WorldWideScience

Sample records for tetramethylpyrazine inhibits activities

  1. Tetramethylpyrazine potentiates arsenic trioxide activity against HL-60 cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuni; Xu, Youhua; Shen, Yali; Wang, Cuicui; Guo, Gaili; Hu, Tiantian [Key Laboratory of Developmental Diseases in Childhood, Chongqing (China); Key Laboratory of Pediatrics in Chongqing, Chongqing (China); Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing (China)

    2012-02-17

    The objective of this study was to evaluate the effects of tetramethylpyrazine (TMP) in combination with arsenic trioxide (As{sub 2}O{sub 3}) on the proliferation and differentiation of HL-60 cells. The HL-60 cells were treated with 300 µg/mL TMP, 0.5 µM As{sub 2}O{sub 3}, and 300 µg/mL TMP combined with 0.5 µM As{sub 2}O{sub 3}, respectively. The proliferative inhibition rates were determined with MTT. Differentiation was detected by the nitroblue tetrazolium (NBT) reduction test, Wright's staining and the distribution of CD11b and CD14. Flow cytometry was used to analyze cell cycle distribution. RT-PCR and Western blot assays were employed to detect the expressions of c-myc, p27, CDK2, and cyclin E1. Combination treatment had synergistic effects on the proliferative inhibition rates. The rates were increased gradually after the combination treatment, much higher than those treated with the corresponding concentration of As{sub 2}O{sub 3} alone. The cells exhibited characteristics of mature granulocytes and a higher NBT-reducing ability, being a 2.6-fold increase in the rate of NBT-positive ratio of HL-60 cells within the As{sub 2}O{sub 3} treatment versus almost a 13-fold increase in the TMP + As{sub 2}O{sub 3} group. Cells treated with both TMP and As{sub 2}O{sub 3} expressed far more CD11b antigens, almost 2-fold compared with the control group. Small doses of TMP potentiate As{sub 2}O{sub 3}-induced differentiation of HL-60 cells, possibly by regulating the expression and activity of G0/G1 phase-arresting molecules. Combination treatment of TMP with As{sub 2}O{sub 3} has significant synergistic effects on the proliferative inhibition of HL-60 cells.

  2. Inhibition of angiogenesis, fibrosis and thrombosis by tetramethylpyrazine: mechanisms contributing to the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Cai

    Full Text Available BACKGROUND: Tetramethylpyrazine (TMP is one of the active ingredients extracted from the Chinese herb Chuanxiong, which has been used to treat cerebrovascular and cardiovascular diseases, pulmonary diseases and cancer. However, the molecular mechanisms underlying the actions of TMP have not been fully elucidated. In a previous study we showed that TMP-mediated glioma suppression and neural protection involves the inhibition of CXCR4 expression. The SDF-1/CXCR4 axis plays a fundamental role in many physiological and pathological processes. In this study, we further investigated whether the regulation of the SDF-1/CXCR4 pathway is also involved in the TMP-mediated inhibition of neovascularization or fibrosis and improvement of microcirculation. METHODOLOGY/PRINCIPAL FINDINGS: Using a scratch-wound assay, we demonstrated that TMP significantly suppressed the migration and tubule formation of the human umbilical vein endothelial cell line ECV304 in vitro. The expression of CXCR4 in ECV304 cells is notably down-regulated after TMP treatment. In addition, TMP significantly suppresses corneal neovascularization in a rat model of corneal alkali burn injury. The expression of CXCR4 on days 1, 3 and 7 post-injury was determined through RT-PCR analysis. Consistent with our hypotheses, the expression of CXCR4 in the rat cornea is significantly increased with alkali burn and dramatically down-regulated with TMP treatment. Moreover, TMP treatment significantly attenuates bleomycin-induced rat pulmonary fibrosis, while immunofluorescence shows a notably decreased amount of CXCR4-positive cells in the TMP-treated group. Furthermore, TMP significantly down-regulates the expression of CXCR4 in platelets, lymphocytes and red blood cells. Whole-blood viscosity and platelet aggregation in rats are significantly decreased by TMP treatment. CONCLUSIONS: These results show that TMP exerts potent effects in inhibiting neovascularization, fibrosis and thrombosis under

  3. 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-κB, AP-1 and MAPK pathways in human proximal tubular cells

    Science.gov (United States)

    Gong, Xuezhong; Ivanov, Vladimir N.; Hei, Tom K.

    2015-01-01

    Our recent study demonstrated that sodium arsenite at a clinically relevant dose induced nephrotoxicity in human renal proximal tubular epithelial cell line HK-2, which could be inhibited by natural product 2,3,5,6-Tetramethylpyrazine (TMP) with antioxidant activity. The present study demonstrated that arsenic exposure resulted in protein and enzymatic induction of heme oxygenase-1 (HO-1) in dose- and time-dependent manners in HK-2 cells. Blocking HO-1enzymatic activity by Zinc protoporphyrin (ZnPP) augmented arsenic-induced apoptosis, ROS production and mitochondrial dysfunction, suggesting a critical role for HO-1 as a renal protectant in this procession. On the other hand, TMP, upstream of HO-1, inhibited arsenic-induced ROS production and ROS-dependent HO-1 expression. TMP also prevented mitochondria dysfunction and suppressed activation of the intrinsic apoptotic pathway in HK-2 cells. Our results revealed that the regulation of arsenic-induced HO-1 expression was performed through multiple ROS-dependent signal pathways and the corresponding transcription factors, including p38 MAPK and JNK (but not ERK), AP-1, Nrf2 and NF-κB. TMP inhibited arsenic-induced activations of JNK, p38 MAPK, ERK, AP-1 and Nrf2 and block HO-1 protein expression. The present study, furthermore, demonstrated arsenic-induced expression of Arsenic response protein 2 (ARS2) that was regulated by p38 MAPK, ERK and NF-κB. To our knowledge, this is the first report showing that ARS2 involved in arsenic-induced nephrotoxicity while TMP pretreatment prevented such an up-regulation of ARS2 in HK-2 cells. Given ARS2 and HO-1 sharing the similar regulation mechanism, we speculated that ARS2 might also mediate cell survival in this procession. In summary, our study highlighted a role of HO-1 in the protection against arsenic-induced cytotoxicity downstream from the primary targets of TMP and further indicated that TMP may be used as a potential therapeutic agent in the treatment of arsenic

  4. Tetramethylpyrazine improves the recovery of spinal cord injury via Akt/Nrf2/HO-1 pathway.

    Science.gov (United States)

    Wang, Chao; Wang, Peng; Zeng, Wen; Li, Weixin

    2016-02-15

    Spinal cord injury (SCI) is one of the most severe traumatic conditions, resulting in postoperative complications. Our results and other reports have shown that tetramethylpyrazine (TMP) is able to exhibit neuro-protective effects after SCI. In the current study, we aimed to examine the possible mechanism underlying the neuro-protective effect of TMP in rat model of SCI. TMP improved locomotor functions and decreased permeability of blood-spinal cord barrier in rats with SCI, as evidenced by increase of Basso-Beattie-Bresnahan scores and decrease of Evans blue leakage. In addition, TMP decreased the expression of several proinflammatory cytokines, including IL-1β, TNFα and IL-18, reduced TUNEL-positive cells and caspase 3 and 9 activities, decreased thiobarbituric acid reactive substances content and increased glutathione level and superoxide dismutase activity in rats. All these effects were inhibited by zinc protoporphyrin IX (ZnPP), an inhibitor of HO-1, and LY294002, an inhibitor of Akt. Moreover, TMP inhibited the decrease of mRNA expression of HO-1 which was suppressed by ZnPP and LY294002. TMP inhibited the decrease of Akt phosphorylation in rats after SCI, which was suppressed by LY294002, but not ZnPP. Furthermore, LY294002, but not ZnPP, significantly inhibited TMP-induced increase of mRNA expression of Nrf2 and DNA binding activity of Nrf2 in HO-1 promoters in rat model of SCI. The data suggested that TMP induced neuro-protective effects against injury of spinal cord through the activation of Akt/Nrf2/HO-1 signaling pathway. These results have appointed a new path toward the understanding of pathogenesis and TMP-related therapy of SCI and associated neurodegenerative diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Evaluating the feasibility of fermentation starter inoculated with Bacillus amyloliquefaciens for improving acetoin and tetramethylpyrazine in Baoning bran vinegar.

    Science.gov (United States)

    Zhang, Liqiang; Huang, Jun; Zhou, Rongqing; Wu, Chongde

    2017-08-16

    Fermentation starters (Daqu) used in present study included traditional herb Daqu (C Daqu), modified Daqu without herbs (M Daqu) and S Daqu fermented by inoculating acetoin and tetramethylpyrazine high-producing bacterium Bacillus amyloliquefaciens into M Daqu. To evaluate the feasibility of S Daqu combined with M Daqu applied for improving contents of acetoin and tetramethylpyrazine in Baoning bran vinegar without remarkably changing the original microbial community and the other volatiles contents compared with C Daqu, vinegar Pei C, M, M1, M2 and S were correspondingly prepared in lab scale using C Daqu, M Daqu, M1 Daqu (S Daqu: M Daqu=1:9, w/w), M2 Daqu (S Daqu: M Daqu=5:5) and S Daqu. PCR-DGGE suggested that Bacillus, Lactobacillus, Oceanobacillus, Acetobacter, Pichia, Geotrichum and Trichoderma were dominant microbes. Microbial community of M were similar with M1, while that of the others were similar. Differences in physicochemical properties among samples may be ascribed to different enzymes activities of Daqu and bioactivities of microbial metabolism during fermentation. Moreover, total contents of organic acids in M, M1, M2 and S increased by 33.10%, 25.77%, 4.32% and 7.74% relative to C, respectively. Volatiles and PLS-DA analysis suggested that volatile profiles of M were similar with M1, that of M2 were similar with C, while that of S were significantly different with the others. Both M2 Daqu and S Daqu facilitated the formation of acetoin and tetramethylpyrazine. However, M2 Daqu was more efficient for enhancing acetoin and tetramethylpyrazine contents by 191.84% and 123.17% respectively, without significantly changing the other volatiles contents. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Assay of Tetramethylpyrazine in Szechwan Lovage Rhizome and Cnidium Rhizome by HPLC-DAD-MS].

    Science.gov (United States)

    Hong, Yuan-lin; Jin, Yu-qing; Yao, Yi-xin; Lin, Mao-yi; Wei, Bo-ping; Jiang, Wei-dong; Lu, Guang-hua

    2015-01-01

    To quantity the amount of tetramethylpyrazine in Szechwan Lovage Rhizome (Chuanxiong, the rhizome of Ligusticum chuanxiong Hort., CX) and Cnidium Rhizome(Japanese Chuanxiong, the rhizome of Cnidium officinale Makino, JCX) for quality assessment. An HPLC-DAD-MS technique was employed to detect tetramethylpyrazine in 27 CX and 10 JCX samples. Tetramethylpyrazine was separated on a Waters Symmetry C,, column (250 mm x 4. 6 mm, 5 µm). The mobile phase was methanol-acetonitrile-water(27: 1: 72) at a flow rate of 1. 0 mL/min. The column temperature was 35 °C. DAD detection wavelength was 280 nm, while electrospray ionization detector was set at positive mode to collect MS spectrum. In the total of 37 herb samples, 11 samples were found to contain tetramethylpyrazine with the mean amount of 2. 19 µg/g(n = 11). 6 of 27 CX samples and 5 of 10 JCX sample were found the existence of tetramethylpyrazine with the amount of 0. 60 - 11. 75 µg and 0. 61 - 3. 05 µg/g,respectively. The correlation was not found between tetramethylpyrazine and the cultivation area, morphological character, processing or storage method for CX and JCX samples. It was possible that tetramethylpyrazine resulted from the microbes in soil. The developed method is accurate to quantify tetramethylpyrazine in CX and JCX herbs. Both the two herbs indeed contain tetramethylpyrazine, but it is not suitable to be a chemical marker to assess the quality of CX and JCX owing to low content.

  7. Ultrasound-enhanced protective effect of tetramethylpyrazine against cerebral ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Chunbing Zhang

    Full Text Available In traditional Chinese medicine, Ligusticum wallichii (Chuan Xiong and its bioactive ingredient, tetramethylpyrazine (TMP, have been used to treat cardiovascular diseases and to relieve various neurological symptoms, such as those associated with ischemic injury. In the present study, we investigated whether ultrasound (US exposure could enhance the protective effect of TMP against cerebral ischemia/reperfusion (I/R injury. Glutamate-induced toxicity to pheochromocytoma (PC12 cells was used to model I/R injury. TMP was paired with US to examine whether this combination could alleviate glutamate-induced cytotoxicity. The administration of TMP effectively protected cells against glutamate-induced apoptosis, which could be further enhanced by US-mediated sonoporation. The anti-apoptotic effect of TMP was associated with the inhibition of oxidative stress and a change in the levels of apoptosis-related proteins, Bcl-2 and Bax. Furthermore, TMP reduced the expression of proinflammatory cytokines such as TNF-α and IL-8, which likely also contributes to its cytoprotective effects. Taken together, our findings suggest that ultrasound-enhanced TMP treatment might be a promising therapeutic strategy for ischemic stroke. Further study is required to optimize ultrasound treatment parameters.

  8. Tetramethylpyrazine-mediated regulation of CXCR4 in retinoblastoma is sensitive to cell density.

    Science.gov (United States)

    Wu, Nandan; Xu, Lijun; Yang, Ying; Yu, Na; Zhang, Zhang; Chen, Pei; Zhang, Jing; Tang, Mingjun; Yuan, Meng; Ge, Jian; Yu, Keming; Zhuang, Jing

    2017-05-01

    Retinoblastoma is the most common ocular tumor in children, and it causes extensive damage. Current treatment options for retinoblastoma include surgery, chemotherapy, radiotherapy and cryotherapy. However, the majority of chemotherapy medicines cause complications and side effects that lead to severe impairment of patient health. Previous studies have reported that tetramethylpyrazine (TMP), which is an extract of the Chinese herbal medicine Chuanxiong, reduces the risk of multidrug resistance in chemotherapy and inhibits the proliferation and metastasis of various types of cancer cells. However, the underlying molecular mechanism of TMP in retinoblastoma remains unclear. The current study demonstrated that C-X-C chemokine receptor type 4 (CXCR4) was expressed in WERI‑Rb1 cells and in retinoblastoma. Using reverse transcription‑quantitative polymerase chain reaction and western blotting techniques, the current study demonstrated that TMP significantly downregulated the expression of CXCR4 in WERI‑Rb1 cells cultured at high density, whereas it had a minor effect in low‑density WERI‑Rb1 cells; additionally, this effect occurred in a time‑dependent manner. TMP inhibited the proliferation of WERI‑Rb1 cells as effectively as a CXCR4 antagonist, AMD3100, consistent with a role of CXCR4 in cancer development. Notably, TMP did not affect the cell cycle of cells cultured at low density (1x105 cells/ml), whereas it induced G1‑phase arrest in high‑density cells (7.5x105 cells/ml; Pretinoblastoma, and also provides novel insights into the mechanisms of the anti‑cancer and neuroprotective effects of this extract.

  9. Tetramethylpyrazine attenuates oleic acid-induced acute lung injury ...

    African Journals Online (AJOL)

    The protein expression of NF-kB in the lung was measured by immunohistochemistry and Western blotting. The results showed an increase in tumor necrosis factor α and interleukin 1β in the ALI/ARDS rat models. The activation of NF-kB was suppressed by TMP in the ALI/ARDS rats. The suppression of those molecules is ...

  10. Enzyme inhibition activities of Andrachne cardifolia Muell.

    Science.gov (United States)

    Ahmad, Bashir; Shah, S M Hassan; Bashir, Shumaila; Shah, Jehandar

    2007-04-01

    The crude methanolic extract and various fractions of Andrachne cardifolia Muell, including chloroform, ethyl acetate and n-butanol fractions were subjected to in vitro enzyme inhibition activity against acetylcholinesterase, butyrylcholinesterase, lipoxygenase and urease enzymes. A significant enzyme inhibition activity (40-89%) was shown by the crude methanolic extract and its fractions against lipoxygenase, while low to significant activity (40-71%) against butyrylcholinesterase. The crude methanolic extract and its various fractions demonstrated poor to significant activity (25-73%) against acetylcholinesterase and no activity against urease.

  11. Thiomers: Inhibition of cytochrome P450 activity.

    Science.gov (United States)

    Iqbal, Javed; Sakloetsakun, Duangkamon; Bernkop-Schnürch, Andreas

    2011-08-01

    The aim of the present study was to investigate the potential of different thiolated polymers (thiomers) on the catalytic activity of CYP450s on one hand and to explore new inhibitors for CYP activity on the other hand. Several thiolated polymers including poly(acrylic acid)-cysteine (PAA-cysteine), chitosan-thioglycolic acid (chitosan-TGA), and thiolated PEG-g-PEI copolymer along with brij 35, myrj 52 and the well-established CYPP450 inhibitor verapamil were screened for their CYP3A4 and CYP2A6 inhibitory activity, and their IC(50) values were determined. Both enzyme inhibition assays were performed in 96-well microtiter plates. 7-Benzyloxy-4-(trifluoromethyl)-coumarin (BFC) and 7-hydroxycoumarin (7-HC) were used as fluorescent substrates in order to determine CYP3A4 and CYP2A6 catalytic activity, respectively. All investigated compounds inhibited CYP3A4 as well as CYP2A6 activity. All tested (thiolated) polymers were found to be more potent inhibitors of CYP3A4 than of CYP2A6 catalytic activity. Apart from verapamil that is a known CYP3A4 inhibitor, brij 35 and myrj 52 were explored as potent inhibitors of CYP3A4 and CYP2A6 catalytic activity. Among the tested polymers, the rank order for CYP3A4 inhibition was PAA-cysteine (100 kDa)>brij 35>thiolated PEG-g-PEI copolymer (16 kDa)>myrj 52>PAA (100 kDa)>PAA-cysteine (450 kDa)>verapamil>PAA (450 kDa)>chitosan-TGA (150 kDa)>chitosan (150 kDa). On the other hand, the rank order of CYP2A6 inhibition was brij 35>PAA-cysteine (100kDa)>chitosan-TGA (150 kDa)>PAA (100 kDa)>thiolated PEG-g-PEI copolymer (16 kDa)>PAA-cysteine (450 kDa)>chitosan (150 kDa)>verapamil>PAA (450 kDa)>myrj 52. Thus, this study suggests that (thiolated) polymers display a promising potential to inhibit cytochrome P450s activity and might turn out to be potentially valuable tools for improving the oral bioavailability of actively secreted compounds by avoiding intestinal metabolism. Copyright © 2011. Published by Elsevier B.V.

  12. Inhibition of intestinal disaccharidase activity by pentoses

    DEFF Research Database (Denmark)

    Halschou-Jensen, Kia

    The current health problems regarding the obesity epidemic, development of type 2 diabetes mellitus (T2D) and cardiovascular disease are a major challenge for healthcare systems worldwide.No simple or unique cure has been documented to prevent or treat this major health problem regarding T2D...... on carbohydrate- ingesting enzymes activity in vitro and possible effects on human postprandial blood response. In paper 1 the effects of sugar beet polyphenols from molasses and the potential inhibition of sucrase activity in vitro, was investigated. Two different polyphenol-rich fractions from chromatographic...... separation of molasses from sugar beets and pure ferulic acid were tested. We found no effects of the two fractions of molasses. The pure ferulic acid indicated an inhibition of sucrase in vitr. Both in vitro and in vivo studies have investigated the effects of L-arabinose and D-xylose on carbohydrate...

  13. Na+/K+-ATPase: Activity and inhibition

    Science.gov (United States)

    Čolović, M.; Krstić, D.; Krinulović, K.; Momić, T.; Savić, J.; Vujačić, A.; Vasić, V.

    2009-09-01

    The aim of the study was to give an overview of the mechanism of inhibition of Na+/K+-ATPase activity induced by some specific and non specific inhibitors. For this purpose, the effects of some ouabain like compounds (digoxin, gitoxin), noble metals complexes ([PtCl2DMSO2], [AuCl4]-, [PdCl4]2-, [PdCl(dien)]+, [PdCl(Me4dien)]+), transition metal ions (Cu2+, Zn2+, Fe2+, Co2+), and heavy metal ions (Hg2+, Pb2+, Cd2+) on the activity of Na+/K+-ATPase from rat synaptic plasma membranes (SPM), porcine cerebral cortex and human erythrocytes were discussed.

  14. Theobromine inhibits sensory nerve activation and cough.

    Science.gov (United States)

    Usmani, Omar S; Belvisi, Maria G; Patel, Hema J; Crispino, Natascia; Birrell, Mark A; Korbonits, Márta; Korbonits, Dezso; Barnes, Peter J

    2005-02-01

    Cough is a common and protective reflex, but persistent coughing is debilitating and impairs quality of life. Antitussive treatment using opioids is limited by unacceptable side effects, and there is a great need for more effective remedies. The present study demonstrates that theobromine, a methylxanthine derivative present in cocoa, effectively inhibits citric acid-induced cough in guinea-pigs in vivo. Furthermore, in a randomized, double-blind, placebo-controlled study in man, theobromine suppresses capsaicin-induced cough with no adverse effects. We also demonstrate that theobromine directly inhibits capsaicin-induced sensory nerve depolarization of guinea-pig and human vagus nerve suggestive of an inhibitory effect on afferent nerve activation. These data indicate the actions of theobromine appear to be peripherally mediated. We conclude theobromine is a novel and promising treatment, which may form the basis for a new class of antitussive drugs.

  15. Kaempferol inhibits thrombosis and platelet activation.

    Science.gov (United States)

    Choi, Jun-Hui; Park, Se-Eun; Kim, Sung-Jun; Kim, Seung

    2015-08-01

    The objectives of the present study were to investigate whether kaempferol affects pro-coagulant proteinase activity, fibrin clot formation, blood clot and thrombin (or collagen/epinephrine)-stimulated platelet activation, thrombosis, and coagulation in ICR (Imprinting Control Region) mice and SD (Sprague-Dawley) rats. Kaempferol significantly inhibited the enzymatic activities of thrombin and FXa by 68 ± 1.6% and 52 ± 2.4%, respectively. Kaempferol also inhibited fibrin polymer formation in turbidity. Microscopic analysis was performed using a fluorescent conjugate. Kaempferol completely attenuated phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and phosphoinositide 3-kinase (PI3K)/PKB (AKT) in thrombin-stimulated platelets and delayed aggregation time (clotting) by 34.6% in an assay of collagen/epinephrine-stimulated platelet activation. Moreover, kaempferol protected against thrombosis development in 3 animal models, including collagen/epinephrine- and thrombin-induced acute thromboembolism models and an FeCl3-induced carotid arterial thrombus model. The ex vivo anticoagulant effect of kaempferol was further confirmed in ICR mice. This study demonstrated that kaempferol may be clinically useful due to its ability to reduce or prevent thrombotic challenge. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    2015-01-01

    Recently, high-quality data were published on the algal growth inhibition caused by 50 non-polar narcotic compounds, of which 39 were liquid compounds with defined water solubility. In the present study, the toxicity data for these liquids were applied to challenge the chemical activity range...... for baseline toxicity. First, the reported effective concentrations (EC50) were divided by the respective water solubilities (Swater), since the obtained EC50/Swater ratio essentially equals the effective chemical activity (Ea50). The majority of EC50/Swater ratios were within the expected chemical activity...... solubility in the applied dataset. On an environmental risk assessment level, predicted no-effect concentrations (PNECs) for baseline toxicity could even be set as a percentage of saturation, which can easily be extended to mixtures. However, EC50 values well below 1% of liquid saturation can still occur...

  17. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity to chemi......Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity...... to chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity...... with the aims to (1) further challenge the current chemical activity range for baseline toxicity, and (2) extend the utilisation of the chemical activity concept across compounds and species. The first part of the presentation focuses on results from a recently published study, in which toxicity data for 39 non...

  18. Inhibition of Mushroom Tyrosinase Activity by Orsellinates.

    Science.gov (United States)

    Lopes, Thiago Inácio Barros; Coelho, Roberta Gomes; Honda, Neli Kika

    2018-01-01

    Several applications have been proposed for tyrosinase inhibitors in the pharmaceutical, food bioprocessing, and environmental industries. However, only a few compounds are known to serve as effective tyrosinase inhibitors. This study evaluated the tyrosinase-related activity of resorcinol (1), orcinol (2) lecanoric acid (3), and derivatives of this acid (4-15). Subjected to alcoholysis, lecanoric acid (3), a depside isolated from the lichen Parmotrema tinctorum, produces orsellinic acid (2,4-dihydroxy-6-methylbenzoic acid) (4) and orsellinates (2,4-dihydroxy-6-methyl benzoates) (5-15). At 0.50 mM, methyl (5), ethyl (6), n-propyl (7), tert-butyl (11), and n-cetyl orsellinates (15) acted as tyrosinase activators, whereas n-butyl (8), iso-propyl (9), sec-butyl (10), n-pentyl (12), n-hexyl (13), and n-octyl orsellinates (14) behaved as inhibitors. Tyrosinase inhibition rose with chain elongation-n-butyl (8)tyrosinase, with an inhibition constant of 0.99 mM.

  19. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    Science.gov (United States)

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL.

  20. Microneedle-Assisted Percutaneous Delivery of a Tetramethylpyrazine-Loaded Microemulsion

    Directory of Open Access Journals (Sweden)

    Qiang Zu

    2017-11-01

    Full Text Available This study examined the efficacy of the percutaneous delivery of a tetramethylpyrazine-loaded microemulsion (TMP-ME on skin pretreated with microneedles (MN. The TMP-ME formulation was optimized in vitro with skin permeation experiments, using a uniform experimental design, guided by a pseudo-ternary phase diagram, in which the TMP skin permeation level and mean particle size were indices. The effects of MN pretreatment on skin permeation by TMP-ME were assessed using in vitro skin permeation, in vivo skin microdialysis, and pharmacokinetic studies in rats. The influence of MN pretreatment on the skin barrier function was evaluated by measuring the electrical resistance of rat skin before and after MN insertion. In the optimal formulation of TMP-ME, the weight percentages of Maisine® 35-1 (oil phase, Labrasol® (surfactant, and Transcutol® P (co-surfactant were 7%, 30% and 10%, respectively, with 1.5% TMP loading. In the in vitro skin permeation study, MN-assisted TMP-ME exhibited a two-fold increase in a 24-h cumulative TMP permeation compared with TMP-ME alone (p < 0.05. In the skin microdialysis study, TMP in MN-assisted TMP-ME exhibited a 1.25-fold increase in Cmax, a 0.93-fold decrease in Tmax, and a 0.88-fold increase in AUC0–t (p < 0.05. Similarly, in the pharmacokinetic study, TMP in MN-assisted TMP-ME exhibited a 2.11-fold increase in Cmax, a 0.67-fold decrease in Tmax, and a 1.07-fold increase in AUC0–t (p < 0.05. The percutaneous electrical resistance of rat skin before and after MN insertion was 850 ± 50 Ω/cm2 and 283 ± 104 Ω/cm2 respectively, indicating that MN dramatically compromises the skin barrier. These results suggest that MN assistance increases the skin permeation rate and the extent of percutaneous absorption of TMP-ME, and that the mechanism may involve the reversible barrier perturbation effect. The rate and extent of percutaneous absorption of TMP-ME can be significantly enhanced by MN assistance, possibly

  1. Microneedle-Assisted Percutaneous Delivery of a Tetramethylpyrazine-Loaded Microemulsion.

    Science.gov (United States)

    Zu, Qiang; Yu, Yanyan; Bi, Xiaolin; Zhang, Ren; Di, Liuqing

    2017-11-21

    This study examined the efficacy of the percutaneous delivery of a tetramethylpyrazine-loaded microemulsion (TMP-ME) on skin pretreated with microneedles (MN). The TMP-ME formulation was optimized in vitro with skin permeation experiments, using a uniform experimental design, guided by a pseudo-ternary phase diagram, in which the TMP skin permeation level and mean particle size were indices. The effects of MN pretreatment on skin permeation by TMP-ME were assessed using in vitro skin permeation, in vivo skin microdialysis, and pharmacokinetic studies in rats. The influence of MN pretreatment on the skin barrier function was evaluated by measuring the electrical resistance of rat skin before and after MN insertion. In the optimal formulation of TMP-ME, the weight percentages of Maisine ® 35-1 (oil phase), Labrasol ® (surfactant), and Transcutol ® P (co-surfactant) were 7%, 30% and 10%, respectively, with 1.5% TMP loading. In the in vitro skin permeation study, MN-assisted TMP-ME exhibited a two-fold increase in a 24-h cumulative TMP permeation compared with TMP-ME alone ( p < 0.05). In the skin microdialysis study, TMP in MN-assisted TMP-ME exhibited a 1.25-fold increase in C max , a 0.93-fold decrease in T max , and a 0.88-fold increase in AUC 0-t ( p < 0.05). Similarly, in the pharmacokinetic study, TMP in MN-assisted TMP-ME exhibited a 2.11-fold increase in C max , a 0.67-fold decrease in T max , and a 1.07-fold increase in AUC 0-t ( p < 0.05). The percutaneous electrical resistance of rat skin before and after MN insertion was 850 ± 50 Ω/cm² and 283 ± 104 Ω/cm² respectively, indicating that MN dramatically compromises the skin barrier. These results suggest that MN assistance increases the skin permeation rate and the extent of percutaneous absorption of TMP-ME, and that the mechanism may involve the reversible barrier perturbation effect. The rate and extent of percutaneous absorption of TMP-ME can be significantly enhanced by MN assistance, possibly

  2. Hyperoxia Inhibits T Cell Activation in Mice

    Science.gov (United States)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  3. Celecoxib inhibits osteoblast differentiation independent of cyclooxygenase activity.

    Science.gov (United States)

    Matsuyama, Atsushi; Higashi, Sen; Tanizaki, Saori; Morotomi, Takahiko; Washio, Ayako; Ohsumi, Tomoko; Kitamura, Chiaki; Takeuchi, Hiroshi

    2018-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) exert their effects primarily by inhibiting the activity of cyclooxygenase (COX), thus suppressing prostaglandin synthesis. Some NSAIDs are known to perform functions other than pain control, such as suppressing tumour cell growth, independent of their COX-inhibiting activity. To identify NSAIDs with COX-independent activity, we examined various NSAIDs for their ability to inhibit osteoblastic differentiation using the mouse pre-osteoblast cell line MC3T3-E1. Only celecoxib and valdecoxib strongly inhibited osteoblastic differentiation, and this effect was not correlated with COX-inhibiting activity. Moreover, 2,5-dimethyl (DM)-celecoxib, a celecoxib analogue that does not inhibit COX activity, also inhibited osteoblastic differentiation. Celecoxib and DM-celecoxib inhibited osteoblastic differentiation induced by bone morphogenetic protein (BMP)-2 in C2C12 mouse myoblast cell line. Although celecoxib suppresses the growth of some tumour cells, the viability and proliferation of MC3T3-E1 cells were not affected by celecoxib or DM-celecoxib. Instead, celecoxib and DM-celecoxib suppressed BMP-2-induced phosphorylation of Smad1/5, a major downstream target of BMP receptor. Although it is well known that COX plays important roles in osteoblastic differentiation, these results suggest that some NSAIDs, such as celecoxib, have targets other than COX and regulate phospho-dependent intracellular signalling, thereby modifying bone remodelling. © 2017 John Wiley & Sons Australia, Ltd.

  4. Novel Tandem Biotransformation Process for the Biosynthesis of a Novel Compound, 4-(2,3,5,6-Tetramethylpyrazine-1)-4′-Demethylepipodophyllotoxin▿

    Science.gov (United States)

    Tang, Ya-Jie; Zhao, Wei; Li, Hong-Mei

    2011-01-01

    According to the structure of podophyllotoxin and its structure-function relationship, a novel tandem biotransformation process was developed for the directional modification of the podophyllotoxin structure to directionally synthesize a novel compound, 4-(2,3,5,6-tetramethylpyrazine-1)-4′-demethylepipodophyllotoxin (4-TMP-DMEP). In this novel tandem biotransformation process, the starting substrate of podophyllotoxin was biotransformed into 4′-demethylepipodophyllotoxin (product 1) with the demethylation of the methoxyl group at the 4′ position by Gibberella fujikuroi SH-f13, which was screened out from Shennongjia prime forest humus soil (Hubei, China). 4′-Demethylepipodophyllotoxin (product 1) was then biotransformed into 4′-demethylpodophyllotoxone (product 2) with the oxidation of the hydroxyl group at the 4 position by Alternaria alternata S-f6, which was screened out from the gathered Dysosma versipellis plants in the Wuhan Botanical Garden, Chinese Academy of Sciences. Finally, 4′-demethylpodophyllotoxone (product 2) and ligustrazine were linked with a transamination reaction to synthesize the target product 4-TMP-DMEP (product 3) by Alternaria alternata S-f6. Compared with podophyllotoxin (i.e., a 50% effective concentration [EC50] of 529 μM), the EC50 of 4-TMP-DMEP against the tumor cell line BGC-823 (i.e., 0.11 μM) was significantly reduced by 5,199 times. Simultaneously, the EC50 of 4-TMP-DMEP against the normal human proximal tubular epithelial cell line HK-2 (i.e., 0.40 μM) was 66 times higher than that of podophyllotoxin (i.e., 0.006 μM). Furthermore, compared with podophyllotoxin (i.e., log P = 0.34), the water solubility of 4-TMP-DMEP (i.e., log P = 0.66) was significantly enhanced by 94%. For the first time, the novel compound 4-TMP-DMEP with superior antitumor activity was directionally synthesized from podophyllotoxin by the novel tandem biotransformation process developed in this work. PMID:21398491

  5. Enhanced production of tetramethylpyrazine in Bacillus licheniformis BL1 by bdhA disruption and 2,3-butanediol supplementation.

    Science.gov (United States)

    Meng, Wu; Xiao, Dongguang; Wang, Ruiming

    2016-03-01

    The 2,3-butanediol (2,3-BD) dehydrogenase gene (bdhA) of Bacillus licheniformis BL1 was disrupted to construct the tetramethylpyrazine (TMP)-producing BLA strain. During microaerobic fermentation, the bdhA-disrupted BLA strain produced 46.98 g TMP/l, and this yield was 23.99% higher than that produced by the parent BL1 strain. In addition, the yield of acetoin, which is a TMP precursor, also increased by 28.98% in BLA. The TMP production by BL1 was enhanced by supplementing the fermentation medium with 2,3-BD. The yield of TMP improved from 37.89 to 44.77 g/l as the concentration of 2,3-BD increased from 0 to 2 g/l. The maximum TMP and acetoin yields increased by 18.16 and 17.87%, respectively with the increase in 2,3-BD concentration from 0 to 2 g/l. However, no increase was observed when the concentration of 2,3-BD in the matrix was ≥3 g/l. This study provides a valuable strategy to enhance TMP and acetoin productivity of mutagenic strains by gene manipulation and optimizing fermentation conditions.

  6. Complement Activation and Inhibition in Wound Healing

    OpenAIRE

    Cazander, Gwendolyn; Jukema, Gerrolt N.; Nibbering, Peter H.

    2012-01-01

    Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors...

  7. Complement Activation and Inhibition in Wound Healing

    Science.gov (United States)

    Cazander, Gwendolyn; Jukema, Gerrolt N.; Nibbering, Peter H.

    2012-01-01

    Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors, are under investigation in patients with complement-mediated diseases. Although (pre)clinical research into the effects of these complement inhibitors on wound healing is limited, available data indicate that reduction of complement activation can improve wound healing. Moreover, medicine may take advantage of safe and effective agents that are produced by various microorganisms, symbionts, for example, medicinal maggots, and plants to attenuate complement activation. To conclude, for the development of new wound care strategies, (pre)clinical studies into the roles of complement and the effects of application of complement inhibitors in wound healing are required. PMID:23346185

  8. Inhibition of intestinal disaccharidase activity by pentoses

    DEFF Research Database (Denmark)

    Halschou-Jensen, Kia

    activity and change of diet, which corresponds to the treatment of insulin resistance, IGT and obesity. Secondly, a variety of medicine is used. Within nutrition, one of the research areas is preventive or therapeutic aims against development of T2D. A better glycaemic control is one preventive target...... and furthermore it seems to be able to delay the incidence of T2D.Prandial regulation of glucose is a complex process and there are several methods to assess glycaemic control and thereby affect the blood glucose concentration. The prandial glucose regulation depends on factors including physical activity......) in the study and the method for measuring gastric emptying. Furthermore, the fluid maltose drink could not validate the in vitro studies on maltase activity.The overall concluding perspective must be that L-arabinose has the greatest potential to effect glucose and insulin secretion when added to a sucrose...

  9. Complement activation and inhibition: a delicate balance

    DEFF Research Database (Denmark)

    Sjöberg, A P; Trouw, L A; Blom, A M

    2009-01-01

    activation. Disturbances to the complement regulation on endogenous ligands can lead to diseases such as age-related macular degeneration, neurological and rheumatic disorders. A thorough understanding of these processes might be crucial to developing new therapeutic strategies....... proteins, pentraxins, amyloid deposits, prions and DNA, all bind the complement activator C1q, but also interact with complement inhibitors C4b-binding protein and factor H. This contrasts to the interaction between C1q and immune complexes, in which case no inhibitors bind, resulting in full complement...

  10. Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Magdalena Markowicz-Piasecka

    2017-01-01

    Full Text Available The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM may predispose to Alzheimer’s disease (AD. The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35 μmol/mL, mixed type of inhibition and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC50 = 890 nmol/mL, noncompetitive inhibition and BuChE (IC50 = 28 nmol/mL, mixed type inhibition, while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC50 = 184 nmol/mL. Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future.

  11. Antifreeze Protein Mimetic Metallohelices with Potent Ice Recrystallization Inhibition Activity.

    Science.gov (United States)

    Mitchell, Daniel E; Clarkson, Guy; Fox, David J; Vipond, Rebecca A; Scott, Peter; Gibson, Matthew I

    2017-07-26

    Antifreeze proteins are produced by extremophile species to control ice formation and growth, and they have potential applications in many fields. There are few examples of synthetic materials which can reproduce their potent ice recrystallization inhibition property. We report that self-assembled enantiomerically pure, amphipathic metallohelicies inhibited ice growth at just 20 μM. Structure-property relationships and calculations support the hypothesis that amphipathicity is the key motif for activity. This opens up a new field of metallo-organic antifreeze protein mimetics and provides insight into the origins of ice-growth inhibition.

  12. [Activity of polygalacturonase-inhibiting protein of banana fruit tissues].

    Science.gov (United States)

    Bulantseva, E A; Thang, Nguen; Buza, N L; Krinitsyna, A A; Protsenko, M A

    2005-01-01

    The activity of polygalacturonase and the protein inhibiting this enzyme, which affected polygalacturonases of phytopathogenic fungi Verticillium dahliae and Gloesporium musarium, were detected in banana (Musa acumthata L.) fruit of cultivars Cavendish and Korolevskii. The polygalacturonase from banana fruit was inhibited by the preparations of the protein inhibitor not only from bananas but also from potato (Solanum tuberosum L.) tubers and pepper (Capsicum annuum L.) fruit.

  13. Cooperative inhibition of acetylcholinesterase activities by hexachlorophene in human erythrocytes.

    Science.gov (United States)

    Matsumura, H; Matsuoka, M; Igisu, H; Ikeda, M

    1997-01-01

    Hexachlorophene (HCP), pentachlorophenol (PCP), 2,4,5-trichlorophenol (2,4,5-TCP) and 2,4,6-trichlorophenol (2,4,6-TCP) all hemolyzed washed human erythrocytes and inhibited acetylcholinesterase (AchE) activities in erythrocyte membrane. HCP was much more potent in either effect than any other compound examined. The inhibition of AchE activities by HCP was reversed on adding albumin. The dose-response curves by HCP and PCP were sigmoidal, indicating cooperative inhibition, while those by 2,4,5-TCP and 2,4,6-TCP were not. Furthermore, the cooperativity of the inhibition by HCP was greater than by PCP. Differing from that by PCP, the cooperativity of inhibition increased depending on the temperature (13, 25, 37 degrees C) and decreased when the membrane was treated with Triton X-100. The cooperativity was also decreased in the presence of albumin. On a Scatchard plot analysis, erythrocyte membranes appeared to have multiple binding sites of different affinities for HCP; binding of HCP to the low affinity site [dissociation constant (Kd) 4.7 x 10(-5) M] seemed to be responsible for the observed cooperative inhibition of AchE activities. Neither neostigmine nor fenitrothion altered the cooperativity. HCP seems to be the most potent cooperative inhibitor of AchE in human erythrocyte membranes known to date. HCP may be useful to examine AchE and milieu in human erythrocyte membranes.

  14. The Inhibition of Lipase and Glucosidase Activities by Acacia Polyphenol

    Directory of Open Access Journals (Sweden)

    Nobutomo Ikarashi

    2011-01-01

    Full Text Available Acacia polyphenol (AP extracted from the bark of the black wattle tree (Acacia mearnsii is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol. In an in vitro study, we measured the inhibitory activity of AP on lipase and glucosidase. In addition, we evaluated the effects of AP on absorption of orally administered olive oil, glucose, maltose, sucrose and starch solution in mice. We found that AP concentration-dependently inhibited the activity of lipase, maltase and sucrase with an IC50 of 0.95, 0.22 and 0.60 mg ml−1, respectively. In ICR mice, olive oil was administered orally immediately after oral administration of AP solution, and plasma triglyceride concentration was measured. We found that AP significantly inhibited the rise in plasma triglyceride concentration after olive oil loading. AP also significantly inhibited the rise in plasma glucose concentration after maltose and sucrose loading, and this effect was more potent against maltose. AP also inhibited the rise in plasma glucose concentration after glucose loading and slightly inhibited it after starch loading. Our results suggest that AP inhibits lipase and glucosidase activities, which leads to a reduction in the intestinal absorption of lipids and carbohydrates.

  15. Inhibition of telomerase activity and cell growth by free and ...

    African Journals Online (AJOL)

    Furthermore, the telomerase activity of the nanoliposomal punicalagin-treated cells was significantly inhibited in a time- and dose-dependent manner. Conclusion: Punicalagin shows a novel mechanism of anti-telomerase activity, particularly in the nanoliposomal form, and may provide a basis for the future development of ...

  16. Thyroid peroxidase activity is inhibited by amino acids

    Directory of Open Access Journals (Sweden)

    D.P. Carvalho

    2000-03-01

    Full Text Available Normal in vitro thyroid peroxidase (TPO iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml. A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml and some amino acids (cysteine, tryptophan and methionine, 50 µM each also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml, and tyrosine, phenylalanine and histidine (50 µM each inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml or any other amino acid (50 µM tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine. Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2 concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  17. Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Fu, H.; Burris, R.H. (Univ. of Wisconsin, Madison (USA))

    1989-06-01

    The effect of oxygen, ammonium ion, and amino acids on nitrogenase activity in the root-associated N{sub 2}-fixing bacterium Herbaspirillum seropedicae was investigated in comparison with Azospirillum spp. and Rhodospirillum rubrum. H. seropedicae is microaerophilic, and its optimal dissolved oxygen level is from 0.04 to 0.2 kPa for dinitrogen fixation but higher when it is supplied with fixed nitrogen. No nitrogenase activity was detected when the dissolved O{sub 2} level corresponded to 4.0 kPa. Ammonium, a product of the nitrogenase reaction, reversible inhibited nitrogenase activity when added to derepressed cell cultures. However, the inhibition of nitrogenase activity was only partial even with concentrations of ammonium chloride as high as 20 mM. Amides such as glutamine and asparagine partially inhibited nitrogenase activity, but glutamate did not. Nitrogenase in crude extracts prepared from ammonium-inhibited cells showed activity as high as in extracts from N{sub 2}-fixing cells. The pattern of the dinitrogenase and the dinitrogenase reductase revealed by the immunoblotting technique did not change upon ammonium chloride treatment of cells in vivo. No homologous sequences were detected with the draT-draG probe from Azospirillum lipoferum. There is no clear evidence that ADP-ribosylation of the dinitrogenase reductase is involved in the ammonium inhibition of H. seropedicae. The uncoupler carbonyl cyanide m-chlorophenylhydrazone decreased the intracellular ATP concentration and inhibited the nitrogenase activity of whole cells. The ATP pool was significantly disturbed when cultures were treated with ammonium in vivo.

  18. Cysteine-independent activation/inhibition of heme oxygenase-2

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2016-01-01

    Full Text Available Reactive thiols of cysteine (cys residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2 isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2 and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  19. Tetrahydroxystilbene Glucoside Attenuates Neuroinflammation through the Inhibition of Microglia Activation

    OpenAIRE

    Zhang, Feng; Wang, Yan-Ying; Yang, Jun; Lu, Yuan-Fu; Liu, Jie; Shi, Jing-Shan

    2013-01-01

    Neuroinflammation is closely implicated in the pathogenesis of neurological diseases. The hallmark of neuroinflammation is the microglia activation. Upon activation, microglia are capable of producing various proinflammatory factors and the accumulation of these factors contribute to the neuronal damage. Therefore, inhibition of microglia-mediated neuroinflammation might hold potential therapy for neurological disorders. 2,3,5,4?-Tetrahydroxystilbene-2-O- ? -D-glucoside (TSG), an active compo...

  20. Aspirin inhibits human telomerase activation in unstable carotid plaques

    OpenAIRE

    LI, FANGMING; GUO, YI; JIANG, XIN; ZHONG, JIANXIN; LI, GUANDONG; SUN, SHENGGANG

    2013-01-01

    The activation of telomerase in unstable plaques is an important factor in atherosclerosis, and may be predictive of the risk of cerebrovascular diseases. Human telomerase reverse transcriptase (hTERT) is a subunit of telomerase that is essential for telomerase activation. The aim of the present study was to investigate whether aspirin inhibits the activation of telomerase and hTERT in unstable carotid plaques. Polymorphonuclear neutrophils (PMNs) derived from carotid plaques were isolated fr...

  1. Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro.

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    Full Text Available It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs. Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.

  2. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism.

    Science.gov (United States)

    Lin, Suyun; Zhang, Guowen; Liao, Yijing; Pan, Junhui

    2015-11-01

    Chrysin, a bioactive flavonoid, was investigated for its potential to inhibit the activity of xanthine oxidase (XO), a key enzyme catalyzing xanthine to uric acid and finally causing gout. The kinetic analysis showed that chrysin possessed a strong inhibition on XO ability in a reversible competitive manner with IC50 value of (1.26±0.04)×10(-6)molL(-1). The results of fluorescence titrations indicated that chrysin bound to XO with high affinity, and the interaction was predominately driven by hydrogen bonds and van der Waals forces. Analysis of circular dichroism demonstrated that chrysin induced the conformational change of XO with increases in α-helix and β-sheet and reductions in β-turn and random coil structures. Molecular simulation revealed that chrysin interacted with the amino acid residues Leu648, Phe649, Glu802, Leu873, Ser876, Glu879, Arg880, Phe1009, Thr1010, Val1011 and Phe1013 located within the active cavity of XO. The mechanism of chrysin on XO activity may be the insertion of chrysin into the active site occupying the catalytic center of XO to avoid the entrance of xanthine and causing conformational changes in XO. Furthermore, the interaction assays indicated that chrysin and its structural analog apigenin exhibited an additive effect on inhibition of XO. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. DNA damage protection and 5-lipoxygenase inhibiting activity of ...

    African Journals Online (AJOL)

    DNA damage caused by free radical is associated with mutation-based health impairment. The protective effect on DNA damage mediated by hydroxyl radical and peroxynitrite radical, and the inhibiting activity on 5-lipoxygenase of areca inflorescence extracts were studied in vitro. The results show that the boiling water ...

  4. Inhibition of histone deacetylase activity by valproic acid blocks adipogenesis.

    Science.gov (United States)

    Lagace, Diane C; Nachtigal, Mark W

    2004-04-30

    Adipogenesis is dependent on the sequential activation of transcription factors including the CCAAT/enhancer-binding proteins (C/EBP), peroxisome proliferator-activated receptor gamma (PPARgamma), and steroid regulatory element-binding protein (SREBP). We show that the mood stabilizing drug valproic acid (VPA; 0.5-2 mm) inhibits mouse 3T3 L1 and human preadipocyte differentiation, likely through its histone deacetylase (HDAC) inhibitory properties. The HDAC inhibitor trichostatin A (TSA) also inhibited adipogenesis, whereas the VPA analog valpromide, which does not possess HDAC inhibitory effects, did not prevent adipogenesis. Acute or chronic VPA treatment inhibited differentiation yet did not affect mitotic clonal expansion. VPA (1 mm) inhibited PPARgamma induced differentiation but does not activate a PPARgamma reporter gene, suggesting that it is not a PPARgamma ligand. VPA or TSA treatment reduced mRNA and protein levels of PPARgamma and SREBP1a. TSA reduced C/EBPalpha mRNA and protein levels, whereas VPA only produced a decrease in C/EBPalpha protein expression. Overall our results highlight a role for HDAC activity in adipogenesis that can be blocked by treatment with VPA.

  5. Inhibition of tyrosinase activity and melanine pigmentation by 2-hydroxytyrosol

    Directory of Open Access Journals (Sweden)

    Ryuji Uchida

    2014-04-01

    Full Text Available 2-Hydroxytyrosol (2-HT, originally reported as a synthetic compound, was isolated for the first time as a fungal metabolite. 2-HT was found to inhibit mushroom tyrosinase with an IC50 value of 13.0 µmol/L. Furthermore, 2-HT dose-dependently inhibited tyrosinase activity (IC50, 32.5 µmol/L in the cell-free extract of B16 melanoma cells and α-melanocyte stimulating hormone (α-MSH-stimulated melanin formation in intact B16 melanoma cells.

  6. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation.

    Science.gov (United States)

    Ma, Jianqun; Xu, Hai; Wu, Jun; Qu, Changfa; Sun, Fenglin; Xu, Shidong

    2015-12-01

    Linalool, a natural compound that exists in the essential oils of several aromatic plants species, has been reported to have anti-inflammatory effects. However, the effects of linalool on cigarette smoke (CS)-induced acute lung inflammation have not been reported. In the present study, we investigated the protective effects of linalool on CS-induced acute lung inflammation in mice. Linalool was given i.p. to mice 2h before CS exposure daily for five consecutive days. The numbers of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF) were measured. The production of TNF-α, IL-6, IL-1β, IL-8 and MCP-1 were detected by ELISA. The expression of NF-κB was detected by Western blotting. Our results showed that treatment of linalool significantly attenuated CS-induced lung inflammation, coupled with inhibited the infiltration of inflammatory cells and TNF-α, IL-6, IL-1β, IL-8 and MCP-1 production. Meanwhile, treatment of linalool inhibited CS-induced lung MPO activity and pathological changes. Furthermore, linalool suppressed CS-induced NF-κB activation in a dose-dependent manner. In conclusion, our results demonstrated that linalool protected against CS-induced lung inflammation through inhibiting CS-induced NF-κB activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Xanthine Oxidase: Isolation, Assays of Activity, and Inhibition

    Directory of Open Access Journals (Sweden)

    Danijela A. Kostić

    2015-01-01

    Full Text Available Xanthine oxidase (XO is an important enzyme catalyzing the hydroxylation of hypoxanthine to xanthine and xanthine to uric acid which is excreted by kidneys. Excessive production and/or inadequate excretion of uric acid results in hyperuricemia. This paper presents a detailed review of methods of isolation, determination of xanthine oxidase activity, and the effect of plant extracts and their constituents on it. Determining the content and activities of XO can be used for diagnostic purposes. Testing inhibition of XO is important for detection of potentially effective compounds or extracts that can be used to treat diseases that are caused by increased activity of XO. In vitro bioassays are used to examine test material for XO inhibition, as inhibitors of XO may be potentially useful for the treatment of gout or other XO induced diseases. Several authors reported on the XO inhibitory potential of traditionally used medicinal plants.

  8. Doxycycline indirectly inhibits proteolytic activation of tryptic kallikrein-related peptidases and activation of cathelicidin.

    Science.gov (United States)

    Kanada, Kimberly N; Nakatsuji, Teruaki; Gallo, Richard L

    2012-05-01

    The increased abundance and activity of cathelicidin and kallikrein 5 (KLK5), a predominant trypsin-like serine protease (TLSP) in the stratum corneum, have been implicated in the pathogenesis of rosacea, a disorder treated by the use of low-dose doxycycline. Here we hypothesized that doxycycline can inhibit activation of tryptic KLKs through an indirect mechanism by inhibition of matrix metalloproteinases (MMPs) in keratinocytes. The capacity of doxycycline to directly inhibit enzyme activity was measured in surface collections of human facial skin and extracts of cultured keratinocytes by fluorescence polarization assay against fluorogenic substrates specific for MMPs or TLSPs. Doxycycline did inhibit MMP activity but did not directly inhibit serine protease activity against a fluorogenic substrate specific for TLSPs. However, when doxycycline or other MMP inhibitors were added to live keratinocytes during the production of tryptic KLKs, this treatment indirectly resulted in decreased TLSP activity. Furthermore, doxycycline under these conditions inhibited the generation of the cathelicidin peptide LL-37 from its precursor protein hCAP18, a process dependent on KLK activity. These results demonstrate that doxycycline can prevent cathelicidin activation, and suggest a previously unknown mechanism of action for doxycycline through inhibiting generation of active cathelicidin peptides.

  9. Microemulsion-based novel transdermal delivery system of tetramethylpyrazine: preparation and evaluation in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Zhao JH

    2011-08-01

    Full Text Available Ji-Hui Zhao, Li Ji, Hui Wang, Zhi-Qiang Chen, Yong-Tai Zhang, Ying Liu, Nian-Ping FengSchool of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of ChinaObjective: To deliver 2,3,5,6-tetramethylpyrazine (TMP in a relatively large dose through a transdermal route and facilitate the practical application of microemulison in transdermal drug delivery.Methods: The pseudo-ternary phase diagram for microemulsion regions was constructed using isopropyl myristate as oil phase, Labrasol® as surfactant, and Plurol® Oleique CC 497 as cosurfactant. A uniform experimental design was applied for formulation optimization. In vitro skin permeation experiments of six formulations were undertaken with TMP transdermal patch (EUDRAGIT® E100 as matrix and TMP saturated solution as controls. We prepared TMP-oil dispersed in water-ethylene vinyl acetate-transdermal therapeutic system (TMP-O/W-EVA-TTS with microemulsion as reservoir and EVA membrane as release liner; pharmacokinetic and brain distribution studies in rats were conducted with TMP transdermal patches as control.Results: The skin fluxes of TMP from microemulsions were 8.2- to 26.7-fold and 0.9- to 4.7-fold higher than those of TMP transdermal patch and TMP saturated solution, respectively, and were strongly affected by the microemulsion composition. The improvement in TMP solubility as well as the skin permeation enhancement effect of microemulsion components contributed mainly to transdermal delivery facilitation. In the pharmacokinetic study, the relative bioavailability of TMP-O/W-EVA-TTS was 350.89% compared with the TMP transdermal patch. Higher and more stable TMP contents in rat plasma were obtained after administration of TMP-O/W-EVA-TTS than after application of TMP transdermal patch. In the brain distribution study, higher rate and extent of TMP distribution to brain, and lower rate of TMP clearance from brain were observed after transdermal

  10. Inhibition of Helicobacter pylori haemagglutination activity by human salivary mucins.

    Science.gov (United States)

    Mentis, A; Tzouvelekis, L; Spiliadis, C; Blackwell, C C; Weir, D M

    1990-10-01

    Thirty isolates of Helicobacter pylori from gastric biopsies agglutinated human erythrocyte suspensions. Crude mucin preparations derived from saliva of 20 different donors were examined for their ability to inhibit haemagglutination. All mucin preparations exhibited strong inhibitory activity. Removal of sialic residues from mucin preparations by treatment with neuraminidase resulted in a substantial reduction of their inhibitory activity. The mucin preparations had no bactericidal or aggregation activity for H. pylori. These results are discussed in the context of the role of mucins in colonization of the gastric mucosa by H. pylori.

  11. Luteolin, a flavonoid, inhibits AP-1 activation by basophils

    International Nuclear Information System (INIS)

    Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Matsuda, Hisashi; Yoshikawa, Masayuki; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Kawase, Ichiro; Tanaka, Toshio

    2006-01-01

    Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1

  12. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  13. Altered brain activation during response inhibition in obstructive sleep apnea

    OpenAIRE

    Ayalon, Liat; Ancoli-Israel, Sonia; Drummond, Sean PA

    2009-01-01

    This study examined response inhibition during a Go-NoGo task in individuals with obstructive sleep apnea (OSA). Fourteen OSA patients and 14 controls were studied with functional magnetic resonance imaging (FMRI). Compared to Controls, the OSA group showed more false positives (error of commission) during the NoGo trials with decreased brain activation in the left postcentral gyrus, cingulate gyrus, and inferior parietal lobe, as well as right insula and putamen. This is consistent with prev...

  14. Artemisinin inhibits chloroplast electron transport activity: mode of action.

    Directory of Open Access Journals (Sweden)

    Adyasha Bharati

    Full Text Available Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo, behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the Q(B; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth.

  15. Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine

    Directory of Open Access Journals (Sweden)

    Olumayokun A. Olajide

    2013-01-01

    Full Text Available Cryptolepine, an indoloquinoline alkaloid in Cryptolepis sanguinolenta, has anti-inflammatory property. In this study, we aimed to evaluate the effects of cryptolepine on lipopolysaccharide (LPS- induced neuroinflammation in rat microglia and its potential mechanisms. Microglial activation was induced by stimulation with LPS, and the effects of cryptolepine pretreatment on microglial activation and production of proinflammatory mediators, PGE2/COX-2, microsomal prostaglandin E2 synthase and nitric oxide/iNOS were investigated. We further elucidated the role of Nuclear Factor-kappa B (NF-κB and the mitogen-activated protein kinases in the antiinflammatory actions of cryptolepine in LPS-stimulated microglia. Our results showed that cryptolepine significantly inhibited LPS-induced production of tumour necrosis factor-alpha (TNFα, interleukin-6 (IL-6, interleukin-1beta (IL-1β, nitric oxide, and PGE2. Protein and mRNA levels of COX-2 and iNOS were also attenuated by cryptolepine. Further experiments on intracellular signalling mechanisms show that IκB-independent inhibition of NF-κB nuclear translocation contributes to the anti-neuroinflammatory actions of cryptolepine. Results also show that cryptolepine inhibited LPS-induced p38 and MAPKAPK2 phosphorylation in the microglia. Cell viability experiments revealed that cryptolepine (2.5 and 5 μM did not produce cytotoxicity in microglia. Taken together, our results suggest that cryptolepine inhibits LPS-induced microglial inflammation by partial targeting of NF-κB signalling and attenuation of p38/MAPKAPK2.

  16. Tetrahydroxystilbene glucoside attenuates neuroinflammation through the inhibition of microglia activation.

    Science.gov (United States)

    Zhang, Feng; Wang, Yan-Ying; Yang, Jun; Lu, Yuan-Fu; Liu, Jie; Shi, Jing-Shan

    2013-01-01

    Neuroinflammation is closely implicated in the pathogenesis of neurological diseases. The hallmark of neuroinflammation is the microglia activation. Upon activation, microglia are capable of producing various proinflammatory factors and the accumulation of these factors contribute to the neuronal damage. Therefore, inhibition of microglia-mediated neuroinflammation might hold potential therapy for neurological disorders. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from Polygonum multiflorum, is reported to be beneficial for human health with a great number of pharmacological properties including antioxidant, free radical-scavenging, anti-inflammation, antilipemia, and cardioprotective effects. Recently, TSG-mediated neuroprotective effects have been well demonstrated. However, the neuroprotective actions of TSG on microglia-induced neuroinflammation are not known. In the present study, microglia BV2 cell lines were applied to investigate the anti-neuroinflammatory effects of TSG. Results showed that TSG reduced LPS-induced microglia-derived release of proinflammatory factors such as TNFα, IL-1β, and NO. Moreover, TSG attenuated LPS-induced NADPH oxidase activation and subsequent reactive oxygen species (ROS) production. Further studies indicated that TSG inhibited LPS-induced NF-κB signaling pathway activation. Together, TSG exerted neuroprotection against microglia-mediated neuroinflammation, suggesting that TSG might present a promising benefit for neurological disorders treatment.

  17. Tetrahydroxystilbene Glucoside Attenuates Neuroinflammation through the Inhibition of Microglia Activation

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2013-01-01

    Full Text Available Neuroinflammation is closely implicated in the pathogenesis of neurological diseases. The hallmark of neuroinflammation is the microglia activation. Upon activation, microglia are capable of producing various proinflammatory factors and the accumulation of these factors contribute to the neuronal damage. Therefore, inhibition of microglia-mediated neuroinflammation might hold potential therapy for neurological disorders. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG, an active component extracted from Polygonum multiflorum, is reported to be beneficial for human health with a great number of pharmacological properties including antioxidant, free radical-scavenging, anti-inflammation, antilipemia, and cardioprotective effects. Recently, TSG-mediated neuroprotective effects have been well demonstrated. However, the neuroprotective actions of TSG on microglia-induced neuroinflammation are not known. In the present study, microglia BV2 cell lines were applied to investigate the anti-neuroinflammatory effects of TSG. Results showed that TSG reduced LPS-induced microglia-derived release of proinflammatory factors such as TNFα, IL-1β, and NO. Moreover, TSG attenuated LPS-induced NADPH oxidase activation and subsequent reactive oxygen species (ROS production. Further studies indicated that TSG inhibited LPS-induced NF-κB signaling pathway activation. Together, TSG exerted neuroprotection against microglia-mediated neuroinflammation, suggesting that TSG might present a promising benefit for neurological disorders treatment.

  18. Oxidative stress inhibition and oxidant activity by fibrous clays.

    Science.gov (United States)

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. MMS 1001 inhibits melanin synthesis via ERK activation.

    Science.gov (United States)

    Lee, Hyun-E; Song, Jiho; Kim, Su Yeon; Park, Kyoung-Chan; Min, Kyung Hoon; Kim, Dong-Seok

    2013-03-01

    Melanin plays major a role in pigmentation of hair, eyes, and skin in mammals. In this study, the inhibitory effects of MMS 1001 on alpha-MSH-stimulated melanogenesis were investigated in B16F10 melanoma cells. MMS 1001 did not show cytotoxic effects up to 10 microM. Melanin content and intracellular tyrosinase activity were inhibited by MMS 1001 treatment in a dose-dependent manner. In Western blot analysis, MITF expression was decreased by MMS 1001. In addition, tyrosinase expressions were also reduced after MMS 1001 treatment. Further results showed that the phosphorylation of ERK was induced by MMS 1001. Moreover, a specific MEK inhibitor, PD98059, abrogated the inhibitory effects of MMS 1001 on melanin production and tyrosinase expression. These results indicate that the hypopigmentary effects of MMS 1001 resulted from the inhibition of MITF and tyrosinase expression via phosphorylation of ERK. Thus, MMS 1001 could be developed as a new effective skin-whitening agent.

  20. Metformin inhibits glutaminase activity and protects against hepatic encephalopathy.

    Directory of Open Access Journals (Sweden)

    Javier Ampuero

    Full Text Available AIM: To investigate the influence of metformin use on liver dysfunction and hepatic encephalopathy in a retrospective cohort of diabetic cirrhotic patients. To analyze the impact of metformin on glutaminase activity and ammonia production in vitro. METHODS: Eighty-two cirrhotic patients with type 2 diabetes were included. Forty-one patients were classified as insulin sensitizers experienced (metformin and 41 as controls (cirrhotic patients with type 2 diabetes mellitus without metformin treatment. Baseline analysis included: insulin, glucose, glucagon, leptin, adiponectin, TNFr2, AST, ALT. HOMA-IR was calculated. Baseline HE risk was calculated according to minimal hepatic encephalopathy, oral glutamine challenge and mutations in glutaminase gene. We performed an experimental study in vitro including an enzymatic activity assay where glutaminase inhibition was measured according to different metformin concentrations. In Caco2 cells, glutaminase activity inhibition was evaluated by ammonia production at 24, 48 and 72 hours after metformina treatment. RESULTS: Hepatic encephalopathy was diagnosed during follow-up in 23.2% (19/82: 4.9% (2/41 in patients receiving metformin and 41.5% (17/41 in patients without metformin treatment (logRank 9.81; p=0.002. In multivariate analysis, metformin use [H.R.11.4 (95% CI: 1.2-108.8; p=0.034], age at diagnosis [H.R.1.12 (95% CI: 1.04-1.2; p=0.002], female sex [H.R.10.4 (95% CI: 1.5-71.6; p=0.017] and HE risk [H.R.21.3 (95% CI: 2.8-163.4; p=0.003] were found independently associated with hepatic encephalopathy. In the enzymatic assay, glutaminase activity inhibition reached 68% with metformin 100 mM. In Caco2 cells, metformin (20 mM decreased glutaminase activity up to 24% at 72 hours post-treatment (p<0.05. CONCLUSIONS: Metformin was found independently related to overt hepatic encephalopathy in patients with type 2 diabetes mellitus and high risk of hepatic encephalopathy. Metformin inhibits glutaminase

  1. Metformin inhibits glutaminase activity and protects against hepatic encephalopathy.

    Science.gov (United States)

    Ampuero, Javier; Ranchal, Isidora; Nuñez, David; Díaz-Herrero, María del Mar; Maraver, Marta; del Campo, José Antonio; Rojas, Ángela; Camacho, Inés; Figueruela, Blanca; Bautista, Juan D; Romero-Gómez, Manuel

    2012-01-01

    To investigate the influence of metformin use on liver dysfunction and hepatic encephalopathy in a retrospective cohort of diabetic cirrhotic patients. To analyze the impact of metformin on glutaminase activity and ammonia production in vitro. Eighty-two cirrhotic patients with type 2 diabetes were included. Forty-one patients were classified as insulin sensitizers experienced (metformin) and 41 as controls (cirrhotic patients with type 2 diabetes mellitus without metformin treatment). Baseline analysis included: insulin, glucose, glucagon, leptin, adiponectin, TNFr2, AST, ALT. HOMA-IR was calculated. Baseline HE risk was calculated according to minimal hepatic encephalopathy, oral glutamine challenge and mutations in glutaminase gene. We performed an experimental study in vitro including an enzymatic activity assay where glutaminase inhibition was measured according to different metformin concentrations. In Caco2 cells, glutaminase activity inhibition was evaluated by ammonia production at 24, 48 and 72 hours after metformina treatment. Hepatic encephalopathy was diagnosed during follow-up in 23.2% (19/82): 4.9% (2/41) in patients receiving metformin and 41.5% (17/41) in patients without metformin treatment (logRank 9.81; p=0.002). In multivariate analysis, metformin use [H.R.11.4 (95% CI: 1.2-108.8); p=0.034], age at diagnosis [H.R.1.12 (95% CI: 1.04-1.2); p=0.002], female sex [H.R.10.4 (95% CI: 1.5-71.6); p=0.017] and HE risk [H.R.21.3 (95% CI: 2.8-163.4); p=0.003] were found independently associated with hepatic encephalopathy. In the enzymatic assay, glutaminase activity inhibition reached 68% with metformin 100 mM. In Caco2 cells, metformin (20 mM) decreased glutaminase activity up to 24% at 72 hours post-treatment (p<0.05). Metformin was found independently related to overt hepatic encephalopathy in patients with type 2 diabetes mellitus and high risk of hepatic encephalopathy. Metformin inhibits glutaminase activity in vitro. Therefore, metformin use seems

  2. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    International Nuclear Information System (INIS)

    Asmis, Lars; Tanner, Felix C.; Sudano, Isabella; Luescher, Thomas F.; Camici, Giovanni G.

    2010-01-01

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysis showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 ± 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% ± 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 ± 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.

  3. Hypoxia inhibits colonic ion transport via activation of AMP kinase.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    BACKGROUND AND AIMS: Mucosal hypoxia is a common endpoint for many pathological processes including ischemic colitis, colonic obstruction and anastomotic failure. Previous studies suggest that hypoxia modulates colonic mucosal function through inhibition of chloride secretion. However, the molecular mechanisms underlying this observation are poorly understood. AMP-activated protein kinase (AMPK) is a metabolic energy regulator found in a wide variety of cells and has been linked to cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride secretion in several different tissues. We hypothesized that AMPK mediates many of the acute effects of hypoxia on human and rat colonic electrolyte transport. METHODS: The fluorescent chloride indicator dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used to measure changes in intracellular chloride concentrations in isolated single rat colonic crypts. Ussing chamber experiments in human colonic mucosa were conducted to evaluate net epithelial ion transport. RESULTS: This study demonstrates that acute hypoxia inhibits electrogenic chloride secretion via AMPK mediated inhibition of CFTR. Pre-treatment of tissues with the AMPK inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo [1,5-a] pyrimidine (compound C) in part reversed the effects of acute hypoxia on chloride secretion. CONCLUSION: We therefore suggest that AMPK is a key component of the adaptive cellular response to mucosal hypoxia in the colon. Furthermore, AMPK may represent a potential therapeutic target in diseased states or in prevention of ischemic intestinal injury.

  4. Copper oxide nanoparticles inhibit the metabolic activity of Saccharomyces cerevisiae.

    Science.gov (United States)

    Mashock, Michael J; Kappell, Anthony D; Hallaj, Nadia; Hristova, Krassimira R

    2016-01-01

    Copper oxide nanoparticles (CuO NPs) are used increasingly in industrial applications and consumer products and thus may pose risk to human and environmental health. The interaction of CuO NPs with complex media and the impact on cell metabolism when exposed to sublethal concentrations are largely unknown. In the present study, the short-term effects of 2 different sized manufactured CuO NPs on metabolic activity of Saccharomyces cerevisiae were studied. The role of released Cu(2+) during dissolution of NPs in the growth media and the CuO nanostructure were considered. Characterization showed that the 28 nm and 64 nm CuO NPs used in the present study have different primary diameter, similar hydrodynamic diameter, and significantly different concentrations of dissolved Cu(2+) ions in the growth media released from the same initial NP mass. Exposures to CuO NPs or the released Cu(2+) fraction, at doses that do not have impact on cell viability, showed significant inhibition on S. cerevisiae cellular metabolic activity. A greater CuO NP effect on the metabolic activity of S. cerevisiae growth under respiring conditions was observed. Under the tested conditions the observed metabolic inhibition from the NPs was not explained fully by the released Cu ions from the dissolving NPs. © 2015 SETAC.

  5. Activation and inhibition of transglutaminase 2 in mice.

    Directory of Open Access Journals (Sweden)

    Laila Dafik

    Full Text Available Transglutaminase 2 (TG2 is an allosterically regulated enzyme with transamidating, deamidating and cell signaling activities. It is thought to catalyze sequence-specific deamidation of dietary gluten peptides in the small intestines of celiac disease patients. Because this modification has profound consequences for disease pathogenesis, there is considerable interest in the design of small molecule TG2 inhibitors. Although many classes of TG2 inhibitors have been reported, thus far an animal model for screening them to identify promising celiac drug candidates has remained elusive. Using intraperitoneal administration of the toll-like receptor 3 (TLR3 ligand, polyinosinic-polycytidylic acid (poly(I∶C, we induced rapid TG2 activation in the mouse small intestine. Dose dependence was observed in the activation of TG2 as well as the associated villous atrophy, gross clinical response, and rise in serum concentration of the IL-15/IL-15R complex. TG2 activity was most pronounced in the upper small intestine. No evidence of TG2 activation was observed in the lung mucosa, nor were TLR7/8 ligands able to elicit an analogous response. Introduction of ERW1041E, a small molecule TG2 inhibitor, in this mouse model resulted in TG2 inhibition in the small intestine. TG2 inhibition had no effect on villous atrophy, suggesting that activation of this enzyme is a consequence, rather than a cause, of poly(I∶C induced enteropathy. Consistent with this finding, administration of poly(I∶C to TG2 knockout mice also induced villous atrophy. Our findings pave the way for pharmacological evaluation of small molecule TG2 inhibitors as drug candidates for celiac disease.

  6. Activation and inhibition of transglutaminase 2 in mice.

    Science.gov (United States)

    Dafik, Laila; Albertelli, Megan; Stamnaes, Jorunn; Sollid, Ludvig M; Khosla, Chaitan

    2012-01-01

    Transglutaminase 2 (TG2) is an allosterically regulated enzyme with transamidating, deamidating and cell signaling activities. It is thought to catalyze sequence-specific deamidation of dietary gluten peptides in the small intestines of celiac disease patients. Because this modification has profound consequences for disease pathogenesis, there is considerable interest in the design of small molecule TG2 inhibitors. Although many classes of TG2 inhibitors have been reported, thus far an animal model for screening them to identify promising celiac drug candidates has remained elusive. Using intraperitoneal administration of the toll-like receptor 3 (TLR3) ligand, polyinosinic-polycytidylic acid (poly(I∶C)), we induced rapid TG2 activation in the mouse small intestine. Dose dependence was observed in the activation of TG2 as well as the associated villous atrophy, gross clinical response, and rise in serum concentration of the IL-15/IL-15R complex. TG2 activity was most pronounced in the upper small intestine. No evidence of TG2 activation was observed in the lung mucosa, nor were TLR7/8 ligands able to elicit an analogous response. Introduction of ERW1041E, a small molecule TG2 inhibitor, in this mouse model resulted in TG2 inhibition in the small intestine. TG2 inhibition had no effect on villous atrophy, suggesting that activation of this enzyme is a consequence, rather than a cause, of poly(I∶C) induced enteropathy. Consistent with this finding, administration of poly(I∶C) to TG2 knockout mice also induced villous atrophy. Our findings pave the way for pharmacological evaluation of small molecule TG2 inhibitors as drug candidates for celiac disease.

  7. Curcumin delays endometriosis development by inhibiting MMP-2 activity.

    Science.gov (United States)

    Jana, Sayantan; Rudra, Deep Sankar; Paul, Sumit; Snehasikta, Swarnakar

    2012-10-01

    Endometriosis is a common reproductive disorder believed to be associated with matrix metalloproteinases (MMPs) activities for invasion and remodeling of endometrial tissues. Ectopic endometrium has higher capacity to produce proMMP-2 than eutopic tissues; however, the role of MMP-2 during early phase of endometriosis development is still unclear. In the present study, we investigated the role of MMP-2 in establishment and development of endometriosis in mouse model. The effect of curcumin on regression of endometriosis through protease/antiprotease balance between MMP-2 and TIMP-2 was also examined. After endometrial inoculation into peritoneum, we observed a significant elevation of proMMP-2 activity from day 2 onwards. This increased MMP-2 activity was associated with decreased expression of tissue inhibitor of MMP (TIMP)-2, while a significant up-regulation of active MMP-2 activity was observed from day 3 onwards. The activation of proMMP-2 to active MMP-2 was associated with increased expression of membrane type 1 matrix metalloproteinase (MT1MMP). Curcumin at a dose of 48 mg/kg b.w. repressed the MMP-2 activity via up-regulation of bound TIMP-2 expression, thus delayed endometriosis development. In addition, curcumin inhibited production of active MMP-2 by down-regulating MT1MMP expression. Moreover, endometriotic progression was directly linked with increased MMP-2/TIMP-2 ratio which was delayed by curcumin pretreatment. In summary, our study documents the regulation of MMP-2 activity by TIMP-2 during the early phase of endometriosis development and inhibitory action of curcumin thereon.

  8. Fast inhibition of glutamate-activated currents by caffeine.

    Directory of Open Access Journals (Sweden)

    Nicholas P Vyleta

    Full Text Available BACKGROUND: Caffeine stimulates calcium-induced calcium release (CICR in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. METHODOLOGY/PRINCIPAL FINDINGS: Using the whole-cell patch-clamp technique we found that caffeine (20 mM reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. CONCLUSIONS/SIGNIFICANCE: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.

  9. Amiloride inhibits rat mucosal ornithine decarboxylase activity and DNA synthesis

    International Nuclear Information System (INIS)

    Ulrich-Baker, M.G.; Wang, P.; Fitzpatrick, L.; Johnson, L.R.

    1988-01-01

    Refeeding fasted rats induces a dramatic trophic response in gastrointestinal mucosa and is associated with elevations in both rate of DNA synthesis and ornithine decarboxylase (ODC) activity. The signal for these increases is unknown. Amiloride prevents cell alkalinization by blocking Na + -H + exchange at apical epithelial cell membranes. In study 1, rats were fasted 48 h, treated with amiloride (0.5 to 500 mg/kg), and refed for 4 h. Refeeding increased ODC activities in the jejunal mucosa (X8) and liver (X19) but not in the oxyntic gland mucosa. In the jejunum, but not the liver, the activation of ODC was completely abolished by 100 mg/kg amiloride. In study 2, the rate of DNA synthesis was determine by measuring the rate of [ 3 H]thymidine incorporation 16 h after refeeding. Refeeding resulted in significantly increased rates of DNA synthesis over fasted levels, and amiloride at 100 mg/kg significantly reduced the elevations in the jejenum and liver. In conclusion, amiloride inhibits the postprandial increases in jejunal ODC activity and DNA synthesis in the jejunum and liver. The results indicate that (1) the Na + -H + antiport is essential to the increased ODC activity in the jejunum and liver after a meal and (2) increases in DNA synthesis and their suppression by amiloride are not necessary linked to ODC activity

  10. Amiloride inhibits rat mucosal ornithine decarboxylase activity and DNA synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich-Baker, M.G.; Wang, P.; Fitzpatrick, L.; Johnson, L.R. (Univ. of Texas Health Science Center, Houston (USA))

    1988-03-01

    Refeeding fasted rats induces a dramatic trophic response in gastrointestinal mucosa and is associated with elevations in both rate of DNA synthesis and ornithine decarboxylase (ODC) activity. The signal for these increases is unknown. Amiloride prevents cell alkalinization by blocking Na{sup +}-H{sup +} exchange at apical epithelial cell membranes. In study 1, rats were fasted 48 h, treated with amiloride (0.5 to 500 mg/kg), and refed for 4 h. Refeeding increased ODC activities in the jejunal mucosa (X8) and liver (X19) but not in the oxyntic gland mucosa. In the jejunum, but not the liver, the activation of ODC was completely abolished by 100 mg/kg amiloride. In study 2, the rate of DNA synthesis was determine by measuring the rate of ({sup 3}H)thymidine incorporation 16 h after refeeding. Refeeding resulted in significantly increased rates of DNA synthesis over fasted levels, and amiloride at 100 mg/kg significantly reduced the elevations in the jejenum and liver. In conclusion, amiloride inhibits the postprandial increases in jejunal ODC activity and DNA synthesis in the jejunum and liver. The results indicate that (1) the Na{sup +}-H{sup +} antiport is essential to the increased ODC activity in the jejunum and liver after a meal and (2) increases in DNA synthesis and their suppression by amiloride are not necessary linked to ODC activity.

  11. Altered brain activation during response inhibition in obstructive sleep apnea.

    Science.gov (United States)

    Ayalon, Liat; Ancoli-Israel, Sonia; Drummond, Sean Pa

    2009-06-01

    This study examined response inhibition during a Go-NoGo task in individuals with obstructive sleep apnea (OSA). Fourteen OSA patients and 14 controls were studied with functional magnetic resonance imaging. Compared to controls, the OSA group showed more false positives (error of commission) during the NoGo trials with decreased brain activation in the left postcentral gyrus, cingulate gyrus and inferior parietal lobe, as well as right insula and putamen. This is consistent with previous findings of impaired performance and decreased brain activation in OSA patients during a working memory task, suggesting that compromised brain function in response to cognitive challenges may underlie some of the cognitive deficits seen in patients with OSA.

  12. Toosendanin inhibits adipogenesis by activating Wnt/β-catenin signaling.

    Science.gov (United States)

    Chen, Tian-Xing; Cheng, Xiao-Ying; Wang, Yun; Yin, Wu

    2018-03-15

    Toosendanin (TSN), a triterpenoid extracted from Melia toosendan, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities. However, its anti-adipogenic effect remains unknown. Here, we found that TSN dose-dependently attenuated lipid accumulation in preadipocytes 3T3-L1 as evidenced by Oil Red O staining. TSN also significantly downregulated mRNA and protein levels of adipocytokines (adiponectin and leptin), CCAAT/enhancer binding proteins α (C/EBP-α), peroxisome proliferator-activated receptor γ (PPAR-γ), fatty acid synthase, and acetyl-CoA carboxylase in adipocytes. To understand the mechanism, we observed that TSN effectively activated Wnt/β-catenin pathway, in which TSN increased low density lipoprotein receptor related protein 6, disheveled 2, β-catenin, and cyclin D1 expression levels, while it inactivated glycogen synthase kinase 3β by enhancing its phosphorylation. Moreover, TSN reduced weight of gonadal white fat and serum triacylglycerol (TAG) content in high-fat diet (HFD)-fed mice. Interestingly, the in vivo studies also demonstrated that TSN promoted the expression of β-catenin, but accordingly repressed C/EBP-α and PPAR-γ expression in HFD-induced mice. Overall, TSN is capable of inhibiting the lipogenesis of adipocytes by activating the Wnt/β-catenin pathway, suggesting potential application of TSN as a natural anti-obesity agent.

  13. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  14. Cinnamon effectively inhibits the activity of leukemia stem cells.

    Science.gov (United States)

    Guan, X; Su, M C; Zhao, R B; Ouyang, H M; Dong, X D; Hu, P; Pei, Q; Lu, J; Li, Z F; Zhang, C R; Yang, T-H

    2016-08-19

    Cinnamon is the main component of Sanyangxuedai, which is one of the effective traditional Chinese medicines for treating malignancies. Leukemia is a prevalent malignant disease that Sanyangxuedai has been used to treat. Although successful in several studies, there is a lack of solid evidence as to why Sanyangxuedai has an effect on leukemia, and little is known about the underlying mechanisms. In this study, the active ingredients of cinnamon were isolated, purified, and identified. The transwell transport pool formed with the Caco-2 cell model was used to filter the active ingredients of cinnamon by simulating the gastrointestinal barrier in vitro. Moreover, the cell morphology, cell cycle status, apoptosis status, and antigenic variation of the cell surface antigens were observed and measured in K562 cells after treatment with the active ingredients of cinnamon. Our results showed that 50-75 μM was a safe concentration of cinnamon extract for treatment of K562 cells for 72 h. The cinnamon extract caused growth inhibition of K562 cells. Cinnamon extract seemed to arrest the cells at the G1 stage and increased the apoptosis rate significantly. Interestingly, cinnamon extract treatment upregulated the expression of erythroid and myeloid differentiation antigens and downregulated that of the megakaryocytic differentiation antigens in a dose-dependent manner. Our findings indicate that cinnamon extract from Sanyangxuedai may be effective for treating leukemia.

  15. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    Science.gov (United States)

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  16. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease.

    Science.gov (United States)

    Yao, Zhiwen; Yang, Wenhao; Gao, Zhiqiang; Jia, Peng

    2017-04-24

    Amyloid-β (Aβ) oligomers have been accepted as major neurotoxic agents in the therapy of Alzheimer's disease (AD). It has been shown that the activity of nicotinamide adenine dinucleotide (NAD+) is related with the decline of Aβ toxicity in AD. Nicotinamide mononucleotide (NMN), the important precursor of NAD+, is produced during the reaction of nicotinamide phosphoribosyl transferase (Nampt). This study aimed to figure out the potential therapeutic effects of NMN and its underlying mechanisms in APPswe/PS1dE9 (AD-Tg) mice. We found that NMN gave rise to a substantial improvement in behavioral measures of cognitive impairments compared to control AD-Tg mice. In addition, NMN treatment significantly decreased β-amyloid production, amyloid plaque burden, synaptic loss, and inflammatory responses in transgenic animals. Mechanistically, NMN effectively controlled JNK activation. Furthermore, NMN potently progressed nonamyloidogenic amyloid precursor protein (APP) and suppressed amyloidogenic APP by mediating the expression of APP cleavage secretase in AD-Tg mice. Based on our findings, it was suggested that NMN substantially decreases multiple AD-associated pathological characteristically at least partially by the inhibition of JNK activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Notch inhibits Yorkie activity in Drosophila wing discs.

    Directory of Open Access Journals (Sweden)

    Alexandre Djiane

    Full Text Available During development, tissues and organs must coordinate growth and patterning so they reach the right size and shape. During larval stages, a dramatic increase in size and cell number of Drosophila wing imaginal discs is controlled by the action of several signaling pathways. Complex cross-talk between these pathways also pattern these discs to specify different regions with different fates and growth potentials. We show that the Notch signaling pathway is both required and sufficient to inhibit the activity of Yorkie (Yki, the Salvador/Warts/Hippo (SWH pathway terminal transcription activator, but only in the central regions of the wing disc, where the TEAD factor and Yki partner Scalloped (Sd is expressed. We show that this cross-talk between the Notch and SWH pathways is mediated, at least in part, by the Notch target and Sd partner Vestigial (Vg. We propose that, by altering the ratios between Yki, Sd and Vg, Notch pathway activation restricts the effects of Yki mediated transcription, therefore contributing to define a zone of low proliferation in the central wing discs.

  18. Vanadate-induced inhibition of renin secretion is unrelated to inhibition Na,K-ATPase activity

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, P.C.; Rossi, N.F.; Churchill, M.C.; Ellis, V.R. (Wayne State Univ. School of Medicine, Detroit, MI (USA))

    1990-01-01

    There is evidence that three inhibitors of Na,K-ATPase activity-ouabain, K-free extracellular fluid, and vanadate--inhibit renin secretion by increasing Ca{sup 2+} concentration in juxtaglomerular cells, but in the case of vanadate, it is uncertain whether the increase in Ca{sup 2+} is due to a decrease in Ca{sup 2+} efflux or to an increase in Ca{sup 2+} influx through potential operated Ca channels. In the present experiments, the rat renal cortical slice preparation was used to compare and contrast the effects of ouabain, of K-free fluid, and of vanadate on renin secretion, in the absence and presence of methoxyverapamil, A Ca channel blocker. Basal renin secretory rate averaged 7.7 {plus minus} 0.3 GU/g/60 min, and secretory rate was reduced to nearly zero by 1 mM ouabain, by K-free fluid, by 0.5 mM vanadate, and by K-depolarization. Although 0.5 {mu}M methoxyverapamil completely blocked the inhibitory effect of K-depolarization, it failed to antagonize the inhibitory effects of ouabain, of K-free fluid, and of vanadate.

  19. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li

    2014-01-01

    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  20. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    Directory of Open Access Journals (Sweden)

    E. Kheradpezhouh

    2016-04-01

    Full Text Available Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2 channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E-1,7-bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione, a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.

  1. Punicalagin inhibits neuroinflammation in LPS-activated rat primary microglia.

    Science.gov (United States)

    Olajide, Olumayokun A; Kumar, Asit; Velagapudi, Ravikanth; Okorji, Uchechukwu P; Fiebich, Bernd L

    2014-09-01

    In this study, the effects of punicalagin on neuroinflammation in LPS-activated microglia were investigated. The ability of punicalagin to reduce the production of TNF-α, IL-6 and prostaglandin E2 was measured in culture medium using enzyme immunoassay. TNF-α and IL-6 gene expression in mouse hippocampal slices was measured with PCR. cyclooxygenase-2 and microsomal prostaglandin E synthase 1 protein and mRNA were evaluated with Western blotting and PCR, respectively. Further experiments to investigate effects of punicalagin on protein expressions of inflammatory targets were also determined with Western blotting. Pretreatment of rat primary microglia with punicalagin (5-40 μM) prior to LPS (10 ng/mL) stimulation produced a significant (p microglia. These results suggest that punicalagin inhibits neuroinflammation in LPS-activated microglia through interference with NF-κB signalling, suggesting its potential as a nutritional preventive strategy in neurodegenerative disorders. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. DAX-1 Inhibits Hepatocellular Carcinoma Proliferation by Inhibiting β-Catenin Transcriptional Activity

    Directory of Open Access Journals (Sweden)

    Hong-Lei Jiang

    2014-08-01

    Full Text Available Background/Aims: Hepatocellular carcinoma (HCC represents the most common type of liver cancer. DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1, an atypical member of the nuclear receptor family due to lack of classical DNA-binding domains, has been known for its fundamental roles in the development, especially in the sex determination and steroidogenesis. Previous studies also showed that DAX-1 played a critical role in endocrine and sex steroid-dependent neoplasms such as adrenocortical, pituitary, endometrial, and ovarian tumors. However, its biological roles in the development of HCC remain largely unexplored. Methods: Real-time PCR and Western blot were used to detect the expression of DAX-1 in HCC tissues and cell lines. Immunoprecipitation (IP assay was used to show the interaction between DAX-1 and β-Catenin. Small interfering RNA (siRNA was used to silence the expression of DAX-1. BrdU incorporation and Cell-cycle assays were used to detect the role of DAX-1 in HCC cells proliferation. Migration and invasion assays were carried out to test the metastasis ability of DAX-1 in HCC cells. Results: In the present study, we found that mRNA and protein levels of DAX-1 were down-regulated in HCC tissues and cell lines. Furthermore, overexpression of DAX-1 could inhibit while its knockdown using small interfering RNA promoted cell proliferation in several HCC cell lines. At the molecular level, we demonstrated that DAX-1 could interact with β-Catenin and attenuate its transcriptional activity. Conclusion: Therefore, our results suggest a previously unknown DAX-1/β-Catenin molecular network controlling HCC development.

  3. A rhodanine derivative CCR-11 inhibits bacterial proliferation by inhibiting the assembly and GTPase activity of FtsZ.

    Science.gov (United States)

    Singh, Parminder; Jindal, Bhavya; Surolia, Avadhesha; Panda, Dulal

    2012-07-10

    A perturbation of FtsZ assembly dynamics has been shown to inhibit bacterial cytokinesis. In this study, the antibacterial activity of 151 rhodanine compounds was assayed using Bacillus subtilis cells. Of 151 compounds, eight strongly inhibited bacterial proliferation at 2 μM. Subsequently, we used the elongation of B. subtilis cells as a secondary screen to identify potential FtsZ-targeted antibacterial agents. We found that three compounds significantly increased bacterial cell length. One of the three compounds, namely, CCR-11 [(E)-2-thioxo-5-({[3-(trifluoromethyl)phenyl]furan-2-yl}methylene)thiazolidin-4-one], inhibited the assembly and GTPase activity of FtsZ in vitro. CCR-11 bound to FtsZ with a dissociation constant of 1.5 ± 0.3 μM. A docking analysis indicated that CCR-11 may bind to FtsZ in a cavity adjacent to the T7 loop and that short halogen-oxygen, H-bonding, and hydrophobic interactions might be important for the binding of CCR-11 with FtsZ. CCR-11 inhibited the proliferation of B. subtilis cells with a half-maximal inhibitory concentration (IC(50)) of 1.2 ± 0.2 μM and a minimal inhibitory concentration of 3 μM. It also potently inhibited proliferation of Mycobacterium smegmatis cells. Further, CCR-11 perturbed Z-ring formation in B. subtilis cells; however, it neither visibly affected nucleoid segregation nor altered the membrane integrity of the cells. CCR-11 inhibited HeLa cell proliferation with an IC(50) value of 18.1 ± 0.2 μM (∼15 × IC(50) of B. subtilis cell proliferation). The results suggested that CCR-11 inhibits bacterial cytokinesis by inhibiting FtsZ assembly, and it can be used as a lead molecule to develop FtsZ-targeted antibacterial agents.

  4. Phlorotannins from Alaskan Seaweed Inhibit Carbolytic Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Joshua Kellogg

    2014-10-01

    Full Text Available Global incidence of type 2 diabetes has escalated over the past few decades, necessitating a continued search for natural sources of enzyme inhibitors to offset postprandial hyperglycemia. The objective of this study was to evaluate coastal Alaskan seaweed inhibition of α-glucosidase and α-amylase, two carbolytic enzymes involved in serum glucose regulation. Of the six species initially screened, the brown seaweeds Fucus distichus and Alaria marginata possessed the strongest inhibitory effects. F. distichus fractions were potent mixed-mode inhibitors of α-glucosidase and α-amylase, with IC50 values of 0.89 and 13.9 μg/mL, respectively; significantly more efficacious than the pharmaceutical acarbose (IC50 of 112.0 and 137.8 μg/mL, respectively. The activity of F. distichus fractions was associated with phlorotannin oligomers. Normal-phase liquid chromatography-mass spectrometry (NPLC-MS was employed to characterize individual oligomers. Accurate masses and fragmentation patterns confirmed the presence of fucophloroethol structures with degrees of polymerization from 3 to 18 monomer units. These findings suggest that coastal Alaskan seaweeds are sources of α-glucosidase and α-amylase inhibitory phlorotannins, and thus have potential to limit the release of sugar from carbohydrates and thus alleviate postprandial hyperglycemia.

  5. Inhibition of calmodulin - regulated calcium pump activity in rat brain by toxaphene

    International Nuclear Information System (INIS)

    Trottman, C.H.; Moorthy, K.S.

    1986-01-01

    In vivo effects of toxaphene on calcium pump activity in rat brain synaptosomes was studied. Male Sprague-Dawley rats were dosed with toxaphene at 0,25,50, and 100 mg/kg/day for 3 days and sacrificed 24 h after last dose. Ca 2+ -ATPase activity and 45 Ca uptake were determined in brain P 2 fraction. Toxaphene inhibited both Ca 2+ -ATPase activity and 45 Ca 2+ uptake and the inhibition was dose dependent. Both substrate and Ca 2+ activation kinetics of Ca 2+ -ATPase indicated non-competitive type of inhibition as evidenced by decreased catalytic velocity but not enzyme-substrate affinity. The inhibited Ca 2+ -ATPase activity and Ca 2+ uptake were restored to normal level by exogenously added calmodulin which increased both velocity and affinity. The inhibition of Ca 2+ -ATPase activity and Ca 2+ uptake and restoration by calmodulin suggests that toxaphene may impair active calcium transport mechanisms by decreasing regulator protein calmodulin levels

  6. Andrographolide exhibits anti-invasive activity against colon cancer cells via inhibition of MMP2 activity.

    Science.gov (United States)

    Chao, Hsueh-Ping; Kuo, Cheng-Deng; Chiu, Jen-Hwey; Fu, Shu-Ling

    2010-11-01

    Andrographolide, a major constituent of Andrographis paniculata, was previously shown to exhibit anti-inflammatory, antiviral, and anticancer activities. The anticancer activity of andrographolide includes growth suppression, apoptosis promotion, antiangiogenesis, and antitransformation. However, the effect of andrographolide on cancer metastasis, the most malignant feature of cancer, has not been elucidated extensively. In the present study, we demonstrated that andrographolide at nontoxic to subtoxic concentrations (0.3-3 µM) suppressed the invasion ability of CT26 cells in Matrigel-based invasion assays. In addition, the expression of cell adhesion regulators (β-catenin and ILK) was not altered by andrographolide treatment. However, andrographolide indeed inhibited matrix metalloproteinase 2 (MMP2) activity without affecting its expression. Furthermore, the activation of ERK, but not Akt, was attenuated by andrographolide treatment. Notably, a similar inhibitory effect of andrographolide on the invasion and MMP2 activity of the human colon cancer cell line HT29 was also observed. In summary, our results indicate that andrographolide exhibits anti-invasive activity against colon cancer cells via inhibition of MMP2 activity. © Georg Thieme Verlag KG Stuttgart · New York.

  7. The Satiety Signaling Neuropeptide Perisulfakinin Inhibits the Activity of Central Neurons Promoting General Activity

    Science.gov (United States)

    Wicher, Dieter; Derst, Christian; Gautier, Hélène; Lapied, Bruno; Heinemann, Stefan H.; Agricola, Hans-Jürgen

    2007-01-01

    The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK) in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK) in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR), we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM) neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM) due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH): PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage. PMID:18946521

  8. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity

    Directory of Open Access Journals (Sweden)

    Dieter Wicher

    2007-12-01

    Full Text Available The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR, we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH: PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage.

  9. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease

    NARCIS (Netherlands)

    Hommes, Daan; van den Blink, Bernt; Plasse, Terry; Bartelsman, Joep; Xu, Cuiping; Macpherson, Bret; Tytgat, Guido; Peppelenbosch, Mailkel; van Deventer, Sander

    2002-01-01

    Background & Aims: We investigated if inhibition of mitogen-activated protein kinases (MAPKs) was beneficial in Crohn's disease. Methods: Inhibition of JNK and p38 MAPK activation with CNI-1493, a guanylhydrazone, was tested in vitro. Twelve patients with severe Crohn's disease (mean baseline, CDAI

  10. Antitumor and antimicrobial activities and inhibition of in-vitro lipid ...

    African Journals Online (AJOL)

    The antitumor activity was measured in DLA cell line induced mice. Inhibition of in vitro lipid peroxidation activity of the D. nobile in both liver homogenate and RBC ghosts was also carried out. The aqueous extracts of stem and flower of D. nobile showed better zone of bacterial inhibition than that of ethanol and chloroform

  11. Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro

    DEFF Research Database (Denmark)

    Vinggaard, A.M.; Hnida, C.; Breinholt, V.

    2000-01-01

    than 50 mu M. The positive control 4-hydroxyandrostendione (1 mu M) caused an inhibition of aromatase activity by 74%. The compounds, which did not affect the aromatase activity, were bromopropylate, chlorfenvinphos. chlorobenzilate, chlorpyrifos, diuron, heptachlor, iprodion, linuron, pentachlorphenol...

  12. Inhibition of pericranial muscle activity, respiration, and heart rate enhances auditory sensitivity

    NARCIS (Netherlands)

    Stekelenburg, J.J.; van Boxtel, A.

    2001-01-01

    We investigated whether previously observed inhibition of pericranial electromyographic (EMG) activity, respiration, and heart rate during sensory intake processes improves auditory sensitivity. Participants had to detect weak auditory stimuli. We found that EMG activity in masticatory and lower

  13. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    International Nuclear Information System (INIS)

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-01-01

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies

  14. IN VITRO ANTIOXIDANT AND α-AMYLASE INHIBITION ACTIVITIES OF PANCHSAKAR CHURNA

    Directory of Open Access Journals (Sweden)

    Ashok Kumar B.S.

    2013-12-01

    Full Text Available Panchsakar Churna is the composition of Cassia angustifolia, Terminalia chebula, Zingiber officinale, Foeniculum vulgare and Saindhava lavana. Aqueous extract of churna was used to investigate antioxidant activity by ferrous ion chelating assay and ferric reducing power and alpha amylase inhibition activity by dinitrosalicylic acid method (DNSA. Aqueous extract of churna showed maximum ferrous chelating activity - 42.01 and ferric reducing power - 1.5 and 83.33 % of inhibition protein denaturation at 1000 µg/ml. Panchsakar churna showed significant antioxidant and alpha amylase inhibition activities.

  15. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Abhinav [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Venkatachalam, Avanthika [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India); Gideon, Daniel Andrew [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India)

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  16. Inhibition of ornithine decarboxylase and glutamic acid decarboxylase activities by phosphorylethanolamine and phosphorylcholine.

    Science.gov (United States)

    Gilad, G M; Gilad, V H

    1984-07-18

    Ornithine decarboxylase, which catalyzes the first step in polyamine biosynthesis, is rapidly and transiently increased in various tissues during growth and after various hormonal or noxious stimuli, prior to an elevation in choline kinase activity. Polyamines themselves have been demonstrated to activate choline kinase. The present study sought to determine the effect of phosphorylcholine, the product of the reaction catalyzed by choline kinase, on ornithine decarboxylase activity. The data demonstrate that ornithine decarboxylase activity. The data demonstrate that ornithine decarboxylase activity is inhibited by phosphorylcholine and more potently by the related compound phosphorylethanolamine. The inhibition by both compounds led to decreased affinity of partially purified ornithine decarboxylase for ornithine. The inhibition is not time dependent and reversible. Both compounds also inhibit glutamic acid decarboxylase activity. The results suggest that high intracellular levels of phosphorylethanolamine and phosphorylcholine can serve as natural inhibitors of decarboxylases.

  17. Helminth induced suppression of macrophage activation is correlated with inhibition of calcium channel activity.

    Directory of Open Access Journals (Sweden)

    Arun Chauhan

    Full Text Available Helminth parasites cause persistent infections in humans and yet many infected individuals are asymptomatic. Neurocysticercosis (NCC, a disease of the central nervous system (CNS caused by the cestode Taenia solium, has a long asymptomatic phase correlated with an absence of brain inflammation. However, the mechanisms of immune suppression remain poorly understood. Here we report that murine NCC displays a lack of cell surface maturation markers in infiltrating myeloid cells. Furthermore, soluble parasite ligands (PL failed to induce maturation of macrophages, and inhibited TLR-induced inflammatory cytokine production. Importantly, PL treatment abolished both LPS and thapsigargin-induced store operated Ca2+ entry (SOCE. Moreover, electrophysiological recordings demonstrated PL-mediated inhibition of LPS or Tg-induced currents that were TRPC1-dependent. Concomitantly STIM1-TRPC1 complex was also impaired that was essential for SOCE and sustained Ca2+ entry. Likewise loss of SOCE due to PL further inhibited NFkB activation. Overall, our results indicate that the negative regulation of agonist induced Ca2+ signaling pathway by parasite ligands may be a novel immune suppressive mechanism to block the initiation of the inflammatory response associated with helminth infections.

  18. Dual inhibition of MET and SRC kinase activity as a combined targeting strategy for colon cancer.

    Science.gov (United States)

    Song, Na; Qu, Xiujuan; Liu, Shizhou; Zhang, Simeng; Liu, Jing; Qu, Jinglei; Zheng, Huachuan; Liu, Yunpeng; Che, Xiaofang

    2017-08-01

    Hepatocyte growth factor (HGF)/MET signaling is implicated in the development of colorectal cancer (CRC) and possesses therapeutic value for various types of cancer. However, inhibition of MET alone has been demonstrated to have limited efficacy. The present study examined the combined inhibition of MET and SRC kinase activity in colon cancer cells. Furthermore, the role of the HGF/MET pathway in ligand-dependent and -independent activation was demonstrated. The single inhibition of MET by knockdown small interfering RNA or inhibitor indicated a limited anti-viability effects without inhibiting the basal phosphorylation levels of SRC, protein kinase B (AKT) or extracellular signal-regulated kinase (ERK). In view of the strong association between MET and SRC identified by direct regulation, growth factor-induced MET activation was suppressed by pretreatment with the SRC inhibitor, dasatinib, and downstream phosphorylation of AKT and ERK partially decreased, which suggested that SRC activation was essential for ligand-dependent and -independent activation of MET. Considering that both the activation of MET and SRC was required in ligand-dependent and -independent MET activation, the antitumor effect of concurrent inhibition of MET and SRC was examined, and it was demonstrated that combination treatment exerted increased viability inhibition and apoptosis enhancement in mutant and wild type RAS colon cancer cells. Therefore, combinational inhibition of MET and SRC may be a promising strategy for the treatment of CRC.

  19. mTOR inhibition induces compensatory, therapeutically targetable MEK activation in renal cell carcinoma.

    Science.gov (United States)

    Bailey, Sean T; Zhou, Bing; Damrauer, Jeffrey S; Krishnan, Bhavani; Wilson, Harper L; Smith, Aleisha M; Li, Mingqing; Yeh, Jen Jen; Kim, William Y

    2014-01-01

    Rapamycin derivatives allosterically targeting mTOR are currently FDA approved to treat advanced renal cell carcinoma (RCC), and catalytic inhibitors of mTOR/PI3K are now in clinical trials for treating various solid tumors. We sought to investigate the relative efficacy of allosteric versus catalytic mTOR inhibition, evaluate the crosstalk between the mTOR and MEK/ERK pathways, as well as the therapeutic potential of dual mTOR and MEK inhibition in RCC. Pharmacologic (rapamycin and BEZ235) and genetic manipulation of the mTOR pathway were evaluated by in vitro assays as monotherapy as well as in combination with MEK inhibition (GSK1120212). Catalytic mTOR inhibition with BEZ235 decreased proliferation and increased apoptosis better than allosteric mTOR inhibition with rapamycin. While mTOR inhibition upregulated MEK/ERK signaling, concurrent inhibition of both pathways had enhanced therapeutic efficacy. Finally, primary RCC tumors could be classified into subgroups [(I) MEK activated, (II) Dual MEK and mTOR activated, (III) Not activated, and (IV) mTOR activated] based on their relative activation of the PI3K/mTOR and MEK pathways. Patients with mTOR only activated tumors had the worst prognosis. In summary, dual targeting of the mTOR and MEK pathways in RCC can enhance therapeutic efficacy and primary RCC can be subclassified based on their relative levels of mTOR and MEK activation with potential therapeutic implications.

  20. Inhibition of lipase activity in antibiotic-resistant propionibacterium acnes strains.

    Science.gov (United States)

    Gloor, M; Wasik, B; Becker, A; Höffler, U

    2002-01-01

    Erythromycin-sensitive and/or clindamycin-sensitive strains of Propionibacterium acnes show a reduced lipase production at levels below the minimal growth-inhibitory concentration (MIC). The objective of this study was to determine whether erythromycin and clindamycin concentrations far below the MIC inhibit lipase production in P. acnes strains resistant to these antibiotics. Of 42 P. acnes strains, 10 showed an MIC >256 micro g/ml for erythromycin. Two strains showed MICs of 0.19 and 0.25 micro g/ml, while the MIC of the remaining strains was Lipase activity was determined up to a concentration of 192 micro g/ml by cultivation on spirit blue agar + lipase reagent. The 10 strains whose erythromycin MIC was >256 micro g/ml were also tested for lipase inhibition by clindamycin. While this method fails to differentiate between inhibition of lipase production and inhibition of lipase activity, the absence of inhibition of lipase activity rules out inhibition of lipase production. Inhibition of lipolysis by sub-MIC concentrations was demonstrated only for clindamycin in 3 P. acnes strains. However, lipase inhibition was seen only at the dilution level immediately below the MIC. Resistant P. acnes strains with high erythromycin and/or clindamycin MICs can be ruled out to show in vitro inhibition of lipase production at antibiotic concentrations far below the MIC. Copyright 2002 S. Karger AG, Basel

  1. Mechanisms of Rose Bengal inhibition on SecA ATPase and ion channel activities.

    Science.gov (United States)

    Hsieh, Ying-Hsin; Huang, Ying-Ju; Jin, Jin-Shan; Yu, Liyan; Yang, Hsiuchin; Jiang, Chun; Wang, Binghe; Tai, Phang C

    2014-11-14

    SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG-SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg(2+), mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Inhibition of Streptococcus gordonii Metabolic Activity in Biofilm by Cranberry Juice High-Molecular-Weight Component

    Directory of Open Access Journals (Sweden)

    Jegdish Babu

    2012-01-01

    Full Text Available Previous studies demonstrated that a cranberry high-molecular-mass, nondialyzable material (NDM can inhibit adhesion of numerous species of bacteria and prevents bacterial coaggregation of bacterial pairs. Bacterial coaggregation leads to plaque formation leading to biofilm development on surfaces of oral cavity. In the present study, we evaluated the effect of low concentrations of NDM on Streptococcus gordonii metabolic activity and biofilm formation on restorative dental surfaces. We found that the NDM selectively inhibited metabolic activity of S. gordonii, without affecting bacterial viability. Inhibiting the metabolic activity of bacteria in biofilm may benefit the health of the oral cavity.

  3. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    Directory of Open Access Journals (Sweden)

    M. Ryan Smith

    2016-08-01

    Full Text Available Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP, decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231 breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC protein levels, although other protein levels were

  4. Cannabinoid inhibition of guinea-pig intestinal peristalsis via inhibition of excitatory and activation of inhibitory neural pathways.

    Science.gov (United States)

    Heinemann, A; Shahbazian, A; Holzer, P

    1999-09-01

    Since activation of cannabinoid CB1 receptors inhibits gastrointestinal transit in the mouse, this study analyzed the action of the cannabinoid receptor agonist methanandamide on distension-induced propulsive motility. Peristalsis in luminally perfused segments of the guinea-pig isolated ileum was elicited by a rise of the intraluminal pressure. The pressure threshold at which peristaltic contractions were triggered was used to quantify drug effects. Methanandamide (0.1-3 microM) inhibited peristalsis as deduced from a concentration-related increase in the peristaltic pressure threshold, an action that was prevented by the CB1 receptor antagonist SR141716A (1 microM) per se, which had no effect on peristalsis. The distension-induced ascending reflex contraction of the circular muscle was likewise depressed by methanandamide in a SR141716A-sensitive manner, whereas indomethacin-induced phasic contractions of the circular muscle were left unchanged by methanandamide. The anti-peristaltic action of methanandamide was inhibited by apamin (0.5 microM), attenuated by N-nitro-L-arginine methyl ester (300 microM) and left unaltered by suramin (300 microM), pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (150 microM) and naloxone (0.5 microM). It is concluded that methanandamide depresses intestinal peristalsis via activation of CB1 receptors on enteric neurons, which results in blockade of excitatory motor pathways and facilitation of inhibitory pathways operating via apamin-sensitive K+ channels and nitric oxide.

  5. Antiresorptive Activity of Bacillus-Fermented Antler Extracts: Inhibition of Osteoclast Differentiation

    Directory of Open Access Journals (Sweden)

    Sik-Won Choi

    2013-01-01

    Full Text Available Antlers have been traditionally used for thousands of years as a natural product with medicinal and pharmaceutical properties. In developing healthy foods, Bacillus-mediated fermentation is widely used to enhance the biological activity of nutrients in foods. Recently, fermentation was shown to enhance the osteogenic activity of antlers. This study aimed to elucidate the antiresorptive activity of Bacillus-fermented antler and its mode of action. We found that Bacillus-fermented antler extract strongly inhibited osteoclast differentiation by downregulating the expression and activity of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1. This extract also inhibited the activation of phospholipase Cγ2 (PLCγ2, a signaling molecule that could regulate NFATc1 transcriptional activity. This suggested that Bacillus-fermented antler extract could inhibit PLCγ2-NFATc1 signaling required for bone resorption and cell fusion. Consequently, Bacillus-fermented antler extract might benefit osteoclast-related disorders, including osteoporosis; furthermore, it may improve gastrointestinal activity.

  6. Antiresorptive Activity of Bacillus-Fermented Antler Extracts: Inhibition of Osteoclast Differentiation

    Science.gov (United States)

    Choi, Sik-Won; Moon, Seong-Hee; Yang, Hye Jeong; Kwon, Dae Young; Son, Young-Jin; Yu, Ri; Kim, Young Su; Kim, So I.; Chae, Eun Jeong; Park, Sang-Joon; Kim, Seong Hwan

    2013-01-01

    Antlers have been traditionally used for thousands of years as a natural product with medicinal and pharmaceutical properties. In developing healthy foods, Bacillus-mediated fermentation is widely used to enhance the biological activity of nutrients in foods. Recently, fermentation was shown to enhance the osteogenic activity of antlers. This study aimed to elucidate the antiresorptive activity of Bacillus-fermented antler and its mode of action. We found that Bacillus-fermented antler extract strongly inhibited osteoclast differentiation by downregulating the expression and activity of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). This extract also inhibited the activation of phospholipase Cγ2 (PLCγ2), a signaling molecule that could regulate NFATc1 transcriptional activity. This suggested that Bacillus-fermented antler extract could inhibit PLCγ2-NFATc1 signaling required for bone resorption and cell fusion. Consequently, Bacillus-fermented antler extract might benefit osteoclast-related disorders, including osteoporosis; furthermore, it may improve gastrointestinal activity. PMID:23509596

  7. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions

    Science.gov (United States)

    Guillén, Hugo

    2018-01-01

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of amines and neurotransmitters and is involved in mood disorders, depression, oxidative stress, and adverse pharmacological reactions. This work studies the inhibition of human MAO-A by Hypericum perforatum, Peganum harmala, and Lepidium meyenii, which are reported to improve and affect mood and mental conditions. Subsequently, the antioxidant activity associated with the inhibition of MAO is determined in plant extracts for the first time. H. perforatum inhibited human MAO-A, and extracts from flowers gave the highest inhibition (IC50 of 63.6 μg/mL). Plant extracts were analyzed by HPLC-DAD-MS and contained pseudohypericin, hypericin, hyperforin, adhyperforin, hyperfirin, and flavonoids. Hyperforin did not inhibit human MAO-A and hypericin was a poor inhibitor of this isoenzyme. Quercetin and flavonoids significantly contributed to MAO-A inhibition. P. harmala seed extracts highly inhibited MAO-A (IC50 of 49.9 μg/L), being a thousand times more potent than H. perforatum extracts owing to its content of β-carboline alkaloids (harmaline and harmine). L. meyenii root (maca) extracts did not inhibit MAO-A. These plants may exert protective actions related to antioxidant effects. Results in this work show that P. harmala and H. perforatum extracts exhibit antioxidant activity associated with the inhibition of MAO (i.e., lower production of H2O2). PMID:29568754

  8. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions

    Directory of Open Access Journals (Sweden)

    Tomás Herraiz

    2018-01-01

    Full Text Available Monoamine oxidase (MAO catalyzes the oxidative deamination of amines and neurotransmitters and is involved in mood disorders, depression, oxidative stress, and adverse pharmacological reactions. This work studies the inhibition of human MAO-A by Hypericum perforatum, Peganum harmala, and Lepidium meyenii, which are reported to improve and affect mood and mental conditions. Subsequently, the antioxidant activity associated with the inhibition of MAO is determined in plant extracts for the first time. H. perforatum inhibited human MAO-A, and extracts from flowers gave the highest inhibition (IC50 of 63.6 μg/mL. Plant extracts were analyzed by HPLC-DAD-MS and contained pseudohypericin, hypericin, hyperforin, adhyperforin, hyperfirin, and flavonoids. Hyperforin did not inhibit human MAO-A and hypericin was a poor inhibitor of this isoenzyme. Quercetin and flavonoids significantly contributed to MAO-A inhibition. P. harmala seed extracts highly inhibited MAO-A (IC50 of 49.9 μg/L, being a thousand times more potent than H. perforatum extracts owing to its content of β-carboline alkaloids (harmaline and harmine. L. meyenii root (maca extracts did not inhibit MAO-A. These plants may exert protective actions related to antioxidant effects. Results in this work show that P. harmala and H. perforatum extracts exhibit antioxidant activity associated with the inhibition of MAO (i.e., lower production of H2O2.

  9. Anoxia inhibits biofilm development and modulates antibiotic activity.

    Science.gov (United States)

    Hess, Donavon J; Henry-Stanley, Michelle J; Lusczek, Elizabeth R; Beilman, Gregory J; Wells, Carol L

    2013-09-01

    Many infections involve bacterial biofilms that are notoriously antibiotic resistant. Unfortunately, the mechanism for this resistance is unclear. We tested the effect of oxygen concentration on development of Staphylococcus aureus biofilms, and on the ability of gentamicin and vancomycin to inhibit biofilm development. To mimic catheter-associated biofilms, silastic coupons were inoculated with 10(7)S aureus and incubated either aerobically (∼21% O2) or anaerobically (10% CO2, 5% H2, 85% N2) for 16 h at 37°C with varying concentrations of gentamicin and vancomycin. Viable colony-forming units were quantified from sonicated biofilms, and the crystal violet assay quantified biofilm biomass. Metabolomic profiles probed biochemical differences between aerobic and anaerobic biofilms. Control biofilms (no antibiotic) cultivated aerobically contained 8.1-8.6 log10S aureus. Anaerobiasis inhibited biofilm development, quantified by viable bacterial numbers and biomass (P vancomycin was more uniform aerobically and anaerobically, although at high bactericidal concentrations, vancomycin effectiveness was decreased under anoxia. There were notable differences in the metabolomic profiles of biofilms cultivated under normoxia versus anoxia. Compared with aerobic incubation, anaerobiasis resulted in decreased biofilm development, and metabolomics is a promising tool to identify key compounds involved in biofilm formation. The effectiveness of a specific antibiotic depended on its mode of action, as well as on the oxygen concentration in the environment. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas

    DEFF Research Database (Denmark)

    Efsen, Eva; Saermark, Torben; Hansen, Alastair

    2011-01-01

    from six controls were also included. Total functional MMP activity was measured by a high-pressure liquid chromatography (HPLC)-based, fluorogenic MMP-substrate cleavage assay, and the specific activity of MMP-2, -3 and -9 by the MMP Biotrak Activity Assay. The MMP inhibitors comprised ethylene...

  11. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas

    DEFF Research Database (Denmark)

    Efsen, Eva; Saermark, Torben; Hansen, Alastair

    2011-01-01

    Increased expression of matrix metalloproteinase (MMP)-2, -3 and -9 has been demonstrated in Crohn's disease fistulas, but it is unknown whether these enzymes are biologically active and represent a therapeutic target. Therefore, we investigated the proteolytic activity of MMPs in fistula tissue...... from six controls were also included. Total functional MMP activity was measured by a high-pressure liquid chromatography (HPLC)-based, fluorogenic MMP-substrate cleavage assay, and the specific activity of MMP-2, -3 and -9 by the MMP Biotrak Activity Assay. The MMP inhibitors comprised ethylene......-9.83) compared with non-Crohn's fistulas, [0.32 ng/ml, range 0-2.66, (p MMP-9 activity [0.64 ng/ml, range 0-5.66 and 0.17 ng/ml, range 0-1.1, respectively (p MMP activity level by 42% and suppressed the specific MMP-3...

  12. Adenovirus DNA binding protein inhibits SrCap-activated CBP and CREB-mediated transcription

    International Nuclear Information System (INIS)

    Xu Xiequn; Tarakanova, Vera; Chrivia, John; Yaciuk, Peter

    2003-01-01

    The SNF2-related CBP activator protein (SrCap) is a potent activator of transcription mediated by CBP and CREB. We have previously demonstrated that the Adenovirus 2 DNA Binding Protein (DBP) binds to SrCap and inhibits the transcription mediated by the carboxyl-terminal region of SrCap (amino acids 1275-2971). We report here that DBP inhibits the ability of full-length SrCap (1-2971) to activate transcription mediated by Gal-CREB and Gal-CBP. In addition, DBP also inhibits the ability of SrCap to enhance Protein Kinase A (PKA) activated transcription of the enkaphalin promoter. DBP was found to dramatically inhibit transcription of a mammalian two-hybrid system that was dependent on the interaction of SrCap and CBP binding domains. We also found that DBP has no effect on transcription mediated by a transcriptional activator that is not related to SrCap, indicating that our reported transcriptional inhibition is specific for SrCap and not due to nonspecific effects of DBP's DNA binding activity on the CAT reporter plasmid. Taken together, these results suggest a model in which DBP inhibits cellular transcription mediated by the interaction between SrCap and CBP

  13. The role of factor inhibiting HIF (FIH-1 in inhibiting HIF-1 transcriptional activity in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Enfeng Wang

    Full Text Available Glioblastoma multiforme (GBM accounts for about 38% of primary brain tumors in the United States. GBM is characterized by extensive angiogenesis induced by vascular growth factors and cytokines. The transcription of these growth factors and cytokines is regulated by the Hypoxia-Inducible-Factor-1(HIF-1, which is a key regulator mediating the cellular response to hypoxia. It is known that Factor Inhibiting HIF-1, or FIH-1, is also involved in the cellular response to hypoxia and has the capability to physically interact with HIF-1 and block its transcriptional activity under normoxic conditions. Delineation of the regulatory role of FIH-1 will help us to better understand the molecular mechanism responsible for tumor growth and progression and may lead to the design of new therapies targeting cellular pathways in response to hypoxia. Previous studies have shown that the chromosomal region of 10q24 containing the FIH-1 gene is often deleted in GBM, suggesting a role for the FIH-1 in GBM tumorigenesis and progression. In the current study, we found that FIH-1 is able to inhibit HIF-mediated transcription of GLUT1 and VEGF-A, even under hypoxic conditions in human glioblastoma cells. FIH-1 has been found to be more potent in inhibiting HIF function than PTEN. This observation points to the possibility that deletion of 10q23-24 and loss or decreased expression of FIH-1 gene may lead to a constitutive activation of HIF-1 activity, an alteration of HIF-1 targets such as GLUT-1 and VEGF-A, and may contribute to the survival of cancer cells in hypoxia and the development of hypervascularization observed in GBM. Therefore FIH-1 can be potential therapeutic target for the treatment of GBM patients with poor prognosis.

  14. Human neutrophil leukocyte elastase activity is inhibited by Phenol Red

    Science.gov (United States)

    Neutrophil elastase (NE) activity in urine, sputum and nasal mucous is used as an indicator of inflammation due to viral or bacterial infection. However, bovine nasal mucous neutrophils collected, lysed and stored in Dulbecco's minimal medium containing Phenol Red, showed no NE activity with methox...

  15. X-ray diffraction and inelastic neutron scattering study of 1:1 tetramethylpyrazine chloranilic acid complex: temperature, isotope, and pressure effects.

    Science.gov (United States)

    Prager, M; Pietraszko, A; Sobczyk, L; Pawlukojć, A; Grech, E; Seydel, T; Wischnewski, A; Zamponi, M

    2006-11-21

    The x-ray diffraction studies of the title complex were carried out at room temperature and 14 K for H/D (in hydrogen bridge) isotopomers. At 82 K a phase transition takes place leading to a doubling of unit cells and alternation of the hydrogen bond lengths linking tetramethylpyrazine (TMP) and chloranilic acid molecules. A marked H/D isotope effect on these lengths was found at room temperature. The elongation is much smaller at 14 K. The infrared isotopic ratio for O-H(D)...N bands equals to 1.33. The four tunnel splittings of methyl librational ground states of the protonated complex required by the structure are determined at a temperature T=4.2 K up to pressures P=4.7 kbars by high resolution neutron spectroscopy. The tunnel mode at 20.6 microeV at ambient pressure shifts smoothly to 12.2 microeV at P=3.4 kbars. This is attributed to an increase of the strength of the rotational potential proportional to r(-5.6). The three other tunnel peaks show no or weak shifts only. The increasing interaction with diminishing intermolecular distances is assumed to be compensated by a charge transfer between the constituents of deltae/e approximately 0.02 kbar(-1). The phase transition observed between 3.4 and 4.7 kbars leads to increased symmetry with only two more intense tunneling bands. In the isotopomer with deuterated hydrogen bonds and P=1 bar all tunnel intensities become equal in consistency with the low temperature crystal structure. The effect of charge transfer is confirmed by a weakening of rotational potentials for those methyl groups whose tunnel splittings were independent of pressure. Density functional theory calculations for the model TMP.(HF)2 complex and fully ionized molecule TMP+ point out that the intramolecular rotational potential of methyl groups is weaker in the charged species. They do not allow for the unequivocal conclusions about the role of the intermolecular charge transfer effect on the torsional frequencies.

  16. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas

    DEFF Research Database (Denmark)

    Efsen, Eva; Saermark, Torben; Hansen, Alastair

    2011-01-01

    Increased expression of matrix metalloproteinase (MMP)-2, -3 and -9 has been demonstrated in Crohn's disease fistulas, but it is unknown whether these enzymes are biologically active and represent a therapeutic target. Therefore, we investigated the proteolytic activity of MMPs in fistula tissue...... and examined the effect of inhibitors, including clinically available drugs that beside their main action also suppress MMPs. Fistula specimens were obtained by surgical excision from 22 patients with Crohn's disease and from 10 patients with fistulas resulting from other causes. Colonic endoscopic biopsies......-diamine-tetraacetic acid (EDTA), the synthetic broad-spectrum inhibitor, GM6001, the angiotensin-converting enzyme (ACE) inhibitor, ramiprilate, and the tetracycline, doxycycline. In Crohn's disease fistulas, about 50% of the total protease activity was attributable to MMP activity. The average total MMP activity...

  17. NOVEL HYDROXAMIC ACIDS HAVING HISTONE DEACETYLASE INHIBITING ACTIVITY AND ANTI-CANCER COMPOSITION COMPRISING THE SAME AS AN ACTIVE INGREDIENT

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a pharmaceutical composition for anticancer including novel hydroxamic acid with histone deacetylase inhibiting activity as an active ingredient. Hydroxamic acid compound of the present invention has inhibitory activity of histone deacetylase (HDAC) and shows...... cytotoxicity to a variety of cancer cells, being useful in strong anti-cancer drug....

  18. Xanthine Oxidase: Isolation, Assays of Activity, and Inhibition

    OpenAIRE

    Kostić, Danijela A.; Dimitrijević, Danica S.; Stojanović, Gordana S.; Palić, Ivan R.; Đorđević, Aleksandra S.; Ickovski, Jovana D.

    2015-01-01

    Xanthine oxidase (XO) is an important enzyme catalyzing the hydroxylation of hypoxanthine to xanthine and xanthine to uric acid which is excreted by kidneys. Excessive production and/or inadequate excretion of uric acid results in hyperuricemia. This paper presents a detailed review of methods of isolation, determination of xanthine oxidase activity, and the effect of plant extracts and their constituents on it. Determining the content and activities of XO can be used for diagnostic purposes....

  19. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  20. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Carmen E Flores

    2014-10-01

    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  1. Inhibiting MAP kinase activity prevents calcium transients and mitosis entry in early sea urchin embryos.

    Science.gov (United States)

    Philipova, Rada; Larman, Mark G; Leckie, Calum P; Harrison, Patrick K; Groigno, Laurence; Whitaker, Michael

    2005-07-01

    A transient calcium increase triggers nuclear envelope breakdown (mitosis entry) in sea urchin embryos. Cdk1/cyclin B kinase activation is also known to be required for mitosis entry. More recently, MAP kinase activity has also been shown to increase during mitosis. In sea urchin embryos, both kinases show a similar activation profile, peaking at the time of mitosis entry. We tested whether the activity of both kinases is required for mitosis entry and whether either kinase controls mitotic calcium signals. We found that reducing the activity of either mitotic kinase prevents nuclear envelope breakdown, despite the presence of a calcium transient, when cdk1/cyclin B kinase activity is alone inhibited. When MAP kinase activity alone was inhibited, the calcium signal was absent, suggesting that MAP kinase activity is required to generate the calcium transient that triggers nuclear envelope breakdown. However, increasing intracellular free calcium by microinjection of calcium buffers or InsP(3) while MAP kinase was inhibited did not itself induce nuclear envelope breakdown, indicating that additional MAP kinase-regulated events are necessary. After MAP kinase inhibition early in the cell cycle, the early events of the cell cycle (pronuclear migration/fusion and DNA synthesis) were unaffected, but chromosome condensation and spindle assembly are prevented. These data indicate that in sea urchin embryos, MAP kinase activity is part of a signaling complex alongside two components previously shown to be essential for entry into mitosis: the calcium transient and the increase in cdk1/cyclinB kinase activity.

  2. P53 and p73 differ in their ability to inhibit glucocorticoid receptor (GR transcriptional activity

    Directory of Open Access Journals (Sweden)

    Nie Linghu

    2006-12-01

    Full Text Available Abstract Background p53 is a tumor suppressor and potent inhibitor of cell growth. P73 is highly similar to p53 at both the amino acid sequence and structural levels. Given their similarities, it is important to determine whether p53 and p73 function in similar or distinct pathways. There is abundant evidence for negative cross-talk between glucocorticoid receptor (GR and p53. Neither physical nor functional interactions between GR and p73 have been reported. In this study, we examined the ability of p53 and p73 to interact with and inhibit GR transcriptional activity. Results We show that both p53 and p73 can bind GR, and that p53 and p73-mediated transcriptional activity is inhibited by GR co-expression. Wild-type p53 efficiently inhibited GR transcriptional activity in cells expressing both proteins. Surprisingly, however, p73 was either unable to efficiently inhibit GR, or increased GR activity slightly. To examine the basis for this difference, a series of p53:p73 chimeric proteins were generated in which corresponding regions of either protein have been swapped. Replacing N- and C-terminal sequences in p53 with the corresponding sequences from p73 prevented it from inhibiting GR. In contrast, replacing p73 N- and C-terminal sequences with the corresponding sequences from p53 allowed it to efficiently inhibit GR. Differences in GR inhibition were not related to differences in transcriptional activity of the p53:p73 chimeras or their ability to bind GR. Conclusion Our results indicate that both N- and C-terminal regions of p53 and p73 contribute to their regulation of GR. The differential ability of p53 and p73 to inhibit GR is due, in part, to differences in their N-terminal and C-terminal sequences.

  3. Reactive oxygen species inhibit catalytic activity of peptidylarginine deiminase

    DEFF Research Database (Denmark)

    Damgaard, Dres; Bjørn, Mads Emil; Jensen, Peter Østrup

    2017-01-01

    on calcium and reducing conditions. However, reactive oxygen species (ROS) have been shown to induce citrullination of histones in granulocytes. Here we examine the ability of H2O2 and leukocyte-derived ROS to regulate PAD activity using citrullination of fibrinogen as read-out. H2O2 at concentrations above...... from stimulated leukocytes was unaffected by exogenously added H2O2 at concentrations up to 1000 µM. The role of ROS in regulating PAD activity may play an important part in preventing hypercitrullination of proteins....

  4. RKIP Inhibits Local Breast Cancer Invasion by Antagonizing the Transcriptional Activation of MMP13.

    Directory of Open Access Journals (Sweden)

    Ila Datar

    Full Text Available Raf Kinase Inhibitory Protein or RKIP was initially identified as a Raf-1 binding protein using the yeast 2-hybrid screen. RKIP inhibits the activation phosphorylation of MEK by Raf-1 by competitively inhibiting the binding of MEK to Raf-1 and thus exerting an inhibitory effect on the Raf-MEK-Erk pathway. RKIP has been identified as a metastasis suppressor gene. Expression of RKIP is low in cancer metastases. Although primary tumor growth remains unaffected, re- expression of RKIP inhibits cancer metastasis. Mechanistically, RKIP constrains metastasis by inhibiting angiogenesis, local invasion, intravasation, and colonization. The molecular mechanism of how RKIP inhibits these individual steps remains undefined. In our present study, using an unbiased PCR based screening and by analyzing DNA microarray expression datasets we observe that the expression of multiple metalloproteases (MMPs including MMP1, MMP3, MMP10 and MMP13 are negatively correlated with RKIP expression in breast cancer cell lines and clinical samples. Since expression of MMPs by cancer cells is important for cancer metastasis, we hypothesize that RKIP may mediate suppression of breast cancer metastasis by inhibiting multiple MMPs. We show that the expression signature of RKIP and MMPs is better at predicting high metastatic risk than the individual gene. Using a combination of loss- and gain-of-function approaches, we find that MMP13 is the cause of RKIP-mediated inhibition of local cancer invasion. Interestingly expression of MMP13 alone is not sufficient to reverse the inhibition of breast cancer cell metastasis to the lung due to the expression of RKIP. We find that RKIP negatively regulates MMP13 through the Erk2 signaling pathway and the repression of MMP13 by RKIP is transcription factor AP-1 independent. Together, our findings indicate that RKIP inhibits cancer cell invasion, in part, via MMP13 inhibition. These data also implicate RKIP in the regulation of MMP

  5. Sprouty regulates cell migration by inhibiting the activation of Rac1 GTPase

    International Nuclear Information System (INIS)

    Poppleton, Helen M.; Edwin, Francis; Jaggar, Laura; Ray, Ramesh; Johnson, Leonard R.; Patel, Tarun B.

    2004-01-01

    Sprouty (SPRY) protein negatively modulates fibroblast growth factor and epidermal growth factor actions. We showed that human SPRY2 inhibits cell growth and migration in response to serum and several growth factors. Using rat intestinal epithelial (IEC-6) cells, we investigated the involvement of the Rho family of GTPases, RhoA, Rac1, and cdc42 in SPRY2-mediated inhibition of cell migration and proliferation. The ability of TAT-tagged SPRY2 to inhibit proliferation and migration of IEC-6 cells transfected with constitutively active mutants of RhoA(G14V), Rac1(G12V), and cdc42 (F28L) was determined. Constitutively active RhoA(G14V), Rac1(G12V), or cdc42(F28L) did not protect cells from the anti-proliferative actions of TAT-SPRY2. The ability of TAT-hSPRY2 to inhibit migration was not altered by of RhoA(G14V) and cdc42(F28L). However, Rac1(G12V) obliterated the ability of SPRY2 to inhibit cell autonomous or serum-induced migration. Also, the activation of endogenous Rac1 was attenuated by TAT-SPRY2. Thus, SPRY2 mediates its anti-migratory actions by inhibiting Rac1 activation

  6. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat.

    Science.gov (United States)

    Choi, Sin Young; Kee, Hae Jin; Jin, Li; Ryu, Yuhee; Sun, Simei; Kim, Gwi Ran; Jeong, Myung Ho

    2018-02-23

    Histone deacetylase (HDAC) inhibitors are gaining increasing attention as potential therapeutics for cardiovascular diseases as well as cancer. We recently reported that the class II HDAC inhibitor, MC1568, and the phytochemical, gallic acid, lowered high blood pressure in mouse models of hypertension. We hypothesized that class II HDACs may be involved in the regulation of hypertension. The aim of this study was to determine and compare the effects of well-known HDAC inhibitors (TMP269, panobinostat, and MC1568), phytochemicals (gallic acid, sulforaphane, and piceatannol), and anti-hypertensive drugs (losartan, carvedilol, and furosemide) on activities of class IIa HDACs (HDAC4, 5, 7, and 9). The selective class IIa HDAC inhibitor, TMP269, and the pan-HDAC inhibitor, panobinostat, but not MC1568, clearly inhibited class IIa HDAC activities. Among the three phytochemicals, gallic acid showed remarkable inhibition, whereas sulforaphane presented mild inhibition of class IIa HDACs. Piceatannol inhibited only HDAC7 activity. As expected, the anti-hypertensive drugs losartan, carvedilol, and furosemide did not affect the activity of any class IIa HDAC. In addition, we evaluated the inhibitory effect of several compounds on the activity of class l HDACs (HDAC1, 2, 3, and 8) and class IIb HDAC (HDAC6). MC1568 did not affect the activities of HDAC1, HDAC2, and HDAC3, but it reduced the activity of HDAC8 at concentrations of 1 and 10 μM. Gallic acid weakly inhibited HDAC1 and HDAC6 activities, but strongly inhibited HDAC8 activity with effectiveness comparable to that of trichostatin A. Inhibition of HDAC2 activity by sulforaphane was stronger than that by piceatnnaol. These results indicated that gallic acid is a powerful dietary inhibitor of HDAC8 and class IIa/b HDAC activities. Sulforaphane may also be used as a dietary inhibitor of HDAC2 and class IIa HDAC. Our findings suggest that the class II HDAC inhibitor, MC1568, does not inhibit class IIa HDAC, but inhibits

  7. Polyphenol derivatives inhibit human neutrophil activity by suppressing oxidative burst

    Czech Academy of Sciences Publication Activity Database

    Drábiková, K.; Perečko, T.; Nosáľ, R.; Harmatha, Juraj; Šmidrkal, J.; Jančinová, V.

    2012-01-01

    Roč. 5, Suppl.1 (2012), s. 31-31 ISSN 1337-6853. [Interdisciplinary Toxicological Conference & Advanced Toxicological Course /17./. 27.08.2012-31.08.2012, Stará Lesná] Institutional research plan: CEZ:AV0Z40550506 Keywords : polyphenol derivatives * neutrophil activity * pinosylvin Subject RIV: CC - Organic Chemistry

  8. Antioxidant and sgc-7901 cell inhibition activities of Rhizoma ...

    African Journals Online (AJOL)

    The objective of this research was to study the pharmacology of Dioscorea bulbifera L. on antioxidant and anticancer activity. Alcohol extracts of Dioscorea bulbifera L. were made out by different concentration alcohol; they were tested by Hydroxyl radical scavenging test, reducing capacity test and total antioxidant capacity ...

  9. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    International Nuclear Information System (INIS)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivates a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release

  10. Peptide Inhibitor of Complement C1 Inhibits the Peroxidase Activity of Hemoglobin and Myoglobin

    Directory of Open Access Journals (Sweden)

    Pamela S. Hair

    2017-01-01

    Full Text Available Hemoglobin is the natural carrier of oxygen in red blood cells (RBCs. While intracellular hemoglobin provides life-sustaining oxygen transport, extracellular free hemoglobin displays toxicity due to inherent peroxidase activity generating reactive oxygen species that subsequently react with the hemoglobin molecule to produce toxic heme degradation products resulting in free radicals, oxidative stress damage, and lipid peroxidation. We have recently demonstrated that Peptide Inhibitor of Complement C1 (PIC1 inhibits peroxidase activity of the heme-based enzyme myeloperoxidase. To elucidate whether PIC1 could inhibit peroxidase activity of hemoglobin, we evaluated the consequence of PIC1 on RBC lysates, methemoglobin, and myoglobin using tetramethylbenzidine (TMB as an oxidation target. PIC1 reversibly and dose-dependently prevented TMB oxidation to tetramethylbenzidine diimine by RBC lysates, methemoglobin, and myoglobin, having comparable activity to the inhibitor 4-aminobenzoic acid hydrazide. PIC1 inhibited TMB oxidation of RBC lysates similar to L-cysteine suggesting that the two cysteine residues contained in PIC1 may mediate peroxidase activity. PIC1 also inhibited heme destruction by NaOCl for RBC lysates, hemoglobin, and myoglobin as assayed by preservation of the Soret absorbance peak in the presence of NaOCl and reduction in free iron release. In conclusion, PIC1 inhibits peroxidase activity of hemoglobin and myoglobin likely via an antioxidant mechanism.

  11. Antioxidant, antityrosinase, anticholinesterase, and nitric oxide inhibition activities of three malaysian macaranga species.

    Science.gov (United States)

    Mazlan, Nor Aishah; Mediani, Ahmed; Abas, Faridah; Ahmad, Syahida; Shaari, Khozirah; Khamis, Shamsul; Lajis, N H

    2013-01-01

    The methanol extracts of three Macaranga species (M. denticulata, M. pruinosa, and M. gigantea) were screened to evaluate their total phenolic contents and activities as cholinesterase inhibitors, nitric oxide (NO) production inhibitors, tyrosinase inhibitors, and antioxidants. The bark of M. denticulata showed the highest total phenolic content (2682 mg gallic acid equivalent (GAE)/100 g) and free radical scavenging activity (IC50 = 0.063 mg/mL). All of the samples inhibited linoleic acid peroxidation by greater than 80%, with the leaves of M. gigantea exhibiting the highest inhibition of 92.21%. Most of the samples exhibited significant antioxidant potential. The bark of M. denticulata and the leaves of both M. pruinosa and M. gigantea exhibited greater than 50% tyrosinase inhibition, with the bark of M. denticulata having the highest percentage of inhibition (68.7%). The bark and leaves of M. denticulata exhibited greater than 50% inhibition (73.82% and 54.50%, resp.) of the acetylcholinesterase enzyme (AChE), while none of the samples showed any significant inhibition of butyrylcholinesterase (BChE). Only the bark of M. denticulata and M. gigantea displayed greater than 50% inhibition of nitric oxide production in cells (81.79% and 56.51%, resp.). These bioactivities indicate that some Macaranga spp. have therapeutic potential in medicinal research.

  12. Antioxidant, Antityrosinase, Anticholinesterase, and Nitric Oxide Inhibition Activities of Three Malaysian Macaranga Species

    Directory of Open Access Journals (Sweden)

    Nor Aishah Mazlan

    2013-01-01

    Full Text Available The methanol extracts of three Macaranga species (M. denticulata, M. pruinosa, and M. gigantea were screened to evaluate their total phenolic contents and activities as cholinesterase inhibitors, nitric oxide (NO production inhibitors, tyrosinase inhibitors, and antioxidants. The bark of M. denticulata showed the highest total phenolic content (2682 mg gallic acid equivalent (GAE/100 g and free radical scavenging activity (IC50 = 0.063 mg/mL. All of the samples inhibited linoleic acid peroxidation by greater than 80%, with the leaves of M. gigantea exhibiting the highest inhibition of 92.21%. Most of the samples exhibited significant antioxidant potential. The bark of M. denticulata and the leaves of both M. pruinosa and M. gigantea exhibited greater than 50% tyrosinase inhibition, with the bark of M. denticulata having the highest percentage of inhibition (68.7%. The bark and leaves of M. denticulata exhibited greater than 50% inhibition (73.82% and 54.50%, resp. of the acetylcholinesterase enzyme (AChE, while none of the samples showed any significant inhibition of butyrylcholinesterase (BChE. Only the bark of M. denticulata and M. gigantea displayed greater than 50% inhibition of nitric oxide production in cells (81.79% and 56.51%, resp.. These bioactivities indicate that some Macaranga spp. have therapeutic potential in medicinal research.

  13. Characterization and Antioxidant Properties of Six Algerian Propolis Extracts: Ethyl Acetate Extracts Inhibit Myeloperoxidase Activity

    Directory of Open Access Journals (Sweden)

    Yasmina Mokhtaria Boufadi

    2014-02-01

    Full Text Available Because propolis contains many types of antioxidant compounds such as polyphenols and flavonoids, it can be useful in preventing oxidative damages. Ethyl acetate extracts of propolis from several Algerian regions show high activity by scavenging free radicals, preventing lipid peroxidation and inhibiting myeloperoxidase (MPO. By fractioning and assaying ethyl acetate extracts, it was observed that both polyphenols and flavonoids contribute to these activities. A correlation was observed between the polyphenol content and the MPO inhibition. However, it seems that kaempferol, a flavonoid, contributes mainly to the MPO inhibition. This molecule is in a high amount in the ethyl acetate extract and demonstrates the best efficiency towards the enzyme with an inhibiting concentration at 50% of 4 ± 2 µM.

  14. Disposition, Metabolism and Histone Deacetylase and Acetyltransferase Inhibition Activity of Tetrahydrocurcumin and Other Curcuminoids

    Directory of Open Access Journals (Sweden)

    Júlia T. Novaes

    2017-10-01

    Full Text Available Tetrahydrocurcumin (THC, curcumin and calebin-A are curcuminoids found in turmeric (Curcuma longa. Curcuminoids have been established to have a variety of pharmacological activities and are used as natural health supplements. The purpose of this study was to identify the metabolism, excretion, antioxidant, anti-inflammatory and anticancer properties of these curcuminoids and to determine disposition of THC in rats after oral administration. We developed a UHPLC–MS/MS assay for THC in rat serum and urine. THC shows multiple redistribution phases with corresponding increases in urinary excretion rate. In-vitro antioxidant activity, histone deacetylase (HDAC activity, histone acetyltransferase (HAT activity and anti-inflammatory inhibitory activity were examined using commercial assay kits. Anticancer activity was determined in Sup-T1 lymphoma cells. Our results indicate THC was poorly absorbed after oral administration and primarily excreted via non-renal routes. All curcuminoids exhibited multiple pharmacological effects in vitro, including potent antioxidant activity as well as inhibition of CYP2C9, CYP3A4 and lipoxygenase activity without affecting the release of TNF-α. Unlike curcumin and calebin-A, THC did not inhibit HDAC1 and PCAF and displayed a weaker growth inhibition activity against Sup-T1 cells. We show evidence for the first time that curcumin and calebin-A inhibit HAT and PCAF, possibly through a Michael-addition mechanism.

  15. Tamoxifen does not inhibit the swell activated chloride channel in human neutrophils during the respiratory burst.

    Science.gov (United States)

    Ahluwalia, Jatinder

    2008-10-31

    Effective functioning of neutrophils relies upon electron translocation through the NADPH oxidase (NOX). The electron current generated (I(e)) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential in activated human neutrophils. Swelling activated chloride channels have been demonstrated in part to counteract the depolarisation generated by the NADPH oxidase I(e). In the present study, the effects of inhibitors of swell activated chloride channels on ROS production and on the swelling activated chloride conductance was investigated in activated human neutrophils. Tamoxifen (10 microM), a specific inhibitor for swell activated chloride channels in neutrophils, completely inhibited both the PMA and FMLP stimulated respiratory burst. This inhibition of the neutrophil respiratory burst was not due to the blocking effect of tamoxifen on the swelling activated chloride conductance in these cells. These results demonstrate that a tamoxifen insensitive swell activated chloride channel has important significance during the neutrophil respiratory burst.

  16. Augmentation of the anticancer activity of CYT997 in human prostate cancer by inhibiting Src activity.

    Science.gov (United States)

    Teng, Yong; Cai, Yafei; Pi, Wenhu; Gao, Lixia; Shay, Chloe

    2017-06-12

    Abnormalities of tubulin polymerization and microtubule assembly are often seen in cancer, which make them very suitable targets for the development of therapeutic approach against rapidly dividing and aggressive cancer cells. CYT997 is a novel microtubule-disrupting agent with anticancer activity in multiple cancer types including prostate cancer. However, the molecular mechanisms of action of CYT997 in prostate cancer have not been well characterized. Src knockdown cells were achieved by lentiviral-mediated interference. The drug effects on cell proliferation were measured by MTS. The drug effects on cell viability and death were determined by Cell Titer-Glo® Luminescent cell viability kit and flow cytometry with Zombie Aqua™ staining. The drug effects on apoptosis were assessed by Cell Death Detection Elisa kit and Western blot with a cleaved PARP antibody. The drug effects on cell invasion were examined by Matrigel-coated Boyden chambers. Oxidative stress was detected by DCFH-DA staining and electrochemical biosensor. Mouse models generated by subcutaneous or intracardiac injection were used to investigate the in vivo drug efficacy in tumor growth and metastasis. CYT997 effectively inhibited proliferation, survival, and invasion of prostate cancer cells via blocking multiple oncogenic signaling cascades but not the Src pathway. Inhibition of Src expression by small hairpin RNA or inactivation of Src by dasatinib increased the CYT997-induced cytotoxicity of in vitro. Moreover, the combination of dasatinib and CYT997 exhibited a superior inhibitory effect on tumor growth and metastasis compared with either of the drugs alone. Our findings demonstrate that blockage of Src augments the anticancer effect of CYT997 on prostate cancer and suggest that co-treatment of dasatinib and CYT997 may represent an effective therapeutic regimen for limiting prostate cancer.

  17. Hypoxia inhibits semicarbazide-sensitive amine oxidase activity in adipocytes.

    Science.gov (United States)

    Repessé, Xavier; Moldes, Marthe; Muscat, Adeline; Vatier, Camille; Chetrite, Gérard; Gille, Thomas; Planes, Carole; Filip, Anna; Mercier, Nathalie; Duranteau, Jacques; Fève, Bruno

    2015-08-15

    Semicarbazide-sensitive amine oxidase (SSAO), an enzyme highly expressed on adipocyte plasma membranes, converts primary amines into aldehydes, ammonium and hydrogen peroxide, and is likely involved in endothelial damage during the course of diabetes and obesity. We investigated whether in vitro, adipocyte SSAO was modulated under hypoxic conditions that is present in adipose tissue from obese or intensive care unit. Physical or pharmacological hypoxia decreased SSAO activity in murine adipocytes and human adipose tissue explants, while enzyme expression was preserved. This effect was time-, dose-dependent and reversible. This down-regulation was confirmed in vivo in subcutaneous adipose tissue from a rat model of hypoxia. Hypoxia-induced suppression in SSAO activity was independent of the HIF-1-α pathway or of oxidative stress, but was partially antagonized by medium acidification. Hypoxia-induced down-regulation of SSAO activity could represent an adaptive mechanism to lower toxic molecules production, and may thus protect from tissue injury during these harmful conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation

    OpenAIRE

    Wang, Gene-Jack; Volkow, Nora D.; Telang, Frank; Jayne, Millard; Ma, Yeming; Pradhan, Kith; Zhu, Wei; Wong, Christopher T.; Thanos, Panayotis K.; Geliebter, Allan; Biegon, Anat; Fowler, Joanna S.

    2009-01-01

    Although impaired inhibitory control is linked to a broad spectrum of health problems, including obesity, the brain mechanism(s) underlying voluntary control of hunger are not well understood. We assessed the brain circuits involved in voluntary inhibition of hunger during food stimulation in 23 fasted men and women using PET and 2-deoxy-2[18F]fluoro-D-glucose (18FDG). In men, but not in women, food stimulation with inhibition significantly decreased activation in amygdala, hippocampus, insul...

  19. Activation of protein kinase C inhibits synthesis and release of decidual prolactin

    International Nuclear Information System (INIS)

    Harman, I.; Costello, A.; Ganong, B.; Bell, R.M.; Handwerger, S.

    1986-01-01

    Activation of calcium-activated, phospholipid-dependent protein kinase C by diacylglycerol and phorbol esters has been shown to mediate release of hormones in many systems. To determine whether protein kinase C activation is also involved in the regulation of prolactin release from human decidual, the authors have examined the effects of various acylglycerols and phorbol esters on the synthesis and release of prolactin from cultured human decidual cells. sn-1,2-Dioctanolyglycerol (diC 8 ), which is known to stimulate protein kinase C in other systems, inhibited prolactin release in a dose-dependent manner with maximal inhibition of 53.1% at 100 μM. Diolein (100 μM), which also stimulates protein kinase C activity in some systems, inhibited prolactin release by 21.3%. Phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-didecanoate, and 4β-phorbol 12,13-dibutyrate, which activate protein kinase C in other systems, also inhibited the release of prolactin, which the protein kinase C inactivate 4α-phorbol-12,13-didecanoate was without effect. The inhibition of prolactin release was secondary to a decrease in prolactin synthesis. Although diC 8 and PMA inhibited the synthesis and release of prolactin, these agents had no effect on the synthesis or release of trichloroacetic acid-precipitable [ 35 S]methionine-labeled decidual proteins and did not cause the release of the cytosolic enzymes lactic dehydrogenase and alkaline phosphatase. DiC 8 and PMA stimulates the specific activity of protein kinase C in decidual tissue by 14.6 and 14.0-fold, respectively. The inhibition of the synthesis and release of prolactin by diC 8 and phorbol esters strongly implicates protein kinase C in the regulation of the production and release of prolactin from the decidua

  20. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity.

    Directory of Open Access Journals (Sweden)

    Marta Stasiak

    Full Text Available Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1 melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment.

  1. Salinity Inhibits Rice Seed Germination by Reducing α-Amylase Activity via Decreased Bioactive Gibberellin Content

    Directory of Open Access Journals (Sweden)

    Li Liu

    2018-03-01

    Full Text Available Seed germination plays important roles in the establishment of seedlings and their subsequent growth; however, seed germination is inhibited by salinity, and the inhibitory mechanism remains elusive. Our results indicate that NaCl treatment inhibits rice seed germination by decreasing the contents of bioactive gibberellins (GAs, such as GA1 and GA4, and that this inhibition can be rescued by exogenous bioactive GA application. To explore the mechanism of bioactive GA deficiency, the effect of NaCl on GA metabolic gene expression was investigated, revealing that expression of both GA biosynthetic genes and GA-inactivated genes was up-regulated by NaCl treatment. These results suggest that NaCl-induced bioactive GA deficiency is caused by up-regulated expression of GA-inactivated genes, and the up-regulated expression of GA biosynthetic genes might be a consequence of negative feedback regulation of the bioactive GA deficiency. Moreover, we provide evidence that NaCl-induced bioactive GA deficiency inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression. Additionally, exogenous bioactive GA rescues NaCl-inhibited seed germination by enhancing α-amylase activity. Thus, NaCl treatment reduces bioactive GA content through promotion of bioactive GA inactivation, which in turn inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression.

  2. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Mei [Department of Pharmacy, Shanghai Institute of Health Sciences and Health School Attached to SJTU-SM, 279 Zhouzhu Road, Shanghai 201318 (China); Liu, Ya-Rong; Liu, Hai-Jun [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Fang, Chao, E-mail: fangchao100@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Hong-Zhuan, E-mail: hongzhuan_chen@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China)

    2014-11-15

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC.

  3. Thiolactomycin inhibits D-aspartate oxidase: a novel approach to probing the active site environment.

    Science.gov (United States)

    Katane, Masumi; Saitoh, Yasuaki; Hanai, Toshihiko; Sekine, Masae; Furuchi, Takemitsu; Koyama, Nobuhiro; Nakagome, Izumi; Tomoda, Hiroshi; Hirono, Shuichi; Homma, Hiroshi

    2010-10-01

    D-Aspartate oxidase (DDO) and D-amino acid oxidase (DAO) are flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the oxidative deamination of D-amino acids. While several functionally and structurally important amino acid residues have been identified in the DAO protein, little is known about the structure-function relationships of DDO. In the search for a potent DDO inhibitor as a novel tool for investigating its structure-function relationships, a large number of biologically active compounds of microbial origin were screened for their ability to inhibit the enzymatic activity of mouse DDO. We discovered several compounds that inhibited the activity of mouse DDO, and one of the compounds identified, thiolactomycin (TLM), was then characterized and evaluated as a novel DDO inhibitor. TLM reversibly inhibited the activity of mouse DDO with a mixed type of inhibition more efficiently than meso-tartrate and malonate, known competitive inhibitors of mammalian DDOs. The selectivity of TLM was investigated using various DDOs and DAOs, and it was found that TLM inhibits not only DDO, but also DAO. Further experiments with apoenzymes of DDO and DAO revealed that TLM is most likely to inhibit the activities of DDO and DAO by competition with both the substrate and the coenzyme, FAD. Structural models of mouse DDO/TLM complexes supported this finding. The binding mode of TLM to DDO was validated further by site-directed mutagenesis of an active site residue, Arg-237. Collectively, our findings show that TLM is a novel, active site-directed DDO inhibitor that will be useful for elucidating the molecular details of the active site environment of DDO. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  4. Toxoplasma gondii actively inhibits neuronal function in chronically infected mice.

    Directory of Open Access Journals (Sweden)

    Fahad Haroon

    Full Text Available Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii-infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca(2+ imaging studies revealed that tachyzoites actively manipulated Ca(2+ signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca(2+ uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca(2+ stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host.

  5. Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-alpha

    DEFF Research Database (Denmark)

    Jiang, G; den Hertog, J; Su, J

    1999-01-01

    that dimerization can negatively regulate activity, through the interaction of an inhibitory 'wedge' on one monomer with the catalytic cleft of domain 1 in the other monomer. Here we show that dimerization inhibits the activity of a full-length RPTP in vivo. We generated stable disulphide-bonded full...

  6. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion

    NARCIS (Netherlands)

    Smeets, P.A.M.; Vidarsdottir, S.; Graaf, de C.; Stafleu, A.; Osch, M.J.P.; Viergever, M.A.; Pijl, H.; Grond, van der J.

    2007-01-01

    Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. Am J Physiol Endocrinol Metab 293: E754-E758, 2007. First published June 12, 2007; doi:10.1152/ajpendo.00231.2007. - We previously showed that hypothalamic neuronal activity, as measured by the blood

  7. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition

    Directory of Open Access Journals (Sweden)

    Daniel Simon Razik

    2013-09-01

    Full Text Available In the central nervous system, GABA transporters (GATs very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM, reaching a level of 80% at 500-1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed towards an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.

  8. ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo.

    Science.gov (United States)

    Yin, Gang; Fan, Jin; Zhou, Wei; Ding, Qingfeng; Zhang, Jun; Wu, Xuan; Tang, Pengyu; Zhou, Hao; Wan, Bowen; Yin, Guoyong

    2017-10-10

    mTOR is a valuable oncotarget for osteosarcoma. The anti-osteosarcoma activity by a novel mTOR kinase inhibitor, CZ415, was evaluated. We demonstrated that CZ415 potently inhibited survival and proliferation of known osteosarcoma cell lines (U2OS, MG-63 and SaOs2), and primary human osteosarcoma cells. Further, CZ415 provoked apoptosis and disrupted cell cycle progression in osteosarcoma cells. CZ415 treatment in osteosarcoma cells concurrently blocked mTORC1 and mTORC2 activation. Intriguingly, ERK-MAPK activation could be a major resistance factor of CZ415. ERK inhibition (by MEK162/U0126) or knockdown (by targeted ERK1/2 shRNAs) dramatically sensitized CZ415-induced osteosarcoma cell apoptosis. In vivo , CZ415 oral administration efficiently inhibited U2OS tumor growth in mice. Its activity was further potentiated with co-administration of MEK162. Collectively, we demonstrate that ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo . CZ415 could be further tested as a promising anti-osteosarcoma agent, alone or in combination of ERK inhibition.

  9. Phenolic constituents isolated from Fragaria ananassa Duch. inhibit antigen-stimulated degranulation through direct inhibition of spleen tyrosine kinase activation.

    Science.gov (United States)

    Ninomiya, Masayuki; Itoh, Tomohiro; Ishikawa, Suguru; Saiki, Miho; Narumiya, Kenji; Yasuda, Masaharu; Koshikawa, Kaneyuki; Nozawa, Yoshinori; Koketsu, Mamoru

    2010-08-15

    We isolated eight phenolic constituents from Fragaria ananassa Duch. (strawberry) and determined their structures using 1D, 2D-NMR. Among the isolated compounds, linocinnamarin (LN), 1-O-trans-cinnamoyl-beta-d-glucopyranose (CG), and cinnamic acid (CA) exhibited antigen (Ag)-stimulated degranulation in rat basophilic leukemia RBL-2H3 cells. In order to reveal the underlying mechanisms, we examined the effects of LN and CA on cellular responses induced by antigen stimulation. Treatment with both LN and CA markedly inhibited antigen-stimulated elevation of intracellular free Ca(2+) concentration and reactive oxygen species (ROS). Both LN and CA suppressed Ag-stimulated spleen tyrosine kinase (Syk) activation. These results indicate that inhibition of antigen-stimulated degranulation by LN and CA is mainly due to inactivation of Syk/phospholipase Cgamma (PLCgamma) pathways. Our findings suggest that LN and CA isolated from F. ananassa Duch. (strawberry) could be beneficial agents for alleviating symptoms of type I allergy. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Sestrins Inhibit mTORC1 Kinase Activation through the GATOR Complex

    Directory of Open Access Journals (Sweden)

    Anita Parmigiani

    2014-11-01

    Full Text Available The mechanistic target of rapamycin complex 1 (mTORC1 kinase is a sensor of different environmental conditions and regulator of cell growth, metabolism, and autophagy. mTORC1 is activated by Rag GTPases, working as RagA:RagB and RagC:RagD heterodimers. Rags control mTORC1 activity by tethering mTORC1 to the lysosomes where it is activated by Rheb GTPase. RagA:RagB, active in its GTP-bound form, is inhibited by GATOR1 complex, a GTPase-activating protein, and GATOR1 is in turn negatively regulated by GATOR2 complex. Sestrins are stress-responsive proteins that inhibit mTORC1 via activation of AMP-activated protein kinase (AMPK and tuberous sclerosis complex. Here we report an AMPK-independent mechanism of mTORC1 inhibition by Sestrins mediated by their interaction with GATOR2. As a result of this interaction, the Sestrins suppress mTOR lysosomal localization in a Rag-dependent manner. This mechanism is potentially involved in mTORC1 regulation by amino acids, rotenone, and tunicamycin, connecting stress response with mTORC1 inhibition.

  11. Antimycobacterial and Photosynthetic Electron Transport Inhibiting Activity of Ring-Substituted 4-Arylamino-7-Chloroquinolinium Chlorides

    Directory of Open Access Journals (Sweden)

    Alois Cizek

    2013-09-01

    Full Text Available In this study, a series of twenty-five ring-substituted 4-arylamino-7-chloroquinolinium chlorides were prepared and characterized. The compounds were tested for their activity related to inhibition of photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts and also primary in vitro screening of the synthesized compounds was performed against mycobacterial species. 4-[(2-Bromophenylamino]-7-chloroquinolinium chloride showed high biological activity against M. marinum, M. kansasii, M. smegmatis and 7-chloro-4-[(2-methylphenylamino]quinolinium chloride demonstrated noteworthy biological activity against M. smegmatis and M. avium subsp. paratuberculosis. The most effective compounds demonstrated quite low toxicity (LD50 > 20 μmol/L against the human monocytic leukemia THP-1 cell line within preliminary in vitro cytotoxicity screening. The tested compounds were found to inhibit PET in photosystem II. The PET-inhibiting activity expressed by IC50 value of the most active compound 7-chloro-4-[(3-trifluoromethylphenylamino]quinolinium chloride was 27 μmol/L and PET-inhibiting activity of ortho-substituted compounds was significantly lower than this of meta- and para-substituted ones. The structure-activity relationships are discussed for all compounds.

  12. A novel AMPK activator hernandezine inhibits LPS-induced TNFα production.

    Science.gov (United States)

    Li, Ping; Li, Xiaofang; Wu, Yonghong; Li, Manxiang; Wang, Xiaochuang

    2017-09-15

    Here, we found that hernandezine, a novel AMPK activator, inhibited LPS-induced TNFα expression/production in human macrophage cells (THP-1 and U937 lines). Activation of AMPK is required for hernandezine-induced anti-LPS response. AMPKα shRNA or dominant negative mutation (T172A) blocked hernandezine-induced AMPK activation, which almost completely reversed anti-LPS activity by hernandezine. Exogenous expression of the constitutively activate AMPKα (T172D, caAMPKα) also suppressed TNFα production by LPS. Remarkably, hernandezine was unable to further inhibit LPS-mediated TNFα production in caAMPKα-expressing cells. Hernandezine inhibited LPS-induced reactive oxygen species (ROS) production and nuclear factor kappa B (NFκB) activation. Treatment of hernandezine in ex-vivo cultured primary human peripheral blood mononuclear cells (PBMCs) also largely attenuated LPS-induced TNFα production. Together, we conclude that AMPK activation by hernandezine inhibits LPS-induced TNFα production in macrophages/monocytes.

  13. Genistein inhibited ammonia induced astrocyte swelling by inhibiting NF-κB activation-mediated nitric oxide formation.

    Science.gov (United States)

    Dai, Hongliang; Jia, Guizhi; Wang, Wei; Liang, Chunguang; Han, Siyu; Chu, Minghui; Mei, Xifan

    2017-06-01

    Our previous study has indicated the involvement of epidermal growth factor receptor (EGFR) transactivation in ammonia-induced astrocyte swelling, which represents a major pathogenesis of brain edema in hepatic encephalopathy. In this study, we examined the effect of genistein, a naturally occurred broad-spectrum protein tyrosine kinase (PTK) inhibitor, on ammonia-induced cell swelling. We found that genistein pretreatment significantly prevented ammonia-induced astrocyte swelling. Mechanistically, ammonia triggered EGFR/extracellular signal-regulated kinase (ERK) association and subsequent ERK phosphorylation were alleviated by genistein pretreatment. Moreover, ammonia-induced NF-κB nuclear location, iNOS expression, and consequent NO production were all prevented by AG1478 and genistein pretreatment. This study suggested that genistein could alleviate ammonia-induced astrocyte swelling, which may be, at least partly, related to its PTK-inhibiting activity and repression of NF-κB mediated iNOS-derived NO accumulation.

  14. Triterpenoids from Ganoderma lucidum inhibit the activation of EBV antigens as telomerase inhibitors.

    Science.gov (United States)

    Zheng, Dong-Shu; Chen, Liang-Shu

    2017-10-01

    Nasopharyngeal carcinoma (NPC) is a malignant disease that threatens the health of humans. To find effective agents for the inhibition of Epstein-Barr virus (EBV) infection, which is associated with NPC, a phytochemical investigation of Ganoderma lucidum was carried out in the present study. Five triterpenoids were identified, including ganoderic acid A (compound 1), ganoderic acid B (compound 2), ganoderol B (compound 3), ganodermanontriol (compound 4), and ganodermanondiol (compound 5), on the basis of spectroscopic analysis. An inhibition of EBV antigens activation assay was implemented to elucidate the triterpenoids from G. lucidum and potentially prevent NPC. All the triterpenoids showed significant inhibitory effects on both EBV EA and CA activation at 16 nmol. At 3.2 nmol, all the compounds moderately inhibited the activation of the two antigens. The activity of telomerase was inhibited by these triterpenoids at 10 µM. Molecular docking demonstrated that compound 1 was able to inhibit telomerase as a ligand. In addition, the physicochemical properties of these compounds were calculated to elucidate their drug-like properties. These results provided evidence for the application of these triterpenoids and whole G. lucidum in the treatment of NPC.

  15. CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity.

    Science.gov (United States)

    Li, Yuheng; Zhong, Guohui; Sun, Weijia; Zhao, Chengyang; Zhang, Pengfei; Song, Jinping; Zhao, Dingsheng; Jin, Xiaoyan; Li, Qi; Ling, Shukuan; Li, Yingxian

    2015-11-04

    The CD44 is cellular surface adhesion molecule that is involved in physiological processes such as hematopoiesis, lymphocyte homing and limb development. It plays an important role in a variety of cellular functions including adhesion, migration, invasion and survival. In bone tissue, CD44 is widely expressed in osteoblasts, osteoclasts and osteocytes. However, the mechanisms underlying its role in bone metabolism remain unclear. We found that CD44 expression was upregulated during osteoclastogenesis. CD44 deficiency in vitro significantly inhibited osteoclast activity and function by regulating the NF-κB/NFATc1-mediated pathway. In vivo, CD44 mRNA levels were significantly upregulated in osteoclasts isolated from the hindlimb of tail-suspended mice. CD44 deficiency can reduce osteoclast activity and counteract cortical bone loss in the hindlimb of unloaded mice. These results suggest that therapeutic inhibition of CD44 may protect from unloading induced bone loss by inhibiting osteoclast activity.

  16. Feed-forward inhibition of androgen receptor activity by glucocorticoid action in human adipocytes.

    Science.gov (United States)

    Hartig, Sean M; He, Bin; Newberg, Justin Y; Ochsner, Scott A; Loose, David S; Lanz, Rainer B; McKenna, Neil J; Buehrer, Benjamin M; McGuire, Sean E; Marcelli, Marco; Mancini, Michael A

    2012-09-21

    We compared transcriptomes of terminally differentiated mouse 3T3-L1 and human adipocytes to identify cell-specific differences. Gene expression and high content analysis (HCA) data identified the androgen receptor (AR) as both expressed and functional, exclusively during early human adipocyte differentiation. The AR agonist dihydrotestosterone (DHT) inhibited human adipocyte maturation by downregulation of adipocyte marker genes, but not in 3T3-L1. It is interesting that AR induction corresponded with dexamethasone activation of the glucocorticoid receptor (GR); however, when exposed to the differentiation cocktail required for adipocyte maturation, AR adopted an antagonist conformation and was transcriptionally repressed. To further explore effectors within the cocktail, we applied an image-based support vector machine (SVM) classification scheme to show that adipocyte differentiation components inhibit AR action. The results demonstrate human adipocyte differentiation, via GR activation, upregulates AR but also inhibits AR transcriptional activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Hypouricaemic action of mangiferin results from metabolite norathyriol via inhibiting xanthine oxidase activity.

    Science.gov (United States)

    Niu, Yanfen; Liu, Jia; Liu, Hai-Yang; Gao, Li-Hui; Feng, Guo-Hua; Liu, Xu; Li, Ling

    2016-09-01

    Context Mangiferin has been reported to possess a potential hypouricaemic effect. However, the pharmacokinetic studies in rats showed that its oral bioavailability was only 1.2%, suggesting that mangiferin metabolites might exert the action. Objective The hypouricaemic effect and the xanthine oxidase inhibition of mangiferin and norathyriol, a mangiferin metabolite, were investigated. Inhibition of norathyriol analogues (compounds 3-9) toward xanthine oxidase was also evaluated. Materials and methods For a dose-dependent study, mangiferin (1.5-6.0 mg/kg) and norathyriol (0.92-3.7 mg/kg) were administered intragastrically to mice twice daily for five times. For a time-course study, mice received mangiferin and norathyriol both at a single dose of 7.1 μmol/kg. In vitro, inhibition of test compounds (2.4-2.4 mM) against xanthine oxidase activity was evaluated by the spectrophotometrical method. The inhibition type was identified from Lineweaver-Burk plots. Results Norathyriol (0.92, 1.85 and 3.7 mg/kg) dose dependently decreased the serum urate levels by 27.0, 33.6 and 37.4%, respectively. The action was more potent than that of mangiferin at the low dose, but was equivalent at the higher doses. Additionally, the hypouricaemic action of them exhibited a time dependence. In vitro, norathyriol markedly inhibited the xanthine oxidase activities, with the IC50 value of 44.6 μM, but mangiferin did not. The kinetic studies showed that norathyriol was an uncompetitive inhibitor by Lineweaver-Burk plots. The structure-activity relationships exhibited that three hydroxyl groups in norathyriol at the C-1, C-3 and C-6 positions were essential for maintaining xanthine oxidase inhibition. Discussion and conclusion Norathyriol was responsible for the hypouricaemic effect of mangiferin via inhibiting xanthine oxidase activity.

  18. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    International Nuclear Information System (INIS)

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-01-01

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li 2 CO 3 significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li 2 CO 3 did not affect PI3K-mediated PI(3,4,5)P 3 production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li 2 CO 3 on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li 2 CO 3 significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li 2 CO 3 significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity

  19. Inhibition of natural killer cell activity by eicosapentaenoic acid in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, N.; Sugiyama, E.; Hamazaki, T.; Yano, S.

    1988-01-15

    To examine the effects of in vivo eicosapentaenoic acid (EPA) on natural killer (NK) cell activity, C3H/He mice each received a single intraperitoneal bolus of an emulsion of trieicosapentaenoyl-glycerol (EPA-TG). Spleen cells were tested for NK activity using /sup 51/Chromium-release assays against YAC-1 target cells. Forty eight hours after injection, NK activity was inhibited in a dose-dependent manner. EPA-TG emulsion also inhibited the NK activity of NK-enriched effector cells. Decreased cytotoxicity was first noted 24 hr after injection; it resumed the baseline by 7 days. The addition of EPA-TG emulsion to a cytotoxicity assay system resulted in moderate depression of NK activity. These results demonstrate that EPA has significant immunomodulatory effects on NK activity.

  20. Tanshinone IIA attenuates neuropathic pain via inhibiting glial activation and immune response.

    Science.gov (United States)

    Cao, Fa-Le; Xu, Min; Wang, Yan; Gong, Ke-Rui; Zhang, Jin-Tao

    2015-01-01

    Neuropathic pain, characterized by spontaneous pain, hyperalgesia and allodynia, is a devastating neurological disease that seriously affects patients' quality of life. We have previously shown that tanshinone IIA (TIIA), an important lipophilic component of Danshen, had significant anti-nociceptive effect in somatic and visceral pain, it is surprisingly noted that few pharmacological studies have been carried out to explore the possible analgesic action of TIIA on neuropathic pain and the underlying mechanisms. Therefore, in the present study, by using spinal nerve ligation (SNL) pain model, the antinociceptive and antihyperalgesic effects of TIIA on neuropathic pain were evaluated by intraperitoneal administration in rats. The results indicated that TIIA dose-dependently inhibited SNL-induced mechanical hyperalgesia. As revealed by OX42 levels, TIIA effectively repressed the activation of spinal microglial activation in SNL-induced neuropathic pain. Meanwhile, TIIA also decreased the expressions of inflammatory cytokines TNF-α and IL-1β in the spinal cord. Furthermore, TIIA inhibited oxidative stress by significantly rescuing the superoxide dismutase (SOD) activity and decreasing the malondialdehyde (MDA). Moreover, TIIA depressed SNL-induced MAPKs activation in spinal cord. Taken together, our study provides evidence that TIIA inhibited SNL-induced neuropathic pain through depressing microglial activation and immune response by the inhibition of mitogen-activated protein kinases (MAPKs) pathways. Our findings suggest that TIIA might be a promising agent in the treatment of neuropathic pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A novel aspirin prodrug inhibits NFκB activity and breast cancer stem cell properties

    International Nuclear Information System (INIS)

    Kastrati, Irida; Litosh, Vladislav A.; Zhao, Shuangping; Alvarez, Manuel; Thatcher, Gregory R. J.; Frasor, Jonna

    2015-01-01

    Activation of cyclooxygenase (COX)/prostaglandin and nuclear factor κB (NFκB) pathways can promote breast tumor initiation, growth, and progression to drug resistance and metastasis. Thus, anti-inflammatory drugs have been widely explored as chemopreventive and antineoplastic agents. Aspirin (ASA), in particular, is associated with reduced breast cancer incidence but gastrointestinal toxicity has limited its usefulness. To improve potency and minimize toxicity, ASA ester prodrugs have been developed, in which the carboxylic acid of ASA is masked and ancillary pharmacophores can be incorporated. To date, the effects of ASA and ASA prodrugs have been largely attributed to COX inhibition and reduced prostaglandin production. However, ASA has also been reported to inhibit the NFκB pathway at very high doses. Whether ASA prodrugs can inhibit NFκB signaling remains relatively unexplored. A library of ASA prodrugs was synthesized and screened for inhibition of NFκB activity and cancer stem-like cell (CSC) properties, an important PGE2-and NFκB-dependent phenotype of aggressive breast cancers. Inhibition of NFκB activity was determined by dual luciferase assay, RT-QPCR, p65 DNA binding activity and Western blots. Inhibition of CSC properties was determined by mammosphere growth, CD44 + CD24 − immunophenotype and tumorigenicity at limiting dilution. While we identified multiple ASA prodrugs that are capable of inhibiting the NFκB pathway, several were associated with cytotoxicity. Of particular interest was GTCpFE, an ASA prodrug with fumarate as the ancillary pharmacophore. This prodrug potently inhibits NFκB activity without innate cytotoxicity. In addition, GTCpFE exhibited selective anti-CSC activity by reducing mammosphere growth and the CD44 + CD24 − immunophenotype. Moreover, GTCpFE pre-treated cells were less tumorigenic and, when tumors did form, latency was increased and growth rate was reduced. Structure-activity relationships for GTCpFE indicate

  2. Thioredoxin 80-Activated-Monocytes (TAMs) Inhibit the Replication of Intracellular Pathogens

    DEFF Research Database (Denmark)

    Cortes-Bratti, Ximena; Brasseres, Eugenie; Herrera-Rodriquez, Fabiola

    2011-01-01

    for a role of TAMs in the control of intracellular bacterial infections. As model pathogens we have chosen Listeria monocytogenes and Brucella abortus which replicate in the cytosol and the endoplasmic reticulum respectively. Our data indicate that TAMs efficiently inhibit intracellular growth of both L....... monocytogenes and B. abortus. Further analysis shows that Trx80 activation prevents the escape of GFP-tagged L. monocytogenes into the cytosol, and induces accumulation of the bacteria within the lysosomes. Inhibition of the lysosomal activity by chloroquine treatment resulted in higher replication of bacteria...

  3. Inhibition of hemolysis activities by polysaccharides in the seaweed of Japan

    OpenAIRE

    前田, 陽一; 柴田, 潔; 長谷川, 和清; 荒井, 千明

    2014-01-01

    Hemolytic activities of crude extracts from 10 seaweed ( 2 green algae, 2 brown algae and 6 red algae ) were evaluated by the absorbance at 541nm on the spectrophotometric analysis. The activities of Eisenia bicyclis and Undaria pinnatifida showed without density-dependent. Quantitative Analysis of Polysaccharides in algae by phenol-sulfuric acid reaction ware carried out and revealed the inhibition of hemolysis activity ware increased by the quantity of Polysaccharides although not proportio...

  4. Punigratane, a novel pyrrolidine alkaloid from Punica granatum rind with putative efflux inhibition activity.

    Science.gov (United States)

    Rafiq, Zumaana; Narasimhan, Sreevidya; Vennila, Rosy; Vaidyanathan, Rama

    2016-02-25

    A new pyrrolidine alkaloid named Punigratane was isolated from the rind of Punica granatum. This is the first report of a pyrrolidine-like structure from the rind. The activity of this compound was tested in a representative MDR Klebsiella pneumoniae strain which exhibited high efflux pump activity. At a concentration of 6 mg, this compound Punigratane was found to have efflux inhibition activity.

  5. Liver δ-Aminolevulinate Dehydratase Activity is Inhibited by Neonicotinoids and Restored by Antioxidant Agents

    Directory of Open Access Journals (Sweden)

    Elisa Sauer

    2014-11-01

    Full Text Available Neonicotinoids represent the most used class of insecticides worldwide, and their precursor, imidacloprid, is the most widely marketed. The aim of this study was to evaluate the effect of imidacloprid on the activity of hepatic δ-aminolevulinate dehydratase (δ-ALA-D, protective effect of potential antioxidants against this potential effect and presence of chemical elements in the constitution of this pesticide. We observed that δ-ALA-D activity was significantly inhibited by imidacloprid at all concentrations tested in a dose-dependent manner. The IC50 value was obtained and used to evaluate the restoration of the enzymatic activity. δ-ALA-D inhibition was completely restored by addition of dithiotreitol (DTT and partly by ZnCl2, demonstrating that the inhibition occurs by oxidation of thiol groups and by displacement of the Zn (II, which can be explained by the presence of chemical elements found in the constitution of pesticides. Reduced glutathione (GSH had the best antioxidant effect against to δ-ALA-D inhibition caused by imidacloprid, followed by curcumin and resveratrol. It is well known that inhibition of the enzyme δ-ALA-D may result in accumulation of its neurotoxic substrate (δ-ALA, in this line, our results suggest that further studies are needed to investigate the possible neurotoxicity induced by neonicotinoids and the involvement of antioxidants in cases of poisoning by neonicotinoids.

  6. D-tyrosine negatively regulates melanin synthesis by competitively inhibiting tyrosinase activity.

    Science.gov (United States)

    Park, Jisu; Jung, Hyejung; Kim, Kyuri; Lim, Kyung-Min; Kim, Ji-Young; Jho, Eek-Hoon; Oh, Eok-Soo

    2017-11-09

    Although L-tyrosine is well known for its melanogenic effect, the contribution of D-tyrosine to melanin synthesis was previously unexplored. Here, we reveal that, unlike L-tyrosine, D-tyrosine dose-dependently reduced the melanin contents of human MNT-1 melanoma cells and primary human melanocytes. In addition, 500 μM of D-tyrosine completely inhibited 10 μM L-tyrosine-induced melanogenesis, and both in vitro assays and L-DOPA staining MNT-1 cells showed that tyrosinase activity is reduced by D-tyrosine treatment. Thus, D-tyrosine appears to inhibit L-tyrosine-mediated melanogenesis by competitively inhibiting tyrosinase activity. Furthermore, we found that D-tyrosine inhibited melanogenesis induced by α-MSH treatment or UV irradiation, which are the most common environmental factors responsible for melanin synthesis. Finally, we confirmed that D-tyrosine reduced melanin synthesis in the epidermal basal layer of a 3D human skin model. Taken together, these data suggest that D-tyrosine negatively regulates melanin synthesis by inhibiting tyrosinase activity in melanocyte-derived cells. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Glaucocalyxin A inhibits platelet activation and thrombus formation preferentially via GPVI signaling pathway.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Platelets play a pivotal role in atherothrombosis and the antiplatelet agents have been proved to be useful in preventing onset of acute clinical events including myocardial infarction and stroke. Increasing number of natural compounds has been identified to be potential antiplatelet agents. Here we report the antiplatelet effect of glaucocalyxin A (GLA, an ent-diterpenoid that we isolated and purified from the aerial parts of Rabdosia japonica (Burm. f. var. glaucocalyx (Maxim. Hara, and investigate the molecular mechanisms by which GLA inhibits platelet activation and thrombus formation. The effect of GLA on platelet activation was measured using platelets freshly isolated from peripheral blood of healthy donors. Results showed that pretreatment of human platelets with lower concentrations of GLA (0.01 μg/ml, 0.1 μg/ml significantly inhibited platelet aggregation induced by collagen (P<0.001 and CRP (P<0.01, a synthetic GPVI ligand, but not by ADP and U46619. Accordingly, GLA inhibited collagen-stimulated tyrosine phosphorylation of Syk, LAT, and phospholipase Cγ2, the signaling events in collagen receptor GPⅥ pathway. GLA also inhibited platelet p-selectin secretion and integrin activation by convulxin, a GPVI selective ligand. Additionally, GLA was found to inhibit low-dose thrombin-induced platelet activation. Using a flow chamber device, GLA was found to attenuate platelet adhesion on collagen surfaces in high shear condition. In vivo studies showed that GLA administration increased the time for complete occlusion upon vascular injury in mice, but did not extend tail-bleeding time when mice were administered with relatively lower doses of GLA. Therefore, the present results provide the molecular basis for the inhibition effect of GLA on platelet activation and its in vivo effect on thrombus formation, suggesting that GLA could potentially be developed as an antiplatelet and antithrombotic agent.

  8. Potent inhibition of human neutrophil activations by bractelactone, a novel chalcone from Fissistigma bracteolatum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yang-Chang [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan (China); Sureshbabu, Munisamy; Fang, Yao-Ching; Wu, Yi-Hsiu [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Lan, Yu-Hsuan [School of Pharmacy, China Medical University, Taichung 404, Taiwan (China); Chang, Fang-Rong [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Ya-Wen [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China)

    2013-02-01

    Fissistigma bracteolatum is widely used in traditional medicine to treat inflammatory diseases. However, its active components and mechanisms of action remain unclear. In this study, (3Z)-6,7-dihydroxy-4-methoxy-3-(phenylmethylidene)-5-(3-phenylpropanoyl) -1-benzofuran-2(3H) (bractelactone), a novel chalcone from F. bracteolatum, showed potent inhibitory effects against superoxide anion (O{sub 2}{sup ·−}) production, elastase release, and CD11b expression in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced human neutrophils. However, bractelactone showed only weak inhibition of phorbol myristate acetate-caused O{sub 2}{sup ·−} production. The peak cytosolic calcium concentration ([Ca{sup 2+}]{sub i}) was unaltered by bractelactone in FMLP-induced neutrophils, but the decay time of [Ca{sup 2+}]{sub i} was significantly shortened. In a calcium-free solution, changes in [Ca{sup 2+}]{sub i} caused by the addition of extracellular Ca{sup 2+} were inhibited by bractelactone in FMLP-activated cells. In addition, bractelactone did not alter the phosphorylation of p38 MAPK, ERK, JNK, or AKT or the concentration of cAMP. These results suggest that bractelactone selectively inhibits store-operated calcium entry (SOCE). In agreement with this concept, bractelactone suppressed sustained [Ca{sup 2+}]{sub i} changes in thapsigargin-activated neutrophils. Furthermore, bractelactone did not alter FMLP-induced formation of inositol 1,4,5-triphosphate. Taken together, our results demonstrate that the anti-inflammatory effects of bractelactone, an active ingredient of F. bracteolatum, in human neutrophils are through the selective inhibition of SOCE. Highlights: ► Bractelactone isolated from Fissistigma bracteolatum. ► Bractelactone inhibited FMLP-induced human neutrophil activations. ► Bractelactone had no effect on IP3 formation. ► Bractelactone did not alter MAPKs, AKT, and cAMP pathways. ► Bractelactone inhibited store-operated calcium entry.

  9. Locally formed dopamine inhibits Na+-K+-ATPase activity in rat renal cortical tubule cells

    International Nuclear Information System (INIS)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J.

    1988-01-01

    Dopamine, generated locally from L-dopa, inhibits Na + -K + -ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na + -K + -ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate (Qo 2 ) and 86 Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive Qo 2 or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive Qo 2 in a concentration-dependent manner, with half-maximal inhibition (K 0.5 ) of 5 x 10 -7 M and a maximal inhibition of 14.1 ± 1.5% at 10 -4 M. L-Dopa also blunted the nystatin-stimulated Qo 2 in a concentration-dependent manner, indicating the L-dopa directly inhibits Na + -K + -ATPase activity and not sodium entry. Ouabain-sensitive 86 Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive Qo 2 and 86 Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive Qo 2 at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na + -K + -ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner

  10. Optimal Fermentation Conditions of Hyaluronidase Inhibition Activity on Asparagus cochinchinensis Merrill by Weissella cibaria.

    Science.gov (United States)

    Kim, Minji; Kim, Won-Baek; Koo, Kyoung Yoon; Kim, Bo Ram; Kim, Doohyun; Lee, Seoyoun; Son, Hong Joo; Hwang, Dae Youn; Kim, Dong Seob; Lee, Chung Yeoul; Lee, Heeseob

    2017-04-28

    This study was conducted to evaluate the hyaluronidase (HAase) inhibition activity of Asparagus cochinchinesis (AC) extracts following fermentation by Weissella cibaria through response surface methodology. To optimize the HAase inhibition activity, a central composite design was introduced based on four variables: the concentration of AC extract ( X 1 : 1-5%), amount of starter culture ( X 2 : 1-5%), pH ( X 3 : 4-8), and fermentation time ( X 4 : 0-10 days). The experimental data were fitted to quadratic regression equations, the accuracy of the equations was analyzed by ANOVA, and the regression coefficients for the surface quadratic model of HAase inhibition activity in the fermented AC extract were estimated by the F test and the corresponding p values. The HAase inhibition activity indicated that fermentation time was most significant among the parameters within the conditions tested. To validate the model, two different conditions among those generated by the Design Expert program were selected. Under both conditions, predicted and experimental data agreed well. Moreover, the content of protodioscin (a well-known compound related to anti-inflammation activity) was elevated after fermentation of the AC extract at the optimized fermentation condition.

  11. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway.

    Science.gov (United States)

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib's anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selecting of regorafenib. The anti-tumor effects of regorafenib on gastric cancer cells were analyzed via cell proliferation and invasion. The underlying mechanisms were demonstrated using molecular biology techniques. We found that regorafenib inhibited cell proliferation and invasion at the concentration of 20μmol/L and in a dose dependent manner. The anti-tumor effects of regorafenib related to the decreased expression of CXCR4, and elevated expression and activation of CXCR4 could reverse the inhibition effect of regorafenib on gastric cancer cells. Further studies revealed that regorafenib reduced the transcriptional activity of Wnt/β-Catenin pathway and led to decreased expression of Wnt pathway target genes, while overexpression and activation of CXCR4 could attenuate the inhibition effect of regorafenib on Wnt/β-Catenin pathway. Our findings demonstrated that regorafenib effectively inhibited cell proliferation and invasion of gastric cancer cells via decreasing the expression of CXCR4 and further reducing the transcriptional activity of Wnt/β-Catenin pathway.

  12. Inhibition of PTEN activity aggravates cisplatin-induced acute kidney injury.

    Science.gov (United States)

    Zhou, Jun; Fan, Youling; Tang, Simin; Wu, Huiping; Zhong, Jiying; Huang, Zhengxing; Yang, Chengxiang; Chen, Hongtao

    2017-11-28

    Cisplatin (cis-Diamminedichloroplatinum II) has been widely and effectively used in chemotherapy against tumors. Nephrotoxicity due to cisplatin is one of the most common clinical causes of acute kidney injury (AKI), which has a poor prognosis and high mortality. The signaling mechanisms underlying cisplatin-induced AKI are not completely understood. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor that negatively regulates the cell-survival pathway and is considered a double-edged sword in organ damage. In this study, we examined the effect that inhibiting PTEN activity in experimental models of cisplatin-induced AKI had on the degrees of AKI. Compared with vehicle mice, mice treated with bpV(pic) (specific inhibitor of PTEN) had exacerbated renal damage due to cisplatin-induced AKI. Furthermore, inhibition of PTEN activity increased cell apoptosis in the kidneys of mice induced by cisplatin. More inflammatory cytokines were activated after cisplatin treatment in mice of the bpV(pic)-treated group compared with vehicle mice, and these inflammatory cytokines may be partially derived from bone marrow cells. In addition, inhibiting PTEN activity decreased the phosphorylation of p53 in the pathogenesis of cisplatin-induced AKI. In summary, our study has demonstrated that inhibiting PTEN activity aggravates cisplatin-induced AKI via apoptosis, inflammatory reaction, and p53 signaling pathway. These results indicated that PTEN may serve as a novel therapeutic target for cisplatin-induced AKI.

  13. Mammalian O-phosphorylethanolamine phospho-lyase activity and its inhibition.

    Science.gov (United States)

    Grøn, I H

    1978-04-01

    The activity of the enzyme O-phosphorylethanolamine phospho-lyase, metabolizing O-phosphorylethanolamine to acetaldehyde, orthophosphate, and ammonia in vitro, was studied in human liver biopsy and autopsy material, and leucocytes. Only in the liver biopsies enzyme activity towards O-phosphorylethanolamine could be found, and in amounts corresponding to one tenth of the activity found in rat liver examined under identical conditions. The enzyme activity of the liver biopsies was confined to the post-microsomal fraction, the activity amounting to 35 +/- 7 (SD) micromicron/mg protein. The results suggest the presence of an inhibiting factor of protein character. Inhibition was not due to competition from alkaline phosphatase (E.C. 3.1.3.1.) or O-phosphorylethanolamine cytidylyl-transferase (E.C. 2.7.7.14).

  14. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis

    Science.gov (United States)

    Takamura, Takeyuki; Harama, Daisuke; Fukumoto, Suguru; Nakamura, Yuki; Shimokawa, Naomi; Ishimaru, Kayoko; Ikegami, Shuji; Makino, Seiya; Kitamura, Masanori; Nakao, Atsuhito

    2011-01-01

    Increasing evidence suggests that the aryl hydrocarbon receptor (AhR) pathway has an important role in the regulation of inflammatory responses. Most recently, we have shown that the activation of the AhR pathway by a potent AhR agonist inhibits the development of dextran sodium sulfate (DSS)-induced colitis, a model of human ulcerative colitis, by the induction of prostaglandin E2 (PGE2) in the large intestine. Because several strains of probiotic lactic acid bacteria have been reported to inhibit DSS-induced colitis by unidentified mechanisms, we hypothesized that particular strains of lactic acid bacterium might have the potential to activate the AhR pathway, thereby inhibiting DSS-induced colitis. This study investigated whether there are specific lactic acid bacterial strains that can activate the AhR pathway, and if so, whether this AhR-activating potential is associated with suppression of DSS-induced colitis. By using AhR signaling reporter cells, we found that Lactobacillus bulgaricus OLL1181 had the potential to activate the AhR pathway. OLL1181 also induced the mRNA expression of cytochrome P450 family 1A1 (CYP1A1), a target gene of the AhR pathway, in human colon cells, which was inhibited by the addition of an AhR antagonist, α-naphthoflavon (αNF). In addition, mice treated orally with OLL1181 showed an increase in CYP1A1 mRNA expression in the large intestine and amelioration of DSS-induced colitis. Thus, OLL1181 can induce activation of the intestinal AhR pathway and inhibit DSS-induced colitis in mice. This strain of lactic acid bacterium has therefore the potential to activate the AhR pathway, which may be able to suppress colitis. PMID:21321579

  15. Antroquinonol blocks Ras and Rho signaling via the inhibition of protein isoprenyltransferase activity in cancer cells.

    Science.gov (United States)

    Ho, Ching-Liang; Wang, Jui-Ling; Lee, Cheng-Chung; Cheng, Hsiu-Yi; Wen, Wu-Che; Cheng, Howard Hao-Yu; Chen, Miles Chih-Ming

    2014-10-01

    Antroquinonol is the smallest anticancer molecule isolated from Antrodia camphorata thus far. The ubiquinone-like structure of Antroquinonol exhibits a broad spectrum of activity against malignancies in vivo and in vitro. However, the mechanism of action of Antroquinonol remains unclear. Here, we provide evidence that Antroquinonol plays a role in the inhibition of Ras and Ras-related small GTP-binding protein functions through the inhibition of protein isoprenyl transferase activity in cancer cells. Using cell line-based assays, we found that the inactive forms of Ras and Rho proteins were significantly elevated after treatment with Antroquinonol. We also demonstrated that Antroquinonol binds directly to farnesyltransferase and geranylgeranyltransferase-I, which are key enzymes involved in activation of Ras-related proteins, and inhibits enzymes activities in vitro. Furthermore, a molecular docking analysis illustrated that the isoprenoid moiety of Antroquinonol binds along the hydrophobic cavity of farnesyltransferase similar to its natural substrate, farnesyl pyrophosphate. In contrast, the ring structure of Antroquinonol lies adjacent to the Ras-CAAX motif-binding site on farnesyltransferase. The molecular docking study also showed a reasonable correlation with the IC50 values of Antroquinonol analogues. We also found that the levels of LC3B-II and the autophagosome-associated LC3 form were also significantly increased in H838 after Antroquinonol administration. In conclusion, Antroquinonol inhibited Ras and Ras-related GTP-binding protein activation through inhibition of protein isoprenyl transferase activity, leading to activation of autophagy and associated mode of cell death in cancer cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Troglitazone inhibits endothelial cell proliferation through suppression of casein kinase 2 activity

    International Nuclear Information System (INIS)

    Lee, Kuy-Sook; Park, Jin-Hee; Lee, Seahyoung; Lim, Hyun-Joung; Jang, Yangsoo; Park, Hyun-Young

    2006-01-01

    Troglitazone, an agonist of peroxisome proliferator activated receptorγ (PPARγ), has been reported to inhibit endothelial cell proliferation by suppressing Akt activation. Recently, it has been also proposed that phosphatase and tensin homolog deleted from chromosome 10 (PTEN) plays an important role in such effect of troglitazone. However, the mechanism of how troglitazone regulates PTEN remains to be elucidated. We therefore investigated the effects of troglitazone on casein kinase 2 (CK2), which is known to negatively regulate PTEN activity. Troglitazone significantly inhibited serum-induced proliferation of HUVEC in a concentration dependent manner. Serum-induced Akt and its downstream signaling pathway activation was attenuated by troglitazone (10 μM) pretreatment. The phosphorylation of PTEN, which was directly related to Akt activation, was decreased with troglitazone pretreatment and was inversely proportional to CK2 activity. DRB, a CK2 inhibitor, also showed effects similar to that of troglitazone on Akt and its downstream signaling molecules. In conclusion, our results suggest that troglitazone inhibits proliferation of HUVECs through suppression of CK2 activity rendering PTEN to remain activated, and this effect of troglitazone in HUVECs seems to be PPARγ independent

  17. Dextromethorphan inhibits osteoclast differentiation by suppressing RANKL-induced nuclear factor-κB activation.

    Science.gov (United States)

    Wu, Karl; Lin, Tzu-Hung; Liou, Houng-Chi; Lu, Dai-Hua; Chen, Yi-Ru; Fu, Wen-Mei; Yang, Rong-Sen

    2013-08-01

    Dextromethorphan (DXM), a commonly used antitussive, is a dextrorotatory morphinan. Here, we report that DXM inhibits the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption by abrogating the activation of NF-κB signalling in vitro. Oral administration of DXM ameliorates ovariectomy (OVX)-induced osteoporosis in vivo. DXM was reported to possess anti-inflammatory properties through inhibition of the release of pro-inflammatory factors. However, the potential role and action mechanism of DXM on osteoclasts and osteoblasts remain unclear. In this study, in vitro and in vivo studies were performed to investigate the potential effects of DXM on osteoclastogenesis and OVX-induced bone loss. Osteoclastogenesis was examined by the TRAP staining, pit resorption, TNF-α release, and CCR2 and CALCR gene expression. Osteoblast differentiation was analyzed by calcium deposition. Osteogenic and adipogenic genes were measured by real-time PCR. Signaling pathways were explored using Western blot. ICR mice were used in an OVX-induced osteoporosis model. Tibiae were measured by µCT and serum markers were examined with ELISA kits. DXM inhibited RANKL-induced osteoclastogenesis. DXM mainly inhibited osteoclastogenesis via abrogation of IKK-IκBα-NF-κB pathways. However, a higher dosage of DXM antagonized the differentiation of osteoblasts via the inhibition of osteogenic signals and increase of adipogenic signals. Oral administration of DXM (20 mg/kg/day) partially reduced trabecular bone loss in ovariectomized mice. DXM inhibits osteoclast differentiation and activity by affecting NF-κB signaling. Therefore, DXM at suitable doses may have new therapeutic applications for the treatment of diseases associated with excessive osteoclastic activity.

  18. HSV and glycoprotein J inhibit caspase activation and apoptosis induced by granzyme B or Fas.

    Science.gov (United States)

    Jerome, K R; Chen, Z; Lang, R; Torres, M R; Hofmeister, J; Smith, S; Fox, R; Froelich, C J; Corey, L

    2001-10-01

    HSV-1 inhibits apoptosis of infected cells, presumably to ensure that the infected cell survives long enough to allow completion of viral replication. Because cytotoxic lymphocytes kill their targets via the induction of apoptosis, protection from apoptosis could constitute a mechanism of immune evasion for HSV. Several HSV genes are involved in the inhibition of apoptosis, including Us5, which encodes glycoprotein J (gJ). Viruses deleted for Us5 showed defects in inhibition of caspase activation after Fas ligation or UV irradiation. Transfected cells expressing the Us5 gene product gJ were protected from Fas- or UV-induced apoptosis, as measured by morphology, caspase activation, membrane permeability changes, or mitochondrial transmembrane potential. In contrast, caspase 3 activation in mitochondria-free cell lysates by granzyme (gr)B was inhibited equivalently by Us5 deletion and rescue viruses, suggesting that gJ is not required for HSV to inhibition this process. However, mitochondria-free lysates from transfected cells expressing Us5/gJ were protected from grB-induced caspase activation, suggesting that Us5/gJ is sufficient to inhibit this process. Transfected cells expressing Us5/gJ were also protected from death induced by incubation with purified grB and perforin. These findings suggest that HSV has a comprehensive set of immune evasion functions that antagonize both Fas ligand- and grB-mediated pathways of CTL-induced apoptosis. The understanding of HSV effects on killing by CTL effector mechanisms may shed light on the incomplete control of HSV infections by the immune system and may allow more rational approaches to the development of immune modulatory treatments for HSV infection.

  19. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    Science.gov (United States)

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity. Copyright (c) 2006 John Wiley & Sons, Ltd.

  20. Resveratrol inhibits Cdk5 activity through regulation of p35 expression

    Directory of Open Access Journals (Sweden)

    Kulkarni Ashok B

    2011-07-01

    Full Text Available Abstract Background We have previously reported that cyclin-dependent kinase 5 (Cdk5 participates in the regulation of nociceptive signaling. Through activation of the ERK1/2 pathway, Tumor Necrosis Factor-α (TNF-α induces expression of Egr-1. This results in the sustained and robust expression of p35, a coactivator of Cdk5, in PC12 cells, thereby increasing Cdk5 kinase activity. The aim of our present study was to test whether resveratrol, a polyphenolic compound with known analgesic activity, can regulate Cdk5/p35 activity. Results Here we used a cell-based assay in which a p35 promoter-luciferase construct was stably transfected in PC12 cells. Our studies demonstrate that resveratrol inhibits p35 promoter activity and also blocks the TNF-α mediated increase in Cdk5 activity in PC12 cells. Resveratrol also inhibits p35 expression and blocks the TNF-α mediated increase in Cdk5 activity in DRG neurons. In the presence of resveratrol, the MEK inhibitor decreased p35 promoter activity, whereas the inhibitors of p38 MAPK, JNK and NF-κB increased p35 promoter activity, indicating that these pathways regulate p35 expression differently. The TNF-α-mediated increase in Egr-1 expression was decreased by resveratrol treatment with a concomitant reduction in p35 expression and protein levels, resulting in reduced Cdk5 kinase activity. Conclusions We demonstrate here that resveratrol regulates p35 promoter activity in PC12 cells and DRG neurons. Most importantly, resveratrol blocks the TNF-α-mediated increase in p35 promoter activity, thereby reducing p35 expression and subsequent Cdk5 kinase activity. This new molecular mechanism adds to the known analgesic effects of resveratrol and confirms the need for identifying new analgesics based on their ability to inhibit Cdk5 activity for effective treatment of pain.

  1. Caffeine inhibition of GLUT1 is dependent on the activation state of the transporter.

    Science.gov (United States)

    Gunnink, Leesha K; Busscher, Brianna M; Wodarek, Jeremy A; Rosette, Kylee A; Strohbehn, Lauren E; Looyenga, Brendan D; Louters, Larry L

    2017-06-01

    Caffeine has been shown to be a robust uncompetitive inhibitor of glucose uptake in erythrocytes. It preferentially binds to the nucleotide-binding site on GLUT1 in its tetrameric form and mimics the inhibitory action of ATP. Here we demonstrate that caffeine is also a dose-dependent, uncompetitive inhibitor of 2-deoxyglucose (2DG) uptake in L929 fibroblasts. The inhibitory effect on 2DG uptake in these cells was reversible with a rapid onset and was additive to the competitive inhibitory effects of glucose itself, confirming that caffeine does not interfere with glucose binding. We also report for the first time that caffeine inhibition was additive to inhibition by curcumin, suggesting distinct binding sites for curcumin and caffeine. In contrast, caffeine inhibition was not additive to that of cytochalasin B, consistent with previous data that reported that these two inhibitors have overlapping binding sites. More importantly, we show that the magnitude of maximal caffeine inhibition in L929 cells is much lower than in erythrocytes (35% compared to 90%). Two epithelial cell lines, HCLE and HK2, have both higher concentrations of GLUT1 and increased basal 2DG uptake (3-4 fold) compared to L929 cells, and subsequently display greater maximal inhibition by caffeine (66-70%). Interestingly, activation of 2DG uptake (3-fold) in L929 cells by glucose deprivation shifted the responsiveness of these cells to caffeine inhibition (35%-70%) without a change in total GLUT1 concentration. These data indicate that the inhibition of caffeine is dependent on the activity state of GLUT1, not merely on the concentration. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation.

    Directory of Open Access Journals (Sweden)

    Nishi R Sharma

    2017-10-01

    Full Text Available TIA-1 positive stress granules (SG represent the storage sites of stalled mRNAs and are often associated with the cellular antiviral response. In this report, we provide evidence that Kaposi's sarcoma-associated herpesvirus (KSHV overcomes the host antiviral response by inhibition of SG formation via a viral lytic protein ORF57. By immunofluorescence analysis, we found that B lymphocytes with KSHV lytic infection are refractory to SG induction. KSHV ORF57, an essential post-transcriptional regulator of viral gene expression and the production of new viral progeny, inhibits SG formation induced experimentally by arsenite and poly I:C, but not by heat stress. KSHV ORF37 (vSOX bearing intrinsic endoribonuclease activity also inhibits arsenite-induced SG formation, but KSHV RTA, vIRF-2, ORF45, ORF59 and LANA exert no such function. ORF57 binds both PKR-activating protein (PACT and protein kinase R (PKR through their RNA-binding motifs and prevents PACT-PKR interaction in the PKR pathway which inhibits KSHV production. Consistently, knocking down PKR expression significantly promotes KSHV virion production. ORF57 interacts with PKR to inhibit PKR binding dsRNA and its autophosphorylation, leading to inhibition of eIF2α phosphorylation and SG formation. Homologous protein HSV-1 ICP27, but not EBV EB2, resembles KSHV ORF57 in the ability to block the PKR/eIF2α/SG pathway. In addition, KSHV ORF57 inhibits poly I:C-induced TLR3 phosphorylation. Altogether, our data provide the first evidence that KSHV ORF57 plays a role in modulating PKR/eIF2α/SG axis and enhances virus production during virus lytic infection.

  3. Novel dimeric bis(7)-tacrine proton-dependently inhibits NMDA-activated currents

    International Nuclear Information System (INIS)

    Luo, Jialie; Li, Wenming; Liu, Yuwei; Zhang, Wei; Fu, Hongjun; Lee, Nelson T.K.; Yu, Hua; Pang, Yuanping; Huang, Pingbo; Xia, Jun; Li, Zhi-Wang; Li, Chaoying; Han, Yifan

    2007-01-01

    Bis(7)-tacrine has been shown to prevent glutamate-induced neuronal apoptosis by blocking NMDA receptors. However, the characteristics of the inhibition have not been fully elucidated. In this study, we further characterize the features of bis(7)-tacrine inhibition of NMDA-activated current in cultured rat hippocampal neurons. The results show that with the increase of extracellular pH, the inhibitory effect decreases dramatically. At pH 8.0, the concentration-response curve of bis(7)-tacrine is shifted rightwards with the IC 50 value increased from 0.19 ± 0.03 μM to 0.41 ± 0.04 μM. In addition, bis(7)-tacrine shifts the proton inhibition curve rightwards. Furthermore, the inhibitory effect of bis(7)-tacrine is not altered by the presence of the NMDA receptor proton sensor shield spermidine. These results indicate that bis(7)-tacrine inhibits NMDA-activated current in a pH-dependent manner by sensitizing NMDA receptors to proton inhibition, rendering it potentially beneficial therapeutic effects under acidic conditions associated with stroke and ischemia

  4. Mechanism of the inhibition of milk xanthine oxidase activity by metal ions: a transient kinetic study.

    Science.gov (United States)

    Mondal, M S; Sau, A K; Mitra, S

    2000-07-14

    The nature and mechanism of the inhibition of the oxidoreductase activity of milk xanthine oxidase (XO) by Cu(2+), Hg(2+) and Ag(+) ions has been studied by steady state and stopped flow transient kinetic measurements. The results show that the nature of the inhibition is noncompetitive. The inhibition constants for Cu(2+) and Hg(2+) are in the micromolar and that for Ag(+) is in the nanomolar range. This suggests that the metal ions have strong affinity towards XO. pH dependence studies of the inhibition indicate that at least two ionisable groups of XO are involved in the binding of these metal ions. The effect of the interaction of the metal ions on the reductive and oxidative half reactions of XO has been investigated, and it is observed that the kinetic parameters of the reductive half reaction are not affected by these metal ions. However, the interaction of these metal ions with XO significantly affects the kinetic parameters of the oxidative half reaction. It is suggested that this may be the main cause for the inhibition of XO activity by the metal ions.

  5. Inhibition of APOBEC3G Activity Impedes Double-Strand DNA Repair

    Science.gov (United States)

    Prabhu, Ponnandy; Shandilya, Shivender; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A.; Kotler, Moshe

    2015-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in dsDNA damage, such as ionizing irradiation (IR) and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases sensitivity of lymphoma cells to IR. In the current study, we show that additional peptides derived from Vif, A3G and A3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, while, replacing a single amino acid in the LYYF motif completely abrogate inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break (DSB) repair after radiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit DSB repair halts their propagation. These results suggest that A3G may be a potential therapeutic target amenable to peptide and peptidomimetic inhibition. PMID:26460502

  6. Inhibition of APOBEC3G activity impedes double-stranded DNA repair.

    Science.gov (United States)

    Prabhu, Ponnandy; Shandilya, Shivender M D; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A; Kotler, Moshe

    2016-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ionizing radiation. In the current study, we show that additional peptides derived from Vif, A3G, and APOBEC3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, whereas replacing a single residue in the LYYF motif completely abrogates inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break repair after irradiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit double-strand break repair halts their propagation. These results suggest that A3G may be a potential therapeutic target that is amenable to peptide and peptidomimetic inhibition. © 2015 FEBS.

  7. Late-night suckling inhibits onset of postpartum oestrous activity in ...

    African Journals Online (AJOL)

    Late-night suckling inhibits onset of postpartum oestrous activity in beef cows. Iona B. Stewart, B.P. Louw, A.W. Lishman, P.G. Stewart. Abstract. To determine whether suckling of calves late at night would prolong lactation anoestrus, 5l Hereford-type cows (21 -29 days postpartum) were divided into three treatment groups.

  8. Temperamental activation and inhibition associated with autonomic function in preadolescents. The TRAILS study

    NARCIS (Netherlands)

    Dietrich, Andrea; Riese, Harriette; van Roon, Arie M.; Minderaa, Ruud B.; Oldehinkel, Albertine J.; Neeleman, Jan; Rosmalen, Judith G. M.

    We investigated the temperamental traits high-intensity pleasure (temperamental activation) and shyness (temperamental inhibition) in relation to autonomic function as measured by heart rate (HR), respiratory sinus arrhythmia (RSA), and baroreflex sensitivity (BRS) in 938 10-13-year-old

  9. Behavioral inhibition system (BIS), Behavioral activation system (BAS) and schizophrenia : Relationship with psychopathology and physiology

    NARCIS (Netherlands)

    Scholten, Marion R. M.; van Honk, Jack; Aleman, Andre; Kahn, Rene S.

    2006-01-01

    Objective: The Behavioral Inhibition System (BIS) and the Behavioral Activation System (BAS) have been conceptualized as two neural motivational systems that regulate sensitivity to punishment (BIS) and reward (BAS). Imbalance in BIS and BAS levels has been reported to be related to various forms of

  10. Potassium humate inhibits complement activation and the production of inflammatory cytokines in vitro

    Energy Technology Data Exchange (ETDEWEB)

    van Rensburg, C.E.J.; Naude, P.J. [University of Pretoria, Pretoria (South Africa)

    2009-08-15

    The effects of brown coal derived potassium humate on lymphocyte proliferation, cytokine production and complement activation were investigated in vitro. Potassium humate increased lymphocyte proliferation of phytohaemaglutinin A (PHA) and pokeweed mitogen (PWM) stimulated mononuclear lymphocytes (MNL) in vitro from concentrations of 20 to 80 {mu} g/ml, in a dose dependant manner. On the other hand potassium humate, at 40 {mu} g/ml, significantly inhibited the release of TNF-alpha, IL-1 beta, IL-6 and IL-10 by PHA stimulated MNL. Regarding complement activation it was found that potassium humate inhibits the activation of both the alternative and classical pathways without affecting the stability of the red blood cell membranes. These results indicate that the anti-inflammatory potential of potassium humate could be partially due to the inhibition of pro-inflammatory cytokines responsible for the initiation of these reactions as well as inhibition of complement activation. The increased lymphocyte proliferation observed, might be due to increased IL-2 production as previously been documented.

  11. In vitro antioxidant and α-amylase inhibition activities of spiced red ...

    African Journals Online (AJOL)

    Spiced chili paste (green or red), locally known as Datta, is a traditional popular spicy paste consumed in Ethiopia. This study investigated the total phenolic contents (TPC), total flavonoid contents (TFC), in vitro antioxidant, and α-amylase inhibition activities of water, acetone, petroleum ether, methanol, and 80% methanol ...

  12. The Joint Contribution of Activation and Inhibition in Moderating Carryover Effects of Anger on Social Judgment

    Directory of Open Access Journals (Sweden)

    Marina Fiori

    2017-09-01

    Full Text Available Carryover effects of emotions that lead to biases in social judgments are commonly observed. We suggest that such effects may be influenced by the ability to engage or disengage attention from emotional stimuli. We assessed the ability to activate and inhibit attention to anger stimuli, experimentally induced anger in a demanding task, and measured social judgment toward an ambiguous target. Results show that higher activation and higher inhibition of anger-related information predicted more biased evaluations of the ambiguous target when individuals were experiencing anger, but not in an emotionally neutral condition. Interestingly, the effect of activation and inhibition in the anger condition emerged only when such variables were entered simultaneously in the regression model, indicating that they had an additive effect in predicting carryover effects of anger on social judgement. Results are consistent with a cooperative suppression effect (Conger, 1974 of activation and inhibition and may be explained by either an increased accessibility of anger-related cues leading to more biased social judgments, or by an instance in which being good at engaging in and disengaging attention from emotional cues might have depleted participants’ resources making carryover effects of anger more likely to occur. Ultimately, the finding highlight that individual differences in attentional processes are important moderators for carryover effects of emotions.

  13. Genotoxic activity and inhibition of soil respiration by ptaquiloside, a bracken fern carcinogen

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Rasmussen, L.H.; Svendsen, Gitte Winkel

    2005-01-01

    Ptaquiloside (PTA) is a natural toxin produced by bracken (Pteridium aquilinum [L.] Kuhn). Assessment of PTA toxicity is needed because PTA deposited from bracken to soil may leach to surface and groundwater. Inhibition of soil respiration and genotoxic activity of PTA was determined by a soil...

  14. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard

    clinically applied reagents, such as alkyl-lysophospholipides, chemotherapeutic agents, and anti-inflammatory reagents, have been found to enhance Hsp70 surface expression on cancer cells. We have found that inhibition of histone deacetylase (HDAC) activity leads to surface expression of Hsp70 on various...

  15. CCR 20th anniversary commentary: a chimeric antibody, C225, inhibits EGFR activation and tumor growth.

    Science.gov (United States)

    Mendelsohn, John; Prewett, Marie; Rockwell, Patricia; Goldstein, Neil I

    2015-01-15

    Murine mAb 225 was effective against the EGFR tyrosine kinase and inhibited tumor growth in preclinical studies. A phase I trial showed safety, tumor localization, and satisfactory pharmacokinetics. Human:murine chimeric C225 retained biologic activity, which was essential for the conduct of subsequent combination therapy trials and eventual regulatory approval. ©2015 American Association for Cancer Research.

  16. Speed-accuracy modulation in case of conflict: The roles of activation and inhibition

    NARCIS (Netherlands)

    Band, G.P.; Ridderinkhof, K.R.; van der Molen, M.W.

    2003-01-01

    This study investigated how the speed-accuracy balance is modulated by changes in the time course of motor activation and inhibition of a primed response. Responses and event-related brain potentials were recorded in a paradigm in which the first stimulus indicated the correct response with 80%

  17. Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors

    DEFF Research Database (Denmark)

    Ellis, Vincent John; Wun, T C; Behrendt, N

    1990-01-01

    Urokinase-type plasminogen activator (uPA) binds to a specific receptor on various cell types, the bound molecule retaining its enzymatic activity against plasminogen. We have now investigated whether receptor-bound uPA also retains the ability to react with and be inhibited by plasminogen...... activator inhibitors (PAI-1 and PAI-2). uPA bound to its receptor on human U937 monocyte-like cells was inhibited by PAI-1 (in its active form in the presence of vitronectin fragments) with an association rate constant of 4.5 x 10(6) M-1 s-1, which was 40% lower than that obtained for uPA in solution (7.9 x...... 10(6) M-1 s-1). The inhibition of uPA by PAI-2 was decreased to a similar extent by receptor binding, falling from 5.3 x 10(5) to 3.3 x 10(5) M-1 s-1. Stimulation of U937 cells with phorbol 12-myristate 13-acetate was accompanied by a further reduction in receptor-bound uPA inhibition by PAI-1...

  18. Antiviral activity of human lactoferrin : Inhibition of alphavirus interaction with heparan sulfate

    NARCIS (Netherlands)

    Waarts, Barry-Lee; Aneke, Onwuchekwa J.C.; Smit, Jolanda; Kimata, Koji; Bittman, Robert; Meijer, Dirk K.F.; Wilschut, Jan

    2005-01-01

    Human lactoferrin is a component of the non-specific immune system with distinct antiviral properties. We used alphaviruses, adapted to interaction with heparan sulfate (HS), as a tool to investigate the mechanism of lactoferrin's antiviral activity. Lactoferrin inhibited infection of BHK-21 cells

  19. Inhibition of DNA polymerase λ and associated inflammatory activities of extracts from steamed germinated soybeans.

    Science.gov (United States)

    Mizushina, Yoshiyuki; Kuriyama, Isoko; Yoshida, Hiromi

    2014-04-01

    During the screening of selective DNA polymerase (pol) inhibitors from more than 50 plant food materials, we found that the extract from steamed germinated soybeans (Glycine max L.) inhibited human pol λ activity. Among the three processed soybean samples tested (boiled soybeans, steamed soybeans, and steamed germinated soybeans), both the hot water extract and organic solvent extract from the steamed germinated soybeans had the strongest pol λ inhibition. We previously isolated two glucosyl compounds, a cerebroside (glucosyl ceramide, AS-1-4, compound ) and a steroidal glycoside (eleutheroside A, compound ), from dried soybean, and these compounds were prevalent in the extracts of the steamed germinated soybeans as pol inhibitors. The hot water and organic solvent extracts of the steamed germinated soybeans and compounds and selectively inhibited the activity of eukaryotic pol λ in vitro but did not influence the activities of other eukaryotic pols, including those from the A-family (pol γ), B-family (pols α, δ, and ε), and Y-family (pols η, ι, and κ), and also showed no effect on the activity of pol β, which is of the same family (X) as pol λ. The tendency for in vitro pol λ inhibition by these extracts and compounds showed a positive correlation with the in vivo suppression of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation in mouse ear. These results suggest that steamed germinated soybeans, especially the glucosyl compound components, may be useful for their anti-inflammatory properties.

  20. Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi

    Directory of Open Access Journals (Sweden)

    Matheus Thomaz Nogueira Silva Lima

    Full Text Available ABSTRACT Major health challenges as the increasing number of cases of infections by antibiotic multiresistant microorganisms and cases of Alzheimer's disease have led to searching new control drugs. The present study aims to verify a new way of obtaining bioactive extracts from filamentous fungi with potential antimicrobial and acetylcholinesterase inhibitory activities, using epigenetic modulation to promote the expression of genes commonly silenced. For such finality, five filamentous fungal species (Talaromyces funiculosus, Talaromyces islandicus, Talaromyces minioluteus, Talaromyces pinophilus, Penicillium janthinellum were grown or not with DNA methyltransferases inhibitors (procainamide or hydralazine and/or a histone deacetylase inhibitor (suberohydroxamic acid. Extracts from T. islandicus cultured or not with hydralazine inhibited Listeria monocytogenes growth in 57.66 ± 5.98% and 15.38 ± 1.99%, respectively. Increment in inhibition of acetylcholinesterase activity was observed for the extract from P. janthinellum grown with procainamide (100%, when compared to the control extract (39.62 ± 3.76%. Similarly, inhibition of acetylcholinesterase activity increased from 20.91 ± 3.90% (control to 92.20 ± 3.72% when the tested extract was obtained from T. pinophilus under a combination of suberohydroxamic acid and procainamide. Concluding, increases in antimicrobial activity and acetylcholinesterase inhibition were observed when fungal extracts in the presence of DNA methyltransferases and/or histone deacetylase modulators were tested.

  1. Pharmacologic inhibition of IκB kinase activates immediate hypersensitivity reactions in mice.

    Science.gov (United States)

    Miyazaki, Dai; Mihara, Sachiko; Inata, Koudai; Sasaki, Shin-ichi; Tominaga, Takeshi; Yakura, Keiko; Ishida, Waka; Fukushima, Atsuki; Inoue, Yoshitsugu

    2013-07-01

    Pharmacologic inhibitors of IκB kinase (IKK), especially IKK-β, have been developed to treat inflammatory diseases. However, their interactions with components of the NF-κB pathways are not fully known in allergic diseases. To examine whether IKK is involved in immediate hypersensitivity reactions and to determine whether counterregulatory mechanisms in the NF-κB activation system were active, we examined the role played by IKK components on mast cell degranulation using a murine ocular immediate hypersensitivity reaction model. Pharmacologic inhibition of IKK in mice caused paradoxical aggravation of the mast cell-mediated immediate hypersensitivity reaction and up-regulation in the expression of inflammatory cytokines. Downstream analyses showed that B-cell deficiency or treatment by IL-1 receptor antagonist corrected the aberrant activation of tissue-resident mast cells, which would indicate contribution by activated B cells. Analyses of co-cultures of tissue-resident mast cells showed the contribution of activated B cells to activation of mast cells and secretion of inflammatory cytokines. Aberrant activation of the NF-κB promoter in isolated B cells was induced exclusively by IKK-β inhibition and was negated by ablating IKK-α. Aggravated mast cell degranulation by pharmacologic IKK inhibition in the murine immediate hypersensitivity reaction was corrected by B-cell-targeted inhibition of IKK-α. Thus, IKK-β limits B-cell-mediated mast cell activation and inflammatory cytokine induction in immediate hypersensitivity by counterbalancing the activity of IKK-α. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Testosterone is inversely related to brain activity during emotional inhibition in schizophrenia.

    Science.gov (United States)

    Vercammen, Ans; Skilleter, Ashley J; Lenroot, Rhoshel; Catts, Stanley V; Weickert, Cynthia Shannon; Weickert, Thomas W

    2013-01-01

    Sex steroids affect cognitive function as well as emotion processing and regulation. They may also play a role in the pathophysiology of schizophrenia. However, the effects of sex steroids on cognition and emotion-related brain activation in schizophrenia are poorly understood. Our aim was to determine the extent to which circulating testosterone relates to brain activation in men with schizophrenia compared to healthy men during cognitive-emotional processing. We assessed brain activation in 18 men with schizophrenia and 22 age-matched healthy men during an emotional go/no-go task using fMRI and measured total serum testosterone levels on the same morning. We performed an ROI analysis to assess the relationship between serum testosterone and brain activation, focusing on cortical regions involved the emotional go/no-go task. Slower RT and reduced accuracy was observed when participants responded to neutral stimuli, while inhibiting responses to negative stimuli. Healthy men showed a robust increase in activation of the middle frontal gyrus when inhibiting responses to negative stimuli, but there was no significant association between activation and serum testosterone level in healthy men. Men with schizophrenia showed a less pronounced increase in activation when inhibiting responses to negative stimuli; however, they did show a strong inverse association between serum testosterone level and activation of the bilateral middle frontal gyrus and left insula. Additionally, increased accuracy during inhibition of response to negative words was associated with both higher serum testosterone levels and decreased activation of the middle frontal gyrus in men with schizophrenia only. We conclude that endogenous hormone levels, even within the normal range, may play an enhanced modulatory role in determining the neural and behavioural response during cognitive-emotional processing in schizophrenia.

  3. The Ketone Body β-Hydroxybutyrate Does Not Inhibit Synuclein Mediated Inflammasome Activation in Microglia.

    Science.gov (United States)

    Deora, Vandana; Albornoz, Eduardo A; Zhu, Kevin; Woodruff, Trent M; Gordon, Richard

    2017-12-01

    Parkinson's disease (PD) is recognized as the most common neurodegenerative movement disorder and results in debilitating motor deficits. The accumulation and spread of neurotoxic synuclein aggregates in the form of Lewy bodies is a key pathological feature of PD. Chronic activation of the NLRP3 inflammasome by protein aggregates is emerging as a major pathogenic mechanism in progressive neurodegenerative disorders and is considered an important therapeutic target. Recently the ketone body, β-hydroxy butyrate (BHB), was shown to efficiently inhibit the NLRP3 inflammasome in macrophages, and in vivo models of inflammatory disease. Furthermore, BHB can readily cross the blood brain barrier suggesting that it could have therapeutic benefits for the management of PD. In this study, we evaluated if BHB could inhibit chronic microglial inflammasome activation induced by pathological fibrillar synuclein aggregates. Interestingly, we found that BHB treatment almost completely blocked all aspects of inflammasome activation and pyroptosis induced by ATP and monosodium urate (MSU) crystals, consistent with previously published reports in macrophages. Surprisingly however, BHB did not inhibit inflammasome activation and release of IL-1β or caspase-1 induced by synuclein fibrils. Our results demonstrate that BHB does not block the upstream pathways regulating inflammasome activation by synuclein fibrils and suggest that synuclein mediated inflammasome activation proceeds via distinct mechanisms compared to traditional NLRP3 activators such as ATP and MSU.

  4. Myostatin inhibition induces muscle fibre hypertrophy prior to satellite cell activation

    Science.gov (United States)

    Wang, Qian; McPherron, Alexandra C

    2012-01-01

    Muscle fibres are multinucleated post-mitotic cells that can change dramatically in size during adulthood. It has been debated whether muscle fibre hypertrophy requires activation and fusion of muscle stem cells, the satellite cells. Myostatin (MSTN) is a negative regulator of skeletal muscle growth during development and in the adult, and MSTN inhibition is therefore a potential therapy for muscle wasting diseases, some of which are associated with a depletion of satellite cells. Conflicting results have been obtained in previous analyses of the role of MSTN on satellite cell quiescence. Here, we inhibited MSTN in adult mice with a soluble activin receptor type IIB and analysed the incorporation of new nuclei using 5′-bromo-2′-deoxyuridine (BrdU) labelling by isolating individual myofibres. We found that satellite cells are activated by MSTN inhibition. By varying the dose and time course for MSTN inhibition, however, we found that myofibre hypertrophy precedes the incorporation of new nuclei, and that the overall number of new nuclei is relatively low compared to the number of total myonuclei. These results reconcile some of the previous work obtained by other methods. In contrast with previous reports, we also found that Mstn null mice do not have increased satellite cell numbers during adulthood and are not resistant to sarcopaenia. Our results support a previously proposed model of hypertrophy in which hypertrophy can precede satellite cell activation. Studies of the metabolic and functional effects of postnatal MSTN inhibition are needed to determine the consequences of increasing the cytoplasm/myonuclear ratio after MSTN inhibition. PMID:22393251

  5. AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside.

    Science.gov (United States)

    Guigas, Bruno; Taleux, Nellie; Foretz, Marc; Detaille, Dominique; Andreelli, Fabrizio; Viollet, Benoit; Hue, Louis

    2007-06-15

    AICA riboside (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside) has been extensively used in cells to activate the AMPK (AMP-activated protein kinase), a metabolic sensor involved in cell energy homoeostasis. In the present study, we investigated the effects of AICA riboside on mitochondrial oxidative; phosphorylation. AICA riboside was found to dose-dependently inhibit the oligomycin-sensitive JO2 (oxygen consumption rate) of isolated rat hepatocytes. A decrease in P(i) (inorganic phosphate), ATP, AMP and total adenine nucleotide contents was also observed with AICA riboside concentrations >0.1 mM. Interestingly, in hepatocytes from mice lacking both alpha1 and alpha2 AMPK catalytic subunits, basal JO2 and expression of several mitochondrial proteins were significantly reduced compared with wild-type mice, suggesting that mitochondrial biogenesis was perturbed. However, inhibition of JO2 by AICA riboside was still present in the mutant mice and thus was clearly not mediated by AMPK. In permeabilized hepatocytes, this inhibition was no longer evident, suggesting that it could be due to intracellular accumulation of Z nucleotides and/or loss of adenine nucleotides and P(i). ZMP did indeed inhibit respiration in isolated rat mitochondria through a direct effect on the respiratory-chain complex I. In addition, inhibition of JO2 by AICA riboside was also potentiated in cells incubated with fructose to deplete adenine nucleotides and P(i). We conclude that AICA riboside inhibits cellular respiration by an AMPK-independent mechanism that likely results from the combined intracellular P(i) depletion and ZMP accumulation. Our data also demonstrate that the cellular effects of AICA riboside are not necessarily caused by AMPK activation and that their interpretation should be taken with caution.

  6. Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors

    DEFF Research Database (Denmark)

    Ellis, Vincent John; Wun, T C; Behrendt, N

    1990-01-01

    activator inhibitors (PAI-1 and PAI-2). uPA bound to its receptor on human U937 monocyte-like cells was inhibited by PAI-1 (in its active form in the presence of vitronectin fragments) with an association rate constant of 4.5 x 10(6) M-1 s-1, which was 40% lower than that obtained for uPA in solution (7.9 x...

  7. Na+ -K+ pump activity in rat peritoneal mast cells: inhibition by extracellular calcium

    DEFF Research Database (Denmark)

    Knudsen, Torben; Johansen, Torben

    1989-01-01

    of an enzyme, and it is mediated by the Na+ -K+ pump located in the plasma membrane. It is demonstrated that the activity of the Na+ -K+ pump mechanism is inhibited by low concentrations of extracellular calcium (0.1-1.2 mmol l-1). The possibility is discussed that calcium-deprivation may increase the pump...... activity by increasing the permeability of the plasma membrane for Na+....

  8. AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chang-hong; Zhao, Jin-xia; Sun, Lin; Yao, Zhong-qiang; Deng, Xiao-li; Liu, Rui; Liu, Xiang-yuan, E-mail: liu-xiangyuan@263.net

    2013-06-14

    Highlights: •AG490 inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells. •AG490 affects cell proliferation and cell cycle distribution. •AG490 reduces NFATc1 expression during RANKL-induced osteoclastogenesis. •AG490 disrupts the activation of RANKL-mediated JAK2/STAT3 signaling pathway. •STAT3 depletion partly mimics the effect of AG490 on RANKL-induced osteoclastogenesis. -- Abstract: Commonly, JAK/STAT relays cytokine signals for cell activation and proliferation, and recent studies have shown that the elevated expression of JAK/STAT is associated with the immune rejection of allografts and the inflammatory processes of autoimmune disease. However, the role which JAK2/STAT3 signaling plays in the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis is unknown. In this study, we investigated the effects of AG490, specific JAK2 inhibitor, on osteoclast differentiation in vitro. AG490 significantly inhibited osteoclastogenesis in murine osteoclast precursor cell line RAW264.7 induced by RANKL. AG490 suppressed cell proliferation and delayed the G1 to S cell cycle transition. Furthermore, AG490 also suppressed the expression of nuclear factor of activated T cells (NFAT) c1 but not c-Fos in RAW264.7. Subsequently, we investigated various intracellular signaling components associated with osteoclastogenesis. AG490 had no effects on RANKL-induced activation of Akt, ERK1/2. Interestingly, AG490 partly inhibited RANKL-induced phosphorylation of Ser{sup 727} in STAT3. Additionally, down-regulation of STAT3 using siRNA resulted in suppression of TRAP, RANK and NFATc1 expression. In conclusion, we demonstrated that AG490 inhibited RANKL-induced osteoclastogenesis by suppressing NFATc1 production and cell proliferation via the STAT3 pathway. These results suggest that inhibition of JAK2 may be useful for the treatment of bone diseases characterized by excessive osteoclastogenesis.

  9. Rheb Inhibits Protein Synthesis by Activating the PERK-eIF2α Signaling Cascade

    Directory of Open Access Journals (Sweden)

    Richa Tyagi

    2015-02-01

    Full Text Available Rheb, a ubiquitous small GTPase, is well known to bind and activate mTOR, which augments protein synthesis. Inhibition of protein synthesis is also physiologically regulated. Thus, with cell stress, the unfolded protein response system leads to phosphorylation of the initiation factor eIF2α and arrest of protein synthesis. We now demonstrate a major role for Rheb in inhibiting protein synthesis by enhancing the phosphorylation of eIF2α by protein kinase-like ER kinase (PERK. Interplay between the stimulatory and inhibitory roles of Rheb may enable cells to modulate protein synthesis in response to varying environmental stresses.

  10. Inhibition of colony-spreading activity of Staphylococcus aureus by secretion of δ-hemolysin.

    Science.gov (United States)

    Omae, Yosuke; Sekimizu, Kazuhisa; Kaito, Chikara

    2012-05-04

    Staphylococcus aureus spreads on the surface of soft agar, a phenomenon we termed "colony spreading." Here, we found that S. aureus culture supernatant inhibited colony spreading. We purified δ-hemolysin (Hld, δ-toxin), a major protein secreted from S. aureus, as a compound that inhibits colony spreading. The culture supernatants of hld-disrupted mutants had 30-fold lower colony-spreading inhibitory activity than those of the parent strain. Furthermore, hld-disrupted mutants had higher colony-spreading ability than the parent strain. These results suggest that S. aureus negatively regulates colony spreading by secreting δ-hemolysin.

  11. Inhibition of Colony-spreading Activity of Staphylococcus aureus by Secretion of δ-Hemolysin*

    Science.gov (United States)

    Omae, Yosuke; Sekimizu, Kazuhisa; Kaito, Chikara

    2012-01-01

    Staphylococcus aureus spreads on the surface of soft agar, a phenomenon we termed “colony spreading.” Here, we found that S. aureus culture supernatant inhibited colony spreading. We purified δ-hemolysin (Hld, δ-toxin), a major protein secreted from S. aureus, as a compound that inhibits colony spreading. The culture supernatants of hld-disrupted mutants had 30-fold lower colony-spreading inhibitory activity than those of the parent strain. Furthermore, hld-disrupted mutants had higher colony-spreading ability than the parent strain. These results suggest that S. aureus negatively regulates colony spreading by secreting δ-hemolysin. PMID:22411996

  12. Inhibition of Propionibacterium acnes lipase activity by the antifungal agent ketoconazole.

    Science.gov (United States)

    Unno, Mizuki; Cho, Otomi; Sugita, Takashi

    2017-01-01

    The common skin disease acne vulgaris is caused by Propionibacterium acnes. A lipase secreted by this microorganism metabolizes sebum and the resulting metabolites evoke inflammation in human skin. The antifungal drug ketoconazole inhibits P. acnes lipase activity. We previously showed that the drug also inhibits the growth of P. acnes. Thus, ketoconazole may serve as an alternative treatment for acne vulgaris, which is important because the number of antibiotic-resistant P. acnes strains has been increasing. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  13. Revisiting the mechanistic basis of the French Paradox: Red wine inhibits the activity of protein disulfide isomerase in vitro.

    Science.gov (United States)

    Galinski, Christine N; Zwicker, Jeffrey I; Kennedy, Daniel R

    2016-01-01

    Although epidemiologic evidence points to cardioprotective activity of red wine, the mechanistic basis for antithrombotic activity has not been established. Quercetin and related flavonoids are present in high concentrations in red but not white wine. Quercetin-glycosides were recently shown to prevent thrombosis in animal models through the inhibition of extracellular protein disulfide isomerase (PDI). We evaluated whether red or white wine inhibited PDI activity in vitro. Quercetin levels in red and white wines were measured by HPLC analysis. Inhibition of PDI activity by red and white wines was assessed by an insulin reduction turbidity assay at various concentrations of wine. PDI inhibition was confirmed using a reduced peptide that contained a disulfide containing peptide as a substrate. The inhibition of PDI related thiol isomerases ERp5 and ERp57 was also assessed. We observed a dose-dependent decrease of PDI activity for a variety of red but not white wines. Red wine diluted to 3% final concentration resulted in over 80% inhibition of PDI activity by insulin reductase assay for all varieties tested. This inhibition was also observed in the peptide based assay. Red grape juice yielded similar results but ethanol alone did not affect PDI activity. Interestingly, red wine also inhibited the PDI related thiol isomerases ERp5 and ERp57, albeit to a lesser degree than PDI. PDI activity is inhibited by red wine and grape juice, identifying a potentially novel mechanism underlying the cardiovascular benefits attributed to wine consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Inhibition of emetic and superantigenic activities of staphylococcal enterotoxin A by synthetic peptides.

    Science.gov (United States)

    Maina, Edward K; Hu, Dong-Liang; Asano, Krisana; Nakane, Akio

    2012-11-01

    Staphylococcus aureus is a major human pathogen producing different types of toxins. Enterotoxin A (SEA) is the most common type among clinical and food-related strains. The aim of the present study was to estimate functional regions of SEA that are responsible for emetic and superantigenic activities using synthetic peptides. A series of 13 synthetic peptides corresponding to specific regions of SEA were synthesized, and the effect of these peptides on superantigenic activity of SEA including interferon γ (IFN-γ) production in mouse spleen cells, SEA-induced lethal shock in mice, spleen cell proliferation in house musk shrew, and emetic activity in shrews were assessed. Pre-treatment of spleen cells with synthetic peptides corresponding to the regions 21-40, 35-50, 81-100, or 161-180 of SEA significantly inhibited SEA-induced IFN-γ production and cell proliferation. These peptides also inhibited SEA-induced lethal shock. Interestingly, peptides corresponding to regions 21-40, 35-50 and 81-100 significantly inhibited SEA-induced emesis in house musk shrews, but region 161-180 did not. These findings indicated that regions 21-50 and 81-100 of SEA are important for both superantigenic and emetic activities of SEA molecule while region 161-180 is involved in superantigenic activity but not emetic activity of SEA. These regions could be important targets for therapeutic intervention against SEA exposure. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Captopril and lisinopril only inhibit matrix metalloproteinase-2 (MMP-2) activity at millimolar concentrations.

    Science.gov (United States)

    Kuntze, Luciana B; Antonio, Raquel C; Izidoro-Toledo, Tatiane C; Meschiari, Cesar A; Tanus-Santos, Jose E; Gerlach, Raquel F

    2014-03-01

    Matrix metalloproteinase-2 (MMP-2) shares structural similarities with the angiotensin-converting enzyme (ACE). ACE inhibitors have been described to inhibit MMP-2, but this inhibitory potential was not shown using a highly purified MMP-2. This study aimed to investigate the inhibitory potential of captopril and lisinopril regarding MMP-2 activity. The first objective was to test the potential of captopril to change the pH of the buffer solution. The second objective was to test the direct inhibitory effect of captopril and lisinopril on plasma MMP-2 and on recombinant human MMP-2 (rhMMP-2). The in vitro activity assays included gelatin zymography and a fluorimetric assay. Captopril solubilization significantly decreased the pH of the 50 mM Tris buffer solution at the following concentrations: 2 mM (p captopril concentrations ≥ 4 and 1 mM, respectively (p captopril led to significant inhibition of the rhMMP-2 activity at concentrations ≥2 mM (p captopril (p captopril and lisinopril concentrations found to inhibit MMP-2 are 3 orders of magnitude higher than those present in vivo after drug administration. We also discuss possible pitfalls for gelatinase inhibitory assays (besides the obvious pH problem already cited). In conclusion, this study's data show that captopril and lisinopril did not inhibit MMP-2 directly at the concentrations reached in vivo.

  16. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants.

    Directory of Open Access Journals (Sweden)

    Lorena Olivares-González

    Full Text Available Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2 for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions.

  17. Matrine Activates PTEN to Induce Growth Inhibition and Apoptosis in V600EBRAF Harboring Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Shuiying Wang

    2013-07-01

    Full Text Available Here, we report a natural chemical Matrine, which exhibits anti-melanoma potential with its PTEN activation mechanism. Matrine effectively inhibited proliferation of several carcinoma cell lines, including melanoma V600EBRAF harboring M21 cells. Flow cytometry analysis showed Matrine induced G0/G1 cell cycle arrest in M21 cells dose-dependently. Apoptosis in M21 cells induced by Matrine was identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL analysis and Annexin-V/FITC staining. Molecular mechanistic study suggested that Matrine upregulated both mRNA level and protein expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN, leading to inhibition of the PI3K/Akt pathway. Downregulation of phosphor-Aktser473 by Matrine activated p21 and Bax, which contributed to G0/G1 cell cycle and apoptosis. Besides, Matrine enhanced the PI3K/Akt inhibition effects to inhibit the cell proliferation with PI3K inhibitor, LY2940002. In summary, our findings suggest Matrine is a promising antitumor drug candidate with its possible PTEN activation mechanisms for treating cancer diseases, such as melanomas.

  18. Factor VII activating protease (FSAP) promotes the proteolysis and inhibition of tissue factor pathway inhibitor (TFPI)

    Science.gov (United States)

    Kanse, Sandip M.; Declerck, Paul J.; Ruf, Wolfram; Broze, George; Etscheid, Michael

    2013-01-01

    Objectives Factor VII activating protease (FSAP) activates FVII as well as pro-urokinase and inhibits platelet-derived growth factor-BB, thus regulating haemostasis- and remodeling-associated processes in the vasculature. A genetic variant of FSAP (Marburg I polymorphism) results in low enzymatic activity and is associated with an enhanced risk for carotid stenosis and stroke. We postulate that there are additional substrates for FSAP that will help to explain its role in vascular biology and have searched for such a substrate. Results and Methods Using screening procedures to determine the influence of FSAP on various haemostasis-related processes on endothelial cells we discovered that FSAP inhibited tissue factor pathway inhibitor (TFPI), a major anti-coagulant secreted by these cells. Proteolytic degradation of TFPI by FSAP could also be demonstrated by Western blotting and the exact cleavage sites were determined by N-terminal sequencing. The Marburg I variant of FSAP had a diminished ability to inhibit TFPI. A monoclonal antibody to FSAP, that specifically inhibited FSAP binding to TFPI, reversed the inhibitory effect of FSAP on TFPI. Conclusions The identification of TFPI as a sensitive substrate for FSAP increases our understanding of its role in regulating haemostasis and proliferative remodeling events in the vasculature. PMID:22116096

  19. Brain activation for response inhibition under gaming cue distraction in internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Gin-Chung Liu

    2014-01-01

    Full Text Available We evaluated neural substrates related to the loss of control in college students with internet gaming disorder (IGD. We hypothesized that deficit in response inhibition under gaming cue distraction was the possible mechanism for the loss of control internet use. Eleven cases of IGD and 11 controls performed Go/NoGo tasks with/without gaming distraction in the functional magnetic resonance imaging scanner. When the gaming picture was shown as background while individuals were performing Go/NoGo tasks, the IGD group committed more commission errors. The control group increased their brain activations more over the right dorsolateral prefrontal cortex (DLPFC and superior parietal lobe under gaming cue distraction in comparison with the IGD group. Furthermore, brain activation of the right DLPFC and superior parietal lobe were negatively associated with performance of response inhibition among the IGD group. The results suggest that the function of response inhibition was impaired under gaming distraction among the IGD group, and individuals with IGD could not activate right DLPFC and superior parietal lobe to keep cognitive control and attention allocation for response inhibition under gaming cue distraction. This mechanism should be addressed in any intervention for IGD.

  20. AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis.

    Directory of Open Access Journals (Sweden)

    Theresa S Moser

    Full Text Available The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulator AMPK, which potently inhibits fatty acid synthesis, restricts infection of the Bunyavirus, Rift Valley Fever Virus (RVFV, an important re-emerging arthropod-borne human pathogen for which there are no effective vaccines or therapeutics. We show restriction of RVFV both by AMPK and its upstream activator LKB1, indicating an antiviral role for this signaling pathway. Furthermore, we found that AMPK is activated during RVFV infection, leading to the phosphorylation and inhibition of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty acid synthesis. Activating AMPK pharmacologically both restricted infection and reduced lipid levels. This restriction could be bypassed by treatment with the fatty acid palmitate, demonstrating that AMPK restricts RVFV infection through its inhibition of fatty acid biosynthesis. Lastly, we found that this pathway plays a broad role in antiviral defense since additional viruses from disparate families were also restricted by AMPK and LKB1. Therefore, AMPK is an important component of the cell intrinsic immune response that restricts infection through a novel mechanism involving the inhibition of fatty acid metabolism.

  1. Thiazolidinediones inhibit TNFα induction of PAI-1 independent of PPARγ activation

    International Nuclear Information System (INIS)

    Liu, H.B.; Hu, Y.S.; Medcalf, R.L.; Simpson, R.W.; Dear, A.E.

    2005-01-01

    Increased plasminogen activator inhibitor type 1 (PAI-1) levels are observed in endothelial cells stimulated by tumour necrosis factor α (TNFα). Thiazolidinediones (TZDs) may inhibit elevated endothelial cell PAI-1 accounting, in part, for the putative atheroprotective effects of TZDs. In an endothelial cell line, Rosiglitazone (RG) and Pioglitazone (PG) inhibited induction of PAI-1 by TNFα. The specific peroxisome proliferator-activated receptor γ (PPARγ) inhibitor, SR-202, failed to modulate this effect. RG also inhibited the effect of TNFα on a reporter gene construct harbouring the proximal PAI-1 promoter and PAI-1 mRNA in cells co-transfected with a dominant-negative PPARγ construct. RG and PG attenuated TNFα-mediated induction of trans-acting factor(s) Nur77/Nurr1 and binding of nuclear proteins (NP) to the cis-acting element (NBRE). SR-202 failed to modulate these effects. The observations suggest TZDs inhibit TNFα-mediated PAI-1 induction independent of inducible PPARγ activation and this may involve in the modulation of Nur77/Nurr1 expression and NP binding to the PAI-1 NBRE

  2. Cytostatic versus cytocidal activities of chloroquine analogues and inhibition of hemozoin crystal growth.

    Science.gov (United States)

    Gorka, Alexander P; Alumasa, John N; Sherlach, Katy S; Jacobs, Lauren M; Nickley, Katherine B; Brower, Jonathan P; de Dios, Angel C; Roepe, Paul D

    2013-01-01

    We report an improved, nonhazardous, high-throughput assay for in vitro quantification of antimalarial drug inhibition of β-hematin (hemozoin) crystallization performed under conditions that are more physiological relative to previous assays. The assay uses the differential detergent solubility of crystalline and noncrystalline forms of heme and is optimized via the use of lipid catalyst. Using this assay, we quantify the effect of pH on the crystal growth-inhibitory activities of current quinoline antimalarials, evaluate the catalytic efficiencies of different lipids, and test for a possible correlation between hemozoin inhibition by drugs versus their antiplasmodial activity. Consistent with several previous reports, we found a good correlation between hemozoin inhibition potency versus cytostatic antiplasmodial potency (50% inhibitory concentration) for a series of chloroquine (CQ) analogues. However, we found no correlation between hemozoin inhibition potency and cytocidal antiplasmodial potency (50% lethal dose) for the same drugs, suggesting that cellular targets for these two layers of 4-aminoquinoline drug activity differ. This important concept is also explored further for QN and its stereoisomers in the accompanying paper (A. P. Gorka, K. S. Sherlach, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:365-374, 2013).

  3. Survivin inhibits anti-growth effect of p53 activated by aurora B

    International Nuclear Information System (INIS)

    Jung, Ji-Eun; Kim, Tae-Kyung; Lee, Joong-Seob; Oh, Se-Yeong; Kwak, Sungwook; Jin, Xun; Sohn, Jin-Young; Song, Min-Keun; Sohn, Young-Woo; Lee, Soo-Yeon; Pian, Xumin; Lee, Jang-Bo; Chung, Yong Gu; Choi, Young Ki; You, Seungkwon; Kim, Hyunggee

    2005-01-01

    Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated β-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53 -/- mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53 -/- astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53

  4. Adenosine A3 Receptor Suppresses Prostate Cancer Metastasis by Inhibiting NADPH Oxidase Activity

    Directory of Open Access Journals (Sweden)

    Sarvesh Jajoo

    2009-11-01

    Full Text Available Prostate cancer is the most commonly diagnosed and second most lethal malignancy in men, due mainly to a lack of effective treatment for the metastatic disease. A number of recent studies have shown that activation of the purine nucleoside receptor, adenosine A3 receptor (A3AR, attenuates proliferation of melanoma, colon, and prostate cancer cells. In the present study, we determined whether activation of the A3AR reduces the ability of prostate cancer cells to migrate in vitro and metastasize in vivo. Using severe combined immunodeficient mice, we show that proliferation and metastasis of AT6.1 rat prostate cancer cells were decreased by the administration of A3AR agonist N6-(3-iodobenzyl adenosine-5′-N-methyluronamide. In vitro studies show that activation of A3AR decreased high basal nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity present in these cells, along with the expression of Rac1 and p47phox subunits of this enzyme. Inhibition of NADPH oxidase activity by the dominant-negative RacN17 or short interfering (siRNA against p47phox reduced both the generation of reactive oxygen species and the invasion of these cells on Matrigel. In addition, we show that membrane association of p47phox and activation of NADPH oxidase is dependent on the activity of the extracellular signal-regulated kinase (ERK1/2 mitogen-activated protein kinase pathway. We also provide evidence that A3AR inhibits ERK1/2 activity in prostate cancer cells through inhibition of adenylyl cyclase and protein kinase A. We conclude that activation of the A3AR in prostate cancer cells reduces protein kinase A-mediated stimulation of ERK1/2, leading to reduced NADPH oxidase activity and cancer cell invasiveness.

  5. Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation.

    Science.gov (United States)

    Wang, S; Wang, H; Guo, H; Kang, L; Gao, X; Hu, L

    2011-06-30

    Inhibition of microglial over-reaction and the inflammatory processes may represent a therapeutic target to alleviate the progression of neurological diseases, such as neurodegenerative diseases and stroke. Scutellarin is the major active component of Erigeron breviscapus (Vant.) Hand-Mazz, a herbal medicine in treatment of cerebrovascular diseases for a long time in the Orient. In this study, we explored the mechanisms of neuroprotection by Scutellarin, particularly its anti-inflammatory effects in microglia. We observed that Scutellarin inhibited lipopolysaccharide (LPS)-induced production of proinflammatory mediators such as nitric oxide (NO), tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and reactive oxygen species (ROS), suppressed LPS-stimulated inducible nitric oxide synthase (iNOS), TNFα, and IL-1β mRNA expression in rat primary microglia or BV-2 mouse microglial cell line. Scutellarin inhibited LPS-induced nuclear translocation and DNA binding activity of nuclear factor κB (NF-κB). It repressed the LPS-induced c-Jun N-terminal kinase (JNK) and p38 phosphorylation without affecting the activity of extracellular signal regulated kinase (ERK) mitogen-activated protein kinase. Moreover, Scutellarin also inhibited interferon-γ (IFN-γ)-induced NO production, iNOS mRNA expression and transcription factor signal transducer and activator of transcription 1α (STAT1α) activation. Concomitantly, conditioned media from Scutellarin pretreated BV-2 cells significantly reduced neurotoxicity compared with conditioned media from LPS treated alone. Together, the present study reported the anti-inflammatory activity of Scutellarin in microglial cells along with their underlying molecular mechanisms, and suggested Scutellarin might have therapeutic potential for various microglia mediated neuroinflammation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Hydrogenase activity in Azospirillum brasilense is inhibited by nitrite, nitric oxide, carbon monoxide, and acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Tibelius, K.H.; Knowles, R.

    1984-10-01

    Nitrite, NO, CO, and C/sub 2/H/sub 2/ inhibited O/sub 2/-dependent H/sub 2/ uptake (H/sup 3/H oxidation) in denitrifying Azospirillum brasilense Sp7 grown anaerobically on N/sub 2/O or NO/sub 3//sup -/. The apparent K/sub i/ values for inhibition of O/sub 2/-dependent H/sub 2/ uptake were 20 ..mu..M for NO/sub 2//sup -/, 0.4 ..mu..M for NO, 28 ..mu..M for CO, and 88 ..mu..M for C/sub 2/H/sub 2/. These inhibitors also affected methylene blue-dependent H/sub 2/ uptake, presumably by acting directly on the hydrogenase. Nitrite and NO inhibited H/sub 2/ uptake irreversibly, whereas inhibition due to CO was easily reversed by repeatedly evacuating and backfilling with N/sub 2/. The C/sub 2/H/sub 2/ inhibition was not readily reversed, partly due to difficulty in removing the last traces of this gas from solution. The NO/sub 2//sup -/ inhibition of malate-dependent respiration was readily reversed by repeatedly washing the cells, in contrast to the effect of NO/sub 2//sup -/ on H/sub 2/-dependent respiration. These results suggest that the low hydrogenase activities observed in NO/sub 3//sup -/-grown cultures of A. brasilense may be due to the irreversible inhibition of hydrogenase by NO/sub 2//sup -/ and NO produced by NO/sub 3//sup -/ reduction.

  7. Beta-ethoxyacrolein contamination increases malondialdehyde inhibition of milk xanthine oxidase activity.

    Science.gov (United States)

    Cighetti, G; Debiasi, S; Ciuffreda, P; Allevi, P

    1998-11-01

    beta-Ethoxyacrolein (BEA), a side product that forms during the preparation of malondialdehyde (MDA) by acidic hydrolysis of tetraethoxypropane (TEP), has been found to be an inhibitor of milk xanthine oxidase (XO) several times more potent than pure MDA (NaMDA). The incubation of XO with 10 microM BEA abolished 50% of the enzyme activity within 1 min; the inhibited enzyme was totally regenerated by dialysis and filtration through Sephadex. The BEA inhibition mode of the enzyme was mixed-type with the apparent inhibition constants (Ki) of 2.4 x 10(-6) M. An HPLC method for quantitation of BEA in the crude commonly used MDA preparation was set up.

  8. Unified basis for the respirometric evaluation of inhibition for activated sludge.

    Science.gov (United States)

    Insel, Guclu; Karahan, Ozlen; Ozdemir, Seda; Pala, Llke; Katipoğlu, Tugce; Cokgör, Emine Ubay; Orhon, Derin

    2006-01-01

    This paper explores the merit of the oxygen uptake rate (OUR) profile obtained by means of respirometry as the basic mechanistic instrument for evaluating activated sludge inhibition. Experimental OUR data are generated using the synthetic peptone-based substrate and inhibition is tested with 60 mg/L hexavalent chromium and 33 mg/L nickel additions, corresponding to EC50 levels determined using the standard ISO 8192 procedure. Experimental results are evaluated by model calibration using ASM1 modified for dual hydrolysis and ASM3 modified for simultaneous growth. Model evaluations indicate that inhibition affects not only growth, but also other significant microbial mechanisms such as substrate storage and hydrolysis, leading to conclude that the proposed approach will enable to visualize the overall impact of the inhibitory compound on every stage of substrate biodegradation, through inspection and evaluation of the entire OUR profile.

  9. GAD65 is essential for synthesis of GABA destined for tonic inhibition regulating epileptiform activity

    DEFF Research Database (Denmark)

    Walls, Anne B; Nilsen, Linn Hege; Eyjolfsson, Elvar M

    2010-01-01

    ABSTRACT: GABA is synthesized from glutamate by glutamate decarboxylase (GAD), which exists in two isoforms, that is, GAD65 and GAD67. In line with GAD65 being located in the GABAergic synapse, several studies have demonstrated that this isoform is important during sustained synaptic transmission....... In contrast, the functional significance of GAD65 in the maintenance of GABA destined for extrasynaptic tonic inhibition is less well studied. Using GAD65-/- and wild type GAD65+/+ mice, this was examined employing the cortical wedge preparation, a model suitable for investigating extrasynaptic GABA......(A) receptor activity. An impaired tonic inhibition in GAD65-/- mice was revealed demonstrating a significant role of GAD65 in the synthesis of GABA acting extrasynaptically. The correlation between an altered tonic inhibition and metabolic events as well as the functional and metabolic role of GABA...

  10. Inhibition of enzyme activity by nanomaterials: potential mechanisms and implications for nanotoxicity testing.

    Science.gov (United States)

    Maccormack, Tyson J; Clark, Rhett J; Dang, Michael K M; Ma, Guibin; Kelly, Joel A; Veinot, Jonathan G C; Goss, Greg G

    2012-08-01

    The objective of this study was to investigate whether nanoparticle-exposure affects enzyme function and to determine the mechanisms responsible. Silicon, Au, and CdSe nanoparticles were synthesized in house and their physicochemical properties were characterized. The activity of purified lactate dehydrogenase (LDH) was inhibited or abolished by all nanoparticles tested. Inhibition was dependent upon particle core and surface-functional group composition. Inhibition of LDH was absent in crude tissue homogenates, in the presence of albumin, and at the isoelectric point of the protein, indicating that nanoparticles bind non-specifically to abundant proteins via a charge interaction. Circular dichroism spectroscopy suggests that the structure of LDH may be altered by nanoparticles in a manner different from that of bulk controls. We present new data on the specific physicochemical properties of nanoparticles that may lead to bioactivity and highlight a number of potentially serious problems with common nanotoxicity testing methods.

  11. Pulse treatment with the proteasome inhibitor bortezomib inhibits osteoclast resorptive activity in clinically relevant conditions

    DEFF Research Database (Denmark)

    Boissy, P; Levin Andersen, Thomas; Lund, T

    2008-01-01

    Myeloma bone disease is due to bone degradation by osteoclasts, and absence of repair by bone forming osteoblasts. Recent observations suggest that the anti-myeloma drug bortezomib, a proteasome inhibitor, stimulates bone formation and may inhibit bone resorption. Here, we tested bortezomib...... on cultured osteoclasts in conditions mimicking the pulse treatment used in the clinic, thereby avoiding continuous proteasome inhibition and unselective toxicity. A 3h pulse with 25nM bortezomib followed by a 3-day culture in its absence markedly inhibited osteoclast activity as evaluated through bone...... cells drastically reduced their survival. We measured next the levels of two bone resorption markers in patients during the 3 days following five and seven therapeutic bortezomib administrations, respectively. These levels decreased significantly already 1-2 days after injection, and then increased...

  12. Lovastatin inhibits VEGFR and AKT activation: synergistic cytotoxicity in combination with VEGFR inhibitors.

    Directory of Open Access Journals (Sweden)

    Tong T Zhao

    Full Text Available BACKGROUND: In a recent study, we demonstrated the ability of lovastatin, a potent inhibitor of mevalonate synthesis, to inhibit the function of the epidermal growth factor receptor (EGFR. Lovastatin attenuated ligand-induced receptor activation and downstream signaling through the PI3K/AKT pathway. Combining lovastatin with gefitinib, a potent EGFR inhibitor, induced synergistic cytotoxicity in a variety of tumor derived cell lines. The vascular endothelial growth factor receptor (VEGFR and EGFR share similar activation, internalization and downstream signaling characteristics. METHODOLOGY/PRINCIPAL FINDINGS: The VEGFRs, particularly VEGFR-2 (KDR, Flt-1, play important roles in regulating tumor angiogenesis by promoting endothelial cell proliferation, survival and migration. Certain tumors, such as malignant mesothelioma (MM, also express both the VEGF ligand and VEGFRs that act in an autocrine loop to directly stimulate tumor cell growth and survival. In this study, we have shown that lovastatin inhibits ligand-induced VEGFR-2 activation through inhibition of receptor internalization and also inhibits VEGF activation of AKT in human umbilical vein endothelial cells (HUVEC and H28 MM cells employing immunofluorescence and Western blotting. Combinations of lovastatin and a VEGFR-2 inhibitor showed more robust AKT inhibition than either agent alone in the H28 MM cell line. Furthermore, combining 5 µM lovastatin treatment, a therapeutically relevant dose, with two different VEGFR-2 inhibitors in HUVEC and the H28 and H2052 mesothelioma derived cell lines demonstrated synergistic cytotoxicity as demonstrated by MTT cell viability and flow cytometric analyses. CONCLUSIONS/SIGNIFICANCE: These results highlight a novel mechanism by which lovastatin can regulate VEGFR-2 function and a potential therapeutic approach for MM through combining statins with VEGFR-2 inhibitors.

  13. Antioxidant activity and peroxidase inhibition of Amazonian plants extracts traditionally used as anti-inflammatory.

    Science.gov (United States)

    de Vargas, Fabiano S; Almeida, Patricia D O; de Boleti, Ana Paula A; Pereira, Maria M; de Souza, Tatiane P; de Vasconcellos, Marne C; Nunez, Cecilia Veronica; Pohlit, Adrian M; Lima, Emerson S

    2016-02-27

    The Amazon is the largest rainforest in the world and is home to a rich biodiversity of medicinal plants. Several of these plants are used by the local population for the treatment of diseases, many of those with probable anti-inflammatory effect. The aim of the present investigation was to evaluate the in vitro antioxidant and anti-peroxidases potential of the ethanol extracts of five plants from the Brazilian Amazon (Byrsonima japurensis, Calycophyllum spruceanum, Maytenus guyanensis, Passiflora nitida and Ptychopetalum olacoides). DPPH, ABTS, superoxide anion radical, singlet oxygen and the β-carotene bleaching methods were employed for characterization of free radical scavenging activity. Also, total polyphenols were determined. Antioxidant activities were evaluated using murine fibroblast NIH3T3 cell. Inhibition of HRP and MPO were evaluated using amplex red® as susbtract. The stem bark extracts of C. spruceanum and M. guyanensis provided the highest free radical scavenging activities. C. spruceanum exhibited IC50 = 7.5 ± 0.9, 5.0 ± 0.1, 18.2 ± 3.0 and 92.4 ± 24.8 μg/mL for DPPH(•), ABTS(+•), O2 (-•) and (1)O2 assays, respectively. P. olacoides and C. spruceanum extracts also inhibited free radicals formation in the cell-based assay. At a concentration of 100 μg/mL, the extracts of C. spruceanum, B. japurensis inhibited horseradish peroxidase by 62 and 50 %, respectively. C. spruceanum, M. guyanensis, B. japurensis also inhibited myeloperoxidase in 72, 67 and 56 %, respectively. This work supports the folk use these species that inhibited peroxidases and exhibited significant free radical scavenging and antioxidant activities what can be related to treatment of inflammation.

  14. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.

    Directory of Open Access Journals (Sweden)

    Beth S Zha

    Full Text Available HIV protease inhibitors (PI are core components of Highly Active Antiretroviral Therapy (HAART, the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome.Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/- mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes.Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.

  15. Lipid peroxidation inhibition and antiradical activities of some leaf fractions of Mangifera indica.

    Science.gov (United States)

    Badmus, Jelili A; Adedosu, Temitope O; Fatoki, John O; Adegbite, Victor A; Adaramoye, Oluwatosin A; Odunola, Oyeronke A

    2011-01-01

    This study was undertaken to assess in vitro lipid peroxidation inhibitions and anti-radical activities of methanolic, chloroform, ethyl acetate and water fractions of Mangifera indica leaf. Inhibition of Fe(2+)-induced lipid peroxidation (LPO) in egg, brain, and liver homogenates, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl (OH-) radical scavenging activities were evaluated. Total phenol was assessed in all fractions, and the reducing power of methanolic fraction was compared to gallic acid and ascorbic acid. The results showed that Fe2+ induced significant lipid peroxidation (LPO) in all the homogenates. Ethyl acetate fraction showed the highest percentage inhibition of LPO in both egg yolk (68.3%) and brain (66.3%), while the aqueous fraction exerted the highest inhibition in liver homogenate (89.1%) at a concentration of 10 microg/mL. These observed inhibitions of LPO by these fractions were higher than that of ascorbic acid used as a standard. The DPPH radical scavenging ability exhibited by ethyl acetate fraction was found to be the highest with IC50 value of 1.5 microg/mL. The ethyl acetate and methanolic fractions had the highest OH- radical scavenging ability with the same IC50 value of 5 microg/mL. The total phenol content of ethyl acetate fraction was the highest with 0.127 microg/mg gallic acid equivalent (GAE). The reductive potential of methanolic fraction showed a concentration-dependent increase. This study showed that inhibition of LPO and the DPPH and OH- radicals scavenging abilities of Mangifera indica leaf could be related to the presence of phenolic compounds. Therefore, the ethyl acetate fraction of the leaf may be a good source of natural antioxidative agent.

  16. Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone.

    Science.gov (United States)

    Rückriemen, Jana; Klemm, Oliver; Henle, Thomas

    2017-09-01

    Manuka honey (Leptospermum scoparium) exerts a strong antibacterial effect. Bacterial enzymes are an important target for antibacterial compounds. The enzyme urease produces ammonia and enables bacteria to adapt to an acidic environment. A new enzymatic assay, based on photometric detection of ammonia with ninhydrin, was developed to study urease activity. Methylglyoxal (MGO) and its precursor dihydroxyacetone (DHA), which are naturally present in manuka honey, were identified as jack bean urease inhibitors with IC 50 values of 2.8 and 5.0mM, respectively. Urease inhibition of manuka honey correlates with its MGO and DHA content. Non-manuka honeys, which lack MGO and DHA, showed significantly less urease inhibition. MGO depletion from manuka honey with glyoxalase reduced urease inhibition. Therefore, urease inhibition by manuka honey is mainly due to MGO and DHA. The results obtained with jack bean urease as a model urease, may contribute to the understanding of bacterial inhibition by manuka honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity.

    Science.gov (United States)

    Nakabeppu, Y; Nathans, D

    1991-02-22

    Fos and Jun transcription factors are induced by a variety of extracellular signaling agents. We describe here an unusual member of the Fos family that is also induced, namely, a truncated form of FosB (delta FosB) missing the C-terminal 101 amino acids of FosB. delta FosB retains the dimerization and DNA-binding activities of FosB but has lost the ability in transfection assays to activate a promoter with an AP-1 site and to repress the c-fos promoter. Rather, delta FosB inhibits gene activation by Jun or Jun + Fos and inhibits repression of the c-fos promoter by FosB or c-Fos, presumably by competing with full-length Fos proteins at the steps of dimerization with Jun and binding to DNA. In stimulated cells delta FosB may act to limit the transcriptional effects of Fos and Jun proteins.

  18. Inhibition of NF-κB activity in rabbit vascular smooth muscle cells by lovastatin

    International Nuclear Information System (INIS)

    Luan Zhaoxia; Lan Xiaoli

    2003-01-01

    Nuclear factor NF-κB is believed to play an important role in regulating the production of matrix metalloproteinase (MMPs), which induce atherosclerosis, restenosis and plaque rupture. We incubated rabbit vascular smooth muscle cells (RVSMCs) with 5 μmol/L lovastatin in the presence of IL-1-α and PDGF BB (20 μg/L, respectively) to study whether lovastatin inhibited NF-κB binding activity induced by IL-1 and PDGF. The NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); MMP-1 and MMP-3 were measured by western blotting; and MMP-9 was detected by zymography. The result showed that lovastatin strongly reduced NF-κB activity upregulated by IL-1 combined with PDGF, and lovastatin also dose-dependently inhibited the expression of MMP-1, -3 and -9 induced by IL-1 and PDGF. It suggested that the beneficial effects of statins may extend to mechanisms beyond cholesterol reduction

  19. Apigenin Restricts FMDV Infection and Inhibits Viral IRES Driven Translational Activity

    Directory of Open Access Journals (Sweden)

    Suhong Qian

    2015-03-01

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of domestic and wild ruminants that is caused by FMD virus (FMDV. FMD outbreaks have occurred in livestock-containing regions worldwide. Apigenin, which is a flavonoid naturally existing in plant, possesses various pharmacological effects, including anti-inflammatory, anticancer, antioxidant and antiviral activities. Results show that apigenin can inhibit FMDV-mediated cytopathogenic effect and FMDV replication in vitro. Further studies demonstrate the following: (i apigenin inhibits FMDV infection at the viral post-entry stage; (ii apigenin does not exhibit direct extracellular virucidal activity; and (iii apigenin interferes with the translational activity of FMDV driven by internal ribosome entry site. Studies on applying apigein in vivo are required for drug development and further identification of potential drug targets against FDMV infection.

  20. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    International Nuclear Information System (INIS)

    Niles, L.P.; Hashemi, F.

    1990-01-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [ 125 I]iodomelatonin, was examined using an incubation temperature (30 degree C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [ 125 I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus

  1. Conformationally constrained peptides target the allosteric kinase dimer interface and inhibit EGFR activation.

    Science.gov (United States)

    Fulton, Melody D; Hanold, Laura E; Ruan, Zheng; Patel, Sneha; Beedle, Aaron M; Kannan, Natarajan; Kennedy, Eileen J

    2018-03-15

    Although EGFR is a highly sought-after drug target, inhibitor resistance remains a challenge. As an alternative strategy for kinase inhibition, we sought to explore whether allosteric activation mechanisms could effectively be disrupted. The kinase domain of EGFR forms an atypical asymmetric dimer via head-to-tail interactions and serves as a requisite for kinase activation. The kinase dimer interface is primarily formed by the H-helix derived from one kinase monomer and the small lobe of the second monomer. We hypothesized that a peptide designed to resemble the binding surface of the H-helix may serve as an effective disruptor of EGFR dimerization and activation. A library of constrained peptides was designed to mimic the H-helix of the kinase domain and interface side chains were optimized using molecular modeling. Peptides were constrained using peptide "stapling" to structurally reinforce an alpha-helical conformation. Peptide stapling was demonstrated to notably enhance cell permeation of an H-helix derived peptide termed EHBI2. Using cell-based assays, EHBI2 was further shown to significantly reduce EGFR activity as measured by EGFR phosphorylation and phosphorylation of the downstream signaling substrate Akt. To our knowledge, this is the first H-helix-based compound targeting the asymmetric interface of the kinase domain that can successfully inhibit EGFR activation and signaling. This study presents a novel, alternative targeting site for allosteric inhibition of EGFR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Samuel D Robinson

    2015-10-01

    Full Text Available NMDA receptors (NMDARs play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM but not high (50 μM concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-AP. Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and RAP, a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs.

  3. Kynurenic acid inhibits intestinal hypermotility and xanthine oxidase activity during experimental colon obstruction in dogs.

    Science.gov (United States)

    Kaszaki, J; Palásthy, Z; Erczes, D; Rácz, A; Torday, C; Varga, G; Vécsei, L; Boros, M

    2008-01-01

    Kynurenic acid (KynA), an endogenous antagonist of N-methyl-d-aspartate (NMDA) glutamate receptors, protects the central nervous system in excitotoxic neurological diseases. We hypothesized that the inhibition of enteric glutamate receptors by KynA may influence dysmotility in the gastrointestinal tract. Group 1 of healthy dogs served as the sham-operated control, in group 2, the animals were treated with KynA, while in groups 3 and 4 mechanical colon obstruction was maintained for 7 h. Group 4 was treated with KynA at the onset of ileus. Hemodynamics and motility changes were monitored, and the activities of xanthine oxidoreductase (XOR) and myeloperoxidase (MPO) were determined from tissue samples. Colon obstruction induced a hyperdynamic circulatory reaction, significantly elevated the motility index and increased the mucosal leucocyte accumulation and the XOR activity. The KynA treatment augmented the tone of the colon, permanently decreased the motility index of the giant colonic contractions and reduced the increases in XOR and MPO activities. These effects were concomitant with the in vitro inhibition of XOR activity. In conclusion, KynA antagonizes the obstruction-induced motility responses and XOR activation in the colon. Inhibition of enteric NMDA receptors may provide an option to influence intestinal hypermotility and inflammatory changes.

  4. Rho-kinase inhibition ameliorates metabolic disorders through activation of AMPK pathway in mice.

    Directory of Open Access Journals (Sweden)

    Kazuki Noda

    Full Text Available BACKGROUND: Metabolic disorders, caused by excessive calorie intake and low physical activity, are important cardiovascular risk factors. Rho-kinase, an effector protein of the small GTP-binding protein RhoA, is an important cardiovascular therapeutic target and its activity is increased in patients with metabolic syndrome. We aimed to examine whether Rho-kinase inhibition improves high-fat diet (HFD-induced metabolic disorders, and if so, to elucidate the involvement of AMP-activated kinase (AMPK, a key molecule of metabolic conditions. METHODS AND RESULTS: Mice were fed a high-fat diet, which induced metabolic phenotypes, such as obesity, hypercholesterolemia and glucose intolerance. These phenotypes are suppressed by treatment with selective Rho-kinase inhibitor, associated with increased whole body O2 consumption and AMPK activation in the skeletal muscle and liver. Moreover, Rho-kinase inhibition increased mRNA expression of the molecules linked to fatty acid oxidation, mitochondrial energy production and glucose metabolism, all of which are known as targets of AMPK in those tissues. In systemic overexpression of dominant-negative Rho-kinase mice, body weight, serum lipid levels and glucose metabolism were improved compared with littermate control mice. Furthermore, in AMPKα2-deficient mice, the beneficial effects of fasudil, a Rho-kinase inhibitor, on body weight, hypercholesterolemia, mRNA expression of the AMPK targets and increase of whole body O2 consumption were absent, whereas glucose metabolism was restored by fasudil to the level in wild-type mice. In cultured mouse myocytes, pharmacological and genetic inhibition of Rho-kinase increased AMPK activity through liver kinase b1 (LKB1, with up-regulation of its targets, which effects were abolished by an AMPK inhibitor, compound C. CONCLUSIONS: These results indicate that Rho-kinase inhibition ameliorates metabolic disorders through activation of the LKB1/AMPK pathway, suggesting that

  5. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cawley, George F.; Ardoin, Taylor G. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Backes, Wayne L. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  6. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Susanne, E-mail: Susanne.Schuster@medizin.uni-leipzig.de [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Penke, Melanie; Gorski, Theresa [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Gebhardt, Rolf [Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Weiss, Thomas S. [Children' s University Hospital, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany); Kiess, Wieland; Garten, Antje [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany)

    2015-03-06

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  7. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    International Nuclear Information System (INIS)

    Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Gebhardt, Rolf; Weiss, Thomas S.; Kiess, Wieland; Garten, Antje

    2015-01-01

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  8. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    International Nuclear Information System (INIS)

    Cuadrado, Irene; Cidre, Florencia; Herranz, Sandra; Estevez-Braun, Ana; Heras, Beatriz de las; Hortelano, Sonsoles

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE 2 production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE 2 in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE 2 in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  9. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    Energy Technology Data Exchange (ETDEWEB)

    Cuadrado, Irene [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, 28040 Madrid (Spain); Cidre, Florencia; Herranz, Sandra [Unidad de Inflamación y Cáncer. Área de Biología Celular y Desarrollo. Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid (Spain); Estevez-Braun, Ana [Instituto Universitario de Bio-Orgánica “Antonio González”. Universidad de La Laguna. Avda. Astrofísico Fco. Sánchez 2. 38206. La Laguna, Tenerife (Spain); Instituto Canario de Investigaciones del Cáncer (ICIC) (Spain); Heras, Beatriz de las, E-mail: lasheras@farm.ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, 28040 Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Inflamación y Cáncer. Área de Biología Celular y Desarrollo. Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid (Spain)

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE{sub 2} production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  10. Natural antioxidant polyphenols on inflammation management: Anti-glycation activity vs metalloproteinases inhibition.

    Science.gov (United States)

    Crascì, Lucia; Lauro, Maria Rosaria; Puglisi, Giovanni; Panico, Annamaria

    2016-09-20

    The diet polyphenols are a secondary metabolites of plants able to act on inflammation process. Their anti-inflammatory activity is articulated through several mechanisms that are related to their antioxidative and radical scavengers properties. Our work is focused on a novel approach to inflammatory disease management, based on anti-glycative and matrix metalloproteinases (MMPs) inhibition effects, as a connected phenomena. To better understand these correlation, polyphenols Structure-Activity Relationship (SAR) studies were also reported. The antioxidant polyphenols inhibit the AGEs at different levels of the glycation process in the following ways: (1) prevention of Amadori adduct oxidation; (2) trapping reactive dycarbonyl compounds; (3) attenuation of receptor for AGEs (RAGE) expression. Moreover, several flavonoids with radical scavenging property showed also MMPs inhibition interact directly with MMPs or indirectly via radical scavengers and AGEs reduction. The essential polyphenols features involved in these mechanisms are C2-C3 double bond and number and position of hydroxyl, glycosyl and O-methyl groups. These factors induce a change in molecular planarity interfering with the hydrogen bond formation, electron delocalization and metal ion chelation. In particular, C2-C3 double bond improve the antioxidant and MMPs inhibition, while the hydroxylation, glycosylation and methylation induce a positive and negative correlation, respectively.

  11. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation.

    Science.gov (United States)

    Wang, Gene-Jack; Volkow, Nora D; Telang, Frank; Jayne, Millard; Ma, Yeming; Pradhan, Kith; Zhu, Wei; Wong, Christopher T; Thanos, Panayotis K; Geliebter, Allan; Biegon, Anat; Fowler, Joanna S

    2009-01-27

    Although impaired inhibitory control is linked to a broad spectrum of health problems, including obesity, the brain mechanism(s) underlying voluntary control of hunger are not well understood. We assessed the brain circuits involved in voluntary inhibition of hunger during food stimulation in 23 fasted men and women using PET and 2-deoxy-2[(18)F]fluoro-D-glucose ((18)FDG). In men, but not in women, food stimulation with inhibition significantly decreased activation in amygdala, hippocampus, insula, orbitofrontal cortex, and striatum, which are regions involved in emotional regulation, conditioning, and motivation. The suppressed activation of the orbitofrontal cortex with inhibition in men was associated with decreases in self-reports of hunger, which corroborates the involvement of this region in processing the conscious awareness of the drive to eat. This finding suggests a mechanism by which cognitive inhibition decreases the desire for food and implicates lower ability to suppress hunger in women as a contributing factor to gender differences in obesity.

  12. Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity

    Directory of Open Access Journals (Sweden)

    Zhi Ren

    2016-04-01

    Full Text Available Glycosyltransferase (Gtf is one of the crucial virulence factors of Streptococcus mutans, a major etiological pathogen of dental caries. All the available evidence indicates that extracellular polysaccharide, particularly glucans produced by S. mutans Gtfs, contribute to the cariogenicity of dental biofilms. Therefore, inhibition of Gtf activity and the consequential polysaccharide synthesis may impair the virulence of cariogenic biofilms, which could be an alternative strategy to prevent the biofilm-related disease. Up to now, many Gtf inhibitors have been recognized in natural products, which remain the major and largely unexplored source of Gtf inhibitors. These include catechin-based polyphenols, flavonoids, proanthocyanidin oligomers, polymeric polyphenols, and some other plant-derived compounds. Metal ions, oxidizing agents, and some other synthetic compounds represent another source of Gtf inhibitors, with some novel molecules either discovered by structure-based virtual screening or synthesized based on key structures of known inhibitors as templates. Antibodies that inhibit one or more Gtfs have also been developed as topical agents. Although many agents have been shown to possess potent inhibitory activity against glucan synthesis by Gtfs, bacterial cell adherence, and caries development in animal models, much research remains to be performed to find out their mechanism of action, biological safety, cariostatic efficacies, and overall influence on the entire oral community. As a strategy to inhibit the virulence of cariogenic microbes rather than eradicate them from the microbial community, Gtf inhibition represents an approach of great potential to prevent dental caries.

  13. Chinese medicinal formula Fufang Xueshuantong capsule could inhibit the activity of angiotensin converting enzyme

    Science.gov (United States)

    Sheng, Shujing; Wang, Yonggang; Long, Chaofeng; Su, Weiwei; Rong, Xia

    2014-01-01

    Fufang Xueshuantong (FXST) capsule, a Chinese medicinal formula composed of four herbals – Panax notoginseng, Radix Astragali, Radix Salvia Miltiorrhizae and Radix Scrophulariaceae, has been used to treat cardiovascular diseases for many years, but the pharmacological mechanisms underlying its effects has not been clarified. This study investigates if a connection between FXST and angiotensin converting enzyme (ACE) might be an explanation for its pharmacological effects. ACE inhibition assay was performed on FXST capsule, 50% ethanol extracts from the four herbals and three selected saponins most abundant in P. notoginseng (Ginsenoside Rg1, Ginsenoside Rb1 and Notoginsenoside R1) using a biochemical test. Reversed-phase high-performance liquid chromatography of liberated hippuric acid from the ACE assay was conducted to determine the inhibitory effect. As a result, FXST and extracts from P. notoginseng showed a significant and dose-dependent inhibition on ACE activity with the IC50 values of 115 μg/ml and 179 μg/ml, respectively. But extracts from the other three herbals and the three selected saponins had no significant effect on ACE inhibition. Compared to other reported plant extracts, FXST could be considered as an effective ACE inhibitor. The inhibition of ACE activity supports the traditional use of FXST on blood circulation and the inhibitory property of FXST is mainly caused by P. notoginseng. PMID:26019516

  14. L51P - A BMP2 variant with osteoinductive activity via inhibition of Noggin.

    Science.gov (United States)

    Albers, Christoph E; Hofstetter, Wilhelm; Sebald, Hans-Jörg; Sebald, Walter; Siebenrock, Klaus A; Klenke, Frank M

    2012-09-01

    Bone morphogenetic proteins (BMP) have to be applied at high concentrations to stimulate bone healing. The limited therapeutic efficacy may be due to the local presence of BMP antagonists such as Noggin. Thus, inhibiting BMP antagonists is an attractive therapeutic option. We hypothesized that the engineered BMP2 variant L51P stimulates osteoinduction by antagonizing Noggin-mediated inhibition of BMP2. Primary murine osteoblasts (OB) were treated with L51P, BMP2, and Noggin. OB proliferation and differentiation were quantified with XTT and alkaline phosphatase (ALP) assays. BMP receptor dependent intracellular signaling in OB was evaluated with Smad and p38 MAPK phosphorylation assays. BMP2, Noggin, BMP receptor Ia/Ib/II, osteocalcin, and ALP mRNA expressions were analyzed with real-time PCR. L51P stimulated OB differentiation by blocking Noggin mediated inhibition of BMP2. L51P did not induce OB differentiation directly and did not activate BMP receptor dependent intracellular signaling via the Smad pathway. Treatment of OB cultures with BMP2 but not with L51P resulted in an increased expression of ALP, BMP2, and Noggin mRNA. By inhibiting the BMP antagonist Noggin, L51P enhances BMP2 activity and stimulates osteoinduction without exhibiting direct osteoinductive function. Indirect osteoinduction with L51P seems to be advantageous to osteoinduction with BMP2 as BMP2 stimulates the expression of Noggin thereby self-limiting its own osteoinductive activity. Treatment with L51P is the first protein-based approach available to augment BMP2 induced bone regeneration through inhibition of BMP antagonists. The described strategy may help to decrease the amounts of exogenous BMPs currently required to stimulate bone healing. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. [Curcumine inhibits migration and invasion of hepatic stellate cells by reducing MMP-2 expression and activity].

    Science.gov (United States)

    Huang, Jian-xian; Zhu, Bao-he; He, De; Huang, Lin; Hu, Ke; Huang, Bo

    2009-11-01

    To investigate the molecular mechanism of the inhibitory effect of curcumine on the migration and invasion of hepatic stellate cells (HSC). Rat hepatic stellate cells were cultured and activated with ConA. Matrix metalloproteinase-2 (MMP-2) expression and activity was determined by Western blot and gelatin zymography. Migration and invasion of HSC was assessed by wound healing assay and modified Boyden chamber assay. Curcumine reduced the level and activity of MMP-2 expression in activated HSC in a dose-dependent manner. When treated with 25, 50 or 100 micromol/L curcumine, the expression of MMP-2 was reduced by 21.8%+/-5.1%, 65.5%+/-9.2% or 87.9%+/-11.5% (P curcumine. Migration and invasion of activated HSC was also inhibited by curcumine in a dose-dependent way. When treated with 25, 50 or 100 micromol/L curcumine, the migration of activated HSC was reduced by 27.5%+/-5.8%, 54.4%+/-7.6% or 67.1%+/-9.3% (P curcumine. Curcumine inhibits migration and invasion of activated HSC by reducing MMP-2 expression and activity.

  16. Modulation of Olfactory Bulb Network Activity by Serotonin: Synchronous Inhibition of Mitral Cells Mediated by Spatially Localized GABAergic Microcircuits

    Science.gov (United States)

    Schmidt, Loren J.; Strowbridge, Ben W.

    2014-01-01

    Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles…

  17. Fern extracts potentiate fluconazole activity and inhibit morphological changes in Candida species

    Directory of Open Access Journals (Sweden)

    Maria A. Freitas

    2017-11-01

    Conclusions: The extracts obtained from the fern species L. venustum and P. calomelanos dose not present significant antifungal activity. However, P. calomelanos potentiates the activity of fluconazole and both extracts inhibits the morphological changes in Candida species, indicating that they have potential pharmacological activity as modulators of fungal biology. Therefore, novel studies are required to characterize the interference of these extracts in the virulence and pathogenicity of Candida species as well as the potential of fern species to treat fungal infections.

  18. Inhibition of myeloperoxidase activity by the alkaloids of Peganum harmala L. (Zygophyllaceae).

    Science.gov (United States)

    Bensalem, Sihem; Soubhye, Jalal; Aldib, Iyas; Bournine, Lamine; Nguyen, Anh Tho; Vanhaeverbeek, Michel; Rousseau, Alexandre; Boudjeltia, Karim Zouaoui; Sarakbi, Ahmad; Kauffmann, Jean Michel; Nève, Jean; Prévost, Martine; Stévigny, Caroline; Maiza-Benabdesselam, Fadila; Bedjou, Fatiha; Van Antwerpen, Pierre; Duez, Pierre

    2014-06-11

    Seeds and aerial parts of Peganum harmala L. are widely used in Algeria as anti-inflammatory remedies. Evaluation of Peganum harmala total alkaloids extracts and pure β-carboline compounds as an anti-inflammatory treatment by the inhibition of an enzyme key of inflammatory, myeloperoxidase (MPO) and HPLC quantification of the alkaloids from the different parts of plant. MPO inhibition was tested using taurine chloramine test. The inhibition of LDL oxidation induced by MPO was carried out. The molecular docking analysis of Peganum harmala alkaloids on MPO was performed using the Glide XP docking protocol and scoring function and the redox potential of alkaloids was determined using an Epsilon potentiostat. The concentration of harmala alkaloids was determined using HPLC analysis. The HPLC profiling of the active total alkaloids indicates that β-carboline e.g. harmine, harmaline, harmane, harmol and harmalol are major components. As β-carbolines resemble tryptamine, of which derivatives are efficient inhibitors of MPO, the harmala alkaloids were tested for their activity on this enzyme. Total alkaloids of the seeds and of the aerial parts strongly inhibited MPO at 20µg/mL (97±5% and 43±4%, respectively) whereas, at the same concentration, those of the roots showed very low inhibition (15±6%). Harmine, harmaline and harmane demonstrated a significant inhibition of MPO at IC50 of 0.26, 0.08 and 0.72µM respectively. These alkaloids exerted a similar inhibition effects on MPO-induced LDL oxidation. Molecular docking analysis of Peganum harmala alkaloids on MPO showed that all active Peganum harmala alkaloids have a high affinity on the active site of MPO (predicted free energies of binding up to -3.1kcal/mol). Measurement of redox potentials versus the normal hydrogen electrode clearly differentiated (i) the high MPO inhibitory activity of harmine, harmaline and harmane (+1014, 1014 and 1003mV, respectively); and (ii) the low activity of harmalol and harmol (+629

  19. Synthesis, anticancer activity, and inhibition of tubulin polymerization by conformationally restricted analogues of lavendustin A.

    Science.gov (United States)

    Mu, Fanrong; Hamel, Ernest; Lee, Debbie J; Pryor, Donald E; Cushman, Mark

    2003-04-24

    Compounds in the lavendustin A series have been shown to inhibit both protein-tyrosine kinases (PTKs) and tubulin polymerization. Since certain lavendustin A derivatives can exist in conformations that resemble both the trans-stilbene structure of the PTK inhibitor piceatannol and the cis-stilbene structure of the tubulin polymerization inhibitor combretastatin A-4, the possibility exists that the ratio of the two types of activities of the lavendustins could be influenced through the synthesis of conformationally restricted analogues. Accordingly, the benzylaniline structure of a series of pharmacologically active lavendustin A fragments was replaced by either their cis- or their trans-stilbene relatives, and effects on both inhibition of tubulin polymerization and cytotoxicity in cancer cell cultures were monitored. Both dihydrostilbene and 1,2-diphenylalkyne congeners were also prepared and evaluated biologically. Surprisingly, conformational restriction of the bridge between the two aromatic rings of the lavendustins had no significant effect on biological activity. On the other hand, conversion of the three phenolic hydroxyl groups of the lavendustin A derivatives to their corresponding methyl ethers consistently abolished their ability to inhibit tubulin polymerization and usually decreased cytotoxicity in cancer cell cultures as well, indicating the importance of at least one of the phenolic hydroxyl groups. Further investigation suggested that the phenolic hydroxyl group in the salicylamide ring was required for activity, while the two phenol moieties in the hydroquinone ring could be methylated with retention of activity. Two of the lavendustin A derivatives displayed IC(50) values of 1.4 microM for inhibition of tubulin polymerization, which ranks them among the most potent of the known tubulin polymerization inhibitors.

  20. Synthetic secoisolariciresinol diglucoside (LGM2605) inhibits myeloperoxidase activity in inflammatory cells.

    Science.gov (United States)

    Mishra, Om P; Popov, Anatoliy V; Pietrofesa, Ralph A; Nakamaru-Ogiso, Eiko; Andrake, Mark; Christofidou-Solomidou, Melpo

    2018-03-07

    Myeloperoxidase (MPO) generates hypochlorous acid (HOCl) during inflammation and infection. We showed that secoisolariciresinol diglucoside (SDG) scavenges radiation-induced HOCl in physiological solutions. However, the action of SDG and its synthetic version, LGM2605, on MPO-catalyzed generation of HOCl is unknown. The present study evaluated the effect of LGM2605 on human MPO, and murine MPO from macrophages and neutrophils. MPO activity was determined fluorometrically using hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF). The effect of LGM2605 on (a) the peroxidase cycle of MPO was determined using Amplex Red while the effect on (b) the chlorination cycle was determined using a taurine chloramine assay. Using electron paramagnetic resonance (EPR) spectroscopy we determined the effect of LGM2605 on the EPR signals of MPO. Finally, computational docking of SDG was used to identify energetically favorable docking poses to enzyme's active site. LGM2605 inhibited human and murine MPO activity. MPO inhibition was observed in the absence and presence of Cl - . EPR confirmed that LGM2605 suppressed the formation of Compound I, an oxoiron (IV) intermediate [Fe(IV)O] containing a porphyrin π-radical of MPO's catalytic cycle. Computational docking revealed that SDG can act as an inhibitor by binding to the enzyme's active site. We conclude that LGM2605 inhibits MPO activity by suppressing both the peroxidase and chlorination cycles. EPR analysis demonstrated that LGM2605 inhibits MPO by decreasing the formation of the highly oxidative Compound I. This study identifies a novel mechanism of LGM2605 action as an inhibitor of MPO and indicates that LGM2605 may be a promising attenuator of oxidant-dependent inflammatory tissue damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity.

    Science.gov (United States)

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-05-31

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs.

  2. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity

    Science.gov (United States)

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-01-01

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs. DOI: http://dx.doi.org/10.7554/eLife.11156.001 PMID:27244239

  3. Inhibition of cyclooxygenase activity by standardized hydroalcoholic extracts of four Asteraceae species from the Argentine Puna

    Directory of Open Access Journals (Sweden)

    M.R. Alberto

    2009-09-01

    Full Text Available We determined the anti-inflammatory activity of standardized extracts of four medicinal plant species (Baccharis incarum, B. boliviensis, Chuquiraga atacamensis, Parastrephia lucida that grow in the Argentine Puna (3800 m above sea level and that are used to reduce oxidative stress and alleviate gout and arthritic pain. The extracts of plant aerial parts were standardized in terms of total phenolic compounds and flavone/flavanone content and free radical scavenging activity. All extracts showed high phenolic compound concentration (0.5-1.6 mg/mL, mainly flavones and flavonols (0.1-0.8 mg/mL. The extracts showed hydrogen donating ability (DPPH and ABTS and reactive oxygen species scavenging activity (O2●-, OH-, H2O2. The ability of the extracts to inhibit cyclooxygenase enzymes (COX-1 and COX-2 was determined by calculating percent inhibition of PGE2 production measured by enzyme immunoassay. All extracts inhibited both enzymes with IC50 values of 2.0 to 16.7 µg/mL. The anti-inflammatory activity of B. incarum and C. atacamensis extracts was higher than that of B. boliviensis and P. lucida. The IC50 values obtained for indomethacin were 0.11 and 0.78 µM for COX-1 and COX-2, respectively. The present results are consistent with the anecdotal use of these species in phytotherapic preparations.

  4. Chicoric acid suppresses BAFF expression in B lymphocytes by inhibiting NF-κB activity.

    Science.gov (United States)

    Chen, Lingxi; Huang, Gang; Gao, Min; Shen, Xiaodong; Gong, Wei; Xu, Zhizhen; Zeng, Yijun; He, Fengtian

    2017-03-01

    B cell activating factor belonging to the TNF family (BAFF) plays a critical role in the pathogenesis of autoimmune diseases. The inhibition of BAFF expression is an emerging therapeutic approach for these disorders. Chicoric acid (CA), a bioactive phytochemical found in several widely used traditional medicinal plants, has significant anti-inflammatory activity and anti-arthritic effects. However, the role of CA in modulation of BAFF expression remains unknown. In this study, we demonstrated that CA reduced BAFF expression in human B lymphocyte cell lines and decreased the DNA-binding activity of nuclear factor-κB (NF-κB) in the BAFF promoter region. Furthermore, CA inhibited both the nuclear translocation of p65 (the subunit of NF-κB) and the phosphorylation of IκBα (inhibitor of NF-κB). These results suggest that CA suppresses BAFF expression by inhibiting NF-κB activity, and CA may serve as a novel therapeutic agent to down-regulate excessive BAFF expression in autoimmune diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Pharmacological activation and inhibition of Slack (Slo2.2) channels.

    Science.gov (United States)

    Yang, Bo; Gribkoff, Valentin K; Pan, Jennifer; Damagnez, Veronique; Dworetzky, Steven I; Boissard, Christopher G; Bhattacharjee, Arin; Yan, Yangyang; Sigworth, Fred J; Kaczmarek, Leonard K

    2006-09-01

    The Slack (Sequence like a calcium-activated K channel) (Slo2.2) gene is abundantly expressed in the mammalian brain and encodes a sodium-activated K+ (KNa) channel. Although the specific roles of Slack channel subunits in neurons remain to be identified, they may play a role in the adaptation of firing rate and in protection against ischemic injury. In the present study, we have generated a stable cell line expressing the Slack channel, and have analyzed the pharmacological properties of these channels in these cells and in Xenopus oocytes. Two known blockers of KNa channels, bepridil and quinidine, inhibited Slack currents in a concentration-dependent manner and decreased channel activity in excised membrane patches. The inhibition by bepridil was potent, with an IC50 of 1.0 microM for inhibition of Slack currents in HEK cells. In contrast, bithionol was found to be a robust activator of Slack currents. When applied to the extracellular face of excised patches, bithionol rapidly induced a reversible increase in channel opening, suggesting that it acts on Slack channels relatively directly. These data establish an important early characterization of agents that modulate Slack channels, a process essential for the experimental manipulation of Slack currents in neurons.

  6. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity

    Science.gov (United States)

    Liu, Daofeng; Song, Liping; Wei, Jie; Courtney, Amy N.; Gao, Xiuhua; Marinova, Ekaterina; Guo, Linjie; Heczey, Andras; Asgharzadeh, Shahab; Kim, Eugene; Dotti, Gianpietro; Metelitsa, Leonid S.

    2012-01-01

    Vα24-invariant NKT cells inhibit tumor growth by targeting tumor-associated macrophages (TAMs). Tumor progression therefore requires that TAMs evade NKT cell activity through yet-unknown mechanisms. Here we report that a subset of cells in neuroblastoma (NB) cell lines and primary tumors expresses membrane-bound TNF-α (mbTNF-α). These proinflammatory tumor cells induced production of the chemokine CCL20 from TAMs via activation of the NF-κB signaling pathway, an effect that was amplified in hypoxia. Flow cytometry analyses of human primary NB tumors revealed selective accumulation of CCL20 in TAMs. Neutralization of the chemokine inhibited in vitro migration of NKT cells toward tumor-conditioned hypoxic monocytes and localization of NKT cells to NB grafts in mice. We also found that hypoxia impaired NKT cell viability and function. Thus, CCL20-producing TAMs served as a hypoxic trap for tumor-infiltrating NKT cells. IL-15 protected antigen-activated NKT cells from hypoxia, and transgenic expression of IL-15 in adoptively transferred NKT cells dramatically enhanced their antimetastatic activity in mice. Thus, tumor-induced chemokine production in hypoxic TAMs and consequent chemoattraction and inhibition of NKT cells represents a mechanism of immune escape that can be reversed by adoptive immunotherapy with IL-15–transduced NKT cells. PMID:22565311

  7. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity.

    Science.gov (United States)

    Liu, Daofeng; Song, Liping; Wei, Jie; Courtney, Amy N; Gao, Xiuhua; Marinova, Ekaterina; Guo, Linjie; Heczey, Andras; Asgharzadeh, Shahab; Kim, Eugene; Dotti, Gianpietro; Metelitsa, Leonid S

    2012-06-01

    Vα24-invariant NKT cells inhibit tumor growth by targeting tumor-associated macrophages (TAMs). Tumor progression therefore requires that TAMs evade NKT cell activity through yet-unknown mechanisms. Here we report that a subset of cells in neuroblastoma (NB) cell lines and primary tumors expresses membrane-bound TNF-α (mbTNF-α). These proinflammatory tumor cells induced production of the chemokine CCL20 from TAMs via activation of the NF-κB signaling pathway, an effect that was amplified in hypoxia. Flow cytometry analyses of human primary NB tumors revealed selective accumulation of CCL20 in TAMs. Neutralization of the chemokine inhibited in vitro migration of NKT cells toward tumor-conditioned hypoxic monocytes and localization of NKT cells to NB grafts in mice. We also found that hypoxia impaired NKT cell viability and function. Thus, CCL20-producing TAMs served as a hypoxic trap for tumor-infiltrating NKT cells. IL-15 protected antigen-activated NKT cells from hypoxia, and transgenic expression of IL-15 in adoptively transferred NKT cells dramatically enhanced their antimetastatic activity in mice. Thus, tumor-induced chemokine production in hypoxic TAMs and consequent chemoattraction and inhibition of NKT cells represents a mechanism of immune escape that can be reversed by adoptive immunotherapy with IL-15-transduced NKT cells.

  8. Locally formed dopamine inhibits Na sup + -K sup + -ATPase activity in rat renal cortical tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J. (Harvard Medical School, Boston, MA (USA) Karolinska Institute, Stockholm (Sweden))

    1988-10-01

    Dopamine, generated locally from L-dopa, inhibits Na{sup +}-K{sup +}-ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na{sup +}-K{sup +}-ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate ({dot Q}o{sub 2}) and {sup 86}Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive {dot Q}o{sub 2} or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive {dot Q}o{sub 2} in a concentration-dependent manner, with half-maximal inhibition (K{sub 0.5}) of 5 {times} 10{sup {minus}7} M and a maximal inhibition of 14.1 {plus minus} 1.5% at 10{sup {minus}4}M. L-Dopa also blunted the nystatin-stimulated {dot Q}o{sub 2} in a concentration-dependent manner, indicating the L-dopa directly inhibits Na{sup +}-K{sup +}-ATPase activity and not sodium entry. Ouabain-sensitive {sup 86}Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} and {sup 86}Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na{sup +}-K{sup +}-ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner.

  9. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    Science.gov (United States)

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC.

  10. Postprandial glycaemia and inhibition of α-glucosidase activity by aqueous extract from Coriandrum sativum.

    Science.gov (United States)

    Brindis, F; González-Andrade, M; González-Trujano, M E; Estrada-Soto, S; Villalobos-Molina, R

    2014-01-01

    The antihyperglycaemic properties of the aqueous extract from the leaves and stems of Coriandrum sativum L. were evaluated in normoglycaemic rats, and on α-glucosidase activity from Saccharomyces cerevisiae, in order to validate its use in folk medicine. In in vivo experiments rats were administered with the aqueous extract of the plant at 100, 300 and 500 mg/kg, to observe the effect on oral sucrose tolerance test. The aqueous extract exhibited significant antihyperglycaemic activity at the three tested doses. In vitro experiments with α-glucosidase exhibited a competitive-type inhibition. These results confirm the antidiabetic properties of the extract of C. sativum L., probably by the inhibition of α-glucosidase in the gastrointestinal tract.

  11. Comparative inhibition of tetrameric carbonyl reductase activity in pig heart cytosol by alkyl 4-pyridyl ketones.

    Science.gov (United States)

    Shimada, Hideaki; Tanigawa, Takahiro; Matayoshi, Kazunori; Katakura, Kazufumi; Babazono, Ken; Takayama, Hiroyuki; Murahashi, Tsuyoshi; Akita, Hiroyuki; Higuchi, Toshiyuki; Eto, Masashi; Imamura, Yorishige

    2014-06-01

    The present study is to elucidate the comparative inhibition of tetrameric carbonyl reductase (TCBR) activity by alkyl 4-pyridyl ketones, and to characterize its substrate-binding domain. The inhibitory effects of alkyl 4-pyridyl ketones on the stereoselective reduction of 4-benzoylpyridine (4-BP) catalyzed by TCBR were examined in the cytosolic fraction of pig heart. Of alkyl 4-pyridyl ketones, 4-hexanoylpyridine, which has a straight-chain alkyl group of five carbon atoms, inhibited most potently TCBR activity and was a competitive inhibitor. Furthermore, cyclohexyl pentyl ketone, which is substituted by cyclohexyl group instead of phenyl group of hexanophenone, had much lower ability to be reduced than hexanophenone. These results suggest that in addition to a hydrophobic cleft corresponding to a straight-chain alkyl group of five carbon atoms, a hydrophobic pocket with affinity for an aromatic group is located in the substrate-binding domain of TCBR.

  12. Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor

    Directory of Open Access Journals (Sweden)

    Elias Leiva-Salcedo

    2011-01-01

    Full Text Available The purinergic P2X7 receptor (P2X7R plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance.

  13. Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor

    Science.gov (United States)

    Leiva-Salcedo, Elias; Coddou, Claudio; Rodríguez, Felipe E.; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernández, Ricardo; Imarai, Mónica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J. Pablo; Escobar, Alejandro; Acuña-Castillo, Claudio

    2011-01-01

    The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410

  14. A novel role of sesamol in inhibiting NF-κB-mediated signaling in platelet activation

    Directory of Open Access Journals (Sweden)

    Chang Chao-Chien

    2011-12-01

    Full Text Available Abstract Background Platelet activation is relevant to a variety of coronary heart diseases. Our previous studies revealed that sesamol possesses potent antiplatelet activity through increasing cyclic AMP formation. Although platelets are anucleated cells, they also express the transcription factor, NF-κB, that may exert non-genomic functions in platelet activation. Therefore, we further investigated the inhibitory roles of sesamol in NF-κB-mediated platelet function. Methods Platelet aggregation, Fura 2-AM fluorescence, and immunoblotting analysis were used in this study. Results NF-κB signaling events, including IKKβ phosphorylation, IκBα degradation, and p65 phosphorylation, were markedly activated by collagen (1 μg/ml in washed human platelets, and these signaling events were attenuated by sesamol (2.5~25 μM. Furthermore, SQ22536 and ODQ, inhibitors of adenylate cyclase and guanylate cyclase, respectively, strongly reversed the sesamol (25 μM-mediated inhibitory effects of IKKβ phosphorylation, IκBα degradation, and p65 phosphorylation stimulated by collagen. The protein kinase A (PKA inhibitor, H89, also reversed sesamol-mediated inhibition of IκBα degradation. Moreover, BAY11-7082, an NF-κB inhibitor, abolished IκBα degradation, phospholipase C (PLCγ2 phosphorylation, protein kinase C (PKC activation, [Ca2+]i mobilization, and platelet aggregation stimulated by collagen. Preincubation of platelets with the inhibitors, SQ22536 and H89, both strongly reversed sesamol-mediated inhibition of platelet aggregation and [Ca2+]i mobilization. Conclusions Sesamol activates cAMP-PKA signaling, followed by inhibition of the NF-κB-PLC-PKC cascade, thereby leading to inhibition of [Ca2+]i mobilization and platelet aggregation. Because platelet activation is not only linked to hemostasis, but also has a relevant role in inflammation and metastasis, our data demonstrating that inhibition of NF-κB interferes with platelet function may

  15. Cadmium exposure inhibits MMP2 and MMP9 activities in the prostate and testis

    Energy Technology Data Exchange (ETDEWEB)

    Lacorte, Livia M.; Rinaldi, Jaqueline C.; Justulin, Luis A.; Delella, Flávia K. [Univ Estadual Paulista – UNESP, Institute of Biosciences, Department of Morphology, Extracellular Matrix Laboratory, Botucatu, SP (Brazil); Moroz, Andrei [Univ Estadual Paulista – UNESP, School of Pharmaceutical Sciences, Department of Bioprocess and Biotechnology, Cell Culture Laboratory, Araraquara, SP (Brazil); Felisbino, Sérgio L., E-mail: felisbin@ibb.unesp.br [Univ Estadual Paulista – UNESP, Institute of Biosciences, Department of Morphology, Extracellular Matrix Laboratory, Botucatu, SP (Brazil)

    2015-02-20

    Matrix metalloproteinases (MMPs) are zinc (Zn{sup 2+}) and calcium (Ca{sup 2+}) dependant endopeptidases, capable of degradation of numerous components of the extracellular matrix. Cadmium (Cd{sup 2+}) is a well known environmental contaminant which could impair the activity of MMPs. In this sense, this study was conducted to evaluate if Cd{sup 2+} intake inhibits these endopeptidases activities at the rat prostate and testicles and if it directly inhibits the activity of MMP2 and MMP9 at gelatinolytic assays when present in the incubation buffer. To investigate this hypothesis, Wistar rats (5 weeks old), were given tap water (untreated, n = 9), or 15 ppm CdCl{sub 2} diluted in drinking water, during 10 weeks (n = 9) and 20 weeks (n = 9). The animals were euthanized and their ventral prostate, dorsal prostate, and testicles were removed. These tissue samples were processed for protein extraction and subjected to gelatin zymography evaluation. Additionally, we performed an experiment of gelatin zymography in which 5 μM or 2 mM cadmium chloride (CdCl{sub 2}) was directly dissolved at the incubation buffer, using the prostatic tissue samples from untreated animals that exhibited the highest MMP2 and MMP9 activities in the previous experiment. We have found that CdCl{sub 2} intake in the drinking water led to the inhibition of 35% and 30% of MMP2 and MMP9 (p < 0.05) at the ventral prostate and testis, respectively, in Cd{sup 2+} treated animals when compared to controls. Moreover, the activities of the referred enzymes were 80% and 100% inhibited by 5 μM and 2 mM of CdCl{sub 2}, respectively, even in the presence of 10 mM of CaCl{sub 2} within the incubation buffer solution. These important findings demonstrate that environmental cadmium contamination may deregulate the natural balance in the extracellular matrix turnover, through MMPs downregulation, which could contribute to the toxic effects observed in prostatic and testicular tissue after its

  16. Cadmium exposure inhibits MMP2 and MMP9 activities in the prostate and testis

    International Nuclear Information System (INIS)

    Lacorte, Livia M.; Rinaldi, Jaqueline C.; Justulin, Luis A.; Delella, Flávia K.; Moroz, Andrei; Felisbino, Sérgio L.

    2015-01-01

    Matrix metalloproteinases (MMPs) are zinc (Zn 2+ ) and calcium (Ca 2+ ) dependant endopeptidases, capable of degradation of numerous components of the extracellular matrix. Cadmium (Cd 2+ ) is a well known environmental contaminant which could impair the activity of MMPs. In this sense, this study was conducted to evaluate if Cd 2+ intake inhibits these endopeptidases activities at the rat prostate and testicles and if it directly inhibits the activity of MMP2 and MMP9 at gelatinolytic assays when present in the incubation buffer. To investigate this hypothesis, Wistar rats (5 weeks old), were given tap water (untreated, n = 9), or 15 ppm CdCl 2 diluted in drinking water, during 10 weeks (n = 9) and 20 weeks (n = 9). The animals were euthanized and their ventral prostate, dorsal prostate, and testicles were removed. These tissue samples were processed for protein extraction and subjected to gelatin zymography evaluation. Additionally, we performed an experiment of gelatin zymography in which 5 μM or 2 mM cadmium chloride (CdCl 2 ) was directly dissolved at the incubation buffer, using the prostatic tissue samples from untreated animals that exhibited the highest MMP2 and MMP9 activities in the previous experiment. We have found that CdCl 2 intake in the drinking water led to the inhibition of 35% and 30% of MMP2 and MMP9 (p < 0.05) at the ventral prostate and testis, respectively, in Cd 2+ treated animals when compared to controls. Moreover, the activities of the referred enzymes were 80% and 100% inhibited by 5 μM and 2 mM of CdCl 2 , respectively, even in the presence of 10 mM of CaCl 2 within the incubation buffer solution. These important findings demonstrate that environmental cadmium contamination may deregulate the natural balance in the extracellular matrix turnover, through MMPs downregulation, which could contribute to the toxic effects observed in prostatic and testicular tissue after its exposure. - Highlights: • Wistar rats were given

  17. Exposure to silver nanoparticles inhibits selenoprotein synthesis and the activity of thioredoxin reductase.

    Science.gov (United States)

    Srivastava, Milan; Singh, Sanjay; Self, William T

    2012-01-01

    Silver nanoparticles (AgNPs) and silver (Ag)-based materials are increasingly being incorporated into consumer products, and although humans have been exposed to colloidal Ag in many forms for decades, this rise in the use of Ag materials has spurred interest into their toxicology. Recent reports have shown that exposure to AgNPs or Ag ions leads to oxidative stress, endoplasmic reticulum stress, and reduced cell proliferation. Previous studies have shown that Ag accumulates in tissues as silver sulfides (Ag2S) and silver selenide (Ag2Se). In this study we investigated whether exposure of cells in culture to AgNPs or Ag ions at subtoxic doses would alter the effective metabolism of selenium, that is, the incorporation of selenium into selenoproteins. For these studies we used a keratinocyte cell model (HaCat) and a lung cell model (A549). We also tested (in vitro, both cellular and chemical) whether Ag ions could inhibit the activity of a key selenoenzyme, thioredoxin reductase (TrxR). We found that exposure to AgNPs or far lower levels of Ag ions led to a dose-dependent inhibition of selenium metabolism in both cell models. The synthesis of protein was not altered under these conditions. Exposure to nanomolar levels of Ag ions effectively blocked selenium metabolism, suggesting that Ag ion leaching was likely the mechanism underlying observed changes during AgNP exposure. Exposure likewise inhibited TrxR activity in cultured cells, and Ag ions were potent inhibitors of purified rat TrxR isoform 1 (cytosolic) (TrxR1) enzyme. Exposure to AgNPs leads to the inhibition of selenoprotein synthesis and inhibition of TrxR1. Further, we propose these two sites of action comprise the likely mechanism underlying increases in oxidative stress, increases endoplasmic reticulum stress, and reduced cell proliferation during exposure to Ag.

  18. Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics.

    Science.gov (United States)

    Butt, Craig M; Stapleton, Heather M

    2013-11-18

    Many halogenated organic contaminants (HOCs) are considered endocrine disruptors and affect the hypothalamic-pituitary-thyroid axis, often by interfering with circulating levels of thyroid hormones (THs). We investigated one potential mechanism for TH disruption, inhibition of sulfotransferase activity. One of the primary roles of TH sulfation is to support the regulation of biologically active T3 through the formation of inactive THs. We investigated TH sulfotransferase inhibition by 14 hydroxylated polybrominated diphenyl ethers (OH BDEs), BDE 47, triclosan, and fluorinated, chlorinated, brominated, and iodinated analogues of 2,4,6-trihalogenated phenol and bisphenol A (BPA). A new mass spectrometry-based method was also developed to measure the formation rates of 3,3'-T2 sulfate (3,3'-T2S). Using pooled human liver cytosol, we investigated the influence of these HOCs on the sulfation of 3,3'-T2, a major substrate for TH sulfation. For the formation of 3,3'-T2S, the Michaelis constant (Km) was 1070 ± 120 nM and the Vmax was 153 ± 6.6 pmol min(-1) (mg of protein)(-1). All chemicals investigated inhibited sulfotransferase activity with the exception of BDE 47. The 2,4,6-trihalogenated phenols were the most potent inhibitors followed by the OH BDEs and then halogenated BPAs. The IC50 values for the OH BDEs were primarily in the low nanomolar range, which may be environmentally relevant. In silico molecular modeling techniques were also used to simulate the binding of OH BDE to SULT1A1. This study suggests that some HOCs, including antimicrobial chemicals and metabolites of flame retardants, may interfere with TH regulation through inhibition of sulfotransferase activity.

  19. Ginkgolic acid inhibits the invasiveness of colon cancer cells through AMPK activation.

    Science.gov (United States)

    Qiao, Lina; Zheng, Jianbao; Jin, Xianzhen; Wei, Guangbing; Wang, Guanghui; Sun, Xuejun; Li, Xuqi

    2017-11-01

    Tumor cell invasion and metastasis are important processes in colorectal cancer that exert negative effects on patient outcomes; consequently, a prominent topic in the field of colorectal cancer study is the identification of safe and affordable anticancer drugs against cell invasion and metastasis, with limited side effects. Ginkgolic acid is a phenolic acid extracted from ginkgo fruit, ginkgo exotesta and ginkgo leaves. Previous studies have indicated that ginkgolic acid inhibits tumor growth and invasion in a number of types of cancer; however, limited studies have considered the effects of ginkgolic acid on colon cancer. In the present study, SW480 colon cancer cells were treated with a range of concentrations of ginkgolic acid; tetrazolium dye-based MTT, wound-scratch and transwell migration assays were performed to investigate the effects on the proliferation, migration and invasion of colon cancer cells, and potential mechanisms for the effects were explored. The results indicated that ginkgolic acid reduced the proliferation and significantly inhibited the migration and invasion of SW480 cells in a concentration-dependent manner. Additional experiments indicated that ginkgolic acid significantly decreased the expression of invasion-associated proteins, including matrix metalloproteinase (MMP)-2, MMP-9, urinary-type plasminogen activator and C-X-C chemokine receptor type 4, and activated adenosine monophosphate activated protein kinase (AMPK) in SW480 cells. Small interfering RNA silencing of AMPK expression reversed the effect of ginkgolic acid on the expression of invasion-associated proteins. This result suggested that ginkgolic acid inhibited the proliferation, migration and invasion of SW480 colon cancer cells by inducing AMPK activation and inhibiting the expression of invasion-associated proteins.

  20. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1.

    Science.gov (United States)

    Kim, Hee-Jung; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jaeho; Park, A Young; Kang, Wonmo; Lee, Kong-Joo

    2017-08-04

    When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys 132 disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys 132 was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys 132 in hnRNP K is critical for this inhibition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yue [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Handong, E-mail: njhdwang@hotmail.com [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Qiang [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Ding, Hui [Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wu, Heming [Department of Neurosurgery, Nanjing Jingdu Hospital, No. 34, Biao 34, Yanggongjing Road, Nanjing 210002, Jiangsu Province (China); Pan, Hao [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China)

    2016-01-15

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, the role and mechanism of Nrf2 in cancer cell proliferation was investigated in multiple glioma cell lines. We first evaluated the expression patterns of Nrf2 in four glioma cell lines and found all four cell lines expressed Nrf2, but the highest level was observed in U251 cells. We further evaluated the biological functions of Nrf2 in U251 glioma cell proliferation by specific inhibition of Nrf2 using short hairpin RNA (shRNA). We found that Nrf2 depletion inhibited glioma cell proliferation. Nrf2 depletion also decreased colony formation in U251 cells stably expressing Nrf2 shRNA compared to scrambled control shRNA. Moreover, suppression of Nrf2 expression could lead to ATP depletion (with concomitant rise in AMP/ATP ratio) and consequently to AMPK-activated mTOR inhibition. Finally, activation of adenosine monophosphate–activated protein kinase (AMPK) by treated with phenformin, an AMPK agonist, can mimic the inhibitory effect of Nrf2 knockdown in U251 cells. In conclusion, our findings will shed light to the role and mechanism of Nrf2 in regulating glioma proliferation via ATP-depletion-induced AMPK activation and consequent mTOR inhibition, a novel insight into our understanding the role and mechanism of Nrf2 in glioma pathoetiology. To our knowledge, this is also the first report to provide a rationale for the implication of cross-linking between Nrf2 and mTOR signaling.

  2. Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity.

    Science.gov (United States)

    Yamauchi, Mika; Tsuruma, Kazuhiro; Imai, Shunsuke; Nakanishi, Tomohiro; Umigai, Naofumi; Shimazawa, Masamitsu; Hara, Hideaki

    2011-01-10

    Crocetin is a carotenoid that is the aglicone of crocin, which are found in saffron stigmas (Crocus sativus L.) and gardenia fruit (Gardenia jasminoides Ellis). In this study, we investigated the effects of crocetin on retinal damage. To examine whether crocetin affects stress pathways, we investigated intracellular oxidation induced by reactive oxygen species, expression of endoplasmic reticulum (ER) stress-related proteins, disruption of the mitochondrial membrane potential (ΔΨ(m)), and caspases activation. In vitro, we employed cultured retinal ganglion cells (RGC-5, a mouse ganglion cell-line transformed using E1A virus). Cell damage was induced by tunicamycin or hydrogen peroxide (H(2)O(2)) exposure. Crocetin at a concentration of 3μM showed the inhibitory effect of 50-60% against tunicamycin- and H(2)O(2)-induced cell death and inhibited increase in caspase-3 and -9 activity. Moreover, crocetin inhibited the enzymatic activity of caspase-9 in a cell-free system. In vivo, retinal damage in mice was induced by exposure to white light at 8000lx for 3h after dark adaptation. Photoreceptor damage was evaluated by measuring the outer nuclear layer thickness at 5days after light exposure and recording the electroretinogram (ERG). Retinal cell damage was also detected with Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining at 48h after light exposure. Crocetin at 100mg/kg, p.o. significantly inhibited photoreceptor degeneration and retinal dysfunction and halved the expression of TUNEL-positive cells. These results indicate that crocetin has protective effects against retinal damage in vitro and in vivo, suggesting that the mechanism may inhibit increase in caspase-3 and -9 activities after retinal damage. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Angiotensin II inhibits the Na+-K+ pump via PKC-dependent activation of NADPH oxidase.

    Science.gov (United States)

    White, Caroline N; Figtree, Gemma A; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Chia, Karin K M; Rasmussen, Helge H

    2009-04-01

    The sarcolemmal Na(+)-K(+) pump, pivotal in cardiac myocyte function, is inhibited by angiotensin II (ANG II). Since ANG II activates NADPH oxidase, we tested the hypothesis that NADPH oxidase mediates the pump inhibition. Exposure to 100 nmol/l ANG II increased superoxide-sensitive fluorescence of isolated rabbit ventricular myocytes. The increase was abolished by pegylated superoxide dismutase (SOD), by the NADPH oxidase inhibitor apocynin, and by myristolated inhibitory peptide to epsilon-protein kinase C (epsilonPKC), previously implicated in ANG II-induced Na(+)-K(+) pump inhibition. A role for epsilonPKC was also supported by an ANG II-induced increase in coimmunoprecipitation of epsilonPKC with the receptor for the activated kinase and with the cytosolic p47(phox) subunit of NADPH oxidase. ANG II decreased electrogenic Na(+)-K(+) pump current in voltage-clamped myocytes. The decrease was abolished by SOD, by the gp91ds inhibitory peptide that blocks assembly and activation of NADPH oxidase, and by epsilonPKC inhibitory peptide. Since colocalization should facilitate NADPH oxidase-dependent regulation of the Na(+)-K(+) pump, we examined whether there is physical association between the pump subunits and NADPH oxidase. The alpha(1)-subunit coimmunoprecipitated with caveolin 3 and with membrane-associated p22(phox) and cytosolic p47(phox) NADPH oxidase subunits at baseline. ANG II had no effect on alpha(1)/caveolin 3 or alpha(1)/p22(phox) interaction, but it increased alpha(1)/p47(phox) coimmunoprecipitation. We conclude that ANG II inhibits the Na(+)-K(+) pump via PKC-dependent NADPH oxidase activation.

  4. Ruthenium(ii) arene NSAID complexes: inhibition of cyclooxygenase and antiproliferative activity against cancer cell lines.

    Science.gov (United States)

    Mandal, Poulami; Kundu, Bidyut Kumar; Vyas, Komal; Sabu, Vidya; Helen, A; Dhankhar, Sandeep Singh; Nagaraja, C M; Bhattacherjee, Debojit; Bhabak, Krishna Pada; Mukhopadhyay, Suman

    2018-01-02

    Non-steroidal anti-inflammatory drugs (NSAIDs) are a group of molecules which have been found to be active against cancer cells with chemopreventive properties by targeting cyclooxygenase (COX-1 and COX-2) and lipoxygenase (LOX), commonly upregulated (particularly COX-2) in malignant tumors. Arene ruthenium(ii) complexes with a pseudo-octahedral coordination environment containing different ancillary ligands have shown remarkable activity against primary and metastatic tumors as reported earlier. This work describes the synthesis of four novel ruthenium(ii)-arene complexes viz. [Ru(η 6 -p-cymene)(nap)Cl] 1 [Hnap = naproxen or (S)-2-(6-methoxy-2-naphthyl)propionic acid], [Ru(η 6 -p-cymene)(diclo)Cl] 2 [Hdiclo = diclofenac or 2-[(2,6-dichlorophenyl)amino] benzeneacetic acid, [Ru(η 6 -p-cymene)(ibu)Cl] 3 [Hibu = ibuprofen or 2-(4-isobutylphenyl)propanoic acid] and [Ru(η 6 -p-cymene)(asp)Cl] 4 [Hasp = aspirin or 2-acetoxy benzoic acid] using different NSAIDs as chelating ligands. Complexes 1-3 have shown promising antiproliferative activity against three different cell lines with GI 50 (concentration of drug causing 50% inhibition of cell growth) values comparable to adriamycin. At the concentration of 50 μM, complex 3 is more effective in the inhibition of cyclooxygenase and lipooxygenase enzymes, followed by complex 2 and complex 1 in comparison to their respective free NSAID ligands indicating a possible correlation between the inhibition of COX and/or LOX and anticancer properties. Molecular docking studies with COX-2 reveal that complexes 1 and 2 having naproxen and diclofenac ligands exhibit stronger interactions with COX-2 than their respective free NSAIDs and these results are in good agreement with their relative experimentally observed COX inhibition as well as anti-proliferative activities.

  5. MEK1 inhibits cardiac PPARα activity by direct interaction and prevents its nuclear localization.

    Directory of Open Access Journals (Sweden)

    Hamid el Azzouzi

    Full Text Available BACKGROUND: The response of the postnatal heart to growth and stress stimuli includes activation of a network of signal transduction cascades, including the stress activated protein kinases such as p38 mitogen-activated protein kinase (MAPK, c-Jun NH2-terminal kinase (JNK and the extracellular signal-regulated kinase (ERK1/2 pathways. In response to increased workload, the mitogen-activated protein kinase kinase (MAPKK MEK1 has been shown to be active. Studies embarking on mitogen-activated protein kinase (MAPK signaling cascades in the heart have indicated peroxisome-proliferators activated-receptors (PPARs as downstream effectors that can be regulated by this signaling cascade. Despite the importance of PPARα in controlling cardiac metabolism, little is known about the relationship between MAPK signaling and cardiac PPARα signaling. METHODOLOGY/PRINCIPAL FINDING: Using co-immunoprecipitation and immunofluorescence approaches we show a complex formation of PPARα with MEK1 and not with ERK1/2. Binding of PPARα to MEK1 is mediated via a LXXLL motif and results in translocation from the nucleus towards the cytoplasm, hereby disabling the transcriptional activity of PPARα. Mice subjected to voluntary running-wheel exercise showed increased cardiac MEK1 activation and complex formation with PPARα, subsequently resulting in reduced PPARα activity. Inhibition of MEK1, using U0126, blunted this effect. CONCLUSION: Here we show that activation of the MEK1-ERK1/2 pathway leads to specific inhibition of PPARα transcriptional activity. Furthermore we show that this inhibitory effect is mediated by MEK1, and not by its downstream effector kinase ERK1/2, through a mechanism involving direct binding to PPARα and subsequent stimulation of PPARα export from the nucleus.

  6. MicroRNA-125a Inhibits Autophagy Activation and Antimicrobial Responses during Mycobacterial Infection.

    Science.gov (United States)

    Kim, Jin Kyung; Yuk, Jae-Min; Kim, Soo Yeon; Kim, Tae Sung; Jin, Hyo Sun; Yang, Chul-Su; Jo, Eun-Kyeong

    2015-06-01

    MicroRNAs (miRNAs) are small noncoding nucleotides that play critical roles in the regulation of diverse biological functions, including the response of host immune cells. Autophagy plays a key role in activating the antimicrobial host defense against Mycobacterium tuberculosis. Although the pathways associated with autophagy must be tightly regulated at a posttranscriptional level, the contribution of miRNAs and whether they specifically influence the activation of macrophage autophagy during M. tuberculosis infection are largely unknown. In this study, we demonstrate that M. tuberculosis infection of macrophages leads to increased expression of miRNA-125a-3p (miR-125a), which targets UV radiation resistance-associated gene (UVRAG), to inhibit autophagy activation and antimicrobial responses to M. tuberculosis. Forced expression of miR-125a significantly blocked M. tuberculosis-induced activation of autophagy and phagosomal maturation in macrophages, and inhibitors of miR-125a counteracted these effects. Both TLR2 and MyD88 were required for biogenesis of miR-125a during M. tuberculosis infection. Notably, activation of the AMP-activated protein kinase significantly inhibited the expression of miR-125a in M. tuberculosis-infected macrophages. Moreover, either overexpression of miR-125a or silencing of UVRAG significantly attenuated the antimicrobial effects of macrophages against M. tuberculosis. Taken together, these data indicate that miR-125a regulates the innate host defense by inhibiting the activation of autophagy and antimicrobial effects against M. tuberculosis through targeting UVRAG. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Taraxasterol Inhibits LPS-Induced Inflammatory Response in BV2 Microglia Cells by Activating LXRα

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2018-04-01

    Full Text Available Neuroinflammation plays a critical role in the development of neurodegenerative diseases. Taraxasterol, a pentacyclic-triterpene isolated from Taraxacum officinale, has been reported to have anti-inflammatory effect. The aim of this study was to investigate the anti-inflammatory effects and mechanism of taraxasterol in LPS-stimulated BV2 microglia cells. BV2 microglia cells were treated with taraxasterol 12 h before LPS stimulation. The effects of taraxasterol on LPS-induced TNF-α and IL-1β production were detected by ELISA. The effects of taraxasterol on LXRα, ABCA1, TLR4, and NF-κB expression were detected by western blot analysis. The results showed that taraxasterol dose-dependently inhibited LPS-induced TNF-α and IL-1β production and NF-κB activation. Taraxasterol also disrupted the formation of lipid rafts and inhibited translocation of TLR4 into lipid rafts. Furthermore, taraxasterol was found to activate LXRα-ABCA1 signaling pathway which induces cholesterol efflux from cells. In addition, our results showed that the anti-inflammatory effect of taraxasterol was attenuated by transfection with LXRα siRNA. In conclusion, these results suggested that taraxasterol inhibits LPS-induced inflammatory response in BV2 microglia cells by activating LXRα-ABCA1 signaling pathway.

  8. Synthesis, Antimycobacterial, Antifungal and Photosynthesis-Inhibiting Activity of Chlorinated N-phenylpyrazine-2-carboxamides †

    Directory of Open Access Journals (Sweden)

    Katarina Kralova

    2010-11-01

    Full Text Available A series of sixteen pyrazinamide analogues with the -CONH- linker connecting the pyrazine and benzene rings was synthesized by the condensation of chlorides of substituted pyrazinecarboxylic acids with ring-substituted (chlorine anilines. The prepared compounds were characterized and evaluated for their antimycobacterial and antifungal activity, and for their ability to inhibit photosynthetic electron transport (PET. 6-Chloro-N-(4-chlorophenylpyrazine-2-carboxamide manifested the highest activity against Mycobacterium tuberculosis strain H37Rv (65% inhibition at 6.25 μg/mL. The highest antifungal effect against Trichophyton mentagrophytes, the most susceptible fungal strain tested, was found for 6-chloro-5-tert-butyl-N-(3,4-dichlorophenylpyrazine-2-carboxamide (MIC = 62.5 μmol/L. 6-Chloro-5-tert-butyl-N-(4-chlorophenylpyrazine-2-carboxamide showed the highest PET inhibition in spinach chloroplasts (Spinacia oleracea L. chloroplasts (IC50 = 43.0 μmol/L. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds as well as their structure-activity relationships are discussed.

  9. The inhibition effect of starch nanoparticles on tyrosinase activity and its mechanism.

    Science.gov (United States)

    Yang, Jie; Chang, Ranran; Ge, Shengju; Zhao, Mei; Liang, Caifeng; Xiong, Liu; Sun, Qingjie

    2016-12-07

    The objective of the current research was to investigate the effects of starch nanoparticles (SNPs) prepared from waxy maize, potato, normal corn, and tapioca starches on the activity of tyrosinase. As a main polyphenol oxidase, tyrosinase not only induces fruit and vegetable browning but also causes skin diseases by overproducing melanin. Herein, for the first time, we evaluated the inhibitory kinetics of SNPs on tyrosinase. It turned out that SNPs inhibited tyrosinase activity reversibly. The IC 50 values of hollow nanoparticles, amylopectin nanoparticles, corn starch nanoparticles, and tapioca starch nanoparticles were 0.308, 0.669, 1.490, and 4.774 μM, respectively. Assay of fluorescence spectra demonstrated that SNPs quenched the tyrosinase intrinsic fluorescence. Moreover, binding constant and binding sites found that SNPs were bound to tyrosinase through van der Waals forces, hydrogen bonds, as well as electrostatic interactions. Analysis of circular dichroism indicated that the incorporation of SNPs into tyrosinase prompted conformational alteration of the enzyme. Furthermore, inhibition of browning by SNPs loading with l-dopa compound indicated that not only the tyrosinase activity was inhibited, but also SNPs decreased free dopa content by adsorption. This research on SNPs as potential inhibitors could give rise to advancement in the realm of anti-tyrosinase and have versatile applications in medicine, food, cosmetics, materials and drugs.

  10. Inhibition of human dendritic cell activation by hydroethanolic but not lipophilic extracts of turmeric (Curcuma longa).

    Science.gov (United States)

    Krasovsky, Joseph; Chang, David H; Deng, Gary; Yeung, Simon; Lee, Mavis; Leung, Ping Chung; Cunningham-Rundles, Susanna; Cassileth, Barrie; Dhodapkar, Madhav V

    2009-03-01

    Turmeric has been extensively utilized in Indian and Chinese medicine for its immune-modulatory properties. Dendritic cells (DCs) are antigen-presenting cells specialized to initiate and regulate immunity. The ability of DCs to initiate immunity is linked to their activation status. The effects of turmeric on human DCs have not been studied. Here we show that hydroethanolic (HEE) but not lipophilic "supercritical" extraction (SCE) of turmeric inhibits the activation of human DCs in response to inflammatory cytokines. Treatment of DCs with HEE also inhibits the ability of DCs to stimulate the mixed lymphocyte reaction (MLR). Importantly, the lipophilic fraction does not synergize with the hydroethanolic fraction for the ability of inhibiting DC maturation. Rather, culturing of DCs with the combination of HEE and SCE leads to partial abrogation of the effects of HEE on the MLR initiated by DCs. These data provide a mechanism for the anti-inflammatory properties of turmeric. However, they suggest that these extracts are not synergistic and may contain components with mutually antagonistic effects on human DCs. Harnessing the immune effects of turmeric may benefit from specifically targeting the active fractions.

  11. Evaluation of enzymes inhibition activities of medicinal plant from Burkina Faso.

    Science.gov (United States)

    Bangou, Mindiédiba Jean; Kiendrebeogo, Martin; Meda, Nâg-Tiero Roland; Coulibaly, Ahmed Yacouba; Compaoré, Moussa; Zeba, Boukaré; Millogo-Rasolodimby, Jeanne; Nacoulma, Odile Germaine

    2011-01-15

    The aim of the present study was to evaluate some enzymes inhibitory effects of 11 plant species belonging to 9 families from Burkina Faso. Methanolic extracts were used for their Glutathione-s-transferase (GST), Acetylcholinesterase (AChE), Carboxylesterase (CES) and Xanthine Oxidase (XO) inhibitory activities at final concentration of 100 microg mL(-1). The total phenolics, flavonoids and tannins were also determined spectrophotometrically using Folin-Ciocalteu, AlCl3 and ammonium citrate iron reagents, respectively. Among the 11 species tested, the best inhibitory percentages were found with Euphorbia hirta, Sclerocarya birrea and Scoparia dulcis (inhibition > 40%) followed by Annona senegalensis, Annona squamosa, Polygala arenaria and Ceratotheca sesamoides (inhibition > 25%). The best total phenolic and tannin contents were found with S. birrea with 56.10 mg GAE/100 mg extract and 47.75 mg TAE/100 mg extract, respectively. E hirta presented the higher total flavonoids (9.96 mg QE/100 mg extract). It's was found that Sclerocarya birrea has inhibited all enzymes at more than 30% and this activity is correlated to total tannins contents. Contrary to S. birrea, the enzymatic activities of E. hirta and S. dulcis are correlated to total flavonoids contents. Present findings suggest that the methanolic extracts of those plant species are potential inhibitors of GST, AChE, CES and XO and confirm their traditional uses in the treatment of mental disorders, gout, painful inflammations and cardiovascular diseases.

  12. Shikonin inhibits intestinal calcium-activated chloride channels and prevents rotaviral diarrhea

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-08-01

    Full Text Available Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl currents in mouse colonic epithelia but did not affect cytoplasmic Ca2+ concentration as well as the other major enterocyte chloride channel CFTR. Characterization study found that shikonin inhibited basolateral K+ channel activity without affecting Na+/K+-ATPase activities. In-vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in-vivo. Taken together, the results suggested that shikonin inhibited enterocyte CaCCs, the inhibitory effect was partially through inhbition of basolateral K+ channel acitivty, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.

  13. Protein tyrosine kinase but not protein kinase C inhibition blocks receptor induced alveolar macrophage activation

    Directory of Open Access Journals (Sweden)

    K. Pollock

    1993-01-01

    Full Text Available The selective enzyme inhibitors genistein and Ro 31-8220 were used to assess the importance of protein tyrosine kinase (PTK and protein kinase C (PKC, respectively, in N-formyl-methionyl-leucyl-phenylalanine (FMLP induced generation of superoxide anion and thromboxane B2 (TXB2 in guinea-pig alveolar macrophages (AM. Genistein (3–100 μM dose dependently inhibited FMLP (3 nM induced superoxide generation in non-primed AM and TXB2 release in non-primed or in lipopolysaccharide (LPS (10 ng/ml primed AM to a level > 80% but had litle effect up to 100 μM on phorbol myristate acetate (PMA (10 nM induced superoxide release. Ro 31-8220 inhibited PMA induced superoxide generation (IC50 0.21 ± 0.10 μM but had no effect on or potentiated (at 3 and 10 μM FMLP responses in non-primed AM. In contrast, when present during LPS priming as well as during FMLP challenge Ro 31-8220 (10 μM inhibited primed TXB2 release by > 80%. The results indicate that PTK activation is required for the generation of these inflammatory mediators by FMLP in AM. PKC activation appears to be required for LPS priming but not for transducing the FMLP signal; rather, PKC activation may modulate the signal by a negative feedback mechanism.

  14. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity.

    Science.gov (United States)

    Rijpma, Sanna R; van den Heuvel, Jeroen J M W; van der Velden, Maarten; Sauerwein, Robert W; Russel, Frans G M; Koenderink, Jan B

    2014-09-13

    Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involved in drug deposition, as they are located at membranes of many uptake and excretory organs and at protective barriers, where they export endogenous and xenobiotic compounds, including pharmaceuticals. In this study, a panel of well-established anti-malarial drugs which may affect drug plasma concentrations was tested for interactions with human ABC transport proteins. The interaction of chloroquine, quinine, artemisinin, mefloquine, lumefantrine, atovaquone, dihydroartemisinin and proguanil, with transport activity of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), bile salt export pump (BSEP) and multidrug resistance-associated proteins (MRP) 1-4 were analysed. The effect of the anti-malarials on the ATP-dependent uptake of radio-labelled substrates was measured in membrane vesicles isolated from HEK293 cells overexpressing the ABC transport proteins. A strong and previously undescribed inhibition of BCRP-mediated transport by atovaquone with a 50% inhibitory concentration (IC50) of 0.23 μM (95% CI 0.17-0.29 μM) and inhibition of P-gp-mediated transport by quinine with an IC50 of 6.8 μM (95% CI 5.9-7.8 μM) was observed. Furthermore, chloroquine and mefloquine were found to significantly inhibit P-gp-mediated transport. BCRP transport activity was significantly inhibited by all anti-malarials tested, whereas BSEP-mediated transport was not inhibited by any of the compounds. Both MRP1- and MRP3-mediated transport were significantly inhibited by mefloquine. Atovaquone and quinine significantly inhibit BCRP- and P-gp- mediated transport at concentrations within the clinically relevant prophylactic and therapeutic range. Co-administration of these established anti

  15. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    Science.gov (United States)

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  16. Identification of compounds with anti-human cytomegalovirus activity that inhibit production of IE2 proteins.

    Science.gov (United States)

    Beelontally, Rooksarr; Wilkie, Gavin S; Lau, Betty; Goodmaker, Charles J; Ho, Catherine M K; Swanson, Chad M; Deng, Xianming; Wang, Jinhua; Gray, Nathanael S; Davison, Andrew J; Strang, Blair L

    2017-02-01

    Using a high throughput screening methodology we surveyed a collection of largely uncharacterized validated or suspected kinase inhibitors for anti-human cytomegalovirus (HCMV) activity. From this screen we identified three structurally related 5-aminopyrazine compounds (XMD7-1, -2 and -27) that inhibited HCMV replication in virus yield reduction assays at low micromolar concentrations. Kinase selectivity assays indicated that each compound was a kinase inhibitor capable of inhibiting a range of cellular protein kinases. Western blotting and RNA sequencing demonstrated that treatment of infected cells with XMD7 compounds resulted in a defect in the production of the major HCMV transcriptional transactivator IE2 proteins (IE2-86, IE2-60 and IE2-40) and an overall reduction in transcription from the viral genome. However, production of certain viral proteins was not compromised by treatment with XMD7 compounds. Thus, these novel anti-HCMV compounds likely inhibited transcription from the viral genome and suppressed production of a subset of viral proteins by inhibiting IE2 protein production. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Control of DNA synthesis in inhibited and activated Agrostemma githago seeds

    International Nuclear Information System (INIS)

    Hecker, M.

    1975-01-01

    The relationships between DNA synthesis and germination capacity of Agrostemma seeds had been studied. Protein synthesis and RNA synthesis were activated at the very beginning of imbibition, whereas DNA synthesis started in the second part of the imbibition phase. Agrostemma seeds inhibited by higher temperature (30 degC), or aged seeds with a low germination capacity were characterized by a significantly reduced protein synthesis. DNA synthesis was also reduced. The inhibition of the protein synthesis of Agrostemma embryos fed with cycloheximide or actinomycin D caused a depression of DNA synthesis. The results indicated that the initiation of DNA synthesis of imbibing Agrostemma seeds depended on the synthesis of special proteins. Abscisic acid inhibited the growth as well as DNA synthesis of isolated Agrostemma embryos. Nitomycin inhibited germination and DNA synthesis to the same extent. Dormant seeds with an undiminished intensity of protein synthesis also showed a reduced incorporation of 3 H-thymidine by DNA. It is suggested that DNA synthesis of imbibed seeds, which is a necessary prerequisite for the radicle protrusion, was involved in the mechanism of ripening of the Agrostemma seeds. (author)

  18. Activation of AMPK inhibits cholera toxin stimulated chloride secretion in human and murine intestine.

    Directory of Open Access Journals (Sweden)

    Ailín C Rogers

    Full Text Available Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR, is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK, can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK. In order to substantiate our findings on the whole tissue level, short-circuit current (SCC was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness.

  19. Nuclear protein IκB-ζ inhibits the activity of STAT3

    International Nuclear Information System (INIS)

    Wu, Zhihao; Zhang, Xiaoai; Yang, Juntao; Wu, Guangzhou; Zhang, Ying; Yuan, Yanzhi; Jin, Chaozhi; Chang, Zhijie; Wang, Jian; Yang, Xiaoming; He, Fuchu

    2009-01-01

    STAT3 (Signal transducer and activator of transcription 3) is a key transcription factor of the JAK-STAT (Janus kinase/signal transducer and activator of transcription) pathway that regulates cell proliferation and apoptosis. Activation of STAT3 is under tight regulation, and yet the different signaling pathways and the mechanisms that regulate its activity remain to be elucidated. Using a yeast two-hybrid screening, we have identified a nuclear protein IκB-ζ that interacts in a novel way with STAT3. This physical interaction was further confirmed by co-immunoprecipitation assays. The interaction regions were mapped to the coiled-coil domain of STAT3 and the C-terminal of IκB-ζ. Overexpression of IκB-ζ inhibited the transcriptional activity of STAT3. It also suppressed cell growth and induced cell apoptosis in SRC-simulated cells, which is partially mediated by down-regulation of expression of a known STAT3 target gene, MCL1. Our results suggest that IκB-ζ is a negative regulator of STAT3, and demonstrate a novel mechanism in which a component of the NF-κB signaling pathway inhibits the activation of STAT3.

  20. Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo

    Science.gov (United States)

    Feng, Xinchi; Wang, Xin; Liu, Youping; Di, Xin

    2015-01-01

    Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in-vitro and ex-vivo. Ellman’s colorimetric method was used for the determination of AChE inhibitory activity in mouse brain. In-vitro assays revealed that linarin inhibited AChE activity with an IC50 of 3.801 ± 1.149 μM. Ex-vivo study showed that the AChE activity was significantly reduced in both the cortex and hippocampus of mice treated intraperitoneally with various doses of linarin (35, 70 and 140 mg/Kg). The inhibition effects produced by high dose of linarin were the same as that obtained after huperzine A treatment (0.5 mg/Kg). Molecular docking study revealed that both 4’-methoxyl group and 7-O-sugar moiety of linarin played important roles in ligand-receptor binding and thus they are mainly responsible for AChE inhibitory activity. In view of its potent AChE inhibitory activity, linarin may be a promising therapeutic agent for the treatment of some diseases associated with AChE, such as glaucoma, myasthenia gravis, gastric motility and Alzheimer’s disease. PMID:26330885

  1. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Fu, Meili; Wan, Fuqiang; Li, Zhengling; Zhang, Fenghua

    2016-01-01

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation–inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D, a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. - Highlights: • 4SC-202 exerts potent anti-proliferative and cytotoxic activity against established/primary HCC cells. • SC-202-induced anti-HCC cell activity relies on caspase-dependent apoptosis activation. • 4SC-202 activates Cyp-D-dependent mitochondrial apoptosis pathway in HCC cells. • 4SC-202 activates ASK1 in HCC cells, causing it translocation to mitochondria. • Mitochondrial ASK1-Cyp-D complexation mediates 4SC-202's activity in HCC cells.

  2. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Meili, E-mail: fumeilidrlinyi@tom.com [Department of Infectious Disease, Linyi People' s Hospital, Linyi 276000 (China); Wan, Fuqiang [Department of Head and Neck Surgery, Linyi Tumor Hospital, Linyi 276000 (China); Li, Zhengling [Department of Nursing, Tengzhou Central People' s Hospital, Tengzhou 277500 (China); Zhang, Fenghua [Department of Operating Room, Linyi People' s Hospital, Linyi 276000 (China)

    2016-03-04

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation–inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D, a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. - Highlights: • 4SC-202 exerts potent anti-proliferative and cytotoxic activity against established/primary HCC cells. • SC-202-induced anti-HCC cell activity relies on caspase-dependent apoptosis activation. • 4SC-202 activates Cyp-D-dependent mitochondrial apoptosis pathway in HCC cells. • 4SC-202 activates ASK1 in HCC cells, causing it translocation to mitochondria. • Mitochondrial ASK1-Cyp-D complexation mediates 4SC-202's activity in HCC cells.

  3. Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase.

    Science.gov (United States)

    McDonald, Charles J; Acheff, Eric; Kennedy, Ryan; Taylor, Lynn; Curthoys, Norman P

    2015-09-01

    The GLS1 gene encodes a mitochondrial glutaminase that is highly expressed in brain, kidney, small intestine and many transformed cells. Recent studies have identified multiple lysine residues in glutaminase that are sites of N-acetylation. Interestingly, these sites are located within either a loop segment that regulates access of glutamine to the active site or the dimer:dimer interface that participates in the phosphate-dependent oligomerization and activation of the enzyme. These two segments also contain the binding sites for bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide (BPTES), a highly specific and potent uncompetitive inhibitor of this glutaminase. BPTES is also the lead compound for development of novel cancer chemotherapeutic agents. To provide a preliminary assessment of the potential effects of N-acetylation, the corresponding lysine to alanine mutations were constructed in the hGACΔ1 plasmid. The wild type and mutated proteins were purified by Ni(+)-affinity chromatography and their phosphate activation and BPTES inhibition profiles were analyzed. Two of the alanine substitutions in the loop segment (K311A and K328A) and the one in the dimer:dimer interface (K396A) form enzymes that require greater concentrations of phosphate to produce half-maximal activation and exhibit greater sensitivity to BPTES inhibition. By contrast, the K320A mutation results in a glutaminase that exhibits near maximal activity in the absence of phosphate and is not inhibited by BPTES. Thus, lysine N-acetylation may contribute to the acute regulation of glutaminase activity in various tissues and alter the efficacy of BPTES-type inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Methyl jasmonate enhances memory performance through inhibition of oxidative stress and acetylcholinesterase activity in mice.

    Science.gov (United States)

    Eduviere, Anthony T; Umukoro, S; Aderibigbe, Adegbuyi O; Ajayi, Abayomi M; Adewole, Folashade A

    2015-07-01

    Current research effort focuses on the development of safer natural compounds with multipronged mechanisms of action that could be used to ameliorate memory deficits in patients with Alzheimer's disease, as cure for the disease still remains elusive. In this study, we evaluated the effect of methyl jasmonate (MJ), a naturally occurring bioactive compound on memory, acetylcholinesterase activity and biomarkers of oxidative stress in mice. Male Swiss mice were treated with intraperitoneal injection of MJ (10-40 mg/kg) alone or in combination with scopolamine (3mg/kg) once daily for 7 days. Thirty minutes after the last treatment, memory functions were assessed using Y-maze and object recognition tests. Thereafter, acetylcholinesterase activity and levels of biomarkers of oxidative stress were assessed in mice brains using standard biochemical procedures. MJ significantly enhanced memory performance and reversed scopolamine-induced cognitive impairment in mice. MJ demonstrated significant inhibition of acetylcholinesterase activity suggesting increased cholinergic neurotransmission. It further decreased malondialdehyde concentrations in mouse brain indicating antioxidant activity. Moreover, MJ significantly increased glutathione levels and activity of antioxidant enzymes (catalase and superoxide dismutase) in mice brains. The increased oxidative stress; evidenced by elevated levels of malondialdehyde and decreased antioxidant defense systems in scopolamine-treated mice was attenuated by MJ. The results of this study suggest that MJ may be useful in conditions associated with memory dysfunctions or age-related cognitive decline. The positive effect of MJ on memory may be related to inhibition of oxidative stress and enhancement of cholinergic neurotransmission through inhibition of acetylcholinesterase activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Troxerutin Reduces Kidney Damage against BDE-47-Induced Apoptosis via Inhibiting NOX2 Activity and Increasing Nrf2 Activity

    Directory of Open Access Journals (Sweden)

    Qun Shan

    2017-01-01

    Full Text Available 2,2,4,4-Tetrabromodiphenyl ether (BDE-47, one of the persistent organic pollutants, seriously influences the quality of life; however, its pathological mechanism remains unclear. Troxerutin is a flavonoid with pharmacological activity of antioxidation and anti-inflammation. In the present study, we investigated troxerutin against BDE-47-induced kidney cell apoptosis and explored the underlying mechanism. The results show that troxerutin reduced renal cell apoptosis and urinary protein secretion in BDE-47-treated mice. Western blot analysis shows that troxerutin supplement enhanced the ratio of Bcl-2/Bax; inhibited the release of cytochrome c from mitochondria, the activation of procaspase-9 and procaspase-3, and the cleavage of PARP; and reduced FAS, FASL, and caspase-8 levels induced by BDE-47. In addition, troxerutin decreased the production of reactive oxygen species (ROS and increased the activities of antioxidative enzymes. Furthermore, troxerutin blunted Nrf2 ubiquitylation, enhanced the activity of Nrf2, decreased the activity of NOX2, and ameliorated kidney oxidant status of BDE-47-treated mice. Together, these results confirm that troxerutin could alleviate the cytotoxicity of BDE-47 through antioxidation and antiapoptosis, which suggests that its protective mechanism is involved in the inhibition of apoptosis via suppressing NOX2 activity and increasing Nrf2 signaling pathway.

  6. LPS-Induced Macrophage Activation and Plasma Membrane Fluidity Changes are Inhibited Under Oxidative Stress.

    Science.gov (United States)

    de la Haba, Carlos; Morros, Antoni; Martínez, Paz; Palacio, José R

    2016-12-01

    Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion. It was shown that LPS activation causes fluidification of macrophage plasma membrane and production of TNFα. However, oxidative stress induces rigidification of macrophage plasma membrane and inhibition of cell activation, which is evidenced by a decrease of TNFα secretion. Thus, under oxidative conditions macrophage proinflammatory response might develop in an inefficient manner.

  7. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro-Filho, Jaime [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba (Brazil); Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Moraes de Carvalho, Katharinne Ingrid [Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Silva Mendes, Diego da [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Melo, Christianne Bandeira [Laboratório de Inflamação, Instituto Biofisica Carlos Chagas Filho, UFRJ, Rio de Janeiro (Brazil); Martins, Marco Aurélio [Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Silva Dias, Celidarque da [Laboratório de Fitoquímica, Departamento de Ciências Farmacêuticas, UFPB, João Pessoa, Paraíba (Brazil); Piuvezam, Márcia Regina, E-mail: mrpiuvezam@ltf.ufpb.br [Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba (Brazil); and others

    2013-11-15

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine

  8. Acute aerobic activity enhances response inhibition for less than 30min.

    Science.gov (United States)

    Netz, Yael; Abu-Rukun, Mona; Tsuk, Sharon; Dwolatzky, Tzvi; Carasso, Raffi; Levin, Oron; Dunsky, Ayelet

    2016-11-01

    Acute exercise appears to facilitate certain aspects of cognitive processing. The possibility that exercise may lead to more efficient inhibitory processes is of particular interest, owing to the wide range of cognitive and motor functions that inhibition may underlie. The purpose of the present study was to examine the immediate and the delayed effect of acute aerobic exercise on response inhibition, motor planning, and eye-hand coordination in healthy active adults. Forty healthy and active participants (10 females) with a mean age of 51.88±8.46years performed the Go-NoGo test (response inhibition) and the Catch Game (motor planning and eye-hand coordination) before, immediately after, and following a 30-min recovery period in two conditions: a moderate-intensity aerobic session and a control session. In 2-way repeated measures ANOVAs (2 treatments×3 times) followed by contrast comparisons for post hoc analyses, significant pre-post interactions - indicating improvements immediately following exercise but not following the control condition - were observed in the Go-NoGo measures: Accuracy, Reaction Time, and Performance Index, but not in the Catch Game. In the post-follow-up interaction a deterioration was observed in Performance Index, and a trend of deterioration in Accuracy and Reaction Time. The conclusion was that a single session of moderate-intensity aerobic exercise facilitates response inhibition, but not motor planning or eye-hand coordination, in middle-aged healthy active adults. On the other hand, the improvement does not last 30min following a recovery period. Further studies are needed to examine the duration of the inhibitory control benefits and the accumulative effect of a series of acute exercise bouts, as well as to determine the brain networks and/or neurotransmitter systems most affected by the intervention. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Inhibition of Heme Peroxidase During Phenol Derivatives Oxidation. Possible Molecular Cloaking of the Active Center

    Directory of Open Access Journals (Sweden)

    Juozas Kulys

    2005-10-01

    Full Text Available Abstract: Ab initio quantum chemical calculations have been applied to the study of the molecular structure of phenol derivatives and oligomers produced during peroxidasecatalyzed oxidation. The interaction of substrates and oligomers with Arthromyces ramosus peroxidase was analyzed by docking methods. The most possible interaction site of oligomers is an active center of the peroxidase. The complexation energy increases with increasing oligomer length. However, the complexed oligomers do not form a precise (for the reaction hydrogen bonding network in the active center of the enzyme. It seems likely that strong but non productive docking of the oligomers determines peroxidase inhibition during the reaction.

  10. Ventricular oversensing of atrial electrical activity that inhibits VVI pacemaker and causes syncope

    Directory of Open Access Journals (Sweden)

    Elibet Chávez González

    2015-10-01

    Full Text Available Far-field oversensing of atrial electrical activity caused by a VVI pacemaker is a rare phenomenon; however, it may have serious clinical consequences. It has several causes and its timely identification may avoid a possible ventricular asystole. This article reports the case of a 72-year-old male who had a Biotronik Axios SR pacemaker implanted, in VVIR mode, six years ago, due to blocked atrial fibrillation. He suffered syncope due to pacemaker inhibition caused by ventricular oversensing of atrial electrical activity.

  11. 3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Beaver, Laura M., E-mail: beaverl@onid.orst.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States); Yu, Tian-Wei, E-mail: david.yu@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Sokolowski, Elizabeth I., E-mail: sokolowe@onid.orst.edu [School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture and Life Sciences Building, Corvallis, OR 97331 (United States); Dashwood, Roderick H., E-mail: rod.dashwood@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture and Life Sciences Building, Corvallis, OR 97331 (United States); Ho, Emily, E-mail: Emily.Ho@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States)

    2012-09-15

    Increased consumption of cruciferous vegetables is associated with a reduced risk of developing prostate cancer. Indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) are phytochemicals derived from cruciferous vegetables that have shown promise in inhibiting prostate cancer in experimental models. Histone deacetylase (HDAC) inhibition is an emerging target for cancer prevention and therapy. We sought to examine the effects of I3C and DIM on HDACs in human prostate cancer cell lines: androgen insensitive PC-3 cells and androgen sensitive LNCaP cells. I3C modestly inhibited HDAC activity in LNCaP cells by 25% but no inhibition of HDAC activity was detected in PC-3 cells. In contrast, DIM significantly inhibited HDAC activity in both cell lines by as much as 66%. Decreases in HDAC activity correlated with increased expression of p21, a known target of HDAC inhibitors. DIM treatment caused a significant decrease in the expression of HDAC2 protein in both cancer cell lines but no significant change in the protein levels of HDAC1, HDAC3, HDAC4, HDAC6 or HDAC8 was detected. Taken together, these results show that inhibition of HDAC activity by DIM may contribute to the phytochemicals' anti-proliferative effects in the prostate. The ability of DIM to target aberrant epigenetic patterns, in addition to its effects on detoxification of carcinogens, may make it an effective chemopreventive agent by targeting multiple stages of prostate carcinogenesis. -- Highlights: ► DIM inhibits HDAC activity and decreases HDAC2 expression in prostate cancer cells. ► DIM is significantly more effective than I3C at inhibiting HDAC activity. ► I3C has no effect on HDAC protein expression. ► Inhibition of HDAC activity by DIM is associated with increased p21 expression. ► HDAC inhibition may be a novel epigenetic mechanism for cancer prevention with DIM.

  12. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  13. Activation and inhibition of retinal ganglion cells in response to epiretinal electrical stimulation: a computational modelling study

    Science.gov (United States)

    Abramian, Miganoosh; Lovell, Nigel H.; Morley, John W.; Suaning, Gregg J.; Dokos, Socrates

    2015-02-01

    Objective. Retinal prosthetic devices aim to restore sight in visually impaired people by means of electrical stimulation of surviving retinal ganglion cells (RGCs). This modelling study aims to demonstrate that RGC inhibition caused by high-intensity cathodic pulses greatly influences their responses to epiretinal electrical stimulation and to investigate the impact of this inhibition on spatial activation profiles as well as their implications for retinal prosthetic device design. Another aim is to take advantage of this inhibition to reduce axonal activation in the nerve fibre layer. Approach. A three-dimensional finite-element model of epiretinal electrical stimulation was utilized to obtain RGC activation and inhibition threshold profiles for a range of parameters. Main results. RGC activation and inhibition thresholds were highly dependent on cell and stimulus parameters. Activation thresholds were 1.5, 3.4 and 11.3 μA for monopolar electrodes with 5, 20 and 50 μm radii, respectively. Inhibition to activation threshold ratios were mostly within the range 2-10. Inhibition significantly altered spatial patterns of RGC activation. With concentric electrodes and appropriately high levels of stimulus amplitudes, activation of passing axons was greatly reduced. Significance. RGC inhibition significantly impacts their spatial activation profiles, and therefore it most likely influences patterns of perceived phosphenes induced by retinal prosthetic devices. Thus this inhibition should be taken into account in future studies concerning retinal prosthesis development. It might be possible to utilize this inhibitory effect to bypass activation of passing axons and selectively stimulate RGCs near their somas and dendrites to achieve more localized phosphenes.

  14. [Isolation of endophytic fungi from medicinal plant Brucea javanica and their microbial inhibition activity].

    Science.gov (United States)

    Liang, Zi-Ning; Zhu, Hua; Lai, Kai-Ping; Chen, Long

    2014-04-01

    To isolate and identify endophytic fungi from Brucea javanica, and to detect the antimicrobial activity of these strains. Endophytic fungi were isolated by tissue inoculation culture and identified by conventional morphological characteristic method. Seven kinds of pathogenic fungi and three kinds of bacteria were used as targeting microbes to test microbial inhibition activities by agar plate antagonistic action and modified agar gel diffusion methods, respectively. A total of 83 endophytic fungi strains were isolated from the root, stem, leaf and fruit of Brucea javanica. 34 strains were obtained from the stem, 32 strains were obtained from the leaf, 15 strains were isolated from the root and 2 strains came from the fruit. These 73 strains which had been identified attribute to 5 orders, 6 families and 12 genera. For the isolated strains, 14 strains had antifungal activities against at least one pathogenic fungi, 9 strains showed antibacterial activities against one or more bacteria. Especially, the strain YJ-17 which belonged to Phomopsis genus showed the best inhibitory effect on the targeting microbes. The endophytic fungi from Brucea javanica show diversity and microbial inhibition activity, and are worthy for further study on plant disease controlling.

  15. Quorum Sensing Inhibition and Structure–Activity Relationships of β-Keto Esters

    Directory of Open Access Journals (Sweden)

    Stephanie Forschner-Dancause

    2016-07-01

    Full Text Available Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS—a cell-cell communication system in bacteria—controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure–activity relationships needed to allow for the development of novel anti-virulence agents.

  16. MEK inhibition potentiates the activity of Hsp90 inhibitor 17-AAG against pancreatic cancer cells.

    Science.gov (United States)

    Zhang, Tao; Li, Yanyan; Zhu, Zhenkun; Gu, Mancang; Newman, Bryan; Sun, Duxin

    2010-10-04

    The Ras/Raf/MEK/ERK signaling has been implicated in uncontrolled cell proliferation and tumor progression in pancreatic cancer. The purpose of this study is to evaluate the antitumor activity of MEK inhibitor U0126 in combination with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) in pancreatic cancer cells. Western blotting showed that 17-AAG caused a 2- to 3-fold transient activation of MEK/ERK signaling in pancreatic cancer cells. The activation sustained for 6 h before phospho-ERK (p-ERK) destabilization. The selective MEK inhibitor U0126 completely abolished 17-AAG induced ERK1/2 activation and resulted in more than 80% of phospho-ERK degradation after only 15 min treatment. Moreover, U0126 had complementary effect on 17-AAG regulated oncogenic and cell cycle related proteins. Although 17-AAG downregulated cyclin D1, cyclin E, CDK4 and CDK6, it led to cyclin A and CDK2 accumulation, which was reversed by the addition of U0126. Antiproliferation assay showed that combination of U0126 and 17-AAG resulted in synergistic cytotoxic effect. More importantly, 17-AAG alone only exhibited moderate inhibition of cell migration in vitro, while addition of U0126 dramatically enhanced the inhibitory effect by 2- to 5-fold. Taken together, these data demonstrate that MEK inhibitor U0126 potentiates the activity of Hsp90 inhibitor 17-AAG against pancreatic cancer cells. The combination of Hsp90 and MEK inhibition could provide a promising avenue for the treatment of pancreatic cancer.

  17. IL-6 Inhibition Reduces STAT3 Activation and Enhances the Antitumor Effect of Carboplatin

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Wang

    2016-01-01

    Full Text Available Recent studies suggest that tumor-associated macrophage-produced IL-6 is an important mediator within the tumor microenvironment that promotes tumor growth. The activation of IL-6/STAT3 axis has been associated with chemoresistance and poor prognosis of a variety of cancers including colorectal carcinoma and thus serves as a potential immunotherapeutic target for cancer treatment. However, it is not fully understood whether anticytokine therapy could reverse chemosensitivity and enhance the suppressive effect of chemotherapy on tumor growth. In this study, we aimed to investigate the effect of IL-6 inhibition therapy on the antitumor effect of carboplatin. Enhanced expression of IL-6 and activation of STAT3 were observed in human colorectal carcinoma samples compared to normal colorectal tissue, with higher levels of IL-6/STAT3 in low grade carcinomas. Treatment of carboplatin (CBP dose-dependently increased IL-6 production and STAT3 activation in human colorectal LoVo cells. Blockade of IL-6 with neutralizing antibody enhanced chemosensitivity of LoVo cells to carboplatin as evidenced by increased cell apoptosis. IL-6 blockade abolished carboplatin-induced STAT3 activation. IL-6 blockade and carboplatin synergistically reduced cyclin D1 expression and enhanced caspase-3 activity in LoVo cells. Our results suggest that inhibition of IL-6 may enhance chemosensitivity of colon cancers with overactive STAT3 to platinum agents.

  18. Phytochemicals Content, Antioxidant and α-Glucosidase Inhibition Activity of Bouea Macrophylla Griff Seed Extract

    International Nuclear Information System (INIS)

    Zainah Adam; Hazlina Ahmad Hassali; Rosniza Razali

    2016-01-01

    Bouea macrophylla Griff or locally known as kundang is one of the common fruit plant available in Malaysia. This plant from Anacardiaceae family is native to Southeast Asia particularly in Malaysia, Thailand and Indonesia. Medicinal values of this plant is not yet been explored. The present study was done to evaluate phytochemicals constituents in B. macrophylla seed extract qualitatively and quantitatively. Biological evaluations focusing on antioxidant and α-glucosidase inhibition were also performed. Qualitative phytochemicals screening revealed the presence of anthraquinones, terpenoids, flavanoids, tannins, alkaloids, glycosides, reducing sugar, steroids, triterpenes, phenolic, coumarine and proteins in B. macrophylla seed extract. Quantitative determination showed that B. macrophylla seed extract contains high amount of phenolic compounds (689.17±37.50 mg GAE/ g extract), but low amount of flavonoids (2.78±0.01 mg QE/ g extract), suggesting that most of the phenolics in B. macrophylla seed extract were non-flavonoids. Antioxidant assays showed that the extract possesses strong reducing power and DPPH radical scavenging activity (IC 50 : 4.73±0.51 μg/ ml). These activities were almost comparable to that of vitamin C. α-Glucosidase inhibition study showed that the extract inhibited alpha-glucosidase activity potently with the IC 50 value of 0.55±0.04 mg/ ml, suggesting the ability of the plant to delay glucose absorption in small intestine, hence reduces hyperglycemia in diabetic condition. Potent antioxidant and α-glucosidase inhibitory activity of the extract might be attributed to the presence of high amount of phenolic compounds. In conclusion, this study showed that B. macrophylla seed extract contains various phytochemicals, possess strong antioxidant property and showed promising antidiabetic activity. These results indicate that B. macrophylla might have the potential to be developed as new pharmacological agent targeting on oxidative stress

  19. Free Fatty Acids Inhibit Protein Tyrosine Phosphatase 1B and Activate Akt

    Directory of Open Access Journals (Sweden)

    Eisuke Shibata

    2013-09-01

    Full Text Available Background/Aims: Accumulating evidence has suggested that free fatty acids (FFAs interact with protein kinases and protein phosphatases. The present study examined the effect of FFAs on protein phosphatases and Akt. Methods: Activities of protein phosphatase 1 (PP1, protein phosphatase 2A (PP2A, and protein tyrosine phosphatase 1B (PTP1B were assayed under the cell-free conditions. Phosphorylation of Akt was monitored in MSTO-211H human malignant pleural mesothelioma cells without and with knocking-down phosphatidylinositol 3 kinase (PI3K or 3-phosphoinositide-dependent protein kinase-1 (PDK1. Results: In the cell-free assay, unsaturated FFAs (uFFAs such as oleic, linoleic and linolenic acid and saturated FFAs (sFFAs such as stearic, palmitic, myristic, and behenic acid markedly reduced PTP1B activity, with the potential for uFFAs greater than that for sFFAs. All the investigated sFFAs inhibited PP2A activity, but otherwise no inhibition was obtained with uFFAs. Both uFFAs and sFFAs had no effect on PP1 activity. Oleic acid phosphorylated Akt both on Thr308 and Ser473, while stearic acid phosphorylated Akt on Thr308 alone. The effects of oleic and stearic acid on Akt phosphorylation were abrogated by the PI3K inhibitor wortmannin or the PDK1 inhibitor BX912 and also by knocking-down PI3K or PDK1. Conclusion: The results of the present study indicate that uFFAs and sFFAs could activate Akt through a pathway along a PI3K/PDK1/Akt axis in association with PTP1B inhibition.

  20. Withaferin A inhibits the proteasome activity in mesothelioma in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Huanjie Yang

    Full Text Available The medicinal plant Withania somnifera has been used for over centuries in Indian Ayurvedic Medicine to treat a wide spectrum of disorders. Withaferin A (WA, a bioactive compound that is isolated from this plant, has anti-inflammatory, immuno-modulatory, anti-angiogenic, and anti-cancer properties. Here we investigated malignant pleural mesothelioma (MPM suppressive effects of WA and the molecular mechanisms involved. WA inhibited growth of the murine as well as patient-derived MPM cells in part by decreasing the chymotryptic activity of the proteasome that resulted in increased levels of ubiquitinated proteins and pro-apoptotic proteasome target proteins (p21, Bax, IκBα. WA suppression of MPM growth also involved elevated apoptosis as evidenced by activation of pro-apoptotic p38 stress activated protein kinase (SAPK and caspase-3, elevated levels of pro-apoptotic Bax protein and cleavage of poly-(ADP-ribose-polymerase (PARP. Our studies including gene-array based analyses further revealed that WA suppressed a number of cell growth and metastasis-promoting genes including c-myc. WA treatments also stimulated expression of the cell cycle and apoptosis regulatory protein (CARP-1/CCAR1, a novel transducer of cell growth signaling. Knock-down of CARP-1, on the other hand, interfered with MPM growth inhibitory effects of WA. Intra-peritoneal administration of 5 mg/kg WA daily inhibited growth of murine MPM cell-derived tumors in vivo in part by inhibiting proteasome activity and stimulating apoptosis. Together our in vitro and in vivo studies suggest that WA suppresses MPM growth by targeting multiple pathways that include blockage of proteasome activity and stimulation of apoptosis, and thus holds promise as an anti-MPM agent.

  1. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity

    Directory of Open Access Journals (Sweden)

    Xiaoyong Wei

    2012-01-01

    Full Text Available Objective. Effects of Syringic acid (SA extracted from dendrobii on diabetic cataract (DC pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC50 of SA for inhibition of AR activity was 213.17 μg/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC.

  2. Linalool Inhibits LPS-Induced Inflammation in BV2 Microglia Cells by Activating Nrf2.

    Science.gov (United States)

    Li, Yang; Lv, Ou; Zhou, Fenggang; Li, Qingsong; Wu, Zhichao; Zheng, Yongri

    2015-07-01

    Linalool, a natural compound of the essential oils, has been reported to have anti-inflammatory effects. This study aimed to investigate the anti-inflammatory effects and mechanism of linalool in LPS-stimulated BV2 microglia cells. BV2 microglia cells were stimulated with LPS in the presence or absence of linalool. The production of inflammatory mediators TNF-α, IL-1β, NO, and PGE2 as well as Nrf2, HO-1 expression were detected. Our results showed that linalool inhibited LPS-induced TNF-α, IL-1β, NO, and PGE2 production in a dose-dependent manner. Linalool also inhibited LPS-induced NF-κB activation. Treatment of linalool induced nuclear translocation of Nrf2 and expression of HO-1. In addition, our results showed that the anti-inflammatory effect of linalool was attenuated by transfection with Nrf2 siRNA. In conclusion, these results suggested that linalool inhibits LPS-induced inflammation in BV2 microglia cells by activating Nrf2/HO-1 signaling pathway.

  3. Selective Inhibition of FOXO1 Activator/Repressor Balance Modulates Hepatic Glucose Handling.

    Science.gov (United States)

    Langlet, Fanny; Haeusler, Rebecca A; Lindén, Daniel; Ericson, Elke; Norris, Tyrrell; Johansson, Anders; Cook, Joshua R; Aizawa, Kumiko; Wang, Ling; Buettner, Christoph; Accili, Domenico

    2017-11-02

    Insulin resistance is a hallmark of diabetes and an unmet clinical need. Insulin inhibits hepatic glucose production and promotes lipogenesis by suppressing FOXO1-dependent activation of G6pase and inhibition of glucokinase, respectively. The tight coupling of these events poses a dual conundrum: mechanistically, as the FOXO1 corepressor of glucokinase is unknown, and clinically, as inhibition of glucose production is predicted to increase lipogenesis. Here, we report that SIN3A is the insulin-sensitive FOXO1 corepressor of glucokinase. Genetic ablation of SIN3A abolishes nutrient regulation of glucokinase without affecting other FOXO1 target genes and lowers glycemia without concurrent steatosis. To extend this work, we executed a small-molecule screen and discovered selective inhibitors of FOXO-dependent glucose production devoid of lipogenic activity in hepatocytes. In addition to identifying a novel mode of insulin action, these data raise the possibility of developing selective modulators of unliganded transcription factors to dial out adverse effects of insulin sensitizers. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Relationship between suicide ideation and Behavioral Inhibition/Activation Systems (BIS/BAS and perfectionism

    Directory of Open Access Journals (Sweden)

    Mansour Bairami

    2015-03-01

    Full Text Available Background: The present research investigated the relationship between suicide ideation and Behavioral Inhibition/Activation Systems (BIS/BAS and perfectionism in university Studants. Methods: This descriptive-correlational study was conducted on200 students at university of Tabriz that were selected by multistage cluster sampling. The subjects answered three questionnaires: Beck Scale for Suicide Ideation (BSSI, Multidimensional Perfectionism Scale (MPS and Gray-Wilson Personality Questionnaire (GWPQ. Data were analyzed by Pearson correlation and multiple regression. Results: Results showed that there is a significant relationship between suicide ideation and behavioral inhibition system (R=0/55, self-oriented perfectionism(R=0/40 and socially- prescribed perfectionism (0/47 (p=0.01. Also, the results of regression analysis showed that behavioral inhibition system, self-oriented and socially-prescribed perfectionism could significantly predict suicide ideation. Conclusion: Behavioral activation system (BIS and self-oriented /socially prescribed perfectionism were correlated to and could predict suicide ideation.

  5. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    Science.gov (United States)

    2011-01-01

    Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG) by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt.) significantly dampened the postprandial hyperglycemia by 78.2% and 52.0% in maltose and sucrose

  6. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    Directory of Open Access Journals (Sweden)

    Thirumurugan Kavitha

    2011-06-01

    Full Text Available Abstract Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt. significantly dampened the postprandial hyperglycemia by 78.2% and 52

  7. Inhibition of [gamma]-endorphin generating endopeptidase activity of rat brain by peptides: Structure activity relationship

    NARCIS (Netherlands)

    Lebouille, J.L.M.; Visser, W.H.; Hendriks, R.W.; Nispen, J.W. van; Greven, H.M.; Burbach, J.P.H.

    1985-01-01

    Gamma-Endorphin generating endopeptidase (gammaEGE) activity is an enzyme activity which converts beta-endorphin into gamma-endorphin and beta-endorphin-(18–31). The inhibitory potency on gammaEGE activity of neuropeptides and analogues or fragments of neuropeptides was tested. Dynorphin-(1–13)

  8. Effects on atrial fibrillation in aged hypertensive rats by Ca(2+)-activated K(+) channel inhibition

    DEFF Research Database (Denmark)

    Diness, Jonas Goldin; Skibsbye, Lasse; Jespersen, Thomas

    2011-01-01

    hypertensive rats were more vulnerable to AF induction both by S2 stimulation and burst pacing. Vehicle affected neither the atrial effective refractory period nor AF duration. SK channel inhibition with NS8593 and UCL1684 significantly increased the atrial effective refractory period and decreased AF duration......We have shown previously that inhibition of small conductance Ca(2+)-activated K(+) (SK) channels is antiarrhythmic in models of acutely induced atrial fibrillation (AF). These models, however, do not take into account that AF derives from a wide range of predisposing factors, the most prevalent...... being hypertension. In this study we assessed the effects of two different SK channel inhibitors, NS8593 and UCL1684, in aging, spontaneously hypertensive rats to examine their antiarrhythmic properties in a setting of hypertension-induced atrial remodeling. Male spontaneously hypertensive rats...

  9. Critical appraisal of respirometric methods for metal inhibition on activated sludge

    International Nuclear Information System (INIS)

    Cokgor, E. Ubay; Ozdemir, S.; Karahan, O.; Insel, G.; Orhon, D.

    2007-01-01

    This paper evaluates the merit of oxygen uptake rate measurements for the assessment of metal inhibition on activated sludge. For this purpose, experiments are conducted to calculate EC 50 levels of nickel and hexavalent chromium using the ISO 8192 procedure, yielding results that are highly variable and difficult to correlate, depending on the type of substrate and the initial food to microorganism ratio. Similar experiments based on continuous respirometric measurements to give the entire oxygen uptake rate profile provide a much better insight on the impact of inhibition on different biochemical processes taking place in the reactor. The results indicate that percent reduction of the amount of dissolved oxygen utilized after an appropriate reaction time is a much better index for the assessment of the inhibitory effects

  10. Evaluation of Anti-MRSA and Xanthine Oxidase Inhibition Activities of Phenolic Constituents from Plumula nelumbinis

    Directory of Open Access Journals (Sweden)

    Xiao Ding

    2015-01-01

    Full Text Available Isolation of metabolites from Plumula nelumbinis led to the discovery of eleven compounds, including six flavonoids and five phenolderivatives. Their structures have been determined on the basis of chemical and spectroscopic data. Most of them, such as compounds 1, 4, 6, 8, and 10, have shown inhibitory activity against hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA. MICs of compound 8 against SA-200195 and SA-300150 were 2 μg/mL and 8 μg/mL, respectively. And the antioxidant activity of isolated compounds was determined by checking the scavenging activity against three different radicals: 2,2-diphenyl-1-picrydrazyl (DPPH radical, hydroxyl radical (OH∙, and superoxide anion (O2∙-, as well as xanthine oxidase inhibition. All flavonoids showed strong antioxidant activity. And compound 6 displayed the highest inhibitory effect against xanthine oxidase with IC50 value of 8.2 μg/mL.

  11. Switch of SpnR function from activating to inhibiting quorum sensing by its exogenous addition

    International Nuclear Information System (INIS)

    Takayama, Yuriko; Kato, Norihiro

    2016-01-01

    The opportunistic human pathogen Serratia marcescens AS-1 produces the N-hexanoylhomoserine lactone (C6HSL) receptor SpnR, a homologue of LuxR from Vibrio fischeri, which activates pig clusters to produce the antibacterial prodigiosin. In this study, we attempted to artificially regulate quorum sensing (QS) by changing the role of SpnR in N-acylhomoserine lactone (AHL)-mediated QS. SpnR was obtained as a fusion protein tagged with maltose-binding protein (MBP) from overexpression in Escherichia coli, and its specific affinity to C6HSL was demonstrated by quartz crystal microbalance analysis and AHL-bioassay with Chromobacterium violaceum CV026. Prodigiosin production was effectively inhibited by externally added MBP-SpnR in both wild-type AS-1 and the AHL synthase-defective mutant AS-1(ΔspnI). For the mutant, the induced amount of prodigiosin was drastically reduced to approximately 4% with the addition of 18 μM MBP-SpnR to the liquid medium, indicating 81% trapping of C6HSL. A system for inhibiting QS can be constructed by adding exogenous AHL receptor to the culture broth to keep the concentration of free AHL low, whereas intracellular SpnR naturally functions as the activator in response to QS. - Highlights: • Quorum sensing (QS) regulates the expression of some bacterial genes. • We added an AHL receptor to culture media to inhibit QS in Serratia marcescens AS-1. • The exogenous receptor effectively bound C6HSL and inhibited QS. • This approach can be used to artificially regulate AHL-mediated QS.

  12. Switch of SpnR function from activating to inhibiting quorum sensing by its exogenous addition

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, Yuriko [Department of Innovation Systems Engineering, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); CREST, Japan Science and Technology Agency, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); Kato, Norihiro, E-mail: katon@cc.utsunomiya-u.ac.jp [CREST, Japan Science and Technology Agency, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan)

    2016-09-02

    The opportunistic human pathogen Serratia marcescens AS-1 produces the N-hexanoylhomoserine lactone (C6HSL) receptor SpnR, a homologue of LuxR from Vibrio fischeri, which activates pig clusters to produce the antibacterial prodigiosin. In this study, we attempted to artificially regulate quorum sensing (QS) by changing the role of SpnR in N-acylhomoserine lactone (AHL)-mediated QS. SpnR was obtained as a fusion protein tagged with maltose-binding protein (MBP) from overexpression in Escherichia coli, and its specific affinity to C6HSL was demonstrated by quartz crystal microbalance analysis and AHL-bioassay with Chromobacterium violaceum CV026. Prodigiosin production was effectively inhibited by externally added MBP-SpnR in both wild-type AS-1 and the AHL synthase-defective mutant AS-1(ΔspnI). For the mutant, the induced amount of prodigiosin was drastically reduced to approximately 4% with the addition of 18 μM MBP-SpnR to the liquid medium, indicating 81% trapping of C6HSL. A system for inhibiting QS can be constructed by adding exogenous AHL receptor to the culture broth to keep the concentration of free AHL low, whereas intracellular SpnR naturally functions as the activator in response to QS. - Highlights: • Quorum sensing (QS) regulates the expression of some bacterial genes. • We added an AHL receptor to culture media to inhibit QS in Serratia marcescens AS-1. • The exogenous receptor effectively bound C6HSL and inhibited QS. • This approach can be used to artificially regulate AHL-mediated QS.

  13. Inhibition of Calcineurin or IMP Dehydrogenase Exerts Moderate to Potent Antiviral Activity against Norovirus Replication.

    Science.gov (United States)

    Dang, Wen; Yin, Yuebang; Wang, Yijin; Wang, Wenshi; Su, Junhong; Sprengers, Dave; van der Laan, Luc J W; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Chang, Kyeong-Ok; Koopmans, Marion P G; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2017-11-01

    Norovirus is a major cause of acute gastroenteritis worldwide and has emerged as an important issue of chronic infection in transplantation patients. Since no approved antiviral is available, we evaluated the effects of different immunosuppressants and ribavirin on norovirus and explored their mechanisms of action by using a human norovirus (HuNV) replicon-harboring model and a surrogate murine norovirus (MNV) infectious model. The roles of the corresponding drug targets were investigated by gain- or loss-of-function approaches. We found that the calcineurin inhibitors cyclosporine (CsA) and tacrolimus (FK506) moderately inhibited HuNV replication. Gene silencing of their cellular targets, cyclophilin A, FKBP12, and calcineurin, significantly inhibited HuNV replication. A low concentration, therapeutically speaking, of mycophenolic acid (MPA), an uncompetitive IMP dehydrogenase (IMPDH) inhibitor, potently and rapidly inhibited norovirus replication and ultimately cleared HuNV replicons without inducible resistance following long-term drug exposure. Knockdown of the MPA cellular targets IMPDH1 and IMPDH2 suppressed HuNV replication. Consistent with the nucleotide-synthesizing function of IMPDH, exogenous guanosine counteracted the antinorovirus effects of MPA. Furthermore, the competitive IMPDH inhibitor ribavirin efficiently inhibited norovirus and resulted in an additive effect when combined with immunosuppressants. The results from this study demonstrate that calcineurin phosphatase activity and IMPDH guanine synthase activity are crucial in sustaining norovirus infection; thus, they can be therapeutically targeted. Our results suggest that MPA shall be preferentially considered immunosuppressive medication for transplantation patients at risk of norovirus infection, whereas ribavirin represents as a potential antiviral for both immunocompromised and immunocompetent patients with norovirus gastroenteritis. Copyright © 2017 American Society for Microbiology.

  14. Isolated dorsal root ganglion neurones inhibit receptor-dependent adenylyl cyclase activity in associated glial cells

    Science.gov (United States)

    Ng, KY; Yeung, BHS; Wong, YH; Wise, H

    2013-01-01

    Background and Purpose Hyper-nociceptive PGE2 EP4 receptors and prostacyclin (IP) receptors are present in adult rat dorsal root ganglion (DRG) neurones and glial cells in culture. The present study has investigated the cell-specific expression of two other Gs-protein coupled hyper-nociceptive receptor systems: β-adrenoceptors and calcitonin gene-related peptide (CGRP) receptors in isolated DRG cells and has examined the influence of neurone–glial cell interactions in regulating adenylyl cyclase (AC) activity. Experimental Approach Agonist-stimulated AC activity was determined in mixed DRG cell cultures from adult rats and compared with activity in DRG neurone-enriched cell cultures and pure DRG glial cell cultures. Key Results Pharmacological analysis showed the presence of Gs-coupled β2-adrenoceptors and CGRP receptors, but not β1-adrenoceptors, in all three DRG cell preparations. Agonist-stimulated AC activity was weakest in DRG neurone-enriched cell cultures. DRG neurones inhibited IP receptor-stimulated glial cell AC activity by a process dependent on both cell–cell contact and neurone-derived soluble factors, but this is unlikely to involve purine or glutamine receptor activation. Conclusions and Implications Gs-coupled hyper-nociceptive receptors are readily expressed on DRG glial cells in isolated cell cultures and the activity of CGRP, EP4 and IP receptors, but not β2-adrenoceptors, in glial cells is inhibited by DRG neurones. Studies using isolated DRG cells should be aware that hyper-nociceptive ligands may stimulate receptors on glial cells in addition to neurones, and that variable numbers of neurones and glial cells will influence absolute measures of AC activity and affect downstream functional responses. PMID:22924655

  15. Some Anilides of 2-Alkylthio- and 2-Chloro-6-Alkylthio-4-Pyridinecarboxylic Acids: Synthesis and Photosynthesis-Inhibiting Activity

    Directory of Open Access Journals (Sweden)

    Miloš Macháček

    2001-06-01

    Full Text Available Many compounds containing a -CONH- group display photosynthesis inhibiting activity. Based on this structural feature, a group of anilides of 2-alkylthio-(1b-4f or 2-chloro-6-alkylthio-4-pyridinecarboxylic acids (5a-6c was synthesised. The prepared compounds were tested for their inhibition of the oxygen evolution rate (OER in spinach chloroplasts. A quasi-parabolic dependence between photosynthesis-inhibiting activity and the lipophilicity of the compounds was determined for 1b-4f as well as for 5a-6c. The inhibitory activity of compounds 1b-4f was higher than that of 5a-6c for comparable lipophilicity values.

  16. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity

    International Nuclear Information System (INIS)

    Qin Xujun; Hudson, Laurie G.; Liu Wenlan; Timmins, Graham S.; Liu Kejian

    2008-01-01

    Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/or UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite (≤ 2 μM) alone did not induce significant DNA strand breaks, but greatly enhanced the DNA strand breaks induced by UVR. Further studies showed that 2 μM arsenite effectively inhibited PARP-1 activity. Zinc supplementation of arsenite-treated cells restored PARP-1 activity and significantly diminished the exacerbating effect of arsenite on UVR-induced DNA strand breaks. Importantly, neither arsenite treatment, nor zinc supplementation changed UVR-triggered reactive oxygen species (ROS) formation, suggesting that their effects upon UVR-induced DNA strand breaks are not through a direct free radical mechanism. Combination treatments of arsenite with PARP-1 inhibitor 3-aminobenzamide or PARP-1 siRNA demonstrate that PARP-1 is the target of arsenite. Together, these findings show that arsenite at low concentration exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity, which may represent an important mechanism underlying the co-carcinogenicity of arsenic

  17. Inhibition of survivin influences the biological activities of canine histiocytic sarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Hiroki Yamazaki

    Full Text Available Canine histiocytic sarcoma (CHS is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS.

  18. Tumor suppressor ING4 inhibits estrogen receptor activity in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Keenen MM

    2016-11-01

    Full Text Available Madeline M Keenen,1 Suwon Kim1,2 1Department of Basic Medical Sciences, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, 2Division of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, AZ, USA Abstract: Resistance to antiestrogen therapy remains a significant problem in breast cancer. Low expression of inhibitor of growth 4 (ING4 in primary tumors has been correlated with increased rates of recurrence in estrogen receptor-positive (ER+ breast cancer patients, suggesting a role for ING4 in ER signaling. This study provides evidence that ING4 inhibits ER activity. ING4 overexpression increased the sensitivity of T47D and MCF7 ER+ breast cancer cells to hormone deprivation. ING4 attenuated maximal estrogen-dependent cell growth without affecting the dose–response of estrogen. These results indicated that ING4 functions as a noncompetitive inhibitor of estrogen signaling and may inhibit estrogen-independent ER activity. Supportive of this, treatment with fulvestrant but not tamoxifen rendered T47D cells sensitive to hormone deprivation as did ING4 overexpression. ING4 did not affect nuclear ERα protein expression, but repressed selective ER-target gene transcription. Taken together, these results demonstrated that ING4 inhibited estrogen-independent ER activity, suggesting that ING4-low breast tumors recur faster due to estrogen-independent ER activity that renders tamoxifen less effective. This study puts forth fulvestrant as a proposed therapy choice for patients with ING4-low ER+ breast tumors. Keywords: tamoxifen resistance, transcription repression, PDZK1, TFF1, estrogen independent ERa, fulvestrant  

  19. Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae.

    Science.gov (United States)

    Lomovskaya, Olga; Sun, Dongxu; Rubio-Aparicio, Debora; Nelson, Kirk; Tsivkovski, Ruslan; Griffith, David C; Dudley, Michael N

    2017-11-01

    Vaborbactam (formerly RPX7009) is a new beta-lactamase inhibitor based on a cyclic boronic acid pharmacophore. The spectrum of beta-lactamase inhibition by vaborbactam and the impact of bacterial efflux and permeability on its activity were determined using a panel of strains with beta-lactamases cloned from various classes and a panel of Klebsiella pneumoniae carbapenemase 3 (KPC-3)-producing isogenic strains with various combinations of efflux and porin mutations. Vaborbactam is a potent inhibitor of class A carbapenemases, such as KPC, as well as an inhibitor of other class A (CTX-M, SHV, TEM) and class C (P99, MIR, FOX) beta-lactamases. Vaborbactam does not inhibit class D or class B carbapenemases. When combined with meropenem, vaborbactam had the highest potency compared to the potencies of vaborbactam in combination with other antibiotics against strains producing the KPC beta-lactamase. Consistent with broad-spectrum beta-lactamase inhibition, vaborbactam reduced the meropenem MICs for engineered isogenic strains of K. pneumoniae with increased meropenem MICs due to a combination of extended-spectrum beta-lactamase production, class C beta-lactamase production, and reduced permeability due to porin mutations. Vaborbactam crosses the outer membrane of K. pneumoniae using both OmpK35 and OmpK36, but OmpK36 is the preferred porin. Efflux by the multidrug resistance efflux pump AcrAB-TolC had a minimal impact on vaborbactam activity. Investigation of the vaborbactam concentration necessary for restoration of meropenem potency showed that vaborbactam at 8 μg/ml results in meropenem MICs of ≤2 μg/ml in the most resistant engineered strains containing multiple mutations. Vaborbactam is a highly active beta-lactamase inhibitor that restores the activity of meropenem and other beta-lactam antibiotics in beta-lactamase-producing bacteria, particularly KPC-producing carbapenem-resistant Enterobacteriaceae . Copyright © 2017 Lomovskaya et al.

  20. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages.

    Science.gov (United States)

    Schachter, Julieta; Delgado, Kelly Valcárcel; Barreto-de-Souza, Victor; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis; Meyer-Fernandes, José Roberto

    2015-05-01

    Nucleotides and nucleosides are secreted into extracellular media at different concentrations as a consequence of different physiologic and pathological conditions. Ecto-nucleotidases, enzymes present on the surface of most cells, hydrolyze these extracellular nucleotides and reduce the concentration of them, thus affecting the activation of different nucleotide and nucleoside receptors. Also, ecto-nucleotidases are present in a number of microorganisms and play important roles in host-pathogen interactions. Here, we characterized the ecto-ATPase activities present on the surface of HIV-1 particle and human macrophages as well. We found that the kinetic properties of HIV-1 and macrophage ecto-ATPases are similar, suggesting that the enzyme is the same. This ecto-ATPase activity was increased in macrophages infected in vitro with HIV-1. Using three different non-related ecto-ATPase inhibitors-POM-1, ARL67156 and BG0-we showed that the inhibition of these macrophage and viral ecto-ATPase activities impairs HIV-1 infection. In addition, we also found that elevated extracellular concentrations of ATP inhibit HIV-1 production by infected macrophages. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Unfractionated Heparin Promotes Osteoclast Formation in Vitro by Inhibiting Osteoprotegerin Activity.

    Science.gov (United States)

    Li, Binghan; Lu, Dan; Chen, Yuqing; Zhao, Minghui; Zuo, Li

    2016-04-22

    Heparin has been proven to enhance bone resorption and induce bone loss. Since osteoclasts play a pivotal role in bone resorption, the effect of heparin on osteoclastogenesis needs to be clarified. Since osteocytes are the key modulator during osteoclastogenesis, we evaluated heparin's effect on osteoclastogenesis in vitro by co-culturing an osteocyte cell line (MLO-Y4) and pre-osteoclasts (RAW264.7). In this co-culture system, heparin enhanced osteoclastogenesis and osteoclastic bone resorption while having no influence on the production of RANKL (receptor activator of NFκB ligand), M-CSF (macrophage colony-stimulating factor), and OPG (osteoprotegerin), which are three main regulatory factors derived from osteocytes. According to previous studies, heparin could bind specifically to OPG and inhibit its activity, so we hypothesized that this might be a possible mechanism of heparin activity. To test this hypothesis, osteoclastogenesis was induced using recombinant RANKL or MLO-Y4 supernatant. We found that heparin has no effect on RANKL-induced osteoclastogenesis (contains no OPG). However, after incubation with OPG, the capacity of MLO-Y4 supernatant for supporting osteoclast formation was increased. This effect disappeared after OPG was neutralized and reappeared after OPG was replenished. These results strongly suggest that heparin promotes osteocyte-modulated osteoclastogenesis in vitro, at least partially, through inhibiting OPG activity.

  2. Inhibition of Activity of GABA Transporter GAT1 by δ-Opioid Receptor

    Directory of Open Access Journals (Sweden)

    Lu Pu

    2012-01-01

    Full Text Available Analgesia is a well-documented effect of acupuncture. A critical role in pain sensation plays the nervous system, including the GABAergic system and opioid receptor (OR activation. Here we investigated regulation of GABA transporter GAT1 by δOR in rats and in Xenopus oocytes. Synaptosomes of brain from rats chronically exposed to opiates exhibited reduced GABA uptake, indicating that GABA transport might be regulated by opioid receptors. For further investigation we have expressed GAT1 of mouse brain together with mouse δOR and μOR in Xenopus oocytes. The function of GAT1 was analyzed in terms of Na+-dependent [3H]GABA uptake as well as GAT1-mediated currents. Coexpression of δOR led to reduced number of fully functional GAT1 transporters, reduced substrate translocation, and GAT1-mediated current. Activation of δOR further reduced the rate of GABA uptake as well as GAT1-mediated current. Coexpression of μOR, as well as μOR activation, affected neither the number of transporters, nor rate of GABA uptake, nor GAT1-mediated current. Inhibition of GAT1-mediated current by activation of δOR was confirmed in whole-cell patch-clamp experiments on rat brain slices of periaqueductal gray. We conclude that inhibition of GAT1 function will strengthen the inhibitory action of the GABAergic system and hence may contribute to acupuncture-induced analgesia.

  3. Atractylodin Inhibits Interleukin-6 by Blocking NPM-ALK Activation and MAPKs in HMC-1.

    Science.gov (United States)

    Chae, Hee-Sung; Kim, Young-Mi; Chin, Young-Won

    2016-09-02

    Atractylodin is one of the major constituents of the rhizome of Atractylodes lancea, which is widely used in Korean traditional medicine as a remedy for the treatment of gastritis and gastric ulcers. Despite of a major constituent of widely used botanical to treat inflammatory responses little is known about anti-inflammatory effect of atractylodin in the human mast cell (HMC-1). Hence, we evaluated the effect of atractylodin on the release of IL-6, the involvement of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) and mitogen-activated protein kinases (MAPKs) in phorbol-12-myristate-13-acetate and A23187-induced HMC-1. In addition, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), phospholipase C (PLC) gamma 1, and AKT phosphorylation relevant to NPM-ALK signal pathway were assessed. IL-6 levels in the HMC-1 stimulated by phorbol-12-myristate-13-acetate and A23187 were apparently decreased by the treatment of atractylodin. Concurrently, atractylodin not only inhibited the phosphorylation of NPM-ALK, but also suppressed the phosphorylation of JAK2, STAT3, PLC gamma 1, and AKT. Furthermore, the activated mitogen-activated protein kinases (MAPKs) by phorbol-12-myristate-13-acetate and A23187 were inhibited by atractylodin. These results suggested that atractylodin might have a potential regulatory effect on inflammatory mediator expression through blockade of both the phosphorylation of MAPKs and the NPM-ALK signaling pathway.

  4. Protein C inhibitor acts as a procoagulant by inhibiting the thrombomodulin-induced activation of protein C in human plasma

    NARCIS (Netherlands)

    Elisen, M. G.; von dem Borne, P. A.; Bouma, B. N.; Meijers, J. C.

    1998-01-01

    Protein C inhibitor (PCI), which was originally identified as an inhibitor of activated protein C, also efficiently inhibits coagulation factors such as factor Xa and thrombin. Recently it was found, using purified proteins, that the anticoagulant thrombin-thrombomodulin complex was also inhibited

  5. Nitrated Fatty Acids Reverse Cigarette Smoke-Induced Alveolar Macrophage Activation and Inhibit Protease Activity via Electrophilic S-Alkylation.

    Science.gov (United States)

    Reddy, Aravind T; Lakshmi, Sowmya P; Muchumarri, Ramamohan R; Reddy, Raju C

    2016-01-01

    Nitrated fatty acids (NFAs), endogenous products of nonenzymatic reactions of NO-derived reactive nitrogen species with unsaturated fatty acids, exhibit substantial anti-inflammatory activities. They are both reversible electrophiles and peroxisome proliferator-activated receptor γ (PPARγ) agonists, but the physiological implications of their electrophilic activity are poorly understood. We tested their effects on inflammatory and emphysema-related biomarkers in alveolar macrophages (AMs) of smoke-exposed mice. NFA (10-nitro-oleic acid or 12-nitrolinoleic acid) treatment downregulated expression and activity of the inflammatory transcription factor NF-κB while upregulating those of PPARγ. It also downregulated production of inflammatory cytokines and chemokines and of the protease cathepsin S (Cat S), a key mediator of emphysematous septal destruction. Cat S downregulation was accompanied by decreased AM elastolytic activity, a major mechanism of septal destruction. NFAs downregulated both Cat S expression and activity in AMs of wild-type mice, but only inhibited its activity in AMs of PPARγ knockout mice, pointing to a PPARγ-independent mechanism of enzyme inhibition. We hypothesized that this mechanism was electrophilic S-alkylation of target Cat S cysteines, and found that NFAs bind directly to Cat S following treatment of intact AMs and, as suggested by in silico modeling and calculation of relevant parameters, elicit S-alkylation of Cys25 when incubated with purified Cat S. These results demonstrate that NFAs' electrophilic activity, in addition to their role as PPARγ agonists, underlies their protective effects in chronic obstructive pulmonary disease (COPD) and support their therapeutic potential in this disease.

  6. Triptolide potentiates lung cancer cells to cisplatin-induced apoptosis by selectively inhibiting the NER activity.

    Science.gov (United States)

    Wang, Gan; Wang, Xing; Xu, Xiaoxin

    2015-01-01

    Cisplatin and many other platinum-based compounds are important anticancer drugs that are used in treating many cancer types. The development of cisplatin-resistant cancer cells, however, quickly diminishes the effectiveness of these drugs and causes treatment failure. New strategies that reverse cancer cell drug resistance phenotype or sensitize cancer cells to these drugs, therefore, need to be explored in order to improve platinum drug-based cancer treatment. Triptolide is a bioactive ingredient isolated from Tripterygium wilfordii, a Chinese herbal medicine. Triptolide binds to the TFIIH basal transcription factor and is required for both transcription and nucleotide excision repair (NER), a DNA repair pathway involved in repairing DNA damage generated by the platinum-based anticancer drugs. Caspase-3 activation and cell growth inhibition assays were used to determine the effect of triptolide on cisplatin-induced apoptosis and cell growth in lung cancer cells. Real time PCR, immunoblotting, and expression of reef coral red protein were used to determine a mechanism through which the presence of triptolide increased cisplatin-induced apoptosis of the lung cancer cells. Our caspase-3 activation studies demonstrated that the presence of low-levels of triptolide greatly increased the cisplatin-induced apoptosis of HTB182, A549, CRL5810, and CRL5922 lung cancer cells. The results of our cell growth inhibition studies revealed that the presence of low-levels triptolide itself had little effect on cell growth but greatly enhanced cisplatin-induced cell growth inhibition in both A549 and HTB182 cells. The results of our reef coral-red protein reporter expression studies indicated that the presence of low-levels triptolide did not affect expression of the reef coral-red protein from pDsRed2-C1 plasmid but greatly inhibited expression of the reef coral-red protein from cisplatin-damaged pDsRed2-C1 plasmid DNA in A549 cells. In addition, the results of our protein

  7. Caffeic Acid Inhibits NFkappaB Activation of Osteoclastogenesis Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ferry Sandra

    2011-12-01

    Full Text Available BACKGROUND: Caffeic acid (3,4-dihydroxycinnamic acids is involved in various green plants. Based on our previous report, a major component of sweet potato extracts, possibly caffeic acid, was shown as a promising inhibitor of osteoclastogenesis. However, the effect of caffeic acid in inhibiting osteoclastogenesis needs to be confirmed. The underlying mechanism needs to be disclosed as well. METHODS: Caffeic acid in various concentrations was added to in vitro osteoclastogenesis of receptor activator nuclear factor kB ligand (RANKL-tumor necrosis factor alpha (TNF-α-macrophage colony stimulating factor (M-CSF-induced bone marrow-derived monocyte/macrophage precursor cells (BMMs and RANKL-TNF-α-induced RAW264 cells D-Clone (RAW-D cells. Tartrate resistant acid phosphatase (TRAP staining was performed and TRAP-positive polynucleated cells (PNCs were counted. For apoptosis analysis, caffeic acid-treated BMMs, RAW-D cells and osteoclast-like PNCs were subjected to Sub-G1 Apoptosis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assays. To measure NFkB activity, RAW-D cells were transfected with pNFkB-TA-Luc and subjected to Dual Luciferase Reporter Assay System. RESULTS: Caffeic acid inhibited osteoclastogenesis of RANKL-TNF-α-M-CSF-induced BMMs as well as RANKL-TNF-α-induced RAW-D cells in a dose dependent manner. Caffeic acid did not induce apoptosis in BMMs, RAW-D cells and osteoclast-like PNCs. RANKL-TNF-α-induced NFkB activity in RAW-D was diminished by caffeic acid in a dose dependent manner. Significant NFkB activity inhibtion was observed starting from 1µg/mL caffeic acid. CONCLUSIONS: Caffeic acid could be a potent osteoclastogenesis inhibitor through inhibition of NFkB activity. Our present study should be further followed up to disclose caffeic acid's possible overlying signaling pathways in inhibiting osteoclastogenesis. KEYWORDS: caffeic acid, osteoclastogenesis, NFkB, RANKL, TNF-α.

  8. Antioxidant and Acetylcholinesterase Inhibiting Activity of Several Aqueous Tea Infusions in vitro

    Directory of Open Access Journals (Sweden)

    Višnja Katalinić

    2008-01-01

    Full Text Available A study of antioxidant activity and acetylcholineste ase (AChE inhibitory activity of aqueous tea infusions prepared from walnut (Juglans regia L., peppermint (Mentha×piperita L., strawberry (Fragaria×ananassa L., lemon balm (Melissa officinalis L., sage (Salvia officinalis L., and immortelle (Helichrysum arenarium (L. Moench. is presented here. Chemical composition of selected aqueous tea infusions was determined by high-performance liquid chromatography with photodiode-array method (HPLC-PDA, and the following phenolic compounds were identified as dominant: rosmarinic acid, gallic acid (not identified in walnut and sage, caffeic acid (in sage and peppermint, neochlorogenic acid, 3-p-coumaroylquinic acid and quercetin 3-galactoside (in walnut and luteolin 7-O-glucoside (in sage. Antioxidant activity of the selected aqueous tea infusions was measured using low-density lipoprotein (LDL oxidation method, 2,2'-diphenyl-1-picrylhydrazyl (DPPH radical scavenging test, β-carotene bleaching method, and Rancimat method (induction period of lard oxidation. Strawberry and lemon balm aqueous infusions completely inhibited LDL oxidation at the concentration of 0.005 g/L in the reacting system. Very long prolongation of the lag phase was achieved with peppermint and sage aqueous infusions. All tested infusions in the concentration range of 0.05–2.85 g/L showed very pronounced effect of DPPH scavenging activity (90–100 % as well as the inhibition of β-carotene bleaching (89–100 %. In pure lipid medium, used in Rancimat method, sage and immortelle at the concentration of 0.16 % (by mass had the highest ability to inhibit lipid peroxidation process. Screening of the AChE inhibitory activity by Ellman´s method showed that the strongest inhibition was obtained with walnut and strawberry aqueous infusions at the concentration of 1.36 g/L in the reacting system. The presented results suggest that natural antioxidants could be useful and merit further

  9. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells.

    Science.gov (United States)

    Noolu, Bindu; Ajumeera, Rajanna; Chauhan, Anitha; Nagalla, Balakrishna; Manchala, Raghunath; Ismail, Ayesha

    2013-01-09

    Inhibition of the proteolytic activity of 26S proteasome, the protein-degrading machine, is now considered a novel and promising approach for cancer therapy. Interestingly, proteasome inhibitors have been demonstrated to selectively kill cancer cells and also enhance the sensitivity of tumor cells to chemotherapeutic agents. Recently, polyphenols/flavonoids have been reported to inhibit proteasome activity. Murraya koenigii Spreng, a medicinally important herb of Indian origin, has been used for centuries in the Ayurvedic system of medicine. Here we show that Murraya koenigii leaves (curry leaves), a rich source of polyphenols, inhibit the proteolytic activity of the cancer cell proteasome, and cause cell death. Hydro-methanolic extract of curry leaves (CLE) was prepared and its total phenolic content [TPC] determined by, the Folin-Ciocalteau's method. Two human breast carcinoma cell lines: MCF-7 and MDA-MB-231 and a normal human lung fibroblast cell line, WI-38 were used for the studies. Cytotoxicity of the CLE was assessed by the MTT assay. We studied the effect of CLE on growth kinetics using colony formation assay. Growth arrest was assessed by cell cycle analysis and apoptosis by Annexin-V binding using flow cytometry. Inhibition of the endogenous 26S proteasome was studied in intact cells and cell extracts using substrates specific to 20S proteasomal enzymes. CLE decreased cell viability and altered the growth kinetics in both the breast cancer cell lines in a dose-dependent manner. It showed a significant arrest of cells in the S phase albeit in cancer cells only. Annexin V binding data suggests that cell death was via the apoptotic pathway in both the cancer cell lines. CLE treatment significantly decreased the activity of the 26S proteasome in the cancer but not normal cells. Our study suggests M. koenigii leaves to be a potent source of proteasome inhibitors that lead to cancer cell death. Therefore, identification of active component(s) from the leaf

  10. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Noolu Bindu

    2013-01-01

    Full Text Available Abstract Background Inhibition of the proteolytic activity of 26S proteasome, the protein-degrading machine, is now considered a novel and promising approach for cancer therapy. Interestingly, proteasome inhibitors have been demonstrated to selectively kill cancer cells and also enhance the sensitivity of tumor cells to chemotherapeutic agents. Recently, polyphenols/flavonoids have been reported to inhibit proteasome activity. Murraya koenigii Spreng, a medicinally important herb of Indian origin, has been used for centuries in the Ayurvedic system of medicine. Here we show that Murraya koenigii leaves (curry leaves, a rich source of polyphenols, inhibit the proteolytic activity of the cancer cell proteasome, and cause cell death. Methods Hydro-methanolic extract of curry leaves (CLE was prepared and its total phenolic content [TPC] determined by, the Folin-Ciocalteau’s method. Two human breast carcinoma cell lines: MCF-7 and MDA-MB-231 and a normal human lung fibroblast cell line, WI-38 were used for the studies. Cytotoxicity of the CLE was assessed by the MTT assay. We studied the effect of CLE on growth kinetics using colony formation assay. Growth arrest was assessed by cell cycle analysis and apoptosis by Annexin-V binding using flow cytometry. Inhibition of the endogenous 26S proteasome was studied in intact cells and cell extracts using substrates specific to 20S proteasomal enzymes. Results CLE decreased cell viability and altered the growth kinetics in both the breast cancer cell lines in a dose-dependent manner. It showed a significant arrest of cells in the S phase albeit in cancer cells only. Annexin V binding data suggests that cell death was via the apoptotic pathway in both the cancer cell lines. CLE treatment significantly decreased the activity of the 26S proteasome in the cancer but not normal cells. Conclusions Our study suggests M. koenigii leaves to be a potent source of proteasome inhibitors that lead to cancer cell death

  11. Silybin-mediated inhibition of Notch signaling exerts antitumor activity in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Song Zhang

    Full Text Available Hepatocellular carcinoma (HCC is a global health burden that is associated with limited treatment options and poor patient prognoses. Silybin (SIL, an antioxidant derived from the milk thistle plant (Silybum marianum, has been reported to exert hepatoprotective and antitumorigenic effects both in vitro and in vivo. While SIL has been shown to have potent antitumor activity against various types of cancer, including HCC, the molecular mechanisms underlying the effects of SIL remain largely unknown. The Notch signaling pathway plays crucial roles in tumorigenesis and immune development. In the present study, we assessed the antitumor activity of SIL in human HCC HepG2 cells in vitro and in vivo and explored the roles of the Notch pathway and of the apoptosis-related signaling pathway on the activity of SIL. SIL treatment resulted in a dose- and time-dependent inhibition of HCC cell viability. Additionally, SIL exhibited strong antitumor activity, as evidenced not only by reductions in tumor cell adhesion, migration, intracellular glutathione (GSH levels and total antioxidant capability (T-AOC but also by increases in the apoptotic index, caspase3 activity, and reactive oxygen species (ROS. Furthermore, SIL treatment decreased the expression of the Notch1 intracellular domain (NICD, RBP-Jκ, and Hes1 proteins, upregulated the apoptosis pathway-related protein Bax, and downregulated Bcl2, survivin, and cyclin D1. Notch1 siRNA (in vitro or DAPT (a known Notch1 inhibitor, in vivo further enhanced the antitumor activity of SIL, and recombinant Jagged1 protein (a known Notch ligand in vitro attenuated the antitumor activity of SIL. Taken together, these data indicate that SIL is a potent inhibitor of HCC cell growth that targets the Notch signaling pathway and suggest that the inhibition of Notch signaling may be a novel therapeutic intervention for HCC.

  12. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  13. Comparison of the inhibition of urokinase-type plasminogen activator (u-PA) activity by monoclonal antibodies specific for u-PA as assessed by different assays

    NARCIS (Netherlands)

    Boheemen, P.A. van; Hoogen, N.M. van den; Koolwijk, N.

    1995-01-01

    Six murine monoclonal antibodies (MAbs) specific for urokinase-type plasminogen activator (u-PA) were tested for their ability to inhibit u-PA activity in three different assays with respect to amidolytic activity, plasminogen activation and fibrinolytic activity. Two of the MAbs were able to

  14. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract

    Science.gov (United States)

    2012-01-01

    Background This study evaluated, using in vitro assays, the antibacterial, antioxidant, and tyrosinase-inhibition activities of methanolic extracts from peels of seven commercially grown pomegranate cultivars. Methods Antibacterial activity was tested on Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) using a microdilution method. Several potential antioxidant activities, including radical-scavenging ability (RSA), ferrous ion chelating (FIC) and ferric ion reducing antioxidant power (FRAP), were evaluated. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin and kojic acid as positive controls. Furthermore, phenolic contents including total flavonoid content (TFC), gallotannin content (GTC) and total anthocyanin content (TAC) were determined using colourimetric methods. HPLC-ESI/MSn analysis of phenolic composition of methanolic extracts was also performed. Results Methanolic peel extracts showed strong broad-spectrum activity against Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentrations (MIC) ranging from 0.2 to 0.78 mg/ml. At the highest concentration tested (1000 μg/ml), radical scavenging activities were significantly higher in Arakta (83.54%), Ganesh (83.56%), and Ruby (83.34%) cultivars (P50%) against monophenolase and diphenolase activities at the highest screening concentration. The most active peel extract was the Bhagwa cultivar against monophenolase and the Arakta cultivar against diphenolase with IC50 values of 3.66 μg/ml and 15.88 μg/ml, respectively. High amounts of phenolic compounds were found in peel extracts with the highest and lowest total phenolic contents of 295.5 (Ganesh) and 179.3 mg/g dry extract (Molla de Elche), respectively. Catechin, epicatechin, ellagic acid and gallic acid were found in all cultivars, of which ellagic acid was the most abundant comprising

  15. Knockdown of MAGEA6 Activates AMP-Activated Protein Kinase (AMPK) Signaling to Inhibit Human Renal Cell Carcinoma Cells.

    Science.gov (United States)

    Ye, Xueting; Xie, Jing; Huang, Hang; Deng, Zhexian

    2018-01-01

    Melanoma antigen A6 (MAGEA6) is a cancer-specific ubiquitin ligase of AMP-activated protein kinase (AMPK). The current study tested MAGEA6 expression and potential function in renal cell carcinoma (RCC). MAGEA6 and AMPK expression in human RCC tissues and RCC cells were tested by Western blotting assay and qRT-PCR assay. shRNA method was applied to knockdown MAGEA6 in human RCC cells. Cell survival and proliferation were tested by MTT assay and BrdU ELISA assay, respectively. Cell apoptosis was tested by the TUNEL assay and single strand DNA ELISA assay. The 786-O xenograft in nude mouse model was established to test RCC cell growth in vivo. MAGEA6 is specifically expressed in RCC tissues as well as in the established (786-O and A498) and primary human RCC cells. MAGEA6 expression is correlated with AMPKα1 downregulation in RCC tissues and cells. It is not detected in normal renal tissues nor in the HK-2 renal epithelial cells. MAGEA6 knockdown by targeted-shRNA induced AMPK stabilization and activation, which led to mTOR complex 1 (mTORC1) in-activation and RCC cell death/apoptosis. AMPK inhibition, by AMPKα1 shRNA or the dominant negative AMPKα1 (T172A), almost reversed MAGEA6 knockdown-induced RCC cell apoptosis. Conversely, expression of the constitutive-active AMPKα1 (T172D) mimicked the actions by MAGEA6 shRNA. In vivo, MAGEA6 shRNA-bearing 786-O tumors grew significantly slower in nude mice than the control tumors. AMPKα1 stabilization and activation as well as mTORC1 in-activation were detected in MAGEA6 shRNA tumor tissues. MAGEA6 knockdown inhibits human RCC cells via activating AMPK signaling. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. Synthesis, DNA Cleavage Activity, Cytotoxicity, Acetylcholinesterase Inhibition, and Acute Murine Toxicity of Redox-Active Ruthenium(II) Polypyridyl Complexes.

    Science.gov (United States)

    Alatrash, Nagham; Narh, Eugenia S; Yadav, Abhishek; Kim, Mahn-Jong; Janaratne, Thamara; Gabriel, James; MacDonnell, Frederick M

    2017-07-06

    Four mononuclear [(L-L) 2 Ru(tatpp)] 2+ and two dinuclear [(L-L) 2 Ru(tatpp)Ru(L-L) 2 ] 4+ ruthenium(II) polypyridyl complexes (RPCs) containing the 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (tatpp) ligand were synthesized, in which L-L is a chelating diamine ligand such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me 4 phen) or 4,7-diphenyl-1,10-phenanthroline (Ph 2 phen). These Ru-tatpp analogues all undergo reduction reactions with modest reducing agents, such as glutathione (GSH), at pH 7. These, plus several structurally related but non-redox-active RPCs, were screened for DNA cleavage activity, cytotoxicity, acetylcholinesterase (AChE) inhibition, and acute mouse toxicity, and their activities were examined with respect to redox activity and lipophilicity. All of the redox-active RPCs show single-strand DNA cleavage in the presence of GSH, whereas none of the non-redox-active RPCs do. Low-micromolar cytotoxicity (IC 50 ) against malignant H358, CCL228, and MCF7 cultured cell lines was mainly restricted to the redox-active RPCs; however, they were substantially less toxic toward nonmalignant MCF10 cells. The IC 50 values for AChE inhibition in cell-free assays and the acute toxicity of RPCs in mice revealed that whereas most RPCs show potent inhibitory action against AChE (IC 50 values complexes as a class are surprisingly well tolerated in animals relative to other RPCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tributyltin (TBT) inhibition of oligomycin-sensitive Mg-ATPase activity in mussel mitochondria.

    Science.gov (United States)

    Pagliarani, Alessandra; Bandiera, Patrizia; Ventrella, Vittoria; Trombetti, Fabiana; Pirini, Maurizio; Nesci, Salvatore; Borgatti, Anna Rosa

    2008-06-01

    Tributyltin (TBT), one of the most toxic lipophilic aquatic pollutants, can be efficiently incorporated from sea water and sediments by filter-feeding molluscs. As far as we are aware TBT effects on the mitochondrial oligomycin-sensitive Mg-ATPase, the enzymatic core of energy production and a known target of TBT toxicity in mammals, have not been yet investigated in molluscs; thus the hydrolytic capability of the mitochondrial complex in the presence of micromolar concentrations of TBT was assayed in the mussel Mytilus galloprovincialis. Gill and mantle ATPase activities were progressively depressed by increasing TBT doses up to a maximal inhibition (82% in the gills and 74% in the mantle) at 0.62 microM TBT. Non-cooperative inhibition kinetics (n(H) approximately -1) and a non-competitive mechanism with respect to ATP substrate were pointed out. The mitochondrial Mg-ATPase susceptivity to TBT in the marine mussel was consistent with the formation of a TBT-Mg-ATPase complex, apparently more stable in the gills than in the mantle. The complex shape of the dose-response curve and the partial release of Mg-ATPase inhibition within the 0.6-34.4 microM TBT range suggest multiple interactions of TBT with the enzyme complex putatively related to its molecular mechanism of toxicity.

  18. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  19. Serotonin-Induced Hypersensitivity via Inhibition of Catechol O-Methyltransferase Activity

    Science.gov (United States)

    2012-01-01

    The subcutaneous and systemic injection of serotonin reduces cutaneous and visceral pain thresholds and increases responses to noxious stimuli. Different subtypes of 5-hydroxytryptamine (5-HT) receptors are suggested to be associated with different types of pain responses. Here we show that serotonin also inhibits catechol O-methyltransferase (COMT), an enzyme that contributes to modultion the perception of pain, via non-competitive binding to the site bound by catechol substrates with a binding affinity comparable to the binding affinity of catechol itself (Ki = 44 μM). Using computational modeling, biochemical tests and cellular assays we show that serotonin actively competes with the methyl donor S-adenosyl-L-methionine (SAM) within the catalytic site. Binding of serotonin to the catalytic site inhibits the access of SAM, thus preventing methylation of COMT substrates. The results of in vivo animal studies show that serotonin-induced pain hypersensitivity in mice is reduced by either SAM pretreatment or by the combined administration of selective antagonists for β2- and β3-adrenergic receptors, which have been previously shown to mediate COMT-dependent pain signaling. Our results suggest that inhibition of COMT via serotonin binding contributes to pain hypersensitivity, providing additional strategies for the treatment of clinical pain conditions. PMID:22500608

  20. Inhibition of cobalt active dissolution by benzotriazole in slightly alkaline bicarbonate aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Gallant, Danick [Departement de Chimie, Universite Laval, Quebec (Canada); Departement de Biologie, Chimie et Geographie, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Quebec (Canada); E-mail: danick.gallant.1@ulaval.ca; Pezolet, Michel [Departement de Chimie, Universite Laval, Quebec (Canada)]. E-mail: michel.pezolet@chm.ulaval.ca; Simard, Stephan [Departement de Chimie, Universite Laval, Quebec (Canada); Departement de Biologie, Chimie et Geographie, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Quebec (Canada); E-mail: stephan_simard@uqar.qc.ca

    2007-04-20

    The efficiency of benzotriazole as inhibiting agent for the corrosion of cobalt was probed at pH ranging from 8.3 to 10.2 in a sodium bicarbonate solution, chosen to simulate mild natural environments. From electrochemical, Raman spectroscopy, atomic force microscopy and ellipsometry experiments, we have demonstrated that benzotriazole markedly affects the electrodissolution reactions, which become modeled by the formation of a [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} film according to two different mechanisms. Surface-enhanced Raman spectroscopy has shown that the polarization of a cobalt electrode at cathodic potentials with respect to its potential of zero charge allows a mechanism of specific adsorption of the neutral form of benzotriazole to take place through a suspected metal-to-molecule electron transfer and which follows Frumkin's adsorption isotherms. At the onset of the anodic dissolution, some experimental evidence suggests that these adsorbed neutral benzotriazole molecules deprotonate to yield a very thin [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} polymer-like and water-insoluble protective film, responsible for the inhibition of active dissolution processes occurring at slightly more anodic potentials. In the anodic dissolution region, deprotonated benzotriazole species present in the bulk solution favors the formation of a multilayered [Co(II)(BTA){sub 2}.H{sub 2}O] {sub n} film, which also contributes to the inhibition of any further cobalt dissolution usually observed at higher electrode potentials.

  1. Antiviral properties of resveratrol against pseudorabies virus are associated with the inhibition of IκB kinase activation.

    Science.gov (United States)

    Zhao, Xinghong; Cui, Qiankun; Fu, Qiuting; Song, Xu; Jia, Renyong; Yang, Yi; Zou, Yuanfeng; Li, Lixia; He, Changliang; Liang, Xiaoxia; Yin, Lizi; Lin, Juchun; Ye, Gang; Shu, Gang; Zhao, Ling; Shi, Fei; Lv, Cheng; Yin, Zhongqiong

    2017-08-18

    Pseudorabies virus (PRV) is a pathogen of swine resulting in devastating disease and economic losses worldwide. Resveratrol (Res) exhibits inhibitory activity against a wide range of viruses. Despite these important advances, the molecular mechanism(s) by which Res exerts its broad biological effects have not yet been elucidated. In this paper, the antiviral activity of Res against PRV and its mechanism of action were investigated. The results showed that Res potently inhibited PRV replication in a dose-dependent manner, with a 50% inhibition concentration of 17.17 μM. The inhibition of virus multiplication in the presence of Res was not attributed to direct inactivation or inhibition of viral entry into the host cells but to the inhibition of viral multiplication in host cells. Further studies demonstrated that Res is a potent inhibitor of both NF-κB activation and NF-κB-dependent gene expression through its ability to inhibit IκB kinase activity, which is the key regulator in NF-κB activation. Thus, the inhibitory effect of Res on PRV-induced cell death and gene expression may be due to its ability to inhibit the degradation of IκB kinase. These results provided a new alternative control measure for PRV infection and new insights into the antiviral mechanism of Res.

  2. Valerian inhibits rat hepatocarcinogenesis by activating GABA(A) receptor-mediated signaling.

    Science.gov (United States)

    Kakehashi, Anna; Kato, Ayumi; Ishii, Naomi; Wei, Min; Morimura, Keiichirou; Fukushima, Shoji; Wanibuchi, Hideki

    2014-01-01

    Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P(+)) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2'-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P(+) foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21(Waf1/Cip1), p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P(+) foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P(+) foci by activating GABA(A)R-mediated signaling.

  3. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    Science.gov (United States)

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  5. A synthetic peptide blocking TRPV1 activation inhibits UV-induced skin responses.

    Science.gov (United States)

    Kang, So Min; Han, Sangbum; Oh, Jang-Hee; Lee, Young Mee; Park, Chi-Hyun; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-10-01

    Transient receptor potential type 1 (TRPV1) can be activated by ultraviolet (UV) irradiation, and mediates UV-induced matrix metalloproteinase (MMP)-1 and proinflammatory cytokines in keratinocytes. Various chemicals and compounds targeting TRPV1 activation have been developed, but are not in clinical use mostly due to their safety issues. We aimed to develop a novel TRPV1-targeting peptide to inhibit UV-induced responses in human skin. We designed and generated a novel TRPV1 inhibitory peptide (TIP) which mimics the specific site in TRPV1 (aa 701-709: Gln-Arg-Ala-Ile-Thr-Ile-Leu-Asp-Thr, QRAITILDT), Thr 705 , and tested its efficacy of blocking UV-induced responses in HaCaT, mouse, and human skin. TIP effectively inhibited capsaicin-induced calcium influx and TRPV1 activation. Treatment of HaCaT with TIP prevented UV-induced increases of MMP-1 and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α. In mouse skin in vivo, TIP inhibited UV-induced skin thickening and prevented UV-induced expression of MMP-13 and MMP-9. Moreover, TIP attenuated UV-induced erythema and the expression of MMP-1, MMP-2, IL-6, and IL-8 in human skin in vivo. The novel synthetic peptide targeting TRPV1 can ameliorate UV-induced skin responses in vitro and in vivo, providing a promising therapeutic approach against UV-induced inflammation and photoaging. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  6. Inhibition of ice recrystallization and cryoprotective activity of wheat proteins in liver and pancreatic cells.

    Science.gov (United States)

    Chow-Shi-Yée, Mélanie; Briard, Jennie G; Grondin, Mélanie; Averill-Bates, Diana A; Ben, Robert N; Ouellet, François

    2016-05-01

    Efficient cryopreservation of cells at ultralow temperatures requires the use of substances that help maintain viability and metabolic functions post-thaw. We are developing new technology where plant proteins are used to substitute the commonly-used, but relatively toxic chemical dimethyl sulfoxide. Recombinant forms of four structurally diverse wheat proteins, TaIRI-2 (ice recrystallization inhibition), TaBAS1 (2-Cys peroxiredoxin), WCS120 (dehydrin), and TaENO (enolase) can efficiently cryopreserve hepatocytes and insulin-secreting INS832/13 cells. This study shows that TaIRI-2 and TaENO are internalized during the freeze-thaw process, while TaBAS1 and WCS120 remain at the extracellular level. Possible antifreeze activity of the four proteins was assessed. The "splat cooling" method for quantifying ice recrystallization inhibition activity (a property that characterizes antifreeze proteins) revealed that TaIRI-2 and TaENO are more potent than TaBAS1 and WCS120. Because of their ability to inhibit ice recrystallization, the wheat recombinant proteins TaIRI-2 and TaENO are promising candidates and could prove useful to improve cryopreservation protocols for hepatocytes and insulin-secreting cells, and possibly other cell types. TaENO does not have typical ice-binding domains, and the TargetFreeze tool did not predict an antifreeze capacity, suggesting the existence of nontypical antifreeze domains. The fact that TaBAS1 is an efficient cryoprotectant but does not show antifreeze activity indicates a different mechanism of action. The cryoprotective properties conferred by WCS120 depend on biochemical properties that remain to be determined. Overall, our results show that the proteins' efficiencies vary between cell types, and confirm that a combination of different protection mechanisms is needed to successfully cryopreserve mammalian cells. © 2016 The Protein Society.

  7. Fullerene Derivatives Strongly Inhibit HIV-1 Replication by Affecting Virus Maturation without Impairing Protease Activity.

    Science.gov (United States)

    Martinez, Zachary S; Castro, Edison; Seong, Chang-Soo; Cerón, Maira R; Echegoyen, Luis; Llano, Manuel

    2016-10-01

    Three compounds (1, 2, and 3) previously reported to inhibit HIV-1 replication and/or in vitro activity of reverse transcriptase were studied, but only fullerene derivatives 1 and 2 showed strong antiviral activity on the replication of HIV-1 in human CD4(+) T cells. However, these compounds did not inhibit infection by single-round infection vesicular stomatitis virus glycoprotein G (VSV-G)-pseudotyped viruses, indicating no effect on the early steps of the viral life cycle. In contrast, analysis of single-round infection VSV-G-pseudotyped HIV-1 produced in the presence of compound 1 or 2 showed a complete lack of infectivity in human CD4(+) T cells, suggesting that the late stages of the HIV-1 life cycle were affected. Quantification of virion-associated viral RNA and p24 indicates that RNA packaging and viral production were unremarkable in these viruses. However, Gag and Gag-Pol processing was affected, as evidenced by immunoblot analysis with an anti-p24 antibody and the measurement of virion-associated reverse transcriptase activity, ratifying the effect of the fullerene derivatives on virion maturation of the HIV-1 life cycle. Surprisingly, fullerenes 1 and 2 did not inhibit HIV-1 protease in an in vitro assay at the doses that potently blocked viral infectivity, suggesting a protease-independent mechanism of action. Highlighting the potential therapeutic relevance of fullerene derivatives, these compounds block infection by HIV-1 resistant to protease and maturation inhibitors. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    International Nuclear Information System (INIS)

    Diakos, Christos; Prieschl, Eva E.; Saeemann, Marcus D.; Boehmig, Georg A.; Csonga, Robert; Sobanov, Yury; Baumruker, Thomas; Zlabinger, Gerhard J.

    2006-01-01

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-α transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling

  9. Inhibition of water activated by far infrared functional ceramics on proliferation of hepatoma cells.

    Science.gov (United States)

    Zhang, Dongmei; Liang, Jinsheng; Ding, Yan; Meng, Junping; Zhang, Guangchuan

    2014-05-01

    Rare earth (RE)/tourmaline composite materials prepared by the precipitation method are added to the ceramic raw materials at a certain percentage and sintered into RE functional ceramics with high far infrared emission features. Then the far infrared functional ceramics are used to interact with water. The influence of the ceramics on the physical parameters of water is investigated, and the effect of the activated water on the growth of Bel-7402 hepatoma cells cultured in vitro is further studied. The results indicate that, compared with the raw water, the water activated by the ceramics can inhibit the proliferation of hepatoma cells, with statistical probability P ceramics has a higher concentration of H+, which decreases the potential difference across the cell membrane to release the apoptosis inducing factor (AIF). After entering the cells, the activated water stimulates the mitochondria to produce immune substances that lead tumor cells to apoptosis.

  10. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells.

    Science.gov (United States)

    Diakos, Christos; Prieschl, Eva E; Säemann, Marcus D; Böhmig, Georg A; Csonga, Robert; Sobanov, Yury; Baumruker, Thomas; Zlabinger, Gerhard J

    2006-10-20

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-alpha transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling.

  11. Decoration of Chondroitin Polysaccharide with Threonine: Synthesis, Conformational Study, and Ice-Recrystallization Inhibition Activity.

    Science.gov (United States)

    Laezza, Antonio; Casillo, Angela; Cosconati, Sandro; Biggs, Caroline I; Fabozzi, Antonio; Paduano, Luigi; Iadonisi, Alfonso; Novellino, Ettore; Gibson, Matthew I; Randazzo, Antonio; Corsaro, Maria M; Bedini, Emiliano

    2017-08-14

    Several threonine (Thr)- and alanine (Ala)-rich antifreeze glycoproteins (AFGPs) and polysaccharides act in nature as ice recrystallization inhibitors. Among them, the Thr-decorated capsular polysaccharide (CPS) from the cold-adapted Colwellia psychrerythraea 34H bacterium was recently investigated for its cryoprotectant activity. A semisynthetic mimic thereof was here prepared from microbial sourced chondroitin through a four-step strategy, involving a partial protection of the chondroitin polysaccharide as a key step for gaining an unprecedented quantitative amidation of its glucuronic acid units. In-depth NMR and computational analysis suggested a fairly linear conformation for the semisynthetic polysaccharide, for which the antifreeze activity by a quantitative ice recrystallization inhibition assay was measured. We compared the structure-activity relationships for the Thr-derivatized chondroitin and the natural Thr-decorated CPS from C. psychrerythraea.

  12. Inhibition of enterovirus 71 infections and viral IRES activity by Fructus gardeniae and geniposide.

    Science.gov (United States)

    Lin, Ying-Ju; Lai, Chien-Chen; Lai, Chih-Ho; Sue, Shih-Che; Lin, Cheng-Wen; Hung, Chien-Hui; Lin, Ting-Hsu; Hsu, Wei-Yi; Huang, Shao-Mei; Hung, Yi-Lin; Tien, Ni; Liu, Xiang; Chen, Chao-Ling; Tsai, Fuu-Jen

    2013-04-01

    Fructus gardeniae has long been used by traditional Chinese medical practitioners for its anti-inflammatory, anti-oxidant, anti-tumor and anti-hyperlipidemic characteristics. Here we describe our finding that F. gardeniae greatly reduces anti-enterovirus 71 (EV71) activity, resulting in significant decreases in EV71 virus yields, EV71 infections, and internal ribosome entry site activity. We also found that geniposide, a primary F. gardeniae component, inhibited both EV71 replication and viral IRES activity. Our data suggest the presence of a mechanism that blocks viral protein translation. According to our findings, F. gardeniae and geniposide deserve a closer look as potential chemopreventive agents against EV71 infections. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. PF-4708671 activates AMPK independently of p70S6K1 inhibition.

    Directory of Open Access Journals (Sweden)

    Gilad W Vainer

    Full Text Available The P70 ribosomal protein S6 kinase 1 (P70S6K1 is activated by the mammalian target of rapamycin (mTORC1 and regulates proliferation, growth, and metabolism. PF-4708671 is a novel, cell-permeable, has been proposed to be a highly specific inhibitor of p70S6K1. It is used in micromolar concentration range to dissect signaling pathways downstream of mTORC1 and to study the function of p70S6K1. Here we show that PF-4708671 induces AMP-activated protein kinase (AMPK phosphorylation and activation in immortalized mouse embryonic fibroblasts (MEF independently of p70S6K1, due to specific inhibition of mitochondrial respiratory chain Complex I.

  14. Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the Tesco enhancer.

    Science.gov (United States)

    Bernard, Pascal; Ryan, Janelle; Sim, Helena; Czech, Daniel P; Sinclair, Andrew H; Koopman, Peter; Harley, Vincent R

    2012-02-01

    Genome analysis of patients with disorders of sex development, and gain- and loss-of-function studies in mice indicate that gonadal development is regulated by opposing signals. In females, the Wnt/β-catenin canonical pathway blocks testicular differentiation by repressing the expression of the Sertoli cell-specific gene Sox9 by an unknown mechanism. Using cell and embryonic gonad culture models, we show that activation of the Wnt/β-catenin pathway inhibits the expression of Sox9 and Amh, whereas mRNA and protein levels of Sry and steroidogenic factor 1 (Sf1), two key transcriptional regulators of Sox9, are not altered. Ectopic activation of Wnt/β-catenin signaling in male gonads led to a loss of Sf1 binding to the Tesco enhancer and absent Sox9 expression that we also observed in wild-type ovaries. Moreover, ectopic Wnt/β-catenin signaling induced the expression of the female somatic cell markers, Bmp2 and Rspo1, as a likely consequence of Sox9 loss. Wnt/β-catenin signaling in XY gonads did not, however, affect gene expression of the steroidogenic Leydig cell Sf1 target gene, Cyp11a1, or Sf1 binding to the Cyp11a1 promoter. Our data support a model in ovary development whereby activation of β-catenin prevents Sf1 binding to the Sox9 enhancer, thereby inhibiting Sox9 expression and Sertoli cell differentiation.

  15. Hyperpolarization-activated current, Ih, in inspiratory brainstem neurons and its inhibition by hypoxia.

    Science.gov (United States)

    Mironov, S L; Langohr, K; Richter, D W

    2000-02-01

    A hyperpolarization-activated current, Ih, is often implied in pacemaker-like depolarizations during rhythmic oscillatory activity. We describe Ih in the isolated respiratory centre of immature mice (P6-P11). Ih was recorded in 15% (22/146) of all inspiratory neurons examined. The mean half-maximal Ih activation occurred at -78 mV and the reversal potential was -40 mV. Ih was inhibited by Cs+ (1-5 mM) and by organic blockers N-ethyl-1,6-dihydro-1, 2-dimethyl-6-(methylimino)-N-phenyl-4-pyrimidinamine (ZD 7288; 0.3-3 microM) and N,N'-bis-(3,4-dimethylphenylethyl)-N-methylamine (YS 035, 3-30 microM), but not by Ba2+ (0.5 mM). The organic Ih blockers did not change the inspiratory bursts recorded from the XIIth nerve and synaptic drives in inspiratory neurons. Hypoxia reversibly inhibited Ih but, in the presence of organic blockers, the hypoxic reaction remained unchanged. We conclude that although Ih channels are functional in a minority of inspiratory neurons, Ih does not contribute to respiratory rhythm generation or its modulation by hypoxia.

  16. Assessment of solid microneedle rollers to enhance transmembrane delivery of doxycycline and inhibition of MMP activity.

    Science.gov (United States)

    Omolu, Abbie; Bailly, Maryse; Day, Richard M

    2017-11-01

    Many chronic wounds exhibit high matrix metalloproteinase (MMP) activity that impedes the normal wound healing process. Intradermal delivery (IDD) of sub-antimicrobial concentrations of doxycycline, as an MMP inhibitor, could target early stages of chronic wound development and inhibit further wound progression. To deliver doxycycline intradermally, the skin barrier must be disrupted. Microneedle rollers offer a minimally invasive technique to penetrate the skin by creating multiple microchannels that act as temporary conduits for drugs to diffuse through. In this study, an innovative and facile approach for delivery of doxycycline across Strat-M TM membrane was investigated using microneedle rollers. The quantity and rate of doxycycline diffusing through the micropores directly correlated with increasing microneedle lengths (250, 500 and 750 μm). Treatment of Strat-M TM with microneedle rollers resulted in a reduction in fibroblast-mediated collagen gel contraction and MMP activity compared with untreated Strat-M TM . Our results show that treatment of an epidermal mimetic with microneedle rollers provides sufficient permeabilization for doxycycline diffusion and inhibition of MMP activity. We conclude that microneedle rollers are a promising, clinically ready tool suitable for delivery of doxycycline intradermally to treat chronic wounds.

  17. Inhibition of TGFbeta1 Signaling Attenutates ATM Activity inResponse to Genotoxic Stress

    Energy Technology Data Exchange (ETDEWEB)

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose; Ravani, Shraddha A.; Glick, Adam B.; Lavin, Martin J.; Koslov, Sergei; Shiloh, Yosef; Barcellos-Hoff, Mary Helen

    2006-09-15

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta}1 (TGF{beta}), which is activated by radiation, is a potent and pleiotropic mediator of physiological and pathological processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}1 null murine epithelial cells or human epithelial cells treated with a small molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17 and p53, reduced {gamma}H2AX radiation-induced foci, and increased radiosensitivity compared to TGF{beta} competent cells. We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM that directs epithelial cell stress responses, cell fate and tissue integrity. Thus, TGF{beta}1, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.

  18. Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles.

    Science.gov (United States)

    Aggarwal, Mayank; Kondeti, Bhargav; Tu, Chingkuang; Maupin, C Mark; Silverman, David N; McKenna, Robert

    2014-03-01

    Human carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the hydration and dehydration of CO2 and HCO3 (-), respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH(-)/H2O) in/out of the active site via His64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type) of a variant of CA II in which His64 is replaced with Ala (H64A CA II) can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level. X-ray crystal structures of H64A CA II in complex with four imidazole derivatives (imidazole, 1--methylimidazole, 2--methylimidazole and 4-methylimidazole) have been determined and reveal multiple binding sites. Two of these imidazole binding sites have been identified that mimic the positions of the 'in' and 'out' rotamers of His64 in wild-type CA II, while another directly inhibits catalysis by displacing the zinc-bound solvent. The data presented here not only corroborate the importance of the imidazole side chain of His64 in proton transfer during CA catalysis, but also provide a complete structural understanding of the mechanism by which imidazoles enhance (and inhibit when used at higher concentrations) the activity of H64A CA II.

  19. The mode of inhibition of the Na+-K+ pump activity in mast cells by calcium

    DEFF Research Database (Denmark)

    Knudsen, T; Johansen, Torben

    1989-01-01

    1 The inhibition by calcium of the Na(+)-K+ pump in the plasma membrane of rat peritoneal mast cells was studied in pure populations of the cells by measuring the ouabain-sensitive uptake of the radioactive potassium analogue, 86rubidium (86Rb+). 2 Exposure of the cells to calcium induced a time...... not develop when the mast cells were incubated in a potassium-free medium, which is known to block Na(+)-K+ pump activity and allow accumulation of sodium inside the cells. Likewise, increasing the sodium permeability of the plasma membrane by monensin abolished the inhibition of the pump activity. In both...... cases, incubation of the cells with 4.7 mM potassium and tracer amounts of 86Rb+ resulted in a very large uptake of K+ (86Rb+) into the cells (up to 2 nmol per 10(6) cells min-1), indicating a high activity of the Na(+)-K+ pump. 4. These observations support the view that long-term incubation of rat...

  20. Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia.

    Science.gov (United States)

    Swords, Ronan T; Kelly, Kevin R; Smith, Peter G; Garnsey, James J; Mahalingam, Devalingam; Medina, Ernest; Oberheu, Kelli; Padmanabhan, Swaminathan; O'Dwyer, Michael; Nawrocki, Steffan T; Giles, Francis J; Carew, Jennifer S

    2010-05-06

    NEDD8 activating enzyme (NAE) has been identified as an essential regulator of the NEDD8 conjugation pathway, which controls the degradation of many proteins with important roles in cell-cycle progression, DNA damage, and stress responses. Here we report that MLN4924, a novel inhibitor of NAE, has potent activity in acute myeloid leukemia (AML) models. MLN4924 induced cell death in AML cell lines and primary patient specimens independent of Fms-like tyrosine kinase 3 expression and stromal-mediated survival signaling and led to the stabilization of key NAE targets, inhibition of nuclear factor-kappaB activity, DNA damage, and reactive oxygen species generation. Disruption of cellular redox status was shown to be a key event in MLN4924-induced apoptosis. Administration of MLN4924 to mice bearing AML xenografts led to stable disease regression and inhibition of NEDDylated cullins. Our findings indicate that MLN4924 is a highly promising novel agent that has advanced into clinical trials for the treatment of AML.

  1. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    Directory of Open Access Journals (Sweden)

    Nadia Dekdouk

    2015-01-01

    Full Text Available Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects.

  2. Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia.

    Science.gov (United States)

    Delgado, R; Carlin, A; Airaghi, L; Demitri, M T; Meda, L; Galimberti, D; Baron, P; Lipton, J M; Catania, A

    1998-06-01

    Inflammatory processes contribute to neurodegenerative disease, stroke, encephalitis, and other central nervous system (CNS) disorders. Activated microglia are a source of cytokines and other inflammatory agents within the CNS and it is therefore important to control glial function in order to preserve neural cells. Melanocortin peptides are pro-opiomelanocortin-derived amino acid sequences that include alpha-melanocyte-stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH). These peptides have potent and broad anti-inflammatory effects. We tested effects of alpha-MSH (1-13), alpha-MSH (11-13), and ACTH (1-24) on production of tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) in a cultured murine microglial cell line (N9) stimulated with lipopolysaccharide (LPS) plus interferon gamma (IFN-gamma). Melanocortin peptides inhibited production of these cytokines and NO in a concentration-related fashion, probably by increasing intracellular cAMP. When stimulated with LPS + IFN-gamma, microglia increased release of alpha-MSH. Production of TNF-alpha, IL-6, and NO was greater in activated microglia after innmunoneutralization of endogenous alpha-MSH. The results suggest that alpha-MSH is an autocrine factor in microglia. Because melanocortin peptides inhibit production of pro-inflammatory mediators by activated microglia they might be useful in treatment of inflammatory/degenerative brain disorders.

  3. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters.

    Science.gov (United States)

    Lin, Yuguang; Vermeer, Mario A; Trautwein, Elke A

    2011-01-01

    Hawthorn (Crataegus pinnatifida) is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT) activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA) and ursolic acid (UA)) contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE) were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w) cholesterol (control) or the same diet supplemented with (i) 0.37% hawthorn dichloromethane extract, (ii) 0.24% PSE, (iii) hawthorn dichloromethane extract (0.37%) plus PSE (0.24%) or (iv) OA/UA mixture (0.01%) for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL) cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA) enhanced the cholesterol lowering effect of plant sterols.

  4. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters

    Directory of Open Access Journals (Sweden)

    Yuguang Lin

    2011-01-01

    Full Text Available Hawthorn (Crataegus pinnatifida is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA and ursolic acid (UA contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w cholesterol (control or the same diet supplemented with (i 0.37% hawthorn dichloromethane extract, (ii 0.24% PSE, (iii hawthorn dichloromethane extract (0.37% plus PSE (0.24% or (iv OA/UA mixture (0.01% for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA enhanced the cholesterol lowering effect of plant sterols.

  5. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    Directory of Open Access Journals (Sweden)

    Yuko Shimamura

    Full Text Available This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA. Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.

  6. Anti-allergic properties of the bromeliaceae Nidularium procerum: inhibition of eosinophil activation and influx.

    Science.gov (United States)

    Vieira-de-Abreu, Adriana; Amendoeira, Fábio C; Gomes, Gleice S; Zanon, Cristiane; Chedier, Luciana M; Figueiredo, Maria Raquel; Kaplan, Maria Auxiliadora C; Frutuoso, Válber S; Castro-Faria-Neto, Hugo C; Weller, Peter F; Bandeira-Melo, Christianne; Bozza, Patrícia T

    2005-12-01

    New therapeutic approaches for the treatment of allergic diseases can be aided by the development of agents capable of regulating eosinophilic leukocytes. Here, we evaluated the anti-allergic properties of a crude extract of the Brazilian bromeliaceae Nidularium procerum, focusing on its effects on allergic eosinophilia. By studying allergic pleurisy in actively sensitized C57Bl/6 mice, we observed that pretreatment with N. procerum (2 mg/kg; i.p.) reduced pleural eosinophil influx triggered by allergen challenge. N. procerum was also able to reduce lipid body numbers found within infiltrating eosinophils, indicating that N. procerum in vivo is able to affect both migration and activation of eosinophils. Consistently, pretreatment with N. procerum blocked pleural eosinophil influx triggered by PAF or eotaxin, key mediators of the development of allergic pleural eosinophilia. The effect of N. procerum was not restricted to eosinophils, since N. procerum also inhibited pleural neutrophil and mononuclear cell influx. Of note, N. procerum failed to alter the acute allergic reaction, characterized by mast cell degranulation, oedema, and cysteinyl leukotriene release. N. procerum also had direct effects on murine eosinophils, since it inhibited both PAF- and eotaxin-induced eosinophil chemotaxis on an in vitro chemotactic assay. Therefore, N. procerum may be a promising anti-allergic therapy, inasmuch as it presents potent anti-eosinophil activity.

  7. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition

    Science.gov (United States)

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D.; Nencioni, Alessio

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use. PMID:25909220

  8. Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants.

    Directory of Open Access Journals (Sweden)

    Toru Kobayashi

    Full Text Available Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K(+ (GIRK, Kir3 channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects.

  9. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition

    Science.gov (United States)

    Sawicki, Gregory S; Ferris, Daniel P

    2009-01-01

    Background The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO) powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO) and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Methods Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1) without wearing the orthosis, 2) wearing the orthosis with artificial muscles turned off, 3) wearing the orthosis activated under direct proportional myoelectric control, and 4) wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. Results The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04) and knee ( r = 0.95 ± 0.04) joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17). Conclusion The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current orthosis design

  10. A pneumatically powered knee-ankle-foot orthosis (KAFO with myoelectric activation and inhibition

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2009-06-01

    Full Text Available Abstract Background The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Methods Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1 without wearing the orthosis, 2 wearing the orthosis with artificial muscles turned off, 3 wearing the orthosis activated under direct proportional myoelectric control, and 4 wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. Results The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04 and knee ( r = 0.95 ± 0.04 joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17. Conclusion The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current

  11. Mercury Inhibits Soil Enzyme Activity in a Lower Concentration than the Guideline Value.

    Science.gov (United States)

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    Three soil types - neutral, alkaline and acidic were experimentally contaminated with nine different concentrations of inorganic mercury (0, 5, 10, 50, 100, 150, 200, 250, 300 mg/kg) to derive effective concentrations of mercury that exert toxicity on soil quality. Bioavailability of mercury in terms of water solubility was lower in acidic soil with higher organic carbon. Dehydrogenase enzyme activity and nitrification rate were chosen as indicators to assess soil quality. Inorganic mercury significantly inhibited (p mercury contents (EC10) were found to be less than the available safe limits for inorganic mercury which demonstrated inadequacy of existing guideline values.

  12. Biofilm inhibition activity of traditional medicinal plants from Northwestern Argentina against native pathogen and environmental microorganisms

    Directory of Open Access Journals (Sweden)

    Cintia Mariana Romero

    Full Text Available Abstract: INTRODUCTION: Plants have been commonly used in popular medicine of most cultures for the treatment of disease. The in vitro antimicrobial activity of certain Argentine plants used in traditional medicine has been reported. The aim of this study was to investigate the antimicrobial, anti-biofilm, and anti-cell adherence activities of native plants (Larrea divaricata, Tagetes minuta, Tessaria absinthioides, Lycium chilense, and Schinus fasciculatus collected in northwestern Argentina. METHODS: The activities of the five plant species were evaluated in Bacillus strains and clinical strains of coagulase-negative Staphylococcus isolated from northwestern Argentina and identified by 16S rDNA. RESULT: Lycium chilense and Schinus fasciculatus were the most effective antimicrobial plant extracts (15.62µg/ml and 62.50µg/ml for Staphylococcus sp. Mcr1 and Bacillus sp. Mcn4, respectively. The highest (66% anti-biofilm activity against Bacillus sp. Mcn4 was observed with T. absinthioides and L. divaricate extracts. The highest (68% anti-biofilm activity against Staphylococcus sp. Mcr1 was observed with L. chilense extract. T. minuta, T. absinthioides, and L. divaricata showed percentages of anti-biofilm activity of between 55% and 62%. The anti-adherence effects of T. minuta and L. chilense observed in Bacillus sp. Mcn4 reflected a difference of only 22% and 10%, respectively, between anti-adherence and biofilm inhibition. Thus, the inhibition of biofilm could be related to cell adherence. In Staphylococcus sp. Mcr1, all plant extracts produced low anti-adherence percentages. CONCLUSION: These five species may represent a source of alternative drugs derived from plant extracts, based on ethnobotanical knowledge from northwest Argentina.

  13. 5-HT2A receptor antagonists inhibit hepatic stellate cell activation and facilitate apoptosis.

    Science.gov (United States)

    Kim, Dong Chan; Jun, Dae Won; Kwon, Young Il; Lee, Kang Nyeong; Lee, Hang Lak; Lee, Oh Young; Yoon, Byung Chul; Choi, Ho Soon; Kim, Eun Kyung

    2013-04-01

    5-hydroxytryptamine (5-HT) receptors are upregulated in activated hepatic stellate cells (HSCs), and are therefore thought to play an important role in their activation. The aim of this study was to determine whether 5-HT2A receptor antagonists affect the activation or apoptosis of HSCs in vitro and/or in vivo. For the in vitro experiments, the viability, apoptosis and wound healing ability of LX-2 cells were examined after treatment with various 5-HT2A receptor antagonists. Levels of HSC activation markers (procollagen type I, α-SMA, TGF-β and Smad 2/3) were measured. For in vivo experiments, rats were divided into three groups: (i) a control group, (ii) a disease group, in which cirrhosis was induced by thioacetamide (iii) a treatment group, in which cirrhosis was induced and a 5-HT2A receptor antagonist (sarpogrelate, 30 mg/kg) was administered. 5-HT2A , but not 5-HT2B receptor mRNA increased with time upon HSC activation. 5-HT2A receptor antagonists (ketanserin and sarpogrelate) inhibited viability and wound healing in LX-2 cells and induced apoptosis. Expression of α-SMA and procollagen type I was also inhibited. In the in vivo study, lobular inflammation was reduced in the sarpogrelate-treated group, but there was only slight and statistically insignificant attenuation of periportal fibrosis. Expression of α-SMA, TGF-β and Smad 2/3 was also reduced in the treatment group. 5-HT2A receptor antagonists can reduce inflammation and the activation of HSCs in this cirrhotic model. © 2013 John Wiley & Sons A/S.

  14. Inhibition of c-Abl kinase activity renders cancer cells highly sensitive to mitoxantrone.

    Directory of Open Access Journals (Sweden)

    Kemal Alpay

    Full Text Available Although c-Abl has increasingly emerged as a key player in the DNA damage response, its role in this context is far from clear. We studied the effect of inhibition of c-Abl kinase activity by imatinib with chemotherapy drugs and found a striking difference in cell survival after combined mitoxantrone (MX and imatinib treatment compared to a panel of other chemotherapy drugs. The combinatory treatment induced apoptosis in HeLa cells and other cancer cell lines but not in primary fibroblasts. The difference in MX and doxorubicin was related to significant augmentation of DNA damage. Transcriptionally active p53 accumulated in cells in which human papillomavirus E6 normally degrades p53. The combination treatment resulted in caspase activation and apoptosis, but this effect did not depend on either p53 or p73 activity. Despite increased p53 activity, the cells arrested in G2 phase became defective in this checkpoint, allowing cell cycle progression. The effect after MX treatment depended partially on c-Abl: Short interfering RNA knockdown of c-Abl rendered HeLa cells less sensitive to MX. The effect of imatinib was decreased by c-Abl siRNA suggesting a role for catalytically inactive c-Abl in the death cascade. These findings indicate that MX has a unique cytotoxic effect when the kinase activity of c-Abl is inhibited. The treatment results in increased DNA damage and c-Abl-dependent apoptosis, which may offer new possibilities for potentiation of cancer chemotherapy.

  15. 20(S-Protopanaxatriol inhibits release of inflammatory mediators in immunoglobulin E-mediated mast cell activation

    Directory of Open Access Journals (Sweden)

    Dae Yong Kim

    2015-07-01

    Conclusion: PPT reduces the release of inflammatory mediators via inhibiting multiple cellular signaling pathways comprising the Ca2+ influx, protein kinase C, and PLA2, which are propagated by Syk activation upon allergic stimulation of mast cells.

  16. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yolanda Williams-Bey

    Full Text Available The omega-3 (ω3 fatty acid docosahexaenoic acid (DHA can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR 4 (also known as GPR120, a G-protein coupled receptor (GPR known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

  17. Gum resin of Boswellia serrata inhibited human monocytic (THP-1) cell activation and platelet aggregation.

    Science.gov (United States)

    Kokkiripati, Praveen K; Bhakshu, Lepakshi Md; Marri, Swathi; Padmasree, K; Row, Anupama T; Raghavendra, Agepati S; Tetali, Sarada D

    2011-09-01

    Stem bark gum resin extract of Boswellia serrata is traditionally used in India for its hemostatic, antiinflammatory and cardiovascular health effects and it is named as Śallakī in Ayurvedic medicine. This study was conducted to evaluate the antioxidative and antithrombotic properties of stem bark gum resin extracts of Boswellia serrata (BS). The inhibitory activity of the BSWE and BSAE on FeCl(3) induced lipid peroxidation (in vitro) in rat liver and heart homogenates was measured spectrophotometrically. Their effect on H(2)O(2) induced reactive oxygen species (ROS) generation in human monocytic (THP-1) cells was investigated by tracking intensity of a cell permeable fluorescent dye, H(2)DCFDA and subjecting the cell samples to confocal microscopy. Further, the effect of BSAE and BSWE on ADP-induced platelet aggregation was assessed using a multimode detection plate reader, plasma coagulation times using an automated blood coagulation analyzer and on human blood clotting factors Xa and XIa using chromogenic substrate. Phytomarker analysis of the water (BSWE) and hydroalcoholic (BSAE) extracts of BS-gum resin was done through HPLC using a standard compound AKβBA. BSAE and BSWE inhibited, to varied extents, the lipid peroxidation in liver (80%) and heart (50%) tissue homogenates of male Wistar rats. Further, BSAE (30 μg dwt/mL) and BSWE (300 μg dwt/mL) attenuated ≥ 60% of H(2)O(2) mediated ROS generation in THP-1 cells. In case of standard compounds, ascorbate (20 μg dwt/mL) and butylated hydroxytoluene (BHT) (10 μg dwt/mL) completely scavenged ROS in the cells. BSAE and BSWE at 3 mg dwt/mL completely inhibited ADP induced platelet aggregation and activities were comparable to 20 μg/mL of heparin. The extracts also showed very high activity in prolonging coagulation time periods. Both types of extracts extended prothrombin time (PT) from ∼13 to >60s and activated partial thromboplastin time (APTT) from ∼32s to >90s. BSAE inhibited clotting factors Xa

  18. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal.

    Science.gov (United States)

    Ferreira, A; Proença, C; Serralheiro, M L M; Araújo, M E M

    2006-11-03

    Essential oil, ethanolic extract and decoction of 10 plant species from interior Portugal were analyzed for their activity towards acetylcholinesterase (AChE) enzyme and their antioxidant activity. Of these, Melissa officinalis, Paronychia argentea, Sanguisorba minor, Hypericum undulatum and Malva silvestris are used in herbal medicine, Laurus nobilis and Mentha suaveolens as condiments, and Salvia officinalis, Lavandula angustifolia and Lavandula pedunculata also as aromatics. Melissa officinalis and Mentha suaveolens showed AChE inhibitory capacity higher then 50% in the essential oil fraction. Laurus nobilis, Hypericum undulatum, and Sanguisorba minor showed a high inhibition value of AChE in the ethanolic fraction, 64% (1 mg ml(-1)) 68% (0.5 mg ml(-1)), and 78% (1 mg ml(-1)), respectively. Higher values of AChE inhibitory activity were found using decoctions of Lavandula pedunculata, Mentha suaveolens and Hypericum undulatum, 68, 69 and 82% (at a concentration of 5mg dry plant ml(-1) of assay), respectively. The free radical scavenger activity was higher for the polar extracts. In the water extracts most of the plants showed values around 90%. When antioxidant activity was measured with the beta-carotene-linoleic acid assay high activity (65-95%) was also found in the water extracts. Hypericum undulatum, Melissa officinalis and Laurus nobilis showed both high AChE inhibitory capacity and antioxidant activity.

  19. Inhibition of Rac1 activity in the hippocampus impaired extinction of contextual fear.

    Science.gov (United States)

    Jiang, Lizhu; Mao, Rongrong; Tong, Jianbin; Li, Jinnan; Chai, Anping; Zhou, Qixin; Yang, Yuexiong; Wang, Liping; Li, Lingjiang; Xu, Lin

    2016-10-01

    Promoting extinction of fear memory is the main treatment of fear disorders, especially post-traumatic stress disorder (PTSD). However, fear extinction is often incomplete in these patients. Our previous study had shown that Rac1 activity in hippocampus plays a crucial role in the learning of contextual fear memory in rats. Here, we further investigated whether Rac1 activity also modulated the extinction of contextual fear memory. We found that massed extinction obviously upregulated hippocampal Rac1 activity and induced long-term extinction of contextual fear in rats. Intrahippocampal injection of the Rac1 inhibitor NSC23766 prevents extinction of contextual fear in massed extinction training rats. In contrast, long-spaced extinction downregulated Rac1 activity and caused less extinction. And Rac1 activator CN04-A promotes extinction of contextual fear in long-spaced extinction rats. Our study demonstrates that inhibition of Rac1 activity in the hippocampus impaired extinction of contextual fear, suggesting that modulating Rac1 activity of the hippocampus may be promising therapy of fear disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Negative stereotype activation alters interaction between neural correlates of arousal, inhibition and cognitive control.

    Science.gov (United States)

    Forbes, Chad E; Cox, Christine L; Schmader, Toni; Ryan, Lee

    2012-10-01

    Priming negative stereotypes of African Americans can bias perceptions toward novel Black targets, but less is known about how these perceptions ultimately arise. Examining how neural regions involved in arousal, inhibition and control covary when negative stereotypes are activated can provide insight into whether individuals attempt to downregulate biases. Using fMRI, White egalitarian-motivated participants were shown Black and White faces at fast (32 ms) or slow (525 ms) presentation speeds. To create a racially negative stereotypic context, participants listened to violent and misogynistic rap (VMR) in the background. No music (NM) and death metal (DM) were used as control conditions in separate blocks. Fast exposure of Black faces elicited amygdala activation in the NM and VMR conditions (but not DM), that also negatively covaried with activation in prefrontal regions. Only in VMR, however, did amygdala activation for Black faces persist during slow exposure and positively covary with activation in dorsolateral prefrontal cortex while negatively covarying with activation in orbitofrontal cortex. Findings suggest that contexts that prime negative racial stereotypes seem to hinder the downregulation of amygdala activation that typically occurs when egalitarian perceivers are exposed to Black faces.

  1. Lactococcus lactis KR-050L inhibit IL-6/STAT3 activation.

    Science.gov (United States)

    Hwang, J T; Jang, H-J; Kim, J H; Park, C S; Kim, Y; Lim, C-H; Lee, S W; Rho, M-C

    2017-05-01

    The purpose of this study was to investigate IL-6/STAT3 inhibitory activity using lactic acid bacteria (LABs) isolated from Gajuknamu kimchi. Six LABs were isolated from Gajuknamu kimchi and identified through 16S rRNA sequencing. Among them, the culture broth of Lactococcus lactis KR-050L inhibited IL-6-induced STAT3 luciferase activity. Fifteen compounds were isolated from the EtOAc extract of culture broth though column chromatography and preparative high-performance liquid chromatography, and they were identified as 2,5-diketopipperazine structures by spectroscopic analyses (MS, 1 H- and 13 C-NMR). They also showed inhibitory activities on IL-6-induced STAT3 activation, and showed the different in activity according to the presence of a phenylalanine residue, hydroxyl groups and isometric structure. The six new LABs isolated from Gajuknamu kimchi, and Lc. lactis KR-050L was selected as candidate IL-6/STAT3 inhibitors. The activity levels of 15 2,5-DKPs isolated from Lc. lactis KR-050L were verified. This study constitutes the first attempt to isolate various LABs from Gajuknamu kimchi and to discover IL-6/STAT3 inhibitors in the EtOAc extract of Lc. lactis KR-050L culture broth. Moreover, our data provide useful biochemical information regarding the commercialization of Lc. lactis isolated from Gajuknamu kimchi as an approach to use functional foods for the treatment of various diseases via IL-6/STAT3 activation. © 2017 The Society for Applied Microbiology.

  2. Inhibition of the TEF/TEAD transcription factor activity by nuclear calcium and distinct kinase pathways.

    Science.gov (United States)

    Thompson, M; Andrade, V A; Andrade, S J; Pusl, T; Ortega, J M; Goes, A M; Leite, M F

    2003-02-07

    Transcription enhancer factor (TEF/TEAD) is a family of four transcription factors that share a common TEA-DNA binding domain and are involved in similar cellular functions, such as cell differentiation and proliferation. All adult tissues express at least one of the four TEAD genes, so this family of transcription factors may be of widespread importance, yet little is known about their regulation. Here we examine the factors that regulate TEAD activity in CHO cells. RT-PCR indicated the presence of TEAD-1, TEAD-3, and both isoforms of TEAD-4, but not TEAD-2. Quantitative measurements showed that TEAD-4 is most abundant, followed by TEAD-3, then TEAD-1. We examined the relative effects of nuclear and cytosolic Ca(2+) on TEAD activity, since TEAD proteins are localized to the nucleus and since free Ca(2+) within the nucleus selectively regulates transcription in some systems. Chelation of nuclear but not cytosolic Ca(2+) increased TEAD activity two times above control. Inhibition of mitogen-activated protein kinase (MAPK) also increased TEAD activity, while cAMP decreased TEAD activity, and protein kinase C had no effect. Together, these results show that nuclear Ca(2+), MAPK, and cAMP each negatively regulate the activity of the TEAD transcription factor.

  3. Fidaxomicin and OP-1118 Inhibit Clostridium difficile Toxin A- and B-Mediated Inflammatory Responses via Inhibition of NF-κB Activity.

    Science.gov (United States)

    Koon, Hon Wai; Wang, Jiani; Mussatto, Caroline C; Ortiz, Christina; Lee, Elaine C; Tran, Diana Hoang-Ngoc; Chen, Xinhua; Kelly, Ciaran P; Pothoulakis, Charalabos

    2018-01-01

    Clostridium difficile causes diarrhea and colitis by releasing toxin A and toxin B. In the human colon, both toxins cause intestinal inflammation and stimulate tumor necrosis factor alpha (TNF-α) expression via the activation of NF-κB. It is well established that the macrolide antibiotic fidaxomicin is associated with reduced relapses of C. difficile infection. We showed that fidaxomicin and its primary metabolite OP-1118 significantly inhibited toxin A-mediated intestinal inflammation in mice in vivo and toxin A-induced cell rounding in vitro We aim to determine whether fidaxomicin and OP-1118 possess anti-inflammatory effects against toxin A and toxin B in the human colon and examine the mechanism of this response. We used fresh human colonic explants, NCM460 human colonic epithelial cells, and RAW264.7 mouse macrophages to study the mechanism of the activity of fidaxomicin and OP-1118 against toxin A- and B-mediated cytokine expression and apoptosis. Fidaxomicin and OP-1118 dose-dependently inhibited toxin A- and B-induced TNF-α and interleukin-1β (IL-1β) mRNA expression and histological damage in human colonic explants. Fidaxomicin and OP-1118 inhibited toxin A-mediated NF-κB phosphorylation in human and mouse intestinal mucosae. Fidaxomicin and OP-1118 also inhibited toxin A-mediated NF-κB phosphorylation and TNF-α expression in macrophages, which was reversed by the NF-κB activator phorbol myristate acetate (PMA). Fidaxomicin and OP-1118 prevented toxin A- and B-mediated apoptosis in NCM460 cells, which was reversed by the addition of PMA. PMA reversed the cytoprotective effect of fidaxomicin and OP-1118 in toxin-exposed human colonic explants. Fidaxomicin and OP-1118 inhibit C. difficile toxin A- and B-mediated inflammatory responses, NF-κB phosphorylation, and tissue damage in the human colon. Copyright © 2017 American Society for Microbiology.

  4. Disulfide bond within mu-calpain active site inhibits activity and autolysis.

    Science.gov (United States)

    Lametsch, René; Lonergan, Steven; Huff-Lonergan, Elisabeth

    2008-09-01

    Oxidative processes have the ability to influence mu-calpain activity. In the present study the influence of oxidation on activity and autolysis of mu-calpain was examined. Furthermore, LC-MS/MS analysis was employed to identify and characterize protein modifications caused by oxidation. The results revealed that the activity of mu-calpain is diminished by oxidation with H2O2 in a reversible manner involving cysteine and that the rate of autolysis of mu-calpain concomitantly slowed. The LC-MS/MS analysis of the oxidized mu-calpain revealed that the amino acid residues 105-133 contained a disulfide bond between Cys(108) and Cys(115). The finding that the active site cysteine in mu-calpain is able to form a disulfide bond has, to our knowledge, not been reported before. This could be part of a unique oxidation mechanism for mu-calpain. The results also showed that the formation of the disulfide bond is limited in the control (no oxidant added), and further limited in a concentration-dependent manner when beta-mercaptoethanol is added. However, the disulfide bond is still present to some extent in all conditions indicating that the active site cysteine is potentially highly susceptible to the formation of this intramolecular disulfide bond.

  5. Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica

    Science.gov (United States)

    Chen, Anjin; Zhang, Fang; Shi, Jie; Zhao, Xue; Yan, Meixing

    2016-10-01

    Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.

  6. Inhibition of nuclear factor of activated T-cells (NFAT suppresses accelerated atherosclerosis in diabetic mice.

    Directory of Open Access Journals (Sweden)

    Anna V Zetterqvist

    Full Text Available OBJECTIVE OF THE STUDY: Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: Streptozotocin (STZ-induced diabetes in apolipoprotein E(-/- mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. CONCLUSIONS: Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications.

  7. Inhibition of the activity of pro-inflammatory secretory phospholipase A2 by acute phase proteins

    Directory of Open Access Journals (Sweden)

    W. Pruzanski

    1996-01-01

    Full Text Available Pro-Inflammatory non-pancreatic phospholipase A2 (sPLA2 is markedly over-expressed in acute systemic and chronic local inflammatory processes. Since in acute phase reaction sPLA2 is often over-expressed simultaneously with acute phase proteins (APP, it is important to determine whether APP interacts with sPLA2. We tested ten APPs for interaction with sPLA2 using as a substrate multilamellar Hposomes composed either of PC:Lyso PC or PE:Lyso PE. Using PC:Lyso PC substrate, CRP, lactoferrin and SAP were found to inhibit sPLA2 activity with an IC50 of 25 μg/ml, 7.5 μg/ml and 50 μg/ml, respectively, corresponding to 0.21 μM, 0.1 μM and 0.21 μM respectively. Using PE:Lyso PE substrate only SAP was inhibitory, with an IC50 of 10 μg/ml (0.04 μM. Phosphorylcholine abolished the inhibitory activity of CRP but not of SAP or lactoferrin. Addition of phosphorylethanolamine or of excess calcium had no effect on the inhibitory activity of APP. Limulin, lysozyme, transferrin, β2-microglobulin, α2-macroglobulin, human and bovine albumins had no effect on sPLA2 activity. Therefore neither the structure of pentraxins, or ironbinding, bacteriostatic property or amyloidogenic property preclude whether APP modulates sPLA2 activity. Inhibition of pro-inflammatory sPLA2 by APP may be one of the protective mechanisms of the acute phase reaction.

  8. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2010-01-01

    The ability to silence the electrical activity of defined neuronal populations in vivo is dramatically advancing our understanding of brain function. This technology may eventually be useful clinically for treating a variety of neuropathological disorders caused by excessive neuronal activity...... conductance, homomeric expression, and human origin may render the F207A/A288G alpha1 glycine receptor an improved silencing receptor for neuroscientific and clinical purposes. As all known highly ivermectin-sensitive GluClRs contain an endogenous glycine residue at the corresponding location, this residue...

  9. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    Science.gov (United States)

    Nieminen, Mikko T; Novak-Frazer, Lily; Rautemaa, Wilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (pMutagenic levels (>40 μM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (pagent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm infections.

  10. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    International Nuclear Information System (INIS)

    Yang Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-01-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE -/- ) versus wild type (AChE +/+ ) mice indicated that while these OPs inhibited axonal growth in AChE +/+ DRG neurons, they had no effect on axonal growth in AChE -/- DRG neurons. However, transfection of AChE -/- DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs

  11. Inhibition of microglial activation by elderberry extracts and its phenolic components

    Science.gov (United States)

    Simonyi, Agnes; Chen, Zihong; Jiang, Jinghua; Zong, Yijia; Chuang, Dennis Y.; Gu, Zezong; Lu, Chi-Hua; Fritsche, Kevin L.; Greenlief, C. Michael; Rottinghaus, George E.; Thomas, Andrew L.; Lubahn, Dennis B.; Sun, Grace Y.

    2015-01-01

    Aims Elderberry (Sambucus spp.) is one of the oldest medicinal plants noted for its cardiovascular, anti-inflammatory, and immune-stimulatory properties. In this study, we investigated the anti-inflammatory and anti-oxidant effects of the American elderberry (Sambucus nigra subsp. canadensis) pomace as well as some of the anthocyanins (cyanidin chloride and cyanidin 3-O-glucoside) and flavonols (quercetin and rutin) in bv-2 mouse microglial cells. Main methods The bv-2 cells were pretreated with elderberry pomace (extracted with ethanol or ethyl acetate) or its anthocyanins and flavonols and stimulated by either lipopolysaccharide (LPS) or interferon-γ (IFNγ). Reactive oxygen species (ROS) and nitric oxide (NO) production (indicating oxidative stress and inflammatory response) were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. Key findings Analysis of total monomeric anthocyanin (as cyanidin 3-O-glucoside equivalents) indicated five-fold higher amount in the freeze-dried ethanol extract as compared to that of the oven-dried extract; anthocyanin was not detected in the ethyl acetate extracts. Elderberry ethanol extracts (freeze-dried or oven-dried) showed higher anti-oxidant activities and better ability to inhibit LPS or IFNγ-induced NO production as compared with the ethyl acetate extracts. The phenolic compounds strongly inhibited LPS or IFNγ-induced ROS production, but except for quercetin, they were relatively poor in inhibiting NO production. Significance These results demonstrated difference in anti-oxidative and anti-inflammatory effects of elderberry extracts depending on solvents used. Results further identified quercetin as the most active component in suppressing oxidative stress and inflammatory responses on microglial cells. PMID:25744406

  12. Neferine inhibits cultured hepatic stellate cell activation and facilitates apoptosis: A possible molecular mechanism.

    Science.gov (United States)

    Ding, Hui; Shi, Jinghong; Wang, Ying; Guo, Jia; Zhao, Juhui; Dong, Lei

    2011-01-10

    Neferine is a major alkaloid component of "Lian Zi Xin", embryos of the seeds of Nelumbo nucifera Gaertner, Nymphaeaceae. Previous studies have shown that neferine has an inhibitory effect on pulmonary fibrosis through its anti-inflammatory and anti-oxidative activities and inhibition of cytokines and NF-κB. However, it is unknown whether neferine also has an inhibitory effect on liver fibrosis through inhibition of TGF-β1 and collagen I and facilitation of apoptosis of hepatic stellate cells. This study examined the effects of neferine on cultured hepatic stellate (HSC-T6) cells and explored its possible action mechanisms by means of MTT assay, enzyme-linked immunosorbent assay, flow-cytometric annexin V-PI assay and Hoechst 33258 staining, as well as real-time PCR and western blotting. The results showed that neferine administration (2, 4, 6, 8 and 10μmol/l) significantly decreased the TGF-β1 and collagen I produced in HSC-T6 cells, and increased the HSC-T6 cell apoptosis in a dose-dependent manner. Neferine treatment for 48h at concentrations of 6 and 10μmol/l significantly increased Bax and caspase 3 mRNAs and proteins, and reduced Bcl2 and alpha-smooth muscle actin (α-SMA) mRNAs and proteins. Our data indicate that neferine efficiently inhibits cultured HSC-T6 cell activation and induces apoptosis by increasing Bax and caspase 3 expression via the mitochondrial pathway. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Inhibition of allergen-induced basophil activation by ASM-024, a nicotinic receptor ligand.

    Science.gov (United States)

    Watson, Brittany M; Oliveria, John Paul; Nusca, Graeme M; Smith, Steven G; Beaudin, Sue; Dua, Benny; Watson, Rick M; Assayag, Evelynne Israël; Cormier, Yvon F; Sehmi, Roma; Gauvreau, Gail M

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) were identified on eosinophils and shown to regulate inflammatory responses, but nAChR expression on basophils has not been explored yet. We investigated surface receptor expression of nAChR α4, α7 and α1/α3/α5 subunits on basophils. Furthermore, we examined the effects of ASM-024, a synthetic nicotinic ligand, on in vitro anti-IgE and in vivo allergen-induced basophil activation. Basophils were enriched from the peripheral blood of allergic donors and the expression of nAChR subunits and muscarinic receptors was determined. Purified basophils were stimulated with anti-IgE in the presence of ASM-024 with or without muscarinic or nicotinic antagonists for the measurement of CD203c expression and histamine release. The effect of 9 days of treatment with 50 and 200 mg ASM-024 on basophil CD203c expression was examined in the blood of mild allergic asthmatics before and after allergen inhalation challenge. nAChR α4, α7 and α1/α3/α5 receptor subunit expression was detected on basophils. Stimulation of basophils with anti-IgE increased CD203c expression and histamine release, which was inhibited by ASM-024 (10(-5) to 10(-)(3) M, p ASM-024 was reversed in the presence of muscarinic and nicotinic antagonists. In subjects with mild asthma, ASM-024 inhalation significantly inhibited basophil CD203c expression measured 24 h after allergen challenge (p = 0.03). This study shows that ASM-024 inhibits IgE- and allergen-induced basophil activation through both nicotinic and muscarinic receptors, and suggests that ASM-024 may be an efficacious agent for modulating allergic asthma responses. © 2015 S. Karger AG, Basel.

  14. BIOLOGICAL ACTIVITIES AFFORDED BY THE EXTRACT FROM RARU BARK TO INHIBIT ACTION OF ALPHA- GLUCOSIDASE ENZYMES

    Directory of Open Access Journals (Sweden)

    Gunawan Pasaribu

    2011-06-01

    Full Text Available Raru (Shoreabalanocarpoides Sym signifies one of the tree species that grows widespread in Sumatra Island.  Its bark portion is commonly used by local villagers as additional ingredient mixed to nira (sugar palm juice.  This addition is intended to make the juice more durable and also to enrich its taste after the juice is previously fermented to become traditional toddy beverage or the so-call “tuak”.  Local villagers believe that raru bark can reduce the level of blood sugar. As the relevance, the research was conducted to confirm that the extract from raru bark could afford its biological activities to inhibit alpha-glucosidase enzyme through its characterization, quantification, and isolation of its boactive compound. The extraction was performed using two methods (i.e.reflux and maceration techniques. Result revealed that the bark extract obtained from both techniques contained polyphenol compounds: flavonoid, saponin and tannin. Further, raru-bark extract from the reflux and maceration techniques could inhibit the action of alpha glucosidase enzymes on carbohydrate substrate ( i.e. p -nitrophenil-α-D-glucopyranose, at respectively 90.67% and 97.33%. Meanwhile, the inhibition activities afforded by the patented drug as a control (i.e. glucobay equaled to 97.05%.  Assesment using UV-VIS spectroscopy, showed that the maximum spectrum of bioactive compound in the extract was at the wave length of 288.6 nm. Scrutiny using FTIR spectroscopy could identif y the presence of aromatic groups in the compound, containing -OH, C-H, C=C, C-O and C-H bond types. Analysis using GC-MS exhibited that the compound had molecular weight of 390 with molecular structure as C20H22O8. Ultimately, data analysis scrutiny with the aid of NMR judged the most plausible compound as bioactive was 4-Glucosyl-3, 4’, 5-trihydroxystilbene.

  15. Nimesulide inhibits platelet-activating factor synthesis in activated human neutrophils

    NARCIS (Netherlands)

    Verhoeven, A. J.; Tool, A. T.; Kuijpers, T. W.; Roos, D.

    1993-01-01

    In an inflammatory locus, products of activated neutrophils may be toxic both to the micro-organisms to be eliminated and to the surrounding tissue. In several models of inflammation, nimesulide possesses marked anti-inflammatory properties. The present study was undertaken to further investigate

  16. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Yoshiki, E-mail: andoy@jmmc.jp [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Miyamoto, Hiroshi [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Noda, Iwao; Sakurai, Nobuko [Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Akiyama, Tomonori [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Yonekura, Yutaka; Shimazaki, Takafumi; Miyazaki, Masaki; Mawatari, Masaaki; Hotokebuchi, Takao [Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan)

    2010-01-01

    Surgical site infection is one of the serious complications of orthopedic implants. In order to reduce the incidence of implant-associated infections, we developed a novel coating technology of calcium phosphate (CP) containing silver (Ag), designated Ag-CP coating, using a thermal spraying technique. In this study, we evaluated the antibacterial efficacy and biological safety of this coating. In vitro antibacterial activity tests showed that the growths of Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are completely suppressed on Ag-CP coating. In vitro bacterial adherence tests revealed that the number of adherent bacteria on the surface of this coating is significantly less (p < 0.02) than that on the surface of the CP coating. Moreover, the Ag-CP coating completely inhibits MRSA adhesion [<10 colony-forming units (CFU)] when 10{sup 2} CFU MRSA is inoculated. On the other hand, V79 Chinese hamster lung cells were found to grow on the Ag-CP coating as well as on the CP coating in a cytotoxicity test. These results indicate that the Ag-CP coating on the surface of orthopedic implants exhibits antibacterial activity and inhibits bacterial adhesion without cytotoxicity.

  17. Alpha 1 Antitrypsin Inhibits Dendritic Cell Activation and Attenuates Nephritis in a Mouse Model of Lupus.

    Directory of Open Access Journals (Sweden)

    Ahmed S Elshikha

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disorder with a worldwide distribution and considerable mortality and morbidity. Although the pathogenesis of this disease remains elusive, over-reactive dendritic cells (DCs play a critical role in the disease development. It has been shown that human alpha-1 antitrypsin (hAAT has protective effects in type 1 diabetes and rheumatoid arthritis mouse models. In the present study, we tested the effect of AAT on DC differentiation and functions, as well as its protective effect in a lupus-prone mouse model. We showed that hAAT treatment significantly inhibited LPS (TLR4 agonist and CpG (TLR9 agonist -induced bone-marrow (BM-derived conventional and plasmacytoid DC (cDC and pDC activation and reduced the production of inflammatory cytokines including IFN-I, TNF-α and IL-1β. In MRL/lpr mice, hAAT treatment significantly reduced BM-derived DC differentiation, serum autoantibody levels, and importantly attenuated renal pathology. Our results for the first time demonstrate that hAAT inhibits DC activation and function, and it also attenuates autoimmunity and renal damage in the MRL/lpr lupus model. These results imply that hAAT has a therapeutic potential for the treatment of SLE in humans.

  18. Inhibition of myotoxic activity of Bothrops asper myotoxin II by the anti-trypanosomal drug suramin.

    Science.gov (United States)

    Murakami, Mário T; Arruda, Emerson Z; Melo, Paulo A; Martinez, Ana B; Calil-Eliás, Sabrińa; Tomaz, Marcelo A; Lomonte, Bruno; Gutiérrez, José M; Arni, Raghuvir K

    2005-07-15

    Suramin, a synthetic polysulfonated compound, developed initially for the treatment of African trypanosomiasis and onchocerciasis, is currently used for the treatment of several medically relevant disorders. Suramin, heparin, and other polyanions inhibit the myotoxic activity of Lys49 phospholipase A2 analogues both in vitro and in vivo, and are thus of potential importance as therapeutic agents in the treatment of viperid snake bites. Due to its conformational flexibility around the single bonds that link the central phenyl rings to the secondary amide backbone, the symmetrical suramin molecule binds by an induced-fit mechanism complementing the hydrophobic surfaces of the dimer and adopts a novel conformation that lacks C2 symmetry in the dimeric crystal structure of the suramin-Bothrops asper myotoxin II complex. The simultaneous binding of suramin at the surfaces of the two monomers partially restricts access to the nominal active sites and significantly changes the overall charge of the interfacial recognition face of the protein, resulting in the inhibition of myotoxicity.

  19. Natural Plant Alkaloid (Emetine Inhibits HIV-1 Replication by Interfering with Reverse Transcriptase Activity

    Directory of Open Access Journals (Sweden)

    Ana Luiza Chaves Valadão

    2015-06-01

    Full Text Available Ipecac alkaloids are secondary metabolites produced in the medicinal plant Psychotria ipecacuanha. Emetine is the main alkaloid of ipecac and one of the active compounds in syrup of Ipecac with emetic property. Here we evaluated emetine’s potential as an antiviral agent against Human Immunodeficiency Virus. We performed in vitro Reverse Transcriptase (RT Assay and Natural Endogenous Reverse Transcriptase Activity Assay (NERT to evaluate HIV RT inhibition. Emetine molecular docking on HIV-1 RT was also analyzed. Phenotypic assays were performed in non-lymphocytic and in Peripheral Blood Mononuclear Cells (PBMC with HIV-1 wild-type and HIV-harboring RT-resistant mutation to Nucleoside Reverse Transcriptase Inhibitors (M184V. Our results showed that HIV-1 RT was blocked in the presence of emetine in both models: in vitro reactions with isolated HIV-1 RT and intravirion, measured by NERT. Emetine revealed a strong potential of inhibiting HIV-1 replication in both cellular models, reaching 80% of reduction in HIV-1 infection, with low cytotoxic effect. Emetine also blocked HIV-1 infection of RT M184V mutant. These results suggest that emetine is able to penetrate in intact HIV particles, and bind and block reverse transcription reaction, suggesting that it can be used as anti-HIV microbicide. Taken together, our findings provide additional pharmacological information on the potential therapeutic effects of emetine.

  20. Molecular Modeling Analysis of the Inhibition of Mitochondrial Cytochrome BC1 Complex Activity by Tocol Derivatives

    Science.gov (United States)

    Singh, Awantika; Hauer-Jensen, Martin; Compadre, Cesar M.; Kumar, K. Sree

    2011-06-01

    The biological functions of vitamin E related compounds have been of interest in biomedical research for several decades. Among those compounds, α-, β-, δ-, and γ-tocopherols and their oxidation products, α-, β-, δ-, γ-tocopherylquinone and their analogs α-TQo, γ-TQo, TMC20 and TMC40 were recently shown to inhibit the mitochondrial cytochrome bc1 complex. In this investigation the effects of the structural variation on the inhibition of the mitochondrial cytochrome bc1 complex were analyzed using Comparative Molecular Field Analysis (CoMFA). CoMFA performed using steric and electrostatic molecular fields produced a very good correlation. The best CoMFA models were obtained using the manual alignment of 12 compounds with 5 components (q2 = 0.589, SPRESS = 0.515, r2 = 0.992, s = 0.068 and F value = 156.520). The resulting contour maps produced by the best CoMFA model were helpful in identifying the structural features required for the biological activity of compounds under study. These results would be helpful for predicting the activity of new compounds, and they could be used for guiding the design, synthesis and development of new and more effective agents.

  1. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy.

    Science.gov (United States)

    Reed, Sarah A; Sandesara, Pooja B; Senf, Sarah M; Judge, Andrew R

    2012-03-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.

  2. Toxicity of Aqueous Fullerene nC60 to Activated Sludge: Nitrification Inhibition and Microtox Test

    Directory of Open Access Journals (Sweden)

    Yongkui Yang

    2012-01-01

    Full Text Available The increasing production and use of fullerene nanomaterials raised their exposure potential to the activated sludge during biological wastewater treatment process. In this study, the toxicity of aqueous nanoscaled C60 (nC60 to activated sludge was investigated using nitrification inhibition and Microtox test. The test solutions of nC60 were prepared using two methods: long stirring (Stir/nC60 and toluene exchange (Tol/nC60. The nC60 aggregation in test medium was also evaluated for toxicity assessment. The results showed that the nC60 aggregation behaved differently in two test mediums during the incubation periods. The nC60 toxicity was greatly influenced by the preparation method. Stir/nC60 presented no significant toxicity to both the nitrification sludge and bioluminescent bacteria at the maximum concentration studied. In contrast, the EC20 of Tol/nC60 was obtained to be 4.89 mg/L (3 h for the nitrification inhibition and 3.44 mg/L (30 min for Microtox test, respectively.

  3. Nuclear localization of Lyn tyrosine kinase mediated by inhibition of its kinase activity

    International Nuclear Information System (INIS)

    Ikeda, Kikuko; Nakayama, Yuji; Togashi, Yuuki; Obata, Yuuki; Kuga, Takahisa; Kasahara, Kousuke; Fukumoto, Yasunori; Yamaguchi, Naoto

    2008-01-01

    Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification

  4. Cathepsin D inhibits oxidative stress-induced cell death via activation of autophagy in cancer cells.

    Science.gov (United States)

    Hah, Young-Sool; Noh, Hae Sook; Ha, Ji Hye; Ahn, Jin Sook; Hahm, Jong Ryeal; Cho, Hee Young; Kim, Deok Ryong

    2012-10-28

    Cathepsin D (CatD), a lysosomal aspartic protease, plays an essential role in tumor progression and apoptosis. However, the function of CatD in cell death is not yet fully understood. In this study, we identified CatD as one of up-regulated proteins in human malignant glioblastoma M059J cells that lack the catalytic subunit of DNA-PK compared with its isogenic M059K cells with normal DNA-PK activity. M059J cells were relatively more resistant to genotoxic stress than M059K cells. Overexpression of wild-type CatD but not catalytically inactive mutant CatD (D295N) inhibited H(2)O(2)-induced cell death in HeLa cells. Furthermore, knockdown of CatD expression abolished anti-apoptotic effect by CatD in the presence of H(2)O(2). Interestingly, high expression of CatD in HeLa cells significantly activated autophagy: increase of acidic autophagic vacuoles, LC3-II formation, and GFP-LC3 puncta. These results suggest that CatD can function as an anti-apoptotic mediator by inducing autophagy under cellular stress. In conclusion, inhibition of autophagy could be a novel strategy for the adjuvant chemotherapy of CatD-expressing cancers. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Regulatory effects of inhibiting the activation of glial cells on retinal synaptic plasticity

    Science.gov (United States)

    Zhou, Lihong; Wang, Hui; Luo, Jia; Xiong, Kun; Zeng, Leping; Chen, Dan; Huang, Jufang

    2014-01-01

    Various retinal injuries induced by ocular hypertension have been shown to induce plastic changes in retinal synapses, but the potential regulatory mechanism of synaptic plasticity after retinal injury was still unclear. A rat model of acute ocular hypertension was established by injecting saline intravitreally for an hour, and elevating the intraocular pressure to 14.63 kPa (110 mmHg). Western blot assay and immunofluorescence results showed that synaptophysin expression had a distinct spatiotemporal change that increased in the inner plexiform layer within 1 day and spread across the outer plexiform layer after 3 days. Glial fibrillary acidic protein expression in retinae was greatly increased after 3 days, and reached a peak at 7 days, which was also consistent with the peak time of synaptophysin expression in the outer plexiform layer following the increased intraocular pressure. Fluorocitrate, a glial metabolic inhibitor, was intravitreally injected to inhibit glial cell activation following high intraocular pressure. This significantly inhibited the enhanced glial fibrillary acidic protein expression induced by high intraocular pressure injury. Synaptophysin expression also decreased in the inner plexiform layer within a day and the widened distribution in the outer plexiform layer had disappeared by 3 days. The results suggested that retinal glial cell activation might play an important role in the process of retinal synaptic plasticity induced by acute high intraocular pressure through affecting the expression and distribution of synaptic functional proteins, such as synaptophysin. PMID:25206825

  6. Potential Role of Synaptic Activity to Inhibit LTD Induction in Rat Visual Cortex

    Directory of Open Access Journals (Sweden)

    Matthew R. Stewart

    2016-01-01

    Full Text Available Long-term depression (LTD, a widely studied form of activity-dependent synaptic plasticity, is typically induced by prolonged low-frequency stimulation (LFS. Interestingly, LFS is highly effective in eliciting LTD in vitro, but much less so under in vivo conditions; the reasons for the resistance of the intact brain to express LTD are not well understood. We examined if levels of background electrocorticographic (ECoG activity influence LTD induction in the thalamocortical visual system of rats under very deep urethane anesthesia, inducing a brain state of reduced spontaneous cortical activity. Under these conditions, LFS applied to the lateral geniculate nucleus resulted in LTD of field postsynaptic potentials (fPSPs recorded in the primary visual cortex (V1. Pairing LFS with stimulation of the brainstem (pedunculopontine reticular formation resulted in the appearance of faster, more complex activity in V1 and prevented LTD induction, an effect that did not require muscarinic or nicotinic receptors. Reticular stimulation alone (without LFS had no effect on cortical fPSPs. These results show that excitation of the brainstem activating system blocks the induction of LTD in V1. Thus, higher levels of neural activity may inhibit depression at cortical synapses, a hypothesis that could explain discrepancies regarding LTD induction in previous in vivo and in vitro work.

  7. Protamine sulfate down-regulates thrombin generation by inhibiting factor V activation.

    LENUS (Irish Health Repository)

    Ni Ainle, Fionnuala

    2009-08-20

    Protamine sulfate is a positively charged polypeptide widely used to reverse heparin-induced anticoagulation. Paradoxically, prospective randomized trials have shown that protamine administration for heparin neutralization is associated with increased bleeding, particularly after cardiothoracic surgery with cardiopulmonary bypass. The molecular mechanism(s) through which protamine mediates this anticoagulant effect has not been defined. In vivo administration of pharmacologic doses of protamine to BALB\\/c mice significantly reduced plasma thrombin generation and prolonged tail-bleeding time (from 120 to 199 seconds). Similarly, in pooled normal human plasma, protamine caused significant dose-dependent prolongations of both prothrombin time and activated partial thromboplastin time. Protamine also markedly attenuated tissue factor-initiated thrombin generation in human plasma, causing a significant decrease in endogenous thrombin potential (41% +\\/- 7%). As expected, low-dose protamine effectively reversed the anticoagulant activity of unfractionated heparin in plasma. However, elevated protamine concentrations were associated with progressive dose-dependent reduction in thrombin generation. To assess the mechanism by which protamine mediates down-regulation of thrombin generation, the effect of protamine on factor V activation was assessed. Protamine was found to significantly reduce the rate of factor V activation by both thrombin and factor Xa. Protamine mediates its anticoagulant activity in plasma by down-regulation of thrombin generation via a novel mechanism, specifically inhibition of factor V activation.

  8. Inhibition of iron induced lipid peroxidation and antioxidant activity of Indian spices and Acacia in vitro.

    Science.gov (United States)

    Yadav, Amit Singh; Bhatnagar, Deepak

    2010-03-01

    The spices used in the Indian foods such as Star anise (Illicium verum), Bay leaves (Cinnamomum zeylanicum) and Cobra's saffron (Mesua ferrea), and Acacia (Acacia catechu), which have medicinal value, were used as test samples, to find their effect on in vitro lipid peroxidation (LPO). Rat liver post mitochondrial supernatant (PMS) in Tris HCl buffer, pH 7.4 was incubated for 0 and 1 h, with various test extracts in three different oxidant systems. The results show that addition of test samples to FeCl(3) medium at 0 h significantly stop the initiation of the LPO. However, the propagation phase of LPO was inhibited by Cobra's saffron and Acacia and not by Star anise and Bay leaves. The test samples also showed strong reducing power and superoxide radical scavenging activity. Cobra's saffron and Acacia showed the highest antioxidant activity, probably due to the higher polyphenol content as compared to other test samples.

  9. The trypanocidal activity of the alkaloid oliverine involves inhibition of DNA synthesis.

    Science.gov (United States)

    Garro, H A; Juri Ayub, M; Nieto, M; Lucero Estrada, C; Pungitore, C R; Tonn, C E

    2010-06-15

    The Trypanosoma cruzi parasite is an etiologic agent of the American trypanosomiasis called Chagas disease. This pathology affects more than 24 million persons and represents one of the most important public health problems in Latin America. Taking into account this, it is necessary the search of new antitrypanosomal agents that show a major level of efficacy and minor indexes of toxicity in affected patients. Vast source of them are the natural products from plants with enormous structural diversity. A particular type of these compounds is represented by aporphinoid alkaloids. In our experiments, anonaine (2), oliverine (3) and guatterine (5) displayed antitrypanosomal activity. The compound 3 showed the most important activity with an IC50 = 12.00 ± 0.36 μM. Its mechanism of action may include inhibition of DNA synthesis.

  10. Qushi Huayu Decoction Inhibits Hepatic Lipid Accumulation by Activating AMP-Activated Protein Kinase In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Qin Feng

    2013-01-01

    Full Text Available Qushi Huayu Decoction (QHD, a Chinese herbal formula, has been proven effective on alleviating nonalcoholic fatty liver disease (NAFLD in human and rats. The present study was conducted to investigate whether QHD could inhibit hepatic lipid accumulation by activating AMP-activated protein kinase (AMPK in vivo and in vitro. Nonalcoholic fatty liver (NAFL model was duplicated with high-fat diet in rats and with free fatty acid (FFA in L02 cells. In in vivo experimental condition, QHD significantly decreased the accumulation of fatty droplets in livers, lowered low-density lipoprotein cholesterol (LDL-c, alanine aminotransferase (ALT, and aspartate aminotransferase (AST levels in serum. Moreover, QHD supplementation reversed the HFD-induced decrease in the phosphorylation levels of AMPK and acetyl-CoA carboxylase (ACC and decreased hepatic nuclear protein expression of sterol regulatory element-binding protein-1 (SREBP-1 and carbohydrate-responsive element-binding protein (ChREBP in the liver. In in vitro, QHD-containing serum decreased the cellular TG content and alleviated the accumulation of fatty droplets in L02 cells. QHD supplementation reversed the FFA-induced decrease in the phosphorylation levels of AMPK and ACC and decreased the hepatic nuclear protein expression of SREBP-1 and ChREBP. Overall results suggest that QHD has significant effect on inhibiting hepatic lipid accumulation via AMPK pathway in vivo and in vitro.

  11. Estrogen alleviates neuropathic pain induced after spinal cord injury by inhibiting microglia and astrocyte activation.

    Science.gov (United States)

    Lee, Jee Youn; Choi, Hae Young; Ju, Bong-Gun; Yune, Tae Young

    2018-04-16

    Neuropathic pain after spinal cord injury (SCI) is developed in about 80% of SCI patients and there is no efficient therapeutic drug to alleviate SCI-induced neuropathic pain. Here we examined the effect of estrogen on SCI-induced neuropathic pain at below-level and its effect on neuroinflammation as underlying mechanisms. Neuropathic pain is developed at late phase after SCI and a single dose of 17β-estradiol (100, 300 μg/kg) were administered to rats with neuropathic pain after SCI through intravenous injection. As results, both mechanical allodynia and thermal hyperalgesia were significantly reduced by 17β-estradiol compared to vehicle control. Both microglia and astrocyte activation in the lamina I and II of L4-5 dorsal horn was also inhibited by 17β-estradiol. In addition, the levels of p-p38MAPK and p-ERK known to be activated in microglia and p-JNK known to be activated in astrocyte were significantly decreased by 17β-estradiol. Furthermore, the mRNA expression of inflammatory mediators such as Il-1β, Il-6, iNos, and Cox-2 was more attenuated in 17β-estradiol-treated group than in vehicle-treated group. Particularly, we found that the analgesic effect by 17β-estradiol was mediated via estrogen receptors, which are expressed in dorsal horn neurons. These results suggest that 17β-estradiol may attenuate SCI-induced neuropathic pain by inhibiting microglia and astrocyte activation followed inflammation. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor.

    Science.gov (United States)

    Fang, Jun; Sawa, Tomohiro; Akaike, Takaaki; Akuta, Teruo; Sahoo, Sanjeeb K; Khaled, Greish; Hamada, Akinobu; Maeda, Hiroshi

    2003-07-01

    High expression of the inducible isoform of heme oxygenase (HO-1) is now well known in solid tumors in humans and experimental animal models. We reported previously that HO-1 may be involved in tumor growth (Tanaka et al., Br. J. Cancer, 88: 902-909, 2003), in that inhibition of HO activity in tumors by using zinc protoporphyrin (ZnPP) significantly reduced tumor growth in a rat model. We demonstrate here that poly(ethylene glycol)-conjugated ZnPP (PEG-ZnPP), a water-soluble derivative of ZnPP, exhibited potent HO inhibitory activity and had an antitumor effect in vivo. In vitro studies with cultured SW480 cells, which express HO-1, showed that PEG-ZnPP induced oxidative stress, and consequently apoptotic death, of these cells. Pharmacokinetic analysis revealed that PEG-ZnPP-administered i.v. had a circulation time in blood that was 40 times longer than that for nonpegylated ZnPP. More important, PEG-ZnPP preferentially accumulated in solid tumor tissue in a murine model. In vivo treatment with PEG-ZnPP (equivalent to 1.5 or 5 mg of ZnPP/kg, i.v., injected daily for 6 days) remarkably suppressed the growth of Sarcoma 180 tumors implanted in the dorsal skin of ddY mice without any apparent side effects. In addition, this PEG-ZnPP treatment produced tumor-selective suppression of HO activity as well as induction of apoptosis. The major reason for tumor-selective targeting of PEG-ZnPP is attributed to the enhanced permeability and retention effect that is observed commonly in solid tumors for biocompatible macromolecular drugs. These findings suggest that tumor-targeted inhibition of HO activity could be achieved by using PEG-ZnPP, which induces apoptosis in solid tumors, probably through increased oxidative stress.

  13. Antimicrobial Activity and Mechanism of inhibition of Silver Nanoparticles against Extreme Halophilic Archaea

    Directory of Open Access Journals (Sweden)

    Rebecca Thombre

    2016-09-01

    Full Text Available Haloarchaea are salt-loving halophilic microorganism’s that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs as a potent and broad spectrum inhibitory agent is known however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300- 400µg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting programme. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540 and human breast adenocarcinoma cell line (MCF-7. The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death.

  14. Curcumin Inhibits Apoptosis of Chondrocytes through Activation ERK1/2 Signaling Pathways Induced Autophagy

    Directory of Open Access Journals (Sweden)

    Xiaodong Li

    2017-04-01

    Full Text Available Osteoarthritis (OA is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective in treating pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe, and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Curcumin, the principal curcuminoid and the most active component in turmeric, is a biologically active phytochemical. Evidence from several recent in vitro studies suggests that curcumin may exert a chondroprotective effect through actions such as anti-inflammatory, anti-oxidative stress, and anti-catabolic activity that are critical for mitigating OA disease pathogenesis and symptoms. In the present study, we investigated the protective mechanisms of curcumin on interleukin 1β (IL-1β-stimulated primary chondrocytes in vitro. The treatment of interleukin (IL-1β significantly reduces the cell viability of chondrocytes in dose and time dependent manners. Co-treatment of curcumin with IL-1β significantly decreased the growth inhibition. We observed that curcumin inhibited IL-1β-induced apoptosis and caspase-3 activation in chondrocytes. Curcumin can increase the expression of phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2, autophagy marker light chain 3 (LC3-II, and Beclin-1 in chondrocytes. The expression of autophagy markers could be decreased when the chondrocytes were incubated with ERK1/2 inhibitor U0126. Our results suggest that curcumin suppresses apoptosis and inflammatory signaling through its actions on the ERK1/2-induced autophagy in chondrocytes. We propose that curcumin should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.

  15. Antimicrobial Activity and Mechanism of Inhibition of Silver Nanoparticles against Extreme Halophilic Archaea.

    Science.gov (United States)

    Thombre, Rebecca S; Shinde, Vinaya; Thaiparambil, Elvina; Zende, Samruddhi; Mehta, Sourabh

    2016-01-01

    Haloarchaea are salt-loving halophilic microorganisms that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs) as a potent and broad spectrum inhibitory agent is known, however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300-400 μg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting program. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540) and human breast adenocarcinoma cell line (MCF-7). The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death.

  16. Haloperidol Abrogates Matrix Metalloproteinase-9 Expression by Inhibition of NF-κB Activation in Stimulated Human Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Yueh-Lun Lee

    2018-01-01

    Full Text Available Much evidence has indicated that matrix metalloproteinases (MMPs participate in the progression of neuroinflammatory disorders. The present study was undertaken to investigate the inhibitory effect and mechanism of the antipsychotic haloperidol on MMP activation in the stimulated THP-1 monocytic cells. Haloperidol exerted a strong inhibition on tumor necrosis factor- (TNF- α-induced MMP-9 gelatinolysis of THP-1 cells. A concentration-dependent inhibitory effect of haloperidol was observed in TNF-α-induced protein and mRNA expression of MMP-9. On the other hand, haloperidol slightly affected cell viability and tissue inhibition of metalloproteinase-1 levels. It significantly inhibited the degradation of inhibitor-κB-α (IκBα in activated cells. Moreover, it suppressed activated nuclear factor-κB (NF-κB detected by a mobility shift assay, NF-κB reporter gene, and chromatin immunoprecipitation analyses. Consistent with NF-κB inhibition, haloperidol exerted a strong inhibition of lipopolysaccharide- (LPS- induced MMP-9 gelatinolysis but not of transforming growth factor-β1-induced MMP-2. In in vivo studies, administration of haloperidol significantly attenuated LPS-induced intracerebral MMP-9 activation of the brain homogenate and the in situ in C57BL/6 mice. In conclusion, the selective anti-MMP-9 activation of haloperidol could possibly involve the inhibition of the NF-κB signal pathway. Hence, it was found that haloperidol treatment may represent a bystander of anti-MMP actions for its conventional psychotherapy.

  17. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Directory of Open Access Journals (Sweden)

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  18. Inhibition of constitutive NF-κB activity induces platelet apoptosis via ER stress.

    Science.gov (United States)

    Paul, Manoj; Kemparaju, Kempaiah; Girish, Kesturu S

    2017-12-02

    Platelets are anucleate cells, known for their pivotal roles in hemostasis, inflammation, immunity, and disease progression. Being anuclear, platelets are known to express several transcriptional factors which exert nongenomic functions, including the positive and negative regulation of platelet activation. NF-κB is one such transcriptional factor involved in the regulation of genes for survival, proliferation, inflammation and immunity. Although, the role NF-κB in platelet activation and aggregation is partially known, its function in management of platelet survival and apoptosis remain unexplored. Therefore, two unrelated inhibitors of NF-κB activation, BAY 11-7082 and MLN4924 were used to determine the role of NF-κB in platelets. Inhibition of NF-κB caused decreased SERCA activity and increased cytosolic Ca 2+ level causing ER stress which was determined by the phosphorylation of eIF2-α. Further, there was increased BAX and decreased BCl-2 levels, incidence of mitochondrial membrane potential depolarization, release of cytochrome c into cytosol, caspase activation, PS externalization and cell death in BAY 11-7082 and MLN4924 treated platelets. The obtained results demonstrate the critical role played by NF-κB in Ca 2+ homeostasis and survival of platelets. In addition, the study demonstrates the potential side effects associated with NF-κB inhibitors employed during inflammation and cancer therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Liposomal C6 Ceramide Activates Protein Phosphatase 1 to Inhibit Melanoma Cells.

    Directory of Open Access Journals (Sweden)

    Fangzhen Jiang

    Full Text Available Melanoma is one common skin cancer. In the present study, the potential anti-melanoma activity by a liposomal C6 ceramide was tested in vitro. We showed that the liposomal C6 (ceramide was cytotoxic and anti-proliferative against a panel of human melanoma cell lines (SK-Mel2, WM-266.4 and A-375 and WM-115. In addition, liposomal C6 induced caspase-dependent apoptotic death in the melanoma cells. Reversely, its cytotoxicity was attenuated by several caspase inhibitors. Intriguingly, liposomal C6 was non-cytotoxic to B10BR mouse melanocytes and primary human melanocytes. Molecularly, liposomal C6 activated protein phosphatase 1 (PP1 to inactivate Akt-mammalian target of rapamycin (mTOR signaling in melanoma cells. On the other hand, PP1 shRNA knockdown or exogenous expression of constitutively activate Akt1 (CA-Akt1 restored Akt-mTOR activation and significantly attenuated liposomal C6-mediated cytotoxicity and apoptosis in melanoma cells. Our results suggest that liposomal C6 activates PP1 to inhibit melanoma cells.

  20. The Organophosphate Paraoxon and Its Antidote Obidoxime Inhibit Thrombin Activity and Affect Coagulation In Vitro

    Science.gov (United States)

    Golderman, Valery; Shavit-Stein, Efrat; Tamarin, Ilia; Rosman, Yossi; Shrot, Shai; Rosenberg, Nurit

    2016-01-01

    Organophosphates (OPs) are potentially able to affect serine proteases by reacting with their active site. The potential effects of OPs on coagulation factors such as thrombin and on coagulation tests have been only partially characterized and potential interactions with OPs antidotes such as oximes and muscarinic blockers have not been addressed. In the current study, we investigated the in vitro interactions between coagulation, thrombin, the OP paraoxon, and its antidotes obidoxime and atropine. The effects of these substances on thrombin activity were measured in a fluorescent substrate and on coagulation by standard tests. Both paraoxon and obidoxime but not atropine significantly inhibited thrombin activity, and prolonged prothrombin time, thrombin time, and partial thromboplastin time. When paraoxon and obidoxime were combined, a significant synergistic effect was found on both thrombin activity and coagulation tests. In conclusion, paraoxon and obidoxime affect thrombin activity and consequently alter the function of the coagulation system. Similar interactions may be clinically relevant for coagulation pathways in the blood and possibly in the brain. PMID:27689805

  1. Caffeine inhibits erythrocyte membrane derangement by antioxidant activity and by blocking caspase 3 activation.

    Science.gov (United States)

    Tellone, Ester; Ficarra, Silvana; Russo, Annamaria; Bellocco, Ersilia; Barreca, Davide; Laganà, Giuseppina; Leuzzi, Ugo; Pirolli, Davide; De Rosa, Maria Cristina; Giardina, Bruno; Galtieri, Antonio

    2012-02-01

    The aim of this research was to investigate the effect of caffeine on band 3 (the anion exchanger protein), haemoglobin function, caspase 3 activation and glucose-6-phosphate metabolism during the oxygenation-deoxygenation cycle in human red blood cells. A particular attention has been given to the antioxidant activity by using in vitro antioxidant models. Caffeine crosses the erythrocyte membrane and interacts with the two extreme conformational states of haemoglobin (the T and the R-state within the framework of the simple two states allosteric model) with different binding affinities. By promoting the high affinity state (R-state), the caffeine-haemoglobin interaction does enhance the pentose phosphate pathway. This is of benefit for red blood cells since it leads to an increase of NADPH availability. Moreover, caffeine effect on band 3, mediated by haemoglobin, results in an extreme increase of the anion exchange, particularly in oxygenated erythrocytes. This enhances the transport of the endogenously produced CO(2) thereby avoiding the production of dangerous secondary radicals (carbonate and nitrogen dioxide) which are harmful to the cellular membrane. Furthermore caffeine destabilizes the haeme-protein interactions within the haemoglobin molecule and triggers the production of superoxide and met-haemoglobin. However this damaging effect is almost balanced by the surprising scavenger action of the alkaloid with respect to the hydroxyl radical. These experimental findings are supported by in silico docking and molecular dynamics studies and by what we may call the "caspase silence"; in fact, there is no evidence of any caspase 3 activity enhancement; this is likely due to the promotion of positive metabolic conditions which result in an increase of the cellular reducing power. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera.

    Science.gov (United States)

    Pongkorpsakol, Pawin; Pathomthongtaweechai, Nutthapoom; Srimanote, Potjanee; Soodvilai, Sunhapas; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2014-09-01

    Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84) cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl- current showed that diclofenac reversibly inhibited CFTR Cl- channel activity (IC50 ∼ 10 µM) via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na(+)-K(+) ATPases and Na(+)-K(+)-Cl- cotransporters, but inhibited cAMP-activated basolateral K(+) channels with IC50 of ∼ 3 µM. In addition, diclofenac suppressed Ca(2+)-activated Cl- channels, inwardly rectifying Cl- channels, and Ca(2+)-activated basolateral K(+) channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment) had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT)-induced Cl- secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg) reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼ 70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca(2+)-activated Cl- secretion by inhibiting both apical Cl- channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal

  3. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera.

    Directory of Open Access Journals (Sweden)

    Pawin Pongkorpsakol

    2014-09-01

    Full Text Available Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84 cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl- current showed that diclofenac reversibly inhibited CFTR Cl- channel activity (IC50 ∼ 10 µM via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na(+-K(+ ATPases and Na(+-K(+-Cl- cotransporters, but inhibited cAMP-activated basolateral K(+ channels with IC50 of ∼ 3 µM. In addition, diclofenac suppressed Ca(2+-activated Cl- channels, inwardly rectifying Cl- channels, and Ca(2+-activated basolateral K(+ channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT-induced Cl- secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼ 70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca(2+-activated Cl- secretion by inhibiting both apical Cl- channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal

  4. Piperine Inhibits the Activities of Platelet Cytosolic Phospholipase A2 and Thromboxane A2 Synthase without Affecting Cyclooxygenase-1 Activity: Different Mechanisms of Action Are Involved in the Inhibition of Platelet Aggregation and Macrophage Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Dong Ju Son

    2014-08-01

    Full Text Available PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum and long pepper (Piper longum, was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA metabolism and how this compares with the mechanism by which it inhibits macrophage inflammatory responses; METHODS: Rabbit platelets and murine macrophage RAW264.7 cells were treated with piperine, and the effect of piperine on the activity of AA-metabolizing enzymes, including cytosolic phospholipase A2 (cPLA2, COX-1, COX-2, and thromboxane A2 (TXA2 synthase, as well as its effect on AA liberation from the plasma membrane components, were assessed using isotopic labeling methods and enzyme immunoassay kit; RESULTS: Piperine significantly suppressed AA liberation by attenuating cPLA2 activity in collagen-stimulated platelets. It also significantly inhibited the activity of TXA2 synthase, but not of COX-1, in platelets. These results suggest that piperine inhibits platelet aggregation by attenuating cPLA2 and TXA2 synthase activities, rather than through the inhibition of COX-1 activity. On the other hand, piperine significantly inhibited lipopolysaccharide-induced generation of prostaglandin (PGE2 and PGD2 in RAW264.7 cells by suppressing the activity of COX-2, without effect on cPLA2; CONCLUSION: Our findings indicate that piperine inhibits platelet aggregation and macrophage inflammatory response by different mechanisms.