WorldWideScience

Sample records for tetrachloroethylene-contaminated drinking water

  1. Tetrachloroethylene contamination of drinking water by vinyl-coated asbestos-cement pipe

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, S.G.; Davis, A.C.; Witt, R.T.; Tripp, B.W.; Frew, N.M.

    1980-10-01

    Drinking water transported in vinyl-coated asbestos-cement pipes often contains elevated concentrations of tetrachloroethylene, which is used as solvent during application of the vinyl coating. Tetrachloroethylene contamination of drinking waters flowing in vinyl-coated asbestos-cement pipes in Falmouth, Mass., is assessed. Problems encountered in trying to reduce this potential health hazard are reviewed. Flushing of the pipe sometimes leads to a reduced tetrachloroethylene level in that pipe, but after flushing is terminated, the level of contamination will gradually increase. (1 diagram, 17 references, 2 tables)

  2. Exposure to Tetrachloroethylene-Contaminated Drinking Water and the Risk of Pregnancy Loss.

    Science.gov (United States)

    Aschengrau, Ann; Weinberg, Janice M; Gallagher, Lisa G; Winter, Michael R; Vieira, Veronica M; Webster, Thomas F; Ozonoff, David M

    2009-02-01

    There is little information on the impact of solvent-contaminated drinking water on pregnancy outcomes. This retrospective cohort study examined whether maternal exposure to tetrachloroethylene (PCE) - contaminated drinking water in the Cape Cod region of Massachusetts influenced the risk of clinically recognized pregnancy loss. The study identified exposed (n=959) and unexposed (1,087) women who completed a questionnaire on their residential and pregnancy histories, and confounding variables. Exposure was estimated using water distribution system modeling software. No meaningful associations were seen between PCE exposure level and the risk of clinically recognized pregnancy loss at the exposure levels experienced by the study population. Because PCE remains a common water contaminant, it is important to continue monitoring its impact on women and their pregnancies.

  3. Long-term Neurotoxic Effects of Early-life Exposure to Tetrachloroethylene-contaminated Drinking Water.

    Science.gov (United States)

    Aschengrau, Ann; Janulewicz, Patricia A; White, Roberta F; Vieira, Veronica M; Gallagher, Lisa G; Getz, Kelly D; Webster, Thomas F; Ozonoff, David M

    2016-01-01

    Tetrachloroethene (PCE) is a common environmental and occupational contaminant and an acknowledged neurotoxicant. From 1968 through 1983, widespread contamination of public drinking water supplies with PCE occurred in the Cape Cod region of Massachusetts. The source of the contamination was a vinyl liner applied to the inner surface of water distribution pipes. A retrospective cohort study (the Cape Cod Health Study) was undertaken to examine possible health consequences of early-life exposure to PCE-contaminated drinking water. This review describes the study methods and findings regarding the effects of prenatal and childhood exposure on neurologic outcomes during early adulthood, including vision, neuropsychological functioning, brain structure, risky behaviors, and mental illness. The review also describes the strengths and challenges of conducting population-based epidemiologic research in this unique setting. Participants were identified by cross-matching birth certificates and water system data. Information on health outcomes and confounding variables was collected from self-administered surveys (n = 1689), neuropsychological tests (n = 63), vision examinations (n = 63), and magnetic resonance imaging (n = 42). Early-life exposure to PCE was estimated using a leaching and transport model. The data analysis compared the occurrence of each health outcome among individuals with prenatal and early childhood PCE exposure to unexposed individuals while considering the effect of confounding variables. The study found evidence that early-life exposure to PCE-contaminated drinking water has long-term neurotoxic effects. The strongest associations were seen with illicit drug use, bipolar disorder, and post-traumatic stress disorder. Key strengths of the study were availability of historical data on affected water systems, a relatively high exposure prevalence and wide range of exposure levels, and little confounding. Challenges arose mainly from the historical

  4. Impact of tetrachloroethylene-contaminated drinking water on the risk of breast cancer: Using a dose model to assess exposure in a case-control study

    Directory of Open Access Journals (Sweden)

    Ozonoff David

    2005-02-01

    Full Text Available Abstract Background A population-based case-control study was undertaken in 1997 to investigate the association between tetrachloroethylene (PCE exposure from public drinking water and breast cancer among permanent residents of the Cape Cod region of Massachusetts. PCE, a volatile organic chemical, leached from the vinyl lining of certain water distribution pipes into drinking water from the late 1960s through the early 1980s. The measure of exposure in the original study, referred to as the relative delivered dose (RDD, was based on an amount of PCE in the tap water entering the home and estimated with a mathematical model that involved only characteristics of the distribution system. Methods In the current analysis, we constructed a personal delivered dose (PDD model that included personal information on tap water consumption and bathing habits so that inhalation, ingestion, and dermal absorption were also considered. We reanalyzed the association between PCE and breast cancer and compared the results to the original RDD analysis of subjects with complete data. Results The PDD model produced higher adjusted odds ratios than the RDD model for exposures > 50th and >75th percentile when shorter latency periods were considered, and for exposures th and >90th percentile when longer latency periods were considered. Overall, however, the results from the PDD analysis did not differ greatly from the RDD analysis. Conclusion The inputs that most heavily influenced the PDD model were initial water concentration and duration of exposure. These variables were also included in the RDD model. In this study population, personal factors like bath and shower temperature, bathing frequencies and durations, and water consumption did not differ greatly among subjects, so including this information in the model did not significantly change subjects' exposure classification.

  5. Risk of breast cancer following exposure to tetrachloroethylene-contaminated drinking water in Cape Cod, Massachusetts: reanalysis of a case-control study using a modified exposure assessment

    Directory of Open Access Journals (Sweden)

    Webster Thomas F

    2011-05-01

    Full Text Available Abstract Background Tetrachloroethylene (PCE is an important occupational chemical used in metal degreasing and drycleaning and a prevalent drinking water contaminant. Exposure often occurs with other chemicals but it occurred alone in a pattern that reduced the likelihood of confounding in a unique scenario on Cape Cod, Massachusetts. We previously found a small to moderate increased risk of breast cancer among women with the highest exposures using a simple exposure model. We have taken advantage of technical improvements in publically available software to incorporate a more sophisticated determination of water flow and direction to see if previous results were robust to more accurate exposure assessment. Methods The current analysis used PCE exposure estimates generated with the addition of water distribution modeling software (EPANET 2.0 to test model assumptions, compare exposure distributions to prior methods, and re-examine the risk of breast cancer. In addition, we applied data smoothing to examine nonlinear relationships between breast cancer and exposure. We also compared a set of measured PCE concentrations in water samples collected in 1980 to modeled estimates. Results Thirty-nine percent of individuals considered unexposed in prior epidemiological analyses were considered exposed using the current method, but mostly at low exposure levels. As a result, the exposure distribution was shifted downward resulting in a lower value for the 90th percentile, the definition of "high exposure" in prior analyses. The current analyses confirmed a modest increase in the risk of breast cancer for women with high PCE exposure levels defined by either the 90th percentile (adjusted ORs 1.0-1.5 for 0-19 year latency assumptions or smoothing analysis cut point (adjusted ORs 1.3-2.0 for 0-15 year latency assumptions. Current exposure estimates had a higher correlation with PCE concentrations in water samples (Spearman correlation coefficient = 0.65, p

  6. Drinking Water

    Science.gov (United States)

    ... the safest water supplies in the world, but drinking water quality can vary from place to place. It ... water supplier must give you annual reports on drinking water. The reports include where your water came from ...

  7. Chloramines in Drinking Water

    Science.gov (United States)

    Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers.

  8. Drinking Water Action Plan

    Science.gov (United States)

    EPA's Drinking Water Action Plan serves as a national call to action, urging all levels of government, utilities, community organizations, and other stakeholders to work together to increase the safety and reliability of drinking water.

  9. Drinking water

    OpenAIRE

    Kostik, Vesna

    2012-01-01

    Centre of reference laboratories as a part of Institute of Public Health- Skopje is consisted of following laboratories: - Laboratory of Sanitary Microbiology - Laboratory for Food Quality Control - Laboratory for Water Quality Control - Laboratory for Contaminants and Eco - toxicology - Laboratory for Testing of Metals - Laboratory for Radioecology - Laboratory for Ionizing Radiation - Laboratory for Testing common use items Lab...

  10. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  11. Nitrate in drinking water

    DEFF Research Database (Denmark)

    Schullehner, Jörg; Hansen, Birgitte; Sigsgaard, Torben

    Annual nationwide exposure maps for nitrate in drinking water in Denmark from the 1970s until today will be presented based on the findings in Schullehner & Hansen (2014) and additional work on addressing the issue of private well users and estimating missing data. Drinking water supply in Denmark...... is highly decentralized and fully relying on simple treated groundwater. At the same time, Denmark has an intensive agriculture, making groundwater resources prone to nitrate pollution. Drinking water quality data covering the entire country for over 35 years are registered in the public database Jupiter....... In order to create annual maps of drinking water quality, these data had to be linked to 2,852 water supply areas, which were for the first time digitized, collected in one dataset and connected to the Jupiter database. Analyses of the drinking water quality maps showed that public water supplies...

  12. Drinking Water and Health.

    Science.gov (United States)

    National Academy of Sciences, Washington, DC.

    In response to a provision of the Safe Drinking Water Act of 1974 which called for a study that would serve as a scientific basis for revising the primary drinking water regulations that were promulgated under the Act, a study of the scientific literature was undertaken in order to assess the implications for human health of the constituents of…

  13. Drinking water microbial myths.

    Science.gov (United States)

    Allen, Martin J; Edberg, Stephen C; Clancy, Jennifer L; Hrudey, Steve E

    2015-01-01

    Accounts of drinking water-borne disease outbreaks have always captured the interest of the public, elected and health officials, and the media. During the twentieth century, the drinking water community and public health organizations have endeavored to craft regulations and guidelines on treatment and management practices that reduce risks from drinking water, specifically human pathogens. During this period there also evolved misunderstandings as to potential health risk associated with microorganisms that may be present in drinking waters. These misunderstanding or "myths" have led to confusion among the many stakeholders. The purpose of this article is to provide a scientific- and clinically-based discussion of these "myths" and recommendations for better ensuring the microbial safety of drinking water and valid public health decisions.

  14. SDWISFED Drinking Water Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — SDWIS/FED is EPA's national regulatory compliance database for the drinking water program. It includes information on the nation's 160,000 public water systems and...

  15. Drink Water, Fight Fat?

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_165714.html Drink Water, Fight Fat? When you have it in place ... HealthDay News) -- If you choose a glass of water instead of a beer or a sugar-sweetened ...

  16. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  17. Drinking Water Treatability Database (TDB)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water Treatability Database (TDB) presents referenced information on the control of contaminants in drinking water. It allows drinking water utilities,...

  18. Asbestos in drinking water

    African Journals Online (AJOL)

    12 Feb 1983 ... In the Netherlands, in 1977, it was. 45% of the total length and in Belgium 75%.2. A comprehensive study was carried out by the Water. Research Centre in ... municipalities in Quebec4 revealed no excess cancer mortality that could possibly be related to the asbestos fibres in drinking water. A comparative ...

  19. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  20. Safe Drinking Water Information System (SDWIS) Drinking Water Well Sites

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of drinking water wells. These well locations are part of the safe drinking water information system (SDWIS)....

  1. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    CERN’s drinking water is monitored on a regular basis. A certified independent laboratory takes and analyses samples to verify that the water complies with national and European regulations for safe drinking water. Nevertheless, the system that supplies our drinking water is very old and occasionally, especially after work has been carried out on the system, the water may become cloudy or discoloured, due to traces of corrosion. For this reason, we recommend: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap and heat it. Only drink or cook with cold water. Let the cold water run until it is clear before drinking or making your tea or coffee. If you have any questions about the quality of CERN’s drinking water, please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  2. Drinking Water in your Home

    Science.gov (United States)

    Many people choose to filter or test the drinking water that comes out of their tap or from their private well for a variety of reasons. And whether at home, at work or while traveling, many Americans drink bottled water.

  3. CERN’s Drinking Water

    CERN Multimedia

    GS Department

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear. If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  4. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    2009-01-01

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed:   Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear.   If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  5. Pesticides in drinking water

    Directory of Open Access Journals (Sweden)

    Irena Grmek-Košnik

    2006-09-01

    Full Text Available Background: Use of pesticides deceives of indisputable advantage, however remainders of pesticides in drinking water might represent potential danger for health on foodstuffs. In European Union (EU pesticides and their relevant metabolic, degrading and reactive products, with exception for aldrin, dieldrin, heptaclor and heptaclor epoxide, should not exceed the concentration of 0.10 μg/l. At limit value 0.10 μg/l we wish to achieve null value these substances in drinking water.Methods: In years 2004 and 2005 monitoring of pesticides in drinking waters on pipes of consumers in all larger towns in state was done. Majority of pesticides were analysed by gas chromatography in combination with mass spectrometry while fluid cromatography was used primarily for badly volatile or polar and termolabile compound.Results: Results of analyses of drinking water and of ground waters for years 2004 and 2005 showed that levels of atrazine, desethyl-atrazine and 2.6 dichlorobenzamide were exceeded few times when compared to required levels. In 2005 bentazone, MCPP, metolachlor, terbuthylazin were exceeded. In 2004 concentration of pesticides were exceeded in 25 samples in 15 different areas, supplying 183,881 inhabitants. In 2005 concentration of pesticides were exceeded in 31 samples in 14 different areas, supplying 151,297 inhabitants. The distribution shows, that contamination was present mostly in the northeast part of Slovenia, where intensive agriculture takes place.Conclusions: Received status review acquired by monitoring of pesticides in drinking water is only an assessment of circumstances that will gain in representativity by enlarged number of sampling locations and longer observation time. For assessment of trends of pollution of drinking water in Slovenia it will be necessary to monitor concentration of pesticides through longer period. We could have unpolluted drinking water only with restricted use of pesticides on water-protection ranges or

  6. TENORM: Drinking Water Treatment Residuals

    Science.gov (United States)

    EPA has specific regulations under the Safe Drinking Water Act (SDWA) that limit the amount of radioactivity allowed in community water systems. Learn about methods used to treat these water supplies to remove radioactivity and manage wastes.

  7. Drinking Water Fact Sheet: Coliform Bacteria

    OpenAIRE

    Mesner, Nancy; Daniels, Barbara

    2010-01-01

    This fact sheet provides information about coliform bacteria. Including sections about what coliform bacteria is, how it enters drinking water, health concerns from exposure, drinking water standards, and how to treat drinking water that contains coliforms.

  8. Drinking Water and Wastewater Laboratory Networks

    Science.gov (United States)

    This website provides the drinking water sector with an integrated nationwide network of laboratories with the analytical capability to respond to intentional and unintentional drinking water incidents.

  9. Drinking Water Temperature Modelling in Domestic Systems

    OpenAIRE

    Moerman, A.; Blokker, M.; Vreeburg, J.; van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According to the Dutch Drinking Water Act the drinking water temperature may not exceed the 25 °C threshold at point-of-use level. This paper provides a mathematical approach to model the heating of drinking...

  10. Drinking Water State Revolving Fund

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for...

  11. [Drinking water quality and safety].

    Science.gov (United States)

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Basic Information about Your Drinking Water

    Science.gov (United States)

    The United States enjoys one of the world's most reliable and safest supplies of drinking water. Congress passed the Safe Drinking Water Act (SDWA) in 1974 to protect public health, including by regulating public water systems.

  13. Lead and Drinking Water from Private Wells

    Science.gov (United States)

    ... type=”submit” value=”Submit” /> Healthy Water Home Lead and Drinking Water from Private Wells Recommend on ... remove lead from my drinking water? What is lead? Lead is a naturally occurring bluish-gray metal ...

  14. Drinking Water State Revolving Fund (DWSRF)

    Science.gov (United States)

    This website provides information on financial assistance to water systems needing capitalization grants and/or technical assistance to improve the quality of drinking water and for the delivery of safe drinking water to consumers.

  15. Giardia and Drinking Water from Private Wells

    Science.gov (United States)

    ... type=”submit” value=”Submit” /> Healthy Water Home Giardia and Drinking Water from Private Wells Recommend on ... visit CDC's Giardia website. Where and how does Giardia get into drinking water? Millions of Giardia parasites ...

  16. Injured coliforms in drinking water.

    OpenAIRE

    McFeters, G A; Kippin, J S; LeChevallier, M W

    1986-01-01

    Coliforms were enumerated by using m-Endo agar LES and m-T7 agar in 102 routine samples of drinking water from three New England community water systems to investigate the occurrence and significance of injured coliforms. Samples included water collected immediately after conventional treatment, during the backwash cycle, at various points in the distribution system, and 1 week after the break and subsequent repair of a distribution main. Injured coliforms in these samples averaged greater th...

  17. 30 CFR 75.1718 - Drinking water.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such water...

  18. Small Drinking Water Systems Communication and Outreach ...

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  19. Drinking water fluoridation and bone.

    Science.gov (United States)

    Allolio, B; Lehmann, R

    1999-01-01

    Drinking water fluoridation has an established role in the prevention of dental caries, but may also positively or negatively affect bone. In bone fluoride is incorporated into hydroxylapatite to form the less soluble fluoroapatite. In higher concentrations fluoride stimulates osteoblast activity leading to an increase in cancellous bone mass. As optimal drinking water fluoridation (1 mg/l) is widely used, it is of great interest, whether long-term exposition to artificial water fluoridation has any impact on bone strength, bone mass, and -- most importantly -- fracture rate. Animal studies suggest a biphasic pattern of the effect of drinking water fluoridation on bone strength with a peak strength at a bone fluoride content of 1200 ppm followed by a decline at higher concentrations eventually leading to impaired bone quality. These changes are not paralleled by changes in bone mass suggesting that fluoride concentrations remain below the threshold level required for activation of osteoblast activity. Accordingly, in most epidemiological studies in humans bone mass was not altered by optimal drinking water fluoridation. In contrast, studies on the effect on hip fracture rate gave conflicting results ranging from an increased fracture incidence to no effect, and to a decreased fracture rate. As only ecological studies have been performed, they may be biased by unknown confounding factors -- the so-called ecological fallacy. However, the combined results of these studies indicate that any increase or decrease in fracture rate is likely to be small. It has been calculated that appropriately designed cohort studies to solve the problem require a sample size of >400,000 subjects. Such studies will not be performed in the foreseeable future. Future investigations in humans should, therefore, concentrate on the effect of long-term drinking water fluoridation on bone fluoride content and bone strength.

  20. Polyelectrolyte determination in drinking water

    African Journals Online (AJOL)

    Chemical contaminants that occur in drinking water are not usually associated with acute health effects when compared to microbial contaminants and are usually given a lower priority. Those that are of concern have cumulative toxic properties such as metals and substances that are carcinogenic. Some of these potentially ...

  1. CFD in drinking water treatment

    NARCIS (Netherlands)

    Wols, B.A.

    2010-01-01

    Hydrodynamic processes largely determine the efficacy of drinking water treatment systems, in particular disinfection systems. A lack of understanding of the hydrodynamics has resulted in suboptimal designs of these systems. The formation of unwanted disinfection-by-products and the energy

  2. Fungi contamination of drinking water.

    Science.gov (United States)

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2014-01-01

    Aquatic fungi commonly infest various aqueous environments and play potentially crucial roles in nutrient and carbon cycling. Aquatic fungi also interact with other organisms to influence food web dynamics. In recent decades, numerous studies have been conducted to address the problem of microorganism contamination of water. The major concern has been potential effects on human health from exposure to certain bacteria, viruses, and protozoa that inhabit water and the microbial metabolites,pigments, and odors which are produced in the water, and their effects on human health and animals. Fungi are potentially important contaminants because they produce certain toxic metabolites that can cause severe health hazards to humans and animals. Despite the potential hazard posed by fungi, relatively few studies on them as contaminants have been reported for some countries.A wide variety of fungi species have been isolated from drinking water, and some of them are known to be strongly allergenic and to cause skin irritation, or immunosuppression in immunocompromised individuals (e.g., AIDS, cancer, or organ transplant patients). Mycotoxins are naturally produced as secondary metabolites by some fungi species, and exposure of humans or animals to them can cause health problems. Such exposure is likely to occur from dietary intake of either food,water or beverages made with water. However, mycotoxins, as residues in water,may be aerosolized when showering or when being sprayed for various purposes and then be subject to inhalation. Mycotoxins, or at least some of them, are regarded to be carcinogenic. There is also some concern that toxic mycotoxins or other secondary metabolites of fungi could be used by terrorists as a biochemical weapon by adding amounts of them to drinking water or non drinking water. Therefore, actions to prevent mycotoxin contaminated water from affecting either humans or animals are important and are needed. Water treatment plants may serve to partially

  3. Drinking water safely during cancer treatment

    Science.gov (United States)

    ... from. This includes water for drinking, cooking, and brushing your teeth. Ask your health care provider about special care ... drink it or use it for cooking or brushing your teeth. Running well water through a filter or adding ...

  4. Drinking Water Contaminants -- Standards and Regulations

    Science.gov (United States)

    ... water standards Community water system survey CCR annual water quality reports of water systems Drinking water distribution systems ... Waste, and Cleanup Lead Mold Pesticides Radon Science Water A-Z Index Laws & Regulations By Business Sector By Topic Compliance ...

  5. Decontamination of Drinking Water Infrastructure ...

    Science.gov (United States)

    Technical Brief This study examines the effectiveness of decontaminating corroded iron and cement-mortar coupons that have been contaminated with spores of Bacillus atrophaeus subsp. globigii (B. globigii), which is often used as a surrogate for pathogenic B. anthracis (anthrax) in disinfection studies. Bacillus spores are persistent on common drinking water material surfaces like corroded iron, requiring physical or chemical methods to decontaminate the infrastructure. In the United States, free chlorine and monochloramine are the primary chemical disinfectants used by the drinking water industry to inactivate microorganisms. Flushing is also a common, easily implemented practice in drinking water distribution systems, although large volumes of contaminated water needing treatment could be generated. Identifying readily available alternative disinfectant formulations for infrastructure decontamination could give water utilities options for responding to specific types of contamination events. In addition to presenting data on flushing alone, which demonstrated the persistence of spores on water infrastructure in the absence of high levels of disinfectants, data on acidified nitrite, chlorine dioxide, free chlorine, monochloramine, ozone, peracetic acid, and followed by flushing are provided.

  6. LCA of Drinking Water Supply

    DEFF Research Database (Denmark)

    Godskesen, Berit; Meron, Noa; Rygaard, Martin

    2017-01-01

    the potentials and reveal hotspots among the possible technologies and scenarios for water supplies of the future. LCA studies have been used to support decisions in the planning of urban water systems and some important findings include documentation of reduced environmental impact from desalination of brackish......Water supplies around the globe are growing complex and include more intense treatment methods than just decades ago. Now, desalination of seawater and wastewater reuse for both non-potable and potable water supply have become common practice in many places. LCA has been used to assess...... water over sea water, the significant impacts from changed drinking water quality and reduced environmental burden from wastewater reuse instead of desalination. Some of the main challenges in conducting LCAs of water supply systems are their complexity and diversity, requiring very large data...

  7. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Safe Drinking Water

    Centers for Disease Control (CDC) Podcasts

    2008-04-23

    Listen to this podcast to learn more about the steps that are taken to bring you clean tap water.  Created: 4/23/2008 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 5/1/2008.

  9. Drinking Water Maximum Contaminant Levels (MCLs)

    Data.gov (United States)

    U.S. Environmental Protection Agency — National Primary Drinking Water Regulations (NPDWRs or primary standards) are legally enforceable standards that apply to public water systems. Primary standards...

  10. Drinking Water Temperature Modelling in Domestic Systems

    NARCIS (Netherlands)

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  11. DRINKING WATER RESOURCES IN CROATIA

    Directory of Open Access Journals (Sweden)

    Darko Mayer

    1996-12-01

    Full Text Available Annualy renewed resources of drinking water on the Earth are about 45000 cu. km. With today's stage of development that quantity is enough for living 4.5 to 9 billion of people. As it is expected that by 2025 the population on our planet will be over 8.5 billion people, it is clear that the next century will be characterized by the problem of ensuring enaugh quantities of drinking water. This problem will be particularly emphasized in the developing countries and large cities. In the poor countries of arid and subarid areas water deficit will cause the food production crisis and large migrations of the population with almost unpredistable sociological, economical and political consequences could be expected. In the developed world the "water crisis" will stimulate scientific and tehnological progress. The Republic of Croatia, if examined as a whole, regarding the climatic, hydrological, hydrogeological and demographic conditions, has planty of good quality water. It is our duty to preserve this resources for future generations (the paper is published in Croatian.

  12. MINI PILOT PLANT FOR DRINKING WATER RESEARCH

    Science.gov (United States)

    The Water Supply & Water Resources Division (WSWRD) has constructed 2 mini-pilot plant systems used to conduct drinking water research. These two systems each have 2 parallel trains for comparative research. The mini-pilot plants are small conventional drinking water treatment ...

  13. Pharmaceutical compounds in drinking water

    Directory of Open Access Journals (Sweden)

    Vikas Chander

    2016-06-01

    Full Text Available Pharmaceutical products and their wastes play a major role in the degradation of environment. These drugs have positive as well as negative consequences on different environmental components including biota in different ways. Many types of pharmaceutical substances have been detected with significant concentrations through various advanced instrumental techniques in surface water, subsurface water, ground water, domestic waste water, municipal waste water and industrial effluents. The central as well as state governments in India are providing supports by creating excise duty free zones to promote the pharmaceutical manufacturers for their production. As a result, pharmaceutical companies are producing different types of pharmaceutical products at large scale and also producing complex non-biodegradable toxic wastes byproducts and releasing untreated or partially treated wastes in the environment in absence of strong regulations. These waste pollutants are contaminating all types of drinking water sources. The present paper focuses on water quality pollution by pharmaceutical pollutants, their occurrences, nature, metabolites and their fate in the environment.

  14. Asbestos in drinking water: a Canadian view.

    OpenAIRE

    Toft, P; Meek, M E

    1983-01-01

    For several years now, public health professionals have been faced with evaluating the potential hazards associated with the ingestion of asbestos in food and drinking water. In Canada, this is a subject of particular concern, because of the widespread occurrence of chrysotile asbestos in drinking water supplies. The results of available Canadian monitoring and epidemiologic studies of asbestos in drinking water are reviewed and discussed in light of other published work. It is concluded that...

  15. Lead in Drinking Water in Schools and Childcare Facilities

    Science.gov (United States)

    ... States and Public Water Systems Contact Us Share Lead in Drinking Water in Schools and Childcare Facilities ... about lead in drinking water . 3Ts for Reducing Lead in Drinking Water 3Ts Toolkit View the 3Ts ...

  16. Limited school drinking water access for youth

    Science.gov (United States)

    Kenney, Erica L.; Gortmaker, Steven L.; Cohen, Juliana F.W.; Rimm, Eric B.; Cradock, Angie L.

    2016-01-01

    PURPOSE Providing children and youth with safe, adequate drinking water access during school is essential for health. This study utilized objectively measured data to investigate the extent to which schools provide drinking water access that meets state and federal policies. METHODS We visited 59 middle and high schools in Massachusetts during spring 2012. Trained research assistants documented the type, location, and working condition of all water access points throughout each school building using a standard protocol. School food service directors (FSDs) completed surveys reporting water access in cafeterias. We evaluated school compliance with state plumbing codes and federal regulations and compared FSD self-reports of water access with direct observation; data were analyzed in 2014. RESULTS On average, each school had 1.5 (SD: 0.6) water sources per 75 students; 82% (SD: 20) were functioning, and fewer (70%) were both clean and functioning. Less than half of the schools met the federal Healthy Hunger Free Kids Act requirement for free water access during lunch; 18 schools (31%) provided bottled water for purchase but no free water. Slightly over half (59%) met the Massachusetts state plumbing code. FSDs overestimated free drinking water access compared to direct observation (96% FSD-reported versus 48% observed, kappa=0.07, p=0.17). CONCLUSIONS School drinking water access may be limited. In this study, many schools did not meet state or federal policies for minimum student drinking water access. School administrative staff may not accurately report water access. Public health action is needed to increase school drinking water access. IMPLICATIONS AND CONTRIBUTIONS Adolescents’ water consumption is lower than recommended. In a sample of Massachusetts middle and high schools, about half did not meet federal and state minimum drinking water access policies. Direct observation may improve assessments of drinking water access and could be integrated into routine

  17. Asbestos in drinking water: a Canadian view

    Energy Technology Data Exchange (ETDEWEB)

    Toft, P.; Meek, M.E.

    1983-11-01

    Because of the widespread occurrence of chrysotile asbestos in drinking water supplies in Canada, public health professionals have been faced with evaluating the potential hazards associated with the ingestion of asbestos in food and drinking water. The results of available Canadian monitoring and epidemiologic studies of asbestos in drinking water are reviewed and discussed in light of other published work. The Canadian studies provide no consistent, convincing evidence of increased cancer risks attributable to the ingestion of drinking water contaminated by asbestos, even though the observed asbestos concentrations were relatively high in several communities. Only one study, conducted in the San Francisco Bay Area, has shown evidence of increased cancer incidence associated with the ingestion of asbestos in drinking water. 6 references.

  18. Learn About Laboratory Certification for Drinking Water

    Science.gov (United States)

    EPA’s Office of Water Technical Support Center implements the Drinking Water Laboratory Certification Program in partnership with EPA Regions, EPA’s Office of Research and Development, and States.

  19. Optimization Program for Drinking Water Systems

    Science.gov (United States)

    The Area-Wide Optimization Program (AWOP) provides tools and approaches for drinking water systems to meet water quality optimization goals and provide an increased – and sustainable – level of public health protection to their consumers.

  20. Drinking Water Cyanotoxin Risk Communication Toolbox

    Science.gov (United States)

    The drinking water cyanotoxin risk communication toolbox is a ready-to-use, “one-stop-shop” to support public water systems, states, and local governments in developing, as they deem appropriate, their own risk communication materials.

  1. Investigation of drinking water quality in Kosovo.

    Science.gov (United States)

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.

  2. Sustaining Waters: From Hydrology to Drinking Water

    Science.gov (United States)

    Toch, S.

    2003-04-01

    Around the world, disastrous effects of floods and droughts are painful evidence of our continuing struggle between human resource demands and the sustainability of our hydrologic systems. Too much or too little rainfall is often deemed the culprit in these water crises, focussing on water "lacks and needs" instead of exploring the mechanisms of the hydrologic functions and processes that sustain us. Applicable to regions around the world, this unified approach is about our human and environmental qualities with user friendly concepts and how-to guides backed up by real life experiences. From the poorest parts of Africa to Urban France to the wealthest state in the USA, examples from surface to groundwater to marine environments demonstrate how the links between vulerable natural areas, and the basins that they support are integral to the availability, adequacy and accessibility of our drinking water. Watershed management can be an effective means for crisis intervention and pollution control. This project is geared as a reference for groups, individuals and agencies concerned with watershed management, a supplement for interdisciplinary high school through university curriculam, for professional development in technical and field assistance, and for community awareness in the trade-offs and consequences of resource decisions that affect hydrologic systems. This community-based project demonstrates how our human resource demands can be managed within ecological constraints. An inter-disciplinary process is developed that specifically assesses risk to human health from resource use practices, and explores the similarities and interations between our human needs and those of the ecosystems in which we all must live together. Disastrous conditions worldwide have triggered reactions in crisis relief rather than crisis prevention. Through a unified management approach to the preservation of water quality, the flows of water that connect all water users can serve as a

  3. Where this occurs: Ground Water and Drinking Water

    Science.gov (United States)

    As ground water works its way through the soil, it can pick up excess nutrients and transport them to the water table. When polluted groundwater reaches drinking water systems it can pose serious public health threats.

  4. 30 CFR 71.602 - Drinking water; distribution.

    Science.gov (United States)

    2010-07-01

    ... resistant materials. The containers shall be marked with the words “Drinking Water.” ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary...

  5. Drinking Water Earthquake Resilience Paper Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data for the 9 figures contained in the paper, A SOFTWARE FRAMEWORK FOR ASSESSING THE RESILIENCE OF DRINKING WATER SYSTEMS TO DISASTERS WITH AN EXAMPLE EARTHQUAKE...

  6. Drinking Water: Health Hazards Still Not Resolved

    Science.gov (United States)

    Wade, Nicholas

    1977-01-01

    Despite the suggested link between cancer deaths and drinking obtained from the Mississippi River, New Orleans still treats its water supply in the same manner as before the Environmental Defense Fund's epidemiological study. (BT)

  7. Chlorinated drinking water for lightweight laying hens

    National Research Council Canada - National Science Library

    Schneider, A.F; Almeida, D.S; Moraes, A.N; Picinin, L.C.A; Oliveira, V; Gewehr, C.E

    2016-01-01

    ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia...

  8. Drinking Water Mapping Application (DWMA) - Public Version

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water Mapping Application (DWMA) is a web-based geographic information system (GIS) that enhances the capabilities to identify major contaminant risks...

  9. EPA Approves Okla. Drinking Water Rule

    Science.gov (United States)

    DALLAS - (Dec. 22, 2015) The U.S. Environmental Protection Agency (EPA) has approved the state of Oklahoma's revised rule for regulating total coliform in drinking water. With this approval, the Oklahoma Department of Environmental Quality (ODEQ) ha

  10. Removal of arsenic from drinking water

    OpenAIRE

    Simonič, Marjana

    2015-01-01

    The drinking water well in Slovenska Bistrica, Slovenia, contains arsenic in concentration around 50 ?$/mu$?g/L. Therefore it is necessary to implement a technological treatment to make the water suitable for drinking. In order to do so the following technologies were suggested: activated alumina, green sand, granular ferric hydroxide and special goethite media. They were all carried out on a laboratory scale. We managed to remove arsenic below 1 ?$/mu$?g/L. Arsenic is usually found as an ani...

  11. Lithium in Drinking Water and Thyroid Function

    OpenAIRE

    Broberg Palmgren, Karin; Concha, Gabriela; Engström, Karin; Lindvall, Magnus; Grander, Margareta; Vahter, Marie

    2011-01-01

    BACKGROUND: High concentrations of lithium in drinking water were previously discovered in the Argentinean Andes Mountains. Lithium is used worldwide for treatment of bipolar disorder and treatment-resistant depression. One known side effect is altered thyroid function. OBJECTIVES: We assessed associations between exposure to lithium from drinking water and other environmental sources and thyroid function. METHODS: Women (n = 202) were recruited in four Andean villages in northern Argentina. ...

  12. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  13. Development and validation of a drinking water temperature model in domestic drinking water supply systems

    NARCIS (Netherlands)

    Zlatanovic, Ljiljana; Moerman, Andreas; Hoek, van der Jan Peter; Vreeburg, Jan; Blokker, Mirjam

    2017-01-01

    Domestic drinking water supply systems (DDWSs) are the final step in the delivery of drinking water to consumers. Temperature is one of the rate-controlling parameters for many chemical and microbiological processes and is, therefore, considered as a surrogate parameter for water quality

  14. [Radioactivity in Harz area drinking water after Chernobyl].

    Science.gov (United States)

    Hennighausen, R H

    1999-11-01

    After the reactor accident in Chernobyl on April 26th, 1986 drinking water pollution was in Lower Saxony a problem in the Harz mountains. With the rainout of the radioactive clouds radioactivity came into the water-barrages, brooks und pools for drinking water supply. Good drinking water management supervised by the district community physician limited radioactive nuclides in drinking water. Drinking water path was approximately only 5% of the exposure to radioactive nuclides in the Harz region due to Chernobyl in 1986.

  15. Drinking water quality monitoring using trend analysis.

    Science.gov (United States)

    Tomperi, Jani; Juuso, Esko; Eteläniemi, Mira; Leiviskä, Kauko

    2014-06-01

    One of the common quality parameters for drinking water is residual aluminium. High doses of residual aluminium in drinking water or water used in the food industry have been proved to be at least a minor health risk or even to increase the risk of more serious health effects, and cause economic losses to the water treatment plant. In this study, the trend index is developed from scaled measurement data to detect a warning of changes in residual aluminium level in drinking water. The scaling is based on monotonously increasing, non-linear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. The severity of the situations is evaluated by deviation indices. The trend episodes and the deviation indices provide good tools for detecting changes in water quality and for process control.

  16. REMOVAL OF RADIUM FROM DRINKING WATER

    Science.gov (United States)

    This report summarizes processes for removal of radium from drinking water. Ion exchange, including strong acid and weak acid resin, is discussed. Both processes remove better than 95 percent of the radium from the water. Weak acid ion exchange does not add sodium to the water...

  17. 75 FR 48329 - Tribal Drinking Water Operator Certification Program

    Science.gov (United States)

    2010-08-10

    ... AGENCY Tribal Drinking Water Operator Certification Program AGENCY: Environmental Protection Agency (EPA... Drinking Water Infrastructure Grant Tribal Set-Aside (DWIG TSA) program. The Federal drinking water regulations require some system operators to be ``qualified.'' Participation in EPA's Tribal Drinking Water...

  18. Quality assessment of drinking water in Temeke District (part II ...

    African Journals Online (AJOL)

    ... parameters of drinking water samples from different drinking water sources. The drinking water sources examined included tap water, river water and well water (deep and shallow wells). Water quality studied includes pH, chloride, nitrate and total hardness levels. The concentrations of total hardness in mg CaCO3/L and ...

  19. Emergency Disinfection of Drinking Water

    Science.gov (United States)

    How to boil and disinfect water to kill most disease-causing microorganisms during emergency situations where regular water service has been interrupted and local authorities recommend using only bottled water, boiled water, or disinfected water.

  20. Managing the microbiological risks of drinking water.

    Science.gov (United States)

    Krewski, Daniel; Balbus, John; Butler-Jones, David; Haas, Charles; Isaac-Renton, Judith; Roberts, Kenneth; Sinclair, Martha

    The microbiological contamination of drinking water supplies can have serious health consequences for consumers, and this has been dramatically illustrated in recent years by two disease outbreaks in Canada. In this paper, some factors that can influence the microbiological quality of drinking water and its management are examined. Frameworks have been proposed that help to clarify the main elements of health risk assessment and risk management, and, in accordance with these, risks can be logically characterized, evaluated and controlled. A protocol has been developed for microbiological risk assessment and a risk management framework now guides the development of Canada's national guidelines for drinking-water quality. Monitoring of indicator organisms and the application of adequate water treatment are the primary means recommended in the Canadian guidelines to safeguard health from the presence of water-borne pathogens. Understanding the biological characteristics of microbial pathogens is necessary for assessing their impact on community health and appraising the rationale behind drinking-water testing methods and their limitations. Improvements in health surveillance, monitoring, and risk characterization and application of concepts such as multiple barriers (source-to-tap) and total quality management should contribute to better management of the microbiological quality of drinking water.

  1. Safe Drinking Water Information System (SDWIS) Surface Water Intakes

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of surface water intakes. These intake locations are part of the safe drinking water information system...

  2. AFM Structural Characterization of Drinking Water Biofilm ...

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  3. Drinking water in Cuba and seawater desalination

    Energy Technology Data Exchange (ETDEWEB)

    Meneses-Ruiz, E. [CUBAENERGIA, Playa, Havana (Cuba)]. E-mail: emeneses@cien.energia.inf.cu; Turtos-Carbonell, L.M.; Oviedo-Rivero, I. [CUBAENERGIA, Playa, Havana (Cuba)

    2004-07-01

    The lack of drinking water has become a problem at world level because, in many places, supplies are very limited and, in other places, their reserves have been drained. At the present time there are estimated to be around two thousand million people that don't have drinking water for several reasons, such as drought, contamination and the presence of saline waters not suitable for human consumption. Because of the human need for water, they have always taken residence in areas where the supply was guaranteed, sometimes impeding the exploitation of other areas that can be economically very interesting. However, this resource is usually very close and in abundance in the form of seawater but its salinity makes it unusable for many basic requirements. Humanity has been forced, therefore, to take into consideration the possibilities of the economic treatment of seawater. Cuba has regions where the supplies of drinking water are scarce and others where the lack of this resource limits economic exploitation. The present work is approached with regard to the situation of hydro resources in Cuba, it includes: a description of the main hydrographic basins of the country; the contamination levels of the waters and the measures for mitigation; analysis of the supplies and demand for drinking water and its quality; regulatory aspects. The state of seawater desalination in Cuba is also included and the possibility of its realisation using nuclear energy and the advantages that this would bring is evaluated. (author)

  4. 30 CFR 71.601 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  5. Lead (Pb) in Drinking Water

    LENUS (Irish Health Repository)

    2008-10-01

    Inadequate hydration has been linked to many factors that may impact on children\\'s education and health. Teachers play an important role in the education and behaviour of children. Previous research has demonstrated low water intake amongst children and negative teachers\\' attitudes to water in the classroom. The present study aimed to explore teachers\\' knowledge about water and the perceived barriers to allowing children access to water during lesson time.

  6. A sub-tank water-saving drinking water station

    Science.gov (United States)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  7. Climate change influence on drinking water quality

    Science.gov (United States)

    Kovacs, Melinda Haydee; Ristoiu, Dumitru; Voica, Cezara; Moldovan, Zaharie

    2013-11-01

    Although it are quite well known the possible effects of climate changes on surface waters availability and their hydrological risks, their consequences on drinking water quality is not well defined yet. Disinfection agents (as Cl2, O3, etc.) or multiple combinations of them for water treatment and disinfection purposes are applied by water treatment plants at worldwide level. Unfortunately, besides the benefits of these processes were also highlighted some undesirable effects such as formation of several disinfection by-products (DBPs) after reaction of disinfection agent with natural organic matter (NOM) from water body. DBPs formation in drinking water, suspected to posses adverse health effects to humans are strongly regulated in our days. Thus, throughout this study kinetics experiments both the main physicochemical factors that influencing the quality of drinking waters were evaluated as well how they act through possible warming or the consequences of extreme events. Increasing water temperatures with 1 - 5 °C above its normal value has showed that NOMs are presented in higher amount which led to the need for greater amount of disinfectant agent (5 - 15 %). Increasing the amount of disinfecting agent resulted in the formation of DBPs in significantly higher concentrations (between 5 - 30 %).

  8. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  9. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    Science.gov (United States)

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121

  10. Microfiltration and Ultrafiltration Membranes for Drinking Water

    Science.gov (United States)

    This article provides a concise and abbreviated summary of AWWA Manual of Practice M53, Microfiltration and Ultrafiltration Membranes for Drinking Water, to serve as a quick point of reference. For convenience, the article’s organization matches that of M53, as follows: • wate...

  11. Drinking Water. The Food Guide Pyramid.

    Science.gov (United States)

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of drinking water. Colorful photographs support early readers in understanding the text. The repetition of words and phrases helps early readers learn new words. The book…

  12. Photosensitizing compounds in extracts of drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S.S.; Taylor, F.B.

    1966-10-14

    By means of a photodynamic bioassay, with Paramecium caudatum, photosensitizing compounds have been demonstrated in extracts of finished drinking water in the US. These findings are of interest in view of a demonstrated association between photodynamic toxicity and carcinogenicity. Neither the origin nor the identity of these compounds has been determined. 10 references, 1 figure, 3 tables.

  13. Asbestos in drinking water: a status report.

    OpenAIRE

    Cotruvo, J A

    1983-01-01

    The conference is briefly reviewed in the light of its impact on future regulatory decisions regarding the possible control of asbestos fiber in drinking water. The results of animal feeding studies indicate that asbestos fails to demonstrate toxicity in whole-animal lifetime exposures. The epidemiologic evidence of risk from ingestion of water containing asbestos fibers is not convincing, and in view of the lack of confirmation by animal studies, the existence of a risk has not been proven; ...

  14. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  15. Drinking Water Quality Status and Contamination in Pakistan

    OpenAIRE

    Daud, M. K.; Muhammad Nafees; Shafaqat Ali; Muhammad Rizwan; Raees Ahmad Bajwa; Muhammad Bilal Shakoor; Muhammad Umair Arshad; Shahzad Ali Shahid Chatha; Farah Deeba; Waheed Murad; Ijaz Malook; Shui Jin Zhu

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remai...

  16. Asbestos and drinking water in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Toft, P.; Wigle, D.; Meranger, J.C.; Mao, Y.

    1981-04-01

    Samples of raw, treated and distributed tap water were collected from 71 municipalities across Canada and analyzed for asbestos content by transmission electron microscopy. Chrysotile asbestos was identified as the major asbestos type present in drinking water with some 5% of public water supplies containing asbestos at concentrations greater than 10 million fibres per litre. Improvement factors of up to 300 were observed for the removal of chrysotile fibres from drinking water during treatment, indicating that coagulation/filtration treatment is efficient for this purpose. In certain cases there is evidence to suggest that erosion of asbestos from pipe material is taking place. Age-standardized mortality rates for gastro-intestinal cancers were calculated for each city for the period of 1966 to 1976. Rates for the 2 localities with the highest (congruent to 10(8)/L) concentrations of asbestos fibres in treated drinking water were compared with the weighted average of the rates for the 52 localities with asbestos concentrations not significantly greater than zero. Eleven localities had intermediate concentrations of asbestos and six were too small for meaningful statistical analysis. Relatively high mortality rates were apparent amongst males in city 1 for cancer of the large intestine except rectum, and in both sexes in city 1 and males in city 2 for stomach cancer. It is felt that these findings are probably related to occupational exposure to asbestos. Further statistical analyses are required, however, before the significance of these observations can be fully assessed.

  17. GLYPHOSATE REMOVAL FROM DRINKING WATER

    Science.gov (United States)

    Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...

  18. Health assessment of toluene in California drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Reed, N.; Reed, W.; Beltran, L.; Li, R.; Encomienda, I.

    1989-03-08

    This report reviews existing literature pertinent to the health risk posed by the use of toluene-contaminated drinking water. Also included in the study is an estimate of the toluene exposure of California residents based on the most recent data on toluene concentrations in California drinking water supplies. The concentration of toluene in drinking water that may cause adverse health effects is delineated.

  19. A drinking water quality framework for South Africa | Hodgson ...

    African Journals Online (AJOL)

    In recognition of the importance of safe drinking water to public health, DWAF initiated a project to draft a Drinking Water Quality Framework for South Africa to enable effective management of drinking water quality and the protection of public health. The Framework is based on a preventative risk management approach, ...

  20. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows: (1...

  1. Geographical mapping of fluoride levels in drinking water sources in ...

    African Journals Online (AJOL)

    Background: Knowledge of fluoride levels in drinking water is of importance in dental public health, yet this information is lacking, at national level, in Nigeria. Objective: To map out fluoride levels in drinking water sources in Nigeria. Materials and Methods: Fluoride levels in drinking water sources from 109 randomly ...

  2. Parasites Associated with Sachet Drinking Water (Pure Water) in ...

    African Journals Online (AJOL)

    popularly called “Pure Water” in Nigeria), in Awka, capital of Anambra State, southeast Nigeria was conducted. This was in order to determine the safety and suitability of such water for human consumption. Sachet water is a major source of drinking ...

  3. Drinking Water Consequences Tools. A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-12

    In support of the goals of Department of Homeland Security’s (DHS) National Protection and Programs Directorate and the Federal Emergency Management Agency, the DHS Office of Science and Technology is seeking to develop and/or modify consequence assessment tools to enable drinking water systems owner/operators to estimate the societal and economic consequences of drinking water disruption due to the threats and hazards. This work will expand the breadth of consequence estimation methods and tools using the best-available data describing water distribution infrastructure, owner/assetlevel economic losses, regional-scale economic activity, and health. In addition, this project will deploy the consequence methodology and capability within a Web-based platform. This report is intended to support DHS effort providing a review literature review of existing assessment tools of water and wastewater systems consequences to disruptions. The review includes tools that assess water systems resilience, vulnerability, and risk. This will help to understand gaps and limitations of these tools in order to plan for the development of the next-generation consequences tool for water and waste water systems disruption.

  4. Water drinking as a treatment for orthostatic syndromes

    Science.gov (United States)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  5. Microbial quality of drinking water from groundtanks and tankers at ...

    African Journals Online (AJOL)

    Groundtank households had better quality drinking water than households using storage containers filled from communal tankers. Uncovered storage containers had the poorest microbial water quality among all storage containers. All stored water did not meet drinking water standards, although mains water did.

  6. 75 FR 54871 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-09-09

    ... AGENCY National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting... Water Utilities (CRWU) Working Group of the National Drinking Water Advisory Council (NDWAC). The.... Environmental Protection Agency, Office of Ground Water and Drinking Water, Water Security Division (Mail Code...

  7. Protecting Drinking Water Sources: A Sub-Basin View

    OpenAIRE

    Shashi Kolavalli; Raju, K.V.

    2003-01-01

    Ensuring universal access to safe drinking water is one of the more difficult development challenges for India as conflicting demands from various sectors commonly exceed water availability in many regions. Although nearly all the habitations have been provided with "safe" sources, access is limited, as drinking water sources under pressure from other demands are inadequate. Depletion of groundwater aquifers and water pollution threaten continued availability of drinking water. The prevailing...

  8. Safe drinking water and waterborne outbreaks.

    Science.gov (United States)

    Moreira, N A; Bondelind, M

    2017-02-01

    The present work compiles a review on drinking waterborne outbreaks, with the perspective of production and distribution of microbiologically safe water, during 2000-2014. The outbreaks are categorised in raw water contamination, treatment deficiencies and distribution network failure. The main causes for contamination were: for groundwater, intrusion of animal faeces or wastewater due to heavy rain; in surface water, discharge of wastewater into the water source and increased turbidity and colour; at treatment plants, malfunctioning of the disinfection equipment; and for distribution systems, cross-connections, pipe breaks and wastewater intrusion into the network. Pathogens causing the largest number of affected consumers were Cryptosporidium, norovirus, Giardia, Campylobacter, and rotavirus. The largest number of different pathogens was found for the treatment works and the distribution network. The largest number of affected consumers with gastrointestinal illness was for contamination events from a surface water source, while the largest number of individual events occurred for the distribution network.

  9. Drinking Water Quality Status and Contamination in Pakistan

    Directory of Open Access Journals (Sweden)

    M. K. Daud

    2017-01-01

    Full Text Available Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan.

  10. Drinking Water Quality Status and Contamination in Pakistan.

    Science.gov (United States)

    Daud, M K; Nafees, Muhammad; Ali, Shafaqat; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz; Zhu, Shui Jin

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan.

  11. Drinking Water Quality Status and Contamination in Pakistan

    Science.gov (United States)

    Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130

  12. Perfluorinated surfactants in surface and drinking waters.

    Science.gov (United States)

    Skutlarek, Dirk; Exner, Martin; Färber, Harald

    2006-09-01

    In this paper recent results are provided of an investigation on the discovery of 12 perfluorinated surfactants (PS) in different surface and drinking waters (Skutlarek et al. 2006 a, Skutlarek et al. 2006 b). In the last years, many studies have reported ubiquitous distribution of this group of perfluorinated chemicals, especially perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in the environment, particularly in wildlife animal and human samples (Giesy and Kannan 2001, Houde et al. 2006, Prevedouros et al. 2006). Perfluorinated surfactants (e.g. PFOS and PFOA) have shown different potentials for reproductory interference and carcinogenity in animal experiments as well as partly long half-lives in humans (Guruge et al. 2006, FSA UK 2006a, FSA UK 2006b, 3M 2005, OECD 2002, Yao and Zhong 2005). They possess compound-dependent extreme recalcitrance against microbiological and chemical degradation and, in addition, they show variable potentials for bioaccumulation in animals and humans (Houde et al. 2006). Surface and drinking water samples were collected from different sampling sites: Surface waters: samples taken from the rivers Rhine, Ruhr, Moehne and some of their tributaries. Further samples were taken from the Rhine-Herne-Canal and the Wesel-Datteln-Canal. Drinking waters: samples taken in public buildings of the Rhine-Ruhr area. After sample clean-up and concentration by solid-phase extraction, the perfluorinated surfactants were determined using HPLC-MS/MS. All measured concentrations (sum of seven mainly detected components) in the Rhine river and its main tributaries (mouths) were determined below 100 ng/L. The Ruhr river (tributary of the Rhine) showed the highest concentration (94 ng/L), but with a completely different pattern of components (PFOA as major component), as compared with the other tributaries and the Rhine river. Further investigations along the Ruhr river showed remarkably high concentrations of PS in the upper reaches of

  13. Kashin-Beck disease and drinking water in Central Tibet

    OpenAIRE

    La Grange, M.; Mathieu, F.; Begaux, F.; Suetens, C.; Durand, M.-Cl.

    2001-01-01

    A cross-sectional survey was carried out in order to study the relationship between Kashin-Beck disease and drinking water. The average volume of the water containers was larger in families unaffected by the disease. Organic material was measured by ultraviolet (UV) spectroscopy. The UV absorbency was significantly lower in drinking water of unaffected families. Thus, the organic material in drinking water may play a role in the pathogenesis of Kashin-Beck disease.

  14. Arsenic removal in drinking water by reverse osmosis

    OpenAIRE

    Ahmad, Md. Fayej

    2012-01-01

    Arsenic is widely distributed in nature in the air, water and soil. Acute and chronic arsenic exposure by drinking water has been reported in many countries, especially Argentina, Bangladesh, India, Mexico, Mongolia, Thailand and Taiwan. There are many techniques used to remove arsenic from drinking water. Among them reverse osmosis is widely used. Therefore the purpose of this study is to find the conditions favorable for removal of arsenic from drinking water by using reverse osmosis ...

  15. Benefits of Safer Drinking Water: The Value of Nitrate Reduction

    OpenAIRE

    Crutchfield, Stephen R.; Cooper, Joseph C.; Hellerstein, Daniel

    1997-01-01

    Nitrates in drinking water, which may come from nitrogen fertilizers applied to crops, are a potential health risk. This report evaluates the potential benefits of reducing human exposure to nitrates in the drinking water supply. In a survey, respondents were asked a series of questions about their willingness to pay for a hypothetical water filter, which would reduce their risk of nitrate exposure. If nitrates in the respondent's drinking water were to exceed the EPA minimum safety standard,...

  16. US drinking water: fluoridation knowledge level of water plant operators.

    Science.gov (United States)

    Lalumandier, J A; Hernandez, L C; Locci, A B; Reeves, T G

    2001-01-01

    We determined the knowledge level of water plant operators who fluoridate drinking water, and we compared small and large water plants. A pretested survey was sent to 2,381 water plant operators in 12 states that adjust the fluoride concentration of drinking water. A z-test for proportion was used to test for statistical difference between small and large plants at alpha = 0.05. Small water plants were those treating less than 1 million gallons of water daily. Eight hundred small and 480 large water plant operators responded, resulting in a response rate of 54 percent. Two-thirds of water plant operators correctly identified the optimal fluoride level, but more than 20 percent used a poor source for choosing the optimal level. Only one-fourth of operators were able to maintain the fluoride concentration to within 0.1 mg/L of the optimal concentration. A significantly greater proportion of operators at large water plants than at small water plants reported that they were able to maintain a fluoride concentration to within 0.1 mg/L of the optimal concentration (33.5% vs 21.3%, z = 4.74, P fluoride level, small water plant operators were less likely to use accurate reasoning for choosing that level and in maintaining fluoride concentrations within 0.1 mg/L of that level than large water plant operators.

  17. Ammonia pollution characteristics of centralized drinking water sources in China.

    Science.gov (United States)

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  18. Biological stability of drinking water : Controlling factors, methods, and challenges

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Hammes, F.; Van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and

  19. Sunshine and saris equals safe drinking water | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    9 juin 2016 ... Researchers from Canada and India funded by IDRC have found that filtering water through sari-cloth before purifying it in the sun's heat makes polluted water safe to drink. Polluted water is often the only source of drinking water for many low-income households in India. To kill the germs, people pour ...

  20. Sunshine and saris equals safe drinking water | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-09

    Jun 9, 2016 ... Researchers from Canada and India funded by IDRC have found that filtering water through sari-cloth before purifying it in the sun's heat makes polluted water safe to drink. Polluted water is often the only source of drinking water for many low-income households in India. To kill the germs, people pour ...

  1. Microbiological Quality of Drinking Water Sources in Rural ...

    African Journals Online (AJOL)

    Microbiological Quality of Drinking Water Sources in Rural Communities of Dire Dawa Administrative Council. ... the membrane filtration method. Water analysis demonstrated that all water sources in the ... The majority of the drinking water sources is either of unacceptable quality or grossly polluted. Regular quality control ...

  2. Microbial quality of drinking water from groundtanks and tankers at ...

    African Journals Online (AJOL)

    2013-09-23

    Sep 23, 2013 ... Drinking water quality was investigated at source and corresponding point-of-use in 2 peri-urban areas receiving drink- ing water either by communal water tanker or by delivery directly from the distribution system to household-based groundtanks with taps. Water quality variables measured were ...

  3. Dissolved nitrogen in drinking water resources of farming ...

    African Journals Online (AJOL)

    A water quality study was carried out on streams and boreholes which serve as drinking water sources in farming communities in the Brong Ahafo region of the Republic of Ghana. The objective of this research was to determine concentrations of different forms of nitrogen in drinking water samples. Water samples were ...

  4. 30 CFR 71.600 - Drinking water; general.

    Science.gov (United States)

    2010-07-01

    ... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...

  5. Portable Nanomesh Creates Safer Drinking Water

    Science.gov (United States)

    2008-01-01

    Providing astronauts with clean water is essential to space exploration to ensure the health and well-being of crewmembers away from Earth. For the sake of efficient and safe long-term space travel, NASA constantly seeks to improve the process of filtering and re-using wastewater in closed-loop systems. Because it would be impractical for astronauts to bring months (or years) worth of water with them, reducing the weight and space taken by water storage through recycling and filtering as much water as possible is crucial. Closed-loop systems using nanotechnology allow wastewater to be cleaned and reused while keeping to a minimum the amount of drinking water carried on missions. Current high-speed filtration methods usually require electricity, and methods without electricity usually prove impractical or slow. Known for their superior strength and electrical conductivity, carbon nanotubes measure only a few nanometers in diameter; a nanometer is one billionth of a meter, or roughly one hundred-thousandth the width of a human hair. Nanotubes have improved water filtration by eliminating the need for chemical treatments, significant pressure, and heavy water tanks, which makes the new technology especially appealing for applications where small, efficient, lightweight materials are required, whether on Earth or in space. "NASA will need small volume, effective water purification systems for future long-duration space flight," said Johnson Space Center s Karen Pickering. NASA advances in water filtration with nanotechnology are now also protecting human health in the most remote areas of Earth.

  6. [Detection of Cryptosporidium in subterranean drinking water].

    Science.gov (United States)

    de Abramovich, B L; Lura de Calafell, M C; Haye, M A; Nepote, A; Argañara, M F

    1996-01-01

    The objective of the present work has been to determine the role of drinking water of subterranean origin in the transmission of enteroparasitosis. The samples were obtained from wells and tanks supplying population areas in Santa Fe province. The physico-chemical and bacteriological parameters were all determined. The detection of parasites was carried out by means of filtration, the subsequent washing of the filters with a Tween 80 solution and the concentration of the remaining liquid which was then submitted to microscopic examination. This examination was made for both fresh samples and samples stained with permanent and differential staining techniques. Cryptosporidium spp. oocysts were found in the water which supplies one of those population areas. The bacteriological examination revealed the presence of total coliforms but neither chemical contamination parameters nor faecalis coliforms were found. We conclude that the absence of the latter is not enough to discard the presence of parasites and that protective measures of the water supply must be implemented.

  7. Lithium in drinking water and thyroid function.

    Science.gov (United States)

    Broberg, Karin; Concha, Gabriela; Engström, Karin; Lindvall, Magnus; Grandér, Margareta; Vahter, Marie

    2011-06-01

    High concentrations of lithium in drinking water were previously discovered in the Argentinean Andes Mountains. Lithium is used worldwide for treatment of bipolar disorder and treatment-resistant depression. One known side effect is altered thyroid function. We assessed associations between exposure to lithium from drinking water and other environmental sources and thyroid function. Women (n=202) were recruited in four Andean villages in northern Argentina. Lithium exposure was assessed based on concentrations in spot urine samples, measured by inductively coupled plasma mass spectrometry. Thyroid function was evaluated by plasma free thyroxine (T4) and pituitary gland thyroid-stimulating hormone (TSH), analyzed by routine immunometric methods. The median urinary lithium concentration was 3,910 μg/L (5th, 95th percentiles, 270 μg/L, 10,400 μg/L). Median plasma concentrations (5th, 95th percentiles) of T4 and TSH were 17 pmol/L (13 pmol/L, 21 pmol/L) and 1.9 mIU/L, (0.68 mIU/L, 4.9 mIU/L), respectively. Urine lithium was inversely associated with T4 [β for a 1,000-μg/L increase=-0.19; 95% confidence interval (CI), -0.31 to -0.068; p=0.002] and positively associated with TSH (β=0.096; 95% CI, 0.033 to 0.16; p=0.003). Both associations persisted after adjustment (for T4, β=-0.17; 95% CI, -0.32 to -0.015; p=0.032; for TSH: β=0.089; 95% CI, 0.024 to 0.15; p=0.007). Urine selenium was positively associated with T4 (adjusted T4 for a 1 μg/L increase: β=0.041; 95% CI, 0.012 to 0.071; p=0.006). Exposure to lithium via drinking water and other environmental sources may affect thyroid function, consistent with known side effects of medical treatment with lithium. This stresses the need to screen for lithium in all drinking water sources.

  8. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  9. [Microorganisms surviving in drinking water systems and related problems].

    Science.gov (United States)

    Aulicino, F A; Pastoni, F

    2004-01-01

    Drinking water in distribution systems may show abnormal values of some parameters, such as turbidity, and may support particular phenomena, such as bacterial regrowth or presence of Viable Not Culturable (VNC) bacteria. Turbidity can provide shelter for opportunistic microorganisms and pathogens. The Milwaukee outbreak (400,000 people) is one example of waterborne disease caused by the presence of pathogens (Cryptosporidium) in drinking water characterized by high and intermittent levels of turbidity. Bacterial regrowth in drinking water distribution systems may cause high increments of microorganisms such as heterotrophic bacteria, coliforms and pathogens. Microorganisms isolated from biofilm including Pseudomonas, Aeromonas, Legionella may have a significant health hazard especially in hospital areas. The presence of VNC bacteria in drinking water may represent a problem for their discussed role in infectious diseases, but also for the possibility of a considerable underestimation of true microbial concentrations in drinking waters. To study this kind of problems is necessary to apply suitable methods for drinking water analyses.

  10. Iron and manganese removal from drinking water

    Directory of Open Access Journals (Sweden)

    Daniela-Elena Pascu

    2016-04-01

    Full Text Available The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering bothlocal economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption methods have been applied to determine metals content in accordance to reports of National Water Agency from Romania (ANAR. Every water source contains dissolved or particulate compounds. The concentrations of these compounds can affect health, productivity, compliance requirements, or serviceability and cannot be economically removed by conventional filtration means. In this study, we made a comparison between the electrochemical and adsorption methods (using membranes. Both methods have been used to evaluate the efficiency of iron and manganese removal at various times and temperatures. We used two membrane types: composite and cellulose, respectively. Different approaches, including lowering the initial current density and increasing the initial pH were applied. Reaction kinetics was achieved using mathematical models: Jura and Temkin.

  11. Chlorinated drinking water for lightweight laying hens

    Directory of Open Access Journals (Sweden)

    A.F. Schneider

    Full Text Available ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia. 144 Hy-Line laying hens, 61 weeks old, were used distributed in 24 metabolism cages. They were subjected to water diets, for a period of 28 days, using sodium hypochlorite as a chlorine source in order to obtain the following concentrations: 5ppm (control, 20ppm, 50ppm, and 100ppm. Their performance was evaluated through water consumption, feed intake, egg production and weight, egg mass, feed conversion. Shell quality was measured by specific gravity. At the end of the experiment, arterial blood was collected for blood gas level assessment and a poultry of each replicate was sacrificed to obtain tibia and calcium content measurement. There was a water consumption reduction from 20ppm of chlorine and feed intake reduction in poultry receiving water with 100ppm of chlorine. The regression analysis showed that the higher the level of chlorine in water, the higher the reduction in consumption. There were no differences in egg production and weight, egg mass, feed conversion, specific gravity, tibia calcium content, and hemogasometry levels (hydrogenionic potential, carbon dioxide partial pressure, oxygen partial pressure, sodium, potassium, chloride, bicarbonate, carbon dioxide total concentration, anion gap and oxygen saturation. The use of levels above 5ppm of chlorine is not recommended in the water of lightweight laying hens.

  12. German studies on health effects of inorganic drinking water constituents.

    Science.gov (United States)

    Sonneborn, M; Mandelkow, J

    1981-04-01

    The influence of drinking water quality on mortality and morbidity of various diseases has been studied for more than 20 years. From these diseases, those of the cardiovascular system have been playing a special role. Better and more specified information on the differences in the composition of drinking water may essentially contribute to a solution of the problem of association between water quality and the incidence of diseases. In more than 600 water supply areas in the Federal Republic of Germany the composition of the drinking water has been analyzed. From these data, areas of different water quality are to be selected for additional investigations of the problem of health relevance of drinking water quality. So far, the following constituents of drinking water have been measured: Na, Ca, Mg, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, SO4, PO4, NO3, NO2, Cl, F, I, etc. The methods of analysis used were atomic absorption spectrometry, plasma emission spectrometry, and ion chromatography. Additionally, more than 19 000 data on drinking water in accordance with standard analytic procedures under the Drinking Water Regulations are available in a comprehensive data bank (BIBIDAT). There have been studies establishing associations between water hardness and cardiovascular diseases but also studies which do not confirm this association or even present converse results. Also water constituents like magnesium, cadmium, etc. have been associated with cardiovascular diseases. Some investigations have shown correlations between e.g. the concentration of fluoride in drinking water and caries or iodide and goitre.

  13. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    Science.gov (United States)

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  14. 76 FR 7762 - Drinking Water: Regulatory Determination on Perchlorate

    Science.gov (United States)

    2011-02-11

    ... AGENCY 40 CFR Part 141 RIN 2040-AF08 Drinking Water: Regulatory Determination on Perchlorate AGENCY... the Agency's) regulatory determination for perchlorate in accordance with the Safe Drinking Water Act... occur or there is a substantial likelihood that perchlorate will occur in public water systems with a...

  15. Assessment of changes in drinking water quality during distribution ...

    African Journals Online (AJOL)

    The quality of drinking water at the point of delivery to the consumer is crucial in safeguarding people's health. This study assesses changes in drinking water quality during distribution at Area 25 Township in Lilongwe, Malawi. Water samples were collected from the exit point of the treatment plant, storage tank and taps at ...

  16. 30 CFR 75.1718-1 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  17. Sachet drinking water in accra: the potential threats of transmission ...

    African Journals Online (AJOL)

    Background: The recent introduction of sachet water to consumers was to provide safe, hygienic and affordable instant drinking water to the public. Although this is a laudable idea current trends seem to suggest that sachet drinking water could be a route of transmission of enteric pathogens. Objective: To assess the safety ...

  18. Ensuring biological safety of drinking water at International Crops ...

    African Journals Online (AJOL)

    Potability of drinking water from various sources at the campus of International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India had been assessed for 17 years (1994 to 2010). All four sources of drinking water at ICRISAT, including Manjeera water (Municipal corporation ...

  19. Continous assessment of a drinking water PVC pipe

    NARCIS (Netherlands)

    Marques Arsenio, A.; Vreeburg, J.H.G.; Wielinga, M.P.C.; Van Dijk, J.C.

    2012-01-01

    In 2010 the Dutch drinking water network stretched for almost 116,000 km supplying water to more than 16 million people. Almost 50% was made of PVC. The analysis of the failure registration of 5 Dutch drinking water companies showed that ca. 29 % of the total number of failures in the PVC Dutch

  20. Start-up of a drinking water biofilter

    DEFF Research Database (Denmark)

    Ramsay, Loren; Søborg, Ditte; Breda, Inês Lousinha Ribeiro

    When virgin filter media is placed in drinking water biofilters, a start-up period of some months typically ensues. During this period, the necessary inorganic coating and bacterial community are established on the filter medium, after which the treated water complies with drinking water criteria...

  1. Optimization of Drinking Water Treatment Processes Using Artificial ...

    African Journals Online (AJOL)

    Drinking water treatment is the process of removing microorganisms and solid from water through different methods such as coagulation and filtration. Artificial neural network (ANN) was developed for process and cost optimization of drinking water treatment processes. Results obtained from ANN model showed that ANN ...

  2. Defluoridation of drinking water using adsorption processes.

    Science.gov (United States)

    Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya; Naidu, Ravi

    2013-03-15

    Excessive intake of fluoride (F), mainly through drinking water, is a serious health hazard affecting humans worldwide. There are several methods used for the defluoridation of drinking water, of which adsorption processes are generally considered attractive because of their effectiveness, convenience, ease of operation, simplicity of design, and for economic and environmental reasons. In this paper, we present a comprehensive and a critical literature review on various adsorbents used for defluoridation, their relative effectiveness, mechanisms and thermodynamics of adsorption, and suggestions are made on choice of adsorbents for various circumstances. Effects of pH, temperature, kinetics and co-existing anions on F adsorption are also reviewed. Because the adsorption is very weak in extremely low or high pHs, depending on the adsorbent, acids or alkalis are used to desorb F and regenerate the adsorbents. However, adsorption capacity generally decreases with repeated use of the regenerated adsorbent. Future research needs to explore highly efficient, low cost adsorbents that can be easily regenerated for reuse over several cycles of operations without significant loss of adsorptive capacity and which have good hydraulic conductivity to prevent filter clogging during the fixed-bed treatment process. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Life cycle assessment of drinking water: comparing conventional water treatment, reverse osmosis and mineral water in glass and plastic bottles

    OpenAIRE

    Garfi, Marianna; Cadena, Erasmo; Sanchez Ramos, David; Ferrer Martí, Ivet

    2016-01-01

    This study evaluated the environmental impacts caused by drinking water consumption in Barcelona (Spain) using the Life Cycle Assessment (LCA) methodology. Five different scenarios were compared: 1) tap water from conventional drinking water treatment; 2) tap water from conventional drinking water treatment with reverse osmosis at the water treatment plant; 3) tap water from conventional drinking water treatment with domestic reverse osmosis; 4) mineral water in plastic bottles, and 5) minera...

  4. [Hydraulic fracturing - a hazard for drinking water?].

    Science.gov (United States)

    Ewers, U; Gordalla, B; Frimmel, F

    2013-11-01

    Hydraulic fracturing (fracking) is a technique used to release and promote the extraction of natural gas (including shale gas, tight gas, and coal bed methane) from deep natural gas deposits. Among the German public there is great concern with regard to the potential environmental impacts of fracking including the contamination of ground water, the most important source of drinking water in Germany. In the present article the risks of ground water contamination through fracking are discussed. Due to the present safety requirements and the obligatory geological and hydrogeological scrutiny of the underground, which has to be performed prior to fracking, the risk of ground water contamination by fracking can be regarded as very low. The toxicity of chemical additives of fracking fluids is discussed. It is recommended that in the future environmental impact assessment and approval of fracs should be performed by the mining authorities in close cooperation with the water authorities. Furthermore, it is recommended that hydraulic fracturing in the future should be accompanied by obligatory ground water monitoring. © Georg Thieme Verlag KG Stuttgart · New York.

  5. REMOVAL OF HEXAVALENT CHROMIUM FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    A. R. Asgari ، F. Vaezi ، S. Nasseri ، O. Dördelmann ، A. H. Mahvi ، E. Dehghani Fard

    2008-10-01

    Full Text Available Removal of chromium can be accomplished by various methods but none of them is cost-effective in meeting drinking water standards. For this study, granular ferric hydroxide was used as adsorbent for removal of hexavalent chromium. Besides, the effects of changing contact time, pH and concentrations of competitive anions were determined for different amounts of granular ferric hydroxide. It was found that granular ferric hydroxide has a high capacity for adsorption of hexavalent chromium from water at pH≤7 and in 90 min contact time. Maximum adsorption capacity was determined to be 0.788 mg Cr+6/g granular ferric hydroxide. Although relatively good adsorption of sulfate and chloride had been specified in this study, the interfering effects of these two anions had not been detected in concentrations of 200 and 400 mg/L. The absorbability of hexavalent chromium by granular ferric hydroxide could be expressed by Freundlich isotherm with R2>0.968. However, the disadvantage was that the iron concentration in water was increased by the granular ferric hydroxide. Nevertheless, granular ferric hydroxide is a promising adsorbent for chromium removal, even in the presence of other interfering compounds, because granular ferric hydroxide treatment can easily be accomplished and removal of excess iron is a simple practice for conventional water treatment plants. Thus, this method could be regarded as a safe and convenient solution to the problem of chromium-polluted water resources.

  6. Vulnerability of drinking water supplies to engineered nanoparticles.

    Science.gov (United States)

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  7. Biological stability in drinking water distribution systems: A novel approach for systematic microbial water quality monitoring

    OpenAIRE

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the distribution system must be microbiologically safe and ideally should also be biologically stable”. The biological stability criterion refers to maintaining the microbial drinking water quality in time and d...

  8. Biological stability in drinking water distribution systems : A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the

  9. MAGNESIUM, DRINKING WATER HARDNESS AND CARDIOVASCULAR DISEASE

    Directory of Open Access Journals (Sweden)

    Dragana Nikic

    2006-01-01

    Full Text Available Many different countries suggest and justify an integrated laboratory and epidemiological research program with an aim to reject or accept the magnesium – CVD (cardiovascular disease hypothesis. The studies shown in this paper that have investigated the relationship between water hardness, especially magnesium and CVD indicate that, even though there has been an ongoing research for nearly half a century (1957-2004, it has not been completed yet. Different study designs (obductional, clinical, ecological, case-control and cohort restrict an adequate comparison of their results as well as the deduction of results applicable on each territorial level.The majority of researchers around the world, using populational and individual studies, have found an inverse (protective association between mortality and morbidity from CVD and the increase in water hardness, especially the increase in the concentration of magnesium. The most frequent benefit of the water with an optimal mineral composition is the reduction of mortality from ischemic heart disease.It was suggested that Mg from water is a supplementary source of Mg of high biological value, because magnesium from water is absorbed around 30% better than Mg in a diet. The vast majority of studies consider lower concentrations of Mg in the water, in the range of 10% of the total daily intake of Mg.Future research efforts must give better answers to low Mg concentrations in the drinking water, before any concrete recommendations are given to the public. Moreover, the researchers must also determine which chemical form of Mg is most easily absorbed and has the greatest impact.Additional research is necessary in order to further investigate the interrelation between different water and food components as well as individual risk factors in the pathogenesis of CVD.

  10. Asbestos in drinking water; Asbest im Trinkwasser

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, K.R.

    1992-12-01

    Measurements and analysis of more than 100 samples of tap-water, originated from different countries of the Federal Republik of Germany, have been performed by means of the standardized TEM-procedure (ISO). The results have shown that the drinking water is contaminated with fine fibers, with chrysotile and amphibole asbestos. The majority of investigated samples contained less than 10{sup 6} fibers/liter, and the fibers were thin and shorter than 5 {mu}m. Nevertheless, in some tap-water samples the asbestos fiber concentrations were higher than 10{sup 6} fibers/liter and/or the content of long fibers (longer than 5 {mu}m) was relatively high. It is recommended tapwater with asbestos fiber concentrations over 10{sup 6} fibers/liter and/or with greater content of long fibers should not be used for cooking or drinking unless filtered. (orig.) [Deutsch] Mehr als 100 Trinkwasser-Proben aus verschiedenen Bundeslaendern wurden untersucht und analysiert bei Anwendung eines standardisierten TEM-Verfahrens (ISO). Die Ergebnisse zeigten, dass Trinkwasser (alte Bundeslaender) mit feinen Asbestfasern, Chrysotil und Amphibolen, mehr oder weniger kontaminiert ist. In der Mehrheit der untersuchten Proben lagen die Asbestkonzentrationen im Bereich weniger als 10{sup 6} Fasern/Liter und die gemessenen Fasern waren duenn und kuerzer als 5 {mu}m. Nichtsdestoweniger, in einigen Wasserproben wurden Asbestfaser-Kontaminationen im Bereich ueber 10{sup 6} Fasern/Liter ermittelt. Diese Wasserproben enthielten auch hoeheren Anteil an langen Fasern. Es wird empfohlen, Wasser mit Asbestfaserkonzentrationen ueber 10{sup 6} Fasern/Liter oder mit einem hoeheren Anteil an langen Asbestfasern nicht ohne weitere Behandlung (Filtration) zu trinken und nicht zum Kochen zu verwenden. (orig.)

  11. [The EU drinking water recommendations: objectives and perspectives].

    Science.gov (United States)

    Blöch, H

    2011-12-01

    Protection of our drinking water resources and provision of safe drinking water are key requirements of modern water management and health policy. Microbiological and chemical quality standards have been established in the EU water policy since 1980, and are now complemented by a comprehensive protection of water as a resource. This contribution reflects a presentation at the scientific conference of the Federal Associations of Physicians and Dentists within the Public Health Service in May 2011 and provides an overview on objectives and challenges for drinking water protection at the European level. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Drinking water quality and fluoride concentration.

    Science.gov (United States)

    Frazão, Paulo; Peres, Marco A; Cury, Jaime A

    2011-10-01

    This paper aimed to analyze the fluoride concentration in drinking water, taking into account the balance between the benefits and risks to health, in order to produce scientific backing for the updating of the Brazilian legislation. Systematic reviews studies, official documents and meteorological data were examined. The temperatures in Brazilian state capitals indicate that fluoride levels should be between 0.6 and 0.9 mg F/l in order to prevent dental caries. Natural fluoride concentration of 1.5 mg F/l is tolerated for consumption in Brazil if there is no technology with an acceptable cost-benefit ratio for adjusting/removing the excess. Daily intake of water with a fluoride concentration > 0.9 mg F/l presents a risk to the dentition among children under the age of eight years, and consumers should be explicitly informed of this risk. In view of the expansion of the Brazilian water fluoridation program to regions with a typically tropical climate, Ordinance 635/75 relating to fluoride added to the public water supply should be revised.

  13. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment

    Science.gov (United States)

    Klarich, Kathryn L.; Pflug, Nicholas C.; DeWald, Eden M.; Hladik, Michelle L.; Kolpin, Dana W.; Cwiertny, David M.; LeFevre, Gergory H.

    2017-01-01

    Neonicotinoid insecticides are widespread in surface waters across the agriculturally-intensive Midwestern US. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over seven weeks in 2016 (May-July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples and ranged from 0.24-57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin and imidacloprid, with modest thiamethoxam removal (~50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis at high pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as an effective management tool to lower neonicotinoid concentrations in finished drinking water.

  14. Should children drink more water?: the effects of drinking water on cognition in children.

    Science.gov (United States)

    Edmonds, Caroline J; Burford, Denise

    2009-06-01

    While dehydration has well-documented negative effects on adult cognition, there is little research on hydration and cognitive performance in children. We investigated whether having a drink of water improved children's performance on cognitive tasks. Fifty-eight children aged 7-9 years old were randomly allocated to a group that received additional water or a group that did not. Results showed that children who drank additional water rated themselves as significantly less thirsty than the comparison group (p=0.002), and they performed better on visual attention tasks (letter cancellation, p=0.02; spot the difference memory tasks, ps=0.019 and 0.014).

  15. Meeting drinking water and sanitation targets of MDGs. Water use & competition in sub-Saharan Africa

    NARCIS (Netherlands)

    Hoek van der, Marjolijn

    2006-01-01

    Access to safe drinking water and improved sanitation is of vital importance for human beings. Improving the access to safe drinking water and improved sanitation in developing countries is therefore one of the Millennium Development Goals (MDGs) to be me

  16. Serogroups of Escherichia coli from drinking water.

    Science.gov (United States)

    Ramteke, P W; Tewari, Suman

    2007-07-01

    Fifty seven isolates of thermotolerant E. coli were recovered from 188 drinking water sources, 45 (78.9%) were typable of which 15 (26.3%) were pathogenic serotypes. Pathogenic serogroup obtained were 04 (Uropathogenic E. coli, UPEC), 025 (Enterotoxigenic E. coli, ETEC), 086 (Enteropathogenic E. coli, EPEC), 0103 (Shiga-toxin producing E. coli, STEC), 0157 (Shiga-toxin producing E. coli, STEC), 08 (Enterotoxigenic E. coli, ETEC) and 0113 (Shiga-toxin producing E. coli, STEC). All the pathogenic serotypes showed resistance to bacitracin and multiple heavy metal ions. Resistance to streptomycin and cotrimazole was detected in two strains whereas resistance to cephaloridine, polymixin-B and ampicillin was detected in one strain each. Transfer of resistances to drugs and metallic ions was observed in 9 out of 12 strains studied. Resistances to bacitracin were transferred in all nine strains. Among heavy metals resistance to As(3+) followed by Cr(6+) were transferred more frequently.

  17. Defluoridation of drinking water using adsorption processes

    Energy Technology Data Exchange (ETDEWEB)

    Loganathan, Paripurnanda [Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, 2007 (Australia); Vigneswaran, Saravanamuthu, E-mail: s.vigneswaran@uts.edu.au [Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, 2007 (Australia); Kandasamy, Jaya [Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, 2007 (Australia); Naidu, Ravi [Centre for Cooperative Research for Contamination Assessment and Remediation of the Environment (CRC CARE), University of South Australia, Adelaide, SA 5095 (Australia)

    2013-03-15

    Highlights: ► Comprehensive and critical literature review on various adsorbents used for defluoridation. ► pH, temperature, kinetics and co-existing anions effects on F adsorption. ► Choice of adsorbents for various circumstances. ► Adsorption thermodynamics and mechanisms. ► Future research on efficient, low cost adsorbents which are easily regenerated. -- Abstract: Excessive intake of fluoride (F), mainly through drinking water, is a serious health hazard affecting humans worldwide. There are several methods used for the defluoridation of drinking water, of which adsorption processes are generally considered attractive because of their effectiveness, convenience, ease of operation, simplicity of design, and for economic and environmental reasons. In this paper, we present a comprehensive and a critical literature review on various adsorbents used for defluoridation, their relative effectiveness, mechanisms and thermodynamics of adsorption, and suggestions are made on choice of adsorbents for various circumstances. Effects of pH, temperature, kinetics and co-existing anions on F adsorption are also reviewed. Because the adsorption is very weak in extremely low or high pHs, depending on the adsorbent, acids or alkalis are used to desorb F and regenerate the adsorbents. However, adsorption capacity generally decreases with repeated use of the regenerated adsorbent. Future research needs to explore highly efficient, low cost adsorbents that can be easily regenerated for reuse over several cycles of operations without significant loss of adsorptive capacity and which have good hydraulic conductivity to prevent filter clogging during the fixed-bed treatment process.

  18. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; Gaalen FW van; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; Technische Universiteit Delft; LWD

    2001-01-01

    The 'Tool for the Analysis of the Production of drinking WATer' (TAPWAT) model has been developed for describing drinking-water quality in integral studies in the context of the Environmental Policy Assessment of the RIVM. The model consists of modules that represent individual steps in a treatment

  19. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b) Specifications...

  20. An environmental assessment of United States drinking water watersheds

    Science.gov (United States)

    James Wickham; Timothy Wade; Kurt Riitters

    2011-01-01

    Abstract There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of 5,265 drinking water watersheds using data on land cover, hydrography and conservation status. Approximately 78% of the conterminous United States...

  1. Concentration of Heavy Metals in Drinking Water from Urban Areas ...

    African Journals Online (AJOL)

    Bheema

    implications. This study, therefore, recommends the government and other responsible authorities to take appropriate corrective measures. Key words: Drinking water quality, Heavy metals, Maximum admissible limit, World health organization, Tigray. 1. INTRODUCTION. Safe drinking water is a human birthright – as much ...

  2. Bisphenol A Detection in Various Brands of Drinking Bottled Water ...

    African Journals Online (AJOL)

    Purpose: To assess whether bisphenol A contamination occurred in seven brands of bottled drinking water in Riyadh, Saudi Arabia. Methods: Liquid-liquid extraction (using dichloromethane) was used to analytically extract bisphenol A from drinking water bottles and a gas chromatograph-mass spectrometer was employed ...

  3. Physico-Chemical Quality Of Drinking Water At Mushait, Aseer ...

    African Journals Online (AJOL)

    The physico-chemical quality study of different drinking water sources used in Khamis Mushait, southwestern, Saudi Arabia (SA) has been studied to evaluate their suitability for potable purposes. A total of 62 drinking water samples were collected randomly from bottled, desalinated and groundwater located around the ...

  4. Reducing Lead in Drinking Water: A Manual for Minnesota's Schools.

    Science.gov (United States)

    Minnesota State Dept. of Health, St. Paul.

    This manual was designed to assist Minnesota's schools in minimizing the consumption of lead in drinking water by students and staff. It offers step-by-step instructions for testing and reducing lead in drinking water. The manual answers: Why is lead a health concern? How are children exposed to lead? Why is lead a special concern for schools? How…

  5. Defluorination of drinking water using surfactant modified zeolites ...

    African Journals Online (AJOL)

    Defluorination of drinking water using surfactant modified zeolites. ... Owingto the arid nature of these localities, the inhabitants (who are mainly peasant farmers), relymore on groundwater sources for their drinking water. With the strenuous ... Keywords: characterization, defluoridation, groundwater, surfactant, zeolites ...

  6. Small Drinking Water Systems Communication and Outreach Highlights

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Wa...

  7. Bacteriological and Physicochemical Quality of Drinking Water and ...

    African Journals Online (AJOL)

    BACKGROUND: Lack of safe drinking water, basic sanitation, and hygienic practices are associated with high morbidity and mortality from excreta related diseases. The aims of this study were to determine the bacteriological and physico-chemical quality of drinking water and investigate the hygiene and sanitation practices ...

  8. Arsenic contamination levels in drinking water sources in mining ...

    African Journals Online (AJOL)

    Arsenic contamination in drinking water is a public health problem all over the World especially in mining areas. The study herein reported assessed the concentration levels of arsenic in some drinking water sources in the mining areas in the Lake Victoria Basin and investigated the potential for its removal by adsorption ...

  9. Analysis of phthalate esters contamination in drinking water samples ...

    African Journals Online (AJOL)

    The optimum condition method was successfully applied to the analysis of phthalate esters contamination in bottled drinking water samples. The concentration of DMP, DEP and DBP in drinking water samples were below allowable levels, while the DEHP concentration in three samples was found to be greater than the ...

  10. Trihalomethanes in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter?

    Science.gov (United States)

    Kuo, Hsin-Wei; Chen, Pei-Shih; Ho, Shu-Chen; Wang, Li-Yu; Yang, Chun-Yuh

    2010-01-01

    The objectives of this study were (1) to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of rectal cancer development and (2) to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of TTHM on risk of developing rectal cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to rectal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All rectal cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from the Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level was water with a TTHM exposure >or=4.9 ppb. There was no evidence of an interaction of drinking-water TTHM levels with low Ca intake via drinking water. However, evidence of an interaction was noted between drinking-water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of rectal cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing rectal cancer risk will aid in public policymaking and standard setting.

  11. Nitrates in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter?

    Science.gov (United States)

    Chang, Chih-Ching; Chen, Chih-Cheng; Wu, Deng-Chuang; Yang, Chun-Yuh

    2010-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and increased risk of death from rectal cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of nitrate on development of rectal cancer. A matched case-control study was used to investigate the relationship between the risk of death from rectal cancer and exposure to nitrate in drinking water in Taiwan. All rectal cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N), Ca, and Mg in drinking water was collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO(3)-N exposure level was water with a NO(3)-N exposure > or =0.38 ppm. There was no apparent evidence of an interaction between drinking water NO(3)-N levels with low Mg intake via drinking water. However, evidence of a significant interaction was noted between drinking-water NO(3)-N concentrations and Ca intake via drinking water. Our findings showed that the correlation between NO(3)-N exposure and risk of rectal cancer development was influenced by Ca in drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of rectal cancer occurrence. Increased knowledge of the mechanistic interaction between Ca and NO(3)-N in reducing rectal cancer risk will aid in public policymaking and setting threshold standards.

  12. APPLICATION OF USEPA'S DRINKING WATER REGULATIONS TOWARDS RAINWATER CATCHMENT SYSTEMS

    Science.gov (United States)

    Rainwater harvesting is receiving increased attention worldwide as an alternative source of drinking water. Although federal agencies such as the USEPA acknowledge the existence of rainwater collection systems, the monitoring of this water source is still typically carried out b...

  13. Time-Of-Travel Tool Protects Drinking Water

    Science.gov (United States)

    The Lower Susquehanna Source Water Protection (SWP) Partnership utilizes the Incident Command Tool for Drinking Water Protection (ICWater) to support the Pennsylvania Department of Environmental Protection (PADEP) with real-time spill tracking information.

  14. Tribal Set-Aside Program of the Drinking Water Infrastructure Grant

    Science.gov (United States)

    The Safe Drinking Water Act (SWDA), as amended in 1996, established the Drinking Water State Revolving Fund (DWSRF) to make funds available to drinking water systems to finance infrastructure improvements.

  15. ATP measurements for monitoring microbial drinking water quality

    DEFF Research Database (Denmark)

    Vang, Óluva Karin

    Current standard methods for surveillance of microbial drinking water quality are culture based, which are laborious and time-consuming, where results not are available before one to three days after sampling. This means that the water may have been consumed before results on deteriorated water....... The overall aim of this PhD study was to investigate various methodological features of the ATP assay for a potential implementation on a sensor platform as a real-time parameter for continuous on-line monitoring of microbial drinking water quality. Commercial reagents are commonly used to determine ATP......, microbial quality in distributed water, detection of aftergrowth, biofilm formation etc. This PhD project demonstrated that ATP levels are relatively low and fairly stable in drinking water without chlorine residual despite different sampling locations, different drinking water systems and time of year...

  16. Cardiovascular responses to water drinking: does osmolality play a role?

    Science.gov (United States)

    Brown, Clive M; Barberini, Luc; Dulloo, Abdul G; Montani, Jean-Pierre

    2005-12-01

    Water drinking activates the autonomic nervous system and induces acute hemodynamic changes. The actual stimulus for these effects is undetermined but might be related to either gastric distension or to osmotic factors. In the present study, we tested whether the cardiovascular responses to water drinking are related to water's relative hypoosmolality. Therefore, we compared the cardiovascular effects of a water drink (7.5 ml/kg body wt) with an identical volume of a physiological (0.9%) saline solution in nine healthy subjects (6 male, 3 female, aged 26 +/- 2 years), while continuously monitoring beat-to-beat blood pressure (finger plethysmography), cardiac intervals (electrocardiography), and cardiac output (thoracic impedance). Total peripheral resistance was calculated as mean blood pressure/cardiac output. Cardiac interval variability (high-frequency power) was assessed by spectral analysis as an index of cardiac vagal tone. Baroreceptor sensitivity was evaluated using the sequence technique. Drinking water, but not saline, decreased heart rate (P = 0.01) and increased total peripheral resistance (P water nor saline substantially increased blood pressure. These responses suggest that water drinking simultaneously increases sympathetic vasoconstrictor activity and cardiac vagal tone. That these effects were absent after drinking physiological saline indicate that the cardiovascular responses to water drinking are influenced by its hypoosmotic properties.

  17. An assessment of drinking-water quality post-Haiyan.

    Science.gov (United States)

    Magtibay, Bonifacio; Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems - source, storage and distribution - the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster.

  18. Trihalomethanes in drinking water and the risk of death from esophageal cancer: does hardness in drinking water matter?

    Science.gov (United States)

    Tsai, Shang-Shyue; Chiu, Hui-Fen; Yang, Chun-Yuh

    2013-01-01

    The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of esophageal cancer occurrence and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop esophageal cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to esophageal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All esophageal cancer deaths in the 53 municipalities from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level water with a TTHM exposure ≥4.9 ppb. There was evidence of an interaction between drinking-water TTHM levels and low Ca and Mg intake. Our findings showed that the correlation between TTHM exposure and risk of esophageal cancer development was influenced by Ca and Mg levels in drinking water. This is the first study to report effect modification by Ca and Mg intake from drinking water on the correlation between TTHM exposure and risk of esophageal cancer occurrence. Increased knowledge of the interaction between Ca, Mg, and TTHM in reducing risk of esophageal cancer development will aid in public policymaking and standard setting for drinking

  19. Analysis of uranium concentration in drinking water samples using ICPMS.

    Science.gov (United States)

    Rani, Asha; Mehra, Rohit; Duggal, Vikas; Balaram, V

    2013-03-01

    Uranium concentration in drinking water samples collected from some areas of Northern Rajasthan has been measured using inductively coupled plasma mass spectrometry. The water samples were taken from hand pumps. The uranium concentration in water samples varies from 2.54-133.0 μg L with a mean value of 38.48 μg L. The uranium concentration in most of the drinking water samples exceeds the safe limit (30 μg L) recommended by the World Health Organization. The annual effective dose associated with drinking water due to uranium concentration is estimated from its annual intake using dosimetric information based on ICRP 72. The resulting value of the annual effective dose from drinking water sources is in the range of 2.11-110.45 μSv. The annual effective dose in one of the samples was found to be greater than WHO-recommended level of 100 μSv y.

  20. Fluoride content in bottled drinking waters, carbonated soft drinks and fruit juices in Davangere city, India

    Directory of Open Access Journals (Sweden)

    Thippeswamy H

    2010-01-01

    Full Text Available Background: The regular ingestion of fluoride lowers the prevalence of dental caries. The total daily intake of fluoride for optimal dental health should be 0.05-0.07 mg fluoride/kg body weight and to avoid the risk of dental fluorosis, the daily intake should not exceed a daily level of 0.10 mg fluoride/kg body weight. The main source of fluoride is from drinking water and other beverages. As in other countries, consumption of bottled water, juices and carbonated beverages has increased in our country. Objective: To analyze the fluoride content in bottled water, juices and carbonated soft drinks that were commonly available in Davangere city. Materials and Methods: Three samples of 10 commercially available brands of bottled drinking water, 12 fruit juices and 12 carbonated soft drinks were purchased. Bottled water and carbonated soft drinks were stored at a cold place until fluoride analysis was performed and a clear juice was prepared using different fruits without the addition of water. Then, the fluoride analysis was performed. Results: The mean and standard deviation of fluoride content of bottled water, fruit juices and carbonated soft drinks were measured, which were found to be 0.20 mg (±0.19 F/L, 0.29 mg (±0.06 F/L and 0.22 mg (±0.05 F/L, respectively. Conclusion: In viewing the results of the present study, it can be concluded that regulation of the optimal range of fluoride in bottled drinking water, carbonated soft drinks and fruit juices should be drawn for the Indian scenario.

  1. Does calcium in drinking water modify the association between nitrate in drinking water and risk of death from colon cancer?

    Science.gov (United States)

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Pei-Shih; Wu, Trong-Neng; Yang, Chun-Yuh

    2011-09-01

    The objective of this study was to explore whether calcium (Ca) levels in drinking water modified the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N) and Ca in drinking water have been collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO(3)-N and Ca exposure via drinking water. We observed evidence of an interaction between drinking water NO(3)-N and Ca intake via drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of colon cancer mortality.

  2. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    KAUST Repository

    Prest, Emmanuelle I.

    2016-02-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  3. Biological stability of drinking water: controlling factors, methods and challenges

    Directory of Open Access Journals (Sweden)

    Emmanuelle ePrest

    2016-02-01

    Full Text Available Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g. development of opportunistic pathogens, aesthetic (e.g. deterioration of taste, odour, colour or operational (e.g. fouling or biocorrosion of pipes problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors such as (i type and concentration of available organic and inorganic nutrients, (ii type and concentration of residual disinfectant, (iii presence of predators such as protozoa and invertebrates, (iv environmental conditions such as water temperature, and (v spatial location of microorganisms (bulk water, sediment or biofilm. Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i existing knowledge on biological stability controlling factors and (ii how these factors are affected by drinking water production and distribution conditions. In addition, (iii the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discuss how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to

  4. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    Science.gov (United States)

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  5. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    Science.gov (United States)

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  6. The microbial quality of drinking water in Manonyane community ...

    African Journals Online (AJOL)

    ... coli counts included non protection of water sources from livestock faeces, laundry practices, and water sources being down slope of pit latrines in some cases. Conclusions: These findings suggest source water protection and good hygiene practices can improve the quality of household drinking water where disinfection ...

  7. Safe and Affordable Drinking Water for Developing Countries

    Science.gov (United States)

    Gadgil, Ashok

    2008-09-01

    Safe drinking water remains inaccessible for about 1.2 billion people in the world, and the hourly toll from biological contamination of drinking water is 200 deaths mostly among children under five years of age. This chapter summarizes the need for safe drinking water, the scale of the global problem, and various methods tried to address it. Then it gives the history and current status of an innovation ("UV Waterworks™") developed to address this major public health challenge. It reviews water disinfection technologies applicable to achieve the desired quality of drinking water in developing countries, and specifically, the limitations overcome by one particular invention: UV Waterworks. It then briefly describes the business model and financing option than is accelerating its implementation for affordable access to safe drinking water to the unserved populations in these countries. Thus this chapter describes not only the innovation in design of a UV water disinfection system, but also innovation in the delivery model for safe drinking water, with potential for long term growth and sustainability.

  8. Drinking water infrastructure and environmental disparities: evidence and methodological considerations.

    Science.gov (United States)

    VanDerslice, James

    2011-12-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States-Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight.

  9. Drinking Water Infrastructure and Environmental Disparities: Evidence and Methodological Considerations

    Science.gov (United States)

    2011-01-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States–Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight. PMID:21836110

  10. Aircraft Drinking Water Rule Public Meetings and Summaries

    Science.gov (United States)

    In developing the Aircraft Drinking Water Rule, EPA used a collaborative process to obtain a broad range of views including the airlines, flight attendants, passengers, pilots, airports, laboratories, public health officials and environmental organizations

  11. Private Well Owners | Drinking Water in New England | US ...

    Science.gov (United States)

    2017-07-06

    Recent studies in New England identified contamination of some private wells from methyl-tertiary-butyl ether (MtBE), radon and arsenic. But, many homeowners are not aware of this risk to their drinking water.

  12. Alternative technology for arsenic removal from drinking water

    National Research Council Canada - National Science Library

    Purenović Milovan

    2007-01-01

    .... Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1...

  13. Removal of arsenic from drinking water using rice husk

    National Research Council Canada - National Science Library

    Zunaira Asif; Zhi Chen

    2017-01-01

    ...)] from drinking water. Effects of various operating parameters such as diameter of column, bed height, flow rate, initial arsenic feed concentration and particle size were investigated using continuous fixed bed column...

  14. 3Ts for Reducing Lead in Drinking Water: Telling

    Science.gov (United States)

    Lead in drinking water in schools or childcare facilities programs should include communicating with parents, teachers, and the public. Transparency and a communication strategy are a key piece to developing a lead testing program.

  15. 3Ts for Reducing Lead in Drinking Water: Training

    Science.gov (United States)

    It is important to train school officials to raise awareness of the potential occurrences, causes, and health effects of lead in drinking water; assist school officials in identifying potential areas where elevated lead may occur.

  16. Drinking Water State Revolving Fund National Information Management System Reports

    Science.gov (United States)

    The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for the program at both the State and National level.

  17. Safe Drinking Water Information System (SDWIS) Sewer Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of sewer treatment plants. These facility locations are part of the safe drinking water information system...

  18. Radium and Other Radiological Chemicals: Drinking Water Treatment Strategies

    Science.gov (United States)

    Radium and Other Radiological Chemicals: Drinking Water Treatment Technologies Topics include: Introduction to Rad Chemistry, Summary of the Rad, Regulations Treatment Technology, and Disposal. The introductions cover atoms, ions, radium and uranium and the removal of radioac...

  19. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    Science.gov (United States)

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  20. EPA Study of Hydraulic Fracturing and Drinking Water Resources

    Science.gov (United States)

    In its FY2010 Appropriations Committee Conference Report, Congress directed EPA to study the relationship between hydraulic fracturing and drinking water, using: • Best available science • Independent sources of information • Transparent, peer-reviewed process • Consultatio...

  1. Optimal drinking water composition for caries control in populations

    DEFF Research Database (Denmark)

    Bruvo, M.; Ekstrand, K.; Arvin, Erik

    2008-01-01

    Apart from the well-documented effect of fluoride in drinking water on dental caries, little is known about other chemical effects. Since other ions in drinking water may also theoretically influence caries, as well as binding of fluoride in the oral environment, we hypothesized that the effect...... of drinking water on caries may not be limited to fluoride only. Among 22 standard chemical variables, including 15 ions and trace elements as well as gases, organic compounds, and physical measures, iterative search and testing identified that calcium and fluoride together explained 45% of the variations...... in the numbers of decayed, filled, and missing tooth surfaces (DMF-S) among 52,057 15-year-old schoolchildren in 249 Danish municipalities. Both ions had reducing effects on DMF-S independently of each other, and could be used in combination for the design of optimal drinking water for caries control...

  2. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  3. Get the Facts: Drinking Water and Intake

    Science.gov (United States)

    ... Nutrition, Physical Activity, and Obesity About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Related Links CDC Food Safety Adolescent and School Health BAM! Body and Mind Get the Facts: Drinking ...

  4. Lead in Drinking Water in Slovenian Kindergartens and Schools

    Directory of Open Access Journals (Sweden)

    Bitenc K.

    2013-04-01

    Full Text Available The purpose of the work is to determine how high are the concentrations of lead in drinking water in older Slovenian kindergartens and primary schools and to demonstrate that lead can also migrate from newer materials used for the construction of water distribution networks. To determine the concentrations of lead in drinking water, it is needed to take 250 ml of drinking water that stood in the pipes from 8 to 18hours. It is also applied a method for determining the migration from different materials. An old lead pipe is utilized, as well as new materials (PEX-Al-PEX, copper, galvanized pipes and stainless steel pipes. Sampling showed that 6 samples of 39 had levels of lead higher than 10 µg/l, two of them highly exceeded that level. Negative correlation between the level of pH and concentration of lead in drinking water is moderate. Implementation of lead migration from various types of pipes demonstrated the migration from galvanized pipes in all simulants. Furthermore, the migration of lead from galvanized pipes is dependent on water temperature. The migration was confirmed from the lead pipe as expected. Study points to a problem with elevated concentrations of lead in drinking water faced by older kindergartens and primary schools in Slovenia. All concentrations of lead after flushing the pipes were below the 10 µg/l, which shows that the most effective action to lower the concentrations of lead is flushing the water pipes. For the purposes of national monitoring of drinking water is necessary to apply a better method for determining lead levels in drinking water namely the sampling of water that stood in the pipes at least 8 to 18 hours. This study has demonstrated the migration of lead from galvanized pipes. This material is also installed in 54 % of kindergartens and primary schools that participated in the study.

  5. Availability of drinking water in US public school cafeterias.

    Science.gov (United States)

    Hood, Nancy E; Turner, Lindsey; Colabianchi, Natalie; Chaloupka, Frank J; Johnston, Lloyd D

    2014-09-01

    This study examined the availability of free drinking water during lunchtime in US public schools, as required by federal legislation beginning in the 2011-2012 school year. Data were collected by mail-back surveys in nationally representative samples of US public elementary, middle, and high schools from 2009-2010 to 2011-2012. Overall, 86.4%, 87.4%, and 89.4% of students attended elementary, middle, and high schools, respectively, that met the drinking water requirement. Most students attended schools with existing cafeteria drinking fountains and about one fourth attended schools with water dispensers. In middle and high schools, respondents were asked to indicate whether drinking fountains were clean, and whether they were aware of any water-quality problems at the school. The vast majority of middle and high school students (92.6% and 90.4%, respectively) attended schools where the respondent perceived drinking fountains to be clean or very clean. Approximately one in four middle and high school students attended a school where the survey respondent indicated that there were water-quality issues affecting drinking fountains. Although most schools have implemented the requirement to provide free drinking water at lunchtime, additional work is needed to promote implementation at all schools. School nutrition staff at the district and school levels can play an important role in ensuring that schools implement the drinking water requirement, as well as promote education and behavior-change strategies to increase student consumption of water at school. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  6. Microbiological quality of drinking water in public and municipal drinking water supply systems in Osijek-Baranja County, Croatia

    Directory of Open Access Journals (Sweden)

    Mirna Habuda-Stanić

    2013-01-01

    Full Text Available Microbiological and chemical quality of drinking water primarily results from water origin and type of applied water treatment. Since the drinking water is one of the mean way through which many infectious agents can be transmitted to humans causing waterborne diseases, constant monitoring of drinking water quality in water supply systems is needed. This study investigates the microbiological quality of drinking water in twenty five public and municipal water supply systems in the area of Osijek-Baranja County in eastern Croatia. The microbiological analyses were conducted for following parameters: total coliforms, Escherichia coli, colony count at 22 °C and 37 °C, enterococci and Clostridium perfringens. In most of investigated water supply systems processed groundwater are used, and since increased concentrations of some chemical compounds in water can influence on appearance and growth of microbiological populations, in this study relevant physicochemical parameters were also measured and correlated with obtained values of analyzed microbiological parameters. Five physicochemical indicators were determined: temperature, turbidity, pH value, free residual chlorine and ammonium concentration. Results indicated that 149 of 1503 analyzed drinking water samples were non-compliance with microbiological criteria set by Croatian regulations (88.7 % and 89.2 % of 149 had values of colony count at 22 °C and 37 °C higher than the required. Total coliforms, enterococci and Escherichia coli were founded in 3.9 %, 1.1 % and 1 % of non-compliance drinking water samples, respectively. Clostridium perfringens was not detected in any of the drinking water samples. Calculating Pearson’s coefficients of correlation among analyzed microbiological and physicochemical indicators, very weak correlations were obtained. The highest but negative correlation was observed between appearance of microbiological population and concentrations of free residual chlorine

  7. Determinants of household drinking water quality in rural Ethiopia

    OpenAIRE

    Usman, Muhammed A.; Gerber, Nikolaus; Pangaribowo, Evita Hanie

    2016-01-01

    Safe and adequate water supply is a vital element to preserve human health; however, access to clean water is limited in many developing countries. Furthermore, improved water sources are often contaminated with fecal matters and consumption of unsafe water poses a great public health risk. This study seeks to identify determinants of microbial contamination of household drinking water under multiple-use water systems in rural areas of Fogera and Mecha districts of Ethiopia. In this analysis,...

  8. Isotopic Fingerprint for Phosphorus in Drinking Water Supplies.

    Science.gov (United States)

    Gooddy, Daren C; Lapworth, Dan J; Ascott, Matthew J; Bennett, Sarah A; Heaton, Timothy H E; Surridge, Ben W J

    2015-08-04

    Phosphate dosing of drinking water supplies, coupled with leakage from distribution networks, represents a significant input of phosphorus to the environment. The oxygen isotope composition of phosphate (δ(18)OPO4), a novel stable isotope tracer for phosphorus, offers new opportunities to understand the importance of phosphorus derived from sources such as drinking water. We report the first assessment of δ(18)OPO4 within drinking water supplies. A total of 40 samples from phosphate-dosed distribution networks were analyzed from across England and Wales. In addition, samples of the source orthophosphoric acid used for dosing were also analyzed. Two distinct isotopic signatures for drinking water were identified (average = +13.2 or +19.7‰), primarily determined by δ(18)OPO4 of the source acid (average = +12.4 or +19.7‰). Dependent upon the source acid used, drinking water δ(18)OPO4 appears isotopically distinct from a number of other phosphorus sources. Isotopic offsets from the source acid ranging from -0.9 to +2.8‰ were observed. There was little evidence that equilibrium isotope fractionation dominated within the networks, with offsets from temperature-dependent equilibrium ranging from -4.8 to +4.2‰. While partial equilibrium fractionation may have occurred, kinetic effects associated with microbial uptake of phosphorus or abiotic sorption and dissolution reactions may also contribute to δ(18)OPO4 within drinking water supplies.

  9. Physical, chemical and microbial analysis of bottled drinking water.

    Science.gov (United States)

    Sasikaran, S; Sritharan, K; Balakumar, S; Arasaratnam, V

    2012-09-01

    People rely on the quality of the bottled drinking water, expecting it to be free of microbial contamination and health hazards. To evaluate the quality of bottled drinking water sold in Jaffna peninsula by analysing the physical, chemical and microbial contents and comparing with the recommended Sri Lankan Standard (SLS) values. All bottled water samples sold in Jaffna peninsula were collected. Electrical conductivity, total dissolved solid, pH, calcium, nitrate, total aerobic and anaerobic count, coliform bacterial count and faecal contamination were checked. These are 22 brands of bottled drinking water sold in Jaffna peninsula. The sample had very low electrical conductivity when compared with SLS (750 μS/ cm) and varied from 19 to 253 μS/cm with the mean of 80.53 (±60.92) μS/cm. The pH values of the bottled drinking water brands varied from 4.11 to 7.58 with a mean of 6.2 (±0.75). The total dissolved solid content of the bottled drinking water brands varied from 9 to 123.67 mg/l with a mean of 39.5 (±30.23) mg/l. The calcium content of the bottled drinking water brands varied from 6.48 to 83.77 mg/l with a mean of 49.9 (±25.09) mg/l. The nitrate content of the bottled drinking water brands varied from 0.21 to 4.19 mg/l with the mean of 1.26 (±1.08) mg/l. Aerobic bacterial count varied from 0 to 800 colony forming unit per ml (cfu/ml) with a mean of 262.6 (±327.50) cfu/ml. Among the 22 drinking bottled water brands 14 and 9% of bottled drinking water brands showed fungal and coliform bacterial contaminants respectively. The water brands which contained faecal contamination had either Escherichia coli or Klebsiella spp. The bottled drinking water available for sale do not meet the standards stipulated by SLS.

  10. Effect of sunlight, transport and storage vessels on drinking water ...

    African Journals Online (AJOL)

    The objective was to evaluate the effect of sunlight, transport and storage vessels on drinking water quality in rural Ghana with the aim of reducing the high demand for fuel wood in the household treatment of water. Well water was exposed for 6h to direct natural sunlight in aluminium, iron, and plastic receptacles and ...

  11. Biological treatment of drinking water by chitosan based ...

    African Journals Online (AJOL)

    ABI

    2015-03-18

    Mar 18, 2015 ... A membrane filtration technique is used for the treatment of water to remove or kill the bacteria from drinking water sample. ... improved with a variety of reactor groups to raise their affinity to target compounds for removal of organic and inorganic ... sponges or outside coating of water storage tanks. It has.

  12. Bacteriological and physico-chemical quality of drinking water ...

    African Journals Online (AJOL)

    Consumption of water contaminated causes health risk to the public and the situation is serous in rural areas. Objectives: To assess the bacteriological and physico-chemical quality of drinking water sources in a rural community of Ethiopia. Methods: Water samples were collected from tap, open springs, open dug wells and ...

  13. Efficacy of conventional drinking water treatment processes in ...

    African Journals Online (AJOL)

    2013-10-07

    Oct 7, 2013 ... statistical evidence could be displayed to suggest effective removal of geosmin in this conventional water treatment plant. With good ... drinking water treatment processes can effectively remove problem-causing phytoplankton as well as their associated ..... increasing the cost of water treatment significantly.

  14. evaluation of quality of drinking water from baghdad, iraq

    African Journals Online (AJOL)

    Administrator

    ABSTRACT. This is a joint work between the Italian Red Cross and the Environmental. Laboratories, Baghdad. The drinking water (DW) samples from 16 residential districts in Baghdad were chemically evaluated with reference to the raw water samples and water directly taken from the purification plants. In addition to the ...

  15. Discolouration in drinking water systems : A particular approach

    NARCIS (Netherlands)

    Vreeburg, J.H.G.

    2007-01-01

    The quality of drinking water in the Netherlands meets high standards as is annually reported by the Ministry of Housing, Spatial Planning and the Environment (VROM)(Versteegh and Dik, 2006). Also the water companies themselves report in the voluntary Benchmark that water quality is one of the least

  16. Biological Instability in a Chlorinated Drinking Water Distribution Network

    Science.gov (United States)

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×103 cells mL−1 to 4.66×105 cells mL−1 in the network. While this parameter did not exceed 2.1×104 cells mL−1 in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×105 cells mL−1. This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability. PMID:24796923

  17. Chemical quality and regulatory compliance of drinking water in Iceland.

    Science.gov (United States)

    Gunnarsdottir, Maria J; Gardarsson, Sigurdur M; Jonsson, Gunnar St; Bartram, Jamie

    2016-11-01

    Assuring sufficient quality of drinking water is of great importance for public wellbeing and prosperity. Nations have developed regulatory system with the aim of providing drinking water of sufficient quality and to minimize the risk of contamination of the water supply in the first place. In this study the chemical quality of Icelandic drinking water was evaluated by systematically analyzing results from audit monitoring where 53 parameters were assessed for 345 samples from 79 aquifers, serving 74 water supply systems. Compliance to the Icelandic Drinking Water Regulation (IDWR) was evaluated with regard to parametric values, minimum requirement of sampling, and limit of detection. Water quality compliance was divided according to health-related chemicals and indicators, and analyzed according to size. Samples from few individual locations were benchmarked against natural background levels (NBLs) in order to identify potential pollution sources. The results show that drinking compliance was 99.97% in health-related chemicals and 99.44% in indicator parameters indicating that Icelandic groundwater abstracted for drinking water supply is generally of high quality with no expected health risks. In 10 water supply systems, of the 74 tested, there was an indication of anthropogenic chemical pollution, either at the source or in the network, and in another 6 water supplies there was a need to improve the water intake to prevent surface water intrusion. Benchmarking against the NBLs proved to be useful in tracing potential pollution sources, providing a useful tool for identifying pollution at an early stage. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Fluoride and bacterial content of bottled drinking water versus municipal tap water

    Directory of Open Access Journals (Sweden)

    Mythri H

    2010-01-01

    Full Text Available Background: Water is a divine gift. People quench their thirst without questioning the source of water. But, apprehension about contaminants in municipal water supplies along with increased fear of fluorosis made bottled drinking water as one of the important tradable commodities. Objectives: The objectives of the study were to determine and compare the fluoride and bacterial contents of commercially available bottled drinking water and municipal tap water in Davangere city, Karnataka. Materials and Methods: Fifty samples of 10 categories of bottled drinking water with different batch numbers were purchased and municipal water from different sources were collected. Fluoride levels were determined by an ion-selective electrode. Water was cultured quantitatively and levels of bacteria were calculated as colony-forming units (CFUs per milliliter. Results: Descriptive analysis of water samples for fluoride concentration was in the range of 0.07-0.33 for bottled drinking water, Bisleri showing the highest of 0.33. A comparison of the mean values of microbial count for bottled drinking water with that of municipal tap water showed no statistically significant difference, but was more than the standard levels along with the presence of fungus and maggots. Conclusion: The fluoride concentration was below the optimal level for both municipal tap water and bottled drinking water. CFUs were more than the recommended level in both municipal tap water and bottled drinking water.

  19. Artificial sweetener sucralose in U.S. drinking water systems.

    Science.gov (United States)

    Mawhinney, Douglas B; Young, Robert B; Vanderford, Brett J; Borch, Thomas; Snyder, Shane A

    2011-10-15

    The artificial sweetener sucralose has recently been shown to be a widespread of contaminant of wastewater, surface water, and groundwater. In order to understand its occurrence in drinking water systems, water samples from 19 United States (U.S.) drinking water treatment plants (DWTPs) serving more than 28 million people were analyzed for sucralose using liquid chromatography tandem mass spectrometry (LC-MS/MS). Sucralose was found to be present in source water of 15 out of 19 DWTPs (47-2900 ng/L), finished water of 13 out of 17 DWTPs (49-2400 ng/L) and distribution system water of 8 out of the 12 DWTPs (48-2400 ng/L) tested. Sucralose was only found to be present in source waters with known wastewater influence and/or recreational usage, and displayed low removal (12% average) in the DWTPs where finished water was sampled. Further, in the subset of DWTPs with distribution system water sampled, the compound was found to persist regardless of the presence of residual chlorine or chloramines. In order to understand intra-DWTP consistency, sucralose was monitored at one drinking water treatment plant over an 11 month period from March 2010 through January 2011, and averaged 440 ng/L in the source water and 350 ng/L in the finished water. The results of this study confirm that sucralose will function well as an indicator compound for anthropogenic influence on source, finished drinking and distribution system (i.e., tap) water, as well as an indicator compound for the presence of other recalcitrant compounds in finished drinking water in the U.S.

  20. Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea.

    Science.gov (United States)

    Luby, Stephen P; Halder, Amal K; Huda, Tarique Md; Unicomb, Leanne; Islam, M Sirajul; Arnold, Benjamin F; Johnston, Richard B

    2015-11-01

    We used a prospective, longitudinal cohort enrolled as part of a program evaluation to assess the relationship between drinking water microbiological quality and child diarrhea. We included 50 villages across rural Bangladesh. Within each village field-workers enrolled a systematic random sample of 10 households with a child under the age of 3 years. Community monitors visited households monthly and recorded whether children under the age of 5 years had diarrhea in the preceding 2 days. Every 3 months, a research assistant visited the household and requested a water sample from the source or container used to provide drinking water to the child. Laboratory technicians measured the concentration of Escherichia coli in the water samples using membrane filtration. Of drinking water samples, 59% (2,273/3,833) were contaminated with E. coli. Of 12,192 monthly follow-up visits over 2 years, mothers reported that their child had diarrhea in the preceding 2 days in 1,156 (9.5%) visits. In a multivariable general linear model, the log10 of E. coli contamination of the preceding drinking water sample was associated with an increased prevalence of child diarrhea (prevalence ratio = 1.14, 95% CI = 1.05, 1.23). These data provide further evidence of the health benefits of improved microbiological quality of drinking water. © The American Society of Tropical Medicine and Hygiene.

  1. Drinking Water Sources with Surface Intakes from LDHH source data, Geographic NAD83, LOSCO (1999) [drinking_water_surface_intakes_LDHH_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset for 87 public drinking water sources with surface intakes. It was derived from a larger statewide general drinking water source dataset...

  2. Removal naturally occurring radionuclides from drinking water using a filter specifically designed for Drinking Water Treatment Plants.

    Science.gov (United States)

    Baeza, A; Salas, A; Guillén, J; Muñoz-Serrano, A; Ontalba-Salamanca, M Á; Jiménez-Ramos, M C

    2017-01-01

    The occurrence of naturally occurring radionuclides in drinking water can pose health hazards in some populations, especially taking into account that routine procedures in Drinking Water Treatment Plants (DWTPs) are normally unable to remove them efficiently from drinking water. In fact, these procedures are practically transparent to them, and in particular to radium. In this paper, the characterization and capabilities of a patented filter designed to remove radium from drinking water with high efficiency is described. This filter is based on a sandwich structure of silica and green sand, with a natural high content manganese oxide. Both sands are authorized by Spanish authorities to be used in Drinking Water Treatment Plants. The Mn distribution in the green sand was found to be homogenous, thus providing a great number of adsorption sites for radium. Kinetic studies showed that the 226Ra adsorption on green sand was influenced by the content of major cations solved in the treated water, but the saturation level, about 96-99%, was not affected by it. The physico-chemical parameters of the treated water were unaltered by the filter. The efficiency of the filter for the removal of 226Ra remained unchanged with large water volumes passed through it, proving its potential use in DWTP. This filter was also able to remove initially the uranium content due to the presence of Fe2O3 particles in it, although it is saturated faster than radium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Nitrates in drinking water and the risk of death from brain cancer: does hardness in drinking water matter?

    Science.gov (United States)

    Ho, Chi-Kung; Yang, Ya-Hui; Yang, Chun-Yuh

    2011-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and risk of death from brain cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the influence of nitrates on development of brain cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death from brain cancer and exposure to nitrates in drinking water in Taiwan. All brain cancer deaths of Taiwan residents from 2003 through 2008 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO₃-N), Ca, and Mg in drinking water was obtained from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO₃-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO₃-N exposure level was water with a NO₃-N exposure ≥ 0.38 ppm. No marked effect modification was observed due to Ca and Mg intake via drinking water on brain cancer occurrence.

  4. Trihalomethanes in drinking water and the risk of death from kidney cancer: does hardness in drinking water matter?

    Science.gov (United States)

    Liao, Yen-Hsiung; Chen, Chih-Cheng; Chang, Chih-Ching; Peng, Chiung-Yu; Chiu, Hui-Fen; Wu, Trong-Neng; Yang, Chun-Yuh

    2012-01-01

    The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of development of kidney cancer and (2) determine whether hardness levels in drinking water modify the effects of TTHM on risk of kidney cancer induction. A matched case-control study was used to investigate the relationship between the risk of death attributed to kidney cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All kidney cancer deaths in the 53 municipalities from 1998 through 2007 were obtained. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels and levels of hardness in drinking water were also collected. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM and hardness exposure via drinking water. Relative to individuals whose TTHM exposure level was water with a TTHM exposure ≥4.9 ppb. However, evidence of an interaction was noted between the use of soft water and drinking water TTHM concentrations. Increased knowledge of the interaction between hardness and TTHM levels in reducing risk of kidney cancer development will aid in public policy decision and establishing standards to prevent disease occurrence.

  5. Drinking-Water Standards and Regulations. Volume 2. Manual for 1982-88

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.K.; Wang, M.H.S.

    1988-04-10

    The following 11 important documents are compiled for Drinking Water Standards and Regulations: (1) U.S. Environmental Agency Water Programs, National Interim Primary Drinking Water Regulations; (2) New Jersey Safe Drinking Water Act; (3) Summary of New Jersey Drinking Water Standards; (4) U.S. Environmental Protection Agency Safe Drinking Water Act of 1986 Amendments; (5) U.S. Environmental Protection Agency National Primary Drinking Water Standards; (6) Canadian National Health and Welfare Drinking Water Quality Guidelines--Maximum Acceptable Concentrations; (7) U.S. Environmental Protection Agency, National Primary Drinking Water Regulations, Filtration and Disinfection Turbidity, Giardia Lamblia, Viruses, Legionella, and Heterotrophic Bacteria; (8) Public Water Supply Manual--Guide to the Safe Drinking Water Program; (9) Public Water Supply Manual--Emergency Response; (10) U.S. EPA Approved Krofta Chemicals; (11) NY-DOH Approved Krofta Chemicals.

  6. Protection Planning for Rural Centralized Drinking Water Source Areas in Chongqing

    OpenAIRE

    Hou, Xin

    2012-01-01

    Protection planning is made for rural centralized drinking water source areas according to current situations of rural drinking water and existing problems of centralized drinking water source areas in Chongqing, and in combination with survey, analysis and evaluation of urban-rural drinking water source areas in whole city. There are engineering measures and non-engineering measures, to guarantee drinking water security of rural residents, improve rural ecological environment, realize sustai...

  7. Microbial pathogens in source and treated waters from drinking water treatment plants in the US

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...

  8. Postexercise rehydration: potassium-rich drinks versus water and a sports drink.

    Science.gov (United States)

    Pérez-Idárraga, Alexandra; Aragón-Vargas, Luis Fernando

    2014-10-01

    Fluid retention, thirst quenching, tolerance, and palatability of different drinks were assessed. On 4 different days, 12 healthy, physically active volunteers (24.4 ± 3.2 years old, 74.75 ± 11.36 kg body mass (mean ± S.D)), were dehydrated to 2.10% ± 0.24% body mass by exercising in an environmental chamber (32.0 ± 0.4 °C dry bulb, 53.8 ± 5.2% relative humidity). Each day they drank 1 of 4 beverages in random order: fresh coconut water (FCW), bottled water (W), sports drink (SD), or potassium-rich drink (NEW); volume was 120% of weight loss. Urine was collected and perceptions self-reported for 3 h. Urine output was higher (p drink (p > 0.05). Fluid retention was higher for SD than W (68.2% ± 13.0% vs. 51.3% ± 12.6%, p = 0.013), but not for FCW and NEW (62.5% ± 15.4% and 65.9% ± 15.4%, p > 0.05). All beverages were palatable and well tolerated; none maintained a positive net fluid balance after 3 h, but deficit was greater in W versus SD (p = 0.001). FCW scored higher for sweetness (p = 0.03). Thirst increased immediately after exercise but returned to baseline after drinking a small volume (p sports drink with sodium.

  9. Drinking and Cleaning Water Use in a Dairy Cow Barn

    Directory of Open Access Journals (Sweden)

    Michael Krauß

    2016-07-01

    Full Text Available Water is used in dairy farming for producing feed, watering the animals, and cleaning and disinfecting barns and equipment. The objective of this study was to investigate the drinking and cleaning water use in a dairy cow barn. The water use was measured on a well-managed commercial dairy farm in North-East Germany. Thirty-eight water meters were installed in a barn with 176 cows and two milking systems (an automatic milking system and a herringbone parlour. Their counts were logged hourly over 806 days. On average, the cows in the automatic milking system used 91.1 (SD 14.3 L drinking water per cow per day, while those in the herringbone parlour used 54.4 (SD 5.3 L per cow per day. The cows drink most of the water during the hours of (natural and artificial light in the barn. Previously published regression functions of drinking water intake of the cows were reviewed and a new regression function based on the ambient temperature and the milk yield was developed (drinking water intake (L per cow per day = −27.937 + 0.49 × mean temperature + 3.15 × milk yield (R2 = 0.67. The cleaning water demand had a mean of 28.6 (SD 14.8 L per cow per day in the automatic milking system, and a mean of 33.8 (SD 14.1 L per cow per day in the herringbone parlour. These findings show that the total technical water use in the barn makes only a minor contribution to water use in dairy farming compared with the water use for feed production.

  10. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  11. Are Endocrine Disrupting Compounds a Health Risk in Drinking Water?

    Directory of Open Access Journals (Sweden)

    Ian R. Falconer

    2006-06-01

    Full Text Available There has been a great deal of international discussion on the nature and relevance of endocrine disrupting compounds in the environment. Changes in reproductive organs of fish and mollusks have been demonstrated in rivers downstream of sewage discharges in Europe and in North America, which have been attributed to estrogenic compounds in the effluent. The anatomical and physiological changes in the fauna are illustrated by feminization of male gonads. The compounds of greatest hormonal activity in sewage effluent are the natural estrogens 17β-estradiol, estrone, estriol and the synthetic estrogen ethinylestradiol. Androgens are also widely present in wastewaters. Investigations of anthropogenic chemical contaminants in freshwaters and wastewaters have shown a wide variety of organic compounds, many of which have low levels of estrogenic activity. In many highly populated countries the drinking water is sourced from the same rivers and lakes that are the recipients of sewage and industrial discharge. The River Thames which flows through London, England, has overall passed through drinking water and sewage discharge 5 times from source to mouth of the river. Under these types of circumstance, any accumulation of endocrine disrupting compounds from sewage or industry potentially affects the quality of drinking water. Neither basic wastewater treatment nor basic drinking water treatment will eliminate the estrogens, androgens or detergent breakdown products from water, due to the chemical stability of the structures. Hence a potential risk to health exists; however present data indicate that estrogenic contamination of drinking water is very unlikely to result in physiologically detectable effects in consumers. Pesticide, detergent and industrial contamination remain issues of concern. As a result of this concern, increased attention is being given to enhanced wastewater treatment in locations where he effluent is directly or indirectly in

  12. Consumer Perception and Preference of Drinking Water Sources.

    Science.gov (United States)

    Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed

    2016-11-01

    Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were asked for participants to provide information regarding household drinking water usage and patterns, opinion about tap water safety, taste and reasons for purchasing bottled water. For statistical analysis, analysis of variance (ANOVA) using SPSS version 16 was applied in this study. Results showed that demographic variables had a significant relationship with consumer satisfaction (p Consumer reasons for using domestic water softeners are: suitable taste (80%), easy availability (71%), economical (56%) and low health side effects (34%). According to these results it was clear that each consumer group, based on self-condition, prefers using a specific drinking water source.

  13. Occurrence and hygienic relevance of fungi in drinking water.

    Science.gov (United States)

    Kanzler, D; Buzina, W; Paulitsch, A; Haas, D; Platzer, S; Marth, E; Mascher, F

    2008-03-01

    Fungi, above all filamentous fungi, can occur almost everywhere, even in water. They can grow in such a quantity in water that they can affect the health of the population or have negative effects on food production. There are several reports of fungal growth in water from different countries, but to our knowledge none from Austria so far. The aim of this study was to gain an overview of the spectrum of filamentous fungi and yeasts in drinking water systems. Thirty-eight water samples from drinking water and groundwater were analysed. Fungi were isolated by using membrane filtration and plating method with subsequent cultivation on agar plates. The different taxa of fungi were identified using routine techniques as well as molecular methods. Fungi were isolated in all water samples examined. The mean value for drinking water was 9.1 CFU per 100 ml and for groundwater 5400 CFU per 100 ml. Altogether 32 different taxa of fungi were found. The taxa which occurred most frequently were Cladosporium spp., Basidiomycetes and Penicillium spp. (74.6%, 56.4% and 48.7%, respectively). This study shows that drinking water can be a reservoir for fungi, among them opportunists, which can cause infections in immunosuppressed patients.

  14. Assessment of the school drinking water supply and the water quality in Pingtung County, Taiwan.

    Science.gov (United States)

    Chung, Pei-Ling; Chung, Chung-Yi; Liao, Shao-Wei; Miaw, Chang-Ling

    2009-12-01

    In this study, a questionnaire survey of school drinking water quality of 42 schools in Pingtung County was conducted according to the water sources, treatment facilities, location of school as well as different grade levels. Among them, 45% of schools used tap water as the main source of drinking water, and the schools using groundwater and surface water as drinking water source account for 29% and 26%, respectively. The schools above senior high school level in the city used tap water as drinking water more than underground water, while the schools under junior high school level in the rural area used surface water as their main source of drinking water. The surface water was normally boiled before being provided to their students. The reverse osmosis system is a commonly used water treatment equipment for those schools using tap water or underground water. Drinking fountain or boiled water unit is widely installed in schools above senior high school level. For schools under junior high school level, a pipeline is stretched across the campus. Relative test shows that the unqualified rate of microbe in water is 26.2%. All parameters for physical and chemical properties and metal content had met the domestic standards except that the turbidity of schools under junior high school level using tap water is slightly higher than the standard value.

  15. Content of Fluorine in Drinking Water in FYR Macedonia

    Directory of Open Access Journals (Sweden)

    Carcev M.

    2014-03-01

    Full Text Available From all the methods applied in preventing dental caries, the most significant is the use of fluorides. Nowadays, 6 decades after its massive use, it can certainly be argued that it is the most efficient, cheapest and safest way of preventing dental caries, confirmed by more than 150 longitudinal studies. In order to determine the presence of fluorides in drinking water, in coordination with the Institute for Public Health of the FYR Macedonia in 2009, we conducted a research for determining the presence of fluorides in drinking water from the public water supply in the country.

  16. Nitrates in drinking water: relation with intensive livestock production

    OpenAIRE

    GIAMMARINO, M.; QUATTO, P.

    2015-01-01

    Summary Introduction. An excess of nitrates causes environmental pollution in receiving water bodies and health risk for human, if contaminated water is source of drinking water. The directive 91/676/ CEE [1] aims to reduce the nitrogen pressure in Europe from agriculture sources and identifies the livestock population as one of the predominant sources of surplus of nutrients that could be released in water and air. Directive is concerned about cattle, sheep, pigs and poultry and their territ...

  17. Microbiological quality of drinking water from dispensers in Italy

    OpenAIRE

    Anastasi Daniela; Amiranda Ciro; Arnese Antonio; Cavallotti Ivan; Liguori Giorgio; Angelillo Italo F

    2010-01-01

    Abstract Background Water coolers are popular in office buildings and commercial stores and the quality of this source of drinking water has the potential to cause waterborne outbreaks, especially in sensitive and immunocompromised subjects. The aim of this study was to determine the quality of water plumbed in coolers from commercial stores in comparison with tap water in Italy. Methods For each sample, microbial parameters and chemical indicators of contamination were evaluated and informat...

  18. The growth of bacteria on organic compounds in drinking water

    NARCIS (Netherlands)

    Kooij, van der D.

    1984-01-01

    Growth ("regrowth") of bacteria In drinking water distribution systems results in a deterioration of the water quality. Regrowth of chemoheterotrophic bacteria depends on the presence of organic. compounds that serve as a nutrient source for these bacteria. A batch-culture technique was

  19. Drinking water quality assessment of Iyinna Spring, Umuariaga ...

    African Journals Online (AJOL)

    Water samples were collected from Iyinna Spring in Umuariaga, Ikwuano Local Government Area (LGA), Abia State, Nigeria from three stations between January and March 2015 to evaluate its portability. The samples were compared with Nigeria Drinking Water Quality Standard and World Health Organization (WHO) ...

  20. Dissolved nitrogen in drinking water resources of farming ...

    African Journals Online (AJOL)

    Administrator

    of these potentially toxic substances were below WHO acceptable limits for surface and groundwaters, indicating .... waste. All surface water samples showed a low level of NO3-N throughout the year when compared to limits set for drinking water standards by the WHO. ..... Acute and chronic toxicity of ammonium nitrate.

  1. Assessment of microbiological quality of drinking water treated with ...

    African Journals Online (AJOL)

    The quality of drinking water at the point of delivery to the consumer is crucial in safeguarding consumer's health. The current study was undertaken to assess the changes in residual chlorine content with distance in water distribution system in Gwalior city of Madhya Pradesh and assess its relation with the occurrence of ...

  2. Effects of forest cover on drinking water treatment costs

    Science.gov (United States)

    Travis Warziniack; Chi Ho Sham; Robert Morgan; Yasha Feferholtz

    2016-01-01

    This paper explores the relationship between forest cover and drinking water treatment costs using results from a 2014 survey by the American Water Works Association (AWWA) that targeted utilities in forested ecoregions in the United States. On the basis of the data collected, there is a negative relationship between forest cover and turbidity, i.e. as forest...

  3. A drinking water quality framework for South Africa

    African Journals Online (AJOL)

    Being the lead 'early warning' authority and execution agents for medical intervention under emergency .... emergency response model comprising three alert levels to respond to acute drinking water quality failures: • Alert Level I: Routine problems including minor disrup- tions to the water system and single sample ...

  4. Microbiological and Physicochemical Properties of Drinking Water at ...

    African Journals Online (AJOL)

    Quality drinking water is of basic importance to human physiology and man's continued existence depends much on its availability. Water samples from different outlets and homes in Ado Odo - Ota Local Government, Ogun state, Nigeria were analyzed for their microbiological and physiochemical properties. Total viable ...

  5. Developments in Biotechnology of Relevance to Drinking Water Preparation

    NARCIS (Netherlands)

    Janssen, Dick B.; Witholt, Bernard

    1985-01-01

    This paper discusses strategies to increase the feasibility of microorganisms for the removal of toxic xenobiotics from waste water and drinking water. Based on the principles of adaptational mutations and genetic exchange of catabolic activities, it becomes possible to select and engineer

  6. physico-chemical and bacteriological analyses of drinking water

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... facilities, creation of awareness among the people enforcement by regulatory bodies and regular monitoring of drinking water quality, its compliance with the standards and its impact on the health of the people of Ibeno Local Government Area. Keywords: physicochemical, heavy metals, water quality, ...

  7. Toxicological relevance of emerging contaminants for drinking water quality

    NARCIS (Netherlands)

    Schriks, M.; Heringa, M.B.; van der Kooij, M.M.E.; de Voogt, P.; van Wezel, A.P.

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we

  8. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    Science.gov (United States)

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  9. Suitability of groundwater and surface water for drinking and ...

    African Journals Online (AJOL)

    Zio River basin plays a particular importance as a potential water resource for irrigation, drinking and for other various purposes relating to socioeconomic activities. These socioeconomic activities considerably change water quality and quantity in this basin. An investigation was carried out by collecting 52 groundwater ...

  10. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. [Investigation on contamination of Cryptosporidium and Giardia in drinking water and environmental water in Shanghai].

    Science.gov (United States)

    Zhang, Xiao-Ping; He, Yan-Yan; Zhu, Qian; Ma, Xiao-Jiang; Cai, Li

    2010-12-30

    To understand the contamination status of Cryptosporidium sp. and Giardia lamblia in drinking water, source water and environmental water in Shanghai. All water samples collected from drinking water, source water and environmental water were detected by a procedure of micromembrane filtration, immune magnetic separation (IMS), and immunofluorescent assay (IFA). Cryptosporidium oocysts and Giardia cysts were not found in 156 samples of the drinking water including finished water, tap water, or pipe water for directly drinking in communities. Among 70 samples either source water of water plants (15 samples), environmental water from Huangpu River(25), canal water around animal sheds(15), exit water from waste-water treatment plants(9), or waste water due to daily life(6), Cryptosporidium oocysts were detected in 1(6.7%), 2(8.0%), 7(46.7%), 1(11.1%), and 1(16.7%) samples, respectively; and Giardia cysts were detected in 1(6.7%), 3(12.0%), 6 (40.0%), 2(22.2%), and 2(33.3%), respectively. The positive rate of Cryptosporidium oocysts and Giardia cysts was 17.1% (12/70) and 20.0% (14/70), respectively. No Cryptosporidium oocysts and Giardia cysts have been detected in drinking water, but found in source water and environmental water samples in Shanghai.

  12. Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters.

    Science.gov (United States)

    Kamata, Motoyuki; Asami, Mari; Matsui, Yoshihiko

    2017-07-01

    Triketone herbicides are becoming popular because of their herbicidal activity against sulfonylurea-resistant weeds. Among these herbicides, tefuryltrione (TFT) is the first registered herbicide for rice farming, and recently its distribution has grown dramatically. In this study, we developed analytical methods for TFT and its degradation product 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA). TFT was found frequently in surface waters in rice production areas at concentrations as high as 1.9 μg/L. The maximum observed concentration was lower than but close to 2 μg/L, which is the Japanese reference concentration of ambient water quality for pesticides. However, TFT was not found in any drinking waters even though the source waters were purified by conventional coagulation and filtration processes; this was due to chlorination, which transforms TFT to CMTBA. The conversion rate of TFT to CMBA on chlorination was almost 100%, and CMTBA was stable in the presence of chlorine. Moreover, CMTBA was found in drinking waters sampled from household water taps at a similar concentration to that of TFT in the source water of the water purification plant. Although the acceptable daily intake and the reference concentration of CMTBA are unknown, the highest concentration in drinking water exceeded 0.1 μg/L, which is the maximum allowable concentration for any individual pesticide and its relevant metabolites in the European Union Drinking Directive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Updating national standards for drinking-water: a Philippine experience.

    Science.gov (United States)

    Lomboy, M; Riego de Dios, J; Magtibay, B; Quizon, R; Molina, V; Fadrilan-Camacho, V; See, J; Enoveso, A; Barbosa, L; Agravante, A

    2017-04-01

    The latest version of the Philippine National Standards for Drinking-Water (PNSDW) was issued in 2007 by the Department of Health (DOH). Due to several issues and concerns, the DOH decided to make an update which is relevant and necessary to meet the needs of the stakeholders. As an output, the water quality parameters are now categorized into mandatory, primary, and secondary. The ten mandatory parameters are core parameters which all water service providers nationwide are obligated to test. These include thermotolerant coliforms or Escherichia coli, arsenic, cadmium, lead, nitrate, color, turbidity, pH, total dissolved solids, and disinfectant residual. The 55 primary parameters are site-specific and can be adopted as enforceable parameters when developing new water sources or when the existing source is at high risk of contamination. The 11 secondary parameters include operational parameters and those that affect the esthetic quality of drinking-water. In addition, the updated PNSDW include new sections: (1) reporting and interpretation of results and corrective actions; (2) emergency drinking-water parameters; (3) proposed Sustainable Development Goal parameters; and (4) standards for other drinking-water sources. The lessons learned and insights gained from the updating of standards are likewise incorporated in this paper.

  14. ARSENIC IN DRINKING WATER SUPPLY WELLS: A MULTI ...

    Science.gov (United States)

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (µg/L) occur in numerous aquifers around the United States. One such aquifer is the Central Oklahoma aquifer, which supplies drinking water to numerous communities in central Oklahoma. Concentrations as high as 230 µg/L have been reported in some drinking water supply wells from this aquifer. The city of Norman, like most other affected cities, is actively seeking a cost-effective solution to the arsenic problem. Only six of the city’s 32 wells exceeded the old MCL of 50 µg/L. With implementation of the new MCL this year, 18 of the 32 wells exceed the allowable concentration of arsenic. Arsenic-bearing shaly sandstones appear to be the source of the arsenic. It may be possible to isolate these arsenic-bearing zones from water supply wells, enabling production of water that complies with drinking water standards. It is hypothesized that geologic mapping together with detailed hydrogeochemical investigations will yield correlations which predict high arsenic occurrence for the siting of new drinking water production wells. More data and methods to assess the specific distribution, speciation, and mode of transport of arsenic in aquifers are needed to improve our predictions for arsenic occurrence in water supply wells. Research is also needed to assess whether we can ret

  15. Beyond Flint: National Trends in Drinking Water Quality Violations

    Science.gov (United States)

    Allaire, M.; Wu, H.; Lall, U.

    2016-12-01

    Ensuring safe water supply for communities across the U.S. represents an emerging challenge. Aging infrastructure, impaired source water, and strained community finances may increase vulnerability of water systems to quality violations. In the aftermath of Flint, there is a great need to assess the current state of U.S. drinking water quality. How widespread are violations? What are the spatial and temporal patterns in water quality? Which types of communities and systems are most vulnerable? This is the first national assessment of trends in drinking water quality violations across several decades. In 2015, 9% of community water systems violated health-related water quality standards. These non-compliant systems served nearly 23 million people. Thus, the challenge of providing safe drinking water extends beyond Flint and represents a nationwide concern. We use a panel dataset that includes every community water system in the United States from 1981 to 2010 to identify factors that lead to regulatory noncompliance. This study focuses on health-related violations of the Safe Drinking Water Act. Lasso regression informed selection of appropriate covariates, while logistic regressions modeled the probability of noncompliance. We find that compliance is positively associated with private ownership, purchased water supply, and greater household income. Yet, greater concentration of utility ownership and violations in prior years are associated with a higher likelihood of violation. The results suggest that purchased water contracts, which are growing among small utilities, could serve as a way to improve regulatory compliance in the future. However, persistence of violations and ownership concentration deserve attention from policymakers. Already, the EPA has begun to prioritize enforcement of persistent violators. Overall, as the revitalization of U.S. water infrastructure becomes a growing priority area, results of this study are intended to inform investment and

  16. Drinking water consumption patterns in Canadian communities (2001-2007).

    Science.gov (United States)

    Roche, S M; Jones, A Q; Majowicz, S E; McEwen, S A; Pintar, K D M

    2012-03-01

    A pooled analysis of seven cross-sectional studies from Newfoundland and Labrador, Waterloo and Hamilton Regions, Ontario and Vancouver, East Kootenay and Northern Interior Regions, British Columbia (2001 to 2007) was performed to investigate the drinking water consumption patterns of Canadians and to identify factors associated with the volume of tap water consumed. The mean volume of tap water consumed was 1.2 L/day, with a large range (0.03 to 9.0 L/day). In-home water treatment and interactions between age and gender and age and bottled water use were significantly associated with the volume of tap water consumed in multivariable analyses. Approximately 25% (2,221/8,916) of participants were classified as bottled water users, meaning that 75% or more of their total daily drinking water intake was bottled. Approximately 48.6% (4,307/8,799) of participants used an in-home treatment method to treat their tap water for drinking purposes. This study provides a broader geographic perspective and more current estimates of Canadian water consumption patterns than previous studies. The identified factors associated with daily water consumption could be beneficial for risk assessors to identify individuals who may be at greater risk of waterborne illness.

  17. Sources of drinking water in a pediatric population.

    Science.gov (United States)

    Jadav, Urvi G; Acharya, Bhavini S; Velasquez, Gisela M; Vance, Bradley J; Tate, Robert H; Quock, Ryan L

    2014-01-01

    The purpose of this study was to determine the primary sources of water used for consumption and cooking by the patients of a university-based pediatric dental practice. A simple, prewritten questionnaire-consisting of seven questions and available in English and Spanish-was conducted verbally with the caregivers of 123 pediatric patients during a designated timeframe. Analysis of responses included descriptive statistics and a chi-square test for a single proportion. Nonfiltered tap water accounted for the primary drinking water source in only 10 percent of the respondents. Firty-two percent of the respondents selected bottled water as the primary source of drinking water, and 24 percent selected vended water stations as a primary drinking water source. Nonfiltered tap water was much more likely to be utilized in cooking (58 percent). The majority of the patients in this study's pediatric dental practice do not consume fluoridated tap water. With the vast majority of the patients primarily consuming bottled or vended water, these patients are likely missing out on the caries-protective effects of water fluoridation.

  18. Detection and persistence of fecal Bacteroidales as water quality indicators in unchlorinated drinking water

    DEFF Research Database (Denmark)

    Saunders, Aaron Marc; Kristiansen, Anja; Lund, Marie Braad

    2009-01-01

    doi:10.1016/j.syapm.2008.11.004 The results of this study support the use of fecal Bacteroidales qPCR as a rapid method to complement traditional, culture dependent, water quality indicators in systems where drinking water is supplied without chlorination or other forms of disinfection. A SYBR...... green based, quantitative PCR assay was developed to determine the concentration of fecal Bacteroidales 16S rRNA gene copies. The persistence of a Bacteroides vulgatus pure culture and fecal Bacteroidales from a wastewater inoculum was determined in unchlorinated drinking water at10°C. B. vulgatus 16S r......RNA gene copies persisted throughout the experimental period (200 days) in sterile drinking water but decayed faster in natural drinking water, indicating that the natural microbiota accelerated decay. In a simulated fecal contamination of unchlorinated drinking water, the decay of fecal Bacteroidales 16S...

  19. Report: EPA Lacks Internal Controls to Prevent Misuse of Emergency Drinking Water Facilities

    Science.gov (United States)

    Report #11-P-0001, October 12, 2010. EPA cannot accurately assess the risk of public water systems delivering contaminated drinking water from emergency facilities because of limitations in Safe Drinking Water Information System (SDWIS) data management.

  20. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Poster)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  1. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Abstract)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  2. Asellus aquaticus and other invertebrates in drinking water distribution systems

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine

    Few if any drinking water distribution systems worldwide are completely free of invertebrate animals and presumably it has been that way since the very first distribution system was constructed. Invertebrates visible to the naked eye cause consumer complaints and are considered a sign of bad...... hygiene. Whereas invertebrates in drinking water are known to host parasites in tropical countries they are largely regarded an aesthetical problem in temperate countries. Publications on invertebrate distribution in Danish systems have been completely absent and while reports from various countries have...... described the occurrence of invertebrates in drinking water there have been a knowledge gap concerning a quantitative approach to the controlling parameters of their distribution and occurrence. This thesis describes the distribution and controlling parameters of invertebrates with special emphasis...

  3. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  4. Pathogens in drinking water: Are there any new ones

    Energy Technology Data Exchange (ETDEWEB)

    Reasoner, D.J.

    1993-01-01

    Since 1976 three newly recognized human pathogens have become familiar to the drinking water industry as waterborne disease agents. These are: the legionnaires disease agent, Legionella pneumophila and related species; and two protozoan pathogens, Giardia lamblia and Cryptosporidium parvum, both of which form highly disinfectant resistant cysts that are shed in the feces of infected individuals. The question frequently arises - are there other emerging waterborne pathogens that may pose a human health problem that the drinking water industry will have to deal with. The paper will review the current state of knowledge of the occurrence and incidence of pathogens and opportunistic pathogens other than Legionella, Giardia and Cryptosporidium in treated and untreated drinking water. Bacterial agents that will be reviewed include Aeromonas, Pseudomonas, Campylobacter, Mycobacterium, Yersinia and Plesiomonas. Aspects of detection of these agents including detection methods and feasibility of monitoring will be addressed.

  5. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  6. Drinking water treatment technologies in Europe : State of the art - vulnerabilities - research needs

    NARCIS (Netherlands)

    Van der Hoek, J.P.; Bertelkamp, C.; Verliefde, A.R.D.; Singhal, N.

    2012-01-01

    Eureau is the European Federation of National Associations of Water and Wastewater Services. At the request of Eureau Commission 1, dealing with drinking water, a survey was made focusing on raw drinking water sources and drinking water treatment technologies applied in Europe. Raw water sources

  7. 77 FR 61027 - Notice of Lodging of Proposed Consent Decree Under the Clean Water Act and Safe Drinking Water Act

    Science.gov (United States)

    2012-10-05

    ... of Lodging of Proposed Consent Decree Under the Clean Water Act and Safe Drinking Water Act On... Clean Water Act and Safe Drinking Water Act at mobile home parks operated by defendants in Pennsylvania, Delaware and Virginia. The defendants treat sewage and provide drinking water at a number of its mobile...

  8. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    Science.gov (United States)

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to

  9. Onsite defluoridation system for drinking water treatment using calcium carbonate.

    Science.gov (United States)

    Wong, Elaine Y; Stenstrom, Michael K

    2017-08-28

    Fluoride in drinking water has several effects on teeth and bones. At concentrations of 1-1.5 mg/L, fluoride can strengthen enamel, improving dental health, but at concentrations above 1.5 to 4 mg/L can cause dental fluorosis. At concentrations of 4-10 mg/L, skeletal fluorosis can occur. There are many areas of the world that have excessive fluoride in drinking water, such as China, India, Sri Lanka, and the Rift Valley countries in Africa. Treatment solutions are needed, especially in poor areas where drinking water treatment plants are not available. On-site or individual treatment alternatives can be attractive if constructed from common materials and if simple enough to be constructed and maintained by users. Advanced on-site methods, such as under sink reserve osmosis units, can remove fluoride but are too expensive for developing areas. This paper investigates calcium carbonate as a cost effective sorbent for an onsite defluoridation drinking water system. Batch and column experiments were performed to characterize F - removal properties. Fluoride sorption was described by a Freundlich isotherm model, and it was found that the equilibrium time was approximately 3 h. Calcium carbonate was found to have comparable F - removal abilities as the commercial ion exchange resins and possessed higher removal effectiveness compared to calcium containing eggshells and seashells. It was also found that the anion Cl- did not compete with F - at typical drinking water concentrations, having little impact on the effectiveness of the treatment system. A fluoride removal system is proposed that can be used at home and can be maintained by users. Through this work, we can be a step closer to bringing safe drinking water to those that do not have access to it. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Testing the robustness of two water distribution system layouts under changing drinking water demand

    NARCIS (Netherlands)

    Agudelo-Vera, Claudia; Blokker, M; Vreeburg, J; Vogelaar, H.; Hillegers, S; van der Hoek, J.P.

    2016-01-01

    A drinking water distribution system (DWDS) is a critical and a costly asset with a long lifetime. Drinking water demand is likely to change in the coming decades. Quantifying these changes involves large uncertainties. This paper proposes a stress test on the robustness of existing DWDS under

  11. EVALUATION OF EFFECTIVENESS OF HOUSEHOLD DRINKING WATER FILTRATION

    Directory of Open Access Journals (Sweden)

    Karolina Jezierska

    2014-10-01

    Full Text Available The aim of this study was to analyze the effectiveness of household drinking water filtration. This article demonstrates the possibilities of using study on the reaction of ascorbic acid degradation in aqueous solutions to develop a new method for determining the effectiveness of household drinking water filtration. Based on the measurements of absorbance of ascorbic acid a new parameters WCW (Coeffi cient of Water Purity and SF (Filtration Degree were defined. Correlations between the SF and the amount of filtered water (filter usage were investigated. With the filter usage decreasing effectiveness of calcium ions removal and drop of differences in conductivity between the tap and filtered water were observed. SF decreases proportionally to the filter usage and therefore the proposed method can be an effective tool to determine the effectiveness of domestic water filters.

  12. Latest Technologies and Equipment to Obtain High Quality Drinking Water

    Directory of Open Access Journals (Sweden)

    Goncharuk, V.V.

    2015-01-01

    Full Text Available A principally new concept of providing the Ukrainian population with quality drinking water have been proposed. It is based on a system of autonomous complexes for water purification in places of direct consumption. Water treatment autonomous complexes for collective and individual use with biotesting and analytical quality control of drinking water have been developed. The choice of the cleaning methods of tap and other waters up to the quality of genetic safe is performed in accordance with its composition and is based on a block concept that provides the possibility of varying the number of units depending on the composition of the source water. The proposed technology and equipment at cost and complex problems to be solved have no analogues in the world. Over thousand of modular installations «Vega» and disinfecting vehicles «Promin» are implemented in many settlement in all regions of Ukraine.

  13. [Fluoridation of drinking water, why is it needed?].

    Science.gov (United States)

    Zusman, S P; Natapov, L; Ramon, T

    2004-01-01

    Dental caries is a widespread disease. It causes irreversible damage, pain and considerable expense. Fluoride is the only known substance that raises the tooth's resistance to acid attack. Natural drinking waters contain fluoride at different concentration. The most effective method of fluoride administration to the community level is by adjustng the fluoride concentration in the drinking water to about 1 part per million. To describe the mode of action of fluoride, methods of administration and to describe water fluoridation, advantages and disadvantages. Fluoridation of drinking water started in 1945 in the world and in 1981 in Israel. Today more then 300 million people in some 60 countries enjoy the defending effect of fluoride in drinking water. This is the most effective method for decreasing incidence of caries, as well as being cost effective. Over the years there were many attempts to 'blame' fluoridation with negative side effects to human health. Till today, none of the allegations passed scientific scrutiny. There is overwhelming scientific support for the Regulations that oblige the Water supplier to adjust fluoride levels to 1 ppm in every town or municipality with more then 5,000 inhabitants.

  14. Fluoride concentration in community water and bottled drinking water: a dilemma today.

    Science.gov (United States)

    Dhingra, S; Marya, C M; Jnaneswar, A; Kumar, H

    2013-01-01

    Because of the potential for contamination of municipal water supplies, people appear to be turning to alternative sources for their pure drinking water. The present study analyzed the fluoride concentration in community water and bottled drinking water sold in Faridabad city. A comparative evaluation of fluoride content in community water supply and bottled drinking water was done using ion-selective electrode method. The community water samples were collected from six different areas (i.e. north zone, south zone, east zone, west zone and central zone) in the city from public health water supply taps while bottled drinking water samples were randomly picked from grocery shops or supermarkets. The fluoride concentration in the community water supply in this study ranges from 0.11 to 0.26 mg/L with mean fluoride concentration of 0.17 mg/L. The mean concentration of fluoride in bottled drinking water was 0.06 mg/L. The differences observed between mean of two water samples was statistically significant. The results obtained from the present study clearly state that the fluoride concentration was insufficient in community water supply from all the areas and also was deficient in bottled drinking water sold in Faridabad city. So, Alternative sources of fluorides should be supplemented for optimal dental benefits from the use of fluoride.

  15. Recent advances in drinking water disinfection: successes and challenges.

    Science.gov (United States)

    Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James

    2013-01-01

    Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality

  16. A brief overview on radon measurements in drinking water.

    Science.gov (United States)

    Jobbágy, Viktor; Altzitzoglou, Timotheos; Malo, Petya; Tanner, Vesa; Hult, Mikael

    2017-07-01

    The aim of this paper is to present information about currently used standard and routine methods for radon analysis in drinking waters. An overview is given about the current situation and the performance of different measurement methods based on literature data. The following parameters are compared and discussed: initial sample volume and sample preparation, detection systems, minimum detectable activity, counting efficiency, interferences, measurement uncertainty, sample capacity and overall turnaround time. Moreover, the parametric levels for radon in drinking water from the different legislations and directives/guidelines on radon are presented. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Gross alpha radioactivity of drinking water in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Sajo-Bohus, L.; Gomez, J.; Greaves, E.D. [Universidad Simon Bolivar, Caracas (Venezuela). Dept. de Quimica; Capote, T. [Universidad Centro Occidental Lisandro Alvarado (Venezuela); Herrera, O. [Ministerior de Sanidad y Asistencia Social, Caracas (Venezuela); Salazar, V. [Ministerio del Ambiente y los Recursos Naturales Renovables, Caracas (Venezuela); Smith, A. [National Air and Radiation Environmental Lab., Montgomery, AL (United States)

    1997-07-01

    Bottled mineral water is consumed by a large population in Venezuela. The alpha emitters concentration was measured in samples of bottled water and water springs collected near the surface. Approximately 30% of the total mineral water suppliers was monitored. a database on natural and artificial radioactivity in drinking water was produced. Results indicate that 54% of the waters sampled contain a total alpha radioactivity of less than 0.185 Bql{sup -1} and only 12% above 0.37 Bql{sup -1}. Our results revealed a total annual dose of 2.3 mSv year{sup -1}. (author).

  18. Assessing the microbial quality of improved drinking water sources: results from the Dominican Republic.

    Science.gov (United States)

    Baum, Rachel; Kayser, Georgia; Stauber, Christine; Sobsey, Mark

    2014-01-01

    Millennium Development Goal Target 7c (to halve between 1990 and 2015 the proportion of the global population without sustainable access to safe drinking water), was celebrated as achieved in 2012. However, new studies show that we may be prematurely celebrating. Access to safe drinking water may be overestimated if microbial water quality is considered. The objective of this study was to examine the relationship between microbial drinking water quality and drinking water source in the Puerto Plata region of the Dominican Republic. This study analyzed microbial drinking water quality data from 409 households in 33 communities. Results showed that 47% of improved drinking water sources were of high to very-high risk water quality, and therefore unsafe for drinking. This study provides evidence that the current estimate of safe water access may be overly optimistic, and microbial water quality data are needed to reliably assess the safety of drinking water.

  19. Water quality modeling in the dead end sections of drinking water (Supplement)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to...

  20. Burden of Cancer from Chemicals in North Carolina Drinking Water

    Science.gov (United States)

    DeFelice, N.

    2013-12-01

    Monitoring programs required by the U.S. Safe Drinking Water Act (SDWA) currently do not consider potential differences in chemical exposure patterns and human health risks. Rather, U.S. agencies establish monitoring requirements based on the type of water system and the number of people the system serves; within categories of systems, all potentially carcinogenic chemicals must be monitored with equal frequency, regardless of the potential level of risk these chemicals pose. To inform future policies concerning contaminant monitoring under the SDWA, we examined the potential health threats in North Carolina from the 34 carcinogenic chemicals covered under the SDWA. We analyzed reported contaminant concentration data for all community water systems (CWSs) for the years 1998-2011. We employed an attributable fraction approach that uses probabilistic inputs to evaluate the percent of cancer cases that may be attributable to chemical exposure in drinking water. We found that cancer risks are dominated by 3 of the 34 chemicals and chemical classes (total trihalomethanes (TTHMs), arsenic and gross alpha particles); all other chemicals contribute to less than one cancer case per year in the state. We showed that around 840 cases of cancer annually (2% of annual cancer cases) are attributable to contaminated drinking water. The majority cases are due to TTHMs, arsenic and gross alpha particles, which contributed 810 (95% CI 560-1,280), 14 (95% CI 3 -32), and 13 (95% CI 2-48) cases, respectively. Sixty-seven counties had annual cancer rates higher than 1 in 10,000 attributable to community water systems. Annual cancer rate attributable to chemicals found in drinking water that are regulated under the safe drinking water act.

  1. Drinking Water (Environmental Health Student Portal)

    Science.gov (United States)

    ... Chemicals Home Mercury Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases Impact on Weather Health Effects Take Action Water Pollution Water Pollution Home Chemicals and Pollutants Natural Disasters ...

  2. Exploring Perceptions and Behaviors about Drinking Water in Australia and New Zealand: Is It Risky to Drink Water, When and Why?

    Directory of Open Access Journals (Sweden)

    Andrea Crampton

    2016-02-01

    Full Text Available Consumers in most developed countries, including Australia and New Zealand, presume their drinking water is safe. How social perceptions about drinking water are formed, however, remains inadequately explored in the research literature. This research contributes exploratory insights by examining factors that affect consumer perceptions and behaviors. Individual perceptions of drinking water quality and actions undertaken to mitigate perceived risks were collected during 183 face-to-face interviews conducted at six research sites. Qualitative thematic analysis revealed the majority did not consider drinking water a “risky” activity, trusted water management authorities to manage all safety issues and believed self-evaluation of drinking water’s taste and appearance were sufficient measures to ensure safe consumption. Quantitatively, significant relationships emerged between water quality perceptions and sex, employment status, drinking water treatment and trust in government to provide safe water. Expert advice was rarely sought, even by those who believed drinking tap water posed some health risks. Generational differences emerged in media usage for drinking water advice. Finally, precautionary measures taken at home and abroad often failed to meet national drinking water guidelines. Three major conclusions are drawn: a. broad lack of awareness exists about the most suitable and safe water treatment activities, as well as risks posed; b. health literacy and interest may be improved through greater consumer involvement in watershed management; and c. development of health campaigns that clearly communicate drinking water safety messages in a timely, relevant and easily understandable fashion may help mitigate actual risks and dispel myths.

  3. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    Science.gov (United States)

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of slightly acidic electrolysed drinking water on mice.

    Science.gov (United States)

    Inagaki, Hideaki; Shibata, Yoshiko; Obata, Takahiro; Kawagoe, Masami; Ikeda, Katsuhisa; Sato, Masayoshi; Toida, Kazumi; Kushima, Hidemi; Matsuda, Yukihisa

    2011-10-01

    Slightly acidic electrolysed (SAE) water is a sanitizer with strong bactericidal activity due to hypochlorous acid. We assessed the safety of SAE water as drinking water for mice at a 5 ppm total residual chlorine (TRC) concentration to examine the possibility of SAE water as a labour- and energy-saving alternative to sterile water. We provided SAE water or sterile water to mice for 12 weeks, during which time we recorded changes in body weight and weekly water and food intakes. At the end of the experiment, all of the subject animals were sacrificed to assess serum aspartate aminotransferase, alanine aminotransferase and creatinine levels and to examine the main organs histopathologically under a light microscope. In addition, we investigated the bacteria levels of both types of water. We found no difference in functional and morphological health condition indices between the groups. Compared with sterile water, SAE water had a relatively higher ability to suppress bacterial growth. We suggest that SAE water at 5 ppm TRC is a safe and useful alternative to sterile water for use as drinking water in laboratory animal facilities.

  5. CO2 emissions from German drinking water reservoirs.

    Science.gov (United States)

    Saidi, Helmi; Koschorreck, Matthias

    2017-03-01

    Globally, reservoirs are a significant source of atmospheric CO2. However, precise quantification of greenhouse gas emissions from drinking water reservoirs on the regional or national scale is still challenging. We calculated CO2 fluxes for 39 German drinking water reservoirs during a period of 22years (1991-2013) using routine monitoring data in order to quantify total emission of CO2 from drinking water reservoirs in Germany and to identify major drivers. All reservoirs were a net CO2 source with a median flux of 167gCm-2y-1, which makes gaseous emissions a relevant process for the carbon budget of each reservoir. Fluxes varied seasonally with median fluxes of 13, 48, and 201gCm-2y-1 in spring, summer, and autumn respectively. Differences between reservoirs appeared to be primarily caused by the concentration of CO2 in the surface water rather than by the physical gas transfer coefficient. Consideration of short term fluctuations of the gas transfer coefficient due to varying wind speed had only a minor effect on the annual budgets. High CO2 emissions only occurred in reservoirs with pHemissions correlated exponentially with pH but not with dissolved organic carbon (DOC). There was significant correlation between land use in the catchment and CO2 emissions. In total, German drinking water reservoirs emit 44000t of CO2 annually, which makes them a negligible CO2 source (emissions) in Germany. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Moulds and yeasts in bottled water and soft drinks].

    Science.gov (United States)

    Ancasi, E G; Carrillo, L; Benítez Ahrendts, M R

    2006-01-01

    Some damaged cartons of soft drinks and carbonated water were analyzed to detect the microorganisms that caused the damage. The contaminants of sugar used in the production of one of the drinks were also studied. The methods of Déak & Beuchat and Pitt & Hocking were used for the identification of yeasts and moulds, respectively. The agents of the spoilage of soft drinks were Debaryomyces hansenii, Debaryomyces polymorphus, Galactomyces geotrichum, Metschnikowia pulcherrima, Mucor circinelloides, Pichia anomala, Pichia jadinii, Pichia subpelliculosa, Rhodotorula glutinis and Zygosaccharomyces bailii. The microorganisms found in sugar were Aspergillus niger, Aspergillus penicilloides, Aspergillus versicolor, Cladosporium sphaerospermum, Mucor racemosus, P. anomala and Rhizopus stolonifer. Paecilomyces fulvus and Penicillium glabrum were observed in carbonated water.

  7. Nitrates in drinking water: relation with intensive livestock production.

    Science.gov (United States)

    Giammarino, M; Quatto, P

    2015-01-01

    An excess of nitrates causes environmental pollution in receiving water bodies and health risk for human, if contaminated water is source of drinking water. The directive 91/676/ CEE [1] aims to reduce the nitrogen pressure in Europe from agriculture sources and identifies the livestock population as one of the predominant sources of surplus of nutrients that could be released in water and air. Directive is concerned about cattle, sheep, pigs and poultry and their territorial loads, but it does not deal with fish farms. Fish farms effluents may contain pollutants affecting ecosystem water quality. On the basis of multivariate statistical analysis, this paper aims to establish what types of farming affect the presence of nitrates in drinking water in the province of Cuneo, Piedmont, Italy. In this regard, we have used data from official sources on nitrates in drinking water and data Arvet database, concerning the presence of intensive farming in the considered area. For model selection we have employed automatic variable selection algorithm. We have identified fish farms as a major source of nitrogen released into the environment, while pollution from sheep and poultry has appeared negligible. We would like to emphasize the need to include in the "Nitrate Vulnerable Zones" (as defined in Directive 91/676/CEE [1]), all areas where there are intensive farming of fish with open-system type of water use. Besides, aquaculture open-system should be equipped with adequate downstream system of filtering for removing nitrates in the wastewater.

  8. 78 FR 73206 - Notice of Lodging of Proposed Consent Decree Under the Safe Drinking Water Act

    Science.gov (United States)

    2013-12-05

    ... of Lodging of Proposed Consent Decree Under the Safe Drinking Water Act On November 23, 2013 the... requirements of the Safe Drinking Water Act and the National Primary Drinking Water Regulations (``NPDWRs...-142-F. The action concerns the public water system the defendant, Bryan Pownall (``Defendant'') uses...

  9. Use of non-carbonated soft drinks to provide safe drinking water.

    Science.gov (United States)

    Gracey, M; Burke, V; Robinson, J

    1985-03-01

    Non-carbonated, low-calorie soft drink concentrates (cordials), when diluted according to manufacturers' instructions, had significant antibacterial effects in vitro. Bacteria affected include Vibrio cholerae, Aeromonas hydrophila, Shigella sonnei, Salmonella typhimurium and Escherichia coli. With vibrios, bacterial counts were reduced from 10(6)/ml to undetectable numbers in less than 10 min. Escherichia coli in an initial concentration of 10(6)/ml became undetectable after incubation for 1 h with one brand of cordial. Naturally contaminated water can be rendered potable by incubation with cordials at room temperature for 1 h. This may be a way to reduce the risk of water-borne diarrhoea, particularly where the cleanliness of drinking waters cannot be otherwise assured, for example when making up oral rehydration fluids and for travellers in high-risk areas.

  10. Drinking water contamination and treatment techniques

    Science.gov (United States)

    Sharma, S.; Bhattacharya, A.

    2017-06-01

    Water is of fundamental importance for life on earth. The synthesis and structure of cell constituents and transport of nutrients into the cells as well as body metabolism depend on water. The contaminations present in water disturb the spontaneity of the mechanism and result in long/short-term diseases. The probable contaminations and their possible routes are discussed in the present review. Continued research efforts result in some processes/technologies to remove the contaminations from water. The review includes concepts and potentialities of the technologies in a comprehensible form. It also includes some meaningful hybrid technologies and promising awaited technologies in coming years.

  11. Arsenic in drinking water and adverse birth outcomes in Ohio.

    Science.gov (United States)

    Almberg, Kirsten S; Turyk, Mary E; Jones, Rachael M; Rankin, Kristin; Freels, Sally; Graber, Judith M; Stayner, Leslie T

    2017-08-01

    Arsenic in drinking water has been associated with adverse reproductive outcomes in areas with high levels of naturally occurring arsenic. Less is known about the reproductive effects of arsenic at lower levels. This research examined the association between low-level arsenic in drinking water and small for gestational age (SGA), term low birth weight (term LBW), very low birth weight (VLBW), preterm birth (PTB), and very preterm birth (VPTB) in the state of Ohio. Exposure was defined as the mean annual arsenic concentration in drinking water in each county in Ohio from 2006 to 2008 using Safe Drinking Water Information System data. Birth outcomes were ascertained from the birth certificate records of 428,804 births in Ohio from the same time period. Multivariable generalized estimating equation logistic regression models were used to assess the relationship between arsenic and each birth outcome separately. Sensitivity analyses were performed to examine the roles of private well use and prenatal care utilization in these associations. Arsenic in drinking water was associated with increased odds of VLBW (AOR 1.14 per µg/L increase; 95% CI 1.04, 1.24) and PTB (AOR 1.10; 95% CI 1.06, 1.15) among singleton births in counties where water was positively associated with VLBW and PTB in a population where nearly all (>99%) of the population was exposed under the current maximum contaminant level of 10µg/L. Current regulatory standards may not be protective against reproductive effects of prenatal exposure to arsenic. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Biological drinking water treatment of anaerobic groundwater in trickling filters

    NARCIS (Netherlands)

    De Vet, W.W.J.M.

    2011-01-01

    Drinking water production from anaerobic groundwater is usually achieved by so called conventional techniques such as aeration and sand filtration. The notion conventional implies a long history and general acceptation of the application, but doesn’t necessarily mean a thorough understanding of the

  13. Geospatial examination of lithium in drinking water and suicide mortality

    Directory of Open Access Journals (Sweden)

    Helbich Marco

    2012-06-01

    Full Text Available Abstract Background Lithium as a substance occurring naturally in food and drinking water may exert positive effects on mental health. In therapeutic doses, which are more than 100 times higher than natural daily intakes, lithium has been proven to be a mood-stabilizer and suicide preventive. This study examined whether natural lithium content in drinking water is regionally associated with lower suicide rates. Methods Previous statistical approaches were challenged by global and local spatial regression models taking spatial autocorrelation as well as non-stationarity into account. A Geographically Weighted Regression model was applied with significant independent variables as indicated by a spatial autoregressive model. Results The association between lithium levels in drinking water and suicide mortality can be confirmed by the global spatial regression model. In addition, the local spatial regression model showed that the association was mainly driven by the eastern parts of Austria. Conclusions According to old anecdotic reports the results of this study support the hypothesis of positive effects of natural lithium intake on mental health. Both, the new methodological approach and the results relevant for health may open new avenues in the collaboration between Geographic Information Science, medicine, and even criminology, such as exploring the spatial association between violent or impulsive crime and lithium content in drinking water.

  14. Economics of feeding drinking water containing organic acids to ...

    African Journals Online (AJOL)

    A feeding trial was conducted to determine the economic effect of acidifying drinking water of broiler chickens with organic acids. The organic acids were acetic, butyric, citric and formic acids, each offered at 0.25%. The control did not contain any of the acids. One hundred and fifty (150) day old AborAcre - plus chicks were ...

  15. Arsenic in Drinking Water--The Silent Killer

    Science.gov (United States)

    Wajrak, Magdalena

    2011-01-01

    Natural arsenic salts are present in all waters, with natural concentrations of less than 10 parts per billion (ppb). Unfortunately, there is an increasing number of countries where toxic arsenic compounds in groundwater, which is used for drinking and irrigation, have been detected at concentrations above the World Health Organization's…

  16. Damage mechanisms of pathogenic bacteria in drinking water ...

    African Journals Online (AJOL)

    This study aimed at elucidating the inactivation mechanisms of pathogenic bacteria in drinking water during chlorine and solar disinfection using a simple plating method. The well-known bacterial model Escherichia coli was used as pathogenic bacteria for the experiments. The damage mechanisms of E. coli were ...

  17. MODELING DISINFECTANT RESIDUALS IN DRINKING-WATER STORAGE TANKS

    Science.gov (United States)

    The factors leading to the loss of disinfectant residual in well-mixed drinking-water storage tanks are studied. Equations relating disinfectant residual to the disinfectant's reation rate, the tank volume, and the fill and drain rates are presented. An analytical solution for ...

  18. Pipe failure predictions in drinking water systems using satellite observations

    NARCIS (Netherlands)

    Arsénio, André Marques; Dheenathayalan, Prabu; Hanssen, Ramon; Vreeburg, Jan; Rietveld, Luuk

    2015-01-01

    Soil deformation is believed to play a crucial role in the onset of failures in the underground infrastructure. This article describes a method to generate a replacement-prioritisation map for underground drinking water pipe networks using ground movement data. A segment of the distribution

  19. Model-Based Control of Drinking-Water Treatment Plants

    NARCIS (Netherlands)

    Van Schagen, K.M.

    2009-01-01

    The drinking water in the Netherlands is of high quality and the production cost is low. This is the result of extensive research in the past decades to innovate and optimise the treatment processes. The processes are monitored and operated by motivated and skilled operators and process

  20. How the Drinking Water State Revolving Fund Works

    Science.gov (United States)

    The DWSRF was established by the 1996 amendments to the Safe Drinking Water Act (SDWA) as a financial assistance program for systems and states to achieve the health protection objectives of the law, 42 U.S.C. §300j-12

  1. An Environmental Sentinel Biomonitor System for Drinking Water Protection

    Science.gov (United States)

    2008-12-01

    threat chemicals. Potential interferences include chemicals commonly used for drinking water disinfection (chlorine and chloramine ), byproducts of...Industrial and Potential Interfering Chemicals Used to Evaluate ESB System Toxicity Sensors TICs Potential Interferences Acrylonitrile Chloramine ...range. Of the potential interferences tested, the ECIS test was affected only by the disinfectants chlorine and chloramine ; chlorine is typically

  2. Sewage disinfection towards protection of drinking water resources.

    Science.gov (United States)

    Kolch, A

    2000-01-01

    Wastewater applied in agriculture for irrigation could replace the use of natural drinking-water resources. With respect to high concentrations of human pathogens wastewater has to be disinfected prior to use. This paper introduces disinfection methods with emphasis on UV irradiation.

  3. Metagenomic Analyses of Drinking Water Receiving Different Disinfection Treatments

    Science.gov (United States)

    A metagenome-based approach was utilized for assessing the taxonomic affiliation and function potential of microbial populations in free chlorine (CHL) and monochloramine (CHM) treated drinking water (DW). A total of 1,024, 242 (averaging 544 bp) and 849, 349 (averaging 554 bp) ...

  4. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; van Gaalen FW; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; LWD

    2001-01-01

    Het model TAPWAT (Tool for the Analysis of the Production of drinking WATer), is ontwikkeld om de drinkwaterkwaliteit te beschrijven voor integrale studies in het kader van het planbureau Milieu en Natuur van het RIVM. Het model bestaat uit modules die de individuele zuiveringsstappen van het

  5. Adsorption / reduction of bromate from drinking water using GAC ...

    African Journals Online (AJOL)

    This study investigated the feasibility of using granular activated carbon (GAC) to remove bromate (BrO3-) from drinking water through batch experiments, rapid small-scale column tests (RSSCT) and a pilot-scale study. The results indicated that the GAC capacity for BrO3- removal was dependent on the GAC surface ...

  6. RESIDENTIAL EXPOSURE TO DRINKING WATER ARSENIC IN INNER MONGOLIA, CHINA

    Science.gov (United States)

    Residential exposure to drinking water arsenic in Inner Mongolia, ChinaZhixiong Ning1, Richard K. Kwok2, Zhiyi Liu1, Shiying Zhang1, Chenglong Ma1, Danelle T. Lobdell2, Michael Riediker3 and Judy L. Mumford21) Institute of Endemic Disease for Prevention and Treatment in I...

  7. Nitrate concentration in drinking water supplies in selected ...

    African Journals Online (AJOL)

    Elevated levels of nitrate in drinking water have been associated with adverse health effects. Most susceptible to nitrate toxicity are infants under six months of age and pregnant women. This study assesses the nitrate concentration of 48 randomly selected wells in an urban-slum setting in Ibadan South East Local ...

  8. A bibliometric analysis of drinking water research in Africa

    African Journals Online (AJOL)

    2016-10-04

    Oct 4, 2016 ... Solar disinfection of drinking water contained in transparent plastic bottles: characterizing the bacterial inactivation process. McGuigan et al. (1998). 4 (94). Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. Daifullah et al. (2007).

  9. Effect of Different Levels of Molasses Fed Through Drinking Water ...

    African Journals Online (AJOL)

    An experiment was conducted to evaluate the effect of molasses fed through drinking water on growth and economic performance of broiler chickens. One hundred and sixty unsexed day old chicks of Anak strain were used. They were divided into four treatment groups with each group having four replicates of ten birds per ...

  10. Bacteriological Quality of Drinking Water from Different Locations in ...

    African Journals Online (AJOL)

    The work described the bacteriological quality of drinking water obtained from distributors, vendors and retailer at three different locations in Anambra State Nigeria. Twelve samples were assessed using membrane filtration technique and serial dilution method. Some selective media were used which include Pseudomonas ...

  11. 9 CFR 3.115 - Food and drinking water requirements.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Food and drinking water requirements. 3.115 Section 3.115 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Marine Mammals...

  12. Spectrophotometric determination of fluoride in drinking water using ...

    African Journals Online (AJOL)

    A sensitive spectrophotometric determination of fluoride in drinking water has been developed using aluminium complexes of triphenylmethane dyes (chrome azurol B and malachite green) as spectrophotometric reagents. The method allowed a reliable determination of fluoride in the range of 0.5–4.0 mg·l-1 for chrome ...

  13. Effects of Administration of Molasses through Drinking Water on ...

    African Journals Online (AJOL)

    The molasses supplemented group had significantly (p<0.05) heavier body weight, conformation parameters (breast width, keel length) at both phases and consumed lesser feed at the finisher phase. There was no mortality. Molasses could therefore be fed as a supplement to broilers through drinking water.

  14. determination of trihalomethanes in drinking water in southern ...

    African Journals Online (AJOL)

    cistvr

    Keywords: Trihalomethanes, gas chromatography, electron capture detector. INTRODUCTION. The formation of trihalomethanes (THMs) during the process of chlorination of drinking water was first reported by Rook (1974). The THMs are formed by the reaction of chlorine with the organic matters or humic acids present in ...

  15. Potentially low -cost drinking water defluoridation methods - a review

    African Journals Online (AJOL)

    Excessive fluoride in drinking water causes dental and skeletal health problems commonly known as fluorosis. Both high fluoride concentration and fluorisis are prevalent in many parts' of the Ethiopian rift valley. The recommended limit of fluoride by the World Health Organization (WHO) ranges from 0.5 - 1.5 ppm, whereas ...

  16. Spectrophotometric determination of fluoride in drinking water using ...

    African Journals Online (AJOL)

    2011-03-14

    Mar 14, 2011 ... A sensitive spectrophotometric determination of fluoride in drinking water has been developed using aluminium complexes of triphenylmethane dyes (chrome azurol B and malachite green) as spectrophotometric reagents. The method allowed a reliable determination of fluoride in the range of 0.5–4.0 ...

  17. A bibliometric analysis of drinking water research in Africa | Wambu ...

    African Journals Online (AJOL)

    A total of 1 917 publications of drinking water research in Africa from 1991 to 2013 were identified from the data hosted in online version of SCI-Expanded, Thomson Reuters Web of Science, for bibliometric analysis. The analysis included publication output, distribution of keywords, journals and subject areas, and ...

  18. Modelling and simulation of a nitrification biofilter for drinking water ...

    African Journals Online (AJOL)

    For the purification of pure and microbiologically safe drinking water, different treatment steps are necessary. One of those steps is the removal of ammonium, which can, e.g. be accomplished through nitrification in a biofilter. In this study, a model for such a nitrifying biofilter was developed and the model was ...

  19. Potential Relationships Between Hydraulic Fracturing and Drinking Water Resources

    Science.gov (United States)

    The conferees urge the Agency to carry out a study on the relationship between hydraulic fracturing and drinking water, using a credible approach that relies on the best available science, as well as independent sources of information. The conferees expect the study to be conduct...

  20. Migration of toxicants from plastics into drinking water during storage ...

    African Journals Online (AJOL)

    In this study, migration of toxicants, such as, manufacturing additives and previously adsorbed materials into drinking water stored inside plastic containers was investigated. The study considered virgin containers as well as those previously used to store sulphuric acid, calcium hypochlorite, methyl ethyl ketone (MEK) and ...

  1. Transparent exopolymer particle removal in different drinking water production centers.

    Science.gov (United States)

    Van Nevel, Sam; Hennebel, Tom; De Beuf, Kristof; Du Laing, Gijs; Verstraete, Willy; Boon, Nico

    2012-07-01

    Transparent exopolymer particles (TEP) have recently gained interest in relation to membrane fouling. These sticky, gel-like particles consist of acidic polysaccharides excreted by bacteria and algae. The concentrations, expressed as xanthan gum equivalents L⁻¹ (μg X(eq) L⁻¹), usually reach hundred up to thousands μg X(eq) L⁻¹ in natural waters. However, very few research was performed on the occurrence and fate of TEP in drinking water, this far. This study examined three different drinking water production centers, taking in effluent of a sewage treatment plant (STP), surface water and groundwater, respectively. Each treatment step was evaluated on TEP removal and on 13 other chemical and biological parameters. An assessment on TEP removal efficiency of a diverse range of water treatment methods and on correlations between TEP and other parameters was performed. Significant correlations between particulate TEP (>0.4 μm) and viable cell concentrations were found, as well as between colloidal TEP (0.05-0.4 μm) and total COD, TOC, total cell or viable cell concentrations. TEP concentrations were very dependent on the raw water source; no TEP was detected in groundwater but the STP effluent contained 1572 μg X(eq) L⁻¹ and the surface water 699 μg X(eq) L⁻¹. Over 94% of total TEP in both plants was colloidal TEP, a fraction neglected in nearly every other TEP study. The combination of coagulation and sand filtration was effective to decrease the TEP levels by 67%, while the combination of ultrafiltration and reverse osmosis provided a total TEP removal. Finally, in none of the installations TEP reached the final drinking water distribution system at significant concentrations. Overall, this study described the presence and removal of TEP in drinking water systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Physicochemical Assessment of Drinking Water Qualities in ...

    African Journals Online (AJOL)

    Parameters determined to assess the level of wholesomeness of water from the water facilities included calcium hardness, magnesium hardness, Ca2+, Mg2+, Cl- and SO42- ions. Others were electrical conductivity, pH, colour, turbidity, alkalinity, acidity and dissolved solids. Heavy metal contents of the samples were also ...

  3. Optimisation of ATP determination in drinking water

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    aliquots of standards increase quality control and ease daily operation. The medium (Lumin(PM) buffer, tap water or MilliQ water) for preparation of ATP-standard dilution significantly affected the rlu response of the ATP-standard dilutions (20% difference). The effect of dilution media and of sample...

  4. Crude oil contamination of plastic and copper drinking water pipes.

    Science.gov (United States)

    Huang, Xiangning; Andry, Stephane; Yaputri, Jessica; Kelly, Devin; Ladner, David A; Whelton, Andrew J

    2017-10-05

    This study was conducted to determine the susceptibility of plastic (i.e., PEX, HDPE and CPVC) and copper pipes to short-term contamination by crude oil. Pipes were exposed to highly and slightly contaminated drinking water for the typical duration of Do Not Use drinking water orders. PEX pipes sorbed and desorbed the greatest amount of monoaromatic hydrocarbons (MAHs), whereas copper pipes were less susceptible to contamination. For benzene, toluene, ethylbenzene, and xylenes (BTEX) quantified in water, only benzene exceeded its health based maximum contaminant level (MCL). The MCL was exceeded for copper pipe on day 3, for CPVC pipe through day 9, and PEX and HDPE pipes through day 15. The BTEX compound concentration in water after the pipes were returned to service depended on the initial crude oil concentration, material type, and exposure duration. Total organic carbon (TOC) measurement was not helpful in detecting oil contaminated water. Except BTEX, trimethylbenzene isomers and a couple of polycyclic aromatic hydrocarbons (PAHs) with and without MCLs were also detected desorbing from PEX-A pipe. Oil contaminated water must be thoroughly characterized and pipe type will influence the ability of drinking water levels to return to safe limits. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Risk assessment of fluoride exposure in drinking water of Tunisia.

    Science.gov (United States)

    Guissouma, Wiem; Hakami, Othman; Al-Rajab, Abdul Jabbar; Tarhouni, Jamila

    2017-06-01

    The presence of fluoride in drinking water is known to reduce dental cavities among consumers, but an excessive intake of this anion might leads to dental and skeletal fluorosis. This study reports a complete survey of the fluoridated tap water taken from 100 water consumption points in Tunisia. The fluoride concentrations in tap water were between 0 and 2.4 mg L(-1). Risk assessment of Fluoride exposure was assessed depending on the age of consumers using a four-step method: hazard identification, toxicity reference values selection (TRVs), daily exposure assessment, and risk characterization. Our findings suggest that approximately 75% of the Tunisian population is at risk for dental decay, 25% have a potential dental fluorosis risk, and 20% might have a skeletal fluorosis risk according to the limits of fluoride in drinking water recommended by WHO. More investigations are recommended to assess the exposure risk of fluoride in other sources of drinking water such as bottled water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Metallic and Microbial Contaminants in Drinking Water of Cankiri, Turkey

    Directory of Open Access Journals (Sweden)

    Emrah Caylak

    2012-01-01

    Full Text Available Safe and good quality drinking water is very important for human health. Water provides some heavy metals, such as As, B, Cd, Cn, Cr, Cu, F, Cl, Hg, Ni, Pb, Se, and Sn. These are undesirable substances dangerous to human health and cause chronic diseases and various cancers. Coliform bacteria are a commonly used bacterial indicator of sanitary quality of water. E. coli, total coliform and enterococci have been used as indicators of possible sewage contamination might pose a health risk. In this study, water samples were taken from thirty different waterworks in Cankiri, Turkey and metallic and microbial contaminants were investigated. In the drinking tap water samples have been found at concentrations exceeding the Turkish regulations (As and free Cl and the WHO guidelines (As and B. Our results also indicate that significant microbiological contaminations were found above the guidelines for drinking waters given by the WHO, because of the fact that in the distribution of water is not appropriate.

  7. [Effect of a water-pipe network on the sensory quality of drinking water].

    Science.gov (United States)

    Gatarska, Anna; Smoczyński, Stefan; Wypyska, Marta

    2010-01-01

    Object of studies was aimed at determining the effect of a water-pipe system on the sensory quality of drinking water originating from various intakes. The aim was to be achieved through analyses of the sensory quality (odor and flavor) of drinking water originating from various reception points within the water-pipe system. Based on the analyses carried out in the research, it may be stated that, transport of water through the water-pipe system in Olsztyn in the winter season does not affect deterioration of odor or flavor of water supplied to consumers. Besides worse sensory quality of drinking water at consumers' reception points may be determined by its worse quality immediately after treatment. As a result of water transport through a water-pipe network, it is possible to reduce the intensity of some odor and flavor attributes to an undetectable level.

  8. [Medical and environmental aspects of the drinking water supply crisis].

    Science.gov (United States)

    Él'piner, L I

    2013-01-01

    Modern data determining drinking water supply crisis in Russia have been considered. The probability of influence of drinking water quality used by population on current negative demographic indices was shown. The necessity of taking into account interests of public health care in the process of formation of water management decisions was grounded. To achieve this goal the application of medical ecological interdisciplinary approach was proposed Its use is mostly effective in construction of goal-directed medical ecological sections for territorial schemes of the rational use and protection of water resources. Stages of the elaboration of these sections, providing the basing of evaluation and prognostic medical and environmental constructions on similar engineering studies of related disciplinary areas (hydrological, hydrogeological, hydrobiological, hydrochemical, environmental, socio-economic, technical and technological) were determined.

  9. Purification of drinking water by low cost method in Ethiopia

    Science.gov (United States)

    Abatneh, Yasabie; Sahu, Omprakash; Yimer, Seid

    2014-12-01

    Nowadays, water treatment is a big issue in rural areas especially in African country. Due to lack of facilities available in those areas and the treatment are expensive. In this regard's an attempt has been made to find alternative natural way to treat the rural drinking water. The experiment trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were used to treat contaminated water obtained from a number of wells. The results showed that the addition of M. oleifera can considerably improve the quality of drinking water. A 100 % improvement both in turbidity and reduction in Escherichia coli was noted for a number of the samples, together with significant improvements in colour.

  10. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  11. Organic mutagens and drinking water in The Netherlands : a study on mutagenicity of organic constituents in drinking water in The Netherlands and their possible carcinogenic effects

    NARCIS (Netherlands)

    Kool, H.J.

    1983-01-01

    Several mutagenic and carcinogenic organic compounds have been detected in Dutch surface waters and in drinking water prepared from these surface waters. Although the levels of these compounds in drinking- and surface water are relatively low, in general below μg per litre, it appeared that organic

  12. Evaluation of quality of drinking water from Baghdad, Iraq | Barbooti ...

    African Journals Online (AJOL)

    Reference was done to the EU specification of drinking water regarding total hardness, chloride contents, sulphate, iron and THM's. As for the iron content, the original pH of the river water (7.5 and 8.0) ensures that Iron should not be present in soluble form at a detectable level. Corrosion of the pipes could be one of the ...

  13. Assessment of asbestos in drinking water in alexandria, egypt.

    Science.gov (United States)

    Hosny, Gihan; Akel, Mekkawy

    2006-01-01

    Over the past several years, the presence of fibrous asbestos particulates has been observed in a number of municipal water supplies throughout the USA, Canada, and several other regions all over the world. The possible health hazards which these fibers present have spurred a great deal of interest in the problems of detection and removal of the submicroscopic particulates in water. Asbestos is a group of fibrous metamorphic silicate minerals that is ubiquitous in the environment as a result of its extensive industrial use and the dissemination of fibers from natural sources. The health hazards associated with inhalation of asbestos in the occupational environment have long been recognized including asbestosis, bronchial carcinoma, malignant mesothelioma of the pleura and peritoneum, and possibly cancers of the gastrointestinal tract and larynx. It is introduced into water by the dissolution of asbestos-containing minerals and ores, and from industrial effluents, atmospheric pollution and erosion of asbestos-cement (A/C) pipes in the distribution systems of drinking water. In Alexandria, most of the pipes in the distribution systems of drinking water are asbestos-cement (A/C) pipe system. Drinking water samples (1 liter each) were collected in glass containers from different regions in Alexandria and filtered in cellulose filters (mixed cellulose ester type filters of pore size 0.2 mum) within less than 48 hours. Filters were allowed to dry, gold plated and scanned microscopically. Asbestos fibers were detected in all water samples collected from regions having A/C pipe drainage system. No fibers detected in regions, where the pipe distribution system was poly venyl pipe system or changed from A/C pipe to cast iron pipe system. The determination of asbestos fibers in drinking water of Alexandria should have particular concern because of the health hazards that might be associated with their presence.

  14. Coagulant recovery and reuse for drinking water treatment

    OpenAIRE

    Keeley, James; Jarvis, Peter; Smith, Andrea D.; Judd, Simon J.

    2015-01-01

    Coagulant recovery and reuse from waterworks sludge has the potential to significantly reduce waste disposal and chemicals usage for water treatment. Drinking water regulations demand purification of recovered coagulant before they can be safely reused, due to the risk of disinfection by-product precursors being recovered from waterworks sludge alongside coagulant metals. While several full-scale separation technologies have proven effective for coagulant purification, none have matched virgi...

  15. Physicochemical Quality of Drinking Water of Kermanshah Province

    Directory of Open Access Journals (Sweden)

    Mahfooz Moradi

    2013-12-01

    Full Text Available Physicochemical quality of drinking water has a direct impact on consumer health and fluoride, nitrite, nitrate, total dissolved solids compounds and pH are their important parameters that have closely relationship with community health. In many cases, source nitrate of water is due to agriculture activities, landfill sites and also potassium nitrate that used in the manufacture of glass, nitrite in form of sodium nitrite used as a food preservative too.

  16. MICROBIOLOGICAL ANALYSIS OF DRINKING WATER AND SOYBEAN MILK

    OpenAIRE

    Ratna Winata, Lucia

    2016-01-01

    - One of the zoonotic problem is the bacterial contamination of food and water. To secure food against bacterial contamination such as Escherichia coli(E. coli), especially related to drinking water and soybean milk, should begin with the securing of products through the whole production process till it reaches the consumers. Although these bacteria are part of the normal microorganism in the intestines, however we should be aware of the possibility of an outbreak in the community due to E...

  17. THE REMOVAL OF GLYPHOSATE FROM DRINKING WATER

    Science.gov (United States)

    The effectiveness of granulated activated carbon (GAC), packed activated carbon (PAC), conventional treatment, membranes, and oxidation for removing glyphosate from natural waters is evaluated. Results indicate that GAC and PAC are not effective in removing glyphosate, while oxid...

  18. 3Ts for Reducing Lead in Drinking Water in Schools and Child Care Facilities

    Science.gov (United States)

    EPA’s 3Ts was developed to assist schools with lead in drinking water prevention programs. It is intended for use by school officials responsible for the maintenance and/or safety of school’s drinking water.

  19. Maternal drinking water arsenic exposure and perinatal outcomes in Inner Mongolia, China, Journal

    Science.gov (United States)

    BACKGROUND: Bayingnormen is a region located in western Inner Mongolia China with a population that is exposed to a wide range of drinking water Arsenic concentrations. This study evaluated the relationship between maternal drinking water arsenic exposure and perinatal endpoints ...

  20. Subsurface iron and arsenic removal for drinking water treatment in Bangladesh

    NARCIS (Netherlands)

    Van Halem, D.

    2011-01-01

    Arsenic contamination of shallow tube well drinking water is an urgent health problem in Bangladesh. Current arsenic mitigation solutions, including (household) arsenic removal options, do not always provide a sustainable alternative for safe drinking water. A novel technology, Subsurface Arsenic

  1. Obtaining drinking water using solar electrodialysis

    Directory of Open Access Journals (Sweden)

    Sandro César Silveira Jucá

    2010-05-01

    Full Text Available This paper shows the main worldwide experiments in PV powered electrodialysis plants and analyses possible applications of such systems in the Brazilian Northeast region. The use of PV arrays to power electrodialysis plants for desalination of brackish water from deep wells makes sense in arid and semiarid regions. In such areas there is often an inadequate water and energy supply infrastructure along with favorable levels of solar radiation for electric generation, as is the case of the Brazilian Northeast region.

  2. ON A NEW TECHNOLOGY OF PREPARATION OF HOT DRINKING WATER

    Directory of Open Access Journals (Sweden)

    M. F. Jalilov

    2017-01-01

    Full Text Available The present article contains information concerning the new Cl-anionization technology in the preparation of hot drinking water. In contrast with water softening, that replaces all the hardness salts by sodium cations in the cation exchanger, this new technology makes it possible to replace incrustating HCO3̄ and SO42--anions in a strong-base anion exchanger by Cl⁻-ions. As a result, the incrustation on the surfaces of heating hot water heaters is prevented. Thus, cations of hardness that are valuable for the human body remain in the water, the quality of the latter conforming to drinking water quality. Considering the important role of calcium and magnesium in the human body, in Germany and Turkey the minimum value of hardness cations in drinking water is limited to 2.85 and 7.50 mg-Eqv/l, respectively. According to the World Health Organization, in the composition of drinking water, the concentration of cations of magnesium and calcium is recommended, respectively, within 10–(20–30, and 20–50 mg/l; the minimum value of total hardness is 2–4 mg-Eqv/l. According to the developed technology drinking water is passed consistently in the downward direction through the mechanical and chlorineanionite exchanger filters. In the latter, the main part of HCO3̄ and SO42--water ions are exchanged for Cl-anions of anionite. Then the water is collected in the tank, from where it is pumped to the hot water heater through the ultraviolet disinfection unit. After the depletion of the anionite by HCO3̄ and SO42--anions, it is regenerated by a solution of 8–12 % NaCl. The results of research by the anion exchangers Purolite A200EMBCl and AB-17-8 are plotted. It is noted that when the specific consumption of salt for regeneration is of about 45–55 kg/m³, working exchange capacity of the A200EMBCl occurs to be in the range 300–370 g-Eqv/m³. For anionization of water, the residual concentration of HCO3̄-ions are changed from 0.5 to 3.2 mg

  3. Removal of Strontium from Drinking Water by Conventional ...

    Science.gov (United States)

    The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. There is very little data available on strontium removal from drinking water. As a result, there is an immediate need to perform treatment studies. The objective of this work is to evaluate the effectiveness of conventional and lime-soda ash softening treatments to remove strontium from surface and ground waters. Conventional drinking water treatment with aluminum and iron coagulants were able to achieve 12% and 5.9% strontium removal at best, while lime softening removed as much as 78% from natural strontium-containing ground water. Systematic fundamental experiments showed that strontium removal during the lime-soda ash softening was related to pH, calcium concentration and dissolved inorganic carbon concentration. Final strontium concentration was also directly associated with initial strontium concentration. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium likely replaced calcium inside the crystal lattice and was likely mainly responsible for removal during lime softening. To inform the public.

  4. Drinking Water Quality of Water Vending Machines in Parit Raja, Batu Pahat, Johor

    Science.gov (United States)

    Hashim, N. H.; Yusop, H. M.

    2016-07-01

    An increased in demand from the consumer due to their perceptions on tap water quality is identified as one of the major factor on why they are mentally prepared to pay for the price of the better quality drinking water. The thought that filtered water quality including that are commercially available in the market such as mineral and bottled drinking water and from the drinking water vending machine makes they highly confident on the level of hygiene, safety and the mineral content of this type of drinking water. This study was investigated the vended water quality from the drinking water vending machine in eight locations in Parit Raja are in terms of pH, total dissolve solids (TDS), turbidity, mineral content (chromium, arsenic, cadmium, lead and nickel), total organic carbon (TOC), pH, total colony-forming units (CFU) and total coliform. All experiments were conducted in one month duration in triplicate samples for each sampling event. The results indicated the TDS and all heavy metals in eight vended water machines in Parit Raja area were found to be below the Food Act 1983, Regulation 360C (Standard for Packaged Drinking Water and Vended water, 2012) and Malaysian Drinking Water Quality, Ministry of Health 1983. No coliform was presence in any of the vended water samples. pH was found to be slightly excess the limit provided while turbidity was found to be 45 to 95 times more higher than 0.1 NTU as required by the Malaysian Food Act Regulation. The data obtained in this study would suggest the important of routine maintenance and inspection of vended water provider in order to maintain a good quality, hygienic and safety level of vended water.

  5. CONCENTRATION OF NATURAL RADIONUCLIDES IN PRIVATE DRINKING WATER WELLS.

    Science.gov (United States)

    Cerny, R; Otahal, P; Merta, J; Burian, I

    2017-11-01

    Water is one of the most important resources for a human being; therefore, its quality should be properly tested. According to Council Directive No. 2013/51/EUROATOM, there shall be established requirements for the general public health protection with regard to radioactive substances in water intended for human consumption. This article summarises measurement results of selected water samples at 444 private drinking water wells, which are not subject to regular inspection in terms of the Czech legislation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The corrosive nature of manganese in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Bastida, C. [Centro Interamericano de Recursos del Agua, Facultad de Ingeniería, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca, Km. 14.5, C.P. 50200, Toluca, Estado de México (Mexico); Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón y Tollocan s/n, C.P. 50000, Toluca, Estado de México (Mexico); Martínez-Miranda, V.; Vázquez-Mejía, G. [Centro Interamericano de Recursos del Agua, Facultad de Ingeniería, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca, Km. 14.5, C.P. 50200, Toluca, Estado de México (Mexico); Solache-Ríos, M., E-mail: marcos.solache@inin.gob.mx [Departamento de Química, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801 México, D.F. (Mexico); Fonseca-Montes de Oca, G. [Centro Interamericano de Recursos del Agua, Facultad de Ingeniería, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca, Km. 14.5, C.P. 50200, Toluca, Estado de México (Mexico); Trujillo-Flores, E. [Facultad de Ingeniería, Universidad Autónoma del Estado de México, Cerro de Coatepec s/n, Ciudad Universitaria, C.P. 50130, Toluca, Estado de México (Mexico)

    2013-03-01

    Corrosion problems having to do with drinking water distribution systems are related to many processes and factors and two of them are ionic acidity and carbon dioxide, which were considered in this work. The corrosion character of water is determined by the corrosion indexes of Langelier, Ryznar, Larson, and Mojmir. The results show that pipes made of different materials, such as plastics or metals, are affected by corrosion, causing manganese to be deposited on materials and dissolved in water. The deterioration of the materials, the degree of corrosion, and the deposited corrosion products were determined by X-ray diffraction and Scanning Electron Microscopy. High levels of manganese and nitrate ions in water may cause serious damage to the health of consumers of water. Three wells were examined, one of them presented a high content of manganese; the others had high levels of nitrate ions, which increased the acidity of the water and, therefore, the amount of corrosion of the materials in the distribution systems. - Highlights: ► Corrosion of distribution systems affects the quality of drinking water. ► Corrosion in water distribution systems is related to acidity and carbon dioxide. ► Pipes are corroded and manganese is deposited on pipes and dissolved in water. ► The deterioration of the pipes and the corrosion products were determined. ► Nitrate ions increase the acidity of water in the wells.

  7. Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems.

    Science.gov (United States)

    Douterelo, I; Husband, S; Loza, V; Boxall, J

    2016-07-15

    The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance. This research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers. Copyright © 2016 Douterelo et al.

  8. Microbial contamination of drinking water in Pakistan--a review.

    Science.gov (United States)

    Nabeela, Farhat; Azizullah, Azizullah; Bibi, Roqaia; Uzma, Syeda; Murad, Waheed; Shakir, Shakirullah Khan; Ullah, Waheed; Qasim, Muhammad; Häder, Donat-Peter

    2014-12-01

    Water pollution with pathogenic microorganisms is one of the serious threats to human health, particularly in developing countries. The main objective of this article is to highlight microbial contamination of drinking water, the major factors responsible for microbial contamination, and the resulting health problems in Pakistan. Furthermore, this study will be helpful for researchers and administrative agencies to initiate relevant studies and develop new policies to protect further deterioration of water supply with pathogenic microbes and ensure clean and safe drinking water to the public in Pakistan. In Pakistan, water at the source, in the distribution network, and at the consumer tap is heavily polluted with coliforms and fecal coliforms all over the country. An overview of more than 7,000 water samples reviewed here reveals that an average of over 71 and 58 % samples in the country was contaminated with total coliforms and fecal coliforms, respectively. Drinking water contamination accounts for 20 to 40 % of all diseases in the country, which causes national income losses of Rs 25-58 billion annually (US$0.25-0.58 billion, approximately 0.6-1.44 % of the country's GDP). Improper disposal of industrial and municipal wastes is the most important factor responsible for water pollution in the country followed by cross-contamination due to old and leaking pipes and lack of water filtration and disinfection facilities. There is an urgent need for emergency steps to stop further deterioration of water quality and improve the existing water quality so as to protect the public from widespread waterborne diseases.

  9. Fluoride Concentration in Drinking Water Resources; North of Iran

    Directory of Open Access Journals (Sweden)

    Amouei A.I. PhD,

    2016-03-01

    Full Text Available Aims Fluoride is one of the anions present in soil and water, and determining its level in drinking water is vital for preventing dental and bone diseases in societies. This research aimed to determine fluoride concentrations in drinking water sources of rural and urban areas of Babol City, Iran. Instrument & Methods This descriptive cross-sectional study was conducted in Babol City, Iran, in 2014. 384 water samples were taken from 43 wells and 3 springs in the rural areas, and from 20 wells, 3 water reservoirs, and the water distribution system in the urban areas. Fluoride concentrations of water samples were measured with a model DR2000 spectrophotometer using the standard SPADNS method. Data were entered to SPSS 16 software and were analyzed by ANOVA test. Findings The mean fluoride concentrations in the water samples of the deep wells were higher compared to those of the springs (p=0.01. The mean fluoride concentrations in the plains areas were higher compared to the mountainous regions (p=0.02. The mean fluoride concentrations in the wells of the urban areas, in the urban reservoirs, and in the urban water distribution system were 0.40±0.14, 0.39±0.15, and 0.40±0.15mg/l, respectively (p=0.07. Fluoride concentrations in water in urban areas during various seasons varied from 0.31 to 0.45mg/l (p=0.06. Conclusion Fluoride concentrations in all drinking water sources in urban and rural areas of Babol are less than the ranges recommended by WHO and Iranian national standards.

  10. Consumers' choice of drinking water: Is it dependent upon perceived quality, convenience, price and attitude?

    Science.gov (United States)

    Wahid, Nabsiah Abdul; Cheng, Patrick Tan Foon; Abustan, Ismail; Nee, Goh Yen

    2017-10-01

    Tap water is one of the many sources of water that the public as consumers can choose for drinking. This study hypothesized that perceived quality, convenience, price and environmental attitude would determine consumers's choice of drinking water following the Attribution Theory as the underlying model. A survey was carried out on Malaysia's public at large. From 301 usable data, the PLS analysis revealed that only perceived quality, convenience and price attributed towards the public's choice of drinking water while attitude was not significant. The findings are beneficial for the water sector industry, particularly for drinking water operators, state governments, and alternative drinking water manufacturers like bottled water companies. The ability to identify factors for why consumers in the marketplace choose the source of their drinking water would enable the operators to plan and strategize tactics that can disseminate accurate knowledge about the product that can motivate marketability of drinking water in Malaysia.

  11. Health and aesthetic impacts of copper corrosion on drinking water.

    Science.gov (United States)

    Dietrich, A M; Glindemann, D; Pizarro, F; Gidi, V; Olivares, M; Araya, M; Camper, A; Duncan, S; Dwyer, S; Whelton, A J; Younos, T; Subramanian, S; Burlingame, G A; Khiari, D; Edwards, M

    2004-01-01

    Traditional research has focused on the visible effects of corrosion--failures, leaks, and financial debits--and often overlooked the more hidden health and aesthetic aspects. Clearly, corrosion of copper pipe can lead to levels of copper in the drinking water that exceed health guidelines and cause bitter or metallic tasting water. Because water will continue to be conveyed to consumers worldwide through metal pipes, the water industry has to consider both the effects of water quality on corrosion and the effects of corrosion on water quality. Integrating four key factors--chemical/biological causes, economics, health and aesthetics--is critical for managing the distribution system to produce safe water that consumers will use with confidence. As technological developments improve copper pipes to minimize scaling and corrosion, it is essential to consider the health and aesthetic effects on an equal plane with chemical/biological causes and economics to produce water that is acceptable for public consumption.

  12. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    Science.gov (United States)

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag(+) ions (as AgNO3). The stability of the nano-silver dispersions in

  13. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  14. Multicomponent analysis of drinking water by a voltammetric electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Winquist, Fredrik, E-mail: frw@ifm.liu.se [Swedish Sensor Centre and the Division of Applied Physics, Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Olsson, John; Eriksson, Mats [Swedish Sensor Centre and the Division of Applied Physics, Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2011-01-10

    A voltammetric electronic tongue is described that was used for multicomponent analysis of drinking water. Measurements were performed on drinking water from a tap and injections of the compounds NaCl, NaN{sub 3}, NaHSO{sub 3}, ascorbic acid, NaOCl and yeast suspensions could be identified by use of principal component analysis (PCA). A model based on partial least square (PLS) was developed for the simultaneously prediction of identification and concentration of the compounds NaCl, NaHSO{sub 3} and NaOCl. By utilizing this type of non-selective sensor technique for water quality surveillance, it will be feasible to detect a plurality of events without the need of a specific sensor for each type of event.

  15. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water.

    Science.gov (United States)

    Falkinham, Joseph O; Pruden, Amy; Edwards, Marc

    2015-06-09

    Opportunistic premise plumbing pathogens are responsible for a significant number of infections whose origin has been traced to drinking water. These opportunistic pathogens represent an emerging water borne disease problem with a major economic cost of at least $1 billion annually. The common features of this group of waterborne pathogens include: disinfectant-resistance, pipe surface adherence and biofilm formation, growth in amoebae, growth on low organic concentrations, and growth at low oxygen levels. Their emergence is due to the fact that conditions resulting from drinking water treatment select for them. As such, there is a need for novel approaches to reduce exposure to these pathogens. In addition to much-needed research, controls to reduce numbers and human exposure can be instituted independently by utilities and homeowners and hospital- and building-operators.

  16. Multicomponent analysis of drinking water by a voltammetric electronic tongue.

    Science.gov (United States)

    Winquist, Fredrik; Olsson, John; Eriksson, Mats

    2011-01-10

    A voltammetric electronic tongue is described that was used for multicomponent analysis of drinking water. Measurements were performed on drinking water from a tap and injections of the compounds NaCl, NaN(3), NaHSO(3), ascorbic acid, NaOCl and yeast suspensions could be identified by use of principal component analysis (PCA). A model based on partial least square (PLS) was developed for the simultaneously prediction of identification and concentration of the compounds NaCl, NaHSO(3) and NaOCl. By utilizing this type of non-selective sensor technique for water quality surveillance, it will be feasible to detect a plurality of events without the need of a specific sensor for each type of event. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. [Possible health risks from asbestos in drinking water].

    Science.gov (United States)

    Di Ciaula, Agostino; Gennaro, Valerio

    2016-01-01

    The recent finding of asbestos fibres in drinking water (up to 700.000 fibres/litres) in Tuscany (Central Italy) leads to concerns about health risks in exposed communities. Exposure to asbestos has been linked with cancer at several levels of the gastrointestinal tract, and it has been documented, in an animal model, a direct cytotoxic effect of asbestos fibres on the ileum. It has been recently described a possible link between asbestos and intrahepatic cholangiocarcinoma, and asbestos fibres have been detected in humans in histological samples from colon cancer and in gallbladder bile. Taken together, these findings suggest the possibility of an enterohepatic translocation of asbestos fibres, alternative to lymphatic translocation from lungs. In animal models, asbestos fibres ingested with drinking water act as a co-carcinogen in the presence of benzo(a) pyrene and, according to the International Agency for Research on Cancer (IARC ), there is evidence pointing to a causal effect of ingested asbestos on gastric and colorectal cancer. The risk seems to be proportional to the concentration of ingested fibres, to the extent of individual water consumption, to exposure timing, and to the possible exposure to other toxics (i.e., benzo(a)pyrene). Furthermore, the exposure to asbestos by ingestion could explain the epidemiological finding of mesothelioma in subjects certainly unexposed by inhalation. In conclusion, several findings suggest that health risks from asbestos could not exclusively derive from inhalation of fibres. Health hazards might also be present after ingestion, mainly after daily ingestion of drinking water for long periods. In Italy, a systemic assessment of the presence of asbestos fibres in drinking water is still lacking, although asbestos-coated pipelines are widely diffused and still operating. Despite the fact that the existence of a threshold level for health risks linked to the presence of asbestos in drinking water is still under debate, the

  18. Bacteria associated with granular activated carbon particles in drinking water.

    Science.gov (United States)

    Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A

    1986-09-01

    A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies.

  19. Enteropathogenic Bacteria Contamination of Unchlorinated Drinking Water in Korea, 2010

    Science.gov (United States)

    Lee, Si Won; Lee, Do Kyung; An, Hyang Mi; Cha, Min Kyeong; Kim, Kyung Jae

    2011-01-01

    Objectives The purpose of this study was to assess the microbiological quality of unchlorinated drinking water in Korea, 2010. One hundred and eighty unchlorinated drinking water samples were collected from various sites in Seoul and Gyeonggi province. Methods To investigate bacterial presence, the pour plate method was used with cultures grown on selective media for total bacteria, total coliforms, and Staphylococcus spp., respectively. Results In the 180 total bacteria investigation, 72 samples from Seoul and 33 samples from Gyeonggi province were of an unacceptable quality (>102 CFU/mL). Of all the samples tested, total coliforms were detected in 28 samples (15.6%) and Staphylococcus spp. in 12 samples (6.7%). Most of the coliform isolates exhibited high-level resistance to cefazolin (88.2%), cefonicid (64.7%) and ceftazidime (20.6%). In addition, Staphylococcus spp. isolates exhibited high-level resistance to mupirocin (42%). Species of Pseudomonas, Acinetobacter, Cupriavidus, Hafnia, Rahnella, Serratia, and Yersinia were isolated from the water samples. Conclusions The results of this study suggest that consumption of unchlorinated drinking water could represent a notable risk to the health of consumers. As such, there is need for continuous monitoring of these water sources and to establish standards. PMID:22216417

  20. Ultraviolet (UV) Disinfection for Drinking Water Systems

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens in water with potential to serve as stand-alone treatment or in combination with other disinfectants. USEPA provided guidance on the validation of UV reactors nearly a decade ago. Since then, lesson...

  1. ANALYZING DRINKING WATER FOR DISINFECTION BYPRODUCTS

    Science.gov (United States)

    In the mid 19th Century, Chinese workers on the North American transcontinental railroad suffered less illness than other groups. While generally mysterious at the time, today the reason is obvious. The Chinese preference for tea required heating the water, thus killing many path...

  2. 76 FR 10899 - Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention of Dental...

    Science.gov (United States)

    2011-02-28

    ... HUMAN SERVICES Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention... recommendations for fluoride concentration in drinking water for the prevention of dental caries has been extended.... Public Health Service Drinking Water Standards related to recommendations for fluoride concentrations in...

  3. [Assessment of risk of contamination of drinking water for the health of children in Tula region].

    Science.gov (United States)

    Grigor'ev, Iu I; Liapina, N V

    2013-01-01

    The hygienic analysis of centralized drinking water supply in Tula region has been performed Thepriority contaminants of drinking water have been detected On the basis of risk assessment methodology non-carcinogenic health risks to the child population was calculated. A direct relationship between the incidence of some diseases in childhood population and pollution by chemical contaminants of drinking water has been established.

  4. 40 CFR 194.53 - Consideration of underground sources of drinking water.

    Science.gov (United States)

    2010-07-01

    ... underground sources of drinking water. In compliance assessments that analyze compliance with part 191, subpart C of this chapter, all underground sources of drinking water in the accessible environment that.... In determining whether underground sources of drinking water are expected to be affected by the...

  5. Lead in Drinking Water in Schools and Non-Residential Buildings.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This manual demonstrates how drinking water in schools and non-residential buildings can be tested for lead and how contamination problems can be corrected when found. The manual also provides background information concerning the sources and health effects of lead, how lead gets into drinking water, how lead in drinking water is regulated, and…

  6. 78 FR 61867 - Notice of Lodging of Proposed Consent Decree Under the Safe Drinking Water Act

    Science.gov (United States)

    2013-10-04

    ... Safe Drinking Water Act On September 26, 2013, the Department of Justice lodged a proposed Consent... pursuant to 42 U.S.C. 300g-3,300i of the Safe Drinking Water Act (``SDWA'') for violations at five public... operation of the PMU to ensure proper operation of the drinking water systems on the Reservation. The...

  7. 77 FR 40382 - Notice of Lodging of Consent Decree Under the Safe Drinking Water Act

    Science.gov (United States)

    2012-07-09

    ... of Lodging of Consent Decree Under the Safe Drinking Water Act Notice is hereby given that on June 29... the Safe Drinking Water Act (``SDWA''), 42 U.S.C. 300f through 300j-26, including violations of the National Primary Drinking Water Regulations (``NPDWRs''), at Lincoln Road RV Park, Inc.'s recreational...

  8. 78 FR 25267 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Science.gov (United States)

    2013-04-30

    ... research on the potential impacts of hydraulic fracturing on drinking water resources from April 30, 2013... research to examine the relationship between hydraulic fracturing and drinking water resources. The EPA... drinking water resources and to identify the driving factors that may affect the severity and frequency of...

  9. Arsenic removal from household drinking water by adsorption.

    Science.gov (United States)

    Yuan, Tao; Hu, Jiang Yong; Ong, Say Leong; Luo, Qi Fang; Ng, Wern Jun

    2002-10-01

    Geogenic inorganic arsenic contamination in drinking water has been raising public health concern especially in developing countries. Cost-effective and stopgap arsenic removal method for household use (cooking and drinking) is very urgent. Several iron treated natural materials such as Fe-treated activated carbon (FeAC), Fe-treated gel beads (FeGB) and iron oxide-coated sand (IOCS), were investigated in this study for arsenic removal from dispersed household drinking water supply (scattered wells in the endemic arsenic poisoning areas). IOCS showed consistently good performance in terms of As(III) and As(V) removal in batch tests, column tests and field experiment. As(V) adsorption decreased slightly but As(III) adsorption maintained relatively stable when the pH value was increased from 5 to 9. In strong hardness water (612.5 mg/L CaCO3), As(III) adsorption efficiency was noted to decrease. The adsorption data obtained in column test fitted well to the Langmuir isotherm model. The adsorbent recovery efficiency was above 94% when using 0.2N NaOH regenerated the columns. In addition, 200 L of product water was produced by the household device (containing 3.0 kg IOCS produced) when the influent arsenic concentration ranging from 0.202 to 1.733 mg/L was encountered during the field experimental study conducted in Shanyin County, China. Neither the iron leaching nor other water quality deterioration was observed. It was noted in this study that IOCS is a promising medium for arsenic removal from household drinking water supplies.

  10. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    Science.gov (United States)

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  11. Microbiological quality of drinking water from dispensers in Italy

    Directory of Open Access Journals (Sweden)

    Anastasi Daniela

    2010-01-01

    Full Text Available Abstract Background Water coolers are popular in office buildings and commercial stores and the quality of this source of drinking water has the potential to cause waterborne outbreaks, especially in sensitive and immunocompromised subjects. The aim of this study was to determine the quality of water plumbed in coolers from commercial stores in comparison with tap water in Italy. Methods For each sample, microbial parameters and chemical indicators of contamination were evaluated and information about the date of installation, time since last ordinary and extraordinary maintenance of water coolers was collected. Results In all samples the chemical parameters (nitrite, ammonium, free active chlorine residual did not exceed the reference values of the drinking water regulation; the pH value in 86.8% samples of the carbonated waters was lower than the reference limit. The microbiological results indicated that the bacteria count at 22°C and 37°C was higher than the required values in 71% and 81% for the non-carbonated water and in 86% and 88% for the carbonated one, respectively. Enterococcus spp. and Escherichia coli were not detected in any of the water samples. Pseudomonas aeruginosa was found in only one sample of the tap water and in 28.9% and 23.7% of the non-carbonated and carbonated water samples, respectively. No statistically significant differences in bacterial counts at 22°C and 37°C have been found between the non-carbonated and carbonated water from the sampled coolers in relation with the time since the last filter was substituted. The bacteriological quality of tap water was superior to that of non-carbonated and carbonated water from coolers. Conclusion The results emphasize the importance of adopting appropriate routinely monitoring system in order to prevent or to diminish the chances of contamination of this water source.

  12. Microbiological quality of drinking water from dispensers in Italy.

    Science.gov (United States)

    Liguori, Giorgio; Cavallotti, Ivan; Arnese, Antonio; Amiranda, Ciro; Anastasi, Daniela; Angelillo, Italo F

    2010-01-26

    Water coolers are popular in office buildings and commercial stores and the quality of this source of drinking water has the potential to cause waterborne outbreaks, especially in sensitive and immunocompromised subjects. The aim of this study was to determine the quality of water plumbed in coolers from commercial stores in comparison with tap water in Italy. For each sample, microbial parameters and chemical indicators of contamination were evaluated and information about the date of installation, time since last ordinary and extraordinary maintenance of water coolers was collected. In all samples the chemical parameters (nitrite, ammonium, free active chlorine residual) did not exceed the reference values of the drinking water regulation; the pH value in 86.8% samples of the carbonated waters was lower than the reference limit. The microbiological results indicated that the bacteria count at 22 degrees C and 37 degrees C was higher than the required values in 71% and 81% for the non-carbonated water and in 86% and 88% for the carbonated one, respectively. Enterococcus spp. and Escherichia coli were not detected in any of the water samples. Pseudomonas aeruginosa was found in only one sample of the tap water and in 28.9% and 23.7% of the non-carbonated and carbonated water samples, respectively. No statistically significant differences in bacterial counts at 22 degrees C and 37 degrees C have been found between the non-carbonated and carbonated water from the sampled coolers in relation with the time since the last filter was substituted. The bacteriological quality of tap water was superior to that of non-carbonated and carbonated water from coolers. The results emphasize the importance of adopting appropriate routinely monitoring system in order to prevent or to diminish the chances of contamination of this water source.

  13. Framework for Shared Drinking Water Risk Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peplinski, William John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Roger [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Binning, David [AEM Corp., Herndon, VA (United States); Meszaros, Jenny [AEM Corp., Herndon, VA (United States)

    2017-01-01

    Central to protecting our nation's critical infrastructure is the development of methodologies for prioritizing action and supporting resource allocation decisions associated with risk-reduction initiatives. Toward this need a web-based risk assessment framework that promotes the anonymous sharing of results among water utilities is demonstrated. Anonymous sharing of results offers a number of potential advantages such as assistance in recognizing and correcting bias, identification of 'unknown, unknowns', self-assessment and benchmarking for the local utility, treatment of shared assets and/or threats across multiple utilities, and prioritization of actions beyond the scale of a single utility. The constructed framework was demonstrated for three water utilities. Demonstration results were then compared to risk assessment results developed using a different risk assessment application by a different set of analysts.

  14. Drinking Water Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  15. Drinking water standard for tritium-what's the risk?

    Science.gov (United States)

    Kocher, D C; Hoffman, F O

    2011-09-01

    This paper presents an assessment of lifetime risks of cancer incidence associated with the drinking water standard for tritium established by the U.S. Environmental Protection Agency (USEPA); this standard is an annual-average maximum contaminant level (MCL) of 740 Bq L(-1). This risk assessment has several defining characteristics: (1) an accounting of uncertainty in all parameters that relate a given concentration of tritium in drinking water to lifetime risk (except the number of days of consumption of drinking water in a year and the number of years of consumption) and an accounting of correlations of uncertain parameters to obtain probability distributions that represent uncertainty in estimated lifetime risks of cancer incidence; (2) inclusion of a radiation effectiveness factor (REF) to represent an increased biological effectiveness of low-energy electrons emitted in decay of tritium compared with high-energy photons; (3) use of recent estimates of risks of cancer incidence from exposure to high-energy photons, including the dependence of risks on an individual's gender and age, in the BEIR VII report; and (4) inclusion of risks of incidence of skin cancer, principally basal cell carcinoma. By assuming ingestion of tritium in drinking water at the MCL over an average life expectancy of 80 y in females and 75 y in males, 95% credibility intervals of lifetime risks of cancer incidence obtained in this assessment are (0.35, 12) × 10(-4) in females and (0.30, 15) × 10(-4) in males. Mean risks, which are considered to provide the best single measure of expected risks, are about 3 × 10(-4) in both genders. In comparison, USEPA's point estimate of the lifetime risk of cancer incidence, assuming a daily consumption of drinking water of 2 L over an average life expectancy of 75.2 y and excluding an REF for tritium and incidence of skin cancer, is 5.6 × 10(-5). Probability distributions of annual equivalent doses to the whole body associated with the drinking

  16. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment.

    Science.gov (United States)

    He, Xuexiang; Liu, Yen-Ling; Conklin, Amanda; Westrick, Judy; Weavers, Linda K; Dionysiou, Dionysios D; Lenhart, John J; Mouser, Paula J; Szlag, David; Walker, Harold W

    2016-04-01

    Blooms of toxic cyanobacteria in water supply systems are a global issue affecting water supplies on every major continent except Antarctica. The occurrence of toxic cyanobacteria in freshwater is increasing in both frequency and distribution. The protection of water supplies has therefore become increasingly more challenging. To reduce the risk from toxic cyanobacterial blooms in drinking water, a multi-barrier approach is needed, consisting of prevention, source control, treatment optimization, and monitoring. In this paper, current research on some of the critical elements of this multi-barrier approach are reviewed and synthesized, with an emphasis on the effectiveness of water treatment technologies for removing cyanobacteria and related toxic compounds. This paper synthesizes and updates a number of previous review articles on various aspects of this multi-barrier approach in order to provide a holistic resource for researchers, water managers and engineers, as well as water treatment plant operators. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system

    OpenAIRE

    Zlatanović, L.; van der Hoek, J.P.; Vreeburg, J.H.G.

    2017-01-01

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and tem...

  18. Mean Residence Time and Emergency Drinking Water Supply.

    Science.gov (United States)

    Kralik, Martin; Humer, Franko

    2013-04-01

    Immediately after securing an endangered population, the first priority of aid workers following a disaster is the distribution of drinking water. Such emergency situations are reported from many parts of the world following regional chemical or nuclear pollution accidents, floods, droughts, rain-induced landslides, tsunami, and other extreme events. It is often difficult to organise a replacement water supply when regular water systems with short residence times are polluted, infiltrated or even flooded by natural or man-made disasters. They are either unusable or their restoration may take months or even years. Groundwater resources, proven safe and protected by the geological environment, with long residence times and the necessary infrastructure for their exploitation, would provide populations with timeous replacement of vulnerable water supply systems and make rescue activities more rapid and effective. Such resources have to be identified and investigated, as a substitute for affected drinking water supplies thereby eliminating or reducing the impact of their failure following catastrophic events. Even in many areas such water resources with long residence times in years or decades are difficult to find it should be known which water supply facilities in the region are matching these requirements to allow in emergency situation the transport of water in tankers to the affected regions to prevent epidemics, importing large quantities of bottled water. One should know the residence time of the water supply to have sufficient time to plan and install new safe water supply facilities. Development of such policy and strategy for human security - both long term and short term - is therefore needed to decrease the vulnerability of populations threatened by extreme events and water supplies with short residence times. Generally: The longer the residence time of groundwater in the aquifer, the lower its vulnerability. The most common and economic methods to estimate

  19. PARASITIC CONTAMINATION OF WELLS DRINKING WATER IN MAZANDARAN PROVINCE

    Directory of Open Access Journals (Sweden)

    Z. Yousefi ، H. Ziaei hezarjaribi ، A. A. Enayati ، R. A. Mohammadpoor

    2009-10-01

    Full Text Available There is a direct relation between the prevalence of some parasitic diseases and the presence of those etiologic agents in water. The purpose of this research was to determine the contamination rate of wells drinking water to parasites in Mazandaran province in the north of Iran. 989 water samples were randomly taken based on the population of towns and number of health centers from 12 cities of Mazandaran province and transferred to the laboratory in sterile containers. Water samples were then filtered and analyzed according to the World Health Organization guidelines. Direct method and Gram staining procedure were used to identify the parasites. If cryptosporidium was seen, floatation (sheather’s sugar and modified Ziehl-Neelsen staining method were performed. Parasites count was undertaken using McMaster counting slide (0.3 mL. 197 out of 989 water samples were contaminated with different parasites. From 197 contaminated samples, 20 different types of parasites were separated of which 53 (26.9% were pathogenic, 100 (50.8% non pathogenic, and 44 non-infective stages of parasites. Distance between wells and sources of contamination, type of water distribution systems, city and chlorination status had significantly statistical relationship with contamination prevalence (p<0.001. According to the results and considering the direct correlation between safe water and human health, proper implementation of providing hygienic drinking water should be enforced.

  20. Fluoride Content of Bottled Drinking Waters in Qatar.

    Science.gov (United States)

    Almulla, Hessa Ibrahim; King, Nigel M; Alnsour, Hamza Mohammad; Sajnani, Anand K

    2016-12-01

    Fluoridation of drinking water has been recognized as one of the most effective ways of achieving community-wide exposure to the caries prevention effects of fluoride (F). A vast majority of people in Qatar use bottled water for drinking. Use of bottled water without knowing the F level may expose children to dental caries risk if the F level is lower than optimal or to dental fluorosis if the F level is too high. The aim of this study was to determine the F concentration of bottled water available in Qatar. A total of 32 brands of bottled water were evaluated. The F concentrations displayed on the labels were recorded. The F ion-selective electrode method was used to measure the F concentration in water samples, and three measurements were taken for every sample to ensure reproducibility. The p value was set at 0.05. The F concentration ranged from 0.06 to 3.0 ppm with a mean value of 0.8 ppm (±0.88). The F levels were provided by the manufacturers on the labels of 60 % of the samples, but this was significantly lower than the measured F levels (p water that was produced in Saudi Arabia had significantly higher levels of F when compared to those produced in other countries (p water. Furthermore, there was a significant disparity between the F levels which were measured and those that were provided on the labels.

  1. Arsenic in drinking water: a worldwide water quality concern for water supply companies

    Directory of Open Access Journals (Sweden)

    J. C. van Dijk

    2009-06-01

    Full Text Available For more than a decade it has been known that shallow tube wells in Bangladesh are frequently contaminated with arsenic concentrations at a level that is harmful to human health. By now it is clear that a disaster of an unheard magnitude is going on: the World Health Organization has estimated that long-term exposure to arsenic in groundwater, at concentrations over 500 μg L−1, causes death in 1 in 10 adults. Other studies show that problems with arsenic in groundwater/drinking water occur in many more countries worldwide, such as in the USA and China. In Europe the focus on arsenic problems is currently confined to countries with high arsenic levels in their groundwater, such as Serbia, Hungary and Italy. In most other European countries, the naturally occurring arsenic concentrations are mostly lower than the European drinking water standard of 10 μg L−1. However, from the literature review presented in this paper, it is concluded that at this level health risks cannot be excluded. As consumers in European countries expect the drinking water to be of impeccable quality, it is recommended that water supply companies optimize arsenic removal to a level of <1 μg L−1, which is technically feasible.

  2. A Keystone Methylobacterium Strain in Biofilm Formation in Drinking Water

    Directory of Open Access Journals (Sweden)

    Erifyli Tsagkari

    2017-10-01

    Full Text Available The structure of biofilms in drinking water systems is influenced by the interplay between biological and physical processes. Bacterial aggregates in bulk fluid are important in seeding biofilm formation on surfaces. In simple pure and co-cultures, certain bacteria, including Methylobacterium, are implicated in the formation of aggregates. However, it is unclear whether they help to form aggregates in complex mixed bacterial communities. Furthermore, different flow regimes could affect the formation and destination of aggregates. In this study, real drinking water mixed microbial communities were inoculated with the Methylobacterium strain DSM 18358. The propensity of Methylobacterium to promote aggregation was monitored under both stagnant and flow conditions. Under stagnant conditions, Methylobacterium enhanced bacterial aggregation even when it was inoculated in drinking water at 1% relative abundance. Laminar and turbulent flows were developed in a rotating annular reactor. Methylobacterium was found to promote a higher degree of aggregation in turbulent than laminar flow. Finally, fluorescence in situ hybridisation images revealed that Methylobacterium aggregates had distinct spatial structures under the different flow conditions. Overall, Methylobacterium was found to be a key strain in the formation of aggregates in bulk water and subsequently in the formation of biofilms on surfaces.

  3. Studies on urban drinking water quality in a tropical zone.

    Science.gov (United States)

    Mudiam, Mohana Krishna Reddy; Pathak, S P; Gopal, K; Murthy, R C

    2012-01-01

    Anthropogenic activities associated with industrialization, agriculture and urbanization have led to the deterioration in water quality due to various contaminants. To assess the status of urban drinking water quality, samples were collected from the piped supplies as well as groundwater sources from different localities of residential, commercial and industrial areas of Lucknow City in a tropical zone of India during pre-monsoon for estimation of coliform and faecal coliform bacteria, organochlorine pesticides (OCPs) and heavy metals. Bacterial contamination was found to be more in the samples from commercial areas than residential and industrial areas. OCPs like α,γ-hexachlorocyclohexane and 1,1 p,p-DDE {dichloro-2, 2-bis(p-chlorophenyl) ethene)} were found to be present in most of the samples from study area. The total organochlorine pesticide levels were found to be within the European Union limit (0.5 μg/L) in most of the samples. Most of the heavy metals estimated in the samples were also found to be within the permissible limits as prescribed by World Health Organization for drinking water. Thus, these observations show that contamination of drinking water in urban areas may be mainly due to municipal, industrial and agricultural activities along with improper disposal of solid waste. This is an alarm to safety of public health and aquatic environment in tropics.

  4. Bacterial repopulation of drinking water pipe walls after chlorination.

    Science.gov (United States)

    Mathieu, Laurence; Francius, Grégory; El Zein, Racha; Angel, Edith; Block, Jean-Claude

    2016-09-01

    The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water. Due to the presence of a residual biofilm, the hydrophobicity of chlorinated biofilm-fouled surface exhibited much lower adhesion forces (2.1 nN) compared to bare surfaces (8.9 nN). This could explain the rapid repopulation after chlorination, with a twofold faster bacterial accumulation rate on the bare HDPE surface. γ-Proteobacteria dominated the early stages of repopulation of both surfaces and a shift in the dominance occurred over the colonization time. Such observations define a timescale for cleaning frequency in industrial environments and guidelines for a rinsing procedure using drinking water.

  5. Influence of water quality on the embodied energy of drinking water treatment.

    Science.gov (United States)

    Santana, Mark V E; Zhang, Qiong; Mihelcic, James R

    2014-01-01

    Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy.

  6. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  7. [Study on the optimization of monitoring indicators of drinking water quality during health supervision].

    Science.gov (United States)

    Ye, Bixiong; E, Xueli; Zhang, Lan

    2015-01-01

    To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.

  8. Fluoride in drinking water and its removal.

    Science.gov (United States)

    Meenakshi; Maheshwari, R C

    2006-09-01

    Excessive fluoride concentrations have been reported in groundwaters of more than 20 developed and developing countries including India where 19 states are facing acute fluorosis problems. Various technologies are being used to remove fluoride from water but still the problem has not been rooted out. In this paper, a broad overview of the available technologies for fluoride removal and advantages and limitations of each one have been presented based on literature survey and the experiments conducted in the laboratory with several processes. It has been concluded that the selection of treatment process should be site specific as per local needs and prevailing conditions as each technology has some limitations and no one process can serve the purpose in diverse conditions.

  9. Replacement predictions for drinking water networks through historical data.

    Science.gov (United States)

    Malm, Annika; Ljunggren, Olle; Bergstedt, Olof; Pettersson, Thomas J R; Morrison, Gregory M

    2012-05-01

    Lifetime distribution functions and current network age data can be combined to provide an assessment of the future replacement needs for drinking water distribution networks. Reliable lifetime predictions are limited by a lack of understanding of deterioration processes for different pipe materials under varied conditions. An alternative approach is the use of real historical data for replacement over an extended time series. In this paper, future replacement needs are predicted through historical data representing more than one hundred years of drinking water pipe replacement in Gothenburg, Sweden. The verified data fits well with commonly used lifetime distribution curves. Predictions for the future are discussed in the context of path dependence theory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Applications of the water drinking test in glaucoma management.

    Science.gov (United States)

    Susanna, Remo; Clement, Colin; Goldberg, Ivan; Hatanaka, Marcelo

    2017-08-01

    Intraocular pressure (IOP) peaks and means have been considered important factors for glaucoma onset and progression. However, peak IOP detection depends only on appropriated IOP checks at office visits, whereas the mean IOP requires longitudinal IOP data collection and may be affected by the interval between visits. Also, IOP peak assessment is necessary to verify if the peak pressure of a given patient is in target range, to evaluate glaucoma suspect risk, the efficacy of hypotensive drugs and to detect early loss of IOP control. The water-drinking test has gained significant attention in recent years as an important tool to evaluate IOP peaks and instability. The main objective of this review was to present new findings and to discuss the applicability of the water-drinking test in glaucoma management. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  11. Lithium in Drinking Water and Incidence of Suicide

    DEFF Research Database (Denmark)

    Knudsen, Nikoline N.; Schullehner, Jörg; Hansen, Birgitte

    2017-01-01

    Suicide is a major public health concern. High-dose lithium is used to stabilize mood and prevent suicide in patients with affective disorders. Lithium occurs naturally in drinking water worldwide in much lower doses, but with large geographical variation. Several studies conducted at an aggregate......-weighted average (TWA) lithium exposure level from drinking water hypothesizing an inverse relationship. The mean lithium level was 11.6 µg/L ranging from 0.6 to 30.7 µg/L. The suicide rate decreased from 29.7 per 100,000 person-years at risk in 1991 to 18.4 per 100,000 person-years in 2012. We found...

  12. Leaching of Heavy Metals from Water Bottle Components into the Drinking Water of Rodents

    Science.gov (United States)

    Nunamaker, Elizabeth A; Otto, Kevin J; Artwohl, James E; Fortman, Jeffrey D

    2013-01-01

    Providing high-quality, uncontaminated drinking water is an essential component of rodent husbandry. Acidification of drinking water is a common technique to control microbial growth but is not a benign treatment. In addition to its potential biologic effects, acidified water might interact with the water-delivery system, leading to the leaching of heavy metals into the drinking water. The goal of the current study was to evaluate the effects of water acidification and autoclaving on water-bottle assemblies. The individual components of the system (stainless-steel sipper tubes, rubber stoppers, neoprene stoppers, and polysulfone water bottles) were acid-digested and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, selenium, and zinc to quantify the metal composition of each material. In addition the amounts of these metals that leached into tap and acidified water with and without autoclaving were quantified after 1 wk of contact time. On a weight basis, sipper tubes contained the largest quantities of all metals except magnesium and zinc, which were greatest in the neoprene stoppers. Except for cadmium and selenium, all metals had leached into the water after 1 wk, especially under the acidified condition. The quantities of copper, lead, and zinc that leached into the drinking water were the most noteworthy, because the resulting concentrations had the potential to confound animal experiments. On the basis of these findings, we suggest that water-quality monitoring programs include heavy metal analysis at the level of water delivery to animals. PMID:23562029

  13. Determination of fluoride level in drinking water from water samples in Navi Mumbai, Maharashtra

    Directory of Open Access Journals (Sweden)

    Sabita M Ram

    2017-01-01

    Full Text Available Introduction: The concentration of fluoride in drinking water influences the dental caries situation in the region. There are no studies reported determining the fluoride levels in drinking water supplies of Navi Mumbai. Aim: The aim of this study is to determine the fluoride level in drinking water samples from different areas of Navi Mumbai region. Materials and Methods: In an in vitro experimental study, water samples were collected from seven different locations of Navi Mumbai region. Water samples were collected from the Morbe dam, water purification plant at Bhokarpada in Raigad district, and five randomly selected residential areas of Navi Mumbai region. A total of 35 water subsamples were analyzed for fluoride content using fluoride analysis kit (HiMedia AQUACheck Fluoride Testing Kit. Results: The mean concentration of fluoride level in water samples from dam, water purification plant, as well as the five random residential areas was 0.5 mg/L (1 mg/L = 1 ppm. The fluoride level remained constant throughout from the source till the end consumer. Conclusion: There was no effect of water purification process at the plant on fluoride content of water samples. Similarly, the fluoride content was constant in the distributed purified water to residential areas. In this study, it was observed that the fluoride level in drinking water of Navi Mumbai was below the recommended levels by the World Health Organization as well as the Ministry of Health, Government of India.

  14. Multivariate analysis of drinking water quality parameters in Bhopal, India.

    Science.gov (United States)

    Parashar, Charu; Verma, Neelam; Dixit, Savita; Shrivastava, Rajneesh

    2008-05-01

    Pollution of water bodies is one of the areas of major concern to environmentalists. Water quality is an index of health and well being of a society. Industrialization, urbanization and modern agriculture practices have direct impact on the water resources. These factors influence the water resources quantitatively and qualitatively. The study area selected were the Upper lake and Kolar reservoir of Bhopal, the state capital of Madhya Pradesh, India. The Upper lake and Kolar reservoir both are the important sources of potable water supply for the Bhopal city. The physico-chemical parameters like temperature, pH, turbidity, total hardness, alkalinity, BOD, COD, Chloride, nitrate and phosphate were studied to ascertain the drinking water quality.

  15. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply

    Science.gov (United States)

    Bereskie, Ty; Rodriguez, Manuel J.; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  16. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply.

    Science.gov (United States)

    Bereskie, Ty; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  17. Fundamentals and control of nitrification in chloraminated drinking water distribution systems

    National Research Council Canada - National Science Library

    American Water Works Association

    2006-01-01

    ... Introduction, 25 Nitrification in Drinking Water Distribution System, 25 Nitrification in Pipelines and Effects of Biofilms, 31 Nitrification in Water Storage Facilities, 34 Conclusions, 39 Refere...

  18. radionuclide analysis of drinking water in selected secondary ...

    African Journals Online (AJOL)

    Vincent

    O.A. Oyebanjo and A.G. Magbagbeola: Radionuclide Analysis of Drinking Water in Selected Secondary Schools….. www.njpap.futa.edu.ng. 44 limit while that of uranium 238U is 13.07 + 1.41 and. Thorium 232Th 5.42 + 0.33 BqL-1. Just like Araga. Grammar School, Araga (SW4) the Potassium, Uranium and Thorium activity ...

  19. Effects of chlorinated drinking water on human lipid metabolism.

    OpenAIRE

    Wones, R G; Glueck, C J

    1986-01-01

    Atherosclerosis with its complications is the most important health problem affecting American adults. The levels of serum cholesterol, of high and low density lipoproteins, and of apolipoproteins A1, A2, and B are major risk factors for the development of atherosclerotic lesions. Animal studies suggest that chlorinated drinking water may elevate the serum cholesterol. Studies are too limited to confirm or refute this effect in humans. Since millions of humans have and have had daily exposure...

  20. Bioenabled SERS Substrates for Food Safety and Drinking Water Monitoring

    OpenAIRE

    Yang, Jing; Rorrer, Gregory L.; Wang, Alan X.

    2015-01-01

    We present low-cost bioenabled surface-enhanced Raman scattering (SERS) substrates that can be massively produced in sustainable and eco-friendly methods with significant commercial potentials for the detection of food contamination and drinking water pollution. The sensors are based on diatom frustules with integrated plasmonic nanoparticles. The ultra-high sensitivity of the SERS substrates comes from the coupling between the diatom frustules and Ag nanoparticles to achieve dramatically inc...

  1. Tracks FAQs: What Chemicals Are In My Drinking Water?

    Centers for Disease Control (CDC) Podcasts

    2011-08-10

    In this podcast, CDC Tracking experts discuss how you can use the Tracking Network to determine what chemicals are in your drinking water. Do you have a question for our Tracking experts? Please e-mail questions to trackingsupport@cdc.gov.  Created: 8/10/2011 by National Center for Environmental Health, Division of Environmental Hazards and Health Effects, Environmental Health Tracking Branch.   Date Released: 8/10/2011.

  2. Physicochemical and microbiological assessment of recreational and drinking waters.

    Science.gov (United States)

    Kumar, Shailendra; Tripathi, Vinayak R; Garg, Satyendra K

    2012-05-01

    The present study was aimed to make an assessment of health risk due to pollution and human pathogenic bacteria associated with the recreational and drinking water sources in twin densely populated holy Indian cities Ayodhya and Faizabad. Though physicochemical studies revealed that the water available in the area is under recommended limits for human use, it is unsafe on account of poor microbiological quality of surface and ground water in the region. The most probable number (MPN) test results revealed the preponderance of ≥2,400 total coliforms (TC) (100 ml)(-1) in river, pond, dug well and kund waters. Contrary to that, 94% tube wells, 32% hand pumps and 25% piped supply water were under safe limits having water logging and presence of septic tanks in the near vicinity are the possible reasons of poor microbial quality of hand pump drinking water. The municipal supply water passes along sewage line where loose connections and/or cracks in pipe lead to mixing and contamination. The significant best quality of tube well water evident from the absence of TC could be attributed to the depth of well ≥150 ft and usually their location away from the habitation. A total of 263 bacteria from 186 water samples were isolated, and at least five genera of enteric bacteria from various water sources were identified morphologically and biochemically as Escherichia coli, Klebsiella sp., Enterobacter sp., Shigella sp. and Salmonella sp. The serotyping of 72 E. coli and 36 Salmonella sp. revealed 51 as E. coli O157 and 20 as Salmonella sp. The presence of enteric pathogens in water sources pose threat to human health and therefore call for immediate remedial measures.

  3. Accumulation and modeling of particles in drinking water pipe fittings

    Directory of Open Access Journals (Sweden)

    K. Neilands

    2012-09-01

    Full Text Available The effect of pipe fittings (mainly T-pieces on particle accumulation in drinking water distribution networks were shown in this work. The online measurements of flow and turbidity for cast iron, polyethylene and polyvinyl chloride pipe sections were linked with analysis of pipe geometry. Up to 0.29 kg of the total amount mobilized in T-pieces ranging from DN 100/100–DN 250/250. The accumulated amount of particles in fittings was defined as J and introduced into the existing turbidity model PODDS (prediction of discoloration in distribution systems proposed by Boxall et al. (2001 which describes the erosion of particles leading to discoloration events in drinking water network viz sections of straight pipes. However, this work does not interpret mobilization of particles in pipe fittings which have been considered in this article. T-pieces were the object of this study and depending of the diameter or daily flow velocity, the coefficient J varied from 1.16 to 8.02. The study showed that pipe fittings act as catchment areas for particle accumulation in drinking water networks.

  4. Contamination potential of drinking water distribution network biofilms.

    Science.gov (United States)

    Wingender, J; Flemming, H C

    2004-01-01

    Drinking water distribution system biofilms were investigated for the presence of hygienically relevant microorganisms. Early biofilm formation was evaluated in biofilm reactors on stainless steel, copper, polyvinyl chloride (PVC) and polyethylene coupons exposed to unchlorinated drinking water. After 12 to 18 months, a plateau phase of biofilm development was reached. Surface colonization on the materials ranged between 4 x 10(6) and 3 x 10(7) cells/cm2, with heterotrophic plate count (HPC) bacteria between 9 x 10(3) and 7 x 10(5) colony-forming units (cfu)/cm2. Established biofilms were investigated in 18 pipe sections (2 to 99 years old) cut out from distribution pipelines. Materials included cast iron, galvanized steel, cement and PVC. Colonization ranged from 4 x 10(5) to 2 x 10(8) cells/cm2, HPC levels varied between 1 and 2 x 10(5) cfu/cm2. No correlation was found between extent of colonization and age of the pipes. Using cultural detection methods, coliform bacteria were rarely found, while Escherichia coli, Pseudomonas aeruginosa and Legionella spp. were not detected in the biofilms. In regular operation, distribution system biofilms do not seem to be common habitats for pathogens. However, nutrient-leaching materials like rubber-coated valves were observed with massive biofilms which harboured coliform bacteria contaminating drinking water.

  5. Lithium in Drinking Water and Incidence of Suicide

    DEFF Research Database (Denmark)

    Knudsen, Nikoline N; Schullehner, Jörg; Hansen, Birgitte

    2017-01-01

    Suicide is a major public health concern. High-dose lithium is used to stabilize mood and prevent suicide in patients with affective disorders. Lithium occurs naturally in drinking water worldwide in much lower doses, but with large geographical variation. Several studies conducted at an aggregate...... level have suggested an association between lithium in drinking water and a reduced risk of suicide; however, a causal relation is uncertain. Individual-level register-based data on the entire Danish adult population (3.7 million individuals) from 1991 to 2012 were linked with a moving five-year time......-weighted average (TWA) lithium exposure level from drinking water hypothesizing an inverse relationship. The mean lithium level was 11.6 μg/L ranging from 0.6 to 30.7 μg/L. The suicide rate decreased from 29.7 per 100,000 person-years at risk in 1991 to 18.4 per 100,000 person-years in 2012. We found...

  6. Relating Water Quality and Age in Drinking Water Distribution Systems Using Self-Organising Maps

    Directory of Open Access Journals (Sweden)

    E.J. Mirjam Blokker

    2016-04-01

    Full Text Available Understanding and managing water quality in drinking water distribution system is essential for public health and wellbeing, but is challenging due to the number and complexity of interacting physical, chemical and biological processes occurring within vast, deteriorating pipe networks. In this paper we explore the application of Self Organising Map techniques to derive such understanding from international data sets, demonstrating how multivariate, non-linear techniques can be used to identify relationships that are not discernible using univariate and/or linear analysis methods for drinking water quality. The paper reports on how various microbial parameters correlated with modelled water ages and were influenced by water temperatures in three drinking water distribution systems.

  7. Water Utility Planning for an Emergency Drinking Water Supply

    Science.gov (United States)

    Reviews roles and responsibilities among various levels of government regarding emergency water supplies and seeks to encourage collaboration and partnership regarding emergency water supply planning.

  8. Water Quality Modeling in the Dead End Sections of Drinking Water Distribution Networks

    Science.gov (United States)

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Wate...

  9. Water Quality Modeling in the Dead End Sections of Drinking Water Distribution Networks -journal article

    Science.gov (United States)

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Wate...

  10. Irrigation water as a source of drinking water: is safe use possible?

    DEFF Research Database (Denmark)

    Hoek, Wim van der; Konradsen, F; Ensink, J H

    2001-01-01

    BACKGROUND: In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water reser...

  11. Benefits of neutral electrolyzed oxidizing water as a drinking water additive for broiler chickens

    National Research Council Canada - National Science Library

    Bügener, E; Kump, A. Wilms-Schulze; Casteel, M; Klein, G

    2014-01-01

    .... At each farm, 3 rearing periods were included in the study. With EO water as the water additive, the total viable cell count and the number of Escherichia coli in drinking water samples were reduced compared with the respective control group...

  12. Classification of mineral water types and comparison with drinking water standards

    NARCIS (Netherlands)

    Aa, NGFM van der

    2003-01-01

    In a study of 291 mineral waters from 41 different countries, 9-20% exceeded the Dutch drinking water standards for chloride, calcium, magnesium, kalium, sodium, sulphate and fluorine. The mineral water quality cannot be qualified as bad since the standards for these compounds with the exception of

  13. Effectiveness of table top water pitcher filters to remove arsenic from drinking water.

    Science.gov (United States)

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P; Hampton, Thomas H; Stanton, Bruce A

    2017-10-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As 3+ and As 5+ , from 1000μg/L to water and its use reduces plastic waste associated with bottled water. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Social representations of drinking water: subsidies for water quality surveillance programmes.

    Science.gov (United States)

    Carmo, Rose Ferraz; Bevilacqua, Paula Dias; Barletto, Marisa

    2015-09-01

    A qualitative study was developed aimed at understanding the social representations of water consumption by a segment of the population of a small town in Brazil. A total of 19 semi-structured interviews were carried out and subjected to a content analysis addressing opinion on drinking water, characteristics of drinking water and its correlation to health and diseases, criteria for water usage and knowledge on the source and accountability for drinking-water quality. Social representations of drinking water predominantly incorporate the municipal water supply and sanitation provider and its quality. The identification of the municipal water supply provider as alone responsible for maintaining water quality indicated the lack of awareness of any health surveillance programme. For respondents, chlorine was accountable for conferring colour, odour and taste to the water. These physical parameters were reported as the cause for rejecting the water supplied and suggest the need to review the focus of health-educational strategies based on notions of hygiene and water-borne diseases. The study allowed the identification of elements that could contribute to positioning the consumers vs. services relationship on a level playing field, enabling dialogue and exchange of knowledge for the benefit of public health.

  15. Surface water pesticide modelling for decision support in drinking water production

    Science.gov (United States)

    Desmet, Nele; Dams, Jef; Bronders, Jan; Peleman, Gisèle; Verdickt, Liesbeth

    2015-04-01

    The occurrence of pesticides and other contaminants in river systems may compromise the use of surface water for drinking water production. To reduce the cost of removal of pesticides from the raw water, drinking water companies can: search for other raw water sources, invest in water storage capacity to overcome periods with high pesticide concentrations (often related to the application period), or impose measures to reduce the emission of pesticides to surface water (i.e. sustainable application strategies or use restrictions). To select the most appropriate water management options, the costs and effects of the aforementioned actions need to be evaluated. This evaluation requires knowledge on the concentrations and loads of pesticides at the point of drinking water abstraction, as well as insight in the contribution and the temporal variability of different sources or subbasins. In such a case, a modelling approach can assist in generating measurement-based datasets and to compare different scenarios for water management. We illustrate how a modelling approach can provide decision support for water management related to drinking water abstraction from surface water in a catchment that suffers from elevated pesticide concentrations. The study area is a water production center (WPC) located in northwestern Belgium. The WPC abstracts raw water from the river IJzer or from a natural pond and its connected streams. The available quantities as well as the quality of the water vary throughout the year. The WPC uses a reservoir of 3 million m³ to capture and store raw water to overcome periods with limited water availability and/or poor water quality. However, the pressure on water increases and in the future this buffering capacity might be no longer sufficient to fulfill the drinking water production demand. A surface water quality model for the area is set up using InfoWorks RS. The model is applied to obtain insight in the concentrations and loads at the different

  16. Early warning of changing drinking water quality by trend analysis.

    Science.gov (United States)

    Tomperi, Jani; Juuso, Esko; Leiviskä, Kauko

    2016-06-01

    Monitoring and control of water treatment plants play an essential role in ensuring high quality drinking water and avoiding health-related problems or economic losses. The most common quality variables, which can be used also for assessing the efficiency of the water treatment process, are turbidity and residual levels of coagulation and disinfection chemicals. In the present study, the trend indices are developed from scaled measurements to detect warning signs of changes in the quality variables of drinking water and some operating condition variables that strongly affect water quality. The scaling is based on monotonically increasing nonlinear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. Deviation indices are used to assess the severity of situations. The study shows the potential of the described trend analysis as a predictive monitoring tool, as it provides an advantage over the traditional manual inspection of variables by detecting changes in water quality and giving early warnings.

  17. The effectiveness of large household water storage tanks for protecting the quality of drinking water.

    Science.gov (United States)

    Graham, Jay P; VanDerslice, James

    2007-06-01

    Many communities along the US-Mexico border remain without infrastructure for water and sewage. Residents in these communities often collect and store their water in open 55-gallon drums. This study evaluated changes in drinking water quality resulting from an intervention that provided large closed water storage tanks (2,500-gallons) to individual homes lacking a piped water supply. After the intervention, many of the households did not change the source of their drinking water to the large storage tanks. Therefore, water quality results were first compared based on the source of the household's drinking water: store or vending machine, large tank, or collected from a public supply and transported by the household. Of the households that used the large storage tank as their drinking water supply, drinking water quality was generally of poorer quality. Fifty-four percent of samples collected prior to intervention had detectable levels of total coliforms, while 82% of samples were positive nine months after the intervention (p water quality at different points between collection by water delivery trucks and delivery to the household's large storage tank. Thirty percent of the samples taken immediately after water was delivered to the home had high total coliforms (> 10 CFU/100 ml). Mean free chlorine levels dropped from 0.43 mg/l, where the trucks filled their tanks, to 0.20 mg/l inside the household's tank immediately after delivery. Results of this study have implications for interventions that focus on safe water treatment and storage in the home, and for guidelines regarding the level of free chlorine required in water delivered by water delivery trucks.

  18. Review: Drinking water for liquid-fed pigs.

    Science.gov (United States)

    Meunier-Salaün, M-C; Chiron, J; Etore, F; Fabre, A; Laval, A; Pol, F; Prunier, A; Ramonet, Y; Nielsen, B L

    2017-05-01

    Liquid feeding has the potential to provide pigs with sufficient water to remain hydrated and prevent prolonged thirst. However, lack of permanent access to fresh water prevents animals from drinking when they are thirsty. Moreover, individual differences between pigs in a pen may result in uneven distribution of the water provided by the liquid feed, leading to some pigs being unable to meet their water requirements. In this review, we look at the need for and provision of water for liquid-fed pigs in terms of their production performance, behaviour, health and welfare. We highlight factors which may lead to water ingestion above or below requirements. Increases in the need for water may be caused by numerous factors such as morbidity, ambient temperature or competition within the social group, emphasising the necessity of permanent access to water as also prescribed in EU legislation. The drinkers can be the target of redirected behaviour in response to feed restriction or in the absence of rooting materials, thereby generating water losses. The method of water provision and drinker design is critical to ensure easy access to water regardless of the pig's physiological state, and to limit the amount of water used, which does not benefit the pig.

  19. 76 FR 72973 - Notice of Lodging of Consent Decree Under the Clean Water Act and Safe Drinking Water Act

    Science.gov (United States)

    2011-11-28

    ... of Lodging of Consent Decree Under the Clean Water Act and Safe Drinking Water Act Notice is hereby... ``Fort Gay'') for permanent injunctive relief and civil penalties under the Clean Water Act, 33 U.S.C. 1251-387; the Safe Drinking Water Act, 42 U.S.C. 300f-300j-26; the West Virginia Water Pollution...

  20. 77 FR 14425 - Notice of Lodging of Consent Decree Under the Safe Drinking Water Act

    Science.gov (United States)

    2012-03-09

    ... of Lodging of Consent Decree Under the Safe Drinking Water Act Notice is hereby given that on... action the United States sought permanent injunctive relief and civil penalties under the Safe Drinking Water Act (``SDWA''), 42 U.S.C. 300f-300j-26, resulting from violations of the National Primary Drinking...

  1. [Research and development of a vehicle-mounted drinking water installation and its purification effect].

    Science.gov (United States)

    Gao, Junhong; Wan, Hong; Kong, Wei; Yue, Hong

    2012-01-01

    To provide a suitable vehicle-mounted installation to solve the problem of drinking water in the wild. The vehicle-mounted drinking water installation, made up of pre-treatment unit, purification unit, box and VECU, was used to storage, transport and purify water in the wild. The effect of purification was detected by assembling the installation in the wild and observing the change of water turbidity, TDS, the number of total bacteria and coliform bacteria before and after the treatment of water sources. The wild water sources, such as river water, rainwater, well water and spring water could be purified, and the quality of the treated water could meet the requirement of Drinking Water Quality Standard of CJ94-2005. The vehicle-mounted drinking water installation is suitable for purifying water sources in the wild for drinking use.

  2. Drinking Water Quality in Hospitals and Other Buildings ...

    Science.gov (United States)

    Drinking water quality entering large buildings is generally adequately controlled by the water utility, but localized problems may occur within building or “premise” plumbing. Particular concerns are loss of disinfectant residual and temperature variability, which may enhance pathogen activity and metallic corrosion. Disinfection systems are available to building managers and are being installed in a variety of commercial buildings (hospitals, hotels, office buildings.) Yet our understanding of such additional treatment and of how to monitor end water quality at these buildings is limited. This class lecture will discuss challenges in maintaining acceptable water quality in hospitals, schools and other buildings. To give a lecture to a class of graduate students (ENVE 6054: Physical/Chemical Processes for Water Quality Control) at the University of Cincinnati, by presenting past research projects.

  3. [Drinking water hardness and chronic degenerative diseases. II. Cardiovascular diseases].

    Science.gov (United States)

    Monarca, S; Zerbini, I; Simonati, C; Gelatti, U

    2003-01-01

    Since the 1950s a causal relation between water hardness and cardiovascular diseases (CVD) in humans has been hypothesized. In order to evaluate the influence of calcium and magnesium, the minerals responsible for the hardness of drinking water, on human health, a review of all the articles published on the subject from 1980 up to today has been carried out. Many but not all geographic correlation studies showed an inverse association between water hardness and mortality for CVD. Most case-control and one cohort studies showed an inverse relation, statistically significant, between mortality from CVD and water levels of magnesium, but not calcium. Consumption of water containing high concentrations of magnesium seems to reduce of about 30-35% the mortality for CVD, but not the incidence. This inverse association is supported by clinical and experimental findings and is biologically plausible and in line with Hill's criteria for a cause-effect relationship.

  4. Risk Factors Associated with the Choice to Drink Bottled Water and Tap Water in Rural Saskatchewan

    Directory of Open Access Journals (Sweden)

    Lianne McLeod

    2014-01-01

    Full Text Available A cross-sectional study investigated risk factors associated with choices to drink bottled water and tap water in rural Saskatchewan. Of 7,500 anonymous postal questionnaires mailed out, 2,065 responses were analyzed using generalized linear mixed models. Those who reported a water advisory (p < 0.001 or living in the area for £10 years (p = 0.01 were more likely to choose bottled water. Those who reported tap water was not safe to drink were more likely to choose bottled water, an effect greater for those who had no aesthetic complaints (p ≤ 0.001, while those with aesthetic complaints were more likely to choose bottled water if they believed the water was safe (p < 0.001. Respondents who treated their water and did not use a community supply were more likely to choose bottled water (p < 0.001, while those who did not treat their water were more likely to choose bottled water regardless of whether a community supply was used (p < 0.001. A similar pattern of risk factors was associated with a decreased likelihood of consuming tap water daily; however, the use of a community water supply was not significant. Understanding the factors involved in drinking water choices could inform public health education efforts regarding water management in rural areas.

  5. Water Safety Plan for drinking water risk management: the case study of Mortara (Pavia, Italy

    Directory of Open Access Journals (Sweden)

    Sabrina Sorlini

    2017-08-01

    Full Text Available The Water Safety Plan (WSP approach is an iterative method focused on analyzing the risks of water contamination in a drinking water supply system, from catchment to consumer, in order to protect human health. This approach is aimed at identifying and drastically reducing water contamination in the entire drinking water system, through the identification and mitigation or, if possible, elimination of all factors that may cause a chemical, physical, microbiological and radiological risk for water. This study developed a proposal of WSP for the drinking water supply system (DWSS of Mortara, Italy, in order to understand which are the preliminary evaluation aspects to be considered in the elaboration of a WSP. The DWSS of Mortara (a town of 15,500 inhabitants, located in northern Italy consists of three drinking water treatment plants (DWTPs, considering the following main contaminants: arsenic, iron, manganese and ammonia. Potential hazardous events and associated hazards were identified in each part of the water supply system. The risk assessment was carried out following the semi quantitative approach. The WSP proposal for Mortara was very useful not only as a risk mitigation approach, but also as a cost-effective tool for water suppliers. Furthermore, this approach will reduce public health risk, ensure a better compliance of water quality parameters with regulatory requirements, increase confidence of consumers and municipal authorities, and improve resource management due to intervention planning. Further, some new control measures are proposed by the WSP team within this work.

  6. Drinking Water in Transition: A Multilevel Cross-sectional Analysis of Sachet Water Consumption in Accra.

    Science.gov (United States)

    Stoler, Justin; Weeks, John R; Appiah Otoo, Richard

    2013-01-01

    Rapid population growth in developing cities often outpaces improvements to drinking water supplies, and sub-Saharan Africa as a region has the highest percentage of urban population without piped water access, a figure that continues to grow. Accra, Ghana, implements a rationing system to distribute limited piped water resources within the city, and privately-vended sachet water-sealed single-use plastic sleeves-has filled an important gap in urban drinking water security. This study utilizes household survey data from 2,814 Ghanaian women to analyze the sociodemographic characteristics of those who resort to sachet water as their primary drinking water source. In multilevel analysis, sachet use is statistically significantly associated with lower overall self-reported health, younger age, and living in a lower-class enumeration area. Sachet use is marginally associated with more days of neighborhood water rationing, and significantly associated with the proportion of vegetated land cover. Cross-level interactions between rationing and proxies for poverty are not associated with sachet consumption after adjusting for individual-level sociodemographic, socioeconomic, health, and environmental factors. These findings are generally consistent with two other recent analyses of sachet water in Accra and may indicate a recent transition of sachet consumption from higher to lower socioeconomic classes. Overall, the allure of sachet water displays substantial heterogeneity in Accra and will be an important consideration in planning for future drinking water demand throughout West Africa.

  7. Bioenabled SERS substrates for food safety and drinking water monitoring

    Science.gov (United States)

    Yang, Jing; Rorrer, Gregory L.; Wang, Alan X.

    2015-05-01

    We present low-cost bioenabled surface-enhanced Raman scattering (SERS) substrates that can be massively produced in sustainable and eco-friendly methods with significant commercial potentials for the detection of food contamination and drinking water pollution. The sensors are based on diatom frustules with integrated plasmonic nanoparticles. The ultra-high sensitivity of the SERS substrates comes from the coupling between the diatom frustules and Ag nanoparticles to achieve dramatically increased local optical field to enhance the light-matter interactions for SERS sensing. We successfully applied the bioenabled SERS substrates to detect melamine in milk and aromatic compounds in water with sensitivity down to 1μg/L.

  8. The effect of water purification systems on fluoride content of drinking water

    OpenAIRE

    Prabhakar A; Raju O; Kurthukoti A; Vishwas T

    2008-01-01

    Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, bo...

  9. Drinking Water Contamination Due To Lead-based Solder

    Science.gov (United States)

    Garcia, N.; Bartelt, E.; Cuff, K. E.

    2004-12-01

    The presence of lead in drinking water creates many health hazards. Exposure to lead-contaminated water can affect the brain, the central nervous system, blood cells, and kidneys, causing such problems as mental retardation, kidney disease, heart disease, stroke, and death. One way in which lead can contaminate our water supply is through the use of lead solder to join pipes. Lead solder was widely used in the past because of its ease of application as well as its low cost. Lead contamination in residential areas has previously been found to be a particularly serious problem in first-draw samples, of water that has sat stagnant in pipes overnight. To investigate the time-dependence of drinking water lead contamination, we analyzed samples taken hourly of water exposed to lead solder. While our preliminary data was insufficient to show more than a rough correlation between time of exposure and lead concentration over short periods (1-3 hours), we were able to confirm that overnight exposure of water to lead-based solder results in the presence high levels of lead. We also investigated other, external factors that previous research has indicated contribute to increased concentrations of lead. Our analysis of samples of lead-exposed water at various pH and temperatures suggests that these factors can be equally significant in terms of their contribution to elevated lead concentration levels. In particular, water that is slightly corrosive appears to severely impact the solubility of lead. As this type of water is common in much of the Northeast United States, the presence of lead-based solder in residential areas there is especially problematic. Although lead-based solder has been banned since the 1980s, it remains a serious concern, and a practical solution still requires further research.

  10. Climate Adaptation Capacity for Conventional Drinking Water Treatment Facilities

    Science.gov (United States)

    Levine, A.; Goodrich, J.; Yang, J.

    2013-12-01

    Water supplies are vulnerable to a host of climate- and weather-related stressors such as droughts, intense storms/flooding, snowpack depletion, sea level changes, and consequences from fires, landslides, and excessive heat or cold. Surface water resources (lakes, reservoirs, rivers, and streams) are especially susceptible to weather-induced changes in water availability and quality. The risks to groundwater systems may also be significant. Typically, water treatment facilities are designed with an underlying assumption that water quality from a given source is relatively predictable based on historical data. However, increasing evidence of the lack of stationarity is raising questions about the validity of traditional design assumptions, particularly since the service life of many facilities can exceed fifty years. Given that there are over 150,000 public water systems in the US that deliver drinking water to over 300 million people every day, it is important to evaluate the capacity for adapting to the impacts of a changing climate. Climate and weather can induce or amplify changes in physical, chemical, and biological water quality, reaction rates, the extent of water-sediment-air interactions, and also impact the performance of treatment technologies. The specific impacts depend on the watershed characteristics and local hydrological and land-use factors. Water quality responses can be transient, such as erosion-induced increases in sediment and runoff. Longer-term impacts include changes in the frequency and intensity of algal blooms, gradual changes in the nature and concentration of dissolved organic matter, dissolved solids, and modulation of the microbiological community structure, sources and survival of pathogens. In addition, waterborne contaminants associated with municipal, industrial, and agricultural activities can also impact water quality. This presentation evaluates relationships between climate and weather induced water quality variability and

  11. DETERMINATION OF DRINK AND POTABLE WATER DEMAND IN KAHRAMANMARAŞ PROVINCE

    Directory of Open Access Journals (Sweden)

    Haluk ÇELİK

    1998-03-01

    Full Text Available In this research, the need of drinking water and its usage by people lived in the city of Kahramanmaraş have been examined. In a study previously done, it was understood that 80 % of water was consumed by housing. For this purpose to determine the amount of the water consumption the questionnaries have been applied. Therefore, in this study as well as general factors affecting water consumption in residential centers, the determination of the other factors affecting housing water consumption in the city was also decided. In these questionnarie works, the results of water consumption were obtained by taking the values of l / man / day and l / family / day as dependent variable and the factors affecting water consumption as independent variables. In addition, the factors affecting water consumption in the city were individually undertaken, and the water consumed in the last years was examined by using regression method. And then, the water to be needed 40 years later was tried to be calculated. Furthermore, suggestions were given as to which sources this need of water could be supplied from as well.

  12. Effective drinking water collaborations are not accidental: interagency relationships in the international water utility sector.

    Science.gov (United States)

    Jalba, D I; Cromar, N J; Pollard, S J T; Charrois, J W; Bradshaw, R; Hrudey, S E

    2014-02-01

    The role that deficient institutional relationships have played in aggravating drinking water incidents over the last 30 years has been identified in several inquiries of high profile drinking water safety events, peer-reviewed articles and media reports. These indicate that collaboration between water utilities and public health agencies (PHAs) during normal operations, and in emergencies, needs improvement. Here, critical elements of these interagency collaborations, that can be integrated within the corporate risk management structures of water utilities and PHAs alike, were identified using a grounded theory approach and 51 semi-structured interviews with utility and PHA staff. Core determinants of effective interagency relationships are discussed. Intentionally maintained functional relationships represent a key ingredient in assuring the delivery of safe, high quality drinking water. © 2013.

  13. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...... before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low – but the public and decision-makers are concerned and would like the matter...... investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water....

  14. Evaluation of human enteric viruses in surface water and drinking water resources in southern Ghana.

    Science.gov (United States)

    Gibson, Kristen E; Opryszko, Melissa C; Schissler, James T; Guo, Yayi; Schwab, Kellogg J

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses.

  15. Chitosan-Based Nanocomposite Beads for Drinking Water Production

    Science.gov (United States)

    Masheane, ML; Nthunya, LN; Sambaza, SS; Malinga, SP; Nxumalo, EN; Mamba, BB; Mhlanga, SD

    2017-05-01

    Potable drinking water is essential for the good health of humans and it is a critical feedstock in a variety of industries such as food and pharmaceutical industries. For the first time, chitosan-alumina/functionalised multiwalled carbon nanotube (f-MWCNT) nanocomposite beads were developed and investigated for the reduction of various physico-chemical parameters from water samples collected from open wells used for drinking purposes by a rural community in South Africa. The water samples were analysed before and after the reduction of the identified contaminants by the nanocomposite beads. The nanocomposite beads were effective in the removal of nitrate, chromium and other physico-chemical parameters. Although, the water samples contained these contaminants within the WHO and SANS241 limits for no risk, the long-term exposure and accumulation is an environmental and health concern. The reduction of these contaminants was dependent on pH levels. At lower pH, the reduction was significantly higher, up to 99.2% (SPC), 91.0% (DOC), 92.2% (DO), 92.2% (turbidity), 96.5% (nitrate) and 97.7% (chromium). Generally, the chitosan-alumina/f-MWCNT nanocomposite beads offer a promising alternative material for reduction and removal of various physico-chemical parameters for production portable water.

  16. Factorial analysis of trihalomethanes formation in drinking water.

    Science.gov (United States)

    Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James

    2010-06-01

    Disinfection of drinking water reduces pathogenic infection, but may pose risks to human health through the formation of disinfection byproducts. The effects of different factors on the formation of trihalomethanes were investigated using a statistically designed experimental program, and a predictive model for trihalomethanes formation was developed. Synthetic water samples with different factor levels were produced, and trihalomethanes concentrations were measured. A replicated fractional factorial design with center points was performed, and significant factors were identified through statistical analysis. A second-order trihalomethanes formation model was developed from 92 experiments, and the statistical adequacy was assessed through appropriate diagnostics. This model was validated using additional data from the Drinking Water Surveillance Program database and was applied to the Smiths Falls water supply system in Ontario, Canada. The model predictions were correlated strongly to the measured trihalomethanes, with correlations of 0.95 and 0.91, respectively. The resulting model can assist in analyzing risk-cost tradeoffs in the design and operation of water supply systems.

  17. Seawater drinking restores water balance in dehydrated harp seals.

    Science.gov (United States)

    How, Ole-Jakob; Nordøy, Erling S

    2007-07-01

    The purpose of this study was to answer the question of whether dehydrated harp seals (Phoca groenlandica) are able to obtain a net gain of water from the intake of seawater. Following 24 h of fasting, three subadult female harp seals were dehydrated by intravenous administration of the osmotic diuretic, mannitol. After another 24 h of fasting, the seals were given 1,000 ml seawater via a stomach tube. Urine and blood were collected for measurement of osmolality and osmolytes, while total body water (TBW) was determined by injections of tritiated water. In all seals, the maximum urinary concentrations of Na(+) and Cl(-) were higher than in seawater, reaching 540 and 620 mM, respectively, compared to 444 and 535 mM in seawater. In another experiment, the seals were given ad lib access to seawater for 48 h after mannitol-induced hyper-osmotic dehydration. In animals without access to seawater, the mean blood osmolality increased from 331 to 363 mOsm kg(-1) during dehydration. In contrast, the blood osmolality, hematocrit and TBW returned to normal when the seals were permitted ad lib access to seawater after dehydration. In conclusion, this study shows that harp seals have the capacity to gain net water from mariposa (voluntarily drinking seawater) and are able to restore water balance after profound dehydration by drinking seawater.

  18. Identification and Assessment of Potential Water Quality Impact Factors for Drinking-Water Reservoirs

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2014-06-01

    Full Text Available Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate, were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  19. Identification and Assessment of Potential Water Quality Impact Factors for Drinking-Water Reservoirs

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-01-01

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources. PMID:24919129

  20. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    Science.gov (United States)

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Geographical distribution of drinking-water with high iodine level and association between high iodine level in drinking-water and goitre: a Chinese national investigation.

    Science.gov (United States)

    Shen, Hongmei; Liu, Shoujun; Sun, Dianjun; Zhang, Shubin; Su, Xiaohui; Shen, Yanfeng; Han, Hepeng

    2011-07-01

    Excessive iodine intake can cause thyroid function disorders as can be caused by iodine deficiency. There are many people residing in areas with high iodine levels in drinking-water in China. The main aim of the present study was to map the geographical distribution of drinking-water with high iodine level in China and to determine the relationship between high iodine level in drinking-water and goitre prevalence. Iodine in drinking-water was measured in 1978 towns of eleven provinces in China, with a total of 28,857 water samples. We randomly selected children of 8-10 years old, examined the presence of goitre and measured their urinary iodine in 299 towns of nine provinces. Of the 1978 towns studied, 488 had iodine levels between 150 and 300 μg/l in drinking-water, and in 246 towns, the iodine level was >300 μg/l. These towns are mainly distributed along the original Yellow River flood areas, the second largest river in China. Of the 56 751 children examined, goitre prevalence was 6.3 % in the areas with drinking-water iodine levels of 150-300 μg/l and 11.0 % in the areas with drinking-water iodine >300 μg/l. Goitre prevalence increased with water and urinary iodine levels. For children with urinary iodine >1500 μg/l, goitre prevalence was 3.69 times higher than that for those with urinary iodine levels of 100-199 μg/l. The present study suggests that drinking-water with high iodine levels is distributed in eleven provinces of China. Goitre becomes more prevalent with the increase in iodine level in drinking-water. Therefore, it becomes important to prevent goitre through stopping the provision of iodised salt and providing normal drinking-water iodine through pipelines in these areas in China.

  2. Drinking and water balance during exercise and heat acclimation

    Science.gov (United States)

    Greenleaf, J. E.; Brock, P. J.; Keil, L. C.; Morse, J. T.

    1983-01-01

    The interactions between fluid intake and balance, and plasma ion, osmotic, and endocrine responses during dehydration produced by exercise in cool and warm environments during acclimation are explored. Two groups of five male subjects performed 8 days of ergometer exercise in hot and thermoneutral conditions, respectively. The exercise trials lasted 2 hr each. Monitoring was carried out on the PV, osmotic, sodium, and endocrine concentrations, voluntary fluid intake, fluid balances, and fluid deficits. A negative correlation was observed between the plasma sodium and osmolality during acclimation. The presence of hypervolemia during acclimation is suggested as a cause of drinking, while the vasopressin concentration was not found to be a significant factor stimulating drinking. Finally, the predominant mechanism in fluid intake during exercise and heat exposure is concluded to be the renin-angiotensin II system in the presence of reductions in total body water and extracellular plasma volumes.

  3. Estimating virus occurrence using Bayesian modeling in multiple drinking water systems of the United States

    Science.gov (United States)

    Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymeras...

  4. Emergency Response Planning to Reduce the Impact of Contaminated Drinking Water during Natural Disasters

    Science.gov (United States)

    Natural disasters can be devastating to local water supplies affecting millions of people. Disaster recovery plans and water industry collaboration during emergencies protect consumers from contaminated drinking water supplies and help facilitate the repair of public water system...

  5. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Shakhawat, E-mail: Schowdhury@kfupm.edu.sa [Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Mazumder, M.A. Jafar [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Attas, Omar [Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Husain, Tahir [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL (Canada)

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. - Highlights: • Co-exposure to multiple heavy metals in drinking water needs better understanding • Low-cost technologies for arsenic removal needs urgent attention • Protonated alginate needs further research for drinking water applications • Community level and PoU devices need improvement and cost reduction • Developing countries are most affected by heavy metals in drinking water.

  6. Drinking water insecurity: water quality and access in coastal south-western Bangladesh.

    Science.gov (United States)

    Benneyworth, Laura; Gilligan, Jonathan; Ayers, John C; Goodbred, Steven; George, Gregory; Carrico, Amanda; Karim, Md Rezaul; Akter, Farjana; Fry, David; Donato, Katherine; Piya, Bhumika

    2016-01-01

    National drinking water assessments for Bangladesh do not reflect local variability, or temporal differences. This paper reports on the findings of an interdisciplinary investigation of drinking water insecurity in a rural coastal south-western Bangladesh. Drinking water quality is assessed by comparison of locally measured concentrations to national levels and water quality criteria; resident's access to potable water and their perceptions are based on local social surveys. Residents in the study area use groundwater far less than the national average; salinity and local rainwater scarcity necessitates the use of multiple water sources throughout the year. Groundwater concentrations of arsenic and specific conductivity (SpC) were greater than surface water (pond) concentrations; there was no statistically significant seasonal difference in mean concentrations in groundwater, but there was for ponds, with arsenic higher in the dry season. Average arsenic concentrations in local water drinking were 2-4 times times the national average. All of the local groundwater samples exceeded the Bangladesh guidance for SpC, although the majority of residents surveyed did not perceive their water as having a 'bad' or 'salty' taste.

  7. Drinking water quality assessment of rain water harvested in ferrocement tanks in Alappuzha District, Kerala (India).

    Science.gov (United States)

    Varghese, Jainy; Jaya, D S

    2008-04-01

    The study was conducted to assess the physico-chemical and bacteriological quality of stored rain water in the ferrocement tanks of Alappuzha District, Kerala (India). Representative water samples were collected on random basis from ten stations (S1 to S10) with rain water harvesting facility during the periods January 2006 and April 2006. The present study revealed that the physico-chemical characteristics of stored rain water analysed during the winter and summer seasons were within the permissible drinking water standard limits prescribed by W.H.O. Microbiological analysis showed that most of the stored rainwater samples had microbial contamination in both winter and summer seasons and the bacterial count was above the permissible standards for drinking water. Faecal coliforms were also detected in the stored rain water samples collected from eight stations during the summer season. The present study revealed that the quality of stored rain water is suitable for drinking purpose in terms of physical and chemical characteristics. However, disinfection is necessary to make the water microbially safe for drinking purposes.

  8. Potential of Using Solar Energy for Drinking Water Treatment Plant

    Science.gov (United States)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  9. Defluoridation of drinking water with pottery: effect of firing temperature.

    Science.gov (United States)

    Hauge, S; Osterberg, R; Bjorvatn, K; Selvig, K A

    1994-12-01

    Excessive fluoride (F) in drinking water should be removed, but simple, inexpensive methods of fluoride removal are not readily available. This study examines the F(-)-binding capacity of clay and clayware, especially the effect of the firing temperature on the F(-)-binding process. A series of pots were made from ordinary potter's clay and fired at 500-1000 degrees C. Likewise, small clay bricks were fired and then crushed and sieved. NaF solutions containing 10 mg/l F- (10 ppm F-) were prepared. Suitable aliquots of the solutions were poured into clay pots or exposed to powdered clayware. Samples were taken at storage periods of 30 min to 20 days and analyzed for F- by ion-selective electrodes. The rate and capacity of F(-)-binding in the clayware varied with the firing temperature. Clay fired at approximately 600 degrees C was most effective. Temperatures over 700 degrees C caused a decline in F(-)-binding, and pottery fired at 900 degrees C and above seemed unable to remove F- from water. Pots fired at 500 degrees C or less cracked in water. The findings indicate that clayware, fired at an optimal temperature, may be of practical value for partial defluoridation of drinking water.

  10. An examination of the potential added value of water safety plans to the United States national drinking water legislation.

    Science.gov (United States)

    Baum, Rachel; Amjad, Urooj; Luh, Jeanne; Bartram, Jamie

    2015-11-01

    National and sub-national governments develop and enforce regulations to ensure the delivery of safe drinking water in the United States (US) and countries worldwide. However, periodic contamination events, waterborne endemic illness and outbreaks of waterborne disease still occur, illustrating that delivery of safe drinking water is not guaranteed. In this study, we examined the potential added value of a preventive risk management approach, specifically, water safety plans (WSPs), in the US in order to improve drinking water quality. We undertook a comparative analysis between US drinking water regulations and WSP steps to analyze the similarities and differences between them, and identify how WSPs might complement drinking water regulations in the US. Findings show that US drinking water regulations and WSP steps were aligned in the areas of describing the water supply system and defining monitoring and controls. However, gaps exist between US drinking water regulations and WSPs in the areas of team procedures and training, internal risk assessment and prioritization, and management procedures and plans. The study contributes to understanding both required and voluntary drinking water management practices in the US and how implementing water safety plans could benefit water systems to improve drinking water quality and human health. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Heavy metal pollution in drinking water - a global risk for human health

    African Journals Online (AJOL)

    Water resources in the world have been profoundly influenced over the last years by human activities, whereby the world is currently facing critical water supply and drinking water quality problems. In many parts of the world heavy metal (HM) concentrations in drinking water are higher than some international guideline ...

  12. Forecasting land cover change impacts on drinking water treatment costs in Minneapolis, Minnesota

    Science.gov (United States)

    Source protection is a critical aspect of drinking water treatment. The benefits of protecting source water quality in reducing drinking water treatment costs are clear. However, forecasting the impacts of environmental change on source water quality and its potential to influenc...

  13. Interpretation of drinking water quality guidelines – The case of arsenic

    African Journals Online (AJOL)

    Drinking water quality guidelines are often interpreted by the non-expert as make or break cut-off values below which drinking water is absolutely safe, and above which it is totally unacceptable. In reality there is no such knifelike cut-off limit, and there is a large grey area between safe water and undrinkable water.

  14. Perfluorinated alkylated acids in groundwater and drinking water: Identification, origin and mobility

    NARCIS (Netherlands)

    Eschauzier, C.; Raat, K.J.; Stuyfzand, P.J.; de Voogt, P.

    2013-01-01

    Human exposure to perfluorinated alkylated acids (PFAA) occurs primarily via the dietary intake and drinking water can contribute significantly to the overall PFAA intake. Drinking water is produced from surface water and groundwater. Waste water treatment plants have been identified as the main

  15. Perfluorinated alkylated acids in groundwater and drinking water: identification, origin and mobility

    NARCIS (Netherlands)

    Eschauzier, C.; Raat, K.J.; Stuijfzand, P.J.; de Voogt, P.

    2013-01-01

    Human exposure to perfluorinated alkylated acids (PFAA) occurs primarily via the dietary intake and drinking water can contribute significantly to the overall PFAA intake. Drinking water is produced from surface water and groundwater. Waste water treatment plants have been identified as the main

  16. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Smith, Christian

    2014-01-01

    in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more...

  17. Asbestos in drinking water. (Latest citations from the Selected Water Resources Abstracts data base). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The bibliography contains citations concerning the occurrence and problems associated with drinking water contaminated by asbestos fibers. Water supply contamination by asbestos cement pipes and factors involved in the release of asbestos fibers are discussed. Topics also include distribution data, epidemiology studies, health effects, detection, and measurement methods. (Contains a minimum of 114 citations and includes a subject term index and title list.)

  18. Why Do People Stop Treating Contaminated Drinking Water with Solar Water Disinfection (SODIS)?

    Science.gov (United States)

    Tamas, Andrea; Mosler, Hans-Joachim

    2011-01-01

    Solar Water Disinfection (SODIS) is a simple method designed to treat microbiologically contaminated drinking water at household level. This article characterizes relapse behavior in comparison with continued SODIS use after a 7-month nonpromotion period. In addition, different subtypes among relapsers and continuers were assumed to diverge mainly…

  19. Development of aquatic biomonitoring models for surface waters used for drinking water supply

    NARCIS (Netherlands)

    Penders, E.J.M.

    2011-01-01

    Given the need for continued quality control of surface waters used for the production of drinking water by state-of-the-art bioassays and biological early warning systems, the objective of the present thesis was to validate and improve some of the bioassays and biological early warning systems used

  20. Tapping Into Water: Key Considerations for Achieving Excellence in School Drinking Water Access

    Science.gov (United States)

    Hecht, Kenneth; Hampton, Karla E.; Grumbach, Jacob M.; Braff-Guajardo, Ellen; Brindis, Claire D.

    2014-01-01

    Objectives. We examined free drinking water access in schools. Methods. We conducted cross-sectional interviews with administrators from 240 California public schools from May to November 2011 to examine the proportion of schools that met excellent water access criteria (i.e., location, density, type, maintenance, and appeal of water sources), school-level characteristics associated with excellent water access, and barriers to improvements. Results. No schools met all criteria for excellent water access. High schools and middle schools had lower fountain:student ratios than elementary schools (odds ratio [OR] = 0.06; 95% confidence interval [CI] = 0.02, 0.20; OR = 0.30, 95% CI = 0.12, 0.70). Rural schools were more likely to offer a nonfountain water source than city schools (OR = 5.0; 95% CI = 1.74, 14.70). Newer schools were more likely to maintain water sources than older schools (OR = 0.98; 95% CI = 0.97, 1.00). Schools that offered free water in food service areas increased from pre- to postimplementation of California’s school water policy (72%–83%; P water included cost of programs and other pressing concerns. Conclusions. Awareness of the benefits related to school drinking water provision and funding may help communities achieve excellence in drinking water access. PMID:24832141

  1. Tapping into water: key considerations for achieving excellence in school drinking water access.

    Science.gov (United States)

    Patel, Anisha I; Hecht, Kenneth; Hampton, Karla E; Grumbach, Jacob M; Braff-Guajardo, Ellen; Brindis, Claire D

    2014-07-01

    We examined free drinking water access in schools. We conducted cross-sectional interviews with administrators from 240 California public schools from May to November 2011 to examine the proportion of schools that met excellent water access criteria (i.e., location, density, type, maintenance, and appeal of water sources), school-level characteristics associated with excellent water access, and barriers to improvements. No schools met all criteria for excellent water access. High schools and middle schools had lower fountain:student ratios than elementary schools (odds ratio [OR] = 0.06; 95% confidence interval [CI] = 0.02, 0.20; OR = 0.30, 95% CI = 0.12, 0.70). Rural schools were more likely to offer a nonfountain water source than city schools (OR = 5.0; 95% CI = 1.74, 14.70). Newer schools were more likely to maintain water sources than older schools (OR = 0.98; 95% CI = 0.97, 1.00). Schools that offered free water in food service areas increased from pre- to postimplementation of California's school water policy (72%-83%; P water included cost of programs and other pressing concerns. Awareness of the benefits related to school drinking water provision and funding may help communities achieve excellence in drinking water access.

  2. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    Science.gov (United States)

    Mompelat, S; Thomas, O; Le Bot, B

    2011-10-01

    The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.

  3. Detection of microbial contaminations in drinking water using ATP measurements – evaluating potential for online monitoring

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2011-01-01

    There is an increasing call for fast and reliable methods for continuous monitoring of microbial drinking water quality in order to protect public health. The potential for Adenosine triphosphate (ATP) measurements as a real-time analysis for continuous monitoring of microbial drinking water...... of reagent kit. Surface water diluted 100-1000 times was detected in drinking water with ATP measurements. ATP has the potential as an early warning tool, especially in the period when the contamination concentration is high. 2011 © American Water Works Association AWWA WQTC Conference Proceedings All Rights...... quality was investigated through simulation of two contamination scenarios, i.e. drinking water contaminated with waste water and surface water at various concentrations. With ATP measurements it was possible to detect waste water diluted 1000-10,000 times in drinking water depending on sensitivity...

  4. Physicochemical properties and the concentration of anions, major and trace elements in groundwater, treated drinking water and bottled drinking water in Najran area, KSA

    Science.gov (United States)

    Brima, Eid I.

    2017-03-01

    Basic information about major elements in bottled drinking water is provided on product labels. However, more information is needed about trace elements in bottled drinking water and other sources of drinking water to assess its quality and suitability for drinking. This is the first such study to be carried out in Najran city in the Kingdom of Saudi Arabia (KSA). A total of 48 water samples were collected from different sources comprising wells, stations for drinking water treatment and bottled drinking water (purchased from local supermarkets). The concentrations of 24 elements [aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molydenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), vanadium (V), uranium (U) and zinc (Zn)] were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Anions (chlorine (Cl-), fluoride (F-), sulfate (SO4 2-) and nitrate (NO3 -) were determined by ion chromatography (IC). Electrical conductivity (EC), pH, total dissolved salts (TDS) and total hardness (TH) were also measured. All parameters of treated drinking water and bottled drinking water samples did not exceed the World Health Organization (WHO) 2008, US Environmental Protection Agency (USEPA 2009), Gulf Cooperation Council Standardization Organization (GSO) 2008 and Saudi Arabian Standards Organization (SASO) 1984 recommended guidelines. It is noteworthy that groundwater samples were not used for drinking purpose. This study is important to raise public knowledge about drinking water, and to promote public health.

  5. Unsealed Tubewells Lead to Increased Fecal Contamination of Drinking Water

    Science.gov (United States)

    Knappett, Peter S. K.; McKay, Larry D.; Layton, Alice; Williams, Daniel E.; Alam, Md. J.; Mailloux, Brian J.; Ferguson, Andrew S.; Culligan, Patricia J.; Serre, Marc L.; Emch, Michael; Ahmed, Kazi M.; Sayler, Gary S.; van Geen, Alexander

    2013-01-01

    Bangladesh is underlain by shallow aquifers in which millions of drinking water wells are emplaced without annular seals. Fecal contamination has been widely detected in private tubewells. To evaluate the impact of well construction on microbial water quality 35 private tubewells (11 with intact cement platforms, 19 without) and 17 monitoring wells (11 with the annulus sealed with cement, 6 unsealed) were monitored for cultured E. coli over 18 months. Additionally, two “snap shot” sampling events were performed on a subset of wells during late-dry and early-wet seasons, wherein the fecal indicator bacteria (FIB) E. coli, Bacteroidales and the pathogenicity genes eltA (ETEC E. coli), ipaH (Shigella) and 40/41 hexon (adenovirus) were detected using qPCR. No difference in E. coli detection frequency was found between tubewells with and without platforms. Unsealed private wells, however, contained cultured E. coli more frequently and higher concentrations of FIB than sealed monitoring wells (p<0.05), suggestive of rapid downward flow along unsealed annuli. As a group the pathogens ETEC, Shigella and adenovirus were detected more frequently (10/22) during the wet season than the dry season (2/20). This suggests proper sealing of private tubewell annuli may lead to substantial improvements in microbial drinking water quality. PMID:23165714

  6. A study on arsenic removal from household drinking water.

    Science.gov (United States)

    Yuan, Tao; Luo, Qi-Fang; Hu, Jiang-Yong; Ong, Say-Leong; Ng, Wun-Jern

    2003-09-01

    Arsenic removal from household drinking water has been receiving considerable attention in the field of water supply engineering. To develop the optimal coagulation protocol, the effectiveness of several operation options such as coagulants, coagulant aids and additives, as well as flocs separation systems were investigated in this study through the use of orthogonal array experiment based on Taguchi method. Arsenic removal mechanism during household coagulation (via manual mixing) was also discussed. The results showed that the addition of kaoline and powder activated carbon (PAC) did not enhance arsenic removal efficiency of ferric sulfate or aluminum sulfate. Similarly, mixture of ferric sulfate and aluminum sulfate (MFA) as well as polymeric ferric silicate sulfate (PFSiS) was also unable to improve the overall arsenic removal efficiency. The mechanism of arsenic removal during coagulation was somewhat different from those experienced in conventional processes. Coprecipitation appeared to be the crucial mechanism for arsenic removal. It is noted from this study that arsenic adsorption isotherm under household operation condition could be described by Langmuir equation. An efficient flocs separation system subsequent to coagulation was essential to achieve the effectiveness of overall arsenic removal. The results obtained from field experiment demonstrated that the method of ferric sulfate coagulation/sand filtration for arsenic removal from household drinking water was acceptable and affordable.

  7. Modeling MIC copper release from drinking water pipes.

    Science.gov (United States)

    Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R

    2014-06-01

    Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Probing young drinking water biofilms with hard and soft particles.

    Science.gov (United States)

    Paris, Tony; Skali-Lami, Salaheddine; Block, Jean-Claude

    2009-01-01

    The aim of our study was to investigate, through the use of soft (Escherichia coli) and hard (polystyrene microspheres) particles, the distribution and persistence of allochthonous particles inoculated in drinking water flow chambers. Biofilms were allowed to grow for 7-10 months in tap water from Nancy's drinking water network and were composed of bacterial aggregates and filamentous fungi. Both model particles adhered almost exclusively on the biofilms (i.e. on the bacterial aggregates and on the filamentous structures) and not directly on the uncolonized walls (glass or Plexiglas). Biofilm age (i.e. bacterial density and biofilm properties) and convective-diffusion were found to govern particle accumulation: older biofilms and higher wall shear rates both increased the velocity and the amount of particle deposition on the biofilm. Persistence of the polystyrene particles was measured over a two-month period after inoculation. Accumulation amounts were found to be very different between hard and soft particles as only 0.03 per thousand of the soft particles inoculated accumulated in the biofilm against 0.3-0.8% for hard particles.

  9. Drinking water fluoride and blood pressure? An environmental study.

    Science.gov (United States)

    Amini, Hassan; Taghavi Shahri, Seyed Mahmood; Amini, Mohamad; Ramezani Mehrian, Majid; Mokhayeri, Yaser; Yunesian, Masud

    2011-12-01

    The relationship between intakes of fluoride (F) from drinking water and blood pressure has not yet been reported. We examined the relationship of F in ground water resources (GWRs) of Iran with the blood pressure of Iranian population in an ecologic study. The mean F data of the GWRs (as a surrogate for F levels in drinking water) were derived from a previously conducted study. The hypertension prevalence and the mean of systolic and diastolic blood pressures (SBP & DBP) of Iranian population by different provinces and genders were also derived from the provincial report of non-communicable disease risk factor surveillance of Iran. Statistically significant positive correlations were found between the mean concentrations of F in the GWRs and the hypertension prevalence of males (r = 0.48, p = 0.007), females (r = 0.36, p = 0.048), and overall (r = 0.495, p = 0.005). Also, statistically significant positive correlations between the mean concentrations of F in the GWRs and the mean SBP of males (r = 0.431, p = 0.018), and a borderline correlation with females (r = 0.352, p = 0.057) were found. In conclusion, we found the increase of hypertension prevalence and the SBP mean with the increase of F level in the GWRs of Iranian population.

  10. Justification of approaches to the rationing radiation safety indicators for packaged drinking water

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2017-01-01

    Full Text Available The article discusses the current state of normative ensuring of radiation safety of package drinking water. The article analyses radiation-hygienic requirements for packaged drinking water in the regulatory documents of the Customs Union and the Eurasian Economic Union. It is shown that the methodology for regulation of radiation safety of drinking water in the RSS-99/2009 and the “Guidelines for Drinking-water Quality” of the World Health Organization are practically identical. However, the direct application of the similar approach to the regulation of radiation safety indicators of packaged water is associated with significant difficulties, which in some degree are related to the lack of established classification of packaged drinking water. We propose to divide natural mineral medical water which is not intended for free sale as a separate category. For this category, regulations on the content of the radionuclides is not established. The article presents a justification of approaches to regulation of radiation safety of natural mineral drinking water and packaged blended drinking water. In the light of the unique flavor and medicinal properties of most of these waters, we considered various options for the radiation safety of the population, including through recommendations on limitation of the consumption of water. It is shown that for other types of packaged water, including drinking water for baby food, there is a perfectly acceptable application of the requirements on radiation safety, which are set for water.

  11. 'Water, water, everywhere, Nor any drop to drink'?

    Science.gov (United States)

    Reese, Jason

    2011-06-01

    Mass migration between continents; filthy and diseaseridden mega-cities; flare-ups of local wars and conflicts. These are some of the geopolitical tensions that may result from competition for water resources in the 21stcentury.

  12. The real water consumption behind drinking water: the case of Italy.

    Science.gov (United States)

    Niccolucci, V; Botto, S; Rugani, B; Nicolardi, V; Bastianoni, S; Gaggi, C

    2011-10-01

    The real amount of drinking water available per capita is a topic of great interest for human health and the economic and political management of resources. The global market of bottled drinking water, for instance, has shown exponential growth in the last twenty years, mainly due to reductions in production costs and investment in promotion. This paper aims to evaluate how much freshwater is actually consumed when water is drunk in Italy, which can be considered a mature bottled-water market. A Water Footprint (WF) calculation was used to compare the alternatives: bottled and tap water. Six Italian brands of water sold in PET bottles were inventoried, analysed and compared with the public tap water of the city of Siena, as representative of the Italian context. Results showed that more than 3 L of water were needed to provide consumers with 1.50 L of drinking water. In particular, a volume of 1.50 L of PET-bottled water required an extra virtual volume of 1.93 L of water while an extra 2.13 L was necessary to supply the same volume of tap water. These values had very different composition and origin. The WF of tap water was mainly due to losses of water during pipeline distribution and usage, while WF of bottled water was greatly influenced by the production of plastic materials. When the contribution of cooling water was added to the calculation, the WF of bottled water rose from 3.43 to 6.92 L. Different strategies to reduce total water footprint are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The antinociceptive efficacy of buprenorphine administered through the drinking water of rats

    DEFF Research Database (Denmark)

    Jessen, L; Bjerrum, Ole Jannik; Christensen, Sten

    2007-01-01

    such as administration of analgesics in the drinking water would be desirable. However, the efficacy of a chronic oral analgesic treatment via this route has not yet been documented. This study investigated the antinociceptive efficacy of buprenorphine administered ad libitum via the drinking water of laboratory rats....... The antinociceptive efficacy of buprenorphine in drinking water was compared with repeated subcutaneous injections. A comparison was also made between buprenorphine in drinking water and the combination of one single subcutaneous injection of buprenorphine followed by buprenorphine in drinking water. Antinociception...... was assessed by use of an analgesiometric model measuring the rats' latency time to withdrawal from a noxious heat stimulus applied to the plantar surface of the paw. Results revealed that buprenorphine in drinking water (0.056 mg/mL) induced significant increases in paw withdrawal latency times during a three...

  14. Away-from-home drinking water consumption practices and the microbiological quality of water consumed in rural western Kenya.

    Science.gov (United States)

    Onyango-Ouma, W; Gerba, Charles P

    2011-12-01

    A cross-sectional descriptive study was conducted to examine away-from-home drinking water consumption practices and the microbiological quality of water consumed in rural western Kenya. The study involved adults and schoolchildren. Data were collected using focus group discussions, questionnaire survey, observations, diaries and interviews. The findings suggest that away-from-home drinking water consumption is a common practice in the study area; however, the microbiological quality of the water consumed is poor. While some respondents perceive the water to be safe for drinking mainly because of the clear colour of the water, others are forced by circumstances to drink the water as it is owing to a lack of alternative safe sources. It is concluded that there is a need for new innovative approaches to address away-from-home drinking water consumption in resource-poor settings in order to complement and maximize the benefits of point-of-use water treatment at the household level.

  15. Water Quality Modeling in the Dead End Sections of Drinking ...

    Science.gov (United States)

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of a distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations

  16. Heterotrophic bacteria in drinking water distribution system: a review.

    Science.gov (United States)

    Chowdhury, Shakhawat

    2012-10-01

    The microbiological quality of drinking water in municipal water distribution systems (WDS) depends on several factors. Free residual chlorine and/or chloramines are typically used to minimize bacterial recontamination and/or regrowth in WDS. Despite such preventive measures, regrowth of heterotrophic (HPC) and opportunistic bacteria in bulk water and biofilms has yet to be controlled completely. No approach has shown complete success in eliminating biofilms or HPC bacteria from bulk water and pipe surfaces. Biofilms can provide shelter for pathogenic bacteria and protect these bacteria from disinfectants. Some HPC bacteria may be associated with aesthetic and non-life threatening diseases. Research to date has achieved important success in understanding occurrence and regrowth of bacteria in bulk water and biofilms in WDS. To achieve comprehensive understanding and to provide efficient control against bacteria regrowth, future research on bacteria regrowth dynamics and their implications is warranted. In this study, a review was performed on the literature published in this area. The findings and limitations of these papers are summarized. Occurrences of bacteria in WDS, factors affecting bacteria regrowth in bulk water and biofilms, bacteria control strategies, sources of nutrients, human health risks from bacterial exposure, modelling of bacteria regrowth and methods of bacteria sampling and detection and quantification are investigated. Advances to date are noted, and future research needs are identified. Finally, research directions are proposed to effectively control HPC and opportunistic bacteria in bulk water and biofilms in WDS.

  17. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    Science.gov (United States)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices

  18. Associations between perceptions of drinking water service delivery and measured drinking water quality in rural Alabama.

    Science.gov (United States)

    Wedgworth, Jessica C; Brown, Joe; Johnson, Pauline; Olson, Julie B; Elliott, Mark; Forehand, Rick; Stauber, Christine E

    2014-07-18

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure-a risk factor for contamination-may be relatively reliable and therefore useful in future monitoring efforts.

  19. Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    Directory of Open Access Journals (Sweden)

    Jessica C. Wedgworth

    2014-07-01

    Full Text Available Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure and general aesthetic characteristics (taste, odor and color, providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets and as-delivered from the distribution network (from outside flame-sterilized taps, if available, where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color. Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts.

  20. Bounding Analysis of Drinking Water Health Risks from a Spill of Hydraulic Fracturing Flowback Water.

    Science.gov (United States)

    Rish, William R; Pfau, Edward J

    2017-10-03

    A bounding risk assessment is presented that evaluates possible human health risk from a hypothetical scenario involving a 10,000-gallon release of flowback water from horizontal fracturing of Marcellus Shale. The water is assumed to be spilled on the ground, infiltrates into groundwater that is a source of drinking water, and an adult and child located downgradient drink the groundwater. Key uncertainties in estimating risk are given explicit quantitative treatment using Monte Carlo analysis. Chemicals that contribute significantly to estimated health risks are identified, as are key uncertainties and variables to which risk estimates are sensitive. The results show that hypothetical exposure via drinking water impacted by chemicals in Marcellus Shale flowback water, assumed to be spilled onto the ground surface, results in predicted bounds between 10-10 and 10-6 (for both adult and child receptors) for excess lifetime cancer risk. Cumulative hazard indices (HICUMULATIVE ) resulting from these hypothetical exposures have predicted bounds (5th to 95th percentile) between 0.02 and 35 for assumed adult receptors and 0.1 and 146 for assumed child receptors. Predicted health risks are dominated by noncancer endpoints related to ingestion of barium and lithium in impacted groundwater. Hazard indices above unity are largely related to exposure to lithium. Salinity taste thresholds are likely to be exceeded before drinking water exposures result in adverse health effects. The findings provide focus for policy discussions concerning flowback water risk management. They also indicate ways to improve the ability to estimate health risks from drinking water impacted by a flowback water spill (i.e., reducing uncertainty). © 2017 Society for Risk Analysis.

  1. How important are peatlands globally in providing drinking water resources?

    Science.gov (United States)

    Xu, Jiren; Morris, Paul; Holden, Joseph

    2017-04-01

    The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource

  2. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  3. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems (abstract)

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of...

  4. Investigating aftergrowth potential of polymers in drinking water – the effect of water replacement and temperature

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    The aftergrowth potential of polymers used in drinking water distribution was investigated by a batch set-up, where test pieces were incubated in biostable, inorganic nutrient amended drinking water inoculated with surface water. Biomass production was measured as ATP and followed over 16 weeks...... no significant effect on the aftergrowth potential of the water. The background biomass production could be affected by the choice of caps for the test bottles, since ‘blue caps’ of polyethylene leached significant amounts of AOCP17 compared to ‘red caps’ containing teflon inlayers. There was no or only slightly...... difference on the biomass production of no replacement of the test water, replacement once a week or every second week. Periodical water replacement could nevertheless be considered beneficial, since a substantial NVOC migration occurred within the first six weeks of incubation, which potentially could...

  5. Defluoridation of drinking water by boiling with brushite and calcite.

    Science.gov (United States)

    Larsen, M J; Pearce, E I F

    2002-01-01

    Existing methods for defluoridating drinking water involve expensive high technology or are slow, inefficient and/or unhygienic. A new method is now suggested, encompassing brushite and calcite suspension followed by boiling. Our aim was to examine the efficiency of the method and the chemical reactions involved. Brushite, 0.3-0.5 g, and an equal weight of calcite were suspended in 1 litre water containing 5-20 ppm fluoride. The suspensions were boiled in an electric kettle, left to cool and the calcium salts to sediment. Solution ion concentrations were determined and sediments were examined by X-ray diffraction. In distilled water initially containing 5, 10 and 20 ppm fluoride the concentration was reduced to 0.06, 0.4 and 5.9 ppm, respectively. Using Aarhus tap water which contained 2.6 mmol/l calcium the final concentrations were 1.2, 2.5 and 7.7 ppm, respectively, and runs without calcite gave results similar to those with calcite. Without boiling the fluoride concentration remained unaltered, as did the brushite and calcite salts, despite occasional agitation by hand. All solutions were supersaturated with respect to fluorapatite and hydroxyapatite and close to saturation with respect to brushite. Boiling produced well-crystallised apatite and traces of calcite, while boiling of brushite alone left a poorly crystallised apatite. We conclude that boiling a brushite/calcite suspension rapidly converts the two salts to apatite which incorporates fluoride if present in solution, and that this process may be exploited to defluoridate drinking water. Copyright 2002 S. Karger AG, Basel

  6. Inactivation of Enterohemorrhagic Escherichia coli in Rumen Content- or Feces-Contaminated Drinking Water for Cattle

    OpenAIRE

    Zhao, Tong; Zhao, Ping; West, Joe W.; Bernard, John K.; Cross, Heath G.; Doyle, Michael P.

    2006-01-01

    Cattle drinking water is a source of on-farm Escherichia coli O157:H7 transmission. The antimicrobial activities of disinfectants to control E. coli O157:H7 in on-farm drinking water are frequently neutralized by the presence of rumen content and manure that generally contaminate the drinking water. Different chemical treatments, including lactic acid, acidic calcium sulfate, chlorine, chlorine dioxide, hydrogen peroxide, caprylic acid, ozone, butyric acid, sodium benzoate, and competing E. c...

  7. Analysis of application of different approaches to secure safe drinking water

    OpenAIRE

    Pendić Zoran; Polak-Pendić Sanja; Jakovljević Bojana; Strižak Marina; Lačnjevac Časlav; Vujotić Ljiljana; Jovanović Ljiljana; Urošević Svetlana

    2017-01-01

    In this analysis, the risk systems include the systems within which services sensitive to risk are executed. The complex service of population supply with safe drinking water is considered to be risky. Guidelines for drinking water quality of the World Health Organization (WHO) recommends the use of effective preventive approaches to risk-based management of the safety and quality of drinking water. For example, Food Safety Law of the Republic of Serbia stipulates mandatory application of HAC...

  8. Bacterial community structure in the drinking water microbiome is governed by filtration processes.

    Science.gov (United States)

    Pinto, Ameet J; Xi, Chuanwu; Raskin, Lutgarde

    2012-08-21

    The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.

  9. EPA Releases Online Mapping Tool to Help Protect Drinking Water Sources

    Science.gov (United States)

    WASHINGTON - The U.S. Environmental Protection Agency today released DWMAPS - the Drinking Water Mapping Application to Protect Source Waters. This robust, online mapping tool provides the public, water system operators, state programs, and federal

  10. [Study of long-term water quality of stocked drinking water].

    Science.gov (United States)

    Kataoka, Hiromi; Kanaoka, Miki; Yamamura, Sayo; Mine, Takanori; Nishikawa, Jun-ichi; Semma, Masanori

    2013-01-01

    We examined changes in the quality of drinking water stockpiled under various conditions for emergency use. The results indicated that the change in the quality of the stocked water was influenced mainly by the preservation period and not by the amount of water in the bottle. To maintain water quality, the amount of residual chlorine is less important than using sufficiently sterilized water, bottles and caps in the bottling process. Washing the bottles with a small amount of boiling water was not sufficient to ensure complete inhibition of microbial growth.

  11. Effects of Water Bottle Materials and Filtration on Bisphenol A Content in Laboratory Animal Drinking Water

    OpenAIRE

    Honeycutt, Jennifer A; Nguyen, Jenny Q T; Kentner, Amanda C.; Brenhouse, Heather C.

    2017-01-01

    Bisphenol A (BPA) is widely used in the polycarbonate plastics and epoxy resins that are found in laboratory animal husbandry materials including cages and water bottles. Concerns about BPA exposure in humans has led to investigations that suggest physiologic health risks including disruptions to the endocrine system and CNS. However, the extent of exposure of laboratory animals to BPA in drinking water is unclear. In the first study, we compared the amount of BPA contamination in water store...

  12. The Effect of Oxidant and Redox Potential on Metal Corrosion in Drinking Water

    Science.gov (United States)

    Future drinking water regulatory action may require some water utilities to consider additional and/or alternative oxidation and disinfection practices. There is little known about the effect of oxidant changes on the corrosion of drinking water distribution system materials and ...

  13. Modeling particle transport and discoloration risk in drinking water distribution networks

    OpenAIRE

    J. van Summeren; M. Blokker

    2017-01-01

    Discoloration of drinking water is a worldwide phenomenon caused by accumulation and subsequent remobilization of particulate matter in drinking water distribution systems (DWDSs). It contributes a substantial fraction of customer complaints to water utilities. Accurate discoloration risk predictions could improve system operation by allowing for more effective programs on cleaning and prevention actions and field measurements, but are challenged by incomplete understanding ...

  14. 78 FR 36183 - State Allotment Percentages for the Drinking Water State Revolving Fund Program

    Science.gov (United States)

    2013-06-17

    ..., non-tribal water systems (each serving less than 3,301 people), the 2011 assessment extrapolated the... AGENCY State Allotment Percentages for the Drinking Water State Revolving Fund Program AGENCY... Protection Agency (EPA) is announcing the revised Drinking Water State Revolving Fund (DWSRF) allotments that...

  15. 40 CFR 144.12 - Prohibition of movement of fluid into underground sources of drinking water.

    Science.gov (United States)

    2010-07-01

    ... underground sources of drinking water. 144.12 Section 144.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM General Program Requirements § 144.12 Prohibition of movement of fluid into underground sources of drinking water...

  16. 40 CFR 144.7 - Identification of underground sources of drinking water and exempted aquifers.

    Science.gov (United States)

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM General Provisions § 144.7 Identification of underground sources of drinking water and exempted aquifers. (a) The..., except where exempted under paragraph (b) of this section, as an underground source of drinking water...

  17. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain

    NARCIS (Netherlands)

    Eschauzier, C.; Beerendonk, E.; Scholte-Veenendaal, P.; de Voogt, P.

    2012-01-01

    The behavior of polyfluoralkyl acids (PFAAs) from intake (raw source water) to finished drinking water was assessed by taking samples from influent and effluent of the several treatment steps used in a drinking water production chain. These consisted of intake, coagulation, rapid sand filtration,

  18. 77 FR 67361 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Science.gov (United States)

    2012-11-09

    ... impacts of hydraulic fracturing on drinking water resources. DATES: EPA will accept data and literature in... scientific research to examine the relationship between hydraulic fracturing and drinking water resources... water resources, if any, and to identify the driving factors that may affect the severity and frequency...

  19. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems.

    Science.gov (United States)

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-03-09

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.

  20. Turbulence accelerates the growth of drinking water biofilms.

    Science.gov (United States)

    Tsagkari, E; Sloan, W T

    2018-02-10

    Biofilms are found at the inner surfaces of drinking water pipes and, therefore, it is essential to understand biofilm processes to control their formation. Hydrodynamics play a crucial role in shaping biofilms. Thus, knowing how biofilms form, develop and disperse under different flow conditions is critical in the successful management of these systems. Here, the development of biofilms after 4 weeks, the initial formation of biofilms within 10 h and finally, the response of already established biofilms within 24-h intervals in which the flow regime was changed, were studied using a rotating annular reactor under three different flow regimes: turbulent, transition and laminar. Using fluorescence microscopy, information about the number of microcolonies on the reactor slides, the surface area of biofilms and of extracellular polymeric substances and the biofilm structures was acquired. Gravimetric measurements were conducted to characterise the thickness and density of biofilms, and spatial statistics were used to characterise the heterogeneity and spatial correlation of biofilm structures. Contrary to the prevailing view, it was shown that turbulent flow did not correlate with a reduction in biofilms; turbulence was found to enhance both the initial formation and the development of biofilms on the accessible surfaces. Additionally, after 24-h changes of the flow regime it was indicated that biofilms responded to the quick changes of the flow regime. Overall, this work suggests that different flow conditions can cause substantial changes in biofilm morphology and growth and specifically that turbulent flow can accelerate biofilm growth in drinking water.