% inhibited by 5 μM and 2 mM of CdCl{sub 2}, respectively, even in the presence of 10 mM of CaCl{sub 2} within the incubation buffer solution. These important findings demonstrate that environmental cadmium contamination may deregulate the natural balance in the extracellular matrix turnover, through MMPs downregulation, which could contribute to the toxic effects observed in prostatic and testicular tissue after its

  16. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.

    Science.gov (United States)

    Quan-Jun, Yang; Yan, Huo; Yong-Long, Han; Li-Li, Wan; Jie, Li; Jin-Lu, Huang; Jin, Lu; Peng-Guo, Chen; Run, Gan; Cheng, Guo

    2017-02-01

    Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Angiotensin II inhibits the Na+-K+ pump via PKC-dependent activation of NADPH oxidase.

    Science.gov (United States)

    White, Caroline N; Figtree, Gemma A; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Chia, Karin K M; Rasmussen, Helge H

    2009-04-01

    The sarcolemmal Na(+)-K(+) pump, pivotal in cardiac myocyte function, is inhibited by angiotensin II (ANG II). Since ANG II activates NADPH oxidase, we tested the hypothesis that NADPH oxidase mediates the pump inhibition. Exposure to 100 nmol/l ANG II increased superoxide-sensitive fluorescence of isolated rabbit ventricular myocytes. The increase was abolished by pegylated superoxide dismutase (SOD), by the NADPH oxidase inhibitor apocynin, and by myristolated inhibitory peptide to epsilon-protein kinase C (epsilonPKC), previously implicated in ANG II-induced Na(+)-K(+) pump inhibition. A role for epsilonPKC was also supported by an ANG II-induced increase in coimmunoprecipitation of epsilonPKC with the receptor for the activated kinase and with the cytosolic p47(phox) subunit of NADPH oxidase. ANG II decreased electrogenic Na(+)-K(+) pump current in voltage-clamped myocytes. The decrease was abolished by SOD, by the gp91ds inhibitory peptide that blocks assembly and activation of NADPH oxidase, and by epsilonPKC inhibitory peptide. Since colocalization should facilitate NADPH oxidase-dependent regulation of the Na(+)-K(+) pump, we examined whether there is physical association between the pump subunits and NADPH oxidase. The alpha(1)-subunit coimmunoprecipitated with caveolin 3 and with membrane-associated p22(phox) and cytosolic p47(phox) NADPH oxidase subunits at baseline. ANG II had no effect on alpha(1)/caveolin 3 or alpha(1)/p22(phox) interaction, but it increased alpha(1)/p47(phox) coimmunoprecipitation. We conclude that ANG II inhibits the Na(+)-K(+) pump via PKC-dependent NADPH oxidase activation.

  18. Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model

    Science.gov (United States)

    Park, Jeong Won; Han, Cho Rong; Zhao, Li; Willingham, Mark C.; Cheng, Sheue-yann

    2015-01-01

    Compelling epidemiologic studies indicate that obesity is a risk factor for many human cancers, including thyroid cancer. In recent decades, the incidence of thyroid cancer has dramatically increased along with a marked rise in obesity prevalence. We previously demonstrated that a high fat diet (HFD) effectively induced the obese phenotype in a mouse model of thyroid cancer (ThrbPV/PVPten+/− mice). Moreover, HFD activates the STAT3 signal pathway to promote more aggressive tumor phenotypes. The aim of the present study was to evaluate the effect of S3I-201, a specific inhibitor of STAT3 activity, on HFD-induced aggressive cancer progression in the mouse model of thyroid cancer. Wild type and ThrbPV/PVPten+/− mice were treated with HFD together with S3I-201 or vehicle-only as controls. We assessed the effects of S3I-201 on HFD-induced thyroid cancer progression, the leptin-JAK2-STAT3 signaling pathway, and key regulators of epithelial-mesenchymal transition. S3I-201 effectively inhibited HFD-induced aberrant activation of STAT3 and its downstream targets to markedly inhibit thyroid tumor growth and to prolong survival. Decreased protein levels of cyclins D1 and B1, cyclin dependent kinase (CDK) 4, CDK 6, and phosphorylated retinoblastoma protein led to the inhibition of tumor cell proliferation in S3I-201-treated ThrbPV/PVPten+/− mice. Reduced occurrence of vascular invasion and blocking of anaplasia and lung metastasis in thyroid tumors of S3I-201-treated ThrbPV/PVPten+/− mice were mediated via decreased expression of vimentin and matrix metalloproteinases, two key effectors of epithelial-mesenchymal transition. The present findings suggest that inhibition of the STAT3 activity would be a novel treatment strategy for obesity-induced thyroid cancer. PMID:26552408

  19. Cytostatic versus Cytocidal Activities of Chloroquine Analogues and Inhibition of Hemozoin Crystal Growth

    OpenAIRE

    Gorka, Alexander P.; Alumasa, John N.; Sherlach, Katy S.; Jacobs, Lauren M.; Nickley, Katherine B.; Brower, Jonathan P.; de Dios, Angel C.; Roepe, Paul D.

    2013-01-01

    We report an improved, nonhazardous, high-throughput assay for in vitro quantification of antimalarial drug inhibition of β-hematin (hemozoin) crystallization performed under conditions that are more physiological relative to previous assays. The assay uses the differential detergent solubility of crystalline and noncrystalline forms of heme and is optimized via the use of lipid catalyst. Using this assay, we quantify the effect of pH on the crystal growth-inhibitory activities of current qui...

  20. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yue [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Handong, E-mail: njhdwang@hotmail.com [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Qiang [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Ding, Hui [Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wu, Heming [Department of Neurosurgery, Nanjing Jingdu Hospital, No. 34, Biao 34, Yanggongjing Road, Nanjing 210002, Jiangsu Province (China); Pan, Hao [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China)

    2016-01-15

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, the role and mechanism of Nrf2 in cancer cell proliferation was investigated in multiple glioma cell lines. We first evaluated the expression patterns of Nrf2 in four glioma cell lines and found all four cell lines expressed Nrf2, but the highest level was observed in U251 cells. We further evaluated the biological functions of Nrf2 in U251 glioma cell proliferation by specific inhibition of Nrf2 using short hairpin RNA (shRNA). We found that Nrf2 depletion inhibited glioma cell proliferation. Nrf2 depletion also decreased colony formation in U251 cells stably expressing Nrf2 shRNA compared to scrambled control shRNA. Moreover, suppression of Nrf2 expression could lead to ATP depletion (with concomitant rise in AMP/ATP ratio) and consequently to AMPK-activated mTOR inhibition. Finally, activation of adenosine monophosphate–activated protein kinase (AMPK) by treated with phenformin, an AMPK agonist, can mimic the inhibitory effect of Nrf2 knockdown in U251 cells. In conclusion, our findings will shed light to the role and mechanism of Nrf2 in regulating glioma proliferation via ATP-depletion-induced AMPK activation and consequent mTOR inhibition, a novel insight into our understanding the role and mechanism of Nrf2 in glioma pathoetiology. To our knowledge, this is also the first report to provide a rationale for the implication of cross-linking between Nrf2 and mTOR signaling.

  1. MicroRNA-125a Inhibits Autophagy Activation and Antimicrobial Responses during Mycobacterial Infection.

    Science.gov (United States)

    Kim, Jin Kyung; Yuk, Jae-Min; Kim, Soo Yeon; Kim, Tae Sung; Jin, Hyo Sun; Yang, Chul-Su; Jo, Eun-Kyeong

    2015-06-01

    MicroRNAs (miRNAs) are small noncoding nucleotides that play critical roles in the regulation of diverse biological functions, including the response of host immune cells. Autophagy plays a key role in activating the antimicrobial host defense against Mycobacterium tuberculosis. Although the pathways associated with autophagy must be tightly regulated at a posttranscriptional level, the contribution of miRNAs and whether they specifically influence the activation of macrophage autophagy during M. tuberculosis infection are largely unknown. In this study, we demonstrate that M. tuberculosis infection of macrophages leads to increased expression of miRNA-125a-3p (miR-125a), which targets UV radiation resistance-associated gene (UVRAG), to inhibit autophagy activation and antimicrobial responses to M. tuberculosis. Forced expression of miR-125a significantly blocked M. tuberculosis-induced activation of autophagy and phagosomal maturation in macrophages, and inhibitors of miR-125a counteracted these effects. Both TLR2 and MyD88 were required for biogenesis of miR-125a during M. tuberculosis infection. Notably, activation of the AMP-activated protein kinase significantly inhibited the expression of miR-125a in M. tuberculosis-infected macrophages. Moreover, either overexpression of miR-125a or silencing of UVRAG significantly attenuated the antimicrobial effects of macrophages against M. tuberculosis. Taken together, these data indicate that miR-125a regulates the innate host defense by inhibiting the activation of autophagy and antimicrobial effects against M. tuberculosis through targeting UVRAG. Copyright © 2015 by The American Association of Immunologists, Inc.

  2. The mode of inhibition of the Na+-K+ pump activity in mast cells by calcium

    DEFF Research Database (Denmark)

    Knudsen, T; Johansen, Torben

    1989-01-01

    , and hence the pump activity. This hypothesis is supported by the stimulation of pump activity produced by monensin, which is not inhibited by calcium. The enhancement of pump activity after exposure of calcium-deprived cells to EGTA might be the result of a further increase in the sodium permeability......1 The inhibition by calcium of the Na(+)-K+ pump in the plasma membrane of rat peritoneal mast cells was studied in pure populations of the cells by measuring the ouabain-sensitive uptake of the radioactive potassium analogue, 86rubidium (86Rb+). 2 Exposure of the cells to calcium induced a time......- and concentration-dependent decrease in the ouabain-sensitive K+(86Rb+)-uptake of the cells without influencing the ouabain-resistant uptake. The development of the inhibition required the presence of potassium in the medium in the millimolar range (1.5-8.0 mM), and it did not occur at a concentration of potassium...

  3. Inhibition of human dendritic cell activation by hydroethanolic but not lipophilic extracts of turmeric (Curcuma longa).

    Science.gov (United States)

    Krasovsky, Joseph; Chang, David H; Deng, Gary; Yeung, Simon; Lee, Mavis; Leung, Ping Chung; Cunningham-Rundles, Susanna; Cassileth, Barrie; Dhodapkar, Madhav V

    2009-03-01

    Turmeric has been extensively utilized in Indian and Chinese medicine for its immune-modulatory properties. Dendritic cells (DCs) are antigen-presenting cells specialized to initiate and regulate immunity. The ability of DCs to initiate immunity is linked to their activation status. The effects of turmeric on human DCs have not been studied. Here we show that hydroethanolic (HEE) but not lipophilic "supercritical" extraction (SCE) of turmeric inhibits the activation of human DCs in response to inflammatory cytokines. Treatment of DCs with HEE also inhibits the ability of DCs to stimulate the mixed lymphocyte reaction (MLR). Importantly, the lipophilic fraction does not synergize with the hydroethanolic fraction for the ability of inhibiting DC maturation. Rather, culturing of DCs with the combination of HEE and SCE leads to partial abrogation of the effects of HEE on the MLR initiated by DCs. These data provide a mechanism for the anti-inflammatory properties of turmeric. However, they suggest that these extracts are not synergistic and may contain components with mutually antagonistic effects on human DCs. Harnessing the immune effects of turmeric may benefit from specifically targeting the active fractions.

  4. Evaluation of enzymes inhibition activities of medicinal plant from Burkina Faso.

    Science.gov (United States)

    Bangou, Mindiédiba Jean; Kiendrebeogo, Martin; Meda, Nâg-Tiero Roland; Coulibaly, Ahmed Yacouba; Compaoré, Moussa; Zeba, Boukaré; Millogo-Rasolodimby, Jeanne; Nacoulma, Odile Germaine

    2011-01-15

    The aim of the present study was to evaluate some enzymes inhibitory effects of 11 plant species belonging to 9 families from Burkina Faso. Methanolic extracts were used for their Glutathione-s-transferase (GST), Acetylcholinesterase (AChE), Carboxylesterase (CES) and Xanthine Oxidase (XO) inhibitory activities at final concentration of 100 microg mL(-1). The total phenolics, flavonoids and tannins were also determined spectrophotometrically using Folin-Ciocalteu, AlCl3 and ammonium citrate iron reagents, respectively. Among the 11 species tested, the best inhibitory percentages were found with Euphorbia hirta, Sclerocarya birrea and Scoparia dulcis (inhibition > 40%) followed by Annona senegalensis, Annona squamosa, Polygala arenaria and Ceratotheca sesamoides (inhibition > 25%). The best total phenolic and tannin contents were found with S. birrea with 56.10 mg GAE/100 mg extract and 47.75 mg TAE/100 mg extract, respectively. E hirta presented the higher total flavonoids (9.96 mg QE/100 mg extract). It's was found that Sclerocarya birrea has inhibited all enzymes at more than 30% and this activity is correlated to total tannins contents. Contrary to S. birrea, the enzymatic activities of E. hirta and S. dulcis are correlated to total flavonoids contents. Present findings suggest that the methanolic extracts of those plant species are potential inhibitors of GST, AChE, CES and XO and confirm their traditional uses in the treatment of mental disorders, gout, painful inflammations and cardiovascular diseases.

  5. Synthesis, Antimycobacterial, Antifungal and Photosynthesis-Inhibiting Activity of Chlorinated N-phenylpyrazine-2-carboxamides †

    Directory of Open Access Journals (Sweden)

    Katarina Kralova

    2010-11-01

    Full Text Available A series of sixteen pyrazinamide analogues with the -CONH- linker connecting the pyrazine and benzene rings was synthesized by the condensation of chlorides of substituted pyrazinecarboxylic acids with ring-substituted (chlorine anilines. The prepared compounds were characterized and evaluated for their antimycobacterial and antifungal activity, and for their ability to inhibit photosynthetic electron transport (PET. 6-Chloro-N-(4-chlorophenylpyrazine-2-carboxamide manifested the highest activity against Mycobacterium tuberculosis strain H37Rv (65% inhibition at 6.25 μg/mL. The highest antifungal effect against Trichophyton mentagrophytes, the most susceptible fungal strain tested, was found for 6-chloro-5-tert-butyl-N-(3,4-dichlorophenylpyrazine-2-carboxamide (MIC = 62.5 μmol/L. 6-Chloro-5-tert-butyl-N-(4-chlorophenylpyrazine-2-carboxamide showed the highest PET inhibition in spinach chloroplasts (Spinacia oleracea L. chloroplasts (IC50 = 43.0 μmol/L. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds as well as their structure-activity relationships are discussed.

  6. Poxvirus-encoded TNF decoy receptors inhibit the biological activity of transmembrane TNF.

    Science.gov (United States)

    Pontejo, Sergio M; Alejo, Ali; Alcami, Antonio

    2015-10-01

    Poxviruses encode up to four different soluble TNF receptors, named cytokine response modifier B (CrmB), CrmC, CrmD and CrmE. These proteins mimic the extracellular domain of the cellular TNF receptors to bind and inhibit the activity of TNF and, in some cases, other TNF superfamily ligands. Most of these ligands are released after the enzymic cleavage of a membrane precursor. However, transmembrane TNF (tmTNF) is not only a precursor of soluble TNF but also exerts specific pro-inflammatory and immunological activities. Here, we report that viral TNF receptors bound and inhibited tmTNF and describe some interesting differences in their activity against the soluble cytokine. Thus, CrmE, which does not inhibit mouse soluble TNF, could block murine tmTNF-induced cytotoxicity. We propose that this anti-tmTNF effect should be taken into consideration when assessing the role of viral TNF decoy receptors in the pathogenesis of poxvirus.

  7. Apelin-13 enhances arcuate POMC neuron activity via inhibiting M-current.

    Directory of Open Access Journals (Sweden)

    Dong Kun Lee

    Full Text Available The hypothalamus is a key element of the neural circuits that control energy homeostasis. Specific neuronal populations within the hypothalamus are sensitive to a variety of homeostatic indicators such as circulating nutrient levels and hormones that signal circulating glucose and body fat content. Central injection of apelin secreted by adipose tissues regulates feeding and glucose homeostasis. However, the precise neuronal populations and cellular mechanisms involved in these physiological processes remain unclear. Here we examine the electrophysiological impact of apelin-13 on proopiomelanocortin (POMC neuron activity. Approximately half of POMC neurons examined respond to apelin-13. Apelin-13 causes a dose-dependent depolarization. This effect is abolished by the apelin (APJ receptor antagonist. POMC neurons from animals pre-treated with pertussis toxin still respond to apelin, whereas the Gβγ signaling inhibitor gallein blocks apelin-mediated depolarization. In addition, the effect of apelin is inhibited by the phospholipase C and protein kinase inhibitors. Furthermore, single-cell qPCR analysis shows that POMC neurons express the APJ receptor, PLC-β isoforms, and KCNQ subunits (2, 3 and 5 which contribute to M-type current. Apelin-13 inhibits M-current that is blocked by the KCNQ channel inhibitor. Therefore, our present data indicate that apelin activates APJ receptors, and the resultant dissociation of the Gαq heterotrimer triggers a Gβγ-dependent activation of PLC-β signaling that inhibits M-current.

  8. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    Science.gov (United States)

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  9. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  10. Niclosamide inhibits lytic replication of Epstein-Barr virus by disrupting mTOR activation.

    Science.gov (United States)

    Huang, Lu; Yang, Mengtian; Yuan, Yan; Li, Xiaojuan; Kuang, Ersheng

    2017-02-01

    Infection with the oncogenic γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause several severe malignancies in humans. Inhibition of the lytic replication of EBV and KSHV eliminates the reservoir of persistent infection and transmission, consequently preventing the occurrence of diseases from the sources of infection. Antiviral drugs are limited in controlling these viral infectious diseases. Here, we demonstrate that niclosamide, an old anthelmintic drug, inhibits mTOR activation during EBV lytic replication. Consequently, niclosamide effectively suppresses EBV lytic gene expression, viral DNA lytic replication and virion production in EBV-infected lymphoma cells and epithelial cells. Niclosamide exhibits cytotoxicity toward lymphoma cells and induces irreversible cell cycle arrest in lytically EBV-infected cells. The ectopic overexpression of mTOR reverses the inhibition of niclosamide in EBV lytic replication. Similarly, niclosamide inhibits KSHV lytic replication. Thus, we conclude that niclosamide is a promising candidate for chemotherapy against the acute occurrence and transmission of infectious diseases of oncogenic γ-herpesviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Control of DNA synthesis in inhibited and activated Agrostemma githago seeds

    Energy Technology Data Exchange (ETDEWEB)

    Hecker, M [Sektion Biologie, FG Algemeine Botanik und Pflanzenphysiologie, Universitaet Greifswald (German Democratic Republic)

    1975-01-01

    The relationships between DNA synthesis and germination capacity of Agrostemma seeds had been studied. Protein synthesis and RNA synthesis were activated at the very beginning of imbibition, whereas DNA synthesis started in the second part of the imbibition phase. Agrostemma seeds inhibited by higher temperature (30 degC), or aged seeds with a low germination capacity were characterized by a significantly reduced protein synthesis. DNA synthesis was also reduced. The inhibition of the protein synthesis of Agrostemma embryos fed with cycloheximide or actinomycin D caused a depression of DNA synthesis. The results indicated that the initiation of DNA synthesis of imbibing Agrostemma seeds depended on the synthesis of special proteins. Abscisic acid inhibited the growth as well as DNA synthesis of isolated Agrostemma embryos. Nitomycin inhibited germination and DNA synthesis to the same extent. Dormant seeds with an undiminished intensity of protein synthesis also showed a reduced incorporation of /sup 3/H-thymidine by DNA. It is suggested that DNA synthesis of imbibed seeds, which is a necessary prerequisite for the radicle protrusion, was involved in the mechanism of ripening of the Agrostemma seeds.

  12. Control of DNA synthesis in inhibited and activated Agrostemma githago seeds

    International Nuclear Information System (INIS)

    Hecker, M.

    1975-01-01

    The relationships between DNA synthesis and germination capacity of Agrostemma seeds had been studied. Protein synthesis and RNA synthesis were activated at the very beginning of imbibition, whereas DNA synthesis started in the second part of the imbibition phase. Agrostemma seeds inhibited by higher temperature (30 degC), or aged seeds with a low germination capacity were characterized by a significantly reduced protein synthesis. DNA synthesis was also reduced. The inhibition of the protein synthesis of Agrostemma embryos fed with cycloheximide or actinomycin D caused a depression of DNA synthesis. The results indicated that the initiation of DNA synthesis of imbibing Agrostemma seeds depended on the synthesis of special proteins. Abscisic acid inhibited the growth as well as DNA synthesis of isolated Agrostemma embryos. Nitomycin inhibited germination and DNA synthesis to the same extent. Dormant seeds with an undiminished intensity of protein synthesis also showed a reduced incorporation of 3 H-thymidine by DNA. It is suggested that DNA synthesis of imbibed seeds, which is a necessary prerequisite for the radicle protrusion, was involved in the mechanism of ripening of the Agrostemma seeds. (author)

  13. Luteolin, a flavonoid, inhibits CD40 ligand expression by activated human basophils.

    Science.gov (United States)

    Hirano, Toru; Arimitsu, Junsuke; Higa, Shinji; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Kawase, Ichiro; Tanaka, Toshio

    2006-01-01

    We have previously shown that flavonoids such as luteolin, apigenin and fisetin inhibit interleukin 4 and interleukin 13 production. In this study, we investigated whether luteolin can suppress CD40 ligand expression by basophils. A human basophilic cell line, KU812, was stimulated with A23187 and phorbol myristate acetate (PMA) with or without various concentrations of luteolin or other flavonoids for 12 h, and CD40 ligand expression was analyzed by FACS. The effect of luteolin on CD40 ligand mRNA expression was studied by semiquantitative reverse transcription PCR analysis. In addition, CD40 ligand expression was also measured in purified basophils that had been stimulated for 12 h with A23187 plus PMA with or without various concentrations of luteolin. CD40 ligand expression by KU812 cells was enhanced noticeably in response to A23187 and even more strikingly augmented by A23187 plus PMA. The expression was significantly suppressed by 10 or 30 microM of luteolin, whereas myricetin failed to inhibit. Reverse transcription PCR analyses demonstrated that luteolin inhibited CD40 ligand mRNA expression by stimulated KU812 cells. Of the six flavonoids examined, luteolin, apigenin, fisetin and quercetin at 30 microM showed a significant inhibitory effect on CD40 ligand expression. The incubation of purified basophils with A23187 plus PMA significantly enhanced CD40 ligand expression, and the presence of luteolin again had an inhibitory effect. Luteolin inhibits CD40 ligand expression by activated basophils.

  14. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.

    Science.gov (United States)

    Nishikawa, Joy L; Boeszoermenyi, Andras; Vale-Silva, Luis A; Torelli, Riccardo; Posteraro, Brunella; Sohn, Yoo-Jin; Ji, Fei; Gelev, Vladimir; Sanglard, Dominique; Sanguinetti, Maurizio; Sadreyev, Ruslan I; Mukherjee, Goutam; Bhyravabhotla, Jayaram; Buhrlage, Sara J; Gray, Nathanael S; Wagner, Gerhard; Näär, Anders M; Arthanari, Haribabu

    2016-02-25

    Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a

  15. Nuclear protein IκB-ζ inhibits the activity of STAT3

    International Nuclear Information System (INIS)

    Wu, Zhihao; Zhang, Xiaoai; Yang, Juntao; Wu, Guangzhou; Zhang, Ying; Yuan, Yanzhi; Jin, Chaozhi; Chang, Zhijie; Wang, Jian; Yang, Xiaoming; He, Fuchu

    2009-01-01

    STAT3 (Signal transducer and activator of transcription 3) is a key transcription factor of the JAK-STAT (Janus kinase/signal transducer and activator of transcription) pathway that regulates cell proliferation and apoptosis. Activation of STAT3 is under tight regulation, and yet the different signaling pathways and the mechanisms that regulate its activity remain to be elucidated. Using a yeast two-hybrid screening, we have identified a nuclear protein IκB-ζ that interacts in a novel way with STAT3. This physical interaction was further confirmed by co-immunoprecipitation assays. The interaction regions were mapped to the coiled-coil domain of STAT3 and the C-terminal of IκB-ζ. Overexpression of IκB-ζ inhibited the transcriptional activity of STAT3. It also suppressed cell growth and induced cell apoptosis in SRC-simulated cells, which is partially mediated by down-regulation of expression of a known STAT3 target gene, MCL1. Our results suggest that IκB-ζ is a negative regulator of STAT3, and demonstrate a novel mechanism in which a component of the NF-κB signaling pathway inhibits the activation of STAT3.

  16. Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo

    Science.gov (United States)

    Feng, Xinchi; Wang, Xin; Liu, Youping; Di, Xin

    2015-01-01

    Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in-vitro and ex-vivo. Ellman’s colorimetric method was used for the determination of AChE inhibitory activity in mouse brain. In-vitro assays revealed that linarin inhibited AChE activity with an IC50 of 3.801 ± 1.149 μM. Ex-vivo study showed that the AChE activity was significantly reduced in both the cortex and hippocampus of mice treated intraperitoneally with various doses of linarin (35, 70 and 140 mg/Kg). The inhibition effects produced by high dose of linarin were the same as that obtained after huperzine A treatment (0.5 mg/Kg). Molecular docking study revealed that both 4’-methoxyl group and 7-O-sugar moiety of linarin played important roles in ligand-receptor binding and thus they are mainly responsible for AChE inhibitory activity. In view of its potent AChE inhibitory activity, linarin may be a promising therapeutic agent for the treatment of some diseases associated with AChE, such as glaucoma, myasthenia gravis, gastric motility and Alzheimer’s disease. PMID:26330885

  17. Activation of AMPK inhibits cholera toxin stimulated chloride secretion in human and murine intestine.

    Directory of Open Access Journals (Sweden)

    Ailín C Rogers

    Full Text Available Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR, is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK, can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK. In order to substantiate our findings on the whole tissue level, short-circuit current (SCC was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness.

  18. Antioxidant, antimicrobial and urease inhibiting activities of methanolic extracts from Cyphostemma digitatum stem and roots.

    Science.gov (United States)

    Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammed Mansour; Ali, Jawad; Rauf, Abdur; Khan, Ajmal

    2016-01-01

    Cyphostemma digitatum stem and roots extracts were investigated for antioxidant, antimicrobial, urease inhibition potential and phytochemical analysis. Phytochemical screening of the roots and stem extract revealed the presence of secondary metabolites including flavonoids, alkaloids, coumarins, saponins, terpenoids, tannins, carbohydrates/reducing sugars and phenolic compounds. The methanolic extracts of the roots displayed highest antioxidant activity (93.518%) against DPPH while the crude methanolic extract of the stem showed highest antioxidant activity (66.163%) at 100 μg/mL concentration. The methanolic extracts of both stem and roots were moderately active or even found to be less active against the selected bacterial and fungal strains (Tables S2 and S3). The roots extract (methanol) showed significant urease enzyme inhibition activity (IC50 = 41.2 ± 0.66; 0.2 mg/mL) while the stem extract was found moderately active (IC50 = 401.1 ± 0.58; 0.2 mg/mL) against thiourea (IC50 = 21.011; 0.2 mg/mL).

  19. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Meili, E-mail: fumeilidrlinyi@tom.com [Department of Infectious Disease, Linyi People' s Hospital, Linyi 276000 (China); Wan, Fuqiang [Department of Head and Neck Surgery, Linyi Tumor Hospital, Linyi 276000 (China); Li, Zhengling [Department of Nursing, Tengzhou Central People' s Hospital, Tengzhou 277500 (China); Zhang, Fenghua [Department of Operating Room, Linyi People' s Hospital, Linyi 276000 (China)

    2016-03-04

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation–inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D, a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. - Highlights: • 4SC-202 exerts potent anti-proliferative and cytotoxic activity against established/primary HCC cells. • SC-202-induced anti-HCC cell activity relies on caspase-dependent apoptosis activation. • 4SC-202 activates Cyp-D-dependent mitochondrial apoptosis pathway in HCC cells. • 4SC-202 activates ASK1 in HCC cells, causing it translocation to mitochondria. • Mitochondrial ASK1-Cyp-D complexation mediates 4SC-202's activity in HCC cells.

  20. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Fu, Meili; Wan, Fuqiang; Li, Zhengling; Zhang, Fenghua

    2016-01-01

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation–inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D, a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. - Highlights: • 4SC-202 exerts potent anti-proliferative and cytotoxic activity against established/primary HCC cells. • SC-202-induced anti-HCC cell activity relies on caspase-dependent apoptosis activation. • 4SC-202 activates Cyp-D-dependent mitochondrial apoptosis pathway in HCC cells. • 4SC-202 activates ASK1 in HCC cells, causing it translocation to mitochondria. • Mitochondrial ASK1-Cyp-D complexation mediates 4SC-202's activity in HCC cells.

  1. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    International Nuclear Information System (INIS)

    Choi, Ji-Woong; Kim, Jae-Hwan; Cho, Sung-Chun; Ha, Moon-Kyung; Song, Kye-Yong; Youn, Hong-Duk; Park, Sang Chul

    2011-01-01

    Research highlights: → ALDH2 is an MDA-modified protein in old rat kidney tissues. → AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. → ALDH2 serves as a general transcriptional repressor by associating with HDACs. → MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  2. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji-Woong [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of); Kim, Jae-Hwan [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Cho, Sung-Chun; Ha, Moon-Kyung [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of); Song, Kye-Yong [Department of Pathology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Youn, Hong-Duk, E-mail: hdyoun@snu.ac.kr [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} ALDH2 is an MDA-modified protein in old rat kidney tissues. {yields} AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. {yields} ALDH2 serves as a general transcriptional repressor by associating with HDACs. {yields} MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  3. Fisetin, a flavonol, inhibits TH2-type cytokine production by activated human basophils.

    Science.gov (United States)

    Higa, Shinji; Hirano, Toru; Kotani, Mayumi; Matsumoto, Motonobu; Fujita, Akihito; Suemura, Masaki; Kawase, Ichiro; Tanaka, Toshio

    2003-06-01

    Activation of mast cells and basophils through allergen stimulation releases chemical mediators and synthesizes cytokines. Among these cytokines, IL-4, IL-13, and IL-5 have major roles in allergic inflammation. We sought to determine the potency of flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) for the inhibition of cytokine expression and synthesis by human basophils. The inhibitory effect of flavonoids on cytokine expression by stimulated KU812 cells, a human basophilic cell line, and freshly purified peripheral blood basophils was measured by means of semiquantitative RT-PCR and ELISA assays. The effects of flavonoids on transcriptional activation of the nuclear factor of activated T cells were assessed by means of electrophoretic mobility shift assays. Fisetin suppressed the induction of IL-4, IL-13, and IL-5 mRNA expression by A23187-stimulated KU812 cells and basophils in response to cross-linkage of the IgE receptor. Fisetin reduced IL-4, IL-13, and IL-5 synthesis (inhibitory concentration of 50% [IC(50)] = 19.4, 17.7, and 17.4 micromol/L, respectively) but not IL-6 and IL-8 production by KU812 cells. In addition, fisetin inhibited IL-4 and IL-13 synthesis by anti-IgE antibody-stimulated human basophils (IC(50) = 5.1 and 6.2 micromol/L, respectively) and IL-4 synthesis by allergen-stimulated basophils from allergic patients (IC(50) = 4.8 micromol/L). Among the flavonoids examined, kaempferol and quercetin showed substantial inhibitory activities in cytokine expression but less so than those of fisetin. Fisetin inhibited nuclear localization of nuclear factor of activated T cells c2 by A23187-stimulated KU812 cells. These results provide evidence of a novel activity of the flavonoid fisetin that suppresses the expression of T(H)2-type cytokines (IL-4, IL-13, and IL-5) by basophils.

  4. Sphingosine kinase inhibition alleviates endothelial permeability induced by thrombin and activated neutrophils.

    Science.gov (United States)

    Itagaki, Kiyoshi; Zhang, Qin; Hauser, Carl J

    2010-04-01

    Inflammation and microvascular thrombosis are interrelated causes of acute lung injury in the systemic inflammatory response syndrome. Neutrophils (polymorphonuclear neutrophil [PMN]) and endothelial cells (EC) activated by systemic inflammatory response syndrome interact to increase pulmonary vascular permeability, but the interactions between PMN and EC are difficult to study. Recently, we reported that sphingosine 1-phosphate is a second messenger eliciting store-operated calcium entry (SOCE) in response to inflammatory agonists in both PMN and EC. Store-operated calcium entry is therefore a target mechanism for the therapeutic modulation of inflammatory PMN-EC interactions. Here, we isolated, modeled, and studied the effects of pharmacologic SOCE inhibition using real-time systems to monitor EC permeability after exposure to activated PMN. We created systems to continuously assess permeability of human pulmonary artery endothelial cells and human microvascular endothelial cells from lung. Endothelial cells show increased permeability after challenge by activated PMN. Such permeability increases can be attenuated by exposure of the cocultures to sphingosine kinase (SK) inhibitors (SKI-2, N,N-dimethylsphingosine [DMS]) or Ca2+ entry inhibitors (Gd3+, MRS-1845). Human microvascular endothelial cells from lung pretreated with SKI-2 or DMS showed decreased permeability when later exposed to activated PMN. Likewise, when PMNs were activated with thapsigargin (TG) in the presence of SKI-2, DMS, Gd, or MRS-1845, their ability to cause EC permeability subsequently was reduced. SKI-2 also inhibited the activation of human pulmonary artery ECs by thrombin. These studies will provide a firm mechanistic foundation for understanding how systemic SOCE inhibition may be used to prevent acute lung injury in vivo.

  5. Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase.

    Science.gov (United States)

    McDonald, Charles J; Acheff, Eric; Kennedy, Ryan; Taylor, Lynn; Curthoys, Norman P

    2015-09-01

    The GLS1 gene encodes a mitochondrial glutaminase that is highly expressed in brain, kidney, small intestine and many transformed cells. Recent studies have identified multiple lysine residues in glutaminase that are sites of N-acetylation. Interestingly, these sites are located within either a loop segment that regulates access of glutamine to the active site or the dimer:dimer interface that participates in the phosphate-dependent oligomerization and activation of the enzyme. These two segments also contain the binding sites for bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide (BPTES), a highly specific and potent uncompetitive inhibitor of this glutaminase. BPTES is also the lead compound for development of novel cancer chemotherapeutic agents. To provide a preliminary assessment of the potential effects of N-acetylation, the corresponding lysine to alanine mutations were constructed in the hGACΔ1 plasmid. The wild type and mutated proteins were purified by Ni(+)-affinity chromatography and their phosphate activation and BPTES inhibition profiles were analyzed. Two of the alanine substitutions in the loop segment (K311A and K328A) and the one in the dimer:dimer interface (K396A) form enzymes that require greater concentrations of phosphate to produce half-maximal activation and exhibit greater sensitivity to BPTES inhibition. By contrast, the K320A mutation results in a glutaminase that exhibits near maximal activity in the absence of phosphate and is not inhibited by BPTES. Thus, lysine N-acetylation may contribute to the acute regulation of glutaminase activity in various tissues and alter the efficacy of BPTES-type inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Methyl jasmonate enhances memory performance through inhibition of oxidative stress and acetylcholinesterase activity in mice.

    Science.gov (United States)

    Eduviere, Anthony T; Umukoro, S; Aderibigbe, Adegbuyi O; Ajayi, Abayomi M; Adewole, Folashade A

    2015-07-01

    Current research effort focuses on the development of safer natural compounds with multipronged mechanisms of action that could be used to ameliorate memory deficits in patients with Alzheimer's disease, as cure for the disease still remains elusive. In this study, we evaluated the effect of methyl jasmonate (MJ), a naturally occurring bioactive compound on memory, acetylcholinesterase activity and biomarkers of oxidative stress in mice. Male Swiss mice were treated with intraperitoneal injection of MJ (10-40 mg/kg) alone or in combination with scopolamine (3mg/kg) once daily for 7 days. Thirty minutes after the last treatment, memory functions were assessed using Y-maze and object recognition tests. Thereafter, acetylcholinesterase activity and levels of biomarkers of oxidative stress were assessed in mice brains using standard biochemical procedures. MJ significantly enhanced memory performance and reversed scopolamine-induced cognitive impairment in mice. MJ demonstrated significant inhibition of acetylcholinesterase activity suggesting increased cholinergic neurotransmission. It further decreased malondialdehyde concentrations in mouse brain indicating antioxidant activity. Moreover, MJ significantly increased glutathione levels and activity of antioxidant enzymes (catalase and superoxide dismutase) in mice brains. The increased oxidative stress; evidenced by elevated levels of malondialdehyde and decreased antioxidant defense systems in scopolamine-treated mice was attenuated by MJ. The results of this study suggest that MJ may be useful in conditions associated with memory dysfunctions or age-related cognitive decline. The positive effect of MJ on memory may be related to inhibition of oxidative stress and enhancement of cholinergic neurotransmission through inhibition of acetylcholinesterase activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Troxerutin Reduces Kidney Damage against BDE-47-Induced Apoptosis via Inhibiting NOX2 Activity and Increasing Nrf2 Activity

    Directory of Open Access Journals (Sweden)

    Qun Shan

    2017-01-01

    Full Text Available 2,2,4,4-Tetrabromodiphenyl ether (BDE-47, one of the persistent organic pollutants, seriously influences the quality of life; however, its pathological mechanism remains unclear. Troxerutin is a flavonoid with pharmacological activity of antioxidation and anti-inflammation. In the present study, we investigated troxerutin against BDE-47-induced kidney cell apoptosis and explored the underlying mechanism. The results show that troxerutin reduced renal cell apoptosis and urinary protein secretion in BDE-47-treated mice. Western blot analysis shows that troxerutin supplement enhanced the ratio of Bcl-2/Bax; inhibited the release of cytochrome c from mitochondria, the activation of procaspase-9 and procaspase-3, and the cleavage of PARP; and reduced FAS, FASL, and caspase-8 levels induced by BDE-47. In addition, troxerutin decreased the production of reactive oxygen species (ROS and increased the activities of antioxidative enzymes. Furthermore, troxerutin blunted Nrf2 ubiquitylation, enhanced the activity of Nrf2, decreased the activity of NOX2, and ameliorated kidney oxidant status of BDE-47-treated mice. Together, these results confirm that troxerutin could alleviate the cytotoxicity of BDE-47 through antioxidation and antiapoptosis, which suggests that its protective mechanism is involved in the inhibition of apoptosis via suppressing NOX2 activity and increasing Nrf2 signaling pathway.

  8. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    International Nuclear Information System (INIS)

    Ribeiro-Filho, Jaime; Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana; Moraes de Carvalho, Katharinne Ingrid; Silva Mendes, Diego da; Melo, Christianne Bandeira; Martins, Marco Aurélio; Silva Dias, Celidarque da; Piuvezam, Márcia Regina

    2013-01-01

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca ++ influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine

  9. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro-Filho, Jaime [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba (Brazil); Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Moraes de Carvalho, Katharinne Ingrid [Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Silva Mendes, Diego da [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Melo, Christianne Bandeira [Laboratório de Inflamação, Instituto Biofisica Carlos Chagas Filho, UFRJ, Rio de Janeiro (Brazil); Martins, Marco Aurélio [Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Silva Dias, Celidarque da [Laboratório de Fitoquímica, Departamento de Ciências Farmacêuticas, UFPB, João Pessoa, Paraíba (Brazil); Piuvezam, Márcia Regina, E-mail: mrpiuvezam@ltf.ufpb.br [Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba (Brazil); and others

    2013-11-15

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine

  10. Inhibition of Heme Peroxidase During Phenol Derivatives Oxidation. Possible Molecular Cloaking of the Active Center

    Directory of Open Access Journals (Sweden)

    Juozas Kulys

    2005-10-01

    Full Text Available Abstract: Ab initio quantum chemical calculations have been applied to the study of the molecular structure of phenol derivatives and oligomers produced during peroxidasecatalyzed oxidation. The interaction of substrates and oligomers with Arthromyces ramosus peroxidase was analyzed by docking methods. The most possible interaction site of oligomers is an active center of the peroxidase. The complexation energy increases with increasing oligomer length. However, the complexed oligomers do not form a precise (for the reaction hydrogen bonding network in the active center of the enzyme. It seems likely that strong but non productive docking of the oligomers determines peroxidase inhibition during the reaction.

  11. 3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells

    International Nuclear Information System (INIS)

    Beaver, Laura M.; Yu, Tian-Wei; Sokolowski, Elizabeth I.; Williams, David E.; Dashwood, Roderick H.; Ho, Emily

    2012-01-01

    Increased consumption of cruciferous vegetables is associated with a reduced risk of developing prostate cancer. Indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) are phytochemicals derived from cruciferous vegetables that have shown promise in inhibiting prostate cancer in experimental models. Histone deacetylase (HDAC) inhibition is an emerging target for cancer prevention and therapy. We sought to examine the effects of I3C and DIM on HDACs in human prostate cancer cell lines: androgen insensitive PC-3 cells and androgen sensitive LNCaP cells. I3C modestly inhibited HDAC activity in LNCaP cells by 25% but no inhibition of HDAC activity was detected in PC-3 cells. In contrast, DIM significantly inhibited HDAC activity in both cell lines by as much as 66%. Decreases in HDAC activity correlated with increased expression of p21, a known target of HDAC inhibitors. DIM treatment caused a significant decrease in the expression of HDAC2 protein in both cancer cell lines but no significant change in the protein levels of HDAC1, HDAC3, HDAC4, HDAC6 or HDAC8 was detected. Taken together, these results show that inhibition of HDAC activity by DIM may contribute to the phytochemicals' anti-proliferative effects in the prostate. The ability of DIM to target aberrant epigenetic patterns, in addition to its effects on detoxification of carcinogens, may make it an effective chemopreventive agent by targeting multiple stages of prostate carcinogenesis. -- Highlights: ► DIM inhibits HDAC activity and decreases HDAC2 expression in prostate cancer cells. ► DIM is significantly more effective than I3C at inhibiting HDAC activity. ► I3C has no effect on HDAC protein expression. ► Inhibition of HDAC activity by DIM is associated with increased p21 expression. ► HDAC inhibition may be a novel epigenetic mechanism for cancer prevention with DIM.

  12. 3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Beaver, Laura M., E-mail: beaverl@onid.orst.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States); Yu, Tian-Wei, E-mail: david.yu@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Sokolowski, Elizabeth I., E-mail: sokolowe@onid.orst.edu [School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture and Life Sciences Building, Corvallis, OR 97331 (United States); Dashwood, Roderick H., E-mail: rod.dashwood@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture and Life Sciences Building, Corvallis, OR 97331 (United States); Ho, Emily, E-mail: Emily.Ho@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States)

    2012-09-15

    Increased consumption of cruciferous vegetables is associated with a reduced risk of developing prostate cancer. Indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) are phytochemicals derived from cruciferous vegetables that have shown promise in inhibiting prostate cancer in experimental models. Histone deacetylase (HDAC) inhibition is an emerging target for cancer prevention and therapy. We sought to examine the effects of I3C and DIM on HDACs in human prostate cancer cell lines: androgen insensitive PC-3 cells and androgen sensitive LNCaP cells. I3C modestly inhibited HDAC activity in LNCaP cells by 25% but no inhibition of HDAC activity was detected in PC-3 cells. In contrast, DIM significantly inhibited HDAC activity in both cell lines by as much as 66%. Decreases in HDAC activity correlated with increased expression of p21, a known target of HDAC inhibitors. DIM treatment caused a significant decrease in the expression of HDAC2 protein in both cancer cell lines but no significant change in the protein levels of HDAC1, HDAC3, HDAC4, HDAC6 or HDAC8 was detected. Taken together, these results show that inhibition of HDAC activity by DIM may contribute to the phytochemicals' anti-proliferative effects in the prostate. The ability of DIM to target aberrant epigenetic patterns, in addition to its effects on detoxification of carcinogens, may make it an effective chemopreventive agent by targeting multiple stages of prostate carcinogenesis. -- Highlights: ► DIM inhibits HDAC activity and decreases HDAC2 expression in prostate cancer cells. ► DIM is significantly more effective than I3C at inhibiting HDAC activity. ► I3C has no effect on HDAC protein expression. ► Inhibition of HDAC activity by DIM is associated with increased p21 expression. ► HDAC inhibition may be a novel epigenetic mechanism for cancer prevention with DIM.

  13. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  14. Tob1 induces apoptosis and inhibits proliferation, migration and invasion of gastric cancer cells by activating Smad4 and inhibiting β‑catenin signaling.

    Science.gov (United States)

    Kundu, Juthika; Wahab, S M Riajul; Kundu, Joydeb Kumar; Choi, Yoon-La; Erkin, Ozgur Cem; Lee, Hun Seok; Park, Sang Gyu; Shin, Young Kee

    2012-09-01

    Transducer of ErbB-2.1 (Tob1), a tumor suppressor protein, is inactivated in a variety of cancers including stomach cancer. However, the role of Tob1 in gastric carcinogenesis remains elusive. The present study aimed to investigate whether Tob1 could inhibit gastric cancer progression in vitro, and to elucidate its underlying molecular mechanisms. We found differential expression of Tob1 in human gastric cancer (MKN28, AGS and MKN1) cells. The overexpression of Tob1 induced apoptosis in MKN28 and AGS cells, which was associated with sub-G1 arrest, activation of caspase-3, induction of Bax, inhibition of Bcl-2 and cleavage of poly (ADP-ribose) polymerase (PARP). In addition, Tob1 inhibited proliferation, migration and invasion, which were reversed in MKN1 and AGS cells transfected with Tob1 siRNA. Overexpression of Tob1 in MKN28 and AGS cells induced the expression of Smad4, leading to the increased expression and the promoter activity of p15, which was diminished by silencing of Tob1 using specific siRNA. Tob1 decreased the phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β) in MKN28 and AGS cells, resulting in the reduced protein expression and the transcriptional activity of β‑catenin, which in turn decreased the expression of cyclin D1, cyclin-dependent kinase-4 (CDK4), urokinase plasminogen activator receptor (uPAR) and peroxisome proliferator and activator receptor-δ (PPARδ). Conversely, silencing of Tob1 induced the phosphorylation of Akt and GSK-3β, and increased the expression of β‑catenin and its target genes. Collectively, our study demonstrates that the overexpression of Tob1 inhibits gastric cancer progression by activating Smad4- and inhibiting β‑catenin-mediated signaling pathways.

  15. Inhibition mechanism of lanthanum ion on the activity of horseradish peroxidase in vitro

    Science.gov (United States)

    Guo, Shaofen; Wang, Lihong; Lu, Aihua; Lu, Tianhong; Ding, Xiaolan; Huang, Xiaohua

    2010-02-01

    In order to understand the inhibition mechanism of lanthanum ion (La 3+) on the activity of horseradish peroxidase (HRP), the effects of La 3+ on the activity, electron transfer and conformation of HRP in vitro were investigated by using cyclic voltammetry (CV), atomic force microscopy (AFM), circular dichroism (CD), high performance liquid chromatography (HPLC), matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF/MS) and inductively coupled plasma mass spectrometry (ICP-MS). It was found that La 3+ can combine with the amide groups of the polypeptide chain in HRP molecule, forming the complex of La 3+ and HRP (La-HRP). The formation of the La-HRP complex causes the destruction of the native structure of HRP molecule, leading to the decrease in the non-planarity of the porphyrin ring in the heme group of HRP molecule, and then in the exposure extent of active center, Fe(III) of the porphyrin ring of HRP molecule. Thus, the direct electrochemical and catalytic activities of HRP are decreased. It is a possible inhibition mechanism of La 3+ on the activity of peroxidase.

  16. [Isolation of endophytic fungi from medicinal plant Brucea javanica and their microbial inhibition activity].

    Science.gov (United States)

    Liang, Zi-Ning; Zhu, Hua; Lai, Kai-Ping; Chen, Long

    2014-04-01

    To isolate and identify endophytic fungi from Brucea javanica, and to detect the antimicrobial activity of these strains. Endophytic fungi were isolated by tissue inoculation culture and identified by conventional morphological characteristic method. Seven kinds of pathogenic fungi and three kinds of bacteria were used as targeting microbes to test microbial inhibition activities by agar plate antagonistic action and modified agar gel diffusion methods, respectively. A total of 83 endophytic fungi strains were isolated from the root, stem, leaf and fruit of Brucea javanica. 34 strains were obtained from the stem, 32 strains were obtained from the leaf, 15 strains were isolated from the root and 2 strains came from the fruit. These 73 strains which had been identified attribute to 5 orders, 6 families and 12 genera. For the isolated strains, 14 strains had antifungal activities against at least one pathogenic fungi, 9 strains showed antibacterial activities against one or more bacteria. Especially, the strain YJ-17 which belonged to Phomopsis genus showed the best inhibitory effect on the targeting microbes. The endophytic fungi from Brucea javanica show diversity and microbial inhibition activity, and are worthy for further study on plant disease controlling.

  17. MEK inhibition potentiates the activity of Hsp90 inhibitor 17-AAG against pancreatic cancer cells.

    Science.gov (United States)

    Zhang, Tao; Li, Yanyan; Zhu, Zhenkun; Gu, Mancang; Newman, Bryan; Sun, Duxin

    2010-10-04

    The Ras/Raf/MEK/ERK signaling has been implicated in uncontrolled cell proliferation and tumor progression in pancreatic cancer. The purpose of this study is to evaluate the antitumor activity of MEK inhibitor U0126 in combination with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) in pancreatic cancer cells. Western blotting showed that 17-AAG caused a 2- to 3-fold transient activation of MEK/ERK signaling in pancreatic cancer cells. The activation sustained for 6 h before phospho-ERK (p-ERK) destabilization. The selective MEK inhibitor U0126 completely abolished 17-AAG induced ERK1/2 activation and resulted in more than 80% of phospho-ERK degradation after only 15 min treatment. Moreover, U0126 had complementary effect on 17-AAG regulated oncogenic and cell cycle related proteins. Although 17-AAG downregulated cyclin D1, cyclin E, CDK4 and CDK6, it led to cyclin A and CDK2 accumulation, which was reversed by the addition of U0126. Antiproliferation assay showed that combination of U0126 and 17-AAG resulted in synergistic cytotoxic effect. More importantly, 17-AAG alone only exhibited moderate inhibition of cell migration in vitro, while addition of U0126 dramatically enhanced the inhibitory effect by 2- to 5-fold. Taken together, these data demonstrate that MEK inhibitor U0126 potentiates the activity of Hsp90 inhibitor 17-AAG against pancreatic cancer cells. The combination of Hsp90 and MEK inhibition could provide a promising avenue for the treatment of pancreatic cancer.

  18. Suppressive oligodeoxynucleotides containing TTAGGG motifs inhibit cGAS activation in human monocytes.

    Science.gov (United States)

    Steinhagen, Folkert; Zillinger, Thomas; Peukert, Konrad; Fox, Mario; Thudium, Marcus; Barchet, Winfried; Putensen, Christian; Klinman, Dennis; Latz, Eicke; Bode, Christian

    2018-04-01

    Type I interferon (IFN) is a critical mediator of autoimmune diseases such as systemic lupus erythematosus (SLE) and Aicardi-Goutières Syndrome (AGS). The recently discovered cyclic-GMP-AMP (cGAMP) synthase (cGAS) induces the production of type I IFN in response to cytosolic DNA and is potentially linked to SLE and AGS. Suppressive oligodeoxynucleotides (ODN) containing repetitive TTAGGG motifs present in mammalian telomeres have proven useful in the treatment of autoimmune diseases including SLE. In this study, we demonstrate that the suppressive ODN A151 effectively inhibits activation of cGAS in response to cytosolic DNA, thereby inhibiting type I IFN production by human monocytes. In addition, A151 abrogated cGAS activation in response to endogenous accumulation of DNA using TREX1-deficient monocytes. We demonstrate that A151 prevents cGAS activation in a manner that is competitive with DNA. This suppressive activity of A151 was dependent on both telomeric sequence and phosphorothioate backbone. To our knowledge this report presents the first cGAS inhibitor capable of blocking self-DNA. Collectively, these findings might lead to the development of new therapeutics against IFN-driven pathologies due to cGAS activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Acetylcholinesterase-Inhibiting Activity of Salicylanilide N-Alkylcarbamates and Their Molecular Docking

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2012-08-01

    Full Text Available A series of twenty-five novel salicylanilide N-alkylcarbamates were investigated as potential acetylcholinesterase inhibitors. The compounds were tested for their ability to inhibit acetylcholinesterase (AChE from electric eel (Electrophorus electricus L.. Experimental lipophilicity was determined, and the structure-activity relationships are discussed. The mode of binding in the active site of AChE was investigated by molecular docking. All the discussed compounds expressed significantly higher AChE inhibitory activity than rivastigmine and slightly lower than galanthamine. Disubstitution by chlorine in C'(3,4 of the aniline ring and the optimal length of hexyl-undecyl alkyl chains in the carbamate moiety provided the most active AChE inhibitors. Monochlorination in C'(4 exhibited slightly more effective AChE inhibitors than in C'(3. Generally it can be stated that compounds with higher lipophilicity showed higher inhibition, and the activity of the compounds is strongly dependent on the length of the N-alkyl chain.

  20. IL-6 Inhibition Reduces STAT3 Activation and Enhances the Antitumor Effect of Carboplatin

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Wang

    2016-01-01

    Full Text Available Recent studies suggest that tumor-associated macrophage-produced IL-6 is an important mediator within the tumor microenvironment that promotes tumor growth. The activation of IL-6/STAT3 axis has been associated with chemoresistance and poor prognosis of a variety of cancers including colorectal carcinoma and thus serves as a potential immunotherapeutic target for cancer treatment. However, it is not fully understood whether anticytokine therapy could reverse chemosensitivity and enhance the suppressive effect of chemotherapy on tumor growth. In this study, we aimed to investigate the effect of IL-6 inhibition therapy on the antitumor effect of carboplatin. Enhanced expression of IL-6 and activation of STAT3 were observed in human colorectal carcinoma samples compared to normal colorectal tissue, with higher levels of IL-6/STAT3 in low grade carcinomas. Treatment of carboplatin (CBP dose-dependently increased IL-6 production and STAT3 activation in human colorectal LoVo cells. Blockade of IL-6 with neutralizing antibody enhanced chemosensitivity of LoVo cells to carboplatin as evidenced by increased cell apoptosis. IL-6 blockade abolished carboplatin-induced STAT3 activation. IL-6 blockade and carboplatin synergistically reduced cyclin D1 expression and enhanced caspase-3 activity in LoVo cells. Our results suggest that inhibition of IL-6 may enhance chemosensitivity of colon cancers with overactive STAT3 to platinum agents.

  1. Quorum Sensing Inhibition and Structure–Activity Relationships of β-Keto Esters

    Directory of Open Access Journals (Sweden)

    Stephanie Forschner-Dancause

    2016-07-01

    Full Text Available Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS—a cell-cell communication system in bacteria—controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure–activity relationships needed to allow for the development of novel anti-virulence agents.

  2. Antiviral activity of human lactoferrin: inhibition of alphavirus interaction with heparan sulfate

    International Nuclear Information System (INIS)

    Waarts, Barry-Lee; Aneke, Onwuchekwa J.C.; Smit, Jolanda M.; Kimata, Koji; Bittman, Robert; Meijer, Dirk K.F.; Wilschut, Jan

    2005-01-01

    Human lactoferrin is a component of the non-specific immune system with distinct antiviral properties. We used alphaviruses, adapted to interaction with heparan sulfate (HS), as a tool to investigate the mechanism of lactoferrin's antiviral activity. Lactoferrin inhibited infection of BHK-21 cells by HS-adapted, but not by non-adapted, Sindbis virus (SIN) or Semliki Forest virus (SFV). Lactoferrin also inhibited binding of radiolabeled HS-adapted viruses to BHK-21 cells or liposomes containing lipid-conjugated heparin as a receptor analog. On the other hand, low-pH-induced fusion of the viruses with liposomes, which occurs independently of virus-receptor interaction, was unaffected. Studies involving preincubation of virus or cells with lactoferrin suggested that the protein does not bind to the virus, but rather blocks HS-moieties on the cell surface. Charge-modified human serum albumin, with a net positive charge, had a similar antiviral effect against HS-adapted SIN and SFV, suggesting that the antiviral activity of lactoferrin is related to its positive charge. It is concluded that human lactoferrin inhibits viral infection by interfering with virus-receptor interaction rather than by affecting subsequent steps in the viral cell entry or replication processes

  3. Dithiocarbamates are teratogenic to developing zebrafish through inhibition of lysyl oxidase activity

    International Nuclear Information System (INIS)

    Boxtel, Antonius L. van; Kamstra, Jorke H.; Fluitsma, Donna M.; Legler, Juliette

    2010-01-01

    Dithiocarbamates (DTCs) are a class of compounds that are extensively used in agriculture as pesticides. As such, humans and wildlife are undoubtedly exposed to these chemicals. Although DTCs are thought to be relatively safe due to their short half lives, it is well established that they are teratogenic to vertebrates, especially to fish. In zebrafish, these teratogenic effects are characterized by distorted notochord development and shortened anterior to posterior axis. DTCs are known copper (Cu) chelators but this does not fully explain the observed teratogenic effects. We show here that DTCs cause malformations in zebrafish that highly resemble teratogenic effects observed by direct inhibition of a group of cuproenzymes termed lysyl oxidases (LOX). Additionally, we demonstrate that partial knockdown of three LOX genes, lox, loxl1 and loxl5b, sensitizes the developing embryo to DTC exposure. Finally, we show that DTCs directly inhibit zebrafish LOX activity in an ex vivo amine oxidase assay. Taken together, these results provide the first evidence that DTC induced teratogenic effects are, at least in part, caused by direct inhibition of LOX activity.

  4. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla.

    Science.gov (United States)

    Hou, Wen-Chi; Lin, Rong-Dih; Chen, Cheng-Tang; Lee, Mei-Hsien

    2005-08-22

    Attenuation of monoamine oxidase B (MAO-B) activity may provide protection against oxidative neurodegeneration. For this reason, inhibition of MAO-B activity is used as part of the treatment of Parkinson's and Alzheimer's patients. The hook of Uncaria rhynchophylla (Miq.) Jacks. (Rubiaceae) is a traditional Chinese herbal drug that is generally used to treat convulsive disorders. In this study, the fractionation and purification of Uncaria rhynchophylla extracts using a bioguided assay isolated two known compounds, (+)-catechin and (-)-epicatechin. The compounds inhibited MAO-B, as measured by an assay of rat brain MAO-B separated by electrophoresis on a 7.5% native polyacrylamide gel. The IC(50) values of (+)-catechin and (-)-epicatechin were 88.6 and 58.9 microM, respectively, and inhibition occurred in a dose-dependent manner, as measured by the fluorescence method. The Lineweaver-Burk plot revealed K(i) values for (+)-catechin and (-)-epicatechin of 74 and 21 microM, respectively. This suggests that these two compounds, isolated here for the first time from Uncaria rhynchophylla, might be able to protect against neurodegeneration in vitro, and, therefore, the molecular mechanism deserves further study. This finding may also increase interest in the health benefits of Uncaria rhynchophylla.

  5. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity

    Directory of Open Access Journals (Sweden)

    Xiaoyong Wei

    2012-01-01

    Full Text Available Objective. Effects of Syringic acid (SA extracted from dendrobii on diabetic cataract (DC pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC50 of SA for inhibition of AR activity was 213.17 μg/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC.

  6. Phytochemicals Content, Antioxidant and α-Glucosidase Inhibition Activity of Bouea Macrophylla Griff Seed Extract

    International Nuclear Information System (INIS)

    Zainah Adam; Hazlina Ahmad Hassali; Rosniza Razali

    2016-01-01

    Bouea macrophylla Griff or locally known as kundang is one of the common fruit plant available in Malaysia. This plant from Anacardiaceae family is native to Southeast Asia particularly in Malaysia, Thailand and Indonesia. Medicinal values of this plant is not yet been explored. The present study was done to evaluate phytochemicals constituents in B. macrophylla seed extract qualitatively and quantitatively. Biological evaluations focusing on antioxidant and α-glucosidase inhibition were also performed. Qualitative phytochemicals screening revealed the presence of anthraquinones, terpenoids, flavanoids, tannins, alkaloids, glycosides, reducing sugar, steroids, triterpenes, phenolic, coumarine and proteins in B. macrophylla seed extract. Quantitative determination showed that B. macrophylla seed extract contains high amount of phenolic compounds (689.17±37.50 mg GAE/ g extract), but low amount of flavonoids (2.78±0.01 mg QE/ g extract), suggesting that most of the phenolics in B. macrophylla seed extract were non-flavonoids. Antioxidant assays showed that the extract possesses strong reducing power and DPPH radical scavenging activity (IC_5_0: 4.73±0.51 μg/ ml). These activities were almost comparable to that of vitamin C. α-Glucosidase inhibition study showed that the extract inhibited alpha-glucosidase activity potently with the IC_5_0 value of 0.55±0.04 mg/ ml, suggesting the ability of the plant to delay glucose absorption in small intestine, hence reduces hyperglycemia in diabetic condition. Potent antioxidant and α-glucosidase inhibitory activity of the extract might be attributed to the presence of high amount of phenolic compounds. In conclusion, this study showed that B. macrophylla seed extract contains various phytochemicals, possess strong antioxidant property and showed promising antidiabetic activity. These results indicate that B. macrophylla might have the potential to be developed as new pharmacological agent targeting on oxidative stress

  7. Acotiamide hydrochloride (Z-338) enhances gastric motility and emptying by inhibiting acetylcholinesterase activity in rats.

    Science.gov (United States)

    Kawachi, Masanao; Matsunaga, Yugo; Tanaka, Takao; Hori, Yuko; Ito, Katsunori; Nagahama, Kenji; Ozaki, Tomoko; Inoue, Naonori; Toda, Ryoko; Yoshii, Kazuyoshi; Hirayama, Masamichi; Kawabata, Yoshihiro; Takei, Mineo

    2011-09-01

    In clinical trials, acotiamide hydrochloride (acotiamide: Z-338) has been reported to be useful in the treatment of functional dyspepsia. Here, we investigated the effects of acotiamide on gastric contraction and emptying activities in rats in comparison with itopride hydrochloride (itopride) and mosapride citrate (mosapride). We also examined in vitro the compound's inhibitory effect on acetylcholinesterase (AChE) activity derived from rat stomach. In in vivo studies, acotiamide (30 and 100mg/kg s.c.) and itopride (100mg/kg s.c.) markedly enhanced normal gastric antral motility in rats. In gastric motility dysfunction models, acotiamide (100mg/kg s.c.) and itopride (100mg/kg s.c.) improved both gastric antral hypomotility and the delayed gastric emptying induced by clonidine, an α(2)-adrenoceptor agonist. In contrast, mosapride (10mg/kg s.c.) had no effect on these models. Like the AChE inhibitors itopride (30 mg/kg s.c.) and neostigmine (10 μg/kg s.c.), acotiamide (10mg/kg s.c.) also clearly enhanced gastric body contractions induced by electrical stimulation of the vagus, which were abolished by atropine and hexamethonium, whereas mosapride (3 and 10mg/kg s.c.) did not. In in vitro studies, acotiamide concentration-dependently inhibited rat stomach-derived AChE activity (IC(50)=2.3 μmol/l). In addition, stomach tissue concentrations of acotiamide after administration at 10mg/kg s.c. were sufficient to produce inhibition of AChE activity in rat stomach. These results suggest that acotiamide stimulates gastric motility and improves gastric motility dysfunction in rats by inhibiting AChE activity, and may suggest a role for acotiamide in improving gastric motility dysfunction in patients with functional dyspepsia. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    Science.gov (United States)

    2011-01-01

    Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG) by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt.) significantly dampened the postprandial hyperglycemia by 78.2% and 52.0% in maltose and sucrose

  9. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    Directory of Open Access Journals (Sweden)

    Thirumurugan Kavitha

    2011-06-01

    Full Text Available Abstract Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt. significantly dampened the postprandial hyperglycemia by 78.2% and 52

  10. Gemfibrozil, a lipid lowering drug, inhibits the activation of primary human microglia via peroxisome proliferator-activated receptor β.

    Science.gov (United States)

    Jana, Malabendu; Pahan, Kalipada

    2012-08-01

    Microglial activation participates in the pathogenesis of various neuroinflammatory and neurodegenerative diseases. However, mechanisms by which microglial activation could be controlled are poorly understood. Peroxisome proliferator-activated receptors (PPAR) are transcription factors belonging to the nuclear receptor super family with diverse effect. This study underlines the importance of PPARβ/δ in mediating the anti-inflammatory effect of gemfibrozil, an FDA-approved lipid-lowering drug, in primary human microglia. Bacterial lipopolysachharides (LPS) induced the expression of various proinflammatory molecules and upregulated the expression of microglial surface marker CD11b in human microglia. However, gemfibrozil markedly suppressed proinflammatory molecules and CD11b in LPS-stimulated microglia. Human microglia expressed PPAR-β and -γ, but not PPAR-α. Interestingly, either antisense knockdown of PPAR-β or antagonism of PPAR-β by a specific chemical antagonist abrogated gemfibrozil-mediated inhibition of microglial activation. On the other hand, blocking of PPAR-α and -γ had no effect on gemfibrozil-mediated anti-inflammatory effect in microglia. These results highlight the fact that gemfibrozil regulates microglial activation by inhibiting inflammatory gene expression in a PPAR-β dependent pathway and further reinforce its therapeutic application in several neuroinflammatory and neurodegenerative diseases.

  11. Inhibition of [gamma]-endorphin generating endopeptidase activity of rat brain by peptides: Structure activity relationship

    NARCIS (Netherlands)

    Lebouille, J.L.M.; Visser, W.H.; Hendriks, R.W.; Nispen, J.W. van; Greven, H.M.; Burbach, J.P.H.

    1985-01-01

    Gamma-Endorphin generating endopeptidase (gammaEGE) activity is an enzyme activity which converts beta-endorphin into gamma-endorphin and beta-endorphin-(18–31). The inhibitory potency on gammaEGE activity of neuropeptides and analogues or fragments of neuropeptides was tested. Dynorphin-(1–13)

  12. Critical appraisal of respirometric methods for metal inhibition on activated sludge

    International Nuclear Information System (INIS)

    Cokgor, E. Ubay; Ozdemir, S.; Karahan, O.; Insel, G.; Orhon, D.

    2007-01-01

    This paper evaluates the merit of oxygen uptake rate measurements for the assessment of metal inhibition on activated sludge. For this purpose, experiments are conducted to calculate EC 50 levels of nickel and hexavalent chromium using the ISO 8192 procedure, yielding results that are highly variable and difficult to correlate, depending on the type of substrate and the initial food to microorganism ratio. Similar experiments based on continuous respirometric measurements to give the entire oxygen uptake rate profile provide a much better insight on the impact of inhibition on different biochemical processes taking place in the reactor. The results indicate that percent reduction of the amount of dissolved oxygen utilized after an appropriate reaction time is a much better index for the assessment of the inhibitory effects

  13. How anacetrapib inhibits the activity of the cholesteryl ester transfer protein? Perspective through atomistic simulations

    DEFF Research Database (Denmark)

    Aijanen, T.; Koivuniemi, A.; Javanainen, M.

    2014-01-01

    Cholesteryl ester transfer protein (CETP) mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides) and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity...... and thereby raise high density lipoprotein (HDL)-cholesterol and decrease low density lipoprotein (LDL)-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics...... simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site...

  14. Switch of SpnR function from activating to inhibiting quorum sensing by its exogenous addition

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, Yuriko [Department of Innovation Systems Engineering, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); CREST, Japan Science and Technology Agency, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); Kato, Norihiro, E-mail: katon@cc.utsunomiya-u.ac.jp [CREST, Japan Science and Technology Agency, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan)

    2016-09-02

    The opportunistic human pathogen Serratia marcescens AS-1 produces the N-hexanoylhomoserine lactone (C6HSL) receptor SpnR, a homologue of LuxR from Vibrio fischeri, which activates pig clusters to produce the antibacterial prodigiosin. In this study, we attempted to artificially regulate quorum sensing (QS) by changing the role of SpnR in N-acylhomoserine lactone (AHL)-mediated QS. SpnR was obtained as a fusion protein tagged with maltose-binding protein (MBP) from overexpression in Escherichia coli, and its specific affinity to C6HSL was demonstrated by quartz crystal microbalance analysis and AHL-bioassay with Chromobacterium violaceum CV026. Prodigiosin production was effectively inhibited by externally added MBP-SpnR in both wild-type AS-1 and the AHL synthase-defective mutant AS-1(ΔspnI). For the mutant, the induced amount of prodigiosin was drastically reduced to approximately 4% with the addition of 18 μM MBP-SpnR to the liquid medium, indicating 81% trapping of C6HSL. A system for inhibiting QS can be constructed by adding exogenous AHL receptor to the culture broth to keep the concentration of free AHL low, whereas intracellular SpnR naturally functions as the activator in response to QS. - Highlights: • Quorum sensing (QS) regulates the expression of some bacterial genes. • We added an AHL receptor to culture media to inhibit QS in Serratia marcescens AS-1. • The exogenous receptor effectively bound C6HSL and inhibited QS. • This approach can be used to artificially regulate AHL-mediated QS.

  15. TGF-β2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    International Nuclear Information System (INIS)

    Lu Jiawei; Lu Zhenyu; Reinach, Peter

    2006-01-01

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-β2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-β2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-β2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-β2 and FGF-2 oppositely affect BCE cell proliferation and TGF-β2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-β2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-β2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-β2-induced suppression of the PI3-kinase/AKT signaling pathway

  16. Switch of SpnR function from activating to inhibiting quorum sensing by its exogenous addition

    International Nuclear Information System (INIS)

    Takayama, Yuriko; Kato, Norihiro

    2016-01-01

    The opportunistic human pathogen Serratia marcescens AS-1 produces the N-hexanoylhomoserine lactone (C6HSL) receptor SpnR, a homologue of LuxR from Vibrio fischeri, which activates pig clusters to produce the antibacterial prodigiosin. In this study, we attempted to artificially regulate quorum sensing (QS) by changing the role of SpnR in N-acylhomoserine lactone (AHL)-mediated QS. SpnR was obtained as a fusion protein tagged with maltose-binding protein (MBP) from overexpression in Escherichia coli, and its specific affinity to C6HSL was demonstrated by quartz crystal microbalance analysis and AHL-bioassay with Chromobacterium violaceum CV026. Prodigiosin production was effectively inhibited by externally added MBP-SpnR in both wild-type AS-1 and the AHL synthase-defective mutant AS-1(ΔspnI). For the mutant, the induced amount of prodigiosin was drastically reduced to approximately 4% with the addition of 18 μM MBP-SpnR to the liquid medium, indicating 81% trapping of C6HSL. A system for inhibiting QS can be constructed by adding exogenous AHL receptor to the culture broth to keep the concentration of free AHL low, whereas intracellular SpnR naturally functions as the activator in response to QS. - Highlights: • Quorum sensing (QS) regulates the expression of some bacterial genes. • We added an AHL receptor to culture media to inhibit QS in Serratia marcescens AS-1. • The exogenous receptor effectively bound C6HSL and inhibited QS. • This approach can be used to artificially regulate AHL-mediated QS.

  17. Some Anilides of 2-Alkylthio- and 2-Chloro-6-Alkylthio-4-Pyridinecarboxylic Acids: Synthesis and Photosynthesis-Inhibiting Activity

    Directory of Open Access Journals (Sweden)

    Miloš Macháček

    2001-06-01

    Full Text Available Many compounds containing a -CONH- group display photosynthesis inhibiting activity. Based on this structural feature, a group of anilides of 2-alkylthio-(1b-4f or 2-chloro-6-alkylthio-4-pyridinecarboxylic acids (5a-6c was synthesised. The prepared compounds were tested for their inhibition of the oxygen evolution rate (OER in spinach chloroplasts. A quasi-parabolic dependence between photosynthesis-inhibiting activity and the lipophilicity of the compounds was determined for 1b-4f as well as for 5a-6c. The inhibitory activity of compounds 1b-4f was higher than that of 5a-6c for comparable lipophilicity values.

  18. Protein C inhibitor acts as a procoagulant by inhibiting the thrombomodulin-induced activation of protein C in human plasma

    NARCIS (Netherlands)

    Elisen, M. G.; von dem Borne, P. A.; Bouma, B. N.; Meijers, J. C.

    1998-01-01

    Protein C inhibitor (PCI), which was originally identified as an inhibitor of activated protein C, also efficiently inhibits coagulation factors such as factor Xa and thrombin. Recently it was found, using purified proteins, that the anticoagulant thrombin-thrombomodulin complex was also inhibited

  19. Prefrontal activity during response inhibition decreases over time in the postpartum period.

    Science.gov (United States)

    Bannbers, Elin; Gingnell, Malin; Engman, Jonas; Morell, Arvid; Sylvén, Sara; Skalkidou, Alkistis; Kask, Kristiina; Bäckström, Torbjörn; Wikström, Johan; Poromaa, Inger Sundström

    2013-03-15

    The postpartum period is characterized by complex hormonal changes, but human imaging studies in the postpartum period have thus far predominantly focused on the neural correlates of maternal behavior or postpartum depression, whereas longitudinal studies on neural correlates of cognitive function across the postpartum period in healthy women are lacking. The aim of this study was to longitudinally examine response inhibition, as a measure of executive function, during the postpartum period and its neural correlates in healthy postpartum women and non-postpartum controls. Thirteen healthy postpartum women underwent event-related functional magnetic resonance imaging while performing a Go/NoGo task. The first assessment was made within 48 h of delivery, and the second at 4-7 weeks postpartum. In addition, 13 healthy women examined twice during the menstrual cycle were included as non-postpartum controls. In postpartum women region of interest analyses revealed task-related decreased activations in the right inferior frontal gyrus, right anterior cingulate, and bilateral precentral gyri at the late postpartum assessment. Generally, postpartum women displayed lower activity during response inhibition in the bilateral inferior frontal gyri and precentral gyri compared to non-postpartum controls. No differences in performance on the Go/NoGo task were found between time-points or between groups. In conclusion, this study has discovered that brain activity in prefrontal areas during a response inhibition task decreases throughout the course of the first postpartum weeks and is lower than in non-postpartum controls. Further studies on the normal adaptive brain activity changes that occur during the postpartum period are warranted. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Inhibition of survivin influences the biological activities of canine histiocytic sarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Hiroki Yamazaki

    Full Text Available Canine histiocytic sarcoma (CHS is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS.

  1. Gamma radiation inhibits the appearance of induced ornithine decarboxylase activity in Chinese hamster cells

    International Nuclear Information System (INIS)

    Ben-Hur, E.; Heimer, Y.M.; Riklis, E.

    1981-01-01

    Ornithine decarboxylase activity of Chinese hamster cells (ODC, EC 4.1.1.17) can be induced in plateau phase by change of medium. Exposure of the cells to gamma radiation before induction reduces the amount of ODC activity induced. The dose-response curve is exponential with a D 0 of 106 krad. Exposure of BUdR-substituted cells is more effective in reducing ODC induction at high doses, with a D 0 of 38 krad. Cells can recover from the reduction incurred by 74 krad if enzyme induction is delayed for 2 hours after exposure. Treatment of the cells with psoralen-plus-light completely inhibits RNA synthesis without affecting protein synthesis (Heimer, Ben-Hur and Riklis 1977, 1978). Using this procedure it is shown that the effect of gamma radiation on inducible ODC activity is due not only to DNA damage but also involves a post-transcriptional effect. This conclusion is supported by employing a heat shock to inhibit protein synthesis prior to gamma-irradiation of log-phase cells. In such cells the increased activity of ODC upon transfer to 37 0 C is due primarily to enzyme synthesis using pre-existing RNA species during the first few hours. A low concentration of actinomycin D, which inhibits rRNA synthesis, applied during the recovery period, prevents the recovery of the cells' capacity for maximal ODC induction. This may indicate that, in order to recover, the cells have to repair damage to the ribosomes as well as to DNA. (author)

  2. Synthesis and characterization of 18F-labeled active site inhibited factor VII (ASIS)

    DEFF Research Database (Denmark)

    Erlandsson, Maria; Nielsen, Carsten Haagen; Jeppesen, Troels Elmer

    2015-01-01

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example......, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an 18F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[18F]fluorobenzoate, and the [18F]ASIS was purified on a PD-10 desalting...... column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [18F]ASIS to TF and to a specific anti-factor VII...

  3. Levo-Tetrahydropalmatine Attenuates Bone Cancer Pain by Inhibiting Microglial Cells Activation

    Directory of Open Access Journals (Sweden)

    Mao-yin Zhang

    2015-01-01

    Full Text Available Objective. The present study is to investigate the analgesic roles of L-THP in rats with bone cancer pain caused by tumor cell implantation (TCI. Methods. Thermal hyperalgesia and mechanical allodynia were measured at different time points before and after operation. L-THP (20, 40, and 60 mg/kg were administrated intragastrically at early phase of postoperation (before pain appearance and later phase of postoperation (after pain appearance, respectively. The concentrations of TNF-α, IL-1β, and IL-18 in spinal cord were measured by enzyme-linked immunosorbent assay. Western blot was used to test the activation of astrocytes and microglial cells in spinal cord after TCI treatment. Results. TCI treatment induced significant thermal hyperalgesia and mechanical allodynia. Administration of L-THP at high doses significantly prevented and/or reversed bone cancer-related pain behaviors. Besides, TCI-induced activation of microglial cells and the increased levels of TNF-α and IL-18 were inhibited by L-THP administration. However, L-THP failed to affect TCI-induced astrocytes activation and IL-1β increase. Conclusion. This study suggests the possible clinical utility of L-THP in the treatment of bone cancer pain. The analgesic effects of L-THP on bone cancer pain maybe underlying the inhibition of microglial cells activation and proinflammatory cytokines increase.

  4. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages.

    Science.gov (United States)

    Schachter, Julieta; Delgado, Kelly Valcárcel; Barreto-de-Souza, Victor; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis; Meyer-Fernandes, José Roberto

    2015-05-01

    Nucleotides and nucleosides are secreted into extracellular media at different concentrations as a consequence of different physiologic and pathological conditions. Ecto-nucleotidases, enzymes present on the surface of most cells, hydrolyze these extracellular nucleotides and reduce the concentration of them, thus affecting the activation of different nucleotide and nucleoside receptors. Also, ecto-nucleotidases are present in a number of microorganisms and play important roles in host-pathogen interactions. Here, we characterized the ecto-ATPase activities present on the surface of HIV-1 particle and human macrophages as well. We found that the kinetic properties of HIV-1 and macrophage ecto-ATPases are similar, suggesting that the enzyme is the same. This ecto-ATPase activity was increased in macrophages infected in vitro with HIV-1. Using three different non-related ecto-ATPase inhibitors-POM-1, ARL67156 and BG0-we showed that the inhibition of these macrophage and viral ecto-ATPase activities impairs HIV-1 infection. In addition, we also found that elevated extracellular concentrations of ATP inhibit HIV-1 production by infected macrophages. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Is running away right? The behavioral activation-behavioral inhibition model of anterior asymmetry.

    Science.gov (United States)

    Wacker, Jan; Chavanon, Mira-Lynn; Leue, Anja; Stemmler, Gerhard

    2008-04-01

    The measurement of anterior electroencephalograph (EEG) asymmetries has become an important standard paradigm for the investigation of affective states and traits. Findings in this area are typically interpreted within the motivational direction model, which suggests a lateralization of approach and withdrawal motivational systems to the left and right anterior region, respectively. However, efforts to compare this widely adopted model with an alternative account-which relates the left anterior region to behavioral activation independent of the direction of behavior (approach or withdrawal) and the right anterior region to goal conflict-induced behavioral inhibition-are rare and inconclusive. Therefore, the authors measured the EEG in a sample of 93 young men during emotional imagery designed to provide a critical test between the 2 models. The results (e.g., a correlation between left anterior activation and withdrawal motivation) favor the alternative model on the basis of the concepts of behavioral activation and behavioral inhibition. In addition, the present study also supports an association of right parietal activation with physiological arousal and the conceptualization of parietal EEG asymmetry as a mediator of emotion-related physiological arousal. (Copyright) 2008 APA.

  6. Furan- and Thiophene-2-Carbonyl Amino Acid Derivatives Activate Hypoxia-Inducible Factor via Inhibition of Factor Inhibiting Hypoxia-Inducible Factor-1

    Directory of Open Access Journals (Sweden)

    Shin-ichi Kawaguchi

    2018-04-01

    Full Text Available Induction of a series of anti-hypoxic proteins protects cells during exposure to hypoxic conditions. Hypoxia-inducible factor-α (HIF-α is a major transcription factor that orchestrates this protective effect. To activate HIF exogenously, without exposing cells to hypoxic conditions, many small-molecule inhibitors targeting prolyl hydroxylase domain-containing protein have been developed. In addition, suppression of factor inhibiting HIF-1 (FIH-1 has also been shown to have the potential to activate HIF-α. However, few small-molecule inhibitors of FIH-1 have been developed. In this study, we synthesized a series of furan- and thiophene-2-carbonyl amino acid derivatives having the potential to inhibit FIH-1. The inhibitory activities of these compounds were evaluated in SK-N-BE(2c cells by measuring HIF response element (HRE promoter activity. Several furan- and thiophene-2-carbonyl amino acid derivatives inhibited FIH-1 based on correlations among the docking score of the FIH-1 active site, the chemical structure of the compounds, and biological HIF-α/HRE transcriptional activity.

  7. Nitrated Fatty Acids Reverse Cigarette Smoke-Induced Alveolar Macrophage Activation and Inhibit Protease Activity via Electrophilic S-Alkylation.

    Science.gov (United States)

    Reddy, Aravind T; Lakshmi, Sowmya P; Muchumarri, Ramamohan R; Reddy, Raju C

    2016-01-01

    Nitrated fatty acids (NFAs), endogenous products of nonenzymatic reactions of NO-derived reactive nitrogen species with unsaturated fatty acids, exhibit substantial anti-inflammatory activities. They are both reversible electrophiles and peroxisome proliferator-activated receptor γ (PPARγ) agonists, but the physiological implications of their electrophilic activity are poorly understood. We tested their effects on inflammatory and emphysema-related biomarkers in alveolar macrophages (AMs) of smoke-exposed mice. NFA (10-nitro-oleic acid or 12-nitrolinoleic acid) treatment downregulated expression and activity of the inflammatory transcription factor NF-κB while upregulating those of PPARγ. It also downregulated production of inflammatory cytokines and chemokines and of the protease cathepsin S (Cat S), a key mediator of emphysematous septal destruction. Cat S downregulation was accompanied by decreased AM elastolytic activity, a major mechanism of septal destruction. NFAs downregulated both Cat S expression and activity in AMs of wild-type mice, but only inhibited its activity in AMs of PPARγ knockout mice, pointing to a PPARγ-independent mechanism of enzyme inhibition. We hypothesized that this mechanism was electrophilic S-alkylation of target Cat S cysteines, and found that NFAs bind directly to Cat S following treatment of intact AMs and, as suggested by in silico modeling and calculation of relevant parameters, elicit S-alkylation of Cys25 when incubated with purified Cat S. These results demonstrate that NFAs' electrophilic activity, in addition to their role as PPARγ agonists, underlies their protective effects in chronic obstructive pulmonary disease (COPD) and support their therapeutic potential in this disease.

  8. Inhibition of plasma butyrylcholinesterase activity in the lizard Gallotia galloti palmae by pesticides: a field study

    International Nuclear Information System (INIS)

    Sanchez-Hernandez, Juan C.; Carbonell, R.; Henriquez Perez, A.; Montealegre, M.; Gomez, L.

    2004-01-01

    A field study was performed to evaluate the effect of exposure to organophosphorus (OP) and carbamate (CB) pesticides on the lizard Gallotia galloti palmae. Butyrylcholinesterase (BChE) activity was measured in the plasma of 420 lizards collected from agricultural and reference areas on the Island of La Palma (Canary Islands, Spain) in two sampling periods. Exposure to cholinesterase-inhibiting pesticides was evaluated by a statistical criterion based on a threshold value (two standard deviations below the mean enzyme activity) calculated for the reference group, and a chemical criterion based on the in vitro reactivation of BChE activity using pyridine-2-aldoxime methochloride (2-PAM) or after water dilution of the sample. Mean (±SD) BChE activity for lizards from agricultural areas was significantly lower (Fuencaliente site = 2.00 ± 0.98 μmol min -1 ml -1 , Tazacorte site = 2.88 ± 1.08) than that for lizards from the reference areas (Los Llanos site = 3.06 ± 1.17 μmol min -1 ml -1 , Tigalate site = 3.96 ± 1.62). According to the statistical criterion, the number of lizards with BChE depressed was higher at Fuencaliente (22% of males and 25.4% of females) than that sampled at Tazacorte (7.8% of males and 6.2% of females). According to the chemical criterion, Fuencaliente also yielded a higher number of individuals (112 males and 47 females) with BChE activity inhibited by both OP and CB pesticides. CBs appeared to be the pesticides most responsible for BChE inhibition because most of the samples showed reactivation of BChE activity after water treatment (63.3% from Fuencaliente and 29% from Tazacorte). We concluded that the use of reactivation techniques on plasma BChE activity is a better and more accurate method for assessing field exposure to OP/CB pesticides in this lizard species than making direct comparisons of enzyme activity levels between sampling areas. - Capsule: Chemical reactivation of lizard BChE activity is a suitable diagnostic method for

  9. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Noolu Bindu

    2013-01-01

    Full Text Available Abstract Background Inhibition of the proteolytic activity of 26S proteasome, the protein-degrading machine, is now considered a novel and promising approach for cancer therapy. Interestingly, proteasome inhibitors have been demonstrated to selectively kill cancer cells and also enhance the sensitivity of tumor cells to chemotherapeutic agents. Recently, polyphenols/flavonoids have been reported to inhibit proteasome activity. Murraya koenigii Spreng, a medicinally important herb of Indian origin, has been used for centuries in the Ayurvedic system of medicine. Here we show that Murraya koenigii leaves (curry leaves, a rich source of polyphenols, inhibit the proteolytic activity of the cancer cell proteasome, and cause cell death. Methods Hydro-methanolic extract of curry leaves (CLE was prepared and its total phenolic content [TPC] determined by, the Folin-Ciocalteau’s method. Two human breast carcinoma cell lines: MCF-7 and MDA-MB-231 and a normal human lung fibroblast cell line, WI-38 were used for the studies. Cytotoxicity of the CLE was assessed by the MTT assay. We studied the effect of CLE on growth kinetics using colony formation assay. Growth arrest was assessed by cell cycle analysis and apoptosis by Annexin-V binding using flow cytometry. Inhibition of the endogenous 26S proteasome was studied in intact cells and cell extracts using substrates specific to 20S proteasomal enzymes. Results CLE decreased cell viability and altered the growth kinetics in both the breast cancer cell lines in a dose-dependent manner. It showed a significant arrest of cells in the S phase albeit in cancer cells only. Annexin V binding data suggests that cell death was via the apoptotic pathway in both the cancer cell lines. CLE treatment significantly decreased the activity of the 26S proteasome in the cancer but not normal cells. Conclusions Our study suggests M. koenigii leaves to be a potent source of proteasome inhibitors that lead to cancer cell death

  10. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells.

    Science.gov (United States)

    Noolu, Bindu; Ajumeera, Rajanna; Chauhan, Anitha; Nagalla, Balakrishna; Manchala, Raghunath; Ismail, Ayesha

    2013-01-09

    Inhibition of the proteolytic activity of 26S proteasome, the protein-degrading machine, is now considered a novel and promising approach for cancer therapy. Interestingly, proteasome inhibitors have been demonstrated to selectively kill cancer cells and also enhance the sensitivity of tumor cells to chemotherapeutic agents. Recently, polyphenols/flavonoids have been reported to inhibit proteasome activity. Murraya koenigii Spreng, a medicinally important herb of Indian origin, has been used for centuries in the Ayurvedic system of medicine. Here we show that Murraya koenigii leaves (curry leaves), a rich source of polyphenols, inhibit the proteolytic activity of the cancer cell proteasome, and cause cell death. Hydro-methanolic extract of curry leaves (CLE) was prepared and its total phenolic content [TPC] determined by, the Folin-Ciocalteau's method. Two human breast carcinoma cell lines: MCF-7 and MDA-MB-231 and a normal human lung fibroblast cell line, WI-38 were used for the studies. Cytotoxicity of the CLE was assessed by the MTT assay. We studied the effect of CLE on growth kinetics using colony formation assay. Growth arrest was assessed by cell cycle analysis and apoptosis by Annexin-V binding using flow cytometry. Inhibition of the endogenous 26S proteasome was studied in intact cells and cell extracts using substrates specific to 20S proteasomal enzymes. CLE decreased cell viability and altered the growth kinetics in both the breast cancer cell lines in a dose-dependent manner. It showed a significant arrest of cells in the S phase albeit in cancer cells only. Annexin V binding data suggests that cell death was via the apoptotic pathway in both the cancer cell lines. CLE treatment significantly decreased the activity of the 26S proteasome in the cancer but not normal cells. Our study suggests M. koenigii leaves to be a potent source of proteasome inhibitors that lead to cancer cell death. Therefore, identification of active component(s) from the leaf

  11. Antioxidant and Acetylcholinesterase Inhibiting Activity of Several Aqueous Tea Infusions in vitro

    Directory of Open Access Journals (Sweden)

    Višnja Katalinić

    2008-01-01

    Full Text Available A study of antioxidant activity and acetylcholineste ase (AChE inhibitory activity of aqueous tea infusions prepared from walnut (Juglans regia L., peppermint (Mentha×piperita L., strawberry (Fragaria×ananassa L., lemon balm (Melissa officinalis L., sage (Salvia officinalis L., and immortelle (Helichrysum arenarium (L. Moench. is presented here. Chemical composition of selected aqueous tea infusions was determined by high-performance liquid chromatography with photodiode-array method (HPLC-PDA, and the following phenolic compounds were identified as dominant: rosmarinic acid, gallic acid (not identified in walnut and sage, caffeic acid (in sage and peppermint, neochlorogenic acid, 3-p-coumaroylquinic acid and quercetin 3-galactoside (in walnut and luteolin 7-O-glucoside (in sage. Antioxidant activity of the selected aqueous tea infusions was measured using low-density lipoprotein (LDL oxidation method, 2,2'-diphenyl-1-picrylhydrazyl (DPPH radical scavenging test, β-carotene bleaching method, and Rancimat method (induction period of lard oxidation. Strawberry and lemon balm aqueous infusions completely inhibited LDL oxidation at the concentration of 0.005 g/L in the reacting system. Very long prolongation of the lag phase was achieved with peppermint and sage aqueous infusions. All tested infusions in the concentration range of 0.05–2.85 g/L showed very pronounced effect of DPPH scavenging activity (90–100 % as well as the inhibition of β-carotene bleaching (89–100 %. In pure lipid medium, used in Rancimat method, sage and immortelle at the concentration of 0.16 % (by mass had the highest ability to inhibit lipid peroxidation process. Screening of the AChE inhibitory activity by Ellman´s method showed that the strongest inhibition was obtained with walnut and strawberry aqueous infusions at the concentration of 1.36 g/L in the reacting system. The presented results suggest that natural antioxidants could be useful and merit further

  12. Silybin-mediated inhibition of Notch signaling exerts antitumor activity in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Song Zhang

    Full Text Available Hepatocellular carcinoma (HCC is a global health burden that is associated with limited treatment options and poor patient prognoses. Silybin (SIL, an antioxidant derived from the milk thistle plant (Silybum marianum, has been reported to exert hepatoprotective and antitumorigenic effects both in vitro and in vivo. While SIL has been shown to have potent antitumor activity against various types of cancer, including HCC, the molecular mechanisms underlying the effects of SIL remain largely unknown. The Notch signaling pathway plays crucial roles in tumorigenesis and immune development. In the present study, we assessed the antitumor activity of SIL in human HCC HepG2 cells in vitro and in vivo and explored the roles of the Notch pathway and of the apoptosis-related signaling pathway on the activity of SIL. SIL treatment resulted in a dose- and time-dependent inhibition of HCC cell viability. Additionally, SIL exhibited strong antitumor activity, as evidenced not only by reductions in tumor cell adhesion, migration, intracellular glutathione (GSH levels and total antioxidant capability (T-AOC but also by increases in the apoptotic index, caspase3 activity, and reactive oxygen species (ROS. Furthermore, SIL treatment decreased the expression of the Notch1 intracellular domain (NICD, RBP-Jκ, and Hes1 proteins, upregulated the apoptosis pathway-related protein Bax, and downregulated Bcl2, survivin, and cyclin D1. Notch1 siRNA (in vitro or DAPT (a known Notch1 inhibitor, in vivo further enhanced the antitumor activity of SIL, and recombinant Jagged1 protein (a known Notch ligand in vitro attenuated the antitumor activity of SIL. Taken together, these data indicate that SIL is a potent inhibitor of HCC cell growth that targets the Notch signaling pathway and suggest that the inhibition of Notch signaling may be a novel therapeutic intervention for HCC.

  13. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  14. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract

    Science.gov (United States)

    2012-01-01

    Background This study evaluated, using in vitro assays, the antibacterial, antioxidant, and tyrosinase-inhibition activities of methanolic extracts from peels of seven commercially grown pomegranate cultivars. Methods Antibacterial activity was tested on Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) using a microdilution method. Several potential antioxidant activities, including radical-scavenging ability (RSA), ferrous ion chelating (FIC) and ferric ion reducing antioxidant power (FRAP), were evaluated. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin and kojic acid as positive controls. Furthermore, phenolic contents including total flavonoid content (TFC), gallotannin content (GTC) and total anthocyanin content (TAC) were determined using colourimetric methods. HPLC-ESI/MSn analysis of phenolic composition of methanolic extracts was also performed. Results Methanolic peel extracts showed strong broad-spectrum activity against Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentrations (MIC) ranging from 0.2 to 0.78 mg/ml. At the highest concentration tested (1000 μg/ml), radical scavenging activities were significantly higher in Arakta (83.54%), Ganesh (83.56%), and Ruby (83.34%) cultivars (P50%) against monophenolase and diphenolase activities at the highest screening concentration. The most active peel extract was the Bhagwa cultivar against monophenolase and the Arakta cultivar against diphenolase with IC50 values of 3.66 μg/ml and 15.88 μg/ml, respectively. High amounts of phenolic compounds were found in peel extracts with the highest and lowest total phenolic contents of 295.5 (Ganesh) and 179.3 mg/g dry extract (Molla de Elche), respectively. Catechin, epicatechin, ellagic acid and gallic acid were found in all cultivars, of which ellagic acid was the most abundant comprising

  15. Synthesis, DNA Cleavage Activity, Cytotoxicity, Acetylcholinesterase Inhibition, and Acute Murine Toxicity of Redox-Active Ruthenium(II) Polypyridyl Complexes.

    Science.gov (United States)

    Alatrash, Nagham; Narh, Eugenia S; Yadav, Abhishek; Kim, Mahn-Jong; Janaratne, Thamara; Gabriel, James; MacDonnell, Frederick M

    2017-07-06

    Four mononuclear [(L-L) 2 Ru(tatpp)] 2+ and two dinuclear [(L-L) 2 Ru(tatpp)Ru(L-L) 2 ] 4+ ruthenium(II) polypyridyl complexes (RPCs) containing the 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (tatpp) ligand were synthesized, in which L-L is a chelating diamine ligand such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me 4 phen) or 4,7-diphenyl-1,10-phenanthroline (Ph 2 phen). These Ru-tatpp analogues all undergo reduction reactions with modest reducing agents, such as glutathione (GSH), at pH 7. These, plus several structurally related but non-redox-active RPCs, were screened for DNA cleavage activity, cytotoxicity, acetylcholinesterase (AChE) inhibition, and acute mouse toxicity, and their activities were examined with respect to redox activity and lipophilicity. All of the redox-active RPCs show single-strand DNA cleavage in the presence of GSH, whereas none of the non-redox-active RPCs do. Low-micromolar cytotoxicity (IC 50 ) against malignant H358, CCL228, and MCF7 cultured cell lines was mainly restricted to the redox-active RPCs; however, they were substantially less toxic toward nonmalignant MCF10 cells. The IC 50 values for AChE inhibition in cell-free assays and the acute toxicity of RPCs in mice revealed that whereas most RPCs show potent inhibitory action against AChE (IC 50 values <15 μm), Ru-tatpp complexes as a class are surprisingly well tolerated in animals relative to other RPCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Knockdown of MAGEA6 Activates AMP-Activated Protein Kinase (AMPK) Signaling to Inhibit Human Renal Cell Carcinoma Cells.

    Science.gov (United States)

    Ye, Xueting; Xie, Jing; Huang, Hang; Deng, Zhexian

    2018-01-01

    Melanoma antigen A6 (MAGEA6) is a cancer-specific ubiquitin ligase of AMP-activated protein kinase (AMPK). The current study tested MAGEA6 expression and potential function in renal cell carcinoma (RCC). MAGEA6 and AMPK expression in human RCC tissues and RCC cells were tested by Western blotting assay and qRT-PCR assay. shRNA method was applied to knockdown MAGEA6 in human RCC cells. Cell survival and proliferation were tested by MTT assay and BrdU ELISA assay, respectively. Cell apoptosis was tested by the TUNEL assay and single strand DNA ELISA assay. The 786-O xenograft in nude mouse model was established to test RCC cell growth in vivo. MAGEA6 is specifically expressed in RCC tissues as well as in the established (786-O and A498) and primary human RCC cells. MAGEA6 expression is correlated with AMPKα1 downregulation in RCC tissues and cells. It is not detected in normal renal tissues nor in the HK-2 renal epithelial cells. MAGEA6 knockdown by targeted-shRNA induced AMPK stabilization and activation, which led to mTOR complex 1 (mTORC1) in-activation and RCC cell death/apoptosis. AMPK inhibition, by AMPKα1 shRNA or the dominant negative AMPKα1 (T172A), almost reversed MAGEA6 knockdown-induced RCC cell apoptosis. Conversely, expression of the constitutive-active AMPKα1 (T172D) mimicked the actions by MAGEA6 shRNA. In vivo, MAGEA6 shRNA-bearing 786-O tumors grew significantly slower in nude mice than the control tumors. AMPKα1 stabilization and activation as well as mTORC1 in-activation were detected in MAGEA6 shRNA tumor tissues. MAGEA6 knockdown inhibits human RCC cells via activating AMPK signaling. © 2018 The Author(s). Published by S. Karger AG, Basel.

  17. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  18. Structural basis for alpha fetoprotein-mediated inhibition of caspase-3 activity in hepatocellular carcinoma cells.

    Science.gov (United States)

    Lin, Bo; Zhu, Mingyue; Wang, Wenting; Li, Wei; Dong, Xu; Chen, Yi; Lu, Yan; Guo, Junli; Li, Mengsen

    2017-10-01

    Alpha-fetoprotein (AFP) is an early serum growth factor in the foetal liver development and hepatic carcinogenesis; However, the precise biological role of cytoplasmic AFP remains elusive. Although we recently demonstrated that cytoplasmic AFP might interact with caspase-3 and inhibit the signal transduction of apoptosis in human hepatocellular carcinoma (HCC) cells, the details of this interaction are not clear. To reveal the molecular relationship between AFP and caspase-3, we performed molecular docking, co-immunoprecipitation (Co-IP), laser confocal microscopy, site-directed mutagenesis and functional experiments to analyse the key amino acid residues in the binding site of caspase-3. The results of Co-IP, laser confocal microscopy and functional analyses were consistent with the computational model. We also used the model to explain why AFP cannot bind to caspase-8. These results provide the molecular basis for the AFP-mediated inhibition of caspase-3 activity in HCC cells. Altogether, we found that AFP interacts with caspase-3 through precise amino acids, namely loop-4 residues Glu-248, Asp-253 and His-257. The results further demonstrated that AFP plays a critical role in the inhibition of the apoptotic signal transduction that mediated by caspase-3. Thus, AFP might represent a novel biotarget for the therapy of HCC patients. © 2017 UICC.

  19. Inhibition of cobalt active dissolution by benzotriazole in slightly alkaline bicarbonate aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Gallant, Danick [Departement de Chimie, Universite Laval, Quebec (Canada); Departement de Biologie, Chimie et Geographie, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Quebec (Canada); E-mail: danick.gallant.1@ulaval.ca; Pezolet, Michel [Departement de Chimie, Universite Laval, Quebec (Canada)]. E-mail: michel.pezolet@chm.ulaval.ca; Simard, Stephan [Departement de Chimie, Universite Laval, Quebec (Canada); Departement de Biologie, Chimie et Geographie, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Quebec (Canada); E-mail: stephan_simard@uqar.qc.ca

    2007-04-20

    The efficiency of benzotriazole as inhibiting agent for the corrosion of cobalt was probed at pH ranging from 8.3 to 10.2 in a sodium bicarbonate solution, chosen to simulate mild natural environments. From electrochemical, Raman spectroscopy, atomic force microscopy and ellipsometry experiments, we have demonstrated that benzotriazole markedly affects the electrodissolution reactions, which become modeled by the formation of a [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} film according to two different mechanisms. Surface-enhanced Raman spectroscopy has shown that the polarization of a cobalt electrode at cathodic potentials with respect to its potential of zero charge allows a mechanism of specific adsorption of the neutral form of benzotriazole to take place through a suspected metal-to-molecule electron transfer and which follows Frumkin's adsorption isotherms. At the onset of the anodic dissolution, some experimental evidence suggests that these adsorbed neutral benzotriazole molecules deprotonate to yield a very thin [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} polymer-like and water-insoluble protective film, responsible for the inhibition of active dissolution processes occurring at slightly more anodic potentials. In the anodic dissolution region, deprotonated benzotriazole species present in the bulk solution favors the formation of a multilayered [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} film, which also contributes to the inhibition of any further cobalt dissolution usually observed at higher electrode potentials.

  20. Tributyltin (TBT) inhibition of oligomycin-sensitive Mg-ATPase activity in mussel mitochondria.

    Science.gov (United States)

    Pagliarani, Alessandra; Bandiera, Patrizia; Ventrella, Vittoria; Trombetti, Fabiana; Pirini, Maurizio; Nesci, Salvatore; Borgatti, Anna Rosa

    2008-06-01

    Tributyltin (TBT), one of the most toxic lipophilic aquatic pollutants, can be efficiently incorporated from sea water and sediments by filter-feeding molluscs. As far as we are aware TBT effects on the mitochondrial oligomycin-sensitive Mg-ATPase, the enzymatic core of energy production and a known target of TBT toxicity in mammals, have not been yet investigated in molluscs; thus the hydrolytic capability of the mitochondrial complex in the presence of micromolar concentrations of TBT was assayed in the mussel Mytilus galloprovincialis. Gill and mantle ATPase activities were progressively depressed by increasing TBT doses up to a maximal inhibition (82% in the gills and 74% in the mantle) at 0.62 microM TBT. Non-cooperative inhibition kinetics (n(H) approximately -1) and a non-competitive mechanism with respect to ATP substrate were pointed out. The mitochondrial Mg-ATPase susceptivity to TBT in the marine mussel was consistent with the formation of a TBT-Mg-ATPase complex, apparently more stable in the gills than in the mantle. The complex shape of the dose-response curve and the partial release of Mg-ATPase inhibition within the 0.6-34.4 microM TBT range suggest multiple interactions of TBT with the enzyme complex putatively related to its molecular mechanism of toxicity.

  1. Inhibition of tryptophan - pyrrolase activity and elevation of brain tryptophan concentration by fluoxetine in rats

    International Nuclear Information System (INIS)

    Bano, S.; Sherkheli, M.A

    2003-01-01

    Objective: To investigate in-vitro as well as in-vivo effects of various doses of fluoxetine (SSRI) on tryptophan metabolism in rates. Results: In in-vitro (10 - 1000 mM) as well in-vivo (0.5 - 30 mg/kg body wt.) studies, fluoxetine showed a statistically significant inhibition of rat liver tryptophan pyrrolase (tryptophan-2,3-dioxygenase; EC 1.13.11.11) activity. Significant increases were noted at 10 and 30 mg/kg doses in brain, serum (total and free) and liver L-tryptophan concentrations. Similarly, serum non-esterified free fatty acids showed a significant increase at both doses. There was no effect on serum glucose and albumin concentrations. Conclusion: It is suggested that major mechanism of action of fluoxetine is that of elevating brain tryptophan concentration and hence 5-HT synthesis by increasing the availability of circulating tryptophan to the brain secondarily to inhibition of major tryptophan degrading enzyme, hepatic tryptophan pyrrolase. It is assumed that fluoxetine inhibits the binding of apoenzyme form of tryptophan pyrrolase with its cofactor haem. The results are discussed in relation to possible involvement of disturbed hepatic tryptophan metabolism in depressive illness. (author)

  2. Inhibition of ice recrystallization and cryoprotective activity of wheat proteins in liver and pancreatic cells.

    Science.gov (United States)

    Chow-Shi-Yée, Mélanie; Briard, Jennie G; Grondin, Mélanie; Averill-Bates, Diana A; Ben, Robert N; Ouellet, François

    2016-05-01

    Efficient cryopreservation of cells at ultralow temperatures requires the use of substances that help maintain viability and metabolic functions post-thaw. We are developing new technology where plant proteins are used to substitute the commonly-used, but relatively toxic chemical dimethyl sulfoxide. Recombinant forms of four structurally diverse wheat proteins, TaIRI-2 (ice recrystallization inhibition), TaBAS1 (2-Cys peroxiredoxin), WCS120 (dehydrin), and TaENO (enolase) can efficiently cryopreserve hepatocytes and insulin-secreting INS832/13 cells. This study shows that TaIRI-2 and TaENO are internalized during the freeze-thaw process, while TaBAS1 and WCS120 remain at the extracellular level. Possible antifreeze activity of the four proteins was assessed. The "splat cooling" method for quantifying ice recrystallization inhibition activity (a property that characterizes antifreeze proteins) revealed that TaIRI-2 and TaENO are more potent than TaBAS1 and WCS120. Because of their ability to inhibit ice recrystallization, the wheat recombinant proteins TaIRI-2 and TaENO are promising candidates and could prove useful to improve cryopreservation protocols for hepatocytes and insulin-secreting cells, and possibly other cell types. TaENO does not have typical ice-binding domains, and the TargetFreeze tool did not predict an antifreeze capacity, suggesting the existence of nontypical antifreeze domains. The fact that TaBAS1 is an efficient cryoprotectant but does not show antifreeze activity indicates a different mechanism of action. The cryoprotective properties conferred by WCS120 depend on biochemical properties that remain to be determined. Overall, our results show that the proteins' efficiencies vary between cell types, and confirm that a combination of different protection mechanisms is needed to successfully cryopreserve mammalian cells. © 2016 The Protein Society.

  3. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    Science.gov (United States)

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  4. Valerian inhibits rat hepatocarcinogenesis by activating GABA(A receptor-mediated signaling.

    Directory of Open Access Journals (Sweden)

    Anna Kakehashi

    Full Text Available Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA A receptor (GABA(AR system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(AR agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN. Formation of glutathione S-transferase placental form positive (GST-P(+ foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2'-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P(+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21(Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(AR alpha 1 subunit was observed in GST-P(+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P(+ foci by activating GABA(AR-mediated signaling.

  5. A synthetic peptide blocking TRPV1 activation inhibits UV-induced skin responses.

    Science.gov (United States)

    Kang, So Min; Han, Sangbum; Oh, Jang-Hee; Lee, Young Mee; Park, Chi-Hyun; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-10-01

    Transient receptor potential type 1 (TRPV1) can be activated by ultraviolet (UV) irradiation, and mediates UV-induced matrix metalloproteinase (MMP)-1 and proinflammatory cytokines in keratinocytes. Various chemicals and compounds targeting TRPV1 activation have been developed, but are not in clinical use mostly due to their safety issues. We aimed to develop a novel TRPV1-targeting peptide to inhibit UV-induced responses in human skin. We designed and generated a novel TRPV1 inhibitory peptide (TIP) which mimics the specific site in TRPV1 (aa 701-709: Gln-Arg-Ala-Ile-Thr-Ile-Leu-Asp-Thr, QRAITILDT), Thr 705 , and tested its efficacy of blocking UV-induced responses in HaCaT, mouse, and human skin. TIP effectively inhibited capsaicin-induced calcium influx and TRPV1 activation. Treatment of HaCaT with TIP prevented UV-induced increases of MMP-1 and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α. In mouse skin in vivo, TIP inhibited UV-induced skin thickening and prevented UV-induced expression of MMP-13 and MMP-9. Moreover, TIP attenuated UV-induced erythema and the expression of MMP-1, MMP-2, IL-6, and IL-8 in human skin in vivo. The novel synthetic peptide targeting TRPV1 can ameliorate UV-induced skin responses in vitro and in vivo, providing a promising therapeutic approach against UV-induced inflammation and photoaging. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  6. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Monetary Reward and Punishment to Response Inhibition Modulate Activation and Synchronization Within the Inhibitory Brain Network

    Directory of Open Access Journals (Sweden)

    Rupesh K. Chikara

    2018-03-01

    Full Text Available A reward or punishment can modulate motivation and emotions, which in turn affect cognitive processing. The present simultaneous functional magnetic resonance imaging-electroencephalography study examines neural mechanisms of response inhibition under the influence of a monetary reward or punishment by implementing a modified stop-signal task in a virtual battlefield scenario. The participants were instructed to play as snipers who open fire at a terrorist target but withhold shooting in the presence of a hostage. The participants performed the task under three different feedback conditions in counterbalanced order: a reward condition where each successfully withheld response added a bonus (i.e., positive feedback to the startup credit, a punishment condition where each failure in stopping deduced a penalty (i.e., negative feedback, and a no-feedback condition where response outcome had no consequences and served as a control setting. Behaviorally both reward and punishment conditions led to significantly down-regulated inhibitory function in terms of the critical stop-signal delay. As for the neuroimaging results, increased activities were found for the no-feedback condition in regions previously reported to be associated with response inhibition, including the right inferior frontal gyrus and the pre-supplementary motor area. Moreover, higher activation of the lingual gyrus, posterior cingulate gyrus (PCG and inferior parietal lobule were found in the reward condition, while stronger activation of the precuneus gyrus was found in the punishment condition. The positive feedback was also associated with stronger changes of delta, theta, and alpha synchronization in the PCG than were the negative or no-feedback conditions. These findings depicted the intertwining relationship between response inhibition and motivation networks.

  8. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junru; Kulkarni, Ashwini [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Chintala, Madhu [Schering-Plough Research Institute, Kenilworth, New Jersey (United States); Fink, Louis M. [Nevada Cancer Institute, Las Vegas, Nevada (United States); Hauer-Jensen, Martin, E-mail: mhjensen@life.uams.edu [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Surgery Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas (United States)

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  9. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    International Nuclear Information System (INIS)

    Diakos, Christos; Prieschl, Eva E.; Saeemann, Marcus D.; Boehmig, Georg A.; Csonga, Robert; Sobanov, Yury; Baumruker, Thomas; Zlabinger, Gerhard J.

    2006-01-01

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-α transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling

  10. Nitric oxide signaling pathways involved in the inhibition of spontaneous activity in the guinea pig prostate.

    Science.gov (United States)

    Dey, Anupa; Lang, Richard J; Exintaris, Betty

    2012-06-01

    We investigated nitric oxide mediated inhibition of spontaneous activity recorded in young and aging guinea pig prostates. Conventional intracellular microelectrode and tension recording techniques were used. The nitric oxide donor sodium nitroprusside (10 μM) abolished spontaneous contractions and slow wave activity in 5 young and 5 aging prostates. Upon adding the nitric oxide synthase inhibitor L-NAME (10 μM) the frequency of spontaneous contractile and electrical activity was significantly increased in each age group. This increase was significantly larger in 4 to 8 preparations of younger vs aging prostates (about 40% to 50% vs about 10% to 20%, 2-way ANOVA pguinea pig prostates (Student paired t test pproduction. This may further explain the increase in prostatic smooth muscle tone observed in age related prostate specific conditions, such as benign prostatic hyperplasia. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia.

    Science.gov (United States)

    Delgado, R; Carlin, A; Airaghi, L; Demitri, M T; Meda, L; Galimberti, D; Baron, P; Lipton, J M; Catania, A

    1998-06-01

    Inflammatory processes contribute to neurodegenerative disease, stroke, encephalitis, and other central nervous system (CNS) disorders. Activated microglia are a source of cytokines and other inflammatory agents within the CNS and it is therefore important to control glial function in order to preserve neural cells. Melanocortin peptides are pro-opiomelanocortin-derived amino acid sequences that include alpha-melanocyte-stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH). These peptides have potent and broad anti-inflammatory effects. We tested effects of alpha-MSH (1-13), alpha-MSH (11-13), and ACTH (1-24) on production of tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) in a cultured murine microglial cell line (N9) stimulated with lipopolysaccharide (LPS) plus interferon gamma (IFN-gamma). Melanocortin peptides inhibited production of these cytokines and NO in a concentration-related fashion, probably by increasing intracellular cAMP. When stimulated with LPS + IFN-gamma, microglia increased release of alpha-MSH. Production of TNF-alpha, IL-6, and NO was greater in activated microglia after innmunoneutralization of endogenous alpha-MSH. The results suggest that alpha-MSH is an autocrine factor in microglia. Because melanocortin peptides inhibit production of pro-inflammatory mediators by activated microglia they might be useful in treatment of inflammatory/degenerative brain disorders.

  12. Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine.

    Science.gov (United States)

    Kong, H; Kuang, W; Li, S; Xu, M

    2011-03-10

    Memories of learned associations between the rewarding properties of drugs and environmental cues contribute to craving and relapse in humans. The mesocorticolimbic dopamine (DA) system is involved in reward-related learning induced by drugs of abuse. DA D3 receptors are preferentially expressed in mesocorticolimbic DA projection areas. Genetic and pharmacological studies have shown that DA D3 receptors suppress locomotor-stimulant effects of cocaine and reinstatement of cocaine-seeking behaviors. Activation of the extracellular signal-regulated kinase (ERK) induced by acute cocaine administration is also inhibited by D3 receptors. How D3 receptors modulate cocaine-induced reward-related learning and associated changes in cell signaling in reward circuits in the brain, however, have not been fully investigated. In the present study, we show that D3 receptor mutant mice exhibit potentiated acquisition of conditioned place preference (CPP) at low doses of cocaine compared to wild-type mice. Activation of ERK and CaMKIIα, but not the c-Jun N-terminal kinase and p38, in the nucleus accumbens, amygdala and prefrontal cortex is also potentiated in D3 receptor mutant mice compared to that in wild-type mice following CPP expression. These results support a model in which D3 receptors modulate reward-related learning induced by low doses of cocaine by inhibiting activation of ERK and CaMKIIα in reward circuits in the brain. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia.

    Science.gov (United States)

    Swords, Ronan T; Kelly, Kevin R; Smith, Peter G; Garnsey, James J; Mahalingam, Devalingam; Medina, Ernest; Oberheu, Kelli; Padmanabhan, Swaminathan; O'Dwyer, Michael; Nawrocki, Steffan T; Giles, Francis J; Carew, Jennifer S

    2010-05-06

    NEDD8 activating enzyme (NAE) has been identified as an essential regulator of the NEDD8 conjugation pathway, which controls the degradation of many proteins with important roles in cell-cycle progression, DNA damage, and stress responses. Here we report that MLN4924, a novel inhibitor of NAE, has potent activity in acute myeloid leukemia (AML) models. MLN4924 induced cell death in AML cell lines and primary patient specimens independent of Fms-like tyrosine kinase 3 expression and stromal-mediated survival signaling and led to the stabilization of key NAE targets, inhibition of nuclear factor-kappaB activity, DNA damage, and reactive oxygen species generation. Disruption of cellular redox status was shown to be a key event in MLN4924-induced apoptosis. Administration of MLN4924 to mice bearing AML xenografts led to stable disease regression and inhibition of NEDDylated cullins. Our findings indicate that MLN4924 is a highly promising novel agent that has advanced into clinical trials for the treatment of AML.

  14. Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks.

    Science.gov (United States)

    Perea, Gertrudis; Gómez, Ricardo; Mederos, Sara; Covelo, Ana; Ballesteros, Jesús J; Schlosser, Laura; Hernández-Vivanco, Alicia; Martín-Fernández, Mario; Quintana, Ruth; Rayan, Abdelrahman; Díez, Adolfo; Fuenzalida, Marco; Agarwal, Amit; Bergles, Dwight E; Bettler, Bernhard; Manahan-Vaughan, Denise; Martín, Eduardo D; Kirchhoff, Frank; Araque, Alfonso

    2016-12-24

    Interneurons are critical for proper neural network function and can activate Ca 2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABA A receptors, potentiation involved astrocyte GABA B receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABA B receptor ( Gabbr1 ) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay.

  15. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    Science.gov (United States)

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.

  16. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    Directory of Open Access Journals (Sweden)

    Yuko Shimamura

    Full Text Available This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA. Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.

  17. Poly(ADP-ribose) polymerase-1 inhibits ATM kinase activity in DNA damage response

    International Nuclear Information System (INIS)

    Watanabe, Fumiaki; Fukazawa, Hidesuke; Masutani, Mitsuko; Suzuki, Hiroshi; Teraoka, Hirobumi; Mizutani, Shuki; Uehara, Yoshimasa

    2004-01-01

    DNA double-strand breaks (DSB) mobilize DNA-repair machinery and cell cycle checkpoint by activating the ataxia-telangiectasia (A-T) mutated (ATM). Here we show that ATM kinase activity is inhibited by poly(ADP-ribose) polymerase-1 (PARP-1) in vitro. It was shown by biochemical fractionation procedure that PARP-1 as well as ATM increases at chromatin level after induction of DSB with neocarzinostatin (NCS). Phosphorylation of histone H2AX on serine 139 and p53 on serine 15 in Parp-1 knockout (Parp-1 -/- ) mouse embryonic fibroblasts (MEF) was significantly induced by NCS treatment compared with MEF derived from wild-type (Parp-1 +/+ ) mouse. NCS-induced phosphorylation of histone H2AX on serine 139 in Parp-1 -/- embryonic stem cell (ES) clones was also higher than that in Parp-1 +/+ ES clone. Furthermore, in vitro, PARP-1 inhibited phosphorylation of p53 on serine 15 and 32 P-incorporation into p53 by ATM in a DNA-dependent manner. These results suggest that PARP-1 negatively regulates ATM kinase activity in response to DSB

  18. An inhibition of p38 mitogen activated protein kinase delays the platelet storage lesion.

    Directory of Open Access Journals (Sweden)

    Andrey Skripchenko

    Full Text Available BACKGROUND AND OBJECTIVES: Platelets during storage undergo diverse alterations collectively known as the platelet storage lesion, including metabolic, morphological, functional and structural changes. Some changes correlate with activation of p38 mitogen activated protein kinase (p38 MAPK. Another MAPK, extracellular signal-related kinase (ERK, is involved in PLT activation. The aim of this study was to compare the properties of platelets stored in plasma in the presence or absence of p38 and ERK MAPK inhibitors. MATERIALS AND METHODS: A single Trima apheresis platelet unit (n = 12 was aliquoted into five CLX storage bags. Two aliquots were continuously agitated with or without MAPK inhibitors. Two aliquots were subjected to 48 hours of interruption of agitation with or without MAPK inhibitors. One aliquot contained the same amount of solvent vehicle used to deliver the inhibitor. Platelets were stored at 20-24°C for 7 days and sampled on Days 1, 4, and 7 for 18 in vitro parameters. RESULTS: Inhibition of p38 MAPK by VX-702 leads to better maintenance of all platelet in vitro storage parameters including platelet mitochondrial function. Accelerated by interruption of agitation, the platelet storage lesion of units stored with VX-702 was diminished to that of platelets stored with continuous agitation. Inhibition of ERK MAPK did not ameliorate decrements in any in vitro platelet properties. CONCLUSION: Signaling through p38 MAPK, but not ERK, is associated with platelet deterioration during storage.

  19. Human retinal pigment epithelial cells inhibit proliferation and IL2R expression of activated T cells

    DEFF Research Database (Denmark)

    Kaestel, Charlotte G; Jørgensen, Annette; Nielsen, Mette

    2002-01-01

    -Thymidine incorporation assay, respectively. T cells and RPE cells were cultured directly together or in a transwell system for determination of the effect of cell contact. The importance of cell surface molecules was examined by application of a panel of blocking antibodies (CD2, CD18, CD40, CD40L, CD54, CD58......) in addition to use of TCR negative T cell lines. The expression of IL2R-alpha -beta and -gamma chains of activated T cells was analysed by flow cytometry after incubation of T cells alone or with RPE cells. Human RPE cells were found to inhibit the proliferation of activated T cells by a cell contact......-beta and -gamma chain expression within 24 hr after removal from the coculture. It is concluded that the cultured human adult and foetal RPE cells inhibit the proliferation of activated T cells by a process that does not involve apoptosis. It depends on cell contact but the involved surface molecules were...

  20. Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the Tesco enhancer.

    Science.gov (United States)

    Bernard, Pascal; Ryan, Janelle; Sim, Helena; Czech, Daniel P; Sinclair, Andrew H; Koopman, Peter; Harley, Vincent R

    2012-02-01

    Genome analysis of patients with disorders of sex development, and gain- and loss-of-function studies in mice indicate that gonadal development is regulated by opposing signals. In females, the Wnt/β-catenin canonical pathway blocks testicular differentiation by repressing the expression of the Sertoli cell-specific gene Sox9 by an unknown mechanism. Using cell and embryonic gonad culture models, we show that activation of the Wnt/β-catenin pathway inhibits the expression of Sox9 and Amh, whereas mRNA and protein levels of Sry and steroidogenic factor 1 (Sf1), two key transcriptional regulators of Sox9, are not altered. Ectopic activation of Wnt/β-catenin signaling in male gonads led to a loss of Sf1 binding to the Tesco enhancer and absent Sox9 expression that we also observed in wild-type ovaries. Moreover, ectopic Wnt/β-catenin signaling induced the expression of the female somatic cell markers, Bmp2 and Rspo1, as a likely consequence of Sox9 loss. Wnt/β-catenin signaling in XY gonads did not, however, affect gene expression of the steroidogenic Leydig cell Sf1 target gene, Cyp11a1, or Sf1 binding to the Cyp11a1 promoter. Our data support a model in ovary development whereby activation of β-catenin prevents Sf1 binding to the Sox9 enhancer, thereby inhibiting Sox9 expression and Sertoli cell differentiation.

  1. Assessment of solid microneedle rollers to enhance transmembrane delivery of doxycycline and inhibition of MMP activity.

    Science.gov (United States)

    Omolu, Abbie; Bailly, Maryse; Day, Richard M

    2017-11-01

    Many chronic wounds exhibit high matrix metalloproteinase (MMP) activity that impedes the normal wound healing process. Intradermal delivery (IDD) of sub-antimicrobial concentrations of doxycycline, as an MMP inhibitor, could target early stages of chronic wound development and inhibit further wound progression. To deliver doxycycline intradermally, the skin barrier must be disrupted. Microneedle rollers offer a minimally invasive technique to penetrate the skin by creating multiple microchannels that act as temporary conduits for drugs to diffuse through. In this study, an innovative and facile approach for delivery of doxycycline across Strat-M TM membrane was investigated using microneedle rollers. The quantity and rate of doxycycline diffusing through the micropores directly correlated with increasing microneedle lengths (250, 500 and 750 μm). Treatment of Strat-M TM with microneedle rollers resulted in a reduction in fibroblast-mediated collagen gel contraction and MMP activity compared with untreated Strat-M TM . Our results show that treatment of an epidermal mimetic with microneedle rollers provides sufficient permeabilization for doxycycline diffusion and inhibition of MMP activity. We conclude that microneedle rollers are a promising, clinically ready tool suitable for delivery of doxycycline intradermally to treat chronic wounds.

  2. Inhibition of TGFbeta1 Signaling Attenutates ATM Activity inResponse to Genotoxic Stress

    Energy Technology Data Exchange (ETDEWEB)

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose; Ravani, Shraddha A.; Glick, Adam B.; Lavin, Martin J.; Koslov, Sergei; Shiloh, Yosef; Barcellos-Hoff, Mary Helen

    2006-09-15

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta}1 (TGF{beta}), which is activated by radiation, is a potent and pleiotropic mediator of physiological and pathological processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}1 null murine epithelial cells or human epithelial cells treated with a small molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17 and p53, reduced {gamma}H2AX radiation-induced foci, and increased radiosensitivity compared to TGF{beta} competent cells. We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM that directs epithelial cell stress responses, cell fate and tissue integrity. Thus, TGF{beta}1, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.

  3. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters

    Directory of Open Access Journals (Sweden)

    Yuguang Lin

    2011-01-01

    Full Text Available Hawthorn (Crataegus pinnatifida is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA and ursolic acid (UA contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w cholesterol (control or the same diet supplemented with (i 0.37% hawthorn dichloromethane extract, (ii 0.24% PSE, (iii hawthorn dichloromethane extract (0.37% plus PSE (0.24% or (iv OA/UA mixture (0.01% for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA enhanced the cholesterol lowering effect of plant sterols.

  4. E3 Ubiquitin Ligase c-cbl Inhibits Microglia Activation After Chronic Constriction Injury.

    Science.gov (United States)

    Xue, Pengfei; Liu, Xiaojuan; Shen, Yiming; Ju, Yuanyuan; Lu, Xiongsong; Zhang, Jinlong; Xu, Guanhua; Sun, Yuyu; Chen, Jiajia; Gu, Haiyan; Cui, Zhiming; Bao, Guofeng

    2018-06-22

    E3 ubiquitin ligase c-Caritas B cell lymphoma (c-cbl) is associated with negative regulation of receptor tyrosine kinases, signal transduction of antigens and cytokine receptors, and immune response. However, the expression and function of c-cbl in the regulation of neuropathic pain after chronic constriction injury (CCI) are unknown. In rat CCI model, c-cbl inhibited the activation of spinal cord microglia and the release of pro-inflammatory factors including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), which alleviated mechanical and heat pain through down-regulating extracellular signal-regulated kinase (ERK) pathway. Additionally, exogenous TNF-α inhibited c-cbl protein level vice versa. In the primary microglia transfected with c-cbl siRNA, when treated with TNF-α or TNF-α inhibitor, the corresponding secretion of IL-1β and IL-6 did not change. In summary, CCI down-regulated c-cbl expression and induced the activation of microglia, then activated microglia released inflammatory factors via ERK signaling to cause pain. Our data might supply a novel molecular target for the therapy of CCI-induced neuropathic pain.

  5. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition

    Science.gov (United States)

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D.; Nencioni, Alessio

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use. PMID:25909220

  6. Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants.

    Directory of Open Access Journals (Sweden)

    Toru Kobayashi

    Full Text Available Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K(+ (GIRK, Kir3 channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects.

  7. A pneumatically powered knee-ankle-foot orthosis (KAFO with myoelectric activation and inhibition

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2009-06-01

    Full Text Available Abstract Background The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Methods Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1 without wearing the orthosis, 2 wearing the orthosis with artificial muscles turned off, 3 wearing the orthosis activated under direct proportional myoelectric control, and 4 wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. Results The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04 and knee ( r = 0.95 ± 0.04 joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17. Conclusion The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current

  8. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition

    Science.gov (United States)

    Sawicki, Gregory S; Ferris, Daniel P

    2009-01-01

    Background The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO) powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO) and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Methods Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1) without wearing the orthosis, 2) wearing the orthosis with artificial muscles turned off, 3) wearing the orthosis activated under direct proportional myoelectric control, and 4) wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. Results The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04) and knee ( r = 0.95 ± 0.04) joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17). Conclusion The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current orthosis design

  9. Activation of glycolysis and inhibition of glucose transport into leaves by fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Lustinec, J; Pokorna, V; Ruzicka, J

    1962-01-01

    During stimulation of wheat leaf respiration by fluoride at 100 to 200 ppM fluorine in dry tissue the ratio of radioactivities of /sup 14/CO/sub 2/ released from glucose-6-/sup 14/C and that released from glucose-1-/sup 14/C (C/sub 6//C/sub 1/) increases due especially to an increased output of 6-/sup 14/CO/sub 2/ which suggests an activation of glycolysis. The absolute values of radioactivity of /sup 14/CO/sub 2/, however, are decreased by the action of fluoride due to its inhibition of the transport of glucose into leaves. 15 references, 2 figures, 2 tables.

  10. Mercury Inhibits Soil Enzyme Activity in a Lower Concentration than the Guideline Value.

    Science.gov (United States)

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    Three soil types - neutral, alkaline and acidic were experimentally contaminated with nine different concentrations of inorganic mercury (0, 5, 10, 50, 100, 150, 200, 250, 300 mg/kg) to derive effective concentrations of mercury that exert toxicity on soil quality. Bioavailability of mercury in terms of water solubility was lower in acidic soil with higher organic carbon. Dehydrogenase enzyme activity and nitrification rate were chosen as indicators to assess soil quality. Inorganic mercury significantly inhibited (p mercury contents (EC10) were found to be less than the available safe limits for inorganic mercury which demonstrated inadequacy of existing guideline values.

  11. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells.

    Science.gov (United States)

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-09-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E₂ (PGE₂), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells.

  12. Inhibition of c-Abl kinase activity renders cancer cells highly sensitive to mitoxantrone.

    Directory of Open Access Journals (Sweden)

    Kemal Alpay

    Full Text Available Although c-Abl has increasingly emerged as a key player in the DNA damage response, its role in this context is far from clear. We studied the effect of inhibition of c-Abl kinase activity by imatinib with chemotherapy drugs and found a striking difference in cell survival after combined mitoxantrone (MX and imatinib treatment compared to a panel of other chemotherapy drugs. The combinatory treatment induced apoptosis in HeLa cells and other cancer cell lines but not in primary fibroblasts. The difference in MX and doxorubicin was related to significant augmentation of DNA damage. Transcriptionally active p53 accumulated in cells in which human papillomavirus E6 normally degrades p53. The combination treatment resulted in caspase activation and apoptosis, but this effect did not depend on either p53 or p73 activity. Despite increased p53 activity, the cells arrested in G2 phase became defective in this checkpoint, allowing cell cycle progression. The effect after MX treatment depended partially on c-Abl: Short interfering RNA knockdown of c-Abl rendered HeLa cells less sensitive to MX. The effect of imatinib was decreased by c-Abl siRNA suggesting a role for catalytically inactive c-Abl in the death cascade. These findings indicate that MX has a unique cytotoxic effect when the kinase activity of c-Abl is inhibited. The treatment results in increased DNA damage and c-Abl-dependent apoptosis, which may offer new possibilities for potentiation of cancer chemotherapy.

  13. Biofilm inhibition activity of traditional medicinal plants from Northwestern Argentina against native pathogen and environmental microorganisms

    Directory of Open Access Journals (Sweden)

    Cintia Mariana Romero

    Full Text Available Abstract: INTRODUCTION: Plants have been commonly used in popular medicine of most cultures for the treatment of disease. The in vitro antimicrobial activity of certain Argentine plants used in traditional medicine has been reported. The aim of this study was to investigate the antimicrobial, anti-biofilm, and anti-cell adherence activities of native plants (Larrea divaricata, Tagetes minuta, Tessaria absinthioides, Lycium chilense, and Schinus fasciculatus collected in northwestern Argentina. METHODS: The activities of the five plant species were evaluated in Bacillus strains and clinical strains of coagulase-negative Staphylococcus isolated from northwestern Argentina and identified by 16S rDNA. RESULT: Lycium chilense and Schinus fasciculatus were the most effective antimicrobial plant extracts (15.62µg/ml and 62.50µg/ml for Staphylococcus sp. Mcr1 and Bacillus sp. Mcn4, respectively. The highest (66% anti-biofilm activity against Bacillus sp. Mcn4 was observed with T. absinthioides and L. divaricate extracts. The highest (68% anti-biofilm activity against Staphylococcus sp. Mcr1 was observed with L. chilense extract. T. minuta, T. absinthioides, and L. divaricata showed percentages of anti-biofilm activity of between 55% and 62%. The anti-adherence effects of T. minuta and L. chilense observed in Bacillus sp. Mcn4 reflected a difference of only 22% and 10%, respectively, between anti-adherence and biofilm inhibition. Thus, the inhibition of biofilm could be related to cell adherence. In Staphylococcus sp. Mcr1, all plant extracts produced low anti-adherence percentages. CONCLUSION: These five species may represent a source of alternative drugs derived from plant extracts, based on ethnobotanical knowledge from northwest Argentina.

  14. Liver X receptor activation inhibits PC-3 prostate cancer cells via the beta-catenin pathway.

    Science.gov (United States)

    Youlin, Kuang; Li, Zhang; Weiyang, He; Jian, Kang; Siming, Liang; Xin, Gou

    2017-03-01

    Liver X receptors (LXRs) are nuclear receptors family of ligand-dependent transcription factors that play a crucial role in regulating cholesterol metabolism and inflammation. Recent studies show that LXR agonists exhibit anti-cancer activities in a variety of cancer cell lines including prostate. To further identify the potential mechanisms of LXRα activation on prostate cancer, we investigated the effect of LXR agonist T0901317 on PC3 prostate cancer cell and in which activity of beta-catenin pathway involved. Prostate cancer PC3 cells were transfected with LXR-a siRNA and treated with LXR activator T0901317. qRT-PCR and western blot were used to detect the LXR-a expression. beta-catenin, cyclin D1 and c-MYC were analyzed by western blot. Cell apoptosis was examined by flow cytometry and Cell proliferation was assessed by Cell Counting Kit-8 assay. Cell migration was detected by Transwell chambers. Data showed that T0901317 significantly inhibited PC3 cell proliferation as well as invasion and increased apoptosis in vitro. Furthermore, we found that LXRα activation induced the reduction of beta-catenin expression in PC3 cells, and this inhibitory effect could be totally abolished when cells were treated with LXRα. Meanwhile, the expression of beta-catenin target gene cyclin D1 and c-MYC were also decreased. This study provided additional evidence that LXR activation inhibited PC-3 prostate cancer cells via suppressing beta-catenin pathway. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain.

    Science.gov (United States)

    Huber, Roland G; Fan, Hao; Bond, Peter J

    2015-10-01

    ZAP-70 (Zeta-chain-associated protein kinase 70) is a tyrosine kinase that interacts directly with the activated T-cell receptor to transduce downstream signals, and is hence a major player in the regulation of the adaptive immune response. Dysfunction of ZAP-70 causes selective T cell deficiency that in turn results in persistent infections. ZAP-70 is activated by a variety of signals including phosphorylation of the kinase domain (KD), and binding of its regulatory tandem Src homology 2 (SH2) domains to the T cell receptor. The present study investigates molecular mechanisms of activation and inhibition of ZAP-70 via atomically detailed molecular dynamics simulation approaches. We report microsecond timescale simulations of five distinct states of the ZAP-70 KD, comprising apo, inhibited and three phosphorylated variants. Extensive analysis of local flexibility and correlated motions reveal crucial transitions between the states, thus elucidating crucial steps in the activation mechanism of the ZAP-70 KD. Furthermore, we rationalize previously observed staurosporine-bound crystal structures, suggesting that whilst the KD superficially resembles an "active-like" conformation, the inhibitor modulates the underlying protein dynamics and restricts it in a compact, rigid state inaccessible to ligands or cofactors. Finally, our analysis reveals a novel, potentially druggable pocket in close proximity to the activation loop of the kinase, and we subsequently use its structure in fragment-based virtual screening to develop a pharmacophore model. The pocket is distinct from classical type I or type II kinase pockets, and its discovery offers promise in future design of specific kinase inhibitors, whilst mutations in residues associated with this pocket are implicated in immunodeficiency in humans.

  16. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain.

    Directory of Open Access Journals (Sweden)

    Roland G Huber

    2015-10-01

    Full Text Available ZAP-70 (Zeta-chain-associated protein kinase 70 is a tyrosine kinase that interacts directly with the activated T-cell receptor to transduce downstream signals, and is hence a major player in the regulation of the adaptive immune response. Dysfunction of ZAP-70 causes selective T cell deficiency that in turn results in persistent infections. ZAP-70 is activated by a variety of signals including phosphorylation of the kinase domain (KD, and binding of its regulatory tandem Src homology 2 (SH2 domains to the T cell receptor. The present study investigates molecular mechanisms of activation and inhibition of ZAP-70 via atomically detailed molecular dynamics simulation approaches. We report microsecond timescale simulations of five distinct states of the ZAP-70 KD, comprising apo, inhibited and three phosphorylated variants. Extensive analysis of local flexibility and correlated motions reveal crucial transitions between the states, thus elucidating crucial steps in the activation mechanism of the ZAP-70 KD. Furthermore, we rationalize previously observed staurosporine-bound crystal structures, suggesting that whilst the KD superficially resembles an "active-like" conformation, the inhibitor modulates the underlying protein dynamics and restricts it in a compact, rigid state inaccessible to ligands or cofactors. Finally, our analysis reveals a novel, potentially druggable pocket in close proximity to the activation loop of the kinase, and we subsequently use its structure in fragment-based virtual screening to develop a pharmacophore model. The pocket is distinct from classical type I or type II kinase pockets, and its discovery offers promise in future design of specific kinase inhibitors, whilst mutations in residues associated with this pocket are implicated in immunodeficiency in humans.

  17. Divergent effects of postmortem ambient temperature on organophosphorus- and carbamate-inhibited brain cholinesterase activity in birds

    Science.gov (United States)

    Hill, E.F.

    1989-01-01

    Time- and temperature-dependent postmortem changes in inhibited brain cholinesterase (ChE) activity may confound diagnosis of field poisoning of wildlife by anticholinesterase pesticide. Carbamate-inhibited ChE activity may return to normal within 1 to 2 days of exposure of intact carcass to moderate ambient temperature (18-32C). Organophosphorus-inhibited ChE activity becomes more depressed over the same time. Uninhibited ChE activity was resilient to above freezing temperature to 32C for 1 day and 25C for 3 days. Carbamate- and organophosphorus-inhibited ChE can be separated by incubation of homogenate for 1 hour at physiological temperatures; carbamylated ChE can be readily reactivated while phosphorylated ChE cannot.

  18. 20(S-Protopanaxatriol inhibits release of inflammatory mediators in immunoglobulin E-mediated mast cell activation

    Directory of Open Access Journals (Sweden)

    Dae Yong Kim

    2015-07-01

    Conclusion: PPT reduces the release of inflammatory mediators via inhibiting multiple cellular signaling pathways comprising the Ca2+ influx, protein kinase C, and PLA2, which are propagated by Syk activation upon allergic stimulation of mast cells.

  19. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    Science.gov (United States)

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  20. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yolanda Williams-Bey

    Full Text Available The omega-3 (ω3 fatty acid docosahexaenoic acid (DHA can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR 4 (also known as GPR120, a G-protein coupled receptor (GPR known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

  1. Inhibition of Rac1 activity in the hippocampus impaired extinction of contextual fear.

    Science.gov (United States)

    Jiang, Lizhu; Mao, Rongrong; Tong, Jianbin; Li, Jinnan; Chai, Anping; Zhou, Qixin; Yang, Yuexiong; Wang, Liping; Li, Lingjiang; Xu, Lin

    2016-10-01

    Promoting extinction of fear memory is the main treatment of fear disorders, especially post-traumatic stress disorder (PTSD). However, fear extinction is often incomplete in these patients. Our previous study had shown that Rac1 activity in hippocampus plays a crucial role in the learning of contextual fear memory in rats. Here, we further investigated whether Rac1 activity also modulated the extinction of contextual fear memory. We found that massed extinction obviously upregulated hippocampal Rac1 activity and induced long-term extinction of contextual fear in rats. Intrahippocampal injection of the Rac1 inhibitor NSC23766 prevents extinction of contextual fear in massed extinction training rats. In contrast, long-spaced extinction downregulated Rac1 activity and caused less extinction. And Rac1 activator CN04-A promotes extinction of contextual fear in long-spaced extinction rats. Our study demonstrates that inhibition of Rac1 activity in the hippocampus impaired extinction of contextual fear, suggesting that modulating Rac1 activity of the hippocampus may be promising therapy of fear disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Lactococcus lactis KR-050L inhibit IL-6/STAT3 activation.

    Science.gov (United States)

    Hwang, J T; Jang, H-J; Kim, J H; Park, C S; Kim, Y; Lim, C-H; Lee, S W; Rho, M-C

    2017-05-01

    The purpose of this study was to investigate IL-6/STAT3 inhibitory activity using lactic acid bacteria (LABs) isolated from Gajuknamu kimchi. Six LABs were isolated from Gajuknamu kimchi and identified through 16S rRNA sequencing. Among them, the culture broth of Lactococcus lactis KR-050L inhibited IL-6-induced STAT3 luciferase activity. Fifteen compounds were isolated from the EtOAc extract of culture broth though column chromatography and preparative high-performance liquid chromatography, and they were identified as 2,5-diketopipperazine structures by spectroscopic analyses (MS, 1 H- and 13 C-NMR). They also showed inhibitory activities on IL-6-induced STAT3 activation, and showed the different in activity according to the presence of a phenylalanine residue, hydroxyl groups and isometric structure. The six new LABs isolated from Gajuknamu kimchi, and Lc. lactis KR-050L was selected as candidate IL-6/STAT3 inhibitors. The activity levels of 15 2,5-DKPs isolated from Lc. lactis KR-050L were verified. This study constitutes the first attempt to isolate various LABs from Gajuknamu kimchi and to discover IL-6/STAT3 inhibitors in the EtOAc extract of Lc. lactis KR-050L culture broth. Moreover, our data provide useful biochemical information regarding the commercialization of Lc. lactis isolated from Gajuknamu kimchi as an approach to use functional foods for the treatment of various diseases via IL-6/STAT3 activation. © 2017 The Society for Applied Microbiology.

  3. Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica

    Science.gov (United States)

    Chen, Anjin; Zhang, Fang; Shi, Jie; Zhao, Xue; Yan, Meixing

    2016-10-01

    Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.

  4. Assessment of Anti-Influenza Activity and Hemagglutination Inhibition of Plumbago indica and Allium sativum Extracts.

    Science.gov (United States)

    Chavan, Rahul Dilip; Shinde, Pramod; Girkar, Kaustubh; Madage, Rajendra; Chowdhary, Abhay

    2016-01-01

    Human influenza is a seasonal disease associated with significant morbidity and mortality. Anti-flu ayurvedic/herbal medicines have played a significant role in fighting the virus pandemic. Plumbagin and allicin are commonly used ingredients in many therapeutic remedies, either alone or in conjunction with other natural substances. Evidence suggests that these extracts are associated with a variety of pharmacological activities. To evaluate anti-influenza activity from Plumbago indica and Allium sativum extract against Influenza A (H1N1)pdm09. Different extraction procedures were used to isolate the active ingredient in the solvent system, and quantitative HPLTC confirms the presence of plumbagin and allicin. The cytotoxicity was carried out on Madin-Darby Canine kidney cells, and the 50% cytotoxic concentration (CC50) values were below 20 mg/mL for both plant extracts. To assess the anti-influenza activity, two assays were employed, simultaneous and posttreatment assay. A. sativum methanolic and ethanolic extracts showed only 14% reduction in hemagglutination in contrast to P. indica which exhibited 100% reduction in both simultaneous and posttreatment assay at concentrations of 10 mg/mL, 5 mg/mL, and 1 mg/mL. Our results suggest that P. indica extracts are good candidates for anti-influenza therapy and should be used in medical treatment after further research. The search for natural antiviral compounds from plants is a promising approach in the development of new therapeutic agents. In the past century, several scientific efforts have been directed toward identifying phytochemicals capable of inhibiting virus. Knowledge of ethnopharmacology can lead to new bioactive plant compounds suitable for drug discovery and development. Macromolecular docking studies provides most detailed possible view of drug-receptor interaction where the structure of drug is designed based on its fit to three dimensional structures of receptor site rather than by analogy to other

  5. Disulfide bond within mu-calpain active site inhibits activity and autolysis.

    Science.gov (United States)

    Lametsch, René; Lonergan, Steven; Huff-Lonergan, Elisabeth

    2008-09-01

    Oxidative processes have the ability to influence mu-calpain activity. In the present study the influence of oxidation on activity and autolysis of mu-calpain was examined. Furthermore, LC-MS/MS analysis was employed to identify and characterize protein modifications caused by oxidation. The results revealed that the activity of mu-calpain is diminished by oxidation with H2O2 in a reversible manner involving cysteine and that the rate of autolysis of mu-calpain concomitantly slowed. The LC-MS/MS analysis of the oxidized mu-calpain revealed that the amino acid residues 105-133 contained a disulfide bond between Cys(108) and Cys(115). The finding that the active site cysteine in mu-calpain is able to form a disulfide bond has, to our knowledge, not been reported before. This could be part of a unique oxidation mechanism for mu-calpain. The results also showed that the formation of the disulfide bond is limited in the control (no oxidant added), and further limited in a concentration-dependent manner when beta-mercaptoethanol is added. However, the disulfide bond is still present to some extent in all conditions indicating that the active site cysteine is potentially highly susceptible to the formation of this intramolecular disulfide bond.

  6. Inhibition of nuclear factor of activated T-cells (NFAT suppresses accelerated atherosclerosis in diabetic mice.

    Directory of Open Access Journals (Sweden)

    Anna V Zetterqvist

    Full Text Available OBJECTIVE OF THE STUDY: Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: Streptozotocin (STZ-induced diabetes in apolipoprotein E(-/- mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. CONCLUSIONS: Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications.

  7. Block of glucocorticoid synthesis during re-activation inhibits extinction of an established fear memory.

    Science.gov (United States)

    Blundell, Jacqueline; Blaiss, Cory A; Lagace, Diane C; Eisch, Amelia J; Powell, Craig M

    2011-05-01

    The pharmacology of traumatic memory extinction has not been fully characterized despite its potential as a therapeutic target for established, acquired anxiety disorders, including post-traumatic stress disorder (PTSD). Here we examine the role of endogenous glucocorticoids in traumatic memory extinction. Male C57BL/6J mice were injected with corticosterone (10 mg/kg, i.p.) or metyrapone (50 mg/kg, s.c.) during re-activation of a contextual fear memory, and compared to vehicle groups (N=10-12 per group). To ensure that metyrapone was blocking corticosterone synthesis, we measured corticosterone levels following re-activation of a fear memory in metyrapone- and vehicle-treated animals. Corticosterone administration following extinction trials caused a long-lasting inhibition of the original fear memory trace. In contrast, blockade of corticosteroid synthesis with metyrapone prior to extinction trials enhanced retrieval and prevented extinction of context-dependent fear responses in mice. Further behavioral analysis suggested that the metyrapone enhancement of retrieval and prevention of extinction were not due to non-specific alterations in locomotor or anxiety-like behavior. In addition, the inhibition of extinction by metyrapone was rescued by exogenous administration of corticosterone following extinction trials. Finally, we confirmed that the rise in corticosterone during re-activation of a contextual fear memory was blocked by metyrapone. We demonstrate that extinction of a classical contextual fear memory is dependent on endogenous glucocorticoid synthesis during re-activation of a fear memory. Our data suggest that decreased glucocorticoids during fear memory re-activation may contribute to the inability to extinguish a fear memory, thus contributing to one of the core symptoms of PTSD. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Inhibition of allergen-induced basophil activation by ASM-024, a nicotinic receptor ligand.

    Science.gov (United States)

    Watson, Brittany M; Oliveria, John Paul; Nusca, Graeme M; Smith, Steven G; Beaudin, Sue; Dua, Benny; Watson, Rick M; Assayag, Evelynne Israël; Cormier, Yvon F; Sehmi, Roma; Gauvreau, Gail M

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) were identified on eosinophils and shown to regulate inflammatory responses, but nAChR expression on basophils has not been explored yet. We investigated surface receptor expression of nAChR α4, α7 and α1/α3/α5 subunits on basophils. Furthermore, we examined the effects of ASM-024, a synthetic nicotinic ligand, on in vitro anti-IgE and in vivo allergen-induced basophil activation. Basophils were enriched from the peripheral blood of allergic donors and the expression of nAChR subunits and muscarinic receptors was determined. Purified basophils were stimulated with anti-IgE in the presence of ASM-024 with or without muscarinic or nicotinic antagonists for the measurement of CD203c expression and histamine release. The effect of 9 days of treatment with 50 and 200 mg ASM-024 on basophil CD203c expression was examined in the blood of mild allergic asthmatics before and after allergen inhalation challenge. nAChR α4, α7 and α1/α3/α5 receptor subunit expression was detected on basophils. Stimulation of basophils with anti-IgE increased CD203c expression and histamine release, which was inhibited by ASM-024 (10(-5) to 10(-)(3) M, p ASM-024 was reversed in the presence of muscarinic and nicotinic antagonists. In subjects with mild asthma, ASM-024 inhalation significantly inhibited basophil CD203c expression measured 24 h after allergen challenge (p = 0.03). This study shows that ASM-024 inhibits IgE- and allergen-induced basophil activation through both nicotinic and muscarinic receptors, and suggests that ASM-024 may be an efficacious agent for modulating allergic asthma responses. © 2015 S. Karger AG, Basel.

  9. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    International Nuclear Information System (INIS)

    Yang Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-01-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE -/- ) versus wild type (AChE +/+ ) mice indicated that while these OPs inhibited axonal growth in AChE +/+ DRG neurons, they had no effect on axonal growth in AChE -/- DRG neurons. However, transfection of AChE -/- DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs

  10. [Curcumin inhibited rat colorectal carcinogenesis by activating PPAR-γ: an experimental study].

    Science.gov (United States)

    Liu, Liu-bin; Duan, Chang-nong; Ma, Zeng-yi; Xu, Gang

    2015-04-01

    To explore the chemopreventive effect of curcumin on DMH induced colorectal carcinogenesis and the underlining mechanism. Totally 40 Wistar rats were divided into the model group and the curcumin group by random digit table, 20 in each group. Meanwhile, a normal control group was set up (n =10). A colorectal cancer model was induced by subcutaneously injecting 20 mg/kg DMH. The tumor incidence and the inhibition rate were calculated. The effect of curcumin on the expression of peroxisome proliferator-activated receptor gamma (PPARγ) in rat colon mucosal tissues was observed using immunohistochemistry and Western blot. HT 29 cell line were cultured and divided into a control group, the curcumin + GW9662 (2-chloro-5-nitro-N-4-phenylbenzamide) intervention group, and the curcumin group. The inhibition of different concentrations curcumin on HT29 cell line was detected using MTT. The expression of curcumin on PPARy was also detected using Western blot. The tumor incidence was 80. 00% (12/15 cases) in the model group, obviously higher than that of the curcumin group (58. 82%, 10/17 cases, P manners. The expression of PPARy protein was significantly increased in the GW9662 group and the curcumin group, showing statistical difference when compared with the normal control group (P <0. 01). Compared with the GW9662 group, the expression of PPARγ protein was significantly increased in the curcumin group (P <0. 01). Curcumin could inhibit DMH-induced rat colorectal carcinogenesis and the growth of in vitro cultured HT 29 cell line, which might be achieved by activating PPARy signal transduction pathway.

  11. Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats.

    Science.gov (United States)

    Matsushita, Yumi; Manabe, Miki; Kitamura, Naoki; Shibuya, Izumi

    2018-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor channel that responds to multiple types of stimuli, such as heat, acid, mechanical pressure and some vanilloids. Capsaicin is the most commonly used vanilloid to stimulate TRPV1. TRPV1 channels are expressed in dorsal root ganglion neurons that extend to Aδ- and C-fibers and have a role in the transduction of noxious inputs to the skin into the electrical signals of the sensory nerve. Although noradrenergic nervous systems, including the descending antinociceptive system and the sympathetic nervous system, are known to modulate pain sensation, the functional association between TRPV1 and noradrenaline in primary sensory neurons has rarely been examined. In the present study, we examined the effects of noradrenaline on capsaicin-evoked currents in cultured dorsal root ganglion neurons of the rat by the whole-cell voltage clamp method. Noradrenaline at concentrations higher than 0.1 pM significantly reduced the amplitudes of the inward capsaicin currents recorded at -60 mV holding potential. This inhibitory action was reversed by either yohimbine (an α2 antagonist, 10 nM) or propranolol (a β antagonist, 10 nM). The α2 agonists, clonidine (1 pM) and dexmedetomidine (1 pM) inhibited capsaicin currents, and yohimbine (1 nM) reversed the effects of clonidine. The inhibitory action of noradrenaline was not seen in the neurons pretreated with pertussis toxin (100 μg/ml for 24 h) and the neurons dialyzed intracellularly with guanosine 5'- [β-thio] diphosphate (GDPβS, 200 μM), the catalytic subunit of protein kinase A (250 U/ml) or okadaic acid (1 μM). These results suggest that noradrenaline directly acts on dorsal root ganglion neurons to inhibit the activity of TRPV1 depending on the activation of α2-adrenoceptors followed by the inhibition of the adenylate cyclase/cAMP/protein kinase A pathway.

  12. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2010-01-01

    The ability to silence the electrical activity of defined neuronal populations in vivo is dramatically advancing our understanding of brain function. This technology may eventually be useful clinically for treating a variety of neuropathological disorders caused by excessive neuronal activity...... conductance, homomeric expression, and human origin may render the F207A/A288G alpha1 glycine receptor an improved silencing receptor for neuroscientific and clinical purposes. As all known highly ivermectin-sensitive GluClRs contain an endogenous glycine residue at the corresponding location, this residue...

  13. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways.

    Science.gov (United States)

    Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K

    1993-04-01

    The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.

  14. Nimesulide inhibits platelet-activating factor synthesis in activated human neutrophils

    NARCIS (Netherlands)

    Verhoeven, A. J.; Tool, A. T.; Kuijpers, T. W.; Roos, D.

    1993-01-01

    In an inflammatory locus, products of activated neutrophils may be toxic both to the micro-organisms to be eliminated and to the surrounding tissue. In several models of inflammation, nimesulide possesses marked anti-inflammatory properties. The present study was undertaken to further investigate

  15. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard

    Heat shock proteins (HSPs) are highly conserved molecules, which support folding of proteins under physiological conditions and mediate protection against lethal damage after various stress stimuli. Five HSP families exist defined by their molecular size (i.e. HSP100, HSP90, HSP70, HSP60, and the......Heat shock proteins (HSPs) are highly conserved molecules, which support folding of proteins under physiological conditions and mediate protection against lethal damage after various stress stimuli. Five HSP families exist defined by their molecular size (i.e. HSP100, HSP90, HSP70, HSP60...... clinically applied reagents, such as alkyl-lysophospholipides, chemotherapeutic agents, and anti-inflammatory reagents, have been found to enhance Hsp70 surface expression on cancer cells. We have found that inhibition of histone deacetylase (HDAC) activity leads to surface expression of Hsp70 on various...... hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC-inhibitor mediated Hsp70 surface expression was confined to the apoptotic Annexin V positive cells and blocked by inhibition of apoptosis. Other chemotherapeutic inducers of apoptosis...

  16. Characterization of a monoclonal antibody that specifically inhibits triosephosphate isomerase activity of Taenia solium.

    Science.gov (United States)

    Víctor, Sanabria-Ayala; Yolanda, Medina-Flores; Araceli, Zavala-Carballo; Lucía, Jiménez; Abraham, Landa

    2013-08-01

    In the present study, we obtained and characterized partially a monoclonal antibody (4H11D10B11 mAb) against triosephosphate isomerase from Taenia solium (TTPI). This antibody recognized the enzyme by both ELISA and western blot and was able to inhibit its enzymatic activity in 74%. Moreover, the antigen-binding fragments (Fabs), products of digestion of the monoclonal antibody with papain, retained almost the same inhibitory effect. We determined the binding site by ELISA; synthetic peptides containing sequences from different non-conserved regions of the TTPI were confronted to the 4H11D10B11 mAb. The epitope recognized by the monoclonal antibody was located on peptide TTPI-56 (ATPAQAQEVHKVVRDWIRKHVDAGIADKARI), and an analysis of mimotopes, obtained with the 4H11D10B11 mAb, suggests that the epitope spans the sequence WIRKHVDAGIAD, residues 193-204 of the enzyme. This epitope is located within helix 6, next to loop 6, an essential active loop during catalysis. The antibody did not recognize triosephosphate isomerase from man and pig, definitive and intermediary hosts of T. solium, respectively. Furthermore, it did not bind to the catalytic site, since kinetic analysis demonstrated that inhibition had a non-competitive profile. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Natural Plant Alkaloid (Emetine Inhibits HIV-1 Replication by Interfering with Reverse Transcriptase Activity

    Directory of Open Access Journals (Sweden)

    Ana Luiza Chaves Valadão

    2015-06-01

    Full Text Available Ipecac alkaloids are secondary metabolites produced in the medicinal plant Psychotria ipecacuanha. Emetine is the main alkaloid of ipecac and one of the active compounds in syrup of Ipecac with emetic property. Here we evaluated emetine’s potential as an antiviral agent against Human Immunodeficiency Virus. We performed in vitro Reverse Transcriptase (RT Assay and Natural Endogenous Reverse Transcriptase Activity Assay (NERT to evaluate HIV RT inhibition. Emetine molecular docking on HIV-1 RT was also analyzed. Phenotypic assays were performed in non-lymphocytic and in Peripheral Blood Mononuclear Cells (PBMC with HIV-1 wild-type and HIV-harboring RT-resistant mutation to Nucleoside Reverse Transcriptase Inhibitors (M184V. Our results showed that HIV-1 RT was blocked in the presence of emetine in both models: in vitro reactions with isolated HIV-1 RT and intravirion, measured by NERT. Emetine revealed a strong potential of inhibiting HIV-1 replication in both cellular models, reaching 80% of reduction in HIV-1 infection, with low cytotoxic effect. Emetine also blocked HIV-1 infection of RT M184V mutant. These results suggest that emetine is able to penetrate in intact HIV particles, and bind and block reverse transcription reaction, suggesting that it can be used as anti-HIV microbicide. Taken together, our findings provide additional pharmacological information on the potential therapeutic effects of emetine.

  18. Hypoxia Enhances Immunosuppression by Inhibiting CD4+ Effector T Cell Function and Promoting Treg Activity

    Directory of Open Access Journals (Sweden)

    Astrid M. Westendorf

    2017-03-01

    Full Text Available Background/Aims: Hypoxia occurs in many pathological conditions, including inflammation and cancer. Within this context, hypoxia was shown to inhibit but also to promote T cell responses. Due to this controversial function, we aimed to explore whether an insufficient anti-tumour response during colitis-associated colon cancer could be ascribed to a hypoxic microenvironment. Methods: Colitis-associated colon cancer was induced in wildtype mice, and hypoxia as well as T cell immunity were analysed in the colonic tumour tissues. In addition, CD4+ effector T cells and regulatory T cells were cultured under normoxic and hypoxic conditions and examined regarding their phenotype and function. Results: We observed severe hypoxia in the colon of mice suffering from colitis-associated colon cancer that was accompanied by a reduced differentiation of CD4+ effector T cells and an enhanced number and suppressive activity of regulatory T cells. Complementary ex vivo and in vitro studies revealed that T cell stimulation under hypoxic conditions inhibited the differentiation, proliferation and IFN-γ production of TH1 cells and enhanced the suppressive capacity of regulatory T cells. Moreover, we identified an active role for HIF-1α in the modulation of CD4+ T cell functions under hypoxic conditions. Conclusion: Our data indicate that oxygen availability can function as a local modulator of CD4+ T cell responses and thus influences tumour immune surveillance in inflammation-associated colon cancer.

  19. Inhibition of biological activity of staphylococcal enterotoxin A (SEA) by apple juice and apple polyphenols.

    Science.gov (United States)

    Rasooly, Reuven; Do, Paula M; Friedman, Mendel

    2010-05-12

    The foodborne pathogen Staphylococcus aureus produces the virulent staphylococcal enterotoxin A (SEA), a single-chain protein that consists of 233 amino acid residues with a molecular weight of 27 078 Da. SEA is a superantigen that is reported to contribute to animal (mastitis) and human (emesis, diarrhea, atopic dermatitis, arthritis, and toxic shock) syndromes. Changes of the native structural integrity may inactivate the toxin by preventing molecular interaction with cell membrane receptor sites of their host cells. In the present study, we evaluated the ability of one commercial and two freshly prepared apple juices and a commercial apple polyphenol preparation (Apple Poly) to inhibit the biological activity of SEA. Dilutions of freshly prepared apple juices and Apple Poly inhibited the biological activity of SEA without any significant cytotoxic effect on the spleen cells. Additional studies with antibody-coated immunomagnetic beads bearing specific antibodies against the toxin revealed that SEA added to apple juice appears to be largely irreversibly bound to the juice constituents. The results suggest that food-compatible and safe anti-toxin phenolic compounds can be used to inactivate SEA in vitro and possibly also in vivo, even after induction of T-cell proliferation by long-term exposure to SEA. The significance of the results for microbial food safety and human health is discussed.

  20. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Yoshiki, E-mail: andoy@jmmc.jp [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Miyamoto, Hiroshi [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Noda, Iwao; Sakurai, Nobuko [Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Akiyama, Tomonori [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Yonekura, Yutaka; Shimazaki, Takafumi; Miyazaki, Masaki; Mawatari, Masaaki; Hotokebuchi, Takao [Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan)

    2010-01-01

    Surgical site infection is one of the serious complications of orthopedic implants. In order to reduce the incidence of implant-associated infections, we developed a novel coating technology of calcium phosphate (CP) containing silver (Ag), designated Ag-CP coating, using a thermal spraying technique. In this study, we evaluated the antibacterial efficacy and biological safety of this coating. In vitro antibacterial activity tests showed that the growths of Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are completely suppressed on Ag-CP coating. In vitro bacterial adherence tests revealed that the number of adherent bacteria on the surface of this coating is significantly less (p < 0.02) than that on the surface of the CP coating. Moreover, the Ag-CP coating completely inhibits MRSA adhesion [<10 colony-forming units (CFU)] when 10{sup 2} CFU MRSA is inoculated. On the other hand, V79 Chinese hamster lung cells were found to grow on the Ag-CP coating as well as on the CP coating in a cytotoxicity test. These results indicate that the Ag-CP coating on the surface of orthopedic implants exhibits antibacterial activity and inhibits bacterial adhesion without cytotoxicity.

  1. Nuclear localization of Lyn tyrosine kinase mediated by inhibition of its kinase activity

    International Nuclear Information System (INIS)

    Ikeda, Kikuko; Nakayama, Yuji; Togashi, Yuuki; Obata, Yuuki; Kuga, Takahisa; Kasahara, Kousuke; Fukumoto, Yasunori; Yamaguchi, Naoto

    2008-01-01

    Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification

  2. Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis in vitro.

    Science.gov (United States)

    Ranjbar-Omid, Mahsa; Arzanlou, Mohsen; Amani, Mojtaba; Shokri Al-Hashem, Seyyedeh Khadijeh; Amir Mozafari, Nour; Peeri Doghaheh, Hadi

    2015-05-01

    Several virulence factors contribute to the pathogenesis of Proteus mirabilis. This study determined the inhibitory effects of allicin on urease, hemolysin and biofilm of P. mirabilis ATCC 12453 and its antimicrobial activity against 20 clinical isolates of P. mirabilis. Allicin did not inhibit hemolysin, whereas it did inhibit relative urease activity in both pre-lysed (half-maximum inhibitory concentration, IC50 = 4.15 μg) and intact cells (IC50 = 21 μg) in a concentration-dependent manner. Allicin at sub-minimum inhibitory concentrations (2-32 μg mL(-1)) showed no significant effects on the growth of the bacteria (P > 0.05), but it reduced biofilm development in a concentration-dependent manner (P mirabilis isolates were determined to be 128 and 512 μg mL(-1), respectively. The results suggest that allicin could have clinical applications in controlling P. mirabilis infections. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines.

    Science.gov (United States)

    Hanavan, Paul D; Borges, Chad R; Katchman, Benjamin A; Faigel, Douglas O; Ho, Thai H; Ma, Chen-Ting; Sergienko, Eduard A; Meurice, Nathalie; Petit, Joachim L; Lake, Douglas F

    2015-07-30

    Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a "proof-of-principle" that enzymatic inhibition of QSOX1 may have clinical relevancy.

  4. Protamine sulfate down-regulates thrombin generation by inhibiting factor V activation.

    LENUS (Irish Health Repository)

    Ni Ainle, Fionnuala

    2009-08-20

    Protamine sulfate is a positively charged polypeptide widely used to reverse heparin-induced anticoagulation. Paradoxically, prospective randomized trials have shown that protamine administration for heparin neutralization is associated with increased bleeding, particularly after cardiothoracic surgery with cardiopulmonary bypass. The molecular mechanism(s) through which protamine mediates this anticoagulant effect has not been defined. In vivo administration of pharmacologic doses of protamine to BALB\\/c mice significantly reduced plasma thrombin generation and prolonged tail-bleeding time (from 120 to 199 seconds). Similarly, in pooled normal human plasma, protamine caused significant dose-dependent prolongations of both prothrombin time and activated partial thromboplastin time. Protamine also markedly attenuated tissue factor-initiated thrombin generation in human plasma, causing a significant decrease in endogenous thrombin potential (41% +\\/- 7%). As expected, low-dose protamine effectively reversed the anticoagulant activity of unfractionated heparin in plasma. However, elevated protamine concentrations were associated with progressive dose-dependent reduction in thrombin generation. To assess the mechanism by which protamine mediates down-regulation of thrombin generation, the effect of protamine on factor V activation was assessed. Protamine was found to significantly reduce the rate of factor V activation by both thrombin and factor Xa. Protamine mediates its anticoagulant activity in plasma by down-regulation of thrombin generation via a novel mechanism, specifically inhibition of factor V activation.

  5. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation.

    Science.gov (United States)

    Jung, Hwan Yong; Nam, Kyong Nyon; Woo, Byung-Choel; Kim, Kyoo-Pil; Kim, Sung-Ok; Lee, Eunjoo H

    2013-01-01

    Chronic microglial activation endangers neuronal survival through the release of various pro-inflammatory and neurotoxic factors. As such, negative regulators of microglial activation have been considered as potential therapeutic candidates to reduce the risk of neurodegeneration associated with inflammation. Uncaria rhynchophylla (U. rhynchophylla) is a traditional oriental herb that has been used for treatment of disorders of the cardiovascular and central nervous systems. Hirsutine (HS), one of the major indole alkaloids of U. rhynchophylla, has demonstrated neuroprotective potential. The aim of the present study was to examine the efficacy of HS in the repression of inflammation-induced neurotoxicity and microglial cell activation. In organotypic hippocampal slice cultures, HS blocked lipopolysaccharide (LPS)-related hippocampal cell death and production of nitric oxide (NO), prostaglandin (PG) E2 and interleukin-1β. HS was demonstrated to effectively inhibit LPS-induced NO release from cultured rat brain microglia. The compound reduced the LPS-stimulated production of PGE2 and intracellular reactive oxygen species. HS significantly decreased LPS-induced phosphorylation of the mitogen-activated protein kinases and Akt signaling proteins. In conclusion, HS reduces the production of various neurotoxic factors in activated microglial cells and possesses neuroprotective activity in a model of inflammation-induced neurotoxicity.

  6. Thioredoxin 80-Activated-Monocytes (TAMs) Inhibit the Replication of Intracellular Pathogens

    DEFF Research Database (Denmark)

    Cortes-Bratti, Ximena; Brasseres, Eugenie; Herrera-Rodriquez, Fabiola

    2011-01-01

    Background: Thioredoxin 80 (Trx80) is an 80 amino acid natural cleavage product of Trx, produced primarily by monocytes. Trx80 induces differentiation of human monocytes into a novel cell type, named Trx80-activated-monocytes (TAMs). Principal Findings: In this investigation we present evidence...... for a role of TAMs in the control of intracellular bacterial infections. As model pathogens we have chosen Listeria monocytogenes and Brucella abortus which replicate in the cytosol and the endoplasmic reticulum respectively. Our data indicate that TAMs efficiently inhibit intracellular growth of both L...... in TAMs compared to that observed in control cells 24 h post-infection, indicating that TAMs kill bacteria by preventing their escape from the endosomal compartments, which progress into a highly degradative phagolysosome. Significance: Our results show that Trx80 potentiates the bactericidal activities...

  7. Persistent discharges in dentate gyrus perisoma-inhibiting interneurons require hyperpolarization-activated cyclic nucleotide-gated channel activation.

    Science.gov (United States)

    Elgueta, Claudio; Köhler, Johannes; Bartos, Marlene

    2015-03-11

    Parvalbumin (PV)-expressing perisoma-inhibiting interneurons (PIIs) of the dentate gyrus integrate rapidly correlated synaptic inputs and generate short-duration action potentials that propagate along the axon to their output synapses, supporting fast inhibitory signaling onto their target cells. Here we show that PV-PIIs in rat and mouse dentate gyrus (DG) integrate their intrinsic activity over time and can turn into a persistent firing mode characterized by the ability to generate long-lasting trains of action potentials at ∼50 Hz in the absence of additional inputs. Persistent firing emerges in the axons remote from the axon initial segment and markedly depends on hyperpolarization-activated cyclic nucleotide-gated channel (HCNC) activation. Persistent firing properties are modulated by intracellular Ca(2+) levels and somatic membrane potential. Detailed computational single-cell PIIs models reveal that HCNC-mediated conductances can contribute to persistent firing during conditions of a shift in their voltage activation curve to more depolarized potentials. Paired recordings from PIIs and their target granule cells show that persistent firing supports strong inhibitory output signaling. Thus, persistent firing may emerge during conditions of intense activation of the network, thereby providing silencing to the circuitry and the maintenance of sparse activity in the dentate gyrus. Copyright © 2015 the authors 0270-6474/15/354131-09$15.00/0.

  8. Synthesis and characterization of (18)F-labeled active site inhibited factor VII (ASIS).

    Science.gov (United States)

    Erlandsson, Maria; Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Jesper B; Petersen, Lars C; Madsen, Jacob; Kjaer, Andreas

    2015-05-15

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an (18)F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[(18)F]fluorobenzoate, and the [(18)F]ASIS was purified on a PD-10 desalting column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [(18)F]ASIS to TF and to a specific anti-factor VII antibody (F1A2-mAb). No significant difference in binding efficacy between [(18)F]ASIS and ASIS could be detected. Furthermore, [(18)F]ASIS was relatively stable in vitro and in vivo in mice. In conclusion, [(18)F]ASIS has for the first time been successfully synthesized as a possible positron emission tomography tracer to image TF expression levels. In vivo positron emission tomography studies to evaluate the full potential of [(18)F]ASIS are in progress. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Antimicrobial Activity and Mechanism of inhibition of Silver Nanoparticles against Extreme Halophilic Archaea

    Directory of Open Access Journals (Sweden)

    Rebecca Thombre

    2016-09-01

    Full Text Available Haloarchaea are salt-loving halophilic microorganism’s that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs as a potent and broad spectrum inhibitory agent is known however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300- 400µg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting programme. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540 and human breast adenocarcinoma cell line (MCF-7. The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death.

  10. Acutely increasing δGABAA receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus

    Science.gov (United States)

    Whissell, Paul D.; Eng, Dave; Lecker, Irene; Martin, Loren J.; Wang, Dian-Shi; Orser, Beverley A.

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABAA) receptors that contain the δ subunit (δGABAA receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABAA receptor null mutant (Gabrd−/−) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd−/− mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd−/− mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity. PMID:24062648

  11. Estrogen alleviates neuropathic pain induced after spinal cord injury by inhibiting microglia and astrocyte activation.

    Science.gov (United States)

    Lee, Jee Youn; Choi, Hae Young; Ju, Bong-Gun; Yune, Tae Young

    2018-04-16

    Neuropathic pain after spinal cord injury (SCI) is developed in about 80% of SCI patients and there is no efficient therapeutic drug to alleviate SCI-induced neuropathic pain. Here we examined the effect of estrogen on SCI-induced neuropathic pain at below-level and its effect on neuroinflammation as underlying mechanisms. Neuropathic pain is developed at late phase after SCI and a single dose of 17β-estradiol (100, 300 μg/kg) were administered to rats with neuropathic pain after SCI through intravenous injection. As results, both mechanical allodynia and thermal hyperalgesia were significantly reduced by 17β-estradiol compared to vehicle control. Both microglia and astrocyte activation in the lamina I and II of L4-5 dorsal horn was also inhibited by 17β-estradiol. In addition, the levels of p-p38MAPK and p-ERK known to be activated in microglia and p-JNK known to be activated in astrocyte were significantly decreased by 17β-estradiol. Furthermore, the mRNA expression of inflammatory mediators such as Il-1β, Il-6, iNos, and Cox-2 was more attenuated in 17β-estradiol-treated group than in vehicle-treated group. Particularly, we found that the analgesic effect by 17β-estradiol was mediated via estrogen receptors, which are expressed in dorsal horn neurons. These results suggest that 17β-estradiol may attenuate SCI-induced neuropathic pain by inhibiting microglia and astrocyte activation followed inflammation. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Acutely increasing δGABAA receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus

    Directory of Open Access Journals (Sweden)

    Paul David Whissell

    2013-09-01

    Full Text Available Extrasynaptic γ-aminobutyric acid type A (GABAA receptors that contain the δ subunit (δGABAA receptors are expressed in several brain regions including the dentate gyrus (DG and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p. on memory performance in wild-type (WT and δGABAA receptor null mutant (Gabrd–/– mice. Additionally, the effects of THIP on long-term potentiation (LTP, a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd–/– mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd–/– mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity.

  13. AMDE-1 is a dual function chemical for autophagy activation and inhibition.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available Autophagy is the process by which cytosolic components and organelles are delivered to the lysosome for degradation. Autophagy plays important roles in cellular homeostasis and disease pathogenesis. Small chemical molecules that can modulate autophagy activity may have pharmacological value for treating diseases. Using a GFP-LC3-based high content screening assay we identified a novel chemical that is able to modulate autophagy at both initiation and degradation levels. This molecule, termed as Autophagy Modulator with Dual Effect-1 (AMDE-1, triggered autophagy in an Atg5-dependent manner, recruiting Atg16 to the pre-autophagosomal site and causing LC3 lipidation. AMDE-1 induced autophagy through the activation of AMPK, which inactivated mTORC1 and activated ULK1. AMDE-1did not affect MAP kinase, JNK or oxidative stress signaling for autophagy induction. Surprisingly, treatment with AMDE-1 resulted in impairment in autophagic flux and inhibition of long-lived protein degradation. This inhibition was correlated with a reduction in lysosomal degradation capacity but not with autophagosome-lysosome fusion. Further analysis indicated that AMDE-1 caused a reduction in lysosome acidity and lysosomal proteolytic activity, suggesting that it suppressed general lysosome function. AMDE-1 thus also impaired endocytosis-mediated EGF receptor degradation. The dual effects of AMDE-1 on autophagy induction and lysosomal degradation suggested that its net effect would likely lead to autophagic stress and lysosome dysfunction, and therefore cell death. Indeed, AMDE-1 triggered necroptosis and was preferentially cytotoxic to cancer cells. In conclusion, this study identified a new class of autophagy modulators with dual effects, which can be explored for potential uses in cancer therapy.

  14. Curcumin Inhibits Apoptosis of Chondrocytes through Activation ERK1/2 Signaling Pathways Induced Autophagy

    Directory of Open Access Journals (Sweden)

    Xiaodong Li

    2017-04-01

    Full Text Available Osteoarthritis (OA is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective in treating pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe, and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Curcumin, the principal curcuminoid and the most active component in turmeric, is a biologically active phytochemical. Evidence from several recent in vitro studies suggests that curcumin may exert a chondroprotective effect through actions such as anti-inflammatory, anti-oxidative stress, and anti-catabolic activity that are critical for mitigating OA disease pathogenesis and symptoms. In the present study, we investigated the protective mechanisms of curcumin on interleukin 1β (IL-1β-stimulated primary chondrocytes in vitro. The treatment of interleukin (IL-1β significantly reduces the cell viability of chondrocytes in dose and time dependent manners. Co-treatment of curcumin with IL-1β significantly decreased the growth inhibition. We observed that curcumin inhibited IL-1β-induced apoptosis and caspase-3 activation in chondrocytes. Curcumin can increase the expression of phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2, autophagy marker light chain 3 (LC3-II, and Beclin-1 in chondrocytes. The expression of autophagy markers could be decreased when the chondrocytes were incubated with ERK1/2 inhibitor U0126. Our results suggest that curcumin suppresses apoptosis and inflammatory signaling through its actions on the ERK1/2-induced autophagy in chondrocytes. We propose that curcumin should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.

  15. Haloperidol Abrogates Matrix Metalloproteinase-9 Expression by Inhibition of NF-κB Activation in Stimulated Human Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Yueh-Lun Lee

    2018-01-01

    Full Text Available Much evidence has indicated that matrix metalloproteinases (MMPs participate in the progression of neuroinflammatory disorders. The present study was undertaken to investigate the inhibitory effect and mechanism of the antipsychotic haloperidol on MMP activation in the stimulated THP-1 monocytic cells. Haloperidol exerted a strong inhibition on tumor necrosis factor- (TNF- α-induced MMP-9 gelatinolysis of THP-1 cells. A concentration-dependent inhibitory effect of haloperidol was observed in TNF-α-induced protein and mRNA expression of MMP-9. On the other hand, haloperidol slightly affected cell viability and tissue inhibition of metalloproteinase-1 levels. It significantly inhibited the degradation of inhibitor-κB-α (IκBα in activated cells. Moreover, it suppressed activated nuclear factor-κB (NF-κB detected by a mobility shift assay, NF-κB reporter gene, and chromatin immunoprecipitation analyses. Consistent with NF-κB inhibition, haloperidol exerted a strong inhibition of lipopolysaccharide- (LPS- induced MMP-9 gelatinolysis but not of transforming growth factor-β1-induced MMP-2. In in vivo studies, administration of haloperidol significantly attenuated LPS-induced intracerebral MMP-9 activation of the brain homogenate and the in situ in C57BL/6 mice. In conclusion, the selective anti-MMP-9 activation of haloperidol could possibly involve the inhibition of the NF-κB signal pathway. Hence, it was found that haloperidol treatment may represent a bystander of anti-MMP actions for its conventional psychotherapy.

  16. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    Science.gov (United States)

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. In vitro antileishmanial activity of fisetin flavonoid via inhibition of glutathione biosynthesis and arginase activity in Leishmania infantum.

    Science.gov (United States)

    Adinehbeigi, Keivan; Razi Jalali, Mohammad Hossein; Shahriari, Ali; Bahrami, Somayeh

    2017-06-01

    With the increasing emergence of drug resistant Leishmania sp. in recent years, combination therapy has been considered as a useful way to treat and control of Leishmaniasis. The present study was designed to evaluate the antileishmanial effects of the fisetin alone and combination of fisetin plus Meglumine antimoniate (Fi-MA) against Leishmania infantum. The IC50 values for fisetin were obtained 0.283 and 0.102 μM against promastigotes and amastigote forms, respectively. Meglumine antimoniate (MA, Glucantime) as control drug also revealed IC50 values of 0.247 and 0.105 μM for promastigotes and amastigotes of L. infantum, respectively. In order to determine the mode of action of fisetin and Meglumine antimoniate (MA, Glucantime), the activities of arginase (ARG), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) were measured. Moreover, intracellular glutathione (GSH) and nitric oxide (NO) levels in L. infantum-infected macrophages and L. infantum promastigotes which were treated with IC50 concentrations of fisetin, MA and Fi-MA were investigated. Our results showed that MA decreased CAT and SOD activity and increased NO levels in L. infantum-infected macrophages. In promastigotes, MA inhibited parasite SOD activity and reduced parasite NO production. The decreased levels of most of the antioxidant enzymes, accompanying by the raised level of NO in treated macrophages with MA, were observed to regain their normal profiles due to Fi-MA treatment. Furthermore, fisetin could prevent the growth of promastigotes by inhibition of ARG activity and reduction of GSH levels and NO production. In conclusion, these findings showed that fisetin improves MA side effects.

  18. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Directory of Open Access Journals (Sweden)

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  19. Inhibition of human placental aromatase activity by hydroxylated polybrominated diphenyl ethers (OH-PBDEs).

    Science.gov (United States)

    Cantón, Rocío F; Scholten, Deborah E A; Marsh, Göran; de Jong, Paul C; van den Berg, Martin

    2008-02-15

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in many different polymers, resins and substrates. Due to their widespread production and use, their high binding affinity to particles, and their lipophilic properties, several PBDE congeners can bioaccumulate in the environment. As a result, PBDEs and their hydroxylated metabolites (OH-PBDEs) have been detected in humans and various wildlife samples, such as birds, seals, and whales. Furthermore, certain OH-PBDEs and their methoxylated derivatives (MeO-PBDEs) are natural products in the marine environment. Recently, our laboratory focused on the possible effects on steroidogenesis of PBDEs and OH-PBDEs, e.g. in the human adrenocortical carcinoma (H295R) cell line indicating that some OH-PBDEs can significantly influence steroidogenic enzymes like CYP19 (aromatase) and CYP17. In the present study, human placental microsomes have been used to study the possible interaction of twenty two OH-PBDEs and MeO-PBDEs with aromatase, the enzyme that mediates the conversion of androgens into estrogens. All OH-PBDE derivates showed significant inhibition of placental aromatase activity with IC(50) values in the low micromolar range, while the MeO-PBDEs did not have any effect on this enzyme activity. Enzyme kinetics studies indicated that two OH-PBDEs, 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE47) and 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE47), had a mixed-type inhibition of aromatase activity with apparent K(i)/K(i)' of 7.68/0,02 microM and 5.01/0.04 microM respectively. For comparison, some structurally related compounds, a dihydroxylated polybrominated biphenyl, which is a natural product (2,2'-dihyroxy-3,3',5,5'-tetrabromobiphenyl (2,2'-diOH-BB80)) and its non-bromo derivative were also included in the study. Again inhibition of aromatase activity could be measured, but their potency was significantly less than those observed for the OH-PBDEs. These results show that a

  20. Inhibition of human placental aromatase activity by hydroxylated polybrominated diphenyl ethers (OH-PBDEs)

    International Nuclear Information System (INIS)

    Canton, Rocio F.; Scholten, Deborah E.A.; Marsh, Goeran; Jong, Paul C. de; Berg, Martin van den

    2008-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in many different polymers, resins and substrates. Due to their widespread production and use, their high binding affinity to particles, and their lipophilic properties, several PBDE congeners can bioaccumulate in the environment. As a result, PBDEs and their hydroxylated metabolites (OH-PBDEs) have been detected in humans and various wildlife samples, such as birds, seals, and whales. Furthermore, certain OH-PBDEs and their methoxylated derivatives (MeO-PBDEs) are natural products in the marine environment. Recently, our laboratory focused on the possible effects on steroidogenesis of PBDEs and OH-PBDEs, e.g. in the human adrenocortical carcinoma (H295R) cell line indicating that some OH-PBDEs can significantly influence steroidogenic enzymes like CYP19 (aromatase) and CYP17. In the present study, human placental microsomes have been used to study the possible interaction of twenty two OH-PBDEs and MeO-PBDEs with aromatase, the enzyme that mediates the conversion of androgens into estrogens. All OH-PBDE derivates showed significant inhibition of placental aromatase activity with IC 50 values in the low micromolar range, while the MeO-PBDEs did not have any effect on this enzyme activity. Enzyme kinetics studies indicated that two OH-PBDEs, 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE47) and 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE47), had a mixed-type inhibition of aromatase activity with apparent K i /K i ' of 7.68/0,02 μM and 5.01/0.04 μM respectively. For comparison, some structurally related compounds, a dihydroxylated polybrominated biphenyl, which is a natural product (2,2'-dihyroxy-3,3',5,5'-tetrabromobiphenyl (2,2'-diOH-BB80)) and its non-bromo derivative were also included in the study. Again inhibition of aromatase activity could be measured, but their potency was significantly less than those observed for the OH-PBDEs. These results show that a wide

  1. mTOR inhibition sensitizes ONC201-induced anti-colorectal cancer cell activity.

    Science.gov (United States)

    Jin, Zhe-Zhu; Wang, Wei; Fang, Di-Long; Jin, Yong-Jun

    2016-09-30

    We here tested the anti-colorectal cancer (CRC) activity by a first-in-class small molecule TRAIL inducer ONC201. The potential effect of mTOR on ONC201's actions was also examined. ONC201 induced moderate cytotoxicity against CRC cell lines (HT-29, HCT-116 and DLD-1) and primary human CRC cells. Significantly, AZD-8055, a mTOR kinase inhibitor, sensitized ONC201-induced cytotoxicity in CRC cells. Meanwhile, ONC201-induced TRAIL/death receptor-5 (DR-5) expression, caspase-8 activation and CRC cell apoptosis were also potentiated with AZD-8055 co-treatment. Reversely, TRAIL sequestering antibody RIK-2 or the caspase-8 specific inhibitor z-IETD-fmk attenuated AZD-8055 plus ONC201-induced CRC cell death. Further, mTOR kinase-dead mutation (Asp-2338-Ala) or shRNA knockdown significantly sensitized ONC201's activity in CRC cells, leading to profound cell death and apoptosis. On the other hand, expression of a constitutively-active S6K1 (T389E) attenuated ONC201-induced CRC cell apoptosis. For the mechanism study, we showed that ONC201 blocked Akt, but only slightly inhibited mTOR in CRC cells. Co-treatment with AZD-8055 also concurrently blocked mTOR activation. These results suggest that mTOR could be a primary resistance factor of ONC201 in CRC cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity.

    Science.gov (United States)

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-09-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe(2+) chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods.

  3. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera.

    Science.gov (United States)

    Pongkorpsakol, Pawin; Pathomthongtaweechai, Nutthapoom; Srimanote, Potjanee; Soodvilai, Sunhapas; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2014-09-01

    Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84) cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl- current showed that diclofenac reversibly inhibited CFTR Cl- channel activity (IC50 ∼ 10 µM) via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na(+)-K(+) ATPases and Na(+)-K(+)-Cl- cotransporters, but inhibited cAMP-activated basolateral K(+) channels with IC50 of ∼ 3 µM. In addition, diclofenac suppressed Ca(2+)-activated Cl- channels, inwardly rectifying Cl- channels, and Ca(2+)-activated basolateral K(+) channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment) had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT)-induced Cl- secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg) reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼ 70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca(2+)-activated Cl- secretion by inhibiting both apical Cl- channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal

  4. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera.

    Directory of Open Access Journals (Sweden)

    Pawin Pongkorpsakol

    2014-09-01

    Full Text Available Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84 cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl- current showed that diclofenac reversibly inhibited CFTR Cl- channel activity (IC50 ∼ 10 µM via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na(+-K(+ ATPases and Na(+-K(+-Cl- cotransporters, but inhibited cAMP-activated basolateral K(+ channels with IC50 of ∼ 3 µM. In addition, diclofenac suppressed Ca(2+-activated Cl- channels, inwardly rectifying Cl- channels, and Ca(2+-activated basolateral K(+ channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT-induced Cl- secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼ 70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca(2+-activated Cl- secretion by inhibiting both apical Cl- channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal

  5. Dual inhibition of γ-oryzanol on cellular melanogenesis: inhibition of tyrosinase activity and reduction of melanogenic gene expression by a protein kinase A-dependent mechanism.

    Science.gov (United States)

    Jun, Hee-jin; Lee, Ji Hae; Cho, Bo-Ram; Seo, Woo-Duck; Kang, Hang-Won; Kim, Dong-Woo; Cho, Kang-Jin; Lee, Sung-Joon

    2012-10-26

    The in vitro effects on melanogenesis of γ-oryzanol (1), a rice bran-derived phytosterol, were investigated. The melanin content in B16F1 cells was significantly and dose-dependently reduced (-13% and -28% at 3 and 30 μM, respectively). Tyrosinase enzyme activity was inhibited by 1 both in a cell-free assay and when analyzed based on the measurement of cellular tyrosinase activity. Transcriptome analysis was performed to investigate the biological pathways altered by 1, and it was found that gene expression involving protein kinase A (PKA) signaling was markedly altered. Subsequent analyses revealed that 1 stimulation in B16 cells reduced cytosolic cAMP concentrations, PKA activity (-13% for cAMP levels and -40% for PKA activity), and phosphorylation of the cAMP-response element binding protein (-57%), which, in turn, downregulated the expression of microphthalmia-associated transcription factor (MITF; -59% for mRNA and -64% for protein), a key melanogenic gene transcription factor. Accordingly, tyrosinase-related protein 1 (TRP-1; -69% for mRNA and -82% for protein) and dopachrome tautomerase (-51% for mRNA and -92% for protein) in 1-stimulated B16F1 cells were also downregulated. These results suggest that 1 has dual inhibitory activities for cellular melanogenesis by inhibiting tyrosinase enzyme activity and reducing MITF and target genes in the PKA-dependent pathway.

  6. Caffeine inhibits erythrocyte membrane derangement by antioxidant activity and by blocking caspase 3 activation.

    Science.gov (United States)

    Tellone, Ester; Ficarra, Silvana; Russo, Annamaria; Bellocco, Ersilia; Barreca, Davide; Laganà, Giuseppina; Leuzzi, Ugo; Pirolli, Davide; De Rosa, Maria Cristina; Giardina, Bruno; Galtieri, Antonio

    2012-02-01

    The aim of this research was to investigate the effect of caffeine on band 3 (the anion exchanger protein), haemoglobin function, caspase 3 activation and glucose-6-phosphate metabolism during the oxygenation-deoxygenation cycle in human red blood cells. A particular attention has been given to the antioxidant activity by using in vitro antioxidant models. Caffeine crosses the erythrocyte membrane and interacts with the two extreme conformational states of haemoglobin (the T and the R-state within the framework of the simple two states allosteric model) with different binding affinities. By promoting the high affinity state (R-state), the caffeine-haemoglobin interaction does enhance the pentose phosphate pathway. This is of benefit for red blood cells since it leads to an increase of NADPH availability. Moreover, caffeine effect on band 3, mediated by haemoglobin, results in an extreme increase of the anion exchange, particularly in oxygenated erythrocytes. This enhances the transport of the endogenously produced CO(2) thereby avoiding the production of dangerous secondary radicals (carbonate and nitrogen dioxide) which are harmful to the cellular membrane. Furthermore caffeine destabilizes the haeme-protein interactions within the haemoglobin molecule and triggers the production of superoxide and met-haemoglobin. However this damaging effect is almost balanced by the surprising scavenger action of the alkaloid with respect to the hydroxyl radical. These experimental findings are supported by in silico docking and molecular dynamics studies and by what we may call the "caspase silence"; in fact, there is no evidence of any caspase 3 activity enhancement; this is likely due to the promotion of positive metabolic conditions which result in an increase of the cellular reducing power. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. Piperine Inhibits the Activities of Platelet Cytosolic Phospholipase A2 and Thromboxane A2 Synthase without Affecting Cyclooxygenase-1 Activity: Different Mechanisms of Action Are Involved in the Inhibition of Platelet Aggregation and Macrophage Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Dong Ju Son

    2014-08-01

    Full Text Available PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum and long pepper (Piper longum, was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA metabolism and how this compares with the mechanism by which it inhibits macrophage inflammatory responses; METHODS: Rabbit platelets and murine macrophage RAW264.7 cells were treated with piperine, and the effect of piperine on the activity of AA-metabolizing enzymes, including cytosolic phospholipase A2 (cPLA2, COX-1, COX-2, and thromboxane A2 (TXA2 synthase, as well as its effect on AA liberation from the plasma membrane components, were assessed using isotopic labeling methods and enzyme immunoassay kit; RESULTS: Piperine significantly suppressed AA liberation by attenuating cPLA2 activity in collagen-stimulated platelets. It also significantly inhibited the activity of TXA2 synthase, but not of COX-1, in platelets. These results suggest that piperine inhibits platelet aggregation by attenuating cPLA2 and TXA2 synthase activities, rather than through the inhibition of COX-1 activity. On the other hand, piperine significantly inhibited lipopolysaccharide-induced generation of prostaglandin (PGE2 and PGD2 in RAW264.7 cells by suppressing the activity of COX-2, without effect on cPLA2; CONCLUSION: Our findings indicate that piperine inhibits platelet aggregation and macrophage inflammatory response by different mechanisms.

  8. Photosynthesis-Inhibiting Activity of 1-[(2-Chlorophenylcarbamoyl]- and 1-[(2-Nitrophenylcarbamoyl]naphthalen-2-yl Alkylcarbamates

    Directory of Open Access Journals (Sweden)

    Tomas Gonec

    2017-07-01

    Full Text Available Eight 1-[(2-chlorophenylcarbamoyl]naphthalen-2-yl alkylcarbamates and eight 1-[(2-nitrophenylcarbamoyl]naphthalen-2-yl alkylcarbamates were tested for their activity related to the inhibition of photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts. The PET-inhibiting activity of the compounds was relatively low; the corresponding IC50 values ranged from 0.05 to 0.664 mmol/L; and the highest activity within the series of compounds was observed for 1-[(2-chlorophenyl-carbamoyl]naphthalen-2-yl propylcarbamate. It has been proven that the compounds are PET-inhibitors in photosystem II. Despite rather low PET-inhibiting activities, primary structure-activity trends can be discussed.

  9. How anacetrapib inhibits the activity of the cholesteryl ester transfer protein? Perspective through atomistic simulations.

    Directory of Open Access Journals (Sweden)

    Tarja Äijänen

    2014-11-01

    Full Text Available Cholesteryl ester transfer protein (CETP mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity and thereby raise high density lipoprotein (HDL-cholesterol and decrease low density lipoprotein (LDL-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site of anacetrapib turns out to reside in the tunnel inside CETP, near the residues surrounding the N-terminal opening. Free energy calculations show that when anacetrapib resides in this area, it hinders the ability of cholesteryl ester to diffuse out from CETP. The simulations further bring out the ability of anacetrapib to regulate the structure-function relationships of phospholipids and helix X, the latter representing the structural region of CETP important to the process of neutral lipid exchange with lipoproteins. Altogether, the simulations propose CETP inhibition to be realized when anacetrapib is transferred into the lipid binding pocket. The novel insight gained in this study has potential use in the development of new molecular agents capable of preventing the progression of cardiovascular diseases.

  10. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Directory of Open Access Journals (Sweden)

    Nicholas D Weber

    Full Text Available Despite an existing effective vaccine, hepatitis B virus (HBV remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB, imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.

  11. Torilin Inhibits Inflammation by Limiting TAK1-Mediated MAP Kinase and NF-κB Activation

    Directory of Open Access Journals (Sweden)

    Mehari Endale

    2017-01-01

    Full Text Available Torilin, a sesquiterpene isolated from the fruits of Torilis japonica, has shown antimicrobial, anticancer, and anti-inflammatory properties. However, data on the mechanism of torilin action against inflammation is limited. This study aimed at determining the anti-inflammatory property of torilin in LPS-induced inflammation using in vitro model of inflammation. We examined torilin’s effect on expression levels of inflammatory mediators and cytokines in LPS-stimulated RAW 264.7 macrophages. The involvement of NF-kB and AP-1, MAP kinases, and adaptor proteins were assessed. Torilin strongly inhibited LPS-induced NO release, iNOS, PGE2, COX-2, NF-α, IL-1β, IL-6, and GM-CSF gene and protein expressions. In addition, MAPKs were also suppressed by torilin pretreatment. Involvement of ERK1/2, P38MAPK, and JNK1/2 was further confirmed by PD98059, SB203580, and SP600125 mediated suppression of iNOS and COX-2 proteins. Furthermore, torilin attenuated NF-kB and AP-1 translocation, DNA binding, and reporter gene transcription. Interestingly, torilin inhibited TAK1 kinase activation with the subsequent suppression of MAPK-mediated JNK, p38, ERK1/2, and AP-1 (ATF-2 and c-jun activation and IKK-mediated I-κBα degradation, p65/p50 activation, and translocation. Together, the results revealed the suppression of NF-κB and AP-1 regulated inflammatory mediator and cytokine expressions, suggesting the test compound’s potential as a candidate anti-inflammatory agent.

  12. Leishmania infantum Exoproducts Inhibit Human Invariant NKT Cell Expansion and Activation

    Directory of Open Access Journals (Sweden)

    Renata Belo

    2017-06-01

    Full Text Available Leishmania infantum is one of the major parasite species associated with visceral leishmaniasis, a severe form of the disease that can become lethal if untreated. This obligate intracellular parasite has developed diverse strategies to escape the host immune response, such as exoproducts (Exo carrying a wide range of molecules, including parasite virulence factors, which are potentially implicated in early stages of infection. Herein, we report that L. infantum Exo and its two fractions composed of extracellular vesicles (EVs and vesicle-depleted-exoproducts (VDEs inhibit human peripheral blood invariant natural killer T (iNKT cell expansion in response to their specific ligand, the glycolipid α-GalactosylCeramide (α-GalCer, as well as their capacity to promptly produce IL-4 and IFNγ. Using plate-bound CD1d and α-GalCer, we found that Exo, EV, and VDE fractions reduced iNKT cell activation in a dose-dependent manner, suggesting that they prevented α-GalCer presentation by CD1d molecules. This direct effect on CD1d was confirmed by the observation that CD1d:α-GalCer complex formation was impaired in the presence of Exo, EV, and VDE fractions. Furthermore, lipid extracts from the three compounds mimicked the inhibition of iNKT cell activation. These lipid components of L. infantum exoproducts, including EV and VDE fractions, might compete for CD1-binding sites, thus blocking iNKT cell activation. Overall, our results provide evidence for a novel strategy through which L. infantum can evade immune responses of mammalian host cells by preventing iNKT lymphocytes from recognizing glycolipids in a TCR-dependent manner.

  13. Review of the inhibition of biological activities of food-related selected toxins by natural compounds.

    Science.gov (United States)

    Friedman, Mendel; Rasooly, Reuven

    2013-04-23

    There is a need to develop food-compatible conditions to alter the structures of fungal, bacterial, and plant toxins, thus transforming toxins to nontoxic molecules. The term 'chemical genetics' has been used to describe this approach. This overview attempts to survey and consolidate the widely scattered literature on the inhibition by natural compounds and plant extracts of the biological (toxicological) activity of the following food-related toxins: aflatoxin B1, fumonisins, and ochratoxin A produced by fungi; cholera toxin produced by Vibrio cholerae bacteria; Shiga toxins produced by E. coli bacteria; staphylococcal enterotoxins produced by Staphylococcus aureus bacteria; ricin produced by seeds of the castor plant Ricinus communis; and the glycoalkaloid α-chaconine synthesized in potato tubers and leaves. The reduction of biological activity has been achieved by one or more of the following approaches: inhibition of the release of the toxin into the environment, especially food; an alteration of the structural integrity of the toxin molecules; changes in the optimum microenvironment, especially pH, for toxin activity; and protection against adverse effects of the toxins in cells, animals, and humans (chemoprevention). The results show that food-compatible and safe compounds with anti-toxin properties can be used to reduce the toxic potential of these toxins. Practical applications and research needs are suggested that may further facilitate reducing the toxic burden of the diet. Researchers are challenged to (a) apply the available methods without adversely affecting the nutritional quality, safety, and sensory attributes of animal feed and human food and (b) educate food producers and processors and the public about available approaches to mitigating the undesirable effects of natural toxins that may present in the diet.

  14. Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles

    Directory of Open Access Journals (Sweden)

    Mayank Aggarwal

    2014-03-01

    Full Text Available Human carbonic anhydrases (CAs are zinc metalloenzymes that catalyze the hydration and dehydration of CO2 and HCO3−, respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH−/H2O in/out of the active site via His64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type of a variant of CA II in which His64 is replaced with Ala (H64A CA II can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level. X-ray crystal structures of H64A CA II in complex with four imidazole derivatives (imidazole, 1-methylimidazole, 2-methylimidazole and 4-methylimidazole have been determined and reveal multiple binding sites. Two of these imidazole binding sites have been identified that mimic the positions of the `in' and `out' rotamers of His64 in wild-type CA II, while another directly inhibits catalysis by displacing the zinc-bound solvent. The data presented here not only corroborate the importance of the imidazole side chain of His64 in proton transfer during CA catalysis, but also provide a complete structural understanding of the mechanism by which imidazoles enhance (and inhibit when used at higher concentrations the activity of H64A CA II.

  15. Antioxidant, cyto