WorldWideScience

Sample records for testing nanomaterials remains

  1. Towards an alternative testing strategy for nanomaterials used in nanomedicine

    DEFF Research Database (Denmark)

    Dusinska, M; Boland, S; Saunders, M

    2015-01-01

    In spite of recent advances in describing the health outcomes of exposure to nanoparticles (NPs), it still remains unclear how exactly NPs interact with their cellular targets. Size, surface, mass, geometry, and composition may all play a beneficial role as well as causing toxicity. Concerns...... towards alternative testing strategies for hazard and risk assessment of nanomaterials, highlighting the adaptation of standard methods demanded by the special physicochemical features of nanomaterials and bioavailability studies. The work has assessed a broad range of toxicity tests, cell models and NP...... types and concentrations taking into account the inherent impact of NP properties and the effects of changes in experimental conditions using well-characterized NPs. The results of the studies have been used to generate recommendations for a suitable and robust testing strategy which can be applied...

  2. The challenges of ecotox testing of nanomaterials and the BPR

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss

    2015-01-01

    The European Biocidal Product Regulation (BPR) requires dedicated risk assessment of nanomaterials. When it comes to ecotoxicological testing of nanomaterials, meeting these requirements is especially challenging. Overall, these challenges fall into four overall categories: 1) materials character......The European Biocidal Product Regulation (BPR) requires dedicated risk assessment of nanomaterials. When it comes to ecotoxicological testing of nanomaterials, meeting these requirements is especially challenging. Overall, these challenges fall into four overall categories: 1) materials...... characterization, 2) exposure preparation, 3) monitoring stability and 4) monitoring time. In this paper, the challenges are presented and discussed. There is no easy manner in which to deal with the challenges related to ecotoxicological testing of nanomaterials in the light of the BPR requirements. It short...

  3. Towards sensible toxicity testing for nanomaterials: proposal for the specification of test design

    International Nuclear Information System (INIS)

    Potthoff, Annegret; Meißner, Tobias; Weil, Mirco; Kühnel, Dana

    2015-01-01

    During the last decade, nanomaterials (NM) were extensively tested for potential harmful effects towards humans and environmental organisms. However, a sound hazard assessment was so far hampered by uncertainties and a low comparability of test results. The reason for the low comparability is a high variation in the (1) type of NM tested with regard to raw material, size and shape and (2) procedures before and during the toxicity testing. This calls for tailored, nanomaterial-specific protocols. Here, a structured approach is proposed, intended to lead to test protocols not only tailored to specific types of nanomaterials, but also to respective test system for toxicity testing. There are existing standards on single procedures involving nanomaterials, however, not all relevant procedures are covered by standards. Hence, our approach offers a detailed way of weighting several plausible alternatives for e.g. sample preparation, in order to decide on the procedure most meaningful for a specific nanomaterial and toxicity test. A framework of several decision trees (DT) and flow charts to support testing of NM is proposed as a basis for further refinement and in-depth elaboration. DT and flow charts were drafted for (1) general procedure—physicochemical characterisation, (2) choice of test media, (3) decision on test scenario and application of NM to liquid media, (4) application of NM to the gas phase, (5) application of NM to soil and sediments, (6) dose metrics, (S1) definition of a nanomaterial, and (S2) dissolution. The applicability of the proposed approach was surveyed by using experimental data retrieved from studies on nanoscale CuO. This survey demonstrated the DT and flow charts to be a convenient tool to systematically decide upon test procedures and processes, and hence pose an important step towards harmonisation of NM testing. (paper)

  4. Significance of Intratracheal Instillation Tests for the Screening of Pulmonary Toxicity of Nanomaterials.

    Science.gov (United States)

    Morimoto, Yasuo; Izumi, Hiroto; Yoshiura, Yukiko; Fujisawa, Yuri; Fujita, Katsuhide

    Inhalation tests are the gold standard test for the estimation of the pulmonary toxicity of respirable materials. Intratracheal instillation tests have been used widely, but they yield limited evidence of the harmful effects of respirable materials. We reviewed the effectiveness of intratracheal instillation tests for estimating the hazards of nanomaterials, mainly using research papers featuring intratracheal instillation and inhalation tests centered on a Japanese national project. Compared to inhalation tests, intratracheal instillation tests induced more acute inflammatory responses in the animal lung due to a bolus effect regardless of the toxicity of the nanomaterials. However, nanomaterials with high toxicity induced persistent inflammation in the chronic phase, and nanomaterials with low toxicity induced only transient inflammation. Therefore, in order to estimate the harmful effects of a nanomaterial, an observation period of 3 months or 6 months following intratracheal instillation is necessary. Among the endpoints of pulmonary toxicity, cell count and percentage of neutrophil, chemokines for neutrophils and macrophages, and oxidative stress markers are considered most important. These markers show persistent and transient responses in the lung from nanomaterials with high and low toxicity, respectively. If the evaluation of the pulmonary toxicity of nanomaterials is performed in not only the acute but also the chronic phase in order to avoid the bolus effect of intratracheal instillation and inflammatory-related factors that are used as endpoints of pulmonary toxicity, we speculate that intratracheal instillation tests can be useful for screening for the identification of the hazard of nanomaterials through pulmonary inflammation.

  5. Mobility of coated and uncoated TiO2 nanomaterials in soil columns--Applicability of the tests methods of OECD TG 312 and 106 for nanomaterials.

    Science.gov (United States)

    Nickel, Carmen; Gabsch, Stephan; Hellack, Bryan; Nogowski, Andre; Babick, Frank; Stintz, Michael; Kuhlbusch, Thomas A J

    2015-07-01

    Nanomaterials are commonly used in everyday life products and during their life cycle they can be released into the environment. Soils and sediments are estimated as significant sinks for those nanomaterials. To investigate and assess the behaviour of nanomaterials in soils and sediments standardized test methods are needed. In this study the applicability of two existing international standardized test guidelines for the testing of nanomaterials, OECD TG 106 "Adsorption/Desorption using a Bath Equilibrium Method" and the OECD TG 312 "Leaching in Soil Columns", were investigated. For the study one coated and two uncoated TiO2 nanomaterials were used, respectively. The results indicate that the OECD TG 106 is not applicable for nanomaterials. However, the test method according to OECD TG 312 was found to be applicable if nano-specific adaptations are applied. The mobility investigations of the OECD TG 312 indicated a material-dependent mobility of the nanomaterials, which in some cases may lead to an accumulation in the upper soil layers. Whereas no significant transport was observed for the uncoated materials for the double-coated material (coating with dimethicone and aluminiumoxide) a significant transport was detected and attributed to the coating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The JRC Nanomaterials Repository: A unique facility providing representative test materials for nanoEHS research.

    Science.gov (United States)

    Totaro, Sara; Cotogno, Giulio; Rasmussen, Kirsten; Pianella, Francesca; Roncaglia, Marco; Olsson, Heidi; Riego Sintes, Juan M; Crutzen, Hugues P

    2016-11-01

    The European Commission has established a Nanomaterials Repository that hosts industrially manufactured nanomaterials that are distributed world-wide for safety testing of nanomaterials. In a first instance these materials were tested in the OECD Testing Programme. They have then also been tested in several EU funded research projects. The JRC Repository of Nanomaterials has thus developed into serving the global scientific community active in the nanoEHS (regulatory) research. The unique Repository facility is a state-of-the-art installation that allows customised sub-sampling under the safest possible conditions, with traceable final sample vials distributed world-wide for research purposes. This paper describes the design of the Repository to perform a semi-automated subsampling procedure, offering high degree of flexibility and precision in the preparation of NM vials for customers, while guaranteeing the safety of the operators, and environmental protection. The JRC nanomaterials are representative for part of the world NMs market. Their wide use world-wide facilitates the generation of comparable and reliable experimental results and datasets in (regulatory) research by the scientific community, ultimately supporting the further development of the OECD regulatory test guidelines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward.

    Science.gov (United States)

    Lai, David Y

    2012-01-01

    A challenge-facing hazard identification and safety evaluation of engineered nanomaterials being introduced to market is the diversity and complexity of the types of materials with varying physicochemical properties, many of which can affect their toxicity by different mechanisms. In general, in vitro test systems have limited usefulness for hazard identification of nanoparticles due to various issues. Meanwhile, conducting chronic toxicity/carcinogenicity studies in rodents for every new nanomaterial introduced into the commerce is impractical if not impossible. New toxicity testing systems which rely on predictive, high-throughput technologies may be the ultimate goal of evaluating the potential hazard of nanomaterials. However, at present, this approach alone is unlikely to succeed in evaluating the toxicity of the wide array of nanomaterials and requires validation from in vivo studies. This article proposes a paradigm for toxicity testing and elucidation of the molecular mechanisms of reference materials for specific nanomaterial classes/subclasses using short-term in vivo animal studies in conjunction with high-throughput screenings and mechanism-based short-term in vitro assays. The hazard potential of a particular nanomaterial can be evaluated by conducting only in vitro high-throughput assays and mechanistic studies and comparing the data with those of the reference materials in the specific class/subclass-an approach in line with the vision for 'Toxicity Testing in the 21st Century' of chemicals. With well-designed experiments, testing nanomaterials of varying/selected physicochemical parameters may be able to identify the physicochemical parameters contributing to toxicity. The data so derived could be used for the development of computer model systems to predict the hazard potential of specific nanoparticles based on property-activity relationships. Copyright © 2011 John Wiley & Sons, Inc.

  8. Predictive tests to evaluate oxidative potential of engineered nanomaterials

    Science.gov (United States)

    Ghiazza, Mara; Carella, Emanuele; Oliaro-Bosso, Simonetta; Corazzari, Ingrid; Viola, Franca; Fenoglio, Ivana

    2013-04-01

    Oxidative stress constitutes one of the principal injury mechanisms through which particulate toxicants (asbestos, crystalline silica, hard metals) and engineered nanomaterials can induce adverse health effects. ROS may be generated indirectly by activated cells and/or directly at the surface of the material. The occurrence of these processes depends upon the type of material. Many authors have recently demonstrated that metal oxides and carbon-based nanoparticles may influence (increasing or decreasing) the generation of oxygen radicals in a cell environment. Metal oxide, such as iron oxides, crystalline silica, and titanium dioxide are able to generate free radicals via different mechanisms causing an imbalance within oxidant species. The increase of ROS species may lead to inflammatory responses and in some cases to the development of cancer. On the other hand carbon-based nanomaterials, such as fullerene, carbon nanotubes, carbon black as well as cerium dioxide are able to scavenge the free radicals generated acting as antioxidant. The high numbers of new-engineered nanomaterials, which are introduced in the market, are exponentially increasing. Therefore the definition of toxicological strategies is urgently needed. The development of acellular screening tests will make possible the reduction of the number of in vitro and in vivo tests to be performed. An integrated protocol that may be used to predict the oxidant/antioxidant potential of engineered nanoparticles will be here presented.

  9. Predictive tests to evaluate oxidative potential of engineered nanomaterials

    International Nuclear Information System (INIS)

    Ghiazza, Mara; Carella, Emanuele; Corazzari, Ingrid; Fenoglio, Ivana; Oliaro-Bosso, Simonetta; Viola, Franca

    2013-01-01

    Oxidative stress constitutes one of the principal injury mechanisms through which particulate toxicants (asbestos, crystalline silica, hard metals) and engineered nanomaterials can induce adverse health effects. ROS may be generated indirectly by activated cells and/or directly at the surface of the material. The occurrence of these processes depends upon the type of material. Many authors have recently demonstrated that metal oxides and carbon-based nanoparticles may influence (increasing or decreasing) the generation of oxygen radicals in a cell environment. Metal oxide, such as iron oxides, crystalline silica, and titanium dioxide are able to generate free radicals via different mechanisms causing an imbalance within oxidant species. The increase of ROS species may lead to inflammatory responses and in some cases to the development of cancer. On the other hand carbon-based nanomaterials, such as fullerene, carbon nanotubes, carbon black as well as cerium dioxide are able to scavenge the free radicals generated acting as antioxidant. The high numbers of new-engineered nanomaterials, which are introduced in the market, are exponentially increasing. Therefore the definition of toxicological strategies is urgently needed. The development of acellular screening tests will make possible the reduction of the number of in vitro and in vivo tests to be performed. An integrated protocol that may be used to predict the oxidant/antioxidant potential of engineered nanoparticles will be here presented.

  10. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping).

    Science.gov (United States)

    Arts, Josje H E; Hadi, Mackenzie; Irfan, Muhammad-Adeel; Keene, Athena M; Kreiling, Reinhard; Lyon, Delina; Maier, Monika; Michel, Karin; Petry, Thomas; Sauer, Ursula G; Warheit, David; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2015-03-15

    The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) that consists of 3 tiers to assign nanomaterials to 4 main groups, to perform sub-grouping within the main groups and to determine and refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways, i.e. intrinsic material and system-dependent properties, biopersistence, uptake and biodistribution, cellular and apical toxic effects. Use (including manufacture), release and route of exposure are applied as 'qualifiers' within the DF4nanoGrouping to determine if, e.g. nanomaterials cannot be released from a product matrix, which may justify the waiving of testing. The four main groups encompass (1) soluble nanomaterials, (2) biopersistent high aspect ratio nanomaterials, (3) passive nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aims to group nanomaterials by their specific mode-of-action that results in an apical toxic effect. This is eventually directed by a nanomaterial's intrinsic properties. However, since the exact correlation of intrinsic material properties and apical toxic effect is not yet established, the DF4nanoGrouping uses the 'functionality' of nanomaterials for grouping rather than relying on intrinsic material properties alone. Such functionalities include system-dependent material properties (such as dissolution rate in biologically relevant media), bio-physical interactions, in vitro effects and release and exposure. The DF4nanoGrouping is a hazard and risk assessment tool that applies modern toxicology and contributes to the sustainable development of nanotechnological products. It ensures that no studies are performed that do not provide crucial data and therefore saves animals and resources. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights

  11. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment

    Directory of Open Access Journals (Sweden)

    Vega-Alvarez S

    2014-04-01

    Full Text Available Sasha Vega-Alvarez,1 Adriana Herrera,2 Carlos Rinaldi,2–4 Franklin A Carrero-Martínez1,5 1Department of Biology, 2Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico; 3J Crayton Pruitt Family Department of Biomedical Engineering, 4Department of Chemical Engineering, University of Florida, Gainesville, FL, USA; 5Department of Anatomy and Neuroscience, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico Abstract: Nanomaterials are the subject of intense research, focused on their synthesis, modification, and biomedical applications. Increased nanomaterial production and their wide range of applications imply a higher risk of human and environmental exposure. Unfortunately, neither environmental effects nor toxicity of nanomaterials to organisms are fully understood. Cost-effective, rapid toxicity assays requiring minimal amounts of materials are needed to establish both their biomedical potential and environmental safety standards. Drosophila exemplifies an efficient and cost-effective model organism with a vast repertoire of in vivo tools and techniques, all with high-throughput scalability and screening feasibility throughout its life cycle. Here we report tissue specific nanomaterial assessment through direct microtransfer into target tissues. We tested several nanomaterials with potential biomedical applications such as single-wall carbon nanotubes, multiwall carbon nanotubes, silver, gold, titanium dioxide, and iron oxide nanoparticles. Assessment of nanomaterial toxicity was conducted by evaluating progression through developmental morphological milestones in Drosophila. This cost-effective assessment method is amenable to high-throughput screening. Keywords: nanotoxicity, Drosophila, microtransfer, nanoparticle, iron oxide, silver, gold, titanium dioxide, carbon nanotube

  12. Handbook of safety assessment of nanomaterials from toxicological testing to personalized medicine

    CERN Document Server

    Fadeel, Bengt

    2014-01-01

    "The Handbook of Safety Assessment of Nanomaterials: From Toxicological Testing to Personalized Medicine provides a comprehensive overview of the state of the art of nanotoxicology and is a unique resource that fills up many knowledge gaps in the toxicity issue of nanomaterials in medical applications. The book is distinguished by up-to-date insights into creating a science-based framework for safety assessment of nanomedicines." -Prof. Yuliang Zhao, National Center for Nanosciences and Technology, China.

  13. Regulatory adequacy of aquatic ecotoxicity testing of nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Skjolding, Lars Michael; Sørensen, Sara Nørgaard

    2017-01-01

    between studies, which question the regulatory reliability of the data currently available. Accordingly, lack of data suited for regulatory decision-making is still a pressing issue in nanoecotoxicology even though the data availability has increased. Nevertheless, we emphasize that by deliberately...... to question whether ecotoxicity testing is now able to facilitate regulatory decision-making on manufactured nanomaterials (MNs). In this paper, we review the state of aquatic ecotoxicity testing of MNs as well as the overarching issues that challenge the reliability and relevance of such testing. We conclude...... that within the field there is an increased focus on characterization of the exposure rather than controlling exposure as it is traditionally done in guideline testing of chemicals. However, the lack of characterization options under actual testing conditions makes it difficult to make meaningful comparisons...

  14. The OECD expert meeting on ecotoxicology and environmental fate — Towards the development of improved OECD guidelines for the testing of nanomaterials

    International Nuclear Information System (INIS)

    Kühnel, Dana; Nickel, Carmen

    2014-01-01

    On behalf of the OECD Working Party on Manufactured Nanomaterials (WPMN) an expert meeting on ecotoxicology and environmental fate of nanomaterials (NMs) took place in January 2013 in Berlin. At this meeting experts from science, industry and regulatory bodies discussed the applicability of OECD test guidelines (TGs) for chemicals to nanomaterials. The objective was to discuss the current state of the relevant science and provide recommendations to the OECD WPMN on (1) the need for updating current OECD TGs and the need for developing new ones specific to nanomaterials; and (2) guidance needed for the appropriate and valid testing of environmental fate and ecotoxicity endpoints for NMs. Experts at the workshop agreed that the majority of the OECD TG for chemicals were generally applicable for the testing of NM, with the exception of TG 105 (water solubility) and 106 (adsorption-desorption). Additionally, the workshop also highlighted considerations when conducting OECD chemical TG on nanomaterials (e.g., sample preparation, dispersion, analysis, dosimetry and characterisation). These considerations will lead to the future development of proposals for new TG and guidance documents (GDs) to ensure that OECD TG give meaningful, repeatable, and accurate results when used for nanomaterials. This report provides a short overview of topics discussed during the meeting and the main outcomes. A more detailed report of the workshop will become available through the OECD, however, due to the urgency of having OECD TG relevant for nanomaterials, this brief report is being shared with the scientific community through this communication. - Highlights: • OECD test guidelines (TGs) were developed for the testing of conventional chemicals. • Need for discussion on applicability of current TGs to nanomaterials • An expert meeting addressing this issue was held. • The focus was on TGs covering ecotoxicology and environmental fate. • Recommendations for updating current OECD

  15. The OECD expert meeting on ecotoxicology and environmental fate--towards the development of improved OECD guidelines for the testing of nanomaterials.

    Science.gov (United States)

    Kühnel, Dana; Nickel, Carmen

    2014-02-15

    On behalf of the OECD Working Party on Manufactured Nanomaterials (WPMN) an expert meeting on ecotoxicology and environmental fate of nanomaterials (NMs) took place in January 2013 in Berlin. At this meeting experts from science, industry and regulatory bodies discussed the applicability of OECD test guidelines (TGs) for chemicals to nanomaterials. The objective was to discuss the current state of the relevant science and provide recommendations to the OECD WPMN on (1) the need for updating current OECD TGs and the need for developing new ones specific to nanomaterials; and (2) guidance needed for the appropriate and valid testing of environmental fate and ecotoxicity endpoints for NMs. Experts at the workshop agreed that the majority of the OECD TG for chemicals were generally applicable for the testing of NM, with the exception of TG 105 (water solubility) and 106 (adsorption-desorption). Additionally, the workshop also highlighted considerations when conducting OECD chemical TG on nanomaterials (e.g., sample preparation, dispersion, analysis, dosimetry and characterisation). These considerations will lead to the future development of proposals for new TG and guidance documents (GDs) to ensure that OECD TG give meaningful, repeatable, and accurate results when used for nanomaterials. This report provides a short overview of topics discussed during the meeting and the main outcomes. A more detailed report of the workshop will become available through the OECD, however, due to the urgency of having OECD TG relevant for nanomaterials, this brief report is being shared with the scientific community through this communication. Copyright © 2013. Published by Elsevier B.V.

  16. Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials

    Science.gov (United States)

    Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant ...

  17. A comparative study of three cytotoxicity test methods for nanomaterials using sodium lauryl sulfate.

    Science.gov (United States)

    Kwon, Jae-Sung; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-10-01

    The biocompatibility evaluation of nanomaterials is essential for their medical diagnostic and therapeutic usage, where a cytotoxicity test is the simplest form of biocompatibility evaluation. Three methods have been commonly used in previous studies for the cytotoxicity testing of nanomaterials: trypan blue exclusion, colorimetric assay using water soluble tetrazolium (WST), and imaging under a microscope following calcein AM/ethidium homodimer-1 staining. However, there has yet to be a study to compare each method. Therefore, in this study three methods were compared using the standard reference material of sodium lauryl sulfate (SLS). Each method of the cytotoxicity test was carried out using mouse fibroblasts of L-929 exposed to different concentrations of SLS. Compared to the gold standard trypan blue exclusion test, both colorimetric assay using water soluble tetrazolium (WST) and imaging under microscope with calcein AM/ethidium homodimer-1 staining showed results that were not statistically different. Also, each method exhibited various advantages and disadvantages, which included the need of equipment, time taken for the experiment, and provision of additional information such as cell morphology. Therefore, this study concludes that all three methods of cytotoxicity testing may be valid, though careful consideration will be needed when selecting tests with regard to time, finances, and the amount of information required by the researcher(s).

  18. Purifying Nanomaterials

    Science.gov (United States)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  19. Safety Aspects of Bio-Based Nanomaterials.

    Science.gov (United States)

    Catalán, Julia; Norppa, Hannu

    2017-12-01

    Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi-cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  20. Safety Aspects of Bio-Based Nanomaterials

    Directory of Open Access Journals (Sweden)

    Julia Catalán

    2017-12-01

    Full Text Available Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi­cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  1. Investigation of widely used nanomaterials (TiO{sub 2}, Ag) and gold nanoparticles in standardized ecotoxicological tests

    Energy Technology Data Exchange (ETDEWEB)

    Hund-Rinke, Kerstin; Klawonn, Thorsten [Fraunhofer-Institut fuer Molekularbiologie und Angewandte Oekologie (IME), Schmallenberg (Germany)

    2013-04-15

    At the nanoscale level, the physical, chemical, and biological properties of materials differ in fundamental, and often valuable, ways from the properties of individual atoms and molecules, or bulk matter. Research and development in nanotechnology is directed towards creating im-proved materials, devices, and systems that exploit the new properties. The specific properties of nanoparticles proved to be very useful for an increasing number of commercial applications, such as protective coatings, light-weight materials or self-cleaning clothing, for example. As a consequence of their specific properties, nanoparticles differ from conventional chemicals with respect to their impact on human health and the environment. Therefore, traditional testing and assessment methods typically used to determine the safety of conventional chemicals are not necessarily (fully) applicable to nanoparticles. In November 2007, OECD's Working Party on Manufactured Nanomaterials (WPMN) launched a Sponsorship Programme involving OECD member countries as well as non-member econo-mies and other stakeholders to pool available expertise and to fund the safety testing of specific Manufactured Nanomaterials (MNs). In launching the Sponsorship Programme, the WPMN agreed on a priority list of 13 MNs selected for testing from a pool of nanomaterials that are in, or close to, commerce. The WPMN also agreed upon a list of endpoints for which the selected materials should be tested. Much valuable information on the safety of MNs can be derived by testing this representative set of nanomaterials with respect to human health and environmental safety. As a sponsor country supporting research into TiO{sub 2} and a co-sponsor for Ag research, Germany, among others, is involved in assessing the potential effects of TiO{sub 2} and Ag nanoparticles with respect to human health and the environment. Several months after starting the present project, the work programme was extended to include the

  2. Biological interactions of carbon-based nanomaterials: From coronation to degradation.

    Science.gov (United States)

    Bhattacharya, Kunal; Mukherjee, Sourav P; Gallud, Audrey; Burkert, Seth C; Bistarelli, Silvia; Bellucci, Stefano; Bottini, Massimo; Star, Alexander; Fadeel, Bengt

    2016-02-01

    Carbon-based nanomaterials including carbon nanotubes, graphene oxide, fullerenes and nanodiamonds are potential candidates for various applications in medicine such as drug delivery and imaging. However, the successful translation of nanomaterials for biomedical applications is predicated on a detailed understanding of the biological interactions of these materials. Indeed, the potential impact of the so-called bio-corona of proteins, lipids, and other biomolecules on the fate of nanomaterials in the body should not be ignored. Enzymatic degradation of carbon-based nanomaterials by immune-competent cells serves as a special case of bio-corona interactions with important implications for the medical use of such nanomaterials. In the present review, we highlight emerging biomedical applications of carbon-based nanomaterials. We also discuss recent studies on nanomaterial 'coronation' and how this impacts on biodistribution and targeting along with studies on the enzymatic degradation of carbon-based nanomaterials, and the role of surface modification of nanomaterials for these biological interactions. Advances in technology have produced many carbon-based nanomaterials. These are increasingly being investigated for the use in diagnostics and therapeutics. Nonetheless, there remains a knowledge gap in terms of the understanding of the biological interactions of these materials. In this paper, the authors provided a comprehensive review on the recent biomedical applications and the interactions of various carbon-based nanomaterials. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Advances in nanomaterials

    CERN Document Server

    Khan, Zishan

    2016-01-01

    This book provides a review of the latest research findings and key applications in the field of nanomaterials. The book contains twelve chapters on different aspects of nanomaterials. It begins with key fundamental concepts to aid readers new to the discipline of nanomaterials, and then moves to the different types of nanomaterials studied. The book includes chapters based on the applications of nanomaterials for nano-biotechnology and solar energy. Overall, the book comprises chapters on a variety of topics on nanomaterials from expert authors across the globe. This book will appeal to researchers and professional alike, and may also be used as a reference for courses in nanomaterials.

  4. Advanced nanomaterials

    Science.gov (United States)

    Titus, Elby; Ventura, João; Pedro Araújo, João; Campos Gil, João

    2017-12-01

    Nanomaterials provide a remarkably novel outlook to the design and fabrication of materials. The know-how of designing, modelling and fabrication of nanomaterials demands sophisticated experimental and analytical techniques. The major impact of nanomaterials will be in the fields of electronics, energy and medicine. Nanoelectronics hold the promise of improving the quality of life of electronic devices through superior performance, weight reduction and lower power consumption. New energy production systems based on hydrogen, solar and nuclear sources have also benefited immensely from nanomaterials. In modern medicine, nanomaterials research will have great impact on public health care due to better diagnostic methods and design of novel drugs.

  5. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    Science.gov (United States)

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Nanomaterial Registry: facilitating the sharing and analysis of data in the diverse nanomaterial community

    Directory of Open Access Journals (Sweden)

    Ostraat ML

    2013-09-01

    Full Text Available Michele L Ostraat, Karmann C Mills, Kimberly A Guzan, Damaris MurryRTI International, Durham, NC, USAAbstract: The amount of data being generated in the nanotechnology research space is significant, and the coordination, sharing, and downstream analysis of the data is complex and consistently deliberated. The complexities of the data are due in large part to the inherently complicated characteristics of nanomaterials. Also, testing protocols and assays used for nanomaterials are diverse and lacking standardization. The Nanomaterial Registry has been developed to address such challenges as the need for standard methods, data formatting, and controlled vocabularies for data sharing. The Registry is an authoritative, web-based tool whose purpose is to simplify the community's level of effort in assessing nanomaterial data from environmental and biological interaction studies. Because the registry is meant to be an authoritative resource, all data-driven content is systematically archived and reviewed by subject-matter experts. To support and advance nanomaterial research, a set of minimal information about nanomaterials (MIAN has been developed and is foundational to the Registry data model. The MIAN has been used to create evaluation and similarity criteria for nanomaterials that are curated into the Registry. The Registry is a publicly available resource that is being built through collaborations with many stakeholder groups in the nanotechnology community, including industry, regulatory, government, and academia. Features of the Registry website (https://www.nanomaterialregistry.org/ currently include search, browse, side-by-side comparison of nanomaterials, compliance ratings based on the quality and quantity of data, and the ability to search for similar nanomaterials within the Registry. This paper is a modification and extension of a proceedings paper for the Institute of Electrical and Electronics Engineers.Keywords: nanoinformatics

  7. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac

    2014-07-01

    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  8. Systemic Absorption of Nanomaterials by Oral Exposure

    DEFF Research Database (Denmark)

    Binderup, Mona-Lise; Bredsdorff, Lea; Beltoft, Vibe Meister

    This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches.......This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches....

  9. CE and nanomaterials - Part II: Nanomaterials in CE.

    Science.gov (United States)

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    The scope of this two-part review is to summarize publications dealing with CE and nanomaterials together. This topic can be viewed from two broad perspectives, and this article is trying to highlight these two approaches: (i) CE of nanomaterials, and (ii) nanomaterials in CE. The second part aims at summarization of publications dealing with application of nanomaterials for enhancement of CE performance either in terms of increasing the separation resolution or for improvement of the detection. To increase the resolution, nanomaterials are employed as either surface modification of the capillary wall forming open tubular column or as additives to the separation electrolyte resulting in a pseudostationary phase. Moreover, nanomaterials have proven to be very beneficial for increasing also the sensitivity of detection employed in CE or even they enable the detection (e.g., fluorescent tags of nonfluorescent molecules). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ecotoxicity testing and environmental risk assessment of iron nanomaterials for sub-surface remediation – Recommendations from the FP7 project NanoRem

    DEFF Research Database (Denmark)

    Hjorth, Rune; Coutris, Claire; Nguyen, Nhung

    2017-01-01

    engineered Fe nanomaterials, specifically, Nano-Goethite, Trap-Ox Fe-zeolites, Carbo-Iron® and FerMEG12, developed within the European FP7 project NanoRem for sub-surface remediation towards a test battery consisting of eight ecotoxicity tests on bacteria (V. fisheri, E. coli), algae (P. subcapitata...... milled nZVI (FerMEG12), showed no toxicity in the test battery when tested in concentrations up to 100 mg/L, which is the cutoff for hazard labeling in chemicals regulation in Europe. However it should be noted that Fe nanomaterials proved challenging to test adequately due to their turbidity...

  11. Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations.

    Science.gov (United States)

    Patzke, Greta R; Zhou, Ying; Kontic, Roman; Conrad, Franziska

    2011-01-24

    Oxide nanomaterials are indispensable for nanotechnological innovations, because they combine an infinite variety of structural motifs and properties with manifold morphological features. Given that new oxide materials are almost reported on a daily basis, considerable synthetic and technological work remains to be done to fully exploit this ever increasing family of compounds for innovative nano-applications. This calls for reliable and scalable preparative approaches to oxide nanomaterials and their development remains a challenge for many complex nanostructured oxides. Oxide nanomaterials with special physicochemical features and unusual morphologies are still difficult to access by classic synthetic pathways. The limitless options for creating nano-oxide building blocks open up new technological perspectives with the potential to revolutionize areas ranging from data processing to biocatalysis. Oxide nanotechnology of the 21st century thus needs a strong interplay of preparative creativity, analytical skills, and new ideas for synergistic implementations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Critical Analysis of the Environmental Dossiers from the OECD Sponsorship Programme for the Testing of Manufactured Nanomaterials

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Hjorth, Rune; Skjolding, Lars Michael

    2017-01-01

    In 2015, the OECD finally published the findings of its seven year testing programme for manufactured nanomaterials. Here, we present the first in-depth analysis of the published OECD dossiers with regards to data on physical and chemical properties, environmental fate and ecotoxicology. Each...... prior, during and/or at the end of the study. We find that the information in the dossiers present an incomplete portfolio of nanomaterial ecotoxicological evaluations that are difficult to draw substantive conclusions from and that most of the studies were not designed to investigate the validity...

  13. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    Science.gov (United States)

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  14. Mutagenicity of carbon nanomaterials

    DEFF Research Database (Denmark)

    Wallin, Håkan; Jacobsen, Nicklas Raun; White, Paul A

    2011-01-01

    Carbon nanomaterials such carbon nanotubes, graphene and fullerenes are some the most promising nanomaterials. Although carbon nanomaterials have been reported to possess genotoxic potential, it is imperitive to analyse the data on the genotoxicity of carbon nanomaterials in vivo and in vitro...

  15. Abrasion Testing of Products Containing Nanomaterials, SOP-R-2: Scientific Operating Procedure Series: Release (R)

    Science.gov (United States)

    2016-04-01

    Nanotechnologies -- Terminology and definitions for nano-objects -- Nanoparticle, nanofibre and nanoplate Definitions Abrasion - wearing away...ER D C SR -1 6- 2 Environmental Consequences of Nanotechnologies Abrasion Testing of Products Containing Nanomaterials, SOP-R-2...ERDC online library at http://acwc.sdp.sirsi.net/client/default. Environmental Consequences of Nanotechnologies ERDC SR-16-2 April 2016

  16. Metal Oxide Nanomaterial QNAR Models: Available Structural Descriptors and Understanding of Toxicity Mechanisms

    Directory of Open Access Journals (Sweden)

    Jiali Ying

    2015-10-01

    Full Text Available Metal oxide nanomaterials are widely used in various areas; however, the divergent published toxicology data makes it difficult to determine whether there is a risk associated with exposure to metal oxide nanomaterials. The application of quantitative structure activity relationship (QSAR modeling in metal oxide nanomaterials toxicity studies can reduce the need for time-consuming and resource-intensive nanotoxicity tests. The nanostructure and inorganic composition of metal oxide nanomaterials makes this approach different from classical QSAR study; this review lists and classifies some structural descriptors, such as size, cation charge, and band gap energy, in recent metal oxide nanomaterials quantitative nanostructure activity relationship (QNAR studies and discusses the mechanism of metal oxide nanomaterials toxicity based on these descriptors and traditional nanotoxicity tests.

  17. TOXICITY EVALUATION OF NEW ENGINEERED NANOMATERIALS IN ZEBRAFISH

    Directory of Open Access Journals (Sweden)

    Maria Violetta Brundo

    2016-04-01

    Full Text Available The effect of the nanoparticles on the marine organisms, depends on their size, chemical composition, surface structure, solubility and shape.In order to take advantage from their activity, preserving the surrounding environment from a possible pollution, we are trying to trap the nanoparticles into new nanomaterials. The nanomaterials tested were synthesized proposing a ground-breaking approach by an upside-down vision of the Au/TiO2nano-system to avoid the release of nanoparticles. The system was synthesized by wrapping Au nanoparticles with a thin layer of TiO2. The non-toxicity of the nano-system was established by testing the effect of the material on zebrafish larvae. Danio rerio o zebrafish was considered a excellent model for the environmental biomonitoring of aquatic environments and the Zebrafish Embryo Toxicity Test is considered an alternative method of animal test. For this reason zebrafish larvae were exposed to different concentrations of nanoparticles of TiO2 and Au and new nanomaterials. As biomarkers of exposure, we evaluated the expression of metallothioneins by immunohistochemistry analysis and western blotting analysis also. The results obtained by toxicity test showed that neither mortality as well as sublethal effects were induced by the different nanomaterials and nanoparticles tested. Only zebrafish larvae exposed to free Au nanoparticles showed a different response to anti-MT antibody. In fact, the immunolocalization analysis highlighted an increase of the metallothioneins synthesis.

  18. Bioengineered nanomaterials

    CERN Document Server

    Tiwari, Atul

    2013-01-01

    Many varieties of new, complex diseases are constantly being discovered, which leaves scientists with little choice but to embrace innovative methods for controlling the invasion of life-threatening problems. The use of nanotechnology has given scientists an opportunity to create nanomaterials that could help medical professionals in diagnosing and treating problems quickly and effectively. Bioengineered Nanomaterials presents in-depth information on bioengineered nanomaterials currently being developed in leading research laboratories around the world. In particular, the book focuses on nanom

  19. Comparative evaluation of methods to quantify dissolution of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna B.; Kruse, Susanne; Baun, Anders

    2015-01-01

    Effects and behaviour of nanomaterials in the environment depends on the materials' specific physical and chemical properties and for certain nanomaterials (e.g., Ag, ZnO and CuO) aqueous solubility is of outmost importance. The solubility of metals salts is normally described as a maximum...... dissolved concentration or by the solubility constant (Ksp). For nanomaterials it is essential to also assess solubility kinetics as nanomaterials will often not dissolve instantaneously upon contact with artificial aqueous media or natural waters. Dissolution kinetics will thereby influence their short...... and long-term environmental fate as well as laboratory test results. This highlights the need to evaluate and improve the reliability of methods applied to assess the solubility kinetics of nanomaterials. Based on existing OECD guidelines and guidance documents on aqueous dissolution of metals and metal...

  20. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme.

    NARCIS (Netherlands)

    Rasmussen, Kirsten; Rauscher, Hubert; Mech, Agnieszka; Riego Sintes, Juan; Gilliland, Douglas; González, Mar; Kearns, Peter; Moss, Kenneth; Visser, Maaike; Groenewold, Monique; Bleeker, Eric A J

    Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be

  1. The Role of Alternative Testing Strategies in Environmental Risk Assessment of Engineered Nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Holden, Patricia; Hansen, Steffen Foss

    2017-01-01

    ) workshop in Washington, D.C. and serves as the point of depature for this paper. Here we present the main outcomes by describing and defining the use of ATS for ENMs as well as discussing its future role in environmental risk science. We conclude that diversity in testing should be encouraged to avoid...... chemicals are challenged. Nonetheless, standardized whole organism animal testing is still considered the gold standard for environmental risk assessment. Advancing risk analysis of engineered nanomaterials (ENMs) through ATS was discussed in September 2014 at an international Society for Risk Analysis (SRA...... be utilized to skip uncertain environmental extrapolations and give rise to more accurate risk analysis....

  2. Molecular toxicity of nanomaterials.

    Science.gov (United States)

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  3. Towards Safer Nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Baun, Anders

    2014-01-01

    As nanomaterials become more widespread in everything from industrial processes to consumer products, concerns about human and environmental safety are being taken increasingly more seriously. In our research we are working with minimizing the impact and risks of engineered nanomaterials by looking...... or the exposure and optimally both. Examples include the 5 SAFER principles (Morose, 2010) or screenings of early warning signs (Hansen et al., 2013). Taking the full life cycle of nanomaterials into account, the principles of Green chemistry and Green engineering could also prove useful to reduce...... the environmental impact of nanomaterials (Eckelman et al., 2008). Our research interests include the feasibility of “safer-­‐by-­‐design” approaches, the production of greener nanomaterials and operationalization, adaption and creation of frameworks to facilitate safety engineering. Research and insight...

  4. Price tag in nanomaterials?

    Science.gov (United States)

    Gkika, D. A.; Vordos, N.; Nolan, J. W.; Mitropoulos, A. C.; Vansant, E. F.; Cool, P.; Braet, J.

    2017-05-01

    With the evolution of the field of nanomaterials in the past number of years, it has become apparent that it will be key to future technological developments. However, while there are unlimited research undertakings on nanomaterials, limited research results on nanomaterial costs exist; all in spite of the generous funding that nanotechnology projects have received. There has recently been an exponential increase in the number of studies concerning health-related nanomaterials, considering the various medical applications of nanomaterials that drive medical innovation. This work aims to analyze the effect of the cost factor on acceptability of health-related nanomaterials independently or in relation to material toxicity. It appears that, from the materials studied, those used for cancer treatment applications are more expensive than the ones for drug delivery. The ability to evaluate cost implications improves the ability to undertake research mapping and develop opinions on nanomaterials that can drive innovation.

  5. National Survey of Workplaces Handling and Manufacturing Nanomaterials, Exposure to and Health Effects of Nanomaterials, and Evaluation of Nanomaterial Safety Data Sheets

    Science.gov (United States)

    2016-01-01

    A national survey on workplace environment nanomaterial handling and manufacturing was conducted in 2014. Workplaces relevant to nanomaterials were in the order of TiO2 (91), SiO2 (88), carbon black (84), Ag (35), Al2O3 (35), ZnO (34), Pb (33), and CeO2 (31). The survey results indicated that the number of workplaces handling or manufacturing nanomaterials was 340 (0.27% of total 126,846) workplaces. The number of nanomaterials used and products was 546 (1.60 per company) and 583 (1.71 per company), respectively. For most workplaces, the results on exposure to hazardous particulate materials, including nanomaterials, were below current OELs, yet a few workplaces were above the action level. As regards the health status of workers, 9 workers were diagnosed with a suspected respiratory occupational disease, where 7 were recommended for regular follow-up health monitoring. 125 safety data sheets (SDSs) were collected from the nanomaterial-relevant workplaces and evaluated for their completeness and reliability. Only 4 CNT SDSs (3.2%) included the term nanomaterial, while most nanomaterial SDSs were not regularly updated and lacked hazard information. When taken together, the current analysis provides valuable national-level information on the exposure and health status of workers that can guide the next policy steps for nanomaterial management in the workplace. PMID:27556041

  6. Grouping nanomaterials to predict their potential to induce pulmonary inflammation.

    Science.gov (United States)

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping

    Science.gov (United States)

    Landsiedel, Robert; Ma-Hock, Lan; Wiench, Karin; Wohlleben, Wendel; Sauer, Ursula G.

    2017-05-01

    As presented at the 2016 TechConnect World Innovation Conference on 22-25 May 2016 in Washington DC, USA, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) `Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) consisting of three tiers to assign nanomaterials to four main groups with possible further subgrouping to refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways: intrinsic material properties and system-dependent properties (that depend upon the nanomaterial's respective surroundings), biopersistence, uptake and biodistribution, and cellular and apical toxic effects. Use, release, and exposure route may be applied as `qualifiers' to determine if, e.g., nanomaterials cannot be released from products, which may justify waiving of testing. The four main groups encompass (1) soluble, (2) biopersistent high aspect ratio, (3) passive, and (4) active nanomaterials. The DF4nanoGrouping foresees a stepwise evaluation of nanomaterial properties and effects with increasing biological complexity. In case studies covering carbonaceous nanomaterials, metal oxide, and metal sulfate nanomaterials, amorphous silica and organic pigments (all nanomaterials having primary particle sizes below 100 nm), the usefulness of the DF4nanoGrouping for nanomaterial hazard assessment was confirmed. The DF4nanoGrouping facilitates grouping and targeted testing of nanomaterials. It ensures that sufficient data for the risk assessment of a nanomaterial are available, and it fosters the use of non-animal methods. No studies are performed that do not provide crucial data. Thereby, the DF4nanoGrouping serves to save both animals and resources.

  8. Intelligent Environmental Nanomaterials

    KAUST Repository

    Chang, Jian

    2018-01-30

    Due to the inherent complexity of environmental problems, especially water and air pollution, the utility of single-function environmental nanomaterials used in conventional and unconventional environmental treatment technologies are gradually reaching their limits. Intelligent nanomaterials with environmentally-responsive functionalities have shown potential to improve the performance of existing and new environmental technologies. By rational design of their structures and functionalities, intelligent nanomaterials can perform different tasks in response to varying application scenarios for the purpose of achieving the best performance. This review offers a critical analysis of the design concepts and latest progresses on the intelligent environmental nanomaterials in filtration membranes with responsive gates, materials with switchable wettability for selective and on-demand oil/water separation, environmental materials with self-healing capability, and emerging nanofibrous air filters for PM2.5 removal. We hope that this review will inspire further research efforts to develop intelligent environmental nanomaterials for the enhancement of the overall quality of environmental or human health.

  9. Intelligent Environmental Nanomaterials

    KAUST Repository

    Chang, Jian; Zhang, Lianbin; Wang, Peng

    2018-01-01

    Due to the inherent complexity of environmental problems, especially water and air pollution, the utility of single-function environmental nanomaterials used in conventional and unconventional environmental treatment technologies are gradually reaching their limits. Intelligent nanomaterials with environmentally-responsive functionalities have shown potential to improve the performance of existing and new environmental technologies. By rational design of their structures and functionalities, intelligent nanomaterials can perform different tasks in response to varying application scenarios for the purpose of achieving the best performance. This review offers a critical analysis of the design concepts and latest progresses on the intelligent environmental nanomaterials in filtration membranes with responsive gates, materials with switchable wettability for selective and on-demand oil/water separation, environmental materials with self-healing capability, and emerging nanofibrous air filters for PM2.5 removal. We hope that this review will inspire further research efforts to develop intelligent environmental nanomaterials for the enhancement of the overall quality of environmental or human health.

  10. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Braakhuis, Hedwig M., E-mail: hedwig.braakhuis@rivm.nl [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht (Netherlands); Oomen, Agnes G. [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Cassee, Flemming R. [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Institute of Risk Assessment Sciences, Utrecht University, PO Box 80.163, 3508 TD Utrecht (Netherlands)

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. - Highlights: • Grouping of nanomaterials helps to gather information in an efficient way with the aim to aid risk assessment. • Different ways of grouping nanomaterials for their risk assessment after inhalation are

  11. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    International Nuclear Information System (INIS)

    Braakhuis, Hedwig M.; Oomen, Agnes G.; Cassee, Flemming R.

    2016-01-01

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. - Highlights: • Grouping of nanomaterials helps to gather information in an efficient way with the aim to aid risk assessment. • Different ways of grouping nanomaterials for their risk assessment after inhalation are

  12. Intracellular signal modulation by nanomaterials.

    Science.gov (United States)

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  13. Engineering nanomaterials-based biosensors for food safety detection.

    Science.gov (United States)

    Lv, Man; Liu, Yang; Geng, Jinhui; Kou, Xiaohong; Xin, Zhihong; Yang, Dayong

    2018-05-30

    Food safety always remains a grand global challenge to human health, especially in developing countries. To solve food safety pertained problems, numerous strategies have been developed to detect biological and chemical contaminants in food. Among these approaches, nanomaterials-based biosensors provide opportunity to realize rapid, sensitive, efficient and portable detection, overcoming the restrictions and limitations of traditional methods such as complicated sample pretreatment, long detection time, and relying on expensive instruments and well-trained personnel. In this review article, we provide a cross-disciplinary perspective to review the progress of nanomaterials-based biosensors for the detection of food contaminants. The review article is organized by the category of food contaminants including pathogens/toxins, heavy metals, pesticides, veterinary drugs and illegal additives. In each category of food contaminant, the biosensing strategies are summarized including optical, colorimetric, fluorescent, electrochemical, and immune- biosensors; the relevant analytes, nanomaterials and biosensors are analyzed comprehensively. Future perspectives and challenges are also discussed briefly. We envision that our review could bridge the gap between the fields of food science and nanotechnology, providing implications for the scientists or engineers in both areas to collaborate and promote the development of nanomaterials-based biosensors for food safety detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity

    Directory of Open Access Journals (Sweden)

    Buford Mary

    2009-12-01

    Full Text Available Abstract Background Titanium dioxide (TiO2 nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO2 (200 nm sphere is relatively inert when internalized into a biological model system (in vivo or in vitro. For this reason, TiO2 nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension Results TiO2 nanospheres, short ( 15 μm nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO2 nanomaterial into a fibre structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO2 nanobelts interact with lung macrophages in a manner very similar to asbestos or silica. Conclusions These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.

  15. Payload Safety: Risk and Characteristic-Based Control of Engineered Nanomaterials

    Science.gov (United States)

    Abou, Seraphin Chally; Saad, Maarouf

    2013-09-01

    In the last decade progress has been made to assist organizations that are developing payloads intended for flight on the International Space Station (ISS) and/or Space Shuttle. Collaboration programs for comprehensive risk assessment have been initiated between the U.S. and the European Union to generate requirements and data needed to comply with payloads safety and to perform risk assessment and controls guidance. Yet, substantial research gaps remain, as do challenges in the translation of these research findings to control for exposure to nanoscale material payloads, and the health effects. Since nanomaterial structures are different from traditional molecules, some standard material properties can change at size of 50nm or less. Changes in material properties at this scale challenge our understanding of hazards posed by nanomaterial payloads in the ISS realistic exposure conditions, and our ability to anticipate, evaluate, and control potential health issues, and safety. The research question addressed in this framework is: what kind of descriptors can be developed for nanomaterial payloads risks assessment? Methods proposed incorporate elements of characteristic- based risk an alysis: (1) to enable characterization of anthropogenic nanomaterials which can result in incidental from natural nanoparticles; and (2) to better understand safety attributes in terms of human health impacts from exposure to varying types of engineered nanomaterials.

  16. Handbook of nanomaterials properties

    CERN Document Server

    Luo, Dan; Schricker, Scott R; Sigmund, Wolfgang; Zauscher, Stefan

    2014-01-01

    Nanomaterials attract tremendous attention in recent researches. Although extensive research has been done in this field it still lacks a comprehensive reference work that presents data on properties of different Nanomaterials. This Handbook of Nanomaterials Properties will be the first single reference work that brings together the various properties with wide breadth and scope.

  17. Nanomaterials: a challenge for toxicological risk assessment?

    Science.gov (United States)

    Haase, Andrea; Tentschert, Jutta; Luch, Andreas

    2012-01-01

    Nanotechnology has emerged as one of the central technologies in the twenty-first century. This judgment becomes apparent by considering the increasing numbers of people employed in this area; the numbers of patents, of scientific publications, of products on the market; and the amounts of money invested in R&D. Prospects originating from different fields of nanoapplication seem unlimited. However, nanotechnology certainly will not be able to meet all of the ambitious expectations communicated, yet has high potential to heavily affect our daily life in the years to come. This might occur in particular in the field of consumer products, for example, by introducing nanomaterials in cosmetics, textiles, or food contact materials. Another promising area is the application of nanotechnology in medicine fueling hopes to significantly improve diagnosis and treatment of all kinds of diseases. In addition, novel technologies applying nanomaterials are expected to be instrumental in waste remediation and in the production of efficient energy storage devices and thus may help to overcome world's energy problems or to revolutionize computer and data storage technologies. In this chapter, we will focus on nanomaterials. After a brief historic and general overview, current proposals of how to define nanomaterials will be summarized. Due to general limitations, there is still no single, internationally accepted definition of the term "nanomaterial." After elaborating on the status quo and the scope of nanoanalytics and its shortcomings, the current thinking about possible hazards resulting from nanoparticulate exposures, there will be an emphasis on the requirements to be fulfilled for appropriate health risk assessment and regulation of nanomaterials. With regard to reliable risk assessments, until now there is still the remaining issue to be resolved of whether or not specific challenges and unique features exist on the nanoscale that have to be tackled and distinctively

  18. [International trend of guidance for nanomaterial risk assessment].

    Science.gov (United States)

    Hirose, Akihiko

    2013-01-01

    In the past few years, several kinds of opinions or recommendations on the nanomaterial safety assessment have been published from international or national bodies. Among the reports, the first practical guidance of risk assessment from the regulatory body was published from the European Food Safety Authorities in May 2011, which included the determination of exposure scenario and toxicity testing strategy. In October 2011, European Commission (EC) adopted the definition of "nanomaterial" for regulation. And more recently, Scientific Committee on Consumer Safety of EC released guidance for assessment of nanomaterials in cosmetics in June 2012. A series of activities in EU marks an important step towards realistic safety assessment of nanomaterials. On the other hand, the US FDA announced a draft guidance for industry in June 2011, and then published draft guidance documents for both "Cosmetic Products" and "Food Ingredients and Food Contact Substances" in April 2012. These draft documents do not restrictedly define the physical properties of nanomaterials, but when manufacturing changes alter the dimensions, properties, or effects of an FDA-regulated product, the products are treated as new products. Such international movements indicate that most of nanomaterials with any new properties would be assessed or regulated as new products by most of national authorities in near future, although the approaches are still case by case basis. We will introduce such current international activities and consideration points for regulatory risk assessment.

  19. Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials.

    Science.gov (United States)

    Oomen, Agnes G; Bleeker, Eric A J; Bos, Peter M J; van Broekhuizen, Fleur; Gottardo, Stefania; Groenewold, Monique; Hristozov, Danail; Hund-Rinke, Kerstin; Irfan, Muhammad-Adeel; Marcomini, Antonio; Peijnenburg, Willie J G M; Rasmussen, Kirsten; Jiménez, Araceli Sánchez; Scott-Fordsmand, Janeck J; van Tongeren, Martie; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2015-10-26

    Physicochemical properties of chemicals affect their exposure, toxicokinetics/fate and hazard, and for nanomaterials, the variation of these properties results in a wide variety of materials with potentially different risks. To limit the amount of testing for risk assessment, the information gathering process for nanomaterials needs to be efficient. At the same time, sufficient information to assess the safety of human health and the environment should be available for each nanomaterial. Grouping and read-across approaches can be utilised to meet these goals. This article presents different possible applications of grouping and read-across for nanomaterials within the broader perspective of the MARINA Risk Assessment Strategy (RAS), as developed in the EU FP7 project MARINA. Firstly, nanomaterials can be grouped based on limited variation in physicochemical properties to subsequently design an efficient testing strategy that covers the entire group. Secondly, knowledge about exposure, toxicokinetics/fate or hazard, for example via properties such as dissolution rate, aspect ratio, chemical (non-)activity, can be used to organise similar materials in generic groups to frame issues that need further attention, or potentially to read-across. Thirdly, when data related to specific endpoints is required, read-across can be considered, using data from a source material for the target nanomaterial. Read-across could be based on a scientifically sound justification that exposure, distribution to the target (fate/toxicokinetics) and hazard of the target material are similar to, or less than, the source material. These grouping and read-across approaches pave the way for better use of available information on nanomaterials and are flexible enough to allow future adaptations related to scientific developments.

  20. Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials

    Directory of Open Access Journals (Sweden)

    Agnes G. Oomen

    2015-10-01

    Full Text Available Physicochemical properties of chemicals affect their exposure, toxicokinetics/fate and hazard, and for nanomaterials, the variation of these properties results in a wide variety of materials with potentially different risks. To limit the amount of testing for risk assessment, the information gathering process for nanomaterials needs to be efficient. At the same time, sufficient information to assess the safety of human health and the environment should be available for each nanomaterial. Grouping and read-across approaches can be utilised to meet these goals. This article presents different possible applications of grouping and read-across for nanomaterials within the broader perspective of the MARINA Risk Assessment Strategy (RAS, as developed in the EU FP7 project MARINA. Firstly, nanomaterials can be grouped based on limited variation in physicochemical properties to subsequently design an efficient testing strategy that covers the entire group. Secondly, knowledge about exposure, toxicokinetics/fate or hazard, for example via properties such as dissolution rate, aspect ratio, chemical (non-activity, can be used to organise similar materials in generic groups to frame issues that need further attention, or potentially to read-across. Thirdly, when data related to specific endpoints is required, read-across can be considered, using data from a source material for the target nanomaterial. Read-across could be based on a scientifically sound justification that exposure, distribution to the target (fate/toxicokinetics and hazard of the target material are similar to, or less than, the source material. These grouping and read-across approaches pave the way for better use of available information on nanomaterials and are flexible enough to allow future adaptations related to scientific developments.

  1. Nanomaterials in preventive dentistry

    Science.gov (United States)

    Hannig, Matthias; Hannig, Christian

    2010-08-01

    The prevention of tooth decay and the treatment of lesions and cavities are ongoing challenges in dentistry. In recent years, biomimetic approaches have been used to develop nanomaterials for inclusion in a variety of oral health-care products. Examples include liquids and pastes that contain nano-apatites for biofilm management at the tooth surface, and products that contain nanomaterials for the remineralization of early submicrometre-sized enamel lesions. However, the treatment of larger visible cavities with nanomaterials is still at the research stage. Here, we review progress in the development of nanomaterials for different applications in preventive dentistry and research, including clinical trials.

  2. Characterization of nanomaterials

    International Nuclear Information System (INIS)

    Montone, Amelia; Aurora, Annalisa; Di Girolamo, Giovanni

    2015-01-01

    This paper provides an overview of the main techniques used for the characterization of nanomaterials. The knowledge of some basic characteristics, inherent morphology, microstructure, the distribution phase and chemical composition, it is essential to evaluate the functional properties of nanomaterials and make predictions about their behavior in operation. For the characterization of nanomaterials can be used in both imaging techniques both analytic techniques. Among the first found wide application optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Among the latter some types of spectroscopy and X-ray diffraction (XRD). For each type of material to characterize the choice of the most appropriate technique it is based on the type of details that you want to obtain, and on their scale. In this paper are discussed in detail some examples and the main methods used for the characterization of nanomaterials. [it

  3. Eating nanomaterials: cruelty-free and safe? the EFSA guidance on risk assessment of nanomaterials in food and feed.

    Science.gov (United States)

    Sauer, Ursula G

    2011-12-01

    Nanomaterials are increasingly being added to food handling and packaging materials, or directly, to human food and animal feed. To ensure the safety of such engineered nanomaterials (ENMs), in May 2011, the European Food Safety Authority (EFSA) published a guidance document on Risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. It states that risk assessment should be performed by following a step-wise procedure. Whenever human or animal exposure to nanomaterials is expected, the general hazard characterisation scheme requests information from in vitro genotoxicity, toxicokinetic and repeated dose 90-day oral toxicity studies in rodents. Numerous prevailing uncertainties with regard to nanomaterial characterisation and their hazard and risk assessment are addressed in the guidance document. This article discusses the impact of these knowledge gaps on meeting the goal of ensuring human safety. The EFSA's guidance on the risk assessment of ENMs in food and animal feed is taken as an example for discussion, from the point of view of animal welfare, on what level of uncertainty should be considered acceptable for human safety assessment of products with non-medical applications, and whether animal testing should be considered ethically acceptable for such products.

  4. Reinforcement of cement-based matrices with graphite nanomaterials

    Science.gov (United States)

    Sadiq, Muhammad Maqbool

    micro-scale fibers were used for comparison purposes at different volume fractions. Replicated mixes and tests were considered to provide the basis for statistically reliable inferences. Theoretical studies were conducted in order to develop insight into the reinforcement mechanisms of properly functionalized graphite nanomaterials. The results suggested that modified graphite nanomaterials improve the mechanical performance of cement-based matrices primarily through control of microcrack size and propagation, relying on their close spacing within matrix and dissipation of substantial energy by debonding and frictional pullout over their enormous surface areas. The gains in barrier qualities of cement-based materials with introduction of modified graphite nanomaterials could be attributed to the increased tortuosity of diffusion paths in the presence of closely spaced nanomaterials. Experimental investigations were designed and implemented towards identification of the optimum (nano- and micro-scale) reinforcement systems for high-performance concrete through RSA (Response Surface Analysis). A comprehensive experimental data base was developed on the mechanical, physical and durability characteristics as well as the structure and composition of high-performance cementitious nanocomposites reinforced with modified graphite nanomaterials and/ or different micro-fibers.

  5. Preparation and characterization of flower-like gold nanomaterials and iron oxide/gold composite nanomaterials

    International Nuclear Information System (INIS)

    Yang Zusing; Lin, Z H; Tang, C-Y; Chang, H-T

    2007-01-01

    We have successfully synthesized flower-like gold nanomaterials and Fe 3 O 4 /Au composite nanomaterials through the use of wet chemical methods in aqueous solution. In the presence of 0.5 mM citrate, 0.313 mM poly(ethylene glycol), and 109.72 mM sodium acetate (NaOAc), we prepared Au nanoflowers (NFs) having diameters ranging from 300 to 400 nm in aqueous solution after the reduction of Au ions at room temperature for 10 min. In the presence of spherical Fe 3 O 4 nanomaterials, we applied a similar synthetic method to prepare Fe 3 O 4 /Au composite nanomaterials, including nanowires (NWs) that have a length of 1.58 μm and a width of 28.3 nm. We conducted energy-dispersive x-ray analysis, scanning electron microscopy, transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, and x-ray powder diffraction measurements to characterize the as-prepared flower-like Au nanomaterials and Fe 3 O 4 /Au composite nanomaterials. From time-evolution TEM measurements, we suggested that Au atoms that were bound to the Fe 3 O 4 nanomaterials grew to form Fe 3 O 4 /Au composite nanomaterials. The as-prepared Au NFs absorbed light strongly in the visible-near-infrared (Vis-NIR) region (500-1200 nm). The Fe 3 O 4 /Au composite nanomaterials had electronic conductivities greater than 100 nA at an applied voltage of 20 mV, which induced a temperature increase of 20.5 ± 0.5 deg. C under an alternating magnetic field (62 μT)

  6. Validity range of centrifuges for the regulation of nanomaterials: from classification to as-tested coronas

    Science.gov (United States)

    Wohlleben, Wendel

    2012-12-01

    Granulometry is the regulatory category where the differences between traditional materials and nanomaterials culminate. Reported herein is a careful validation of methods for the quantification of dispersability and size distribution in relevant media, and for the classification according to the EC nanodefinition recommendation. Suspension-based techniques can assess the nanodefinition only if the material in question is reasonably well dispersed. Using dispersed material of several chemical compositions (organic, metal, metal-oxide) as test cases we benchmark analytical ultracentrifugation (AUC), dynamic light scattering (DLS), hydrodynamic chromatography, nanoparticle tracking analysis (NTA) against the known content of bimodal suspensions in the commercially relevant range between 20 nm and a few microns. The results validate fractionating techniques, especially AUC, which successfully identifies any dispersed nanoparticle content from 14 to 99.9 nb% with less than 5 nb% deviation. In contrast, our screening casts severe doubt over the reliability of ensemble (scattering) techniques and highlights the potential of NTA to develop into a counting upgrade of DLS. The unique asset of centrifuges with interference, X-ray or absorption detectors—to quantify the dispersed solid content for each size interval from proteins over individualized nanoparticles up to agglomerates, while accounting for their loose packing—addresses also the adsorption/depletion of proteins and (de-)agglomeration of nanomaterials under cell culture conditions as tested for toxicological endpoints.

  7. Validity range of centrifuges for the regulation of nanomaterials: from classification to as-tested coronas

    International Nuclear Information System (INIS)

    Wohlleben, Wendel

    2012-01-01

    Granulometry is the regulatory category where the differences between traditional materials and nanomaterials culminate. Reported herein is a careful validation of methods for the quantification of dispersability and size distribution in relevant media, and for the classification according to the EC nanodefinition recommendation. Suspension-based techniques can assess the nanodefinition only if the material in question is reasonably well dispersed. Using dispersed material of several chemical compositions (organic, metal, metal-oxide) as test cases we benchmark analytical ultracentrifugation (AUC), dynamic light scattering (DLS), hydrodynamic chromatography, nanoparticle tracking analysis (NTA) against the known content of bimodal suspensions in the commercially relevant range between 20 nm and a few microns. The results validate fractionating techniques, especially AUC, which successfully identifies any dispersed nanoparticle content from 14 to 99.9 nb% with less than 5 nb% deviation. In contrast, our screening casts severe doubt over the reliability of ensemble (scattering) techniques and highlights the potential of NTA to develop into a counting upgrade of DLS. The unique asset of centrifuges with interference, X-ray or absorption detectors—to quantify the dispersed solid content for each size interval from proteins over individualized nanoparticles up to agglomerates, while accounting for their loose packing—addresses also the adsorption/depletion of proteins and (de-)agglomeration of nanomaterials under cell culture conditions as tested for toxicological endpoints.

  8. Is the risk from nanomaterials perceived as different from the risk of 'chemicals' by the Australian public?

    Science.gov (United States)

    Capon, Adam; Rolfe, Margaret; Gillespie, James; Smith, Wayne

    2016-04-15

    Manufactured nanomaterials in Australia are managed predominantly through existing chemical regulatory frameworks. Many Australian government regulators have suggested the framing of manufactured nanomaterials as 'chemicals' when communicating about manufactured nanomaterials to the general public. This paper aims to determine whether the Australian public perception of manufactured nanomaterials differs to that of 'chemicals', and to examine the relationship between attitudes towards chemicals and perceptions of nanomaterial risk. We undertook a computerised assisted telephone survey of the Australian public. Analysis was undertaken using descriptive, paired tests of proportion, paired t-test and logistic regression techniques. We explored perceptions of nanomaterial risk and their relationship to perceptions of chemical risk and 'chemical attitudes'. We found that the public perceives nanomaterials in a more favourable light than it does chemicals. Perception of risk from chemicals had the greatest association with perceived nanomaterial risk (adjusted odds ratios between 0.1 and 0.2) and that attitudes to chemicals were associated with perception of nanomaterial risk in some cases. Risk communicators and policy makers need to consider the differences and associations between nanomaterials and chemicals when addressing the regulatory aspects of nanomaterials with the public. This is relevant for communication strategies that attempt to normalise the risks from nanomaterials compared with those of chemicals, especially as nanomaterials are perceived to be less risky than chemicals.

  9. Enhanced Contaminated Human Remains Pouch: initial development and preliminary performance assessments

    Energy Technology Data Exchange (ETDEWEB)

    Iseli, A.M.; Kwen, H.D.; Ul-Alam, M.; Balasubramanian, M.; Rajagopalan, S.

    2011-11-07

    The objective is to produce a proof of concept prototype Enhanced Contaminated Human Remains Pouch (ECHRP) with self-decontamination capability to provide increased protection to emergency response personnel. The key objective was to decrease the concentration of toxic chemicals through the use of an absorbent and reactive nanocellulose liner. Additionally, nanomaterials with biocidal properties were developed and tested as a 'stand-alone' treatment. The setting was a private company research laboratory. The main outcome measures were production of a functional prototype. A functional prototype capable of mitigating the threats due to sulfur mustard, Soman, and a large variety of liquid and vapor toxic industrial chemicals was produced. Stand-alone biocidal treatment efficacy was validated. The ECHRP provides superior protection from both chemical and biological hazards to various emergency response personnel and human remains handlers.

  10. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers

    Directory of Open Access Journals (Sweden)

    Niina J. Ronkainen

    2014-06-01

    Full Text Available Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon.

  11. Plasma nanofabrication and nanomaterials safety

    International Nuclear Information System (INIS)

    Han, Z J; Levchenko, I; Kumar, S; Yajadda, M M A; Yick, S; Seo, D H; Martin, P J; Ostrikov, K; Peel, S; Kuncic, Z

    2011-01-01

    The fast advances in nanotechnology have raised increasing concerns related to the safety of nanomaterials when exposed to humans, animals and the environment. However, despite several years of research, the nanomaterials safety field is still in its infancy owing to the complexities of structural and surface properties of these nanomaterials and organism-specific responses to them. Recently, plasma-based technology has been demonstrated as a versatile and effective way for nanofabrication, yet its health and environment-benign nature has not been widely recognized. Here we address the environmental and occupational health and safety effects of various zero- and one-dimensional nanomaterials and elaborate the advantages of using plasmas as a safe nanofabrication tool. These advantages include but are not limited to the production of substrate-bound nanomaterials, the isolation of humans from harmful nanomaterials, and the effective reforming of toxic and flammable gases. It is concluded that plasma nanofabrication can minimize the hazards in the workplace and represents a safe way for future nanofabrication technologies.

  12. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biomarkers of nanomaterial exposure and effect: current status

    Science.gov (United States)

    Iavicoli, Ivo; Leso, Veruscka; Manno, Maurizio; Schulte, Paul A.

    2014-03-01

    Recent advances in nanotechnology have induced a widespread production and application of nanomaterials. As a consequence, an increasing number of workers are expected to undergo exposure to these xenobiotics, while the possible hazards to their health remain not being completely understood. In this context, biological monitoring may play a key role not only to identify potential hazards from and to evaluate occupational exposure to nanomaterials, but also to detect their early biological effects to better assess and manage risks of exposure in respect of the health of workers. Therefore, the aim of this review is to provide a critical evaluation of potential biomarkers of nanomaterial exposure and effect investigated in human and animal studies. Concerning exposure biomarkers, internal dose of metallic or metal oxide nanoparticle exposure may be assessed measuring the elemental metallic content in blood or urine or other biological materials, whereas specific molecules may be carefully evaluated in target tissues as possible biomarkers of biologically effective dose. Oxidative stress biomarkers, such as 8-hydroxy-deoxy-guanosine, genotoxicity biomarkers, and inflammatory response indicators may also be useful, although not specific, as biomarkers of nanomaterial early adverse health effects. Finally, potential biomarkers from "omic" technologies appear to be quite innovative and greatly relevant, although mechanistic, ethical, and practical issues should all be resolved before their routine application in occupational settings could be implemented. Although all these findings are interesting, they point out the need for further research to identify and possibly validate sensitive and specific biomarkers of exposure and effect, suitable for future use in occupational biomonitoring programs. A valuable contribution may derive from the studies investigating the biological behavior of nanomaterials and the factors influencing their toxicokinetics and reactivity. In

  14. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  15. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing?

    Science.gov (United States)

    Dusinska, Maria; Tulinska, Jana; El Yamani, Naouale; Kuricova, Miroslava; Liskova, Aurelia; Rollerova, Eva; Rundén-Pran, Elise; Smolkova, Bozena

    2017-11-01

    The unique properties of nanomaterials (NMs) are beneficial in numerous industrial and medical applications. However, they could also induce unintended effects. Thus, a proper strategy for toxicity testing is essential in human hazard and risk assessment. Toxicity can be tested in vivo and in vitro; in compliance with the 3Rs, alternative strategies for in vitro testing should be further developed for NMs. Robust, standardized methods are of great importance in nanotoxicology, with comprehensive material characterization and uptake as an integral part of the testing strategy. Oxidative stress has been shown to be an underlying mechanism of possible toxicity of NMs, causing both immunotoxicity and genotoxicity. For testing NMs in vitro, a battery of tests should be performed on cells of human origin, either cell lines or primary cells, in conditions as close as possible to an in vivo situation. Novel toxicity pathways, particularly epigenetic modification, should be assessed along with conventional toxicity testing methods. However, to initiate epigenetic toxicity screens for NM exposure, there is a need to better understand their adverse effects on the epigenome, to identify robust and reproducible causal links between exposure, epigenetic changes and adverse phenotypic endpoints, and to develop improved assays to monitor epigenetic toxicity. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Carbon Nanomaterials as Antibacterial Colloids

    Directory of Open Access Journals (Sweden)

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  17. Influence of nano-material on the expansive and shrinkage soil behavior

    International Nuclear Information System (INIS)

    Taha, Mohd Raihan; Taha, Omer Muhie Eldeen

    2012-01-01

    This paper presents an experimental study performed on four types of soils mixed with three types of nano-material of different percentages. The expansion and shrinkage tests were conducted to investigate the effect of three type of nano-materials (nano-clay, nano-alumina, and nano-copper) additive on repressing strains in compacted residual soil mixed with different ratios of bentonite (S1 = 0 % bentonite, S2 = 5 % bentonite, S3 = 10 % bentonite, and S4 = 20 % bentonite). The soil specimens were compacted under the condition of maximum dry unit weight and optimum water content (w opt ) using standard compaction test. The physical and mechanical results of the treated samples were determined. The untreated soil values were used as control points for comparison purposes. It was found that with the addition of optimum percentage of nano-material, both the swell strain and shrinkage strain reduced. The results show that nano-material decreases the development of desiccation cracks on the surface of compacted samples without decrease in the hydraulic conductivity.

  18. Decision-making framework for testing and grouping of nanomaterials

    OpenAIRE

    Landsiedel, Robert

    2015-01-01

    A ‘multiple perspective’ framework for the grouping of nanomaterials Robert Landsiedel presenting the results of the ECETOC Nano Task Force (Josje H.E. Arts a, Mackenzie Hadi b, Athena M. Keene c, Reinhard Kreiling d, Delina Lyon e, Monika Maier f, Karin Michel g, Thomas Petry h, Ursula G. Sauer i, David Warheit j, Karin Wiench k, Robert Landsiedel k) a AkzoNobel, Technology and Engineering, Arnhem, Netherlands b Shell Health, Shell International B.V., The Hague, Netherlands...

  19. Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies.

    Science.gov (United States)

    Landsiedel, Robert; Sauer, Ursula G; Ma-Hock, Lan; Schnekenburger, Jürgen; Wiemann, Martin

    2014-11-01

    To date, guidance on how to incorporate in vitro assays into integrated approaches for testing and assessment of nanomaterials is unavailable. In addressing this shortage, this review compares data from in vitro studies to results from in vivo inhalation or intratracheal instillation studies. Globular nanomaterials (ion-shedding silver and zinc oxide, poorly soluble titanium dioxide and cerium dioxide, and partly soluble amorphous silicon dioxide) and nanomaterials with higher aspect ratios (multiwalled carbon nanotubes) were assessed focusing on the Organisation for Economic Co-Operation and Development (OECD) reference nanomaterials for these substances. If in vitro assays are performed with dosages that reflect effective in vivo dosages, the mechanisms of nanomaterial toxicity can be assessed. In early tiers of integrated approaches for testing and assessment, knowledge on mechanisms of toxicity serves to group nanomaterials thereby reducing the need for animal testing.

  20. In vitro assessments of nanomaterial toxicity.

    Science.gov (United States)

    Jones, Clinton F; Grainger, David W

    2009-06-21

    Nanotechnology has grown from a scientific interest to a major industry with both commodity and specialty nanomaterial exposure to global populations and ecosystems. Sub-micron materials are currently used in a wide variety of consumer products and in clinical trials as drug delivery carriers and imaging agents. Due to the expected growth in this field and the increasing public exposure to nanomaterials, both from intentional administration and inadvertent contact, improved characterization and reliable toxicity screening tools are required for new and existing nanomaterials. This review discusses current methodologies used to assess nanomaterial physicochemical properties and their in vitro effects. Current methods lack the desired sensitivity, reliability, correlation and sophistication to provide more than limited, often equivocal, pieces of the overall nanomaterial performance parameter space, particularly in realistic physiological or environmental models containing cells, proteins and solutes. Therefore, improved physicochemical nanomaterial assays are needed to provide accurate exposure risk assessments and genuine predictions of in vivo behavior and therapeutic value. Simpler model nanomaterial systems in buffer do not accurately duplicate this complexity or predict in vivo behavior. A diverse portfolio of complementary material characterization tools and bioassays are required to validate nanomaterial properties in physiology.

  1. Development of risk-based nanomaterial groups for occupational exposure control

    Science.gov (United States)

    Kuempel, E. D.; Castranova, V.; Geraci, C. L.; Schulte, P. A.

    2012-09-01

    Given the almost limitless variety of nanomaterials, it will be virtually impossible to assess the possible occupational health hazard of each nanomaterial individually. The development of science-based hazard and risk categories for nanomaterials is needed for decision-making about exposure control practices in the workplace. A possible strategy would be to select representative (benchmark) materials from various mode of action (MOA) classes, evaluate the hazard and develop risk estimates, and then apply a systematic comparison of new nanomaterials with the benchmark materials in the same MOA class. Poorly soluble particles are used here as an example to illustrate quantitative risk assessment methods for possible benchmark particles and occupational exposure control groups, given mode of action and relative toxicity. Linking such benchmark particles to specific exposure control bands would facilitate the translation of health hazard and quantitative risk information to the development of effective exposure control practices in the workplace. A key challenge is obtaining sufficient dose-response data, based on standard testing, to systematically evaluate the nanomaterials' physical-chemical factors influencing their biological activity. Categorization processes involve both science-based analyses and default assumptions in the absence of substance-specific information. Utilizing data and information from related materials may facilitate initial determinations of exposure control systems for nanomaterials.

  2. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites

    Science.gov (United States)

    Dufresne, Alain

    2017-12-01

    Unexpected and attractive properties can be observed when decreasing the size of a material down to the nanoscale. Cellulose is no exception to the rule. In addition, the highly reactive surface of cellulose resulting from the high density of hydroxyl groups is exacerbated at this scale. Different forms of cellulose nanomaterials, resulting from a top-down deconstruction strategy (cellulose nanocrystals, cellulose nanofibrils) or bottom-up strategy (bacterial cellulose), are potentially useful for a large number of industrial applications. These include the paper and cardboard industry, use as reinforcing filler in polymer nanocomposites, the basis for low-density foams, additives in adhesives and paints, as well as a wide variety of filtration, electronic, food, hygiene, cosmetic and medical products. This paper focuses on the use of cellulose nanomaterials as a filler for the preparation of polymer nanocomposites. Impressive mechanical properties can be obtained for these materials. They obviously depend on the type of nanomaterial used, but the crucial point is the processing technique. The emphasis is on the melt processing of such nanocomposite materials, which has not yet been properly resolved and remains a challenge. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  3. Current status and prospects of the toxicological assessment of engineered nanomaterials

    International Nuclear Information System (INIS)

    Pacchiarotti, Francesca; Grollino, Maria Giuseppa; Leter, Giorgio

    2015-01-01

    Nano toxicology is a branch of experimental toxicology dealing with identification and characterization of the harmful biological effects of engineered nanomaterials. The physico-chemical properties of these materials affect their biological level interactions. From the first generation of experimental studies it showed the need for adaptation to nanomaterials methodologies and toxicological evaluation of current strategies. Special challenges are presented by the variety of materials to be tested, from the definition of relevant dose quantities, by the standardization of the preparation and characterization of the nanomaterial in the biological sample matrices, by techniques for the determination of the biodistribution in the body. 'Omics' technologies are now an innovative tool for toxicological approach based on understanding the mechanisms of action, which will allow the most advanced laboratories to implement high-performance screening test. [it

  4. Engineering of Multifunctional Nanomaterials for Cancer Theranostics

    Science.gov (United States)

    Goel, Shreya

    Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. Silica, "generally recognized as safe" (GRAS) by the Food and Drug Administration (FDA) of the United States, has emerged as one of the leading nanomaterials employed for molecular imaging and therapy of a wide variety of diseases, including cancer. However in vivo biodistribution and active targeting of silica-based nanomaterials has remained a relatively under explored area, based mainly on semi-quantitative techniques such as fluorescence imaging. In this dissertation, I explore the concept of radiolabeled silica nanoparticles for vasculature-targeted imaging of different tumor types. Both chelator-based and chelator-free radiolabeling techniques were employed for accurate and quantitative analysis of the in vivo pharmacokinetics of radiolabeled silica nanomaterials. (Chapters 2 and 3) The large surface area, ease of tunability and facile silica chemistry were employed to create multifunctional silica-based materials to simultaneously seek-and-treat cancers, by incorporating multiple components into a single nanoplatform. Photodynamic agent, porphyrin was loaded into the central cavity of hollow mesoporous silica nanoparticles, and the shell was decorated with photothermal nanoparticles, CuS, yielding a multimodal theranostic nanoplatform which could synergistically annihilate the tumor without relapse. (Chapter 4). A major hurdle in the successful clinical translation of nanomaterials is their rapid sequestration by the organs of the

  5. Biomedical nanomaterials from design to implementation

    CERN Document Server

    Webster, Thomas

    2016-01-01

    Biomedical Nanomaterials brings together the engineering applications and challenges of using nanostructured surfaces and nanomaterials in healthcare in a single source. Each chapter covers important and new information in the biomedical applications of nanomaterials.

  6. Applications of nanomaterials in sensors and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Tuantranont, Adisorn (ed.) [National Electronics and Computer Technology Center (NECTEC), Pathumthani (Thailand). Nanoelectronics and MEMS Laboratory

    2013-11-01

    Recent progress in the synthesis of nanomaterials and our fundamental understanding of their properties has led to significant advances in nanomaterial-based gas, chemical and biological sensors. Leading experts around the world highlight the latest findings on a wide range of nanomaterials including nanoparticles, quantum dots, carbon nanotubes, molecularly imprinted nanostructures or plastibodies, nanometals, DNA-based structures, smart nanomaterials, nanoprobes, magnetic nanomaterials, organic molecules like phthalocyanines and porphyrins, and the most amazing novel nanomaterial, called graphene. Various sensing techniques such as nanoscaled electrochemical detection, functional nanomaterial-amplified optical assays, colorimetry, fluorescence and electrochemiluminescence, as well as biomedical diagnosis applications, e.g. for cancer and bone disease, are thoroughly reviewed and explained in detail. This volume will provide an invaluable source of information for scientists working in the field of nanomaterial-based technology as well as for advanced students in analytical chemistry, biochemistry, electrochemistry, material science, micro- and nanotechnology.

  7. Safe use of nanomaterials

    CERN Multimedia

    2013-01-01

    The use of nanomaterials  is on the increase worldwide, including at CERN. The HSE Unit has established a safety guideline to inform you of the main requirements for the safe handling and disposal of nanomaterials at CERN.   A risk assessment tool has also been developed which guides the user through the process of evaluating the risk for his or her activity. Based on the calculated risk level, the tool provides a list of recommended control measures.   We would therefore like to draw your attention to: Safety Guideline C-0-0-5 - Safe handling and disposal of nanomaterials; and Safety Form C-0-0-2 - Nanomaterial Risk Assessment   You can consult all of CERN’s safety rules and guidelines here. Please contact the HSE Unit for any questions you may have.   The HSE Unit

  8. Nanomaterials and Retinal Toxicity

    Science.gov (United States)

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  9. Bacteriomimetic poly-γ-glutamic acid surface coating for hemocompatibility and safety of nanomaterials.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Kim, Jinyoung; Suh, Min Sung; Kim, Youn Kyu; Oh, Yu-Kyoung

    2017-08-01

    Poly-γ-glutamic acid (PGA), a major component of the bacterial capsule, is known to confer hydrophilicity to bacterial surfaces and protect bacteria from interactions with blood cells. We tested whether applying a bacteriomimetic surface coating of PGA modulates interactions of nanomaterials with blood cells or affects their safety and photothermal antitumor efficacy. Amphiphilic PGA (APGA), prepared by grafting phenylalanine residues to PGA, was used to anchor PGA to reduced graphene oxide (rGO) nanosheets, a model of hydrophobic nanomaterials. Surface coating of rGO with bacterial capsule-like APGA yielded APGA-tethered rGO nanosheets (ArGO). ArGO nanosheets remained stable in serum over 4 weeks, whereas rGO in plain form precipitated in serum within 5 minutes. Moreover, ArGO did not interact with blood cells, whereas rGO in plain form or as a physical mixture with PGA formed aggregates with blood cells. Mice administered ArGO at a dose of 50 mg/kg showed 100% survival and no hepatic or renal toxicity. No mice survived exposure at the same dose of rGO or a PGA/rGO mixture. Following intravenous administration, ArGO showed a greater distribution to tumors and prolonged tumor retention compared with other nanosheet formulations. Irradiation with near-infrared light completely ablated tumors in mice treated with ArGO. Our results indicate that a bacteriomimetic surface modification of nanomaterials with bacterial capsule-like APGA improves the stability in blood, biocompatibility, tumor distribution, and photothermal antitumor efficacy of rGO. Although APGA was used here to coat the surfaces of rGO, it could be applicable to coat surfaces of other hydrophobic nanomaterials.

  10. Pathophysiologic mechanisms of biomedical nanomaterials

    International Nuclear Information System (INIS)

    Wang, Liming; Chen, Chunying

    2016-01-01

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs

  11. Pathophysiologic mechanisms of biomedical nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.

  12. Self-assembled nanomaterials for photoacoustic imaging

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  13. Self-assembled nanomaterials for photoacoustic imaging.

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  14. Antimicrobial and biocompatible properties of nanomaterials.

    Science.gov (United States)

    Ul-Islam, M; Shehzad, A; Khan, S; Khattak, W A; Ullah, M W; Park, J K

    2014-01-01

    The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are currently proving to be the most capable therapeutic agents to cope with such hazards. The exceptional physiochemical properties and impressive antimicrobial capabilities of nanoparticles have provoked their utilization in biomedical fields. Nanomaterials of both organic and inorganic nature have shown the capabilities of disrupting microbial cells through different mechanisms. Along with the direct influence on the microbial cell membrane, DNA and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components and viruses. Currently, a serious hazard associated with these antimicrobial nanomaterials is their toxicity to human and animal cells. Extensive studies have reported the dose, time, and cell-dependent toxicology of various nanomaterials, and some have shown excellent biocompatible properties. Nevertheless, there is still debate regarding the use of nanomaterials for medical applications. Therefore, in this review, the antimicrobial activities of various nanomaterials with details of their acting mechanisms were compiled. The relative toxic and biocompatible behavior of nanomaterials emphasized in this study provides information pertaining to their practical applicability in medical fields.

  15. Nanomaterials for In Vivo Imaging.

    Science.gov (United States)

    Smith, Bryan Ronain; Gambhir, Sanjiv Sam

    2017-02-08

    In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.

  16. Fast identification of the conduction-type of nanomaterials by field emission technique.

    Science.gov (United States)

    Yang, Xun; Gan, Haibo; Tian, Yan; Peng, Luxi; Xu, Ningsheng; Chen, Jun; Chen, Huanjun; Deng, Shaozhi; Liang, Shi-Dong; Liu, Fei

    2017-10-12

    There are more or less dopants or defects existing in nanomaterials, so they usually have different conduct-types even for the same substrate. Therefore, fast identification of the conduction-type of nanomaterials is very essential for their practical application in functional nanodevices. Here we use the field emission (FE) technique to research nanomaterials and establish a generalized Schottky-Nordheim (SN) model, in which an important parameter λ (the image potential factor) is first introduced to describe the effective image potential. By regarding λ as the criterion, their energy-band structure can be identified: (a) λ = 1: metal; (b) 0.5 p-type semiconductor. Moreover, this method can be utilized to qualitatively evaluate the doping-degree for a given semiconductor. We test numerically and experimentally a group of nanomaterial emitters and all results agree with our theoretical results very well, which suggests that our method based on FE measurements should be an ideal and powerful tool to fast ascertain the conduction-type of nanomaterials.

  17. The comet assay in testing the potential genotoxicity of nanomaterials

    Directory of Open Access Journals (Sweden)

    Amaya Azqueta

    2015-06-01

    Full Text Available In the last two decades the production and use of nanomaterials (NMs has impressively increased. Their small size, given a mass equal to that of the corresponding bulk material, implies an increase in the surface area and consequently in the number of atoms that can be reactive. They possess different physical, chemical and biological properties compared to bulk materials of the same composition, which makes them very interesting and valuable for many different applications in technology, energy, construction, electronics, agriculture, optics, paints, textiles, food, cosmetics, medicine... Toxicological assessment of NMs is crucial; the same properties that make them interesting also make them potentially harmful for health and the environment. However, the term NM covers many different kinds of particle , and so there is no simple, standard approach to assessing their toxicity. NMs can enter the cell, interact with cell components and even penetrate the nucleus and interfere with the genetic material. Among the different branches of toxicology, genotoxicity is a main area of concern since it is closely related with the carcinogenic potential of compounds. The Organisation for Economic Co-operation and Development (OECD has published internationally agreed in vitro and in vivo validated test methods to evaluate different genotoxic endpoints of chemicals, including chromosome and gene mutations, and DNA breaks. However not all the assays are suitable to study the genotoxic potential of NMs as has been shown by the OECD Working Party on Manufactured Nanomaterials (WPMN. Moreover, alterations to DNA bases, which are precursors to mutations and of great importance in elucidating the mechanism of action of NMs, are not covered by the OECD guidelines. The in vivo standard comet assay (which measures DNA breaks and alkali-labile sites was included in the OECD assays battery in September 2014 while the in vitro standard comet assay is currently under

  18. Risk of dust explosions of combustible nanomaterials

    International Nuclear Information System (INIS)

    Dobashi, Ritsu

    2009-01-01

    Nanomaterials have several valuable properties and are widely used for various practical applications. However, safety matters are suspected such as the influence on health and environment, and fire and explosion hazards. To minimize the risk of nanomaterials, appropriate understanding of these hazards is indispensable. Nanoparticles of combustible materials have potential hazard of dust explosion accidents. However, the explosion risk of nanomaterials has not yet been understood adequately because of the lack of data for nanomaterials. In this presentation, the risk of dust explosions of nanomaterials is discussed.

  19. Risk-based classification system of nanomaterials

    International Nuclear Information System (INIS)

    Tervonen, Tommi; Linkov, Igor; Figueira, Jose Rui; Steevens, Jeffery; Chappell, Mark; Merad, Myriam

    2009-01-01

    Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product's life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

  20. Nano-material and method of fabrication

    Science.gov (United States)

    Menchhofer, Paul A; Seals, Roland D; Howe, Jane Y; Wang, Wei

    2015-02-03

    A fluffy nano-material and method of manufacture are described. At 2000.times. magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours.

  1. Nitrogenous zeolite nanomaterial and the possibility of its application in agriculture

    Directory of Open Access Journals (Sweden)

    G. Tsintskaladze

    2017-09-01

    Full Text Available New nanotechnological method is proposed to reduce the negative effects of nitrogenous fertilizers and their losses, which involves introduction of nitrogen-containing substance into the structure of natural zeolite. The obtained nanomaterials can be used as a nitrogen fertilizer, which allows the gradual transfer of nitrates into the soil and minimizing fertilization losses. It also significantly reduces groundwater contamination. Also, volatilization as well as drain losses of nitrogen are significantly reduced. Proposed zeolite nanomaterial represents a strong reserve of nitrogen compounds required for feeding the plants. Obtained nanomaterial structure is studied using chemical, X-ray diffractometric and IR spectroscopic methods. Also, nanotechnological process of enrichment and extraction of natural zeolite with ammonium nitrate is established. For proving the effectiveness of proposed nitrogenous fertilizer tests were conducted on corn crop (108 m2 where the average harvest on the recording area amounted 92.6 kg. In addition to the field test, the production test was also conducted on 1 ha where the increased corn crop reached 1.4 t/ha which is equal to 18.9%.

  2. Nanomaterials for Engineering Stem Cell Responses.

    Science.gov (United States)

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modeling Engineered Nanomaterials (ENMs) Fate and ...

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate the environmental behavior of nanomaterials due to incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. We have updated the Water Quality Analysis Simulation Program (WASP), version S, to incorporate nanomaterials as an explicitly simulated state variable. WASPS now has the capability to simulate nanomaterial fate and transport in surface waters and sediments using heteroaggregation, the kinetic process governing the attachment of nanomaterials to particles and subsequently ENM distribution in the aqueous and sediment phases. Unlike dissolved chemicals which use equilibrium partition coefficients, heteroaggregation consists of a particle collision rate and an attachment efficiency ( lXhet) that generally acts as a one direction process. To demonstrate, we used a derived a het value from sediment attachment studies to parameterize WASP for simulation of multi walled carbon nanotube (MWCNT) transport in Brier Creek, a coastal plain river located in central eastern Georgia, USA and a tr

  4. 75 FR 77636 - Public Information Exchange on EPA Nanomaterial Case Studies

    Science.gov (United States)

    2010-12-13

    ... state of nanotechnology, much remains to be learned about the characteristics and effects of nanomaterials before such assessments can be accomplished. In its 2007 Nanotechnology White Paper (2007, p. 89... [External Review Draft] (U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/057, 2009, http...

  5. Regional Knowledge Production in Nanomaterials

    DEFF Research Database (Denmark)

    Grimpe, Christoph; Patuelli, Roberto

    2011-01-01

    Nanomaterials are seen as a key technology for the twenty-first century, and much is expected of them in terms of innovation and economic growth. They could open the way to many radically new applications, which would form the basis of innovative products. As nanomaterials are still in their infa......Nanomaterials are seen as a key technology for the twenty-first century, and much is expected of them in terms of innovation and economic growth. They could open the way to many radically new applications, which would form the basis of innovative products. As nanomaterials are still...... in their infancy, universities, public research institutes and private businesses seem to play a vital role in the innovation process. Existing literature points to the importance of knowledge spillovers between these actors and suggests that the opportunities for these depend on proximity, with increasing...... on nanomaterial patenting. Based on European Patent Office data at the German district level (NUTS-3), we estimate two negative binomial models in a knowledge production function framework and include a spatial filtering approach to adjust for spatial autocorrelation. Our results indicate...

  6. One-dimensional nanomaterials for energy storage

    Science.gov (United States)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.

  7. Development of risk-based nanomaterial groups for occupational exposure control

    International Nuclear Information System (INIS)

    Kuempel, E. D.; Castranova, V.; Geraci, C. L.; Schulte, P. A.

    2012-01-01

    Given the almost limitless variety of nanomaterials, it will be virtually impossible to assess the possible occupational health hazard of each nanomaterial individually. The development of science-based hazard and risk categories for nanomaterials is needed for decision-making about exposure control practices in the workplace. A possible strategy would be to select representative (benchmark) materials from various mode of action (MOA) classes, evaluate the hazard and develop risk estimates, and then apply a systematic comparison of new nanomaterials with the benchmark materials in the same MOA class. Poorly soluble particles are used here as an example to illustrate quantitative risk assessment methods for possible benchmark particles and occupational exposure control groups, given mode of action and relative toxicity. Linking such benchmark particles to specific exposure control bands would facilitate the translation of health hazard and quantitative risk information to the development of effective exposure control practices in the workplace. A key challenge is obtaining sufficient dose–response data, based on standard testing, to systematically evaluate the nanomaterials’ physical–chemical factors influencing their biological activity. Categorization processes involve both science-based analyses and default assumptions in the absence of substance-specific information. Utilizing data and information from related materials may facilitate initial determinations of exposure control systems for nanomaterials.

  8. Risk-based classification system of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tervonen, Tommi, E-mail: t.p.tervonen@rug.n [University of Groningen, Faculty of Economics and Business (Netherlands); Linkov, Igor, E-mail: igor.linkov@usace.army.mi [US Army Research and Development Center (United States); Figueira, Jose Rui, E-mail: figueira@ist.utl.p [Technical University of Lisbon, CEG-IST, Centre for Management Studies, Instituto Superior Tecnico (Portugal); Steevens, Jeffery, E-mail: jeffery.a.steevens@usace.army.mil; Chappell, Mark, E-mail: mark.a.chappell@usace.army.mi [US Army Research and Development Center (United States); Merad, Myriam, E-mail: myriam.merad@ineris.f [INERIS BP 2, Societal Management of Risks Unit/Accidental Risks Division (France)

    2009-05-15

    Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product's life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

  9. Assembly of ordered carbon shells on semiconducting nanomaterials

    Science.gov (United States)

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2012-10-02

    In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.

  10. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  11. Introduction to nanoparticles, nanocomposites, nanomaterials an introduction for beginners

    CERN Document Server

    Vollath, Dieter

    2013-01-01

    Meeting the demand for a readily understandable introduction to nanomaterials and nanotechnology, this textbook specifically addresses the needs of students - and engineers - who need to get the gist of nanoscale phenomena in materials without having to delve too deeply into the physical and chemical details. The book begins with an overview of the consequences of small particle size, such as the growing importance of surface effects, and covers successful, field-tested synthesis techniques of nanomaterials. The largest part of the book is devoted to the particular magnetic, optical, electrical and mechanical properties of materials at the nanoscale, leading on to emerging and already commercialized applications, such as nanofluids in magnetic resonance imaging, high-performance nanocomposites and carbon nanotube-based electronics. Based on the author's experience in teaching nanomaterials courses and adapted, in style and level, for students with only limited background knowledge, the textbook includes fur...

  12. Cellulose Nanomaterials in Water Treatment Technologies

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  13. Environmental effects of engineered nanomaterials

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Hartmann, Nanna B.; Brinch, Anna

    This report presents ecotoxicological data and Predicted No-Effect Concentrations (PNECs) for nine selected nanomaterials which are considered to be environmentally relevant due to high usage or how they are used. These data will together with data from other reports/projects be used in an overall...... assessment of the environmental risk of nanomaterials in Denmark. The nine investigated nanomaterials are: Titanium Dioxide, Zinc Oxide, Silver, Carbon Nanotubes, Copper Oxide, Nano Zero Valent Iron, Cerium Dioxide, Quantum Dots and Carbon Black. To support the assessment of the data found in the peer...

  14. Nanomaterials-based electrochemical sensors for nitric oxide

    International Nuclear Information System (INIS)

    Dang, Xueping; Hu, Hui; Wang, Shengfu; Hu, Shengshui

    2015-01-01

    Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO 2 ). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section. (author)

  15. [Nanomaterials in cosmetics--present situation and future].

    Science.gov (United States)

    Masunaga, Takuji

    2014-01-01

    Cosmetics are consumer products intended to contribute to increasing quality of life and designed for long-term daily use. Due to such features of cosmetics, they are required to ensure quality and safety at a high level, as well as to perform well, in response to consumers' demands. Recently, the technology associated with nanomaterials has progressed rapidly and has been applied to various products, including cosmetics. For example, nano-sized titanium dioxide has been formulated in sunscreen products in pursuit of improving its performance. As some researchers and media have expressed concerns about the safety of nanomaterials, a vague feeling of anxiety has been raised in society. In response to this concern, the Japan Cosmetic Industry Association (JCIA) has begun original research related to the safety assurance of nanomaterials formulated in cosmetics, to allow consumers to use cosmetics without such concerns. This paper describes the activities of the JCIA regarding safety research on nanomaterials, including a survey of the actual usage of nanomaterials in cosmetics, analysis of the existence of nanomaterials on the skin, and assessment of skin carcinogenicity of nano-sized titanium dioxide. It also describes the international status of safety assurance and regulation regarding nanomaterials in cosmetics.

  16. Progress in electronics and photonics with nanomaterials

    DEFF Research Database (Denmark)

    Mishra, Yogendra Kumar; Murugan, Arul; Kotakoski, Jani

    2017-01-01

    Nanomaterials have been at the center of attraction for almost five decades as their contributions to different disciplines such as electronics, photonics and medicine are enormous. Various kinds of nanomaterials have been developed and are currently utilized in innumerable applications. Neverthe......Nanomaterials have been at the center of attraction for almost five decades as their contributions to different disciplines such as electronics, photonics and medicine are enormous. Various kinds of nanomaterials have been developed and are currently utilized in innumerable applications...

  17. Organic nanomaterials: synthesis, characterization, and device applications

    CERN Document Server

    Torres, Tomas

    2013-01-01

    Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications.Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts:Part One introduces the fundamentals of nanomaterials and self-assembled nanostructuresPart Two examines carbon nanostructures—from fullerenes to carbon nanotubes to graphene—reporting on properties, theoretical studies, and applicationsPart Three investigates key aspects of some inorganic materials, self-assembled monolayers,...

  18. Application of dental nanomaterials: potential toxicity to the central nervous system.

    Science.gov (United States)

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials are defined as materials with one or more external dimensions with a size of 1-100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems.

  19. LCA of Nanomaterials

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Olsen, Stig Irving

    2018-01-01

    Application of nanomaterials in products has led to an increase in number of nanoproducts introduced to the consumer market. However, along with new and improved products, there is a concern about the potential life cycle environmental impacts. Life cycle assessment is able to include a wide range...... of environmental impacts but, due to data limitations, it is commonly applied with focus on the cradle-to-gate part of the nanoproducts life cycle, neglecting use and disposal of the products. These studies conclude that nanomaterials are more energy demanding and have an inferior environmental profile than...

  20. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions.

    Science.gov (United States)

    Xu, Z-q; Broza, Y Y; Ionsecu, R; Tisch, U; Ding, L; Liu, H; Song, Q; Pan, Y-y; Xiong, F-x; Gu, K-s; Sun, G-p; Chen, Z-d; Leja, M; Haick, H

    2013-03-05

    Upper digestive endoscopy with biopsy and histopathological evaluation of the biopsy material is the standard method for diagnosing gastric cancer (GC). However, this procedure may not be widely available for screening in the developing world, whereas in developed countries endoscopy is frequently used without major clinical gain. There is a high demand for a simple and non-invasive test for selecting the individuals at increased risk that should undergo the endoscopic examination. Here, we studied the feasibility of a nanomaterial-based breath test for identifying GC among patients with gastric complaints. Alveolar exhaled breath samples from 130 patients with gastric complaints (37 GC/32 ulcers / 61 less severe conditions) that underwent endoscopy/biopsy were analyzed using nanomaterial-based sensors. Predictive models were built employing discriminant factor analysis (DFA) pattern recognition, and their stability against possible confounding factors (alcohol/tobacco consumption; Helicobacter pylori) was tested. Classification success was determined (i) using leave-one-out cross-validation and (ii) by randomly blinding 25% of the samples as a validation set. Complementary chemical analysis of the breath samples was performed using gas chromatography coupled with mass spectrometry. Three DFA models were developed that achieved excellent discrimination between the subpopulations: (i) GC vs benign gastric conditions, among all the patients (89% sensitivity; 90% specificity); (ii) early stage GC (I and II) vs late stage (III and IV), among GC patients (89% sensitivity; 94% specificity); and (iii) ulcer vs less severe, among benign conditions (84% sensitivity; 87% specificity). The models were insensitive against the tested confounding factors. Chemical analysis found that five volatile organic compounds (2-propenenitrile, 2-butoxy-ethanol, furfural, 6-methyl-5-hepten-2-one and isoprene) were significantly elevated in patients with GC and/or peptic ulcer, as compared

  1. Carbon nanomaterials in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pu Chun Ke [Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Qiao Rui [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 (United States)

    2007-09-19

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  2. Environmental Risk Assessment of Nanomaterials

    Science.gov (United States)

    Bayramov, A. A.

    In this paper, various aspects of modern nanotechnologies and, as a result, risks of nanomaterials impact on an environment are considered. This very brief review of the First International Conference on Material and Information Sciences in High Technologies (2007, Baku, Azerbaijan) is given. The conference presented many reports that were devoted to nanotechnology in biology and business for the developing World, formation of charged nanoparticles for creation of functional nanostructures, nanoprocessing of carbon nanotubes, magnetic and optical properties of manganese-phosphorus nanowires, ultra-nanocrystalline diamond films, and nanophotonics communications in Azerbaijan. The mathematical methods of simulation of the group, individual and social risks are considered for the purpose of nanomaterials risk reduction and remediation. Lastly, we have conducted studies at a plant of polymeric materials (and nanomaterials), located near Baku. Assessments have been conducted on the individual risk of person affection and constructed the map of equal isolines and zones of individual risk for a plant of polymeric materials (and nanomaterials).

  3. Carbon nanomaterials in biological systems

    International Nuclear Information System (INIS)

    Pu Chun Ke; Qiao Rui

    2007-01-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  4. Multi-metal oxide ceramic nanomaterial

    Science.gov (United States)

    O'Brien, Stephen; Liu, Shuangyi; Huang, Limin

    2016-06-07

    A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.

  5. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  6. Nanomaterials: Opportunities and Challenges for Aerospace

    National Research Council Canada - National Science Library

    Obieta, Isabel; Marcos, J

    2005-01-01

    Nanomaterials are regarded world-wide as key materials of the 21st Century. Also, in aerospace a high potential for nanomaterials applications is postulated and technological breakthroughs are expected in this area...

  7. Nanomaterial Registry

    Data.gov (United States)

    U.S. Department of Health & Human Services — By leveraging and developing a set of Minimal Information About Nanomaterials (MIAN), ontology and standards through a community effort, it has developed a data...

  8. Hybrid nanomaterial and its applications: IR sensing and energy harvesting

    Science.gov (United States)

    Tseng, Yi-Hsuan

    In this dissertation, a hybrid nanomaterial, single-wall carbon nanotubes-copper sulfide nanoparticles (SWNTs-CuS NPs), was synthesized and its properties were analyzed. Due to its unique optical and thermal properties, the hybrid nanomaterial exhibited great potential for infrared (IR) sensing and energy harvesting. The hybrid nanomaterial was synthesized with the non-covalent bond technique to functionalize the surface of the SWNTs and bind the CuS nanoparticles on the surface of the SWNTs. For testing and analyzing the hybrid nanomaterial, SWNTs-CuS nanoparticles were formed as a thin film structure using the vacuum filtration method. Two conductive wires were bound on the ends of the thin film to build a thin film device for measurements and analyses. Measurements found that the hybrid nanomaterial had a significantly increased light absorption (up to 80%) compared to the pure SWNTs. Moreover, the hybrid nanomaterial thin film devices exhibited a clear optical and thermal switching effect, which could be further enhanced up to ten times with asymmetric illumination of light and thermal radiation on the thin film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials was demonstrated, indicating a new route for achieving thermoelectricity. In addition, CuS nanoparticles have great optical absorption especially in the near-infrared region. Therefore, the hybrid nanomaterial thin films also have the potential for IR sensing applications. The first application to be covered in this dissertation is the IR sensing application. IR thin film sensors based on the SWNTs-CuS nanoparticles hybrid nanomaterials were fabricated. The IR response in the photocurrent of the hybrid thin film sensor was significantly enhanced, increasing the photocurrent by 300% when the IR light illuminates the thin film device asymmetrically. The detection limit could be as low as 48mW mm-2. The dramatically enhanced

  9. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Pedro M.; Fadeel, Bengt, E-mail: Bengt.Fadeel@ki.se

    2016-05-15

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  10. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    International Nuclear Information System (INIS)

    Costa, Pedro M.; Fadeel, Bengt

    2016-01-01

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  11. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.

    Science.gov (United States)

    Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping

    2018-01-02

    Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.

  12. Engineered Nanomaterials Elicit Cellular Stress Responses

    Science.gov (United States)

    Engineered nanomaterials are being developed continuously and incorporated into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on toxicity endpoints without further investigating potential mechanisms or pathway...

  13. Environmental assessment of nanomaterial use in Denmark

    DEFF Research Database (Denmark)

    Kjølholt, Jesper; Gottschalk, Fadri; Brinch, Anna

    This is the concluding report of the project "Nanomaterials – occurrence and effects in the Danish environment" (abbreviated NanoDEN), which part the Danish Government's initiative "Better Control of Nanomaterials" (“Bedre styr på nanomaterialer”) which is administered by the Danish Environmental...... Protection Agency. The projects in NanoDEN have aimed to investigate and generate new environmentally relevant knowledge on of nanomaterials on the Danish market and to assess the possible associated risks to the environment. The results from the sub-projects are summarized in the current report...... and it is assessed whether and how nanomaterials may pose a risk for the environment in Denmark. The assessment is based on investigations of nine selected nanomaterials, which are expected to be environmentally relevant based on knowledge of consumption quantities or how they are used. These data contribute...

  14. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes

    Science.gov (United States)

    YanEqual Contribution, Liang; Zhao, Feng; Li, Shoujian; Hu, Zhongbo; Zhao, Yuliang

    2011-02-01

    The toxicity grade for a bulk material can be approximately determined by three factors (chemical composition, dose, and exposure route). However, for a nanomaterial it depends on more than ten factors. Interestingly, some nano-factors (like huge surface adsorbability, small size, etc.) that endow nanomaterials with new biomedical functions are also potential causes leading to toxicity or damage to the living organism. Is it possible to create safe nanomaterials if such a number of complicated factors need to be regulated? We herein try to find answers to this important question. We first discuss chemical processes that are applicable for nanosurface modifications, in order to improve biocompatibility, regulate ADME, and reduce the toxicity of carbon nanomaterials (carbon nanotubes, fullerenes, metallofullerenes, and graphenes). Then the biological/toxicological effects of surface-modified and unmodified carbon nanomaterials are comparatively discussed from two aspects: the lowered toxic responses or the enhanced biomedical functions. We summarize the eight biggest challenges in creating low-toxicity and safer nanomaterials and some significant topics of future research needs: to find out safer nanofactors; to establish controllable surface modifications and simpler chemistries for low-toxic nanomaterials; to explore the nanotoxicity mechanisms; to justify the validity of current toxicological theories in nanotoxicology; to create standardized nanomaterials for toxicity tests; to build theoretical models for cellular and molecular interactions of nanoparticles; and to establish systematical knowledge frameworks for nanotoxicology.

  15. Green processes for nanotechnology from inorganic to bioinspired nanomaterials

    CERN Document Server

    Basiuk, Elena

    2015-01-01

    This book provides the state-of-the-art survey of green techniques in preparation of different classes of nanomaterials, with an emphasis on the use of renewable sources. Key topics covered include fabrication of nanomaterials using green techniques as well as their properties and applications, the use of renewable sources to obtain nanomaterials of different classes, from simple metal and metal oxide nanoparticles to complex bioinspired nanomaterials, economic contributions of nanotechnology to green and sustainable growth, and more. This is an ideal book for students, lecturers, researchers and engineers dealing with versatile (mainly chemical, biological, and medical) aspects of nanotechnology, including fabrication of nanomaterials using green techniques and their properties and applications. This book also: Maximizes reader insights into the design and fabrication of bioinspired nanomaterials and the design of complex bio-nanohybrids Covers many different applications for nanomaterials, bioinspired nanom...

  16. Nanomaterials as stationary phases and supports in liquid chromatography.

    Science.gov (United States)

    Beeram, Sandya R; Rodriguez, Elliott; Doddavenkatanna, Suresh; Li, Zhao; Pekarek, Allegra; Peev, Darin; Goerl, Kathryn; Trovato, Gianfranco; Hofmann, Tino; Hage, David S

    2017-10-01

    The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent immobilization, adsorption, entrapment, and the synthesis or direct development of nanomaterials as part of a chromatographic support. Nanomaterials have been used in many types of LC. These applications have included the reversed-phase, normal-phase, ion-exchange, and affinity modes of LC, as well as related methods such as chiral separations, ion-pair chromatography and hydrophilic interaction liquid chromatography. Both small and large analytes (e.g., dyes, drugs, amino acids, peptides and proteins) have been used to evaluate possible applications for these nanomaterial-based methods. The use of nanomaterials in columns, capillaries and planar chromatography has been considered as part of these efforts. Potential advantages of nanomaterials in these applications have included their good chemical and physical stabilities, the variety of interactions many nanomaterials can have with analytes, and their unique retention properties in some separation formats. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Techniques for Investigating Molecular Toxicology of Nanomaterials.

    Science.gov (United States)

    Wang, Yanli; Li, Chenchen; Yao, Chenjie; Ding, Lin; Lei, Zhendong; Wu, Minghong

    2016-06-01

    Nanotechnology has been a rapidly developing field in the past few decades, resulting in the more and more exposure of nanomaterials to human. The increased applications of nanomaterials for industrial, commercial and life purposes, such as fillers, catalysts, semiconductors, paints, cosmetic additives and drug carriers, have caused both obvious and potential impacts on human health and environment. Nanotoxicology is used to study the safety of nanomaterials and has grown at the historic moment. Molecular toxicology is a new subdiscipline to study the interactions and impacts of materials at the molecular level. To better understand the relationship between the molecular toxicology and nanomaterials, this review summarizes the typical techniques and methods in molecular toxicology which are applied when investigating the toxicology of nanomaterials and include six categories: namely; genetic mutation detection, gene expression analysis, DNA damage detection, chromosomal aberration analysis, proteomics, and metabolomics. Each category involves several experimental techniques and methods.

  18. 2D nanomaterials assembled from sequence-defined molecules

    International Nuclear Information System (INIS)

    Mu, Peng; State University of New York; Zhou, Guangwen; Chen, Chun-Long

    2017-01-01

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges and opportunities in this new field.

  19. Aptamer-assembled nanomaterials for fluorescent sensing and imaging

    Science.gov (United States)

    Lu, Danqing; He, Lei; Zhang, Ge; Lv, Aiping; Wang, Ruowen; Zhang, Xiaobing; Tan, Weihong

    2017-01-01

    Aptamers, which are selected in vitro by a technology known as the systematic evolution of ligands by exponential enrichment (SELEX), represent a crucial recognition element in molecular sensing. With advantages such as good biocompatibility, facile functionalization, and special optical and physical properties, various nanomaterials can protect aptamers from enzymatic degradation and nonspecific binding in living systems and thus provide a preeminent platform for biochemical applications. Coupling aptamers with various nanomaterials offers many opportunities for developing highly sensitive and selective sensing systems. Here, we focus on the recent applications of aptamer-assembled nanomaterials in fluorescent sensing and imaging. Different types of nanomaterials are examined along with their advantages and disadvantages. Finally, we look toward the future of aptamer-assembled nanomaterials.

  20. The applications of nanomaterials in nuclear medicine

    International Nuclear Information System (INIS)

    Liu Jinjian; Liu Jianfeng

    2010-01-01

    Over the last decade, nanotechnology and nanomaterials have gained rapid development in medical application, especially in targeted drug delivery and gene transfer vector domain, and nano-materials are also beginning to applied in nuclear medicine. This paper is to make a view of the application research of several types of nanomaterials in nuclear medicine, and discuss some problems and the main direction of future development. (authors)

  1. Nanomaterial-Enabled Wearable Sensors for Healthcare.

    Science.gov (United States)

    Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong

    2018-01-01

    Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Techniques for physicochemical characterization of nanomaterials

    Science.gov (United States)

    Lin, Ping-Chang; Lin, Stephen; Wang, Paul C.; Sridhar, Rajagopalan

    2014-01-01

    Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics. PMID:24252561

  3. Corrosion protection and control using nanomaterials

    CERN Document Server

    Cook, R

    2012-01-01

    This book covers the use of nanomaterials to prevent corrosion. The first section deals with the fundamentals of corrosion prevention using nanomaterials. Part two includes a series of case studies and applications of nanomaterials for corrosion control.$bCorrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control. The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition ...

  4. Nanomaterials for membrane fouling control: accomplishments and challenges.

    Science.gov (United States)

    Yang, Qian; Mi, Baoxia

    2013-11-01

    We report a review of recent research efforts on incorporating nanomaterials-including metal/metal oxide nanoparticles, carbon-based nanomaterials, and polymeric nanomaterials-into/onto membranes to improve membrane antifouling properties in biomedical or potentially medical-related applications. In general, nanomaterials can be incorporated into/onto a membrane by blending them into membrane fabricating materials or by attaching them to membrane surfaces via physical or chemical approaches. Overall, the fascinating, multifaceted properties (eg, high hydrophilicity, superparamagnetic properties, antibacterial properties, amenable functionality, strong hydration capability) of nanomaterials provide numerous novel strategies and unprecedented opportunities to fully mitigate membrane fouling. However, there are still challenges in achieving a broader adoption of nanomaterials in the membrane processes used for biomedical applications. Most of these challenges arise from the concerns over their long-term antifouling performance, hemocompatibility, and toxicity toward humans. Therefore, rigorous investigation is still needed before the adoption of some of these nanomaterials in biomedical applications, especially for those nanomaterials proposed to be used in the human body or in contact with living tissue/body fluids for a long period of time. Nevertheless, it is reasonable to predict that the service lifetime of membrane-based biomedical devices and implants will be prolonged significantly with the adoption of appropriate fouling control strategies. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. Health hazards associated with nanomaterials.

    Science.gov (United States)

    Pattan, Gurulingappa; Kaul, Gautam

    2014-07-01

    Nanotechnology is a major scientific and economic growth area and presents a variety of hazards for human health and environment. It is widely believed that engineered nanomaterials will be increasingly used in biomedical applications (as therapeutics and as diagnostic tools). However, before these novel materials can be safely applied in a clinical setting, their toxicity needs to be carefully assessed. Nanoscale materials often behave different from the materials with a larger structure, even when the basic material is same. Many mammals get exposed to these nanomaterials, which can reach almost every cell of the mammalian body, causing the cells to respond against nanoparticles (NPs) resulting in cytotoxicity and/or genotoxicity. The important key to understand the toxicity of nanomaterials is that their minute size, smaller than cellular organelles, allows them to penetrate the basic biological structures, disrupting their normal function. There is a wealth of evidence for the noxious and harmful effects of engineered NPs as well as other nanomaterials. The rapid commercialization of nanotechnology field requires thoughtful, attentive environmental, animal and human health safety research and should be an open discussion for broader societal impacts and urgent toxicological oversight action. While 'nanotoxicity' is a relatively new concept to science, this comprehensive review focuses on the nanomaterials exposure through the skin, respiratory tract, and gastrointestinal tract and their mechanism of toxicity and effect on various organs of the body. © The Author(s) 2012.

  6. Experimental investigation of interactions between proteins and carbon nanomaterials

    Science.gov (United States)

    Sengupta, Bishwambhar

    The global market for nanomaterials based products is forecasted to reach $1 trillion per annum per annum for 2015. Engineered nanomaterials (ENMs) exhibit unique physicochemical properties with potential to impact diverse aspects of society through applications in electronics, renewable energy, and medicine. While the research and proposed applications of ENMs continue to grow rapidly, the health and safety of ENMs still remains a major concern to the public as well as to policy makers and funding agencies. It is now widely accepted that focused efforts are needed for identifying the list of physicochemical descriptors of ENM before they can be evaluated for nanotoxicity and biological response. This task is surprisingly challenging, as many physicochemical properties of ENMs are closely inter related and cannot be varied independently (e.g. increasing the size of an ENM can introduce additional defects). For example, varying toxic response may ensue due to different methods of nanomaterial preparation, dissimilar impurities and defects. Furthermore, the inadvertent coating of proteins on ENM surface in any biological milieu results in the formation of the so-called "protein/bio-corona" which can in turn alter the fate of ENMs and their biological response. Carbon nanomaterials (CNMs) such as carbon nanotubes, graphene, and graphene oxide are widely used ENMs. It is now known that defects in CNMs play an important role not only in materials properties but also in the determination of how materials interact at the nano-bio interface. In this regard, this work investigates the influence of defect-induced hydrophilicity on the bio-corona formation using micro Raman, photoluminescence, infrared spectroscopy, electrochemistry, and molecular dynamics simulations. Our results show that the interaction of proteins (albumin and fibrinogen) with CNMs is strongly influenced by charge transfer between them, inducing protein unfolding which enhances conformational entropy and

  7. Nanomaterials application in electrochemical detection of heavy metals

    International Nuclear Information System (INIS)

    Aragay, Gemma; Merkoçi, Arben

    2012-01-01

    Highlights: ► We review the recent trends in the application of nanomaterials for electrochemical detection of heavy metals. ► Different types of nanomaterials including metal nanoparticles, different carbon nanomaterials or nanochannels have been applied on the electrochemical analysis of heavy metals in various sensing formats/configurations. ► The great properties of nanomaterials allow the new devices to show advantages in terms of sensing performance (i.e. increase the sensitivity, decrease the detection limits and improve the stability). ► Between the various electrochemical techniques, voltammetric and potentiometric based ones are particularly taking interesting advantages by the incorporation of new nanomaterials due to the improved electrocatalytic properties beside the increase of the sensor's transducing area. - Abstract: Recent trends in the application of nanomaterials for electrochemical detection of heavy metals are shown. Various nanomaterials such as nanoparticles, nanowires, nanotubes, nanochannels, graphene, etc. have been explored either as modifiers of electrodes or as new electrode materials with interest to be applied in electrochemical stripping analysis, ion-selective detection, field-effect transistors or other indirect heavy metals (bio)detection alternatives. The developed devices have shown increased sensitivity and decreased detection limits between other improvements of analytical performance data. The phenomena behind nanomaterials responses are also discussed and some typical responses data of the developed systems either in standard solutions or in real samples are given. The developed nanomaterials based electrochemical systems are giving new inputs to the existing devices or leading to the development of novel heavy metal detection tools with interest for applications in field such as diagnostics, environmental and safety and security controls or other industries.

  8. The potential of protein-nanomaterial interaction for advanced drug delivery

    DEFF Research Database (Denmark)

    Peng, Qiang; Mu, Huiling

    2016-01-01

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself...... of such interaction for advanced drug delivery are presented........ Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized...

  9. Porous substrates filled with nanomaterials

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2018-04-03

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  10. Engineered nanomaterials for solar energy conversion.

    Science.gov (United States)

    Mlinar, Vladan

    2013-02-01

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.

  11. Alternative Testing Strategies for Nanomaterials: State of the Science and Considerations for Risk Analysis.

    Science.gov (United States)

    Shatkin, J A; Ong, K J

    2016-08-01

    The rapid growth of the nanotechnology industry has warranted equal progress in the nanotoxicology and risk assessment fields. In vivo models have traditionally been used to determine human and environmental risk for chemicals; however, the use of these tests has limitations, and there are global appeals to develop reliable alternatives to animal testing. Many have investigated the use of alternative (nonanimal) testing methods and strategies have quickly developed and resulted in the generation of large toxicological data sets for numerous nanomaterials (NMs). Due to the novel physicochemical properties of NMs that are related to surface characteristics, the approach toward toxicity test development has distinct considerations from traditional chemicals, bringing new requirements for adapting these approaches for NMs. The methodical development of strategies that combine multiple alternative tests can be useful for predictive NM risk assessment and help screening-level decision making. This article provides an overview of the main developments in alternative methods and strategies for reducing uncertainty in NM risk assessment, including advantages and disadvantages of in vitro, ex vivo, and in silico methods, and examples of existing comprehensive strategies. In addition, knowledge gaps are identified toward improvements for experimental and strategy design, specifically highlighting the need to represent realistic exposure scenarios and to consider NM-specific concerns such as characterization, assay interferences, and standardization. Overall, this article aims to improve the reliability and utility of alternative testing methods and strategies for risk assessment of manufactured NMs. © 2016 Society for Risk Analysis.

  12. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734

  13. Electron accelerators and nanomaterials - a symbiosis

    International Nuclear Information System (INIS)

    Dixit, Kavita P.; Mittal, K.C.

    2011-01-01

    Electron Accelerators and Nanomaterials share a symbiotic relationship. While electron accelerators are fast emerging as popular tools in the field of nanomaterials, use of nanomaterials so developed for sub-systems of accelerators is being explored. Material damage studies, surface modification and lithography in the nanometre scale are some of the areas in which electron accelerators are being extensively used. New methods to characterize the structure of nanoparticles use intense X-ray sources, generated from electron accelerators. Enhancement of field emission properties of carbon nanotubes using electron accelerators is another important area that is being investigated. Research on nanomaterials for use in the field of accelerators is still in the laboratory stage. Yet, new trends and emerging technologies can effectively produce materials which can be of significant use in accelerators. Properties such as enhanced field emission can be put to use in cathodes of electron guns. Superconducting properties some materials may also be useful in accelerators. This paper focusses on the electron accelerators used for synthesis, characterization and property-enhancement of nanomaterials. The details of electron accelerators used for these applications will be highlighted. Some light will be thrown on properties of nano materials which can have potential use in accelerators. (author)

  14. Carbon Nanomaterials for Breast Cancer Treatment

    Directory of Open Access Journals (Sweden)

    M. L. Casais-Molina

    2018-01-01

    Full Text Available Currently, breast cancer is considered as a health problem worldwide. Furthermore, current treatments neither are capable of stopping its propagation and/or recurrence nor are specific for cancer cells. Therefore, side effects on healthy tissues and cells are common. An increase in the efficiency of treatments, along with a reduction in their toxicity, is desirable to improve the life quality of patients affected by breast cancer. Nanotechnology offers new alternatives for the design and synthesis of nanomaterials that can be used in the identification, diagnosis, and treatment of cancer and has now become a very promising tool for its use against this disease. Among the wide variety of nanomaterials, the scientific community is particularly interested in carbon nanomaterials (fullerenes, nanotubes, and graphene due to their physical properties, versatile chemical functionalization, and biocompatibility. Recent scientific evidence shows the potential uses of carbon nanomaterials as therapeutic agents, systems for selective and controlled drug release, and contrast agents for diagnosing and locating tumors. This generates new possibilities for the development of innovative systems to treat breast cancer and can be used to detect this disease at much earlier stages. Thus, applications of carbon nanomaterials in breast cancer treatment are discussed in this article.

  15. Size effects of latex nanomaterials on lung inflammation in mice

    International Nuclear Information System (INIS)

    Inoue, Ken-ichiro; Takano, Hirohisa; Yanagisawa, Rie; Koike, Eiko; Shimada, Akinori

    2009-01-01

    Effects of nano-sized materials (nanomaterials) on sensitive population have not been well elucidated. This study examined the effects of pulmonary exposure to (latex) nanomaterials on lung inflammation related to lipopolysaccharide (LPS) or allergen in mice, especially in terms of their size-dependency. In protocol 1, ICR male mice were divided into 8 experimental groups that intratracheally received a single exposure to vehicle, latex nanomaterials (250 μg/animal) with three sizes (25, 50, and 100 nm), LPS (75 μg/animal), or LPS plus latex nanomaterials. In protocol 2, ICR male mice were divided into 8 experimental groups that intratracheally received repeated exposure to vehicle, latex nanomaterials (100 μg/animal), allergen (ovalbumin: OVA; 1 μg/animal), or allergen plus latex nanomaterials. In protocol 1, latex nanomaterials with all sizes exacerbated lung inflammation elicited by LPS, showing an overall trend of amplified lung expressions of proinflammatory cytokines. Furthermore, LPS plus nanomaterials, especially with size less than 50 nm, significantly elevated circulatory levels of fibrinogen, macrophage chemoattractant protein-1, and keratinocyte-derived chemoattractant, and von Willebrand factor as compared with LPS alone. The enhancement tended overall to be greater with the smaller nanomaterials than with the larger ones. In protocol 2, latex nanomaterials with all sizes did not significantly enhance the pathophysiology of allergic asthma, characterized by eosinophilic lung inflammation and Igs production, although latex nanomaterials with less than 50 nm significantly induced/enhanced neutrophilic lung inflammation. These results suggest that latex nanomaterials differentially affect two types of (innate and adaptive immunity-dominant) lung inflammation

  16. Recent applications of nanomaterials in capillary electrophoresis.

    Science.gov (United States)

    González-Curbelo, Miguel Ángel; Varela-Martínez, Diana Angélica; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier

    2017-10-01

    Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal-organic frameworks, magnetic and non-magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010-2017). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ali Mostofizadeh

    2011-01-01

    Full Text Available In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. Carbon nanomaterials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional carbon nanomaterials (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons, one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes, and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nanomaterials.

  18. Environmental fate and behaviour of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Skjolding, Lars Michael; Hansen, Steffen Foss

    In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified.......In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified....

  19. Electrochemical properties of polyaniline-modified sodium vanadate nanomaterials

    International Nuclear Information System (INIS)

    Reddy Channu, V.S.; Holze, Rudolf; Yeo, In-Hyeong; Mho, Sun-il; Kalluru, Rajamohan R.

    2011-01-01

    Sodium vanadate nanomaterials were synthesized at different pH-values of a sodium hydroxide solution of vanadium pentoxide. Polyaniline-modified sodium vanadate nanomaterials were prepared at room temperature and at 3 C by a chemical polymerization method. The crystal structure and phase purity of the samples have been examined by powder XRD. The samples were identified as HNaV 6 O 16 .4H 2 O and Na 1.1 V 3 O 7.9 . The electrochemical measurements show that polyaniline-modified sodium vanadate hydrated nanomaterials provide higher current density than the sodium vanadate nanomaterials. (orig.)

  20. Study of cyanide removal from contaminated water using zinc peroxide nanomaterial.

    Science.gov (United States)

    Uppal, Himani; Tripathy, S Swarupa; Chawla, Sneha; Sharma, Bharti; Dalai, M K; Singh, S P; Singh, Sukhvir; Singh, Nahar

    2017-05-01

    The present study highlights the potential application of zinc peroxide (ZnO 2 ) nanomaterial as an efficient material for the decontamination of cyanide from contaminated water. A process patent for ZnO 2 synthesis has been granted in United States of America (US Patent number 8,715,612; May 2014), South Africa, Bangladesh, and India. The ZnO 2 nanomaterial was capped with polyvinylpyrrolidone (PVP) to control the particle size. The PVP capped ZnO 2 nanomaterial (PVP-ZnO 2 ) before and after adsorption of cyanide was characterized by scanning electron microscope, transmission electron microscope, X-ray diffractometer, Fourier transform infrared spectroscopy and time of flight-secondary ion mass spectrometry. The remaining concentration of cyanide after adsorption by PVP-ZnO 2 was determined using ion chromatograph. The adsorption of cyanide over PVP-ZnO 2 was also studied as a function of pH, adsorbent dose, time and concentration of cyanide. The maximum removal of cyanide was observed in pH range 5.8-7.8 within 15min. The adsorption data was fitted to Langmuir and Fruendlich isotherm and it has been observed that data follows both the isotherms and also follows second order kinetics. Copyright © 2016. Published by Elsevier B.V.

  1. Electrode materials for microbial fuel cells: nanomaterial approach

    KAUST Repository

    Mustakeem, Mustakeem

    2015-11-05

    Microbial fuel cell (MFC) technology has the potential to become a major renewable energy resource by degrading organic pollutants in wastewater. The performance of MFC directly depends on the kinetics of the electrode reactions within the fuel cell, with the performance of the electrodes heavily influenced by the materials they are made from. A wide range of materials have been tested to improve the performance of MFCs. In the past decade, carbon-based nanomaterials have emerged as promising materials for both anode and cathode construction. Composite materials have also shown to have the potential to become materials of choice for electrode manufacture. Various transition metal oxides have been investigated as alternatives to conventional expensive metals like platinum for oxygen reduction reaction. In this review, different carbon-based nanomaterials and composite materials are discussed for their potential use as MFC electrodes.

  2. Electrode materials for microbial fuel cells: nanomaterial approach

    KAUST Repository

    Mustakeem, Mustakeem

    2015-01-01

    Microbial fuel cell (MFC) technology has the potential to become a major renewable energy resource by degrading organic pollutants in wastewater. The performance of MFC directly depends on the kinetics of the electrode reactions within the fuel cell, with the performance of the electrodes heavily influenced by the materials they are made from. A wide range of materials have been tested to improve the performance of MFCs. In the past decade, carbon-based nanomaterials have emerged as promising materials for both anode and cathode construction. Composite materials have also shown to have the potential to become materials of choice for electrode manufacture. Various transition metal oxides have been investigated as alternatives to conventional expensive metals like platinum for oxygen reduction reaction. In this review, different carbon-based nanomaterials and composite materials are discussed for their potential use as MFC electrodes.

  3. The potential of protein-nanomaterial interaction for advanced drug delivery.

    Science.gov (United States)

    Peng, Qiang; Mu, Huiling

    2016-03-10

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself, would be the real substance the organs and cells firstly encounter. Consequently, the behavior of nanomaterials in vivo is uncontrollable and some undesired effects may occur, like rapid clearance from blood stream; risk of capillary blockage; loss of targeting capacity; and potential toxicity. Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized by selected protein corona using endogenous proteins would have greater promise for clinical use. In this review, we aim to provide a comprehensive understanding of protein-nanomaterial interaction. Importantly, a discussion about how to use such interaction is launched and some possible applications of such interaction for advanced drug delivery are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Exploring the possibilities and limitations of a nanomaterials genome.

    Science.gov (United States)

    Qian, Chenxi; Siler, Todd; Ozin, Geoffrey A

    2015-01-07

    What are we going to do with the cornucopia of nanomaterials appearing in the open and patent literature, every day? Imagine the benefits of an intelligent and convenient means of categorizing, organizing, sifting, sorting, connecting, and utilizing this information in scientifically and technologically innovative ways by building a Nanomaterials Genome founded upon an all-purpose Periodic Table of Nanomaterials. In this Concept article, inspired by work on the Human Genome project, which began in 1989 together with motivation from the recent emergence of the Materials Genome project initiated in 2011 and the Nanoinformatics Roadmap 2020 instigated in 2010, we envision the development of a Nanomaterials Genome (NMG) database with the most advanced data-mining tools that leverage inference engines to help connect and interpret patterns of nanomaterials information. It will be equipped with state-of-the-art visualization techniques that rapidly organize and picture, categorize and interrelate the inherited behavior of complex nanomatter from the information programmed in its constituent nanomaterials building blocks. A Nanomaterials Genome Initiative (NMGI) of the type imagined herein has the potential to serve the global nanoscience community with an opportunity to speed up the development continuum of nanomaterials through the innovation process steps of discovery, structure determination and property optimization, functionality elucidation, system design and integration, certification and manufacturing to deployment in technologies that apply these versatile nanomaterials in environmentally responsible ways. The possibilities and limitations of this concept are critically evaluated in this article. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Energy Device Applications of Synthesized 1D Polymer Nanomaterials.

    Science.gov (United States)

    Huang, Long-Biao; Xu, Wei; Hao, Jianhua

    2017-11-01

    1D polymer nanomaterials as emerging materials, such as nanowires, nanotubes, and nanopillars, have attracted extensive attention in academia and industry. The distinctive, various, and tunable structures in the nanoscale of 1D polymer nanomaterials present nanointerfaces, high surface-to-volume ratio, and large surface area, which can improve the performance of energy devices. In this review, representative fabrication techniques of 1D polymer nanomaterials are summarized, including electrospinning, template-assisted, template-free, and inductively coupled plasma methods. The recent advancements of 1D polymer nanomaterials in energy device applications are demonstrated. Lastly, existing challenges and prospects of 1D polymer nanomaterials for energy device applications are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Key physicochemical properties of nanomaterials in view of their toxicity: an exploratory systematic investigation for the example of carbon-based nanomaterial

    International Nuclear Information System (INIS)

    Salieri, Beatrice; Pasteris, Andrea; Netkueakul, Woranan; Hischier, Roland

    2017-01-01

    Currently, a noncomprehensive understanding of the physicochemical properties of carbon-based nanomaterial (CBNs), which may affect toxic effects, is still observable. In this study, an exploratory systematic investigation into the key physicochemical properties of multiwall carbon nanotube (MWCNT), single-wall carbon nanotube (SWCNT), and C_6_0-fullerene on their ecotoxicity has been undertaken. We undertook an extensive survey of the literature pertaining to the ecotoxicity of organism representative of the trophic level of algae, crustaceans, and fish. Based on this, a set of data reporting both the physicochemical properties of carbon-based nanomaterial and the observed toxic effect has been established. The relationship between physicochemical properties and observed toxic effect was investigated based on various statistical approaches. Specifically, analysis of variance by one-way ANOVA was used to assess the effect of categorical properties (use of a dispersant or treatments in the test medium, type of carbon-based nanomaterial, i.e., SWCNT, MWCNT, C_6_0-fullerene, functionalization), while multiple regression analysis was used to assess the effect of quantitative properties (i.e., diameter length of nanotubes, secondary size) on the toxicity values. The here described investigations revealed significant relationships among the physicochemical properties and observed toxic effects. The research was mainly affected by the low availability of data and also by the low variability of the studies collected. Overall, our results demonstrate that the here proposed and applied approach could have a major role in identifying the physicochemical properties of relevance for the toxicity of nanomaterial. However, the future success of the approach would require that the ENMs and the experimental conditions used in the toxicity studies are fully characterized.

  7. Key physicochemical properties of nanomaterials in view of their toxicity: an exploratory systematic investigation for the example of carbon-based nanomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Salieri, Beatrice, E-mail: Beatrice.salieri@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Lab (Switzerland); Pasteris, Andrea [University of Bologna, Department of Biological, Geological, and Environmental Sciences (Italy); Netkueakul, Woranan; Hischier, Roland [Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Lab (Switzerland)

    2017-03-15

    Currently, a noncomprehensive understanding of the physicochemical properties of carbon-based nanomaterial (CBNs), which may affect toxic effects, is still observable. In this study, an exploratory systematic investigation into the key physicochemical properties of multiwall carbon nanotube (MWCNT), single-wall carbon nanotube (SWCNT), and C{sub 60}-fullerene on their ecotoxicity has been undertaken. We undertook an extensive survey of the literature pertaining to the ecotoxicity of organism representative of the trophic level of algae, crustaceans, and fish. Based on this, a set of data reporting both the physicochemical properties of carbon-based nanomaterial and the observed toxic effect has been established. The relationship between physicochemical properties and observed toxic effect was investigated based on various statistical approaches. Specifically, analysis of variance by one-way ANOVA was used to assess the effect of categorical properties (use of a dispersant or treatments in the test medium, type of carbon-based nanomaterial, i.e., SWCNT, MWCNT, C{sub 60}-fullerene, functionalization), while multiple regression analysis was used to assess the effect of quantitative properties (i.e., diameter length of nanotubes, secondary size) on the toxicity values. The here described investigations revealed significant relationships among the physicochemical properties and observed toxic effects. The research was mainly affected by the low availability of data and also by the low variability of the studies collected. Overall, our results demonstrate that the here proposed and applied approach could have a major role in identifying the physicochemical properties of relevance for the toxicity of nanomaterial. However, the future success of the approach would require that the ENMs and the experimental conditions used in the toxicity studies are fully characterized.

  8. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies

    Science.gov (United States)

    Nogueira, Daniele R.; Mitjans, Montserrat; Rolim, Clarice M. B.; Vinardell, M. Pilar

    2014-01-01

    Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures. PMID:28344232

  9. The potential use of silica sand as nanomaterials for mortar

    Science.gov (United States)

    Setiati, N. Retno

    2017-11-01

    The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.

  10. Antibacterial properties and toxicity from metallic nanomaterials

    Directory of Open Access Journals (Sweden)

    Vimbela GV

    2017-05-01

    Full Text Available Gina V Vimbela,1,* Sang M Ngo,2,* Carolyn Fraze,3 Lei Yang,4,5 David A Stout5–7 1Department of Chemical Engineering, 2Department of Electrical Engineering, California State University, Long Beach, CA, 3Brigham Young University Idaho, Rexburg, ID, USA; 4Department of Orthopaedics, Orthopaedic Institute, The First Affiliated Hospital, 5International Research Center for Translational Orthopaedics (IRCTO, Soochow University, Suzhou, Jiangsu, People’s Republic of China; 6Department of Mechanical and Aerospace Engineering, 7Department of Biomedical Engineering, California State University, Long Beach, CA, USA *These authors contributed equally to this work Abstract: The era of antibiotic resistance is a cause of increasing concern as bacteria continue to develop adaptive countermeasures against current antibiotics at an alarming rate. In recent years, studies have reported nanoparticles as a promising alternative to antibacterial reagents because of their exhibited antibacterial activity in several biomedical applications, including drug and gene delivery, tissue engineering, and imaging. Moreover, nanomaterial research has led to reports of a possible relationship between the morphological characteristics of a nanomaterial and the magnitude of its delivered toxicity. However, conventional synthesis of nanoparticles requires harsh chemicals and costly energy consumption. Additionally, the exact relationship between toxicity and morphology of nanomaterials has not been well established. Here, we review the recent advancements in synthesis techniques for silver, gold, copper, titanium, zinc oxide, and magnesium oxide nanomaterials and composites, with a focus on the toxicity exhibited by nanomaterials of multidimensions. This article highlights the benefits of selecting each material or metal-based composite for certain applications while also addressing possible setbacks and the toxic effects of the nanomaterials on the environment. Keywords

  11. Black Titanium Dioxide Nanomaterials in Photocatalysis

    Directory of Open Access Journals (Sweden)

    Xiaodong Yan

    2017-01-01

    Full Text Available Titanium dioxide (TiO2 nanomaterials are widely considered to be state-of-the-art photocatalysts for environmental protection and energy conversion. However, the low photocatalytic efficiency caused by large bandgap and rapid recombination of photo-excited electrons and holes is a challenging issue that needs to be settled for their practical applications. Structure engineering has been demonstrated to be a highly promising approach to engineer the optical and electronic properties of the existing materials or even endow them with unexpected properties. Surface structure engineering has witnessed the breakthrough in increasing the photocatalytic efficiency of TiO2 nanomaterials by creating a defect-rich or amorphous surface layer with black color and extension of optical absorption to the whole visible spectrum, along with markedly enhanced photocatalytic activities. In this review, the recent progress in the development of black TiO2 nanomaterials is reviewed to gain a better understanding of the structure-property relationship with the consideration of preparation methods and to project new insights into the future development of black TiO2 nanomaterials in photocatalytic applications.

  12. Nanomaterials for Defense Applications

    Science.gov (United States)

    Turaga, Uday; Singh, Vinitkumar; Lalagiri, Muralidhar; Kiekens, Paul; Ramkumar, Seshadri S.

    Nanotechnology has found a number of applications in electronics and healthcare. Within the textile field, applications of nanotechnology have been limited to filters, protective liners for chemical and biological clothing and nanocoatings. This chapter presents an overview of the applications of nanomaterials such as nanofibers and nanoparticles that are of use to military and industrial sectors. An effort has been made to categorize nanofibers based on the method of production. This chapter particularly focuses on a few latest developments that have taken place with regard to the application of nanomaterials such as metal oxides in the defense arena.

  13. NANOMATERIALS, NANOTECHNOLOGY: APPLICATIONS, CONSUMER PRODUCTS, AND BENEFITS

    Science.gov (United States)

    Nanotechnology is a platform technology that is finding more and more applications daily. Today over 600 consumer products are available globally that utilize nanomaterials. This chapter explores the use of nanomaterials and nanotechnology in three areas, namely Medicine, Environ...

  14. Nanomaterials in Lubricants: An Industrial Perspective on Current Research

    Directory of Open Access Journals (Sweden)

    Boris Zhmud

    2013-11-01

    Full Text Available This paper presents an overview on the use of various classes of nanomaterials in lubricant formulations. The following classes of nanomaterials are considered: fullerenes, nanodiamonds, ultradispersed boric acid and polytetrafluoroethylene (PTFE. Current advances in using nanomaterials in engine oils, industrial lubricants and greases are discussed. Results of numerous studies combined with formulation experience of the authors strongly suggest that nanomaterials do indeed have potential for enhancing certain lubricant properties, yet there is a long way to go before balanced formulations are developed.

  15. The applicability of chemical alternatives assessment for engineered nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly

    2017-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case......, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials both as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. This article is protected...... for alternatives assessment approaches as they can be considered both emerging “chemicals” of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging and critical elements...

  16. Submerged Glow-Discharge Plasma: An Economical Approach to Convert Construction Scrap Metal into Nanomaterials

    Science.gov (United States)

    Yek, Peter Nai Yuh; Rafiq Mirza Julaihi, Muhammad; Shahril Osman, Mohammad; Tiong, Tung Chuan; Lee, Wak Ha; Leing Lee, Chern

    2018-03-01

    Submerged glow-discharge plasma (SGDP) is relatively new among the various methods available for nanomaterials synthesis (NMs) techniques. This method allows great control over the production cost of nanomaterials synthesis. A lab-scale batch type SDGP technology has been constructed to produce nanomaterials and investigate the inter-relationship between plasma excitation voltages, electrodes submerged areas and electrolyte concentration. Metal oxide nanospheres has been synthesised from different electrolyte concentrations (1M-0.001M) and characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). As the major results showed that the nanospheres are uniformly spherical with diameter size distribution are between 100 nm - 2μm. EDS analysis shown the nano-Iron Oxide have been formed. Scrap metal initially showed around 6.45% and 93.55% of Carbon and Iron composition respectively. After SGDP process to the scrap metal, Carbon content has increased to 34-35% and Iron content has reduced to around 15-40%. EDS results also shown the higher percentage of Iron amount has remained with lower electrolyte concentration and Current is proportionally related to submersion area of cathode.

  17. High pressure structural phase transitions of TiO2 nanomaterials

    International Nuclear Information System (INIS)

    Li Quan-Jun; Liu Bing-Bing

    2016-01-01

    Recently, the high pressure study on the TiO 2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO 2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO 2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO 2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO 2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO 2 -B nanoribbons. Various TiO 2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO 2 nanoribbons, α -PbO 2 -type TiO 2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO 2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO 2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. (topical review)

  18. Concerns related to Safety Management of Engineered Nanomaterials in research environment

    International Nuclear Information System (INIS)

    Groso, A; Meyer, Th

    2013-01-01

    Since the rise of occupational safety and health research on nanomaterials a lot of progress has been made in generating health effects and exposure data. However, when detailed quantitative risk analysis is in question, more research is needed, especially quantitative measures of workers exposure and standards to categorize toxicity/hazardousness data. In the absence of dose-response relationships and quantitative exposure measurements, control banding (CB) has been widely adopted by OHS community as a pragmatic tool in implementing a risk management strategy based on a precautionary approach. Being in charge of health and safety in a Swiss university, where nanomaterials are largely used and produced, we are also faced with the challenge related to nanomaterials' occupational safety. In this work, we discuss the field application of an in-house risk management methodology similar to CB as well as some other methodologies. The challenges and issues related to the process will be discussed. Since exact data on nanomaterials hazardousness are missing for most of the situations, we deduce that the outcome of the analysis for a particular process is essentially the same with a simple methodology that determines only exposure potential and the one taking into account the hazardousness of ENPs. It is evident that when reliable data on hazardousness factors (as surface chemistry, solubility, carcinogenicity, toxicity etc.) will be available, more differentiation will be possible in determining the risk for different materials. On the protective measures side, all CB methodologies are inclined to overprotection side, only that some of them suggest comprehensive protective/preventive measures and others remain with basic advices. The implementation and control of protective measures in research environment will also be discussed.

  19. Concerns related to Safety Management of Engineered Nanomaterials in research environment

    Science.gov (United States)

    Groso, A.; Meyer, Th

    2013-04-01

    Since the rise of occupational safety and health research on nanomaterials a lot of progress has been made in generating health effects and exposure data. However, when detailed quantitative risk analysis is in question, more research is needed, especially quantitative measures of workers exposure and standards to categorize toxicity/hazardousness data. In the absence of dose-response relationships and quantitative exposure measurements, control banding (CB) has been widely adopted by OHS community as a pragmatic tool in implementing a risk management strategy based on a precautionary approach. Being in charge of health and safety in a Swiss university, where nanomaterials are largely used and produced, we are also faced with the challenge related to nanomaterials' occupational safety. In this work, we discuss the field application of an in-house risk management methodology similar to CB as well as some other methodologies. The challenges and issues related to the process will be discussed. Since exact data on nanomaterials hazardousness are missing for most of the situations, we deduce that the outcome of the analysis for a particular process is essentially the same with a simple methodology that determines only exposure potential and the one taking into account the hazardousness of ENPs. It is evident that when reliable data on hazardousness factors (as surface chemistry, solubility, carcinogenicity, toxicity etc.) will be available, more differentiation will be possible in determining the risk for different materials. On the protective measures side, all CB methodologies are inclined to overprotection side, only that some of them suggest comprehensive protective/preventive measures and others remain with basic advices. The implementation and control of protective measures in research environment will also be discussed.

  20. Recent Development of Nano-Materials Used in DNA Biosensors

    Directory of Open Access Journals (Sweden)

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  1. A thick hierarchical rutile TiO2 nanomaterial with multilayered structure

    International Nuclear Information System (INIS)

    Zhu, Shengli; Xie, Guoqiang; Yang, Xianjin; Cui, Zhenduo

    2013-01-01

    Highlights: ► We synthesized a new rutile TiO 2 nanomaterial with a hierarchical nanostructure. ► The nano architecture structure consist of nanorods and nanoflower arrays. ► The rutile TiO 2 nanomaterial is thick in size (several 10 μm). ► The TiO 2 nanomaterials present a multilayer structure. - Abstract: In the present paper, we synthesized a new type of rutile TiO 2 nanomaterial with a hierarchical nanostructure using a novel method, which combined dealloying process with chemical synthesis. The structure characters were examined using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The rutile TiO 2 nanomaterial is thick in size (several 10 μm). The hierarchical structure of the rutile TiO 2 nanomaterial consists of large quantities nanorods and nanoflower arrays. The nanoflowers consist of serveral nanopetals with diameter of 100–200 nm. The cross section of TiO 2 nanomaterials presents a multilayer structure with the layer thickness of about 3–5 μm. The rutile TiO 2 nanomaterial has high specific surface area. The formation mechanism of the rutile TiO 2 nanomaterial was discussed according to the experimental results. The rutile TiO 2 nanomaterial has potential applications in catalysis, photocatalysis and solar cells

  2. Nanomaterials and Autophagy: New Insights in Cancer Treatment

    International Nuclear Information System (INIS)

    Panzarini, Elisa; Inguscio, Valentina; Tenuzzo, Bernardetta Anna; Carata, Elisabetta; Dini, Luciana

    2013-01-01

    Autophagy represents a cell’s response to stress. It is an evolutionarily conserved process with diversified roles. Indeed, it controls intracellular homeostasis by degradation and/or recycling intracellular metabolic material, supplies energy, provides nutrients, eliminates cytotoxic materials and damaged proteins and organelles. Moreover, autophagy is involved in several diseases. Recent evidences support a relationship between several classes of nanomaterials and autophagy perturbation, both induction and blockade, in many biological models. In fact, the autophagic mechanism represents a common cellular response to nanomaterials. On the other hand, the dynamic nature of autophagy in cancer biology is an intriguing approach for cancer therapeutics, since during tumour development and therapy, autophagy has been reported to trigger both an early cell survival and a late cell death. The use of nanomaterials in cancer treatment to deliver chemotherapeutic drugs and target tumours is well known. Recently, autophagy modulation mediated by nanomaterials has become an appealing notion in nanomedicine therapeutics, since it can be exploited as adjuvant in chemotherapy or in the development of cancer vaccines or as a potential anti-cancer agent. Herein, we summarize the effects of nanomaterials on autophagic processes in cancer, also considering the therapeutic outcome of synergism between nanomaterials and autophagy to improve existing cancer therapies

  3. Occupational exposure limits for nanomaterials: state of the art

    International Nuclear Information System (INIS)

    Schulte, P. A.; Murashov, V.; Zumwalde, R.; Kuempel, E. D.; Geraci, C. L.

    2010-01-01

    Assessing the need for and effectiveness of controlling airborne exposures to engineered nanomaterials in the workplace is difficult in the absence of occupational exposure limits (OELs). At present, there are practically no OELs specific to nanomaterials that have been adopted or promulgated by authoritative standards and guidance organizations. The vast heterogeneity of nanomaterials limits the number of specific OELs that are likely to be developed in the near future, but OELs could be developed more expeditiously for nanomaterials by applying dose-response data generated from animal studies for specific nanoparticles across categories of nanomaterials with similar properties and modes of action. This article reviews the history, context, and approaches for developing OELs for particles in general and nanoparticles in particular. Examples of approaches for developing OELs for titanium dioxide and carbon nanotubes are presented and interim OELs from various organizations for some nanomaterials are discussed. When adequate dose-response data are available in animals or humans, quantitative risk assessment methods can provide estimates of adverse health risk of nanomaterials in workers and, in conjunction with workplace exposure and control data, provide a basis for determining appropriate exposure limits. In the absence of adequate quantitative data, qualitative approaches to hazard assessment, exposure control, and safe work practices are prudent measures to reduce hazards in workers.

  4. Granular biodurable nanomaterials: No convincing evidence for systemic toxicity.

    Science.gov (United States)

    Moreno-Horn, Marcus; Gebel, Thomas

    2014-11-01

    Nanomaterials are usually defined by primary particle diameters ranging from 1 to 100 nm. The scope of this review is an evaluation of experimental animal studies dealing with the systemic levels and putative systemic effects induced by nanoparticles which can be characterized as being granular biodurable particles without known specific toxicity (GBP). Relevant examples of such materials comprise nanosized titanium dioxide (TiO2) and carbon black. The question was raised whether GBP nanomaterials systemically accumulate and may possess a relevant systemic toxicity. With few exceptions, the 56 publications reviewed were not performed using established standard protocols, for example, OECD guidelines but used non-standard study designs. The studies including kinetic investigations indicated that GBP nanomaterials were absorbed and systemically distributed to rather low portions only. There was no valid indication that GPB nanomaterials possess novel toxicological hazard properties. In addition, no convincing evidence for a relevant specific systemic toxicity of GBP nanomaterials could be identified. The minority of the papers reviewed (15/56) investigated both nanosized and microsized GBP materials in parallel. A relevant different translocation of GBP nanomaterials in contrast to GBP micromaterials was not observed in these studies. There was no evidence that GPB nanomaterials possess toxicological properties other than their micromaterial counterparts.

  5. Occupational exposure limits for nanomaterials: state of the art

    Science.gov (United States)

    Schulte, P. A.; Murashov, V.; Zumwalde, R.; Kuempel, E. D.; Geraci, C. L.

    2010-08-01

    Assessing the need for and effectiveness of controlling airborne exposures to engineered nanomaterials in the workplace is difficult in the absence of occupational exposure limits (OELs). At present, there are practically no OELs specific to nanomaterials that have been adopted or promulgated by authoritative standards and guidance organizations. The vast heterogeneity of nanomaterials limits the number of specific OELs that are likely to be developed in the near future, but OELs could be developed more expeditiously for nanomaterials by applying dose-response data generated from animal studies for specific nanoparticles across categories of nanomaterials with similar properties and modes of action. This article reviews the history, context, and approaches for developing OELs for particles in general and nanoparticles in particular. Examples of approaches for developing OELs for titanium dioxide and carbon nanotubes are presented and interim OELs from various organizations for some nanomaterials are discussed. When adequate dose-response data are available in animals or humans, quantitative risk assessment methods can provide estimates of adverse health risk of nanomaterials in workers and, in conjunction with workplace exposure and control data, provide a basis for determining appropriate exposure limits. In the absence of adequate quantitative data, qualitative approaches to hazard assessment, exposure control, and safe work practices are prudent measures to reduce hazards in workers.

  6. A functional assay-based strategy for nanomaterial risk forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Hendren, Christine Ogilvie, E-mail: christine.hendren@duke.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Lowry, Gregory V., E-mail: glowry@andrew.cmu.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Plant and Soil Sciences, University of Kentucky, Agricultural Science Center, Lexington, KY 40546 (United States); Wiesner, Mark R., E-mail: wiesner@duke.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall PO Box 90287, Durham, NC 27708 (United States)

    2015-12-01

    The study of nanomaterial impacts on environment, health and safety (nanoEHS) has been largely predicated on the assumption that exposure and hazard can be predicted from physical–chemical properties of nanomaterials. This approach is rooted in the view that nanoöbjects essentially resemble chemicals with additional particle-based attributes that must be included among their intrinsic physical–chemical descriptors. With the exception of the trivial case of nanomaterials made from toxic or highly reactive materials, this approach has yielded few actionable guidelines for predicting nanomaterial risk. This article addresses inherent problems in structuring a nanoEHS research strategy based on the goal of predicting outcomes directly from nanomaterial properties, and proposes a framework for organizing data and designing integrated experiments based on functional assays (FAs). FAs are intermediary, semi-empirical measures of processes or functions within a specified system that bridge the gap between nanomaterial properties and potential outcomes in complex systems. The three components of a functional assay are standardized protocols for parameter determination and reporting, a theoretical context for parameter application and reference systems. We propose the identification and adoption of reference systems where FAs may be applied to provide parameter estimates for environmental fate and effects models, as well as benchmarks for comparing the results of FAs and experiments conducted in more complex and varied systems. Surface affinity and dissolution rate are identified as two critical FAs for characterizing nanomaterial behavior in a variety of important systems. The use of these FAs to predict bioaccumulation and toxicity for initial and aged nanomaterials is illustrated for the case of silver nanoparticles and Caenorhabditis elegans. - Highlights: • Approaches to predict risk directly from nanomaterial (NM) properties are problematic. • We propose

  7. A functional assay-based strategy for nanomaterial risk forecasting

    International Nuclear Information System (INIS)

    Hendren, Christine Ogilvie; Lowry, Gregory V.; Unrine, Jason M.; Wiesner, Mark R.

    2015-01-01

    The study of nanomaterial impacts on environment, health and safety (nanoEHS) has been largely predicated on the assumption that exposure and hazard can be predicted from physical–chemical properties of nanomaterials. This approach is rooted in the view that nanoöbjects essentially resemble chemicals with additional particle-based attributes that must be included among their intrinsic physical–chemical descriptors. With the exception of the trivial case of nanomaterials made from toxic or highly reactive materials, this approach has yielded few actionable guidelines for predicting nanomaterial risk. This article addresses inherent problems in structuring a nanoEHS research strategy based on the goal of predicting outcomes directly from nanomaterial properties, and proposes a framework for organizing data and designing integrated experiments based on functional assays (FAs). FAs are intermediary, semi-empirical measures of processes or functions within a specified system that bridge the gap between nanomaterial properties and potential outcomes in complex systems. The three components of a functional assay are standardized protocols for parameter determination and reporting, a theoretical context for parameter application and reference systems. We propose the identification and adoption of reference systems where FAs may be applied to provide parameter estimates for environmental fate and effects models, as well as benchmarks for comparing the results of FAs and experiments conducted in more complex and varied systems. Surface affinity and dissolution rate are identified as two critical FAs for characterizing nanomaterial behavior in a variety of important systems. The use of these FAs to predict bioaccumulation and toxicity for initial and aged nanomaterials is illustrated for the case of silver nanoparticles and Caenorhabditis elegans. - Highlights: • Approaches to predict risk directly from nanomaterial (NM) properties are problematic. • We propose

  8. Engineered Nanomaterials, Sexy New Technology and Potential Hazards

    International Nuclear Information System (INIS)

    Beaulieu, R.A.

    2009-01-01

    Engineered nanomaterials enhance exciting new applications that can greatly benefit society in areas of cancer treatments, solar energy, energy storage, and water purification. While nanotechnology shows incredible promise in these and other areas by exploiting nanomaterials unique properties, these same properties can potentially cause adverse health effects to workers who may be exposed during work. Dispersed nanoparticles in air can cause adverse health effects to animals not merely due to their chemical properties but due to their size, structure, shape, surface chemistry, solubility, carcinogenicity, reproductive toxicity, mutagenicity, dermal toxicity, and parent material toxicity. Nanoparticles have a greater likelihood of lung deposition and blood absorption than larger particles due to their size. Nanomaterials can also pose physical hazards due to their unusually high reactivity, which makes them useful as catalysts, but has the potential to cause fires and explosions. Characterization of the hazards (and potential for exposures) associated with nanomaterial development and incorporation in other products is an essential step in the development of nanotechnologies. Developing controls for these hazards are equally important. Engineered controls should be integrated into nanomaterial manufacturing process design according to 10CFR851, DOE Policy 456.1, and DOE Notice 456.1 as safety-related hardware or administrative controls for worker safety. Nanomaterial hazards in a nuclear facility must also meet control requirements per DOE standards 3009, 1189, and 1186. Integration of safe designs into manufacturing processes for new applications concurrent with the developing technology is essential for worker safety. This paper presents a discussion of nanotechnology, nanomaterial properties/hazards and controls

  9. Treatment of nanomaterial-containing waste in thermal waste treatment facilities; Behandlung nanomaterialhaltiger Abfaelle in thermischen Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Julia; Weiss, Volker [Umweltbundesamt, Dessau-Rosslau (Germany); Oischinger, Juergen; Meiller, Martin; Daschner, Robert [Fraunhofer Umsicht, Sulzbach-Rosenberg (Germany)

    2016-09-15

    There is already a multitude of products on the market, which contain synthetic nanomaterials (NM), and for the coming years an increase of such products can be expected. Consequently, it is predictable that more nanomaterial-containing waste will occur in the residual waste that is predominately disposed in thermal waste treatment plants. However, the knowledge about the behaviour and effects of nanomaterials from nanomaterial-containing waste in this disposal route is currently still low. A research project of the German Environment Agency on the ''Investigation of potential environmental impacts when disposing nanomaterial-containing waste in waste treatment plants'' will therefore dedicate itself to a detailed examination of emission pathways in the thermal waste treatment facilities. The tests carried out i.a. on an industrial waste incineration plant and a sludge incineration plant with controlled addition of titanium dioxide at the nanoscale, showed that no increase in the emissions of NM in the exhaust gas was detected. The majority of the NM was found in the combustion residues, particularly the slag.

  10. Synthesis of camptothecin-loaded gold nanomaterials

    International Nuclear Information System (INIS)

    Xing Zhimin; Liu Zhiguo; Zu Yuangang; Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan

    2010-01-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  11. Synthesis of camptothecin-loaded gold nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhimin [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Liu Zhiguo, E-mail: zguoliu@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Zu Yuangang, E-mail: nefunano@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  12. Nanomaterials in the environment

    Science.gov (United States)

    Mrowiec, Bozena

    2017-11-01

    This paper considers engineered nanomaterials, deliberately engineered and manufactured to have certain properties and have at least one primary dimension of less than 100 nm. Materials produced with the aid of nanotechnologies are used in many areas of everyday life. Researches with nanomaterials have shown that the physiochemical characteristic of particles can influence their effects in biological systems. The field of nanotechnology has created risk for environment and human health. The toxicity of nanoparticles may be affected by different physicochemical properties, including size, shape, chemistry, surface properties, agglomeration, solubility, and charge, as well as effects from attached functional groups and crystalline structure. The greater surface-area-to-mass ratio of nanoparticles makes them generally more reactive than their macro-sized counterparts. Exposure to nanomaterials can occur at different life-cycle stages of the materials and/or products. The knowledge gaps limiting the understanding of the human and environment hazard and risk of nanotechnology should be explained by the scientific investigations for help to protect human and environmental health and to ensure the benefits of the nanotechnology products without excessive risk of this new technology. In this review are presented the proposal measurement methods for NMs characteristic.

  13. Nanomaterials in the field of design ergonomics: present status.

    Science.gov (United States)

    Chowdhury, Anirban; Sanjog, J; Reddy, Swathi Matta; Karmakar, Sougata

    2012-01-01

    Application of nanotechnology and nanomaterials is not new in the field of design, but a recent trend of extensive use of nanomaterials in product and/or workplace design is drawing attention of design researchers all over the world. In the present paper, an attempt has been made to describe the diverse use of nanomaterials in product and workplace design with special emphasis on ergonomics (occupational health and safety; thermo-regulation and work efficiency, cognitive interface design; maintenance of workplace, etc.) to popularise the new discipline 'nanoergonomics' among designers, design users and design researchers. Nanoergonomics for sustainable product and workplace design by minimising occupational health risks has been felt by the authors to be an emerging research area in coming years. Use of nanomaterials in the field of design ergonomics is less explored till date. In the present review, an attempt has been made to extend general awareness among ergonomists/designers about applications of nanomaterials/nanotechnology in the field of design ergonomics and about health implications of nanomaterials during their use.

  14. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song

    2012-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. Coupled with excellent biocompatibility profiles, various nanomaterials have showed great promise for biomedical applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate goal of controlled and targeted release by "smart" nanomaterials. The most heavily explored strategies include (1) pH, (2) enzymes, (3) redox, (4) magnetic, and (5) light-triggered release.

  15. Generating Electricity from Water through Carbon Nanomaterials.

    Science.gov (United States)

    Xu, Yifan; Chen, Peining; Peng, Huisheng

    2018-01-09

    Over the past ten years, electricity generation from water in carbon-based materials has aroused increasing interest. Water-induced mechanical-to-electrical conversion has been discovered in carbon nanomaterials, including carbon nanotubes and graphene, through the interaction with flowing water as well as moisture. In this Concept article, we focus on the basic principles of electric energy harvesting from flowing water through carbon nanomaterials, and summarize the material modification and structural design of these nanogenerators. The current challenges and potential applications of power conversion with carbon nanomaterials are finally highlighted. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Characterization of nanomaterials with transmission electron microscopy

    KAUST Repository

    Anjum, Dalaver H.

    2016-08-01

    The field of nanotechnology is about research and development on materials whose at least one dimension is in the range of 1 to 100 nanometers. In recent years, the research activity for developing nano-materials has grown exponentially owing to the fact that they offer better solutions to the challenges faced by various fields such as energy, food, and environment. In this paper, the importance of transmission electron microscopy (TEM) based techniques is demonstrated for investigating the properties of nano-materials. Specifically the nano-materials that are investigated in this report include gold nano-particles (Au-NPs), silver atom-clusters (Ag-ACs), tantalum single-atoms (Ta-SAs), carbon materials functionalized with iron cobalt (Fe-Co) NPs and titania (TiO2) NPs, and platinum loaded Ceria (Pt-CeO2) Nano composite. TEM techniques that are employed to investigate nano-materials include aberration corrected bright-field TEM (BF-TEM), high-angle dark-field scanning TEM (HAADF-STEM), electron energy-loss spectroscopy (EELS), and BF-TEM electron tomography (ET). With the help presented of results in this report, it is proved herein that as many TEM techniques as available in a given instrument are essential for a comprehensive nano-scale analysis of nanomaterials.

  17. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles.

    NARCIS (Netherlands)

    Park, M.V.; Annema, W.; Salvati, A.; Lesniak, A.; Elsaesser, A.; Barnes, C.; McKerr, G.; Howard, C.; Lynch, I.; Dawson, K.; Piersma, A.H.; de Jong, W.H.

    2009-01-01

    While research into the potential toxic properties of nanomaterials is now increasing, the area of developmental toxicity has remained relatively uninvestigated. The embryonic stem cell test is an in vitro screening assay used to investigate the embryotoxic potential of chemicals by determining

  18. Comparative In vivo, Ex vivo, and In vitro Toxicity Studies of Engineered Nanomaterials

    Science.gov (United States)

    Efforts to reduce the number of animals in engineered nanomaterials (ENM) toxicity testing have resulted in the development of numerous alternative toxicity testing methods, but in vivo and in vitro results are still evolving and variable. This inconsistency could be due to the f...

  19. Nanomaterials and Nanochemistry

    CERN Document Server

    Bréchignac, Catherine; Lahmani, Marcel

    2007-01-01

    Nanomaterials are a fast developing field of research and applications lie in many separate domains, such as in hi-tech (optics, electronics, biology, aeronautics), but also in consumer industries (automotive, concrete, surface treatments (including paints), cosmetics, etc.).

  20. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    NARCIS (Netherlands)

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-01-01

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in

  1. Chemical Sensing Applications of ZnO Nanomaterials

    Science.gov (United States)

    Chaudhary, Savita; Umar, Ahmad; Bhasin, K. K.

    2018-01-01

    Recent advancement in nanoscience and nanotechnology has witnessed numerous triumphs of zinc oxide (ZnO) nanomaterials due to their various exotic and multifunctional properties and wide applications. As a remarkable and functional material, ZnO has attracted extensive scientific and technological attention, as it combines different properties such as high specific surface area, biocompatibility, electrochemical activities, chemical and photochemical stability, high-electron communicating features, non-toxicity, ease of syntheses, and so on. Because of its various interesting properties, ZnO nanomaterials have been used for various applications ranging from electronics to optoelectronics, sensing to biomedical and environmental applications. Further, due to the high electrochemical activities and electron communication features, ZnO nanomaterials are considered as excellent candidates for electrochemical sensors. The present review meticulously introduces the current advancements of ZnO nanomaterial-based chemical sensors. Various operational factors such as the effect of size, morphologies, compositions and their respective working mechanisms along with the selectivity, sensitivity, detection limit, stability, etc., are discussed in this article. PMID:29439528

  2. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.

    Science.gov (United States)

    Han, Lu; Zhang, Xiao-Yong; Wang, Yu-Long; Li, Xi; Yang, Xiao-Hong; Huang, Min; Hu, Kun; Li, Lu-Hai; Wei, Yen

    2017-08-10

    Spurred on by advances in materials chemistry and nanotechnology, scientists have developed many novel nanopreparations for cancer diagnosis and therapy. To treat complex malignant tumors effectively, multifunctional nanomedicines with targeting ability, imaging properties and controlled drug release behavior should be designed and exploited. The therapeutic efficiency of loaded drugs can be dramatically improved using redox-responsive nanoplatforms which can sense the differences in the redox status of tumor tissues and healthy ones. Redox-sensitive nanocarriers can be constructed from both organic and inorganic nanomaterials; however, at present, drug delivery nanovectors progressively lean towards inorganic nanomaterials because of their facile synthesis/modification and their unique physicochemical properties. In this review, we focus specifically on the preparation and application of redox-sensitive nanosystems based on mesoporous silica nanoparticles (MSNs), carbon nanomaterials, magnetic nanoparticles, gold nanomaterials and other inorganic nanomaterials. We discuss relevant examples of redox-sensitive nanosystems in each category. Finally, we discuss current challenges and future strategies from the aspect of material design and practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.

    Science.gov (United States)

    Peng, Fei; Su, Yuanyuan; Zhong, Yiling; Fan, Chunhai; Lee, Shuit-Tong; He, Yao

    2014-02-18

    Silicon nanomaterials are an important class of nanomaterials with great potential for technologies including energy, catalysis, and biotechnology, because of their many unique properties, including biocompatibility, abundance, and unique electronic, optical, and mechanical properties, among others. Silicon nanomaterials are known to have little or no toxicity due to favorable biocompatibility of silicon, which is an important precondition for biological and biomedical applications. In addition, huge surface-to-volume ratios of silicon nanomaterials are responsible for their unique optical, mechanical, or electronic properties, which offer exciting opportunities for design of high-performance silicon-based functional nanoprobes, nanosensors, and nanoagents for biological analysis and detection and disease treatment. Moreover, silicon is the second most abundant element (after oxygen) on earth, providing plentiful and inexpensive resources for large-scale and low-cost preparation of silicon nanomaterials for practical applications. Because of these attractive traits, and in parallel with a growing interest in their design and synthesis, silicon nanomaterials are extensively investigated for wide-ranging applications, including energy, catalysis, optoelectronics, and biology. Among them, bioapplications of silicon nanomaterials are of particular interest. In the past decade, scientists have made an extensive effort to construct a silicon nanomaterials platform for various biological and biomedical applications, such as biosensors, bioimaging, and cancer treatment, as new and powerful tools for disease diagnosis and therapy. Nonetheless, there are few review articles covering these important and promising achievements to promote the awareness of development of silicon nanobiotechnology. In this Account, we summarize recent representative works to highlight the recent developments of silicon functional nanomaterials for a new, powerful platform for biological and

  4. NanoRisk - A Conceptual Decision Support Tool for Nanomaterials

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Baun, Anders; Alstrup Jensen, K.

    2011-01-01

    Only a few risk assessment methodologies and approaches are useful for assessing the risk for professional end-users, consumers and the environment. We have developed a generic framework (NanoRiskCat) that can be used by companies and risk assessors to categorize nanomaterials considering existing...... environmental, health and safety information and known uncertainties. In NanoRiskCat’s simplest form, the final evaluation outcome for a specific nanomaterial in a given application will be communicated in the form of a short title (e.g. TiO2 in sunscreen) describing the use of the nanomaterial. This short...... to the exposure and hazard potential are green , yellow corresponding to none, possible, expected and unknown, respectively. The exposure potential was evaluated based on 1) the location of the nanomaterial and 2) a judgment of the potential of nanomaterial exposure based on the description and explanation...

  5. Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review.

    Science.gov (United States)

    Khan, Avik; Wen, Yangbing; Huq, Tanzina; Ni, Yonghao

    2018-01-10

    Cellulosic nanomaterials (CNMs) are organic, green nanomaterials that are obtained from renewable sources and possess exceptional mechanical strength and biocompatibility. The associated unique physical and chemical properties have made these nanomaterials an intriguing prospect for various applications including the food and nutraceutical industry. From the immobilization of various bioactive agents and enzymes, emulsion stabilization, direct food additives, to the development of intelligent packaging systems or pathogen or pH detectors, the potential food related applications for CNMs are endless. Over the past decade, there have been several reviews published covering different aspects of cellulosic nanomaterials, such as processing-structure-property relationship, physical and chemical properties, rheology, extraction, nanocomposites, etc. In this critical review, we have discussed and provided a summary of the recent developments in the utilization of cellulosic nanomaterials in applications related to food and nutraceuticals.

  6. Nanomaterial-based drug delivery carriers for cancer therapy

    CERN Document Server

    Feng, Tao

    2017-01-01

    This brief summarizes different types of organic and inorganic nanomaterials for drug delivery in cancer therapy. It highlights that precisely designed nanomaterials will be the next-generation therapeutic agents for cancer treatment.

  7. Nanomaterials Toxicity and Cell Death Modalities

    Directory of Open Access Journals (Sweden)

    Daniela De Stefano

    2012-01-01

    Full Text Available In the last decade, the nanotechnology advancement has developed a plethora of novel and intriguing nanomaterial application in many sectors, including research and medicine. However, many risks have been highlighted in their use, particularly related to their unexpected toxicity in vitro and in vivo experimental models. This paper proposes an overview concerning the cell death modalities induced by the major nanomaterials.

  8. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  9. Comparative assessment of nanomaterial definitions and safety evaluation considerations.

    Science.gov (United States)

    Boverhof, Darrell R; Bramante, Christina M; Butala, John H; Clancy, Shaun F; Lafranconi, Mark; West, Jay; Gordon, Steve C

    2015-10-01

    Nanomaterials continue to bring promising advances to science and technology. In concert have come calls for increased regulatory oversight to ensure their appropriate identification and evaluation, which has led to extensive discussions about nanomaterial definitions. Numerous nanomaterial definitions have been proposed by government, industry, and standards organizations. We conducted a comprehensive comparative assessment of existing nanomaterial definitions put forward by governments to highlight their similarities and differences. We found that the size limits used in different definitions were inconsistent, as were considerations of other elements, including agglomerates and aggregates, distributional thresholds, novel properties, and solubility. Other important differences included consideration of number size distributions versus weight distributions and natural versus intentionally-manufactured materials. Overall, the definitions we compared were not in alignment, which may lead to inconsistent identification and evaluation of nanomaterials and could have adverse impacts on commerce and public perceptions of nanotechnology. We recommend a set of considerations that future discussions of nanomaterial definitions should consider for describing materials and assessing their potential for health and environmental impacts using risk-based approaches within existing assessment frameworks. Our intent is to initiate a dialogue aimed at achieving greater clarity in identifying those nanomaterials that may require additional evaluation, not to propose a formal definition. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Two dimensional nanomaterials for flexible supercapacitors.

    Science.gov (United States)

    Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi

    2014-05-21

    Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.

  11. Overview of Risk Management for Engineered Nanomaterials

    Science.gov (United States)

    Schulte, P. A.; Geraci, C. L.; Hodson, L. L.; Zumwalde, R. D.; Kuempel, E. D.; Murashov, V.; Martinez, K. F.; Heidel, D. S.

    2013-04-01

    Occupational exposure to engineered nanomaterials (ENMs) is considered a new and challenging occurrence. Preliminary information from laboratory studies indicates that workers exposed to some kinds of ENMs could be at risk of adverse health effects. To protect the nanomaterial workforce, a precautionary risk management approach is warranted and given the newness of ENMs and emergence of nanotechnology, a naturalistic view of risk management is useful. Employers have the primary responsibility for providing a safe and healthy workplace. This is achieved by identifying and managing risks which include recognition of hazards, assessing exposures, characterizing actual risk, and implementing measures to control those risks. Following traditional risk management models for nanomaterials is challenging because of uncertainties about the nature of hazards, issues in exposure assessment, questions about appropriate control methods, and lack of occupational exposure limits (OELs) or nano-specific regulations. In the absence of OELs specific for nanomaterials, a precautionary approach has been recommended in many countries. The precautionary approach entails minimizing exposures by using engineering controls and personal protective equipment (PPE). Generally, risk management utilizes the hierarchy of controls. Ideally, risk management for nanomaterials should be part of an enterprise-wide risk management program or system and this should include both risk control and a medical surveillance program that assesses the frequency of adverse effects among groups of workers exposed to nanomaterials. In some cases, the medical surveillance could include medical screening of individual workers to detect early signs of work-related illnesses. All medical surveillance should be used to assess the effectiveness of risk management; however, medical surveillance should be considered as a second line of defense to ensure that implemented risk management practices are effective.

  12. Overview of Risk Management for Engineered Nanomaterials

    International Nuclear Information System (INIS)

    Schulte, P A; Geraci, C L; Hodson, L L; Zumwalde, R D; Kuempel, E D; Murashov, V; Martinez, K F; Heidel, D S

    2013-01-01

    Occupational exposure to engineered nanomaterials (ENMs) is considered a new and challenging occurrence. Preliminary information from laboratory studies indicates that workers exposed to some kinds of ENMs could be at risk of adverse health effects. To protect the nanomaterial workforce, a precautionary risk management approach is warranted and given the newness of ENMs and emergence of nanotechnology, a naturalistic view of risk management is useful. Employers have the primary responsibility for providing a safe and healthy workplace. This is achieved by identifying and managing risks which include recognition of hazards, assessing exposures, characterizing actual risk, and implementing measures to control those risks. Following traditional risk management models for nanomaterials is challenging because of uncertainties about the nature of hazards, issues in exposure assessment, questions about appropriate control methods, and lack of occupational exposure limits (OELs) or nano-specific regulations. In the absence of OELs specific for nanomaterials, a precautionary approach has been recommended in many countries. The precautionary approach entails minimizing exposures by using engineering controls and personal protective equipment (PPE). Generally, risk management utilizes the hierarchy of controls. Ideally, risk management for nanomaterials should be part of an enterprise-wide risk management program or system and this should include both risk control and a medical surveillance program that assesses the frequency of adverse effects among groups of workers exposed to nanomaterials. In some cases, the medical surveillance could include medical screening of individual workers to detect early signs of work-related illnesses. All medical surveillance should be used to assess the effectiveness of risk management; however, medical surveillance should be considered as a second line of defense to ensure that implemented risk management practices are effective.

  13. Pulmonary exposure to carbonaceous nanomaterials and sperm quality

    DEFF Research Database (Denmark)

    Skovmand, Astrid; Lauvas, Anna Jacobsen; Christensen, Preben

    2018-01-01

    Background: Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung...... inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model.Methods: Effects on sperm quality after pulmonary inflammation induced by carbonaceous...... nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 mu g/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks...

  14. Toxicology and cellular effect of manufactured nanomaterials

    Science.gov (United States)

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  15. Performance Enhancement of Carbon Nanomaterials for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Amin M. Saleem

    2016-01-01

    Full Text Available Carbon nanomaterials such as carbon nanotubes, carbon nanofibers, and graphene are exploited extensively due to their unique electrical, mechanical, and thermal properties and recently investigated for energy storage application (supercapacitor due to additional high specific surface area and chemical inertness properties. The supercapacitor is an energy storage device which, in addition to long cycle life (one million, can give energy density higher than parallel plate capacitor and power density higher than battery. In this paper, carbon nanomaterials and their composites are reviewed for prospective use as electrodes for supercapacitor. Moreover, different physical and chemical treatments on these nanomaterials which can potentially enhance the capacitance are also reviewed.

  16. Reproductive toxicity of carbon nanomaterials: a review

    Science.gov (United States)

    Vasyukova, I.; Gusev, A.; Tkachev, A.

    2015-11-01

    In the current review, we assembled the experimental evidences of an association between carbon nanomaterials including carbon black, graphite nanoplatelets, graphene, single- and multi-walled carbon nanotubes, and fullerene exposure and adverse reproductive and developmental effects, in vitro and in vivo studies. It is shown that carbon nanomaterials reveal toxic effect on reproductive system and offspring development of the animals of various system groups to a certain degree depending on carbon crystal structure. Although this paper provides initial information about the potential male and female reproductive toxicity of carbon nanomaterials, further studies, using characterized nanoparticles, relevant routes of administration, and doses closely reflecting all the expected levels of exposure are needed.

  17. The EU regulation of nanomaterials - Smoother or harder : The precautionary tool chest as the basis for better regulating nanomaterials

    NARCIS (Netherlands)

    Gellert, Raphaël; Mantovani, Eugenio; de Hert, Paul; Dolez, P.I.

    2015-01-01

    The EU regulatory framework on nanomaterials falls mainly within the shared competence of the EU and of its member states. This means that the sources of the regu- lation of nanomaterials are found primarily in the law promulgated in Brussels,. The EU regulatory toolbox in- cludes directives and

  18. Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making.

    Science.gov (United States)

    Godwin, Hilary; Nameth, Catherine; Avery, David; Bergeson, Lynn L; Bernard, Daniel; Beryt, Elizabeth; Boyes, William; Brown, Scott; Clippinger, Amy J; Cohen, Yoram; Doa, Maria; Hendren, Christine Ogilvie; Holden, Patricia; Houck, Keith; Kane, Agnes B; Klaessig, Frederick; Kodas, Toivo; Landsiedel, Robert; Lynch, Iseult; Malloy, Timothy; Miller, Mary Beth; Muller, Julie; Oberdorster, Gunter; Petersen, Elijah J; Pleus, Richard C; Sayre, Philip; Stone, Vicki; Sullivan, Kristie M; Tentschert, Jutta; Wallis, Philip; Nel, Andre E

    2015-01-01

    For nanotechnology to meet its potential as a game-changing and sustainable technology, it is important to ensure that the engineered nanomaterials and nanoenabled products that gain entry to the marketplace are safe and effective. Tools and methods are needed for regulatory purposes to allow rapid material categorization according to human health and environmental risk potential, so that materials of high concern can be targeted for additional scrutiny, while material categories that pose the least risk can receive expedited review. Using carbon nanotubes as an example, we discuss how data from alternative testing strategies can be used to facilitate engineered nanomaterial categorization according to risk potential and how such an approach could facilitate regulatory decision-making in the future.

  19. LCA of metal nanomaterial production

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Diaz, Elsa Gabriela Alvarado; Olsen, Stig Irving

    The use of engineered nanomaterials (ENMs) in commercial product has reached a new stage, where consumers in their daily life are frequently encountered with products containing this new material class. Metal and metal-oxide nanomaterials are among the most commonly used ENMs in products. Potential......(OH)2 applied as additives in polypropylene (PP), and the production of PP with conventional additives that provide similar properties as the ENMs. Different scenarios of nanoproducts consisting of metal ENMs and PP were compared with current use of additives in PP products through a detailed cradle...

  20. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine☆

    Science.gov (United States)

    Zhang, Xue-Qing; Xu, Xiaoyang; Bertrand, Nicolas; Pridgen, Eric; Swami, Archana; Farokhzad, Omid C.

    2012-01-01

    The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials. PMID:22917779

  1. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.

    Science.gov (United States)

    Menaa, Farid; Abdelghani, Adnane; Menaa, Bouzid

    2015-12-01

    The discovery of the interesting intrinsic properties of graphene, a two-dimensional nanomaterial, has boosted further research and development for various types of applications from electronics to biomedicine. During the last decade, graphene and several graphene-derived materials, such as graphene oxide, carbon nanotubes, activated charcoal composite, fluorinated graphenes and three-dimensional graphene foams, have been extensively explored as components of biosensors or theranostics, or to remotely control cell-substrate interfaces, because of their remarkable electro-conductivity. To date, despite the intensive progress in human stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. Interestingly, most of the recent in vitro studies indicate that graphene-based nanomaterials (i.e. mainly graphene, graphene oxide and carbon nanotubes) promote stem cell adhesion, growth, expansion and differentiation. Although cell viability in vitro is not affected, their potential nanocytoxicity (i.e. nanocompatibility and consequences of uncontrolled nanobiodegradability) in a clinical setting using humans remains unknown. Therefore, rigorous internationally standardized clinical studies in humans that would aim to assess their nanotoxicology are requested. In this paper we report and discuss the recent and pertinent findings about graphene and derivatives as valuable nanomaterials for stem cell research (i.e. culture, maintenance and differentiation) and tissue engineering, as well as for regenerative, translational and personalized medicine (e.g. bone reconstruction, neural regeneration). Also, from scarce nanotoxicological data, we also highlight the importance of functionalizing graphene-based nanomaterials to minimize the cytotoxic effects, as well as other critical safety parameters that remain important to take into consideration when developing nanobionanomaterials. Copyright © 2014 John Wiley & Sons, Ltd.

  2. “NaKnowBase”: A Nanomaterials Relational Database

    Science.gov (United States)

    NaKnowBase is an internal relational database populated with data from peer-reviewed ORD nanomaterials research publications. The database focuses on papers describing the actions of nanomaterials in environmental or biological media including their interactions, transformations...

  3. Integration of data: the Nanomaterial Registry project and data curation

    International Nuclear Information System (INIS)

    Guzan, K A; Mills, K C; Gupta, V; Murry, D; Ostraat, M L; Scheier, C N; Willis, D A

    2013-01-01

    Due to the use of nanomaterials in multiple fields of applied science and technology, there is a need for accelerated understanding of any potential implications of using these unique and promising materials. There is a multitude of research data that, if integrated, can be leveraged to drive toward a better understanding. Integration can be achieved by applying nanoinformatics concepts. The Nanomaterial Registry is using applied minimal information about nanomaterials to support a robust data curation process in order to promote integration across a diverse data set. This paper describes the evolution of the curation methodology used in the Nanomaterial Registry project as well as the current procedure that is used. Some of the lessons learned about curation of nanomaterial data are also discussed. (paper)

  4. Cellulose-Based Nanomaterials for Energy Applications.

    Science.gov (United States)

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Applications of nanomaterials as vaccine adjuvants

    Science.gov (United States)

    Zhu, Motao; Wang, Rongfu; Nie, Guangjun

    2014-01-01

    Vaccine adjuvants are applied to amplify the recipient's specific immune responses against pathogen infection or malignancy. A new generation of adjuvants is being developed to meet the demands for more potent antigen-specific responses, specific types of immune responses, and a high margin of safety. Nanotechnology provides a multifunctional stage for the integration of desired adjuvant activities performed by the building blocks of tailor-designed nanoparticles. Using nanomaterials for antigen delivery can provide high bioavailability, sustained and controlled release profiles, and targeting and imaging properties resulting from manipulation of the nanomaterials’ physicochemical properties. Moreover, the inherent immune-regulating activity of particular nanomaterials can further promote and shape the cellular and humoral immune responses toward desired types. The combination of both the delivery function and immunomodulatory effect of nanomaterials as adjuvants is thought to largely benefit the immune outcomes of vaccination. In this review, we will address the current achievements of nanotechnology in the development of novel adjuvants. The potential mechanisms by which nanomaterials impact the immune responses to a vaccine and how physicochemical properties, including size, surface charge and surface modification, impact their resulting immunological outcomes will be discussed. This review aims to provide concentrated information to promote new insights for the development of novel vaccine adjuvants. PMID:25483497

  6. “NaKnowBase”: A Nanomaterials Relational Database

    Science.gov (United States)

    NaKnowBase is a relational database populated with data from peer-reviewed ORD nanomaterials research publications. The database focuses on papers describing the actions of nanomaterials in environmental or biological media including their interactions, transformations and poten...

  7. Toxicity of nanomaterials

    NARCIS (Netherlands)

    Sharifi, Shahriar; Behzadi, Shahed; Laurent, Sophie; Forrest, M. Laird; Stroeve, Pieter; Mahmoudi, Morteza

    2012-01-01

    Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. There

  8. Recent advances in applications of nanomaterials for sample preparation.

    Science.gov (United States)

    Xu, Linnan; Qi, Xiaoyue; Li, Xianjiang; Bai, Yu; Liu, Huwei

    2016-01-01

    Sample preparation is a key step for qualitative and quantitative analysis of trace analytes in complicated matrix. Along with the rapid development of nanotechnology in material science, numerous nanomaterials have been developed with particularly useful applications in analytical chemistry. Benefitting from their high specific areas, increased surface activities, and unprecedented physical/chemical properties, the potentials of nanomaterials for rapid and efficient sample preparation have been exploited extensively. In this review, recent progress of novel nanomaterials applied in sample preparation has been summarized and discussed. Both nanoparticles and nanoporous materials are evaluated for their unusual performance in sample preparation. Various compositions and functionalizations extended the applications of nanomaterials in sample preparations, and distinct size and shape selectivity was generated from the diversified pore structures of nanoporous materials. Such great variety make nanomaterials a kind of versatile tools in sample preparation for almost all categories of analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A practical approach to determine dose metrics for nanomaterials.

    Science.gov (United States)

    Delmaar, Christiaan J E; Peijnenburg, Willie J G M; Oomen, Agnes G; Chen, Jingwen; de Jong, Wim H; Sips, Adriënne J A M; Wang, Zhuang; Park, Margriet V D Z

    2015-05-01

    Traditionally, administered mass is used to describe doses of conventional chemical substances in toxicity studies. For deriving toxic doses of nanomaterials, mass and chemical composition alone may not adequately describe the dose, because particles with the same chemical composition can have completely different toxic mass doses depending on properties such as particle size. Other dose metrics such as particle number, volume, or surface area have been suggested, but consensus is lacking. The discussion regarding the most adequate dose metric for nanomaterials clearly needs a systematic, unbiased approach to determine the most appropriate dose metric for nanomaterials. In the present study, the authors propose such an approach and apply it to results from in vitro and in vivo experiments with silver and silica nanomaterials. The proposed approach is shown to provide a convenient tool to systematically investigate and interpret dose metrics of nanomaterials. Recommendations for study designs aimed at investigating dose metrics are provided. © 2015 SETAC.

  10. Submerged Glow-Discharge Plasma: An Economical Approach to Convert Construction Scrap Metal into Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yek Peter Nai Yuh

    2018-01-01

    Full Text Available Submerged glow-discharge plasma (SGDP is relatively new among the various methods available for nanomaterials synthesis (NMs techniques. This method allows great control over the production cost of nanomaterials synthesis. A lab-scale batch type SDGP technology has been constructed to produce nanomaterials and investigate the inter-relationship between plasma excitation voltages, electrodes submerged areas and electrolyte concentration. Metal oxide nanospheres has been synthesised from different electrolyte concentrations (1M-0.001M and characterized by Scanning Electron Microscopy (SEM and Energy Dispersive Spectroscopy (EDS. As the major results showed that the nanospheres are uniformly spherical with diameter size distribution are between 100 nm - 2μm. EDS analysis shown the nano-Iron Oxide have been formed. Scrap metal initially showed around 6.45% and 93.55% of Carbon and Iron composition respectively. After SGDP process to the scrap metal, Carbon content has increased to 34-35% and Iron content has reduced to around 15-40%. EDS results also shown the higher percentage of Iron amount has remained with lower electrolyte concentration and Current is proportionally related to submersion area of cathode.

  11. Carbon nanomaterial based electrochemical sensors for biogenic amines

    International Nuclear Information System (INIS)

    Yang, Xiao; He, Xiulan; Li, Fangping; Fei, Junjie; Feng, Bo; Ding, Yonglan

    2013-01-01

    This review describes recent advances in the use of carbon nanomaterials for electroanalytical detection of biogenic amines (BAs). It starts with a short introduction into carbon nanomaterials such as carbon nanotubes, graphene, nanodiamonds, carbon nanofibers, fullerenes, and their composites. Next, electrochemical sensing schemes are discussed for various BAs including dopamine, serotonin, epinephrine, norepinephrine, tyramine, histamine and putrescine. Examples are then given for methods for simultaneous detection of various BAs. Finally, we discuss the current and future challenges of carbon nanomaterial-based electrochemical sensors for BAs. The review contains 175 references. (author)

  12. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2017-10-01

    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  13. REACH and nanomaterials: current status

    International Nuclear Information System (INIS)

    Alessandrelli, Maria; Di Prospero Fanghella, Paola; Polci, Maria Letizia; Castelli, Stefano; Pettirossi, Flavio

    2015-01-01

    New challenges for regulators are emerging about a specific assessment and appropriate management of the potential risks of nanomaterials. In the framework of European legislation on chemicals, Regulation (EC) No. 1907/2006 REACH aims to ensure the safety of human health and the environment through the collection of information on the physico-chemical characteristics of the substances and on their profile (eco) toxicological and the identification of appropriate risk management linked to 'exposure to these substances without impeding scientific progress and the competitiveness of industry. In order to cover the current shortage of information on the safety of nanomaterials and tackle the acknowledged legal vacuum, are being a rich activities, carried out both by regulators both by stake holders, and discussions on the proposals for adapting the European regulatory framework for chemicals . The European Commission is geared to strengthen the REACH Regulation by means of updates of its annexes. The importance of responding to the regulatory requirements has highlighted the need for cooperation between European organizations, scientists and industries to promote and ensure the safe use of nanomaterials. [it

  14. Center for Functional Nanomaterials

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Functional Nanomaterials (CFN) explores the unique properties of materials and processes at the nanoscale. The CFN is a user-oriented research center...

  15. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

    Directory of Open Access Journals (Sweden)

    Stern Stephan T

    2012-06-01

    Full Text Available Abstract The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  16. An overview of nanomaterials applied for removing dyes from wastewater.

    Science.gov (United States)

    Cai, Zhengqing; Sun, Youmin; Liu, Wen; Pan, Fei; Sun, Peizhe; Fu, Jie

    2017-07-01

    Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO 2 , and graphitic carbon nitride (g-C 3 N 4 ) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.

  17. Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials.

    Science.gov (United States)

    Zhu, Ying; Cai, Xiaoqing; Li, Jiang; Zhong, Zengtao; Huang, Qing; Fan, Chunhai

    2014-04-01

    There have been increasing interests in studying biological effects of nanomaterials, which are nevertheless faced up with many challenges due to the nanoscale dimensions and unique chemical properties of nanomaterials. Synchrotron-based X-ray microscopy, an advanced imaging technology with high spatial resolution and excellent elemental specificity, provides a new platform for studying interactions between nanomaterials and living systems. In this article, we review the recent progress of X-ray microscopic studies on bioeffects of nanomaterials in several living systems including cells, model organisms, animals and plants. We aim to provide an overview of the state of the art, and the advantages of using synchrotron-based X-ray microscopy for characterizing in vitro and in vivo behaviors and biodistribution of nanomaterials. We also expect that the use of a combination of new synchrotron techniques should offer unprecedented opportunities for better understanding complex interactions at the nano-biological interface and accounting for unique bioeffects of nanomaterials. Synchrotron-based X-ray microscopy is a non-destructive imaging technique that enables high resolution spatial mapping of metals with elemental level detection methods. This review summarizes the current use and perspectives of this novel technique in studying the biology and tissue interactions of nanomaterials. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.

    Science.gov (United States)

    Miralles, Pola; Church, Tamara L; Harris, Andrew T

    2012-09-04

    To exploit the promised benefits of engineered nanomaterials, it is necessary to improve our knowledge of their bioavailability and toxicity. The interactions between engineered nanomaterials and vascular plants are of particular concern, as plants closely interact with soil, water, and the atmosphere, and constitute one of the main routes of exposure for higher species, i.e. accumulation through the food chain. A review of the current literature shows contradictory evidence on the phytotoxicity of engineered nanomaterials. The mechanisms by which engineered nanomaterials penetrate plants are not well understood, and further research on their interactions with vascular plants is required to enable the field of phytotoxicology to keep pace with that of nanotechnology, the rapid evolution of which constantly produces new materials and applications that accelerate the environmental release of nanomaterials.

  19. Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects.

    Science.gov (United States)

    Chimene, David; Alge, Daniel L; Gaharwar, Akhilesh K

    2015-12-02

    Two-dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon-based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface-to-volume ratios, and surface charge. Here, we focus on state-of-the-art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanomaterials A Danger or a Promise? A Chemical and Biological Perspective

    CERN Document Server

    Fiévet, Fernand; Coradin, Thibaud

    2013-01-01

    With the increased presence of nanomaterials in commercial products such as cosmetics and sunscreens, fillers in dental fillings, water filtration process, catalysis, photovoltaic cells, bio-detection, a growing public debate is emerging on toxicological and environmental effects of direct and indirect exposure to these materials. Nanomaterials: A Danger or a Promise? forms a balanced overview of the health and environmental issues of nanoscale materials.   By considering both the benefits and risks associated with nanomaterials, Nanomaterials: A Danger or a Promise? compiles a complete and detailed image of the many aspects of the interface between nanomaterials and their real-life application. The full cycle of nanomaterials life will be presented and critically assessed to consider and answer questions such as: ·         How are nanomaterials made? ·         What they are used for? ·         What is their environmental fate? ·         Can we make them better?   Includi...

  1. Magnetic nanomaterials undamentals, synthesis and applications

    CERN Document Server

    Sellmyer, David J

    2017-01-01

    Timely and comprehensive, this book presents recent advances in magnetic nanomaterials research, covering the latest developments, including the design and preparation of magnetic nanoparticles, their physical and chemical properties as well as their applications in different fields, including biomedicine, magnetic energy storage, wave–absorbing and water remediation. By allowing researchers to get to the forefront developments related to magnetic nanomaterials in various disciplines, this is invaluable reading for the nano, magnetic, energy, medical, and environmental communities.

  2. Carbon nanomaterials for non-volatile memories

    Science.gov (United States)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  3. Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials

    International Nuclear Information System (INIS)

    Pavlidis, Ioannis V.; Vorhaben, Torge; Gournis, Dimitrios; Papadopoulos, George K.; Bornscheuer, Uwe T.; Stamatis, Haralambos

    2012-01-01

    The interaction of enzymes with carbon-based nanomaterials (CBNs) is crucial for the function of biomolecules and therefore for the design and development of effective nanobiocatalytic systems. In this study, the effect of functionalized CBNs, such as graphene oxide (GO) and multi-wall carbon nanotubes (CNTs), on the catalytic behaviour of various hydrolases of biotechnological interest was monitored and the interactions between CBNs and proteins were investigated. The enzyme–nanomaterial interactions significantly affect the catalytic behaviour of enzymes, resulting in an increase up to 60 % of the catalytic efficiency of lipases and a decrease up to 30 % of the esterase. Moreover, the use of CNTs and GO derivatives, especially those that are amine-functionalized, led to increased thermal stability of most the hydrolases tested. Fluorescence and circular dichroism studies indicated that the altered catalytic behaviour of enzymes in the presence of CBNs arises from specific enzyme–nanomaterial interactions, which can lead to significant conformational changes. In the case of lipases, the conformational changes led to a more active and rigid structure, while in the case of esterases this led to destabilization and unfolding. Kinetic and spectroscopic studies indicated that the extent of the interactions between CBNs and hydrolases can be mainly controlled by the functionalization of nanomaterials than by their geometry.

  4. Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Pavlidis, Ioannis V. [University of Ioannina, Laboratory of Biotechnology, Department of Biological Applications and Technologies (Greece); Vorhaben, Torge [Institute of Biochemistry, Greifswald University, Department of Biotechnology and Enzyme Catalysis (Germany); Gournis, Dimitrios [University of Ioannina, Department of Materials Science and Engineering (Greece); Papadopoulos, George K. [Epirus Institute of Technology, Laboratory of Biochemistry and Biophysics, Faculty of Agricultural Technology (Greece); Bornscheuer, Uwe T. [Institute of Biochemistry, Greifswald University, Department of Biotechnology and Enzyme Catalysis (Germany); Stamatis, Haralambos, E-mail: hstamati@cc.uoi.gr [University of Ioannina, Laboratory of Biotechnology, Department of Biological Applications and Technologies (Greece)

    2012-05-15

    The interaction of enzymes with carbon-based nanomaterials (CBNs) is crucial for the function of biomolecules and therefore for the design and development of effective nanobiocatalytic systems. In this study, the effect of functionalized CBNs, such as graphene oxide (GO) and multi-wall carbon nanotubes (CNTs), on the catalytic behaviour of various hydrolases of biotechnological interest was monitored and the interactions between CBNs and proteins were investigated. The enzyme-nanomaterial interactions significantly affect the catalytic behaviour of enzymes, resulting in an increase up to 60 % of the catalytic efficiency of lipases and a decrease up to 30 % of the esterase. Moreover, the use of CNTs and GO derivatives, especially those that are amine-functionalized, led to increased thermal stability of most the hydrolases tested. Fluorescence and circular dichroism studies indicated that the altered catalytic behaviour of enzymes in the presence of CBNs arises from specific enzyme-nanomaterial interactions, which can lead to significant conformational changes. In the case of lipases, the conformational changes led to a more active and rigid structure, while in the case of esterases this led to destabilization and unfolding. Kinetic and spectroscopic studies indicated that the extent of the interactions between CBNs and hydrolases can be mainly controlled by the functionalization of nanomaterials than by their geometry.

  5. Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials

    International Nuclear Information System (INIS)

    Winkler, David A.

    2016-01-01

    Nanomaterials research is one of the fastest growing contemporary research areas. The unprecedented properties of these materials have meant that they are being incorporated into products very quickly. Regulatory agencies are concerned they cannot assess the potential hazards of these materials adequately, as data on the biological properties of nanomaterials are still relatively limited and expensive to acquire. Computational modelling methods have much to offer in helping understand the mechanisms by which toxicity may occur, and in predicting the likelihood of adverse biological impacts of materials not yet tested experimentally. This paper reviews the progress these methods, particularly those QSAR-based, have made in understanding and predicting potentially adverse biological effects of nanomaterials, and also the limitations and pitfalls of these methods. - Highlights: • Nanomaterials regulators need good information to make good decisions. • Nanomaterials and their interactions with biology are very complex. • Computational methods use existing data to predict properties of new nanomaterials. • Statistical, data driven modelling methods have been successfully applied to this task. • Much more must be learnt before robust toolkits will be widely usable by regulators.

  6. Computational studies on the interactions of nanomaterials with proteins and their impacts

    International Nuclear Information System (INIS)

    An De-Yi; Li Jing-Yuan; Su Ji-Guo; Li Chun-Hua

    2015-01-01

    The intensive concern over the biosafety of nanomaterials demands the systematic study of the mechanisms underlying their biological effects. Many of the effects of nanomaterials can be attributed to their interactions with proteins and their impacts on protein function. On the other hand, nanomaterials show potential for a variety of biomedical applications, many of which also involve direct interactions with proteins. In this paper, we review some recent computational studies on this subject, especially those investigating the interactions of carbon and gold nanomaterials. Beside hydrophobic and π-stacking interactions, the mode of interaction of carbon nanomaterials can also be regulated by their functional groups. The coatings of gold nanomaterials similarly adjust their mode of interaction, in addition to coordination interactions with the sulfur groups of cysteine residues and the imidazole groups of histidine residues. Nanomaterials can interact with multiple proteins and their impacts on protein activity are attributed to a wide spectrum of mechanisms. These findings on the mechanisms of nanomaterial–protein interactions can further guide the design and development of nanomaterials to realize their application in disease diagnosis and treatment. (paper)

  7. Emerging roles of engineered nanomaterials in the food industry.

    Science.gov (United States)

    Morris, V J

    2011-10-01

    Nanoscience is the study of phenomena and the manipulation of materials at the atomic or molecular level. Nanotechnology involves the design, production and use of structures through control of the size and shape of the materials at the nanometre scale. Nanotechnology in the food sector is an emerging area with considerable research and potential products. There is particular interest in the definition and regulation of engineered nanomaterials. This term covers three classes of nanomaterials: natural and processed nanostructures in foods; particulate nanomaterials metabolized or excreted on digestion; and particulate nanomaterials not broken down on digestion, which accumulate in the body. This review describes examples of these classes and their likely status in the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Pulmonary exposure to carbonaceous nanomaterials and sperm quality.

    Science.gov (United States)

    Skovmand, Astrid; Jacobsen Lauvås, Anna; Christensen, Preben; Vogel, Ulla; Sørig Hougaard, Karin; Goericke-Pesch, Sandra

    2018-01-31

    Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung capillaries, enter the systemic circulation and ultimately reach the testes. Both the inflammatory response and the particles may induce oxidative stress which can directly affect spermatogenesis. Furthermore, spermatogenesis may be indirectly affected by changes in the hormonal milieu as systemic inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model. Effects on sperm quality after pulmonary inflammation induced by carbonaceous nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 μg/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks. Pulmonary inflammation was determined by differential cell count in bronchoalveolar lavage fluid. Epididymal sperm concentration and motility were measured by computer-assisted sperm analysis. Epididymal sperm viability and morphological abnormalities were assessed manually using Hoechst 33,342/PI flourescent and Spermac staining, respectively. Epididymal sperm were assessed with regard to sperm DNA integrity (damage). Daily sperm production was measured in the testis, and testosterone levels were measured in blood plasma by ELISA. Neutrophil numbers in the bronchoalveolar fluid showed sustained inflammatory response in the nanoparticle-exposed groups one week after the last instillation. No significant changes in epididymal sperm parameters, daily sperm production or plasma testosterone levels

  9. Managing the Life Cycle Risks of Nanomaterials

    Science.gov (United States)

    2009-07-01

    Nanomaterials Report Research to date focuses predominantly on aquatic organisms of the oceans or seas; no groundwater or soil exposure scenarios have been...pollution, create medical innovations, or develop new materials based on old concepts (e.g., plastics , thin films, and transistors). As already...Risks of Nanomaterials Report consumption, land use, ozone depletion, global warming, acidification , eutrophication, tropospheric ozone formation

  10. Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far?

    NARCIS (Netherlands)

    Handy, R.D.; Brink, van den N.W.; Chappell, M.; Muhling, M.; Behra, R.; Dusinska, M.; Simpson, P.; Ahtiainen, J.; Jha, A.N.; Seiter, J.; Bednar, A.; Kennedy, A.; Fernandes, T.F.; Riediker, M.

    2012-01-01

    This review paper reports the consensus of a technical workshop hosted by the European network, NanoImpactNet (NIN). The workshop aimed to review the collective experience of working at the bench with manufactured nanomaterials (MNMs), and to recommend modifications to existing experimental methods

  11. Production of nanomaterials: physical and chemical technologies

    International Nuclear Information System (INIS)

    Giorgi, Leonardo; Salernitano, Elena

    2015-01-01

    Are define nanomaterials those materials which have at least one dimension in the range between 1 and 100 nm. By the term nanotechnology refers, instead, to the study of phenomena and manipulation of materials at the atomic and molecular level. The materials brought to the nanometric dimensions take particular chemical-physical properties different from the corresponding conventional macro materials. Speaking about the structure of nanoscale, you can check some basic properties materials (eg. Melting temperature, magnetic and electrical properties) without changing its chemical composition. In this perspective are crucial knowledge and control of production processes in order to design and get the nanomaterial more suitable for a specific application. For this purpose, it describes a series of processes of production of nanomaterials with application examples. [it

  12. Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications.

    Science.gov (United States)

    Feng, Feng; Wu, Junchi; Wu, Changzheng; Xie, Yi

    2015-02-11

    Recent years have witnessed great developments in inorganic 2D nanomaterials for their unique dimensional confinement and diverse electronic energy bands. Precisely regulating their intrinsic electrical behaviors would bring superior electrical conductivity, rendering 2D nanomaterials ideal candidates for active materials in electrochemical applications when combined with the excellent reaction activity from the inorganic lattice. This Concept focuses on highly conducting inorganic 2D nanomaterials, including intrinsic metallic 2D nanomaterials and artificial highly conductive 2D nanomaterials. The intrinsic metallicity of 2D nanomaterials is derived from their closely packed atomic structures that ensure maximum overlapping of electron orbitals, while artificial highly conductive 2D nanomaterials could be achieved by designed methodologies of surface modification, intralayer ion doping, and lattice strain, in which atomic-scale structural modulation plays a vital role in realizing conducting behaviors. Benefiting from fast electron transfer, high reaction activity, as well as large surface areas arising from the 2D inorganic lattice, highly conducting 2D nanomaterials open up prospects for enhancing performance in electrochemical catalysis and electrochemical capacitors. Conductive 2D inorganic nanomaterials promise higher efficiency for electrochemical applications of energy conversion and storage. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    Science.gov (United States)

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Impact and effectiveness of risk mitigation strategies on the insurability of nanomaterial production: evidences from industrial case studies.

    Science.gov (United States)

    Bergamaschi, Enrico; Murphy, Finbarr; Poland, Craig A; Mullins, Martin; Costa, Anna L; McAlea, Eamonn; Tran, Lang; Tofail, Syed A M

    2015-01-01

    Workers involved in producing nanomaterials or using nanomaterials in manufacturing plants are likely to have earlier and higher exposure to manufactured/engineered nanomaterials (ENM) than the general population. This is because both the volume handled and the probability of the effluence of 'free' nanoparticles from the handled volume are much higher during a production process than at any other stage in the lifecycle of nanomaterials and nanotechnology-enabled products. Risk assessment (RA) techniques using control banding (CB) as a framework for risk transfer represents a robust theory but further progress on implementing the model is required so that risk can be transferred to insurance companies. Following a review of RA in general and hazard measurement in particular, we subject a Structural Alert Scheme methodology to three industrial case studies using ZrO2 , TiO2 , and multi-walled carbon nanotubes (MWCNT). The materials are tested in a pristine state and in a remediated (coated) state, and the respective emission and hazard rates are tested alongside the material performance as originally designed. To our knowledge, this is the first such implementation of a CB RA in conjunction with an ENM performance test and offers both manufacturers and underwriters an insight into future applications. © 2015 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  15. Standardization of nanomaterials characterization by scanning probe microscopy for societal acceptance

    International Nuclear Information System (INIS)

    Fujita, Daisuke; Onishi, Keiko; Xu, Mingsheng

    2009-01-01

    Novel nanomaterials are expected to play key roles for the promotion of innovations in the various industrial products. In order to make such novel nanomaterials to be socially acceptable and widely used, it is very important and necessary to establish the reliable nano-characterization methodology for the industrial nanomaterials under the authorized international scheme for standardization. Among the nano-characterization methods, scanning probe microscopy (SPM) is the most versatile both in the measurement functions and the operational environments. Whereas there are various nanomaterials of industrial application, fullerene nanomaterials (FNM) have attracted much attention due to their unique physical properties. Here we show the importance of the quantitative analysis and standardization of SPM using FNM as a typical example.

  16. Standardization of nanomaterials characterization by scanning probe microscopy for societal acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Daisuke [International Center for Materials Nanoarchitectonics (MANA) and Advanced Nano Characterization Center (ANCC), National Institute for Materials Science - NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Onishi, Keiko [Advanced Nano Characterization Center (ANCC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Mingsheng [International Center for Young Scientists-Interdisciplinary Materials Research (ICYS-IMAT), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)], E-mail: fujita.daisuke@nims.go.jp

    2009-04-01

    Novel nanomaterials are expected to play key roles for the promotion of innovations in the various industrial products. In order to make such novel nanomaterials to be socially acceptable and widely used, it is very important and necessary to establish the reliable nano-characterization methodology for the industrial nanomaterials under the authorized international scheme for standardization. Among the nano-characterization methods, scanning probe microscopy (SPM) is the most versatile both in the measurement functions and the operational environments. Whereas there are various nanomaterials of industrial application, fullerene nanomaterials (FNM) have attracted much attention due to their unique physical properties. Here we show the importance of the quantitative analysis and standardization of SPM using FNM as a typical example.

  17. Multifunctional ZnO Nanomaterials for Efficient Energy Conversion and Sensing

    Science.gov (United States)

    2015-12-02

    Final Report: Multifunctional ZnO Nanomaterials for Efficient Energy Conversion and Sensing The views, opinions and/or findings contained in this...ADDRESS. Fisk University 1000 17th Avenue North Nashville, TN 37208 -3045 31-May-2015 ABSTRACT Final Report: Multifunctional ZnO Nanomaterials for...and reproducible nanomaterials growth/synthesis with control of nanostructure size, shape, and functionality, in uniform functionalization with both

  18. Nanomaterials in consumer's goods: the problems of risk assessment

    Science.gov (United States)

    Gmoshinski, I. V.; Khotimchenko, S. A.

    2015-11-01

    Nanotechnology and engineered nanomaterials are currently used in wide variety of cosmetic products, while their use in food industry, packaging materials, household chemicals etc. still includes a limited number of items and does not show a significant upward trend. However, the problem of priority nanomaterials associated risks is relevant due to their high production volumes and an constantly growing burden on the environment and population. In accordance with the frequency of use in mass-produced consumer goods, leading priority nanomaterials are silver nanoparticles (NPs) and (by a wide margin) NPs of gold, platinum, and titanium dioxide. Frequency of nanosized silica introduction into food products as a food additive, at the moment, seems to be underestimated, since the use of this nanomaterial is not declared by manufacturers of products and objective control of its content is difficult. Analysis of literature data on toxicological properties of nanomaterials shows that currently accumulated amount of information is sufficient to establish the safe doses of nanosized silver, gold and titanium dioxide. Data have been provided in a series of studies concerning the effect of oral intake of nanosized silica on the condition of laboratory animals, including on the performance of the immune system. The article examines the existing approaches to the assessment of population exposure to priority nanomaterials, characteristics of existing problems and risk management.

  19. Investigation of two widely used nanomaterials (TiO{sub 2}, Ag) for ecotoxicological long-term effects. Adaption of test guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Schaefers, Christoph [Fraunhofer-Institut fuer Molekularbiologie und Angewandte Oekologie (IME), Schmallenberg (Germany); Weil, Mirco [ECT Oekotoxikologie GmbH, Floersheim (Germany)

    2013-03-15

    The nanoparticulate titanium dioxide NM-105 was investigated with Lumbriculus variegatus in a sediment- water system according to OECD TG 225. Test media were prepared by dilution of NM-105-suspensions with the sediment-overlying water. Nominal test concentrations (confirmed by chemical analysis of Ti conc. in test media) were 15; 23; 39; 63 and 100 mg NM-105/L. No adverse effects on reproduction or biomass of the worms were observed. The NOEC {>=} 100 mg/L was confirmed in a second test with 100 mg NM-105/L. At test end, Ti conc. in worms were similar in all treatments. Additionally, NM-105 was investigated in OECD TG 226 tests with the predatory mite Hypoaspis aculeifer. Test substrates were prepared by mixing the solid powder into artificial soil (test conc. {>=} 10mg/kg) or application of NM-105-suspensions ({<=} 10mg/kg). For 10 mg/kg, no influence of the application method on the endpoints was observed. No significant effect of the treatments 1; 10; 100; 1000 mg NM-105/kg artificial soil (dw) was detected in the 1{sup st} definitive test, the 2{sup nd} test at 1 and 1000 mg NM-105/kg showed significantly lower numbers of juvenile mites compared to the control in both treatments due to higher statistical power of the doubled number of replicates. For the standard design, which was proven to be applicable to the testing of nanomaterials, the NOEC was {>=} 1000 mg NM-105/kg. The nanoparticulate silver NM-300 K was investigated in two fish early life stage toxicity tests (OECD TG 210) with Danio rerio in a 250 L static system. The NM-300 K dispersion (1:10) was slightly diluted, ultra-sonificated and directly applied to the test vessels. The water in all test aquaria was constantly moved by four pumps each for homogeneous distribution and minimized sedimentation. Every 7 days, the test medium was exchanged. The nominal test concentrations were 12.5; 25; 50; 100 and 200 {mu}g Ag/L in the 1{sup st} test and 12.5; 50; 100 {mu}g/L in the 2{sup nd} test. Chemical

  20. Health and safety implications of occupational exposure to engineered nanomaterials.

    Science.gov (United States)

    Stebounova, Larissa V; Morgan, Hallie; Grassian, Vicki H; Brenner, Sara

    2012-01-01

    The rapid growth and commercialization of nanotechnology are currently outpacing health and safety recommendations for engineered nanomaterials. As the production and use of nanomaterials increase, so does the possibility that there will be exposure of workers and the public to these materials. This review provides a summary of current research and regulatory efforts related to occupational exposure and medical surveillance for the nanotechnology workforce, focusing on the most prevalent industrial nanomaterials currently moving through the research, development, and manufacturing pipelines. Their applications and usage precedes a discussion of occupational health and safety efforts, including exposure assessment, occupational health surveillance, and regulatory considerations for these nanomaterials. Copyright © 2011 Wiley Periodicals, Inc.

  1. Summary report of PQRI Workshop on Nanomaterial in Drug Products: current experience and management of potential risks.

    Science.gov (United States)

    Bartlett, Jeremy A; Brewster, Marcus; Brown, Paul; Cabral-Lilly, Donna; Cruz, Celia N; David, Raymond; Eickhoff, W Mark; Haubenreisser, Sabine; Jacobs, Abigail; Malinoski, Frank; Morefield, Elaine; Nalubola, Ritu; Prud'homme, Robert K; Sadrieh, Nakissa; Sayes, Christie M; Shahbazian, Hripsime; Subbarao, Nanda; Tamarkin, Lawrence; Tyner, Katherine; Uppoor, Rajendra; Whittaker-Caulk, Margaret; Zamboni, William

    2015-01-01

    At the Product Quality Research Institute (PQRI) Workshop held last January 14-15, 2014, participants from academia, industry, and governmental agencies involved in the development and regulation of nanomedicines discussed the current state of characterization, formulation development, manufacturing, and nonclinical safety evaluation of nanomaterial-containing drug products for human use. The workshop discussions identified areas where additional understanding of material attributes, absorption, biodistribution, cellular and tissue uptake, and disposition of nanosized particles would continue to inform their safe use in drug products. Analytical techniques and methods used for in vitro characterization and stability testing of formulations containing nanomaterials were discussed, along with their advantages and limitations. Areas where additional regulatory guidance and material characterization standards would help in the development and approval of nanomedicines were explored. Representatives from the US Food and Drug Administration (USFDA), Health Canada, and European Medicines Agency (EMA) presented information about the diversity of nanomaterials in approved and newly developed drug products. USFDA, Health Canada, and EMA regulators discussed the applicability of current regulatory policies in presentations and open discussion. Information contained in several of the recent EMA reflection papers was discussed in detail, along with their scope and intent to enhance scientific understanding about disposition, efficacy, and safety of nanomaterials introduced in vivo and regulatory requirements for testing and market authorization. Opportunities for interaction with regulatory agencies during the lifecycle of nanomedicines were also addressed at the meeting. This is a summary of the workshop presentations and discussions, including considerations for future regulatory guidance on drug products containing nanomaterials.

  2. Categorization framework to aid hazard identification of nanomaterials

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Larsen, Britt Hvolbæk; Olsen, Stig Irving

    2007-01-01

    and propose a categorization framework that enables scientists and regulators to identify the categories of nanomaterials systematically. The framework is applied to a suggested hazard identification approach aimed at identifying causality between inherent physical and chemical properties and observed adverse...... of the nanoparticles studied and it was not possible to link specific properties of nanoparticles to the observed effects. Our study shows that future research strategies must have a strong focus on characterization of the nanoparticles tested....

  3. Nanomaterials and nanotechnologies in nuclear energy chemistry

    International Nuclear Information System (INIS)

    Shi, W.Q.; Yuan, L.Y.; Li, Z.J.; Lan, J.H.; Zhao, Y.L.; Chai, Z.F.

    2012-01-01

    With the rapid growth of human demands for nuclear energy and in response to the challenges of nuclear energy development, the world's major nuclear countries have started research and development work on advanced nuclear energy systems in which new materials and new technologies are considered to play important roles. Nanomaterials and nanotechnologies, which have gained extensive attention in recent years, have shown a wide range of application potentials in future nuclear energy system. In this review, the basic research progress in nanomaterials and nanotechnologies for advanced nuclear fuel fabrication, spent nuclear fuel reprocessing, nuclear waste disposal and nuclear environmental remediation is selectively highlighted, with the emphasis on Chinese research achievements. In addition, the challenges and opportunities of nanomaterials and nanotechnologies in future advanced nuclear energy system are also discussed. (orig.)

  4. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing.

    Science.gov (United States)

    Wang, Ying; Mortimer, Monika; Chang, Chong Hyun; Holden, Patricia A

    2018-01-30

    Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs) is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA) was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA's biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa ). Using 400 mg·L -1 AA, comparably stable NM (200 mg·L -1 ) stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results.

  5. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA’s biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa. Using 400 mg·L−1 AA, comparably stable NM (200 mg·L−1 stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results.

  6. Artifacts by marker enzyme adsorption on nanomaterials in cytotoxicity assays with tissue cultures

    International Nuclear Information System (INIS)

    Wohlleben, Wendel; Kolle, Susanne N; Hasenkamp, Laura-Carolin; Boeser, Alexander; Vogel, Sandra; Vacano, Bernhard von; Ravenzwaay, Ben van; Landsiedel, Robert

    2011-01-01

    We used precision cut lung slices (PCLS) to study the cytotoxicity of cobalt ferrite nanomaterials with and without bovine serum albumin (BSA) stabilization. Using mitochondrial activity as an indicator of cytotoxicity (WST-1 assay) increasing concentrations of cobalt ferrite nanomaterial caused increasing levels of cytotoxicity in PCLS irrespective of BSA stabilization. However, there was no increase in released lactate dehydrogenase (LDH) levels caused by BSA stabilized nanomaterial indicating concentration depended cytotoxictiy. Moreover, non-stabilized nanomaterial caused a decrease of background LDH levels in the PCLS culture supernatant confirmed by complementary methods. Direct characterization of the protein corona of extracted nanomaterial shows that the LDH decrease is due to adsorption of LDH onto the surface of the non-stabilized nanomaterial, correlated with strong agglomeration. Preincubation with serum protein blocks the adsorption of LDH and stabilizes the nanomaterial at low agglomeration. We have thus demonstrated the cytotoxicity of nanomaterials in PCLS does not correlate with disrupted membrane integrity followed by LDH release. Furthermore, we found that intracellular enzymes such as the marker enzyme LDH are able to bind onto surfaces of nanomaterial and thereby adulterate the detection of toxic effects. A replacement of BSA by LDH or a secondary LDH-on-BSA-corona were not observed, confirming earlier indications that the protein corona exchange rate are slow or vanishing on inorganic nanomaterial. Thus, the method(s) to assess nanomaterial-mediated effects have to be carefully chosen based on the cellular effect and possible nano-specific artifacts.

  7. How should the completeness and quality of curated nanomaterial data be evaluated?

    Science.gov (United States)

    Marchese Robinson, Richard L.; Lynch, Iseult; Peijnenburg, Willie; Rumble, John; Klaessig, Fred; Marquardt, Clarissa; Rauscher, Hubert; Puzyn, Tomasz; Purian, Ronit; Åberg, Christoffer; Karcher, Sandra; Vriens, Hanne; Hoet, Peter; Hoover, Mark D.; Hendren, Christine Ogilvie; Harper, Stacey L.

    2016-05-01

    Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials' behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated?Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict

  8. Understanding the biological and environmental implications of nanomaterials

    Science.gov (United States)

    Lin, Sijie

    The last two decades have witnessed the discovery, development, and large-scale manufacturing of novel nanomaterials. While nanomaterials bring in exciting and extraordinary properties in all areas of materials, electronics, mechanics, and medicine, they also could generate potential adverse effects in biological systems and in the environment. The currently limited application of nanomaterials in biological and ecological systems results from the insufficient and often controversial data on describing the complex behaviors of nanomaterials in living systems. The purpose of this dissertation intends to fill such a knowledge void with methodologies from the disciplines of biophysics, biology, and materials science and engineering. Chapter 1 of this dissertation provides a comprehensive review on the structures and properties of carbon nanomaterials (CBNMs), metal oxides, and quantum dots (QDs). This chapter also details the state-of-the-art on the biological applications, ecological applications, and toxicity of nanomaterials. With Chapter 1 serving as a background, Chapters 2-5 present my PhD research, an inquiry on the fate of nanomaterials in biological and ecological systems, on the whole organism and cellular levels. Specifically, CBNMs are introduced to rice plant seedlings and the uptake, translocation and generational transfer of fullerene C70 in the plant compartments are imaged and characterized. The interactions between CBNMs and rice plants on the whole organism level are initiated by the binding between CBNMs and natural organic matter (NOM), driven by the transpiration of water from the roots to the leaves of the plants and mediated by both the physiochemical properties of the CBNMs and plant physiology. In Chapter 3, semiconducting nanocrystals quantum dots (QDs) are introduced to green algae Chlamydomonas to probe the interactions of nanomaterials with ecological systems on the cellular level. The adsorption of QDs onto the algal cell wall is

  9. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.

    Science.gov (United States)

    Li, Ming; Li, Rui; Li, Chang Ming; Wu, Nianqiang

    2011-06-01

    Nanomaterials and nanostructures exhibit unique size-tunable and shape-dependent physicochemical properties that are different from those of bulk materials. Advances of nanomaterials and nanostructures open a new door to develop various novel biosensors. The present work has reviewed the recent progress in electrochemical, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescent biosensors based on nanomaterials and nanostructures. An emphasis is put on the research that demonstrates how the performance of biosensors such as the limit of detection, sensitivity and selectivity is improved by the use of nanomaterials and nanostructures.

  10. Surface engineering of graphene-based nanomaterials for biomedical applications.

    Science.gov (United States)

    Shi, Sixiang; Chen, Feng; Ehlerding, Emily B; Cai, Weibo

    2014-09-17

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.

  11. Smart nanomaterials for biomedics.

    Science.gov (United States)

    Choi, Soonmo; Tripathi, Anuj; Singh, Deepti

    2014-10-01

    Nanotechnology has become important in various disciplines of technology and science. It has proven to be a potential candidate for various applications ranging from biosensors to the delivery of genes and therapeutic agents to tissue engineering. Scaffolds for every application can be tailor made to have the appropriate physicochemical properties that will influence the in vivo system in the desired way. For highly sensitive and precise detection of specific signals or pathogenic markers, or for sensing the levels of particular analytes, fabricating target-specific nanomaterials can be very useful. Multi-functional nano-devices can be fabricated using different approaches to achieve multi-directional patterning in a scaffold with the ability to alter topographical cues at scale of less than or equal to 100 nm. Smart nanomaterials are made to understand the surrounding environment and act accordingly by either protecting the drug in hostile conditions or releasing the "payload" at the intended intracellular target site. All of this is achieved by exploiting polymers for their functional groups or incorporating conducting materials into a natural biopolymer to obtain a "smart material" that can be used for detection of circulating tumor cells, detection of differences in the body analytes, or repair of damaged tissue by acting as a cell culture scaffold. Nanotechnology has changed the nature of diagnosis and treatment in the biomedical field, and this review aims to bring together the most recent advances in smart nanomaterials.

  12. Application of nanomaterials in the bioanalytical detection of disease-related genes.

    Science.gov (United States)

    Zhu, Xiaoqian; Li, Jiao; He, Hanping; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-12-15

    In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences. Copyright © 2015. Published by Elsevier B.V.

  13. Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence

    International Nuclear Information System (INIS)

    Gu Cuiping; Huang Jiarui; Ni Ning; Li Minqiang; Liu Jinhuai

    2008-01-01

    In this paper, enhanced fluorescence emissions were firstly investigated based on SnO 2 nanomaterial, and its application in the detection of DNA hybridization was also demonstrated. The microarray of SnO 2 nanomaterial was fabricated by the vapour phase transport method catalyzed by patterned Au nanoparticles on a silicon substrate. A probe DNA was immobilized on the substrate with patterned SnO 2 nanomaterial, respectively, by covalent and non-covalent linking schemes. When a fluorophore labelled target DNA was hybridized with a probe DNA on the substrate, fluorescence emissions were only observed on the surface of SnO 2 nanomaterial, which indicated the property of enhancing fluorescence signals from the SnO 2 nanomaterial. By comparing the different fluorescence images from covalent and non-covalent linking schemes, the covalent method was confirmed to be more effective for immobilizing a probe DNA. With the combined use of SnO 2 nanomaterial and the covalent linking scheme, the target DNA could be detected at a very low concentration of 10 fM. And the stability of SnO 2 nanomaterial under the experimental conditions was also compared with silicon nanowires. The findings strongly suggested that SnO 2 nanomaterial could be extensively applied in detections of biological samples with enhancing fluorescence property and high stability

  14. Copper-based nanomaterials for environmental decontamination - An overview on technical and toxicological aspects.

    Science.gov (United States)

    Khalaj, Mohammadreza; Kamali, Mohammadreza; Khodaparast, Zahra; Jahanshahi, Akram

    2018-02-01

    Synthesis of the various types of engineered nanomaterials has gained a huge attention in recent years for various applications. Copper based nanomaterials are a branch of this category seem to be able to provide an efficient and cost-effective way for the treatment of the persistent effluents. The present work aimed to study the various parameters may involve in the overall performance of the copper based nanomaterials for environmental clean-up purposes. To this end, the related characteristics of copper based nanomaterials and their effects on the nanomaterials reactivity and the environmental and operating parameters have been critically reviewed. Toxicological study of the copper based nanomaterials has been also considered as a factor with high importance for the selection of a typical nanomaterial with optimum performance and minimum environmental and health subsequent effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment

    Science.gov (United States)

    Ono-Ogasawara, Mariko; Serita, Fumio; Takaya, Mitsutoshi

    2009-10-01

    As the production of engineered nanomaterials quantitatively expands, the chance that workers involved in the manufacturing process will be exposed to nanoparticles also increases. A risk management system is needed for workplaces in the nanomaterial industry based on the precautionary principle. One of the problems in the risk management system is difficulty of exposure assessment. In this article, examples of exposure assessment in nanomaterial industries are reviewed with a focus on distinguishing engineered nanomaterial particles from background nanoparticles in workplace atmosphere. An approach by JNIOSH (Japan National Institute of Occupational Safety and Health) to quantitatively measure exposure to carbonaceous nanomaterials is also introduced. In addition to real-time measurements and qualitative analysis by electron microscopy, quantitative chemical analysis is necessary for quantitatively assessing exposure to nanomaterials. Chemical analysis is suitable for quantitative exposure measurement especially at facilities with high levels of background NPs.

  16. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-01-01

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  17. Carbon nanomaterials for advanced energy conversion and storage.

    Science.gov (United States)

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-04-14

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  19. Synthesis of nanoparticles and nanomaterials biological approaches

    CERN Document Server

    Abdullaeva, Zhypargul

    2017-01-01

    This book covers biological synthesis approaches for nanomaterials and nanoparticles, including introductory material on their structure, phase compositions and morphology, nanomaterials chemical, physical, and biological properties. The chapters of this book describe in sequence the synthesis of various nanoparticles by microorganisms, bacteria, yeast, algae, and actynomycetes; plant and plant extract-based synthesis; and green synthesis methods. Each chapter provides basic knowledge on the synthesis of nanomaterials, defines fundamental terms, and aims to build a solid foundation of knowledge, followed by explanations, examples, visual photographs, schemes, tables and illustrations. Each chapter also contains control questions, problem drills, as well as case studies that clarify theory and the explanations given in the text. This book is ideal for researchers and advanced graduate students in materials engineering, biotechnology, and nanotechnology fields. As a reference book this work is also appropriate ...

  20. Nanomaterial-enabled Rapid Detection of Water Contaminants.

    Science.gov (United States)

    Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong

    2015-10-28

    Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Food decontamination using nanomaterials

    Science.gov (United States)

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  2. Environmental risk assessment and management of engineered nanomaterials - The role of ecotoxicity testing

    DEFF Research Database (Denmark)

    Hjorth, Rune

    replaced with a focus on in silico and in vitro studies with an even greater need for and reliance on extrapolation. However, in this thesis it is argued that within ecotoxicity, whole organism models remain at the foundation of environmental risk assessment, and as such, they are likely to remain in use...... will be available, it is important that tools encompassing uncertainty are utilized to facilitate decision-support. As the risk constituted by ENMs cannot be quantified, the use, need and ability of risk management options to encompass the potential risk are similarly challenged. This should invoke a precautionary...... to these is the continued examination of the applicability of ecotoxicity testing to encompass the testing of particles, as the tests originally are developed for dissolved chemicals. Furthermore, the ability of such testing to inform environmental risk assessment and environmental risk management, including...

  3. Epidemiological study of health hazards among workers handling engineered nanomaterials

    International Nuclear Information System (INIS)

    Liou, Saou-Hsing; Tsou, Tsui-Chun; Wang, Shu-Li; Li, Lih-Ann; Chiang, Hung-Che; Li, Wan-Fen; Lin, Pin-Pin; Lai, Ching-Huang; Lee, Hui-Ling; Lin, Ming-Hsiu; Hsu, Jin-Huei; Chen, Chiou-Rong; Shih, Tung-Sheng; Liao, Hui-Yi; Chung, Yu-Teh

    2012-01-01

    The aim of this study was to establish and identify the health effect markers of workers with potential exposure to nanoparticles (20–100 nm) during manufacturing and/or application of nanomaterials. For this cross-sectional study, we recruited 227 workers who handled nanomaterials and 137 workers for comparison who did not from 14 plants in Taiwan. A questionnaire was used to collect data on exposure status, demographics, and potential confounders. The health effect markers were measured in the medical laboratory. Control banding from the Nanotool Risk Level Matrix was used to categorize the exposure risk levels of the workers. The results showed that the antioxidant enzyme, superoxide dismutase (SOD) in risk level 1 (RL1) and risk level 2 (RL2) workers was significantly (p RL1 > RL2). Another antioxidant, glutathione peroxidase (GPX), was significantly lower only in RL1 workers than in the control workers. The cardiovascular markers, fibrinogen and ICAM (intercellular adhesion molecule), were significantly higher in RL2 workers than in controls and a significant dose–response with an increasing trend was found for these two cardiovascular markers. Another cardiovascular marker, interleukin-6, was significantly increased among RL1 workers, but not among RL2 workers. The accuracy rate for remembering 7-digits and reciting them backwards was significantly lower in RL2 workers (OR = 0.48) than in controls and a significantly reversed gradient was also found for the correct rate of backward memory (OR = 0.90 for RL1, OR = 0.48 for RL2, p < 0.05 in test for trend). Depression of antioxidant enzymes and increased expression of cardiovascular markers were found among workers handling nanomaterials. Antioxidant enzymes, such as SOD and GPX, and cardiovascular markers, such as fibrinogen, ICAM, and interluekin-6, are possible biomarkers for medical surveillance of workers handling engineered nanomaterials.

  4. Exploring release and recovery of nanomaterials from commercial polymeric nanocomposites

    International Nuclear Information System (INIS)

    Busquets-Fité, Martí; Puntes, Víctor; Fernandez, Elisabet; Janer, Gemma; Vilar, Gemma; Vázquez-Campos, Socorro; Zanasca, R; Citterio, C; Mercante, L

    2013-01-01

    Much concern has been raised about the risks associated with the broad use of polymers containing nanomaterials. Much is known about degradation and aging of polymers and nanomaterials independently, but very few studies have been done in order to understand degradation of polymeric nanocomposites containing nanomaterials and the fate of these nanomaterials, which may occur in suffering many processes such as migration, release and physicochemical modifications. Throughout the UE funded FP7 project NANOPOLYTOX, studies on the migration, release and alteration of mechanical properties of commercial nanocomposites due to ageing and weathering have been performed along with studies on the feasibility of recovery and recycling of the nanomaterials. The project includes the use as model nanocomposites of Polyamide-6 (PA), Polypropylene (PP) and Ethyl Vinyl Acetate (EVA) as polymeric matrix filled with a 3% in mass of a set of selected broadly used nanomaterials; from inorganic metal oxides nanoparticles (SiO2, TiO2 and ZnO) to multi-walled carbon nanotubes (MWCNT) and Nanoclays. These model nanocomposites were then treated under accelerated ageing conditions in climatic chamber. To determine the degree of degradation of the whole nanocomposite and possible processes of migration, release and modification of the nanofillers, nanocomposites were characterized by different techniques. Additionally, recovery of the nanomaterials fro m the polymeric matrix was addressed, being successfully achieved for PA and PP based nanocomposites. In the case of PA, dissolution of the polymeric matrix using formic acid and further centrifugation steps was the chosen approach, while for PP based nanocomposites calcination was performed.

  5. Center for Functional Nanomaterials (CFN)

    Data.gov (United States)

    Federal Laboratory Consortium — The CFN at Brookhaven National Laboratory focuses on understanding the chemical and physical response of nanomaterials to make functional materials such as sensors,...

  6. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  7. Final Report: ''Energetics of Nanomaterials''

    International Nuclear Information System (INIS)

    Navrotsky, Alexandra; Ross, Nancy; Woodfield, Brian F

    2016-01-01

    Nanomaterials, solids with very small particle size, form the basis of new technologies that are revolutionizing fields such as energy, lighting, electronics, medical diagnostics, and drug delivery. These nanoparticles are different from conventional bulk materials in many ways we do not yet fully understand. This project focused on their structure and thermodynamics and emphasized the role of water in nanoparticle surfaces. Using a unique and synergistic combination of high-tech techniques-namely oxide melt solution calorimetry, cryogenic heat capacity measurements, and inelastic neutron scattering-this work has identified differences in structure, thermodynamic stability, and water behavior on nanoparticles as a function of composition and particle size. The systematics obtained increase the fundamental understanding needed to synthesize, retain, and apply these technologically important nanomaterials and to predict and tailor new materials for enhanced functionality, eventually leading to a more sustainable way of life. Highlights are reported on the following topics: surface energies, thermochemistry of nanoparticles, and changes in stability at the nanoscale; heat capacity models and the gapped phonon spectrum; control of pore structure, acid sites, and thermal stability in synthetic γ-aluminas; the lattice contribution is the same for bulk and nanomaterials; and inelastic neutron scattering studies of water on nanoparticle surfaces.

  8. Octanol-water distribution of engineered nanomaterials.

    Science.gov (United States)

    Hristovski, Kiril D; Westerhoff, Paul K; Posner, Jonathan D

    2011-01-01

    The goal of this study was to examine the effects of pH and ionic strength on octanol-water distribution of five model engineered nanomaterials. Distribution experiments resulted in a spectrum of three broadly classified scenarios: distribution in the aqueous phase, distribution in the octanol, and distribution into the octanol-water interface. Two distribution coefficients were derived to describe the distribution of nanoparticles among octanol, water and their interface. The results show that particle surface charge, surface functionalization, and composition, as well as the solvent ionic strength and presence of natural organic matter, dramatically impact this distribution. Distributions of nanoparticles into the interface were significant for nanomaterials that exhibit low surface charge in natural pH ranges. Increased ionic strengths also contributed to increased distributions of nanoparticle into the interface. Similarly to the octanol-water distribution coefficients, which represent a starting point in predicting the environmental fate, bioavailability and transport of organic pollutants, distribution coefficients such as the ones described in this study could help to easily predict the fate, bioavailability, and transport of engineered nanomaterials in the environment.

  9. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  10. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  11. Mendeleev-2013. VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials. Book of abstracts. Section 1. Nanochemistry and nanomaterials

    International Nuclear Information System (INIS)

    2013-01-01

    VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials was conducted on the Chemistry department of Saint-Petersburg University on April, 2-5, 2013. In the conference participants from 14 countries took part. There were five sections: Nanochemistry and nanomaterials, Analytic chemistry, Inorganic chemistry, Organic chemistry, Physical chemistry. In the collection (Section 1 - Nanochemistry and nanomaterials) there are the abstracts concerning the different methods of preparation of various inorganic and organic nanomaterials, their structure and use [ru

  12. In Situ Formation of Carbon Nanomaterials on Bulk Metallic Materials

    Directory of Open Access Journals (Sweden)

    J. Y. Xu

    2014-01-01

    Full Text Available Carbon nanomaterials were synthesized in situ on bulk 316L stainless steel, pure cobalt, and pure nickel by hybrid surface mechanical attrition treatment (SMAT. The microstructures of the treated samples and the resulted carbon nanomaterials were investigated by SEM and TEM characterizations. Different substrates resulted in different morphologies of products. The diameter of carbon nanomaterials is related to the size of the nanograins on the surface layer of substrates. The possible growth mechanism was discussed. Effects of the main parameters of the synthesis, including the carbon source and gas reactant composition, hydrogen, and the reaction temperature, were studied. Using hybrid SMAT is proved to be an effective way to synthesize carbon nanomaterials in situ on surfaces of metallic materials.

  13. Optical Properties of Hybrid Nanomaterials

    Indian Academy of Sciences (India)

    owner

    K. George Thomas. Photosciences & Photonics Group. National Institute for Interdisciplinary. Science and Technology (NIIST), CSIR,. Trivandrum- 695 019, INDIA. (kgt@vsnl.com). Optical Properties of Hybrid. Nanomaterials ...

  14. A Reference Searching Related To Nanomaterials,Food Packaging and Sustainability

    OpenAIRE

    Tonnie, Aruoture Onome

    2007-01-01

    This report focuses on the study of nanomaterials as a packaging material for the food industries. Reviews were carried out and the various properties exhibited by various nanomaterial used in the packaging industry were looked into. An investigation was also done on carbon nanotubes which are used to a large extent as reinforcing materials in the development of new class of nanocomposites. This report also traces the cause of sustainability problems associated with the use of nanomaterials i...

  15. 78 FR 36784 - Survey of Nanomaterial Risk Management Practices

    Science.gov (United States)

    2013-06-19

    ...-0010, Docket Number NIOSH-265] Survey of Nanomaterial Risk Management Practices AGENCY: National...), Department of Health and Human Services (HHS). ACTION: Proposed NIOSH Survey of Nanomaterial Risk Management... questions addressing risk management practices for ENMs? (5) What should be the maximum amount of time...

  16. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  17. Nanomaterials for fresh-keeping and sterilization in food preservation.

    Science.gov (United States)

    Liu, Dongfang; Gu, Ning

    2009-06-01

    Food sterilizing and antistaling technologies are very important to the public's health and safety and have been attracting more and more attentions. In the past several years, new development chance was created by the introduction of nanomaterials to this critical field. Nanomaterials possess lots of outstanding properties, such as unique quantum size effect, large surface area and catalytic properties, which jointly facilitate high effective fresh-keeping, and thus were considered as promising materials in food sterilization and antistale. This review article focuses on the patented applications of nanomaterials as food biocidal agents, bacteriostatic agents, catalysts and carriers for antistaling agents.

  18. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    Science.gov (United States)

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  19. Studies and Development of Radiation Processed Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree [Radiation Technology Development Section, Bhabha Atomic Research Centre, Mumbai (India)

    2009-07-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  20. 4th International Conference Nanotechnology and Nanomaterials

    CERN Document Server

    Yatsenko, Leonid

    2017-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 4th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2016) held in Lviv, Ukraine on August 24-27, 2016. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engineering and medical applications Co...

  1. 3rd International Conference Nanotechnology and Nanomaterials

    CERN Document Server

    Yatsenko, Leonid

    2016-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 3rd International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2015) held in Lviv, Ukraine on August 26-30, 2015. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), Ivan Franko National University of Lviv (Ukraine), University of Turin (Italy), Pierre and Marie Curie University (France), and European Profiles A.E. (Greece). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engine...

  2. Studies and Development of Radiation Processed Nanomaterials

    International Nuclear Information System (INIS)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree

    2009-01-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  3. Nanomaterials in glucose sensing

    CERN Document Server

    Burugapalli, Krishna

    2013-01-01

    The smartness of nano-materials is attributed to their nanoscale and subsequently unique physicochemical properties and their use in glucose sensing has been aimed at improving performance, reducing cost and miniaturizing the sensor and its associated instrumentation. So far, portable (handheld) glucose analysers were introduced for hospital wards, emergency rooms and physicians' offices; single-use strip systems achieved nanolitre sampling for painless and accurate home glucose monitoring; advanced continuous monitoring devices having 2 to 7 days operating life are in clinical and home use; and continued research efforts are being made to develop and introduce increasingly advanced glucose monitoring systems for health as well as food, biotechnology, cell and tissue culture industries. Nanomaterials have touched every aspect of biosensor design and this chapter reviews their role in the development of advanced technologies for glucose sensing, and especially for diabetes. Research shows that overall, nanomat...

  4. ECSIN's methodological approach for hazard evaluation of engineered nanomaterials

    Science.gov (United States)

    Bregoli, Lisa; Benetti, Federico; Venturini, Marco; Sabbioni, Enrico

    2013-04-01

    The increasing production volumes and commercialization of engineered nanomaterials (ENM), together with data on their higher biological reactivity when compared to bulk counterpart and ability to cross biological barriers, have caused concerns about their potential impacts on the health and safety of both humans and the environment. A multidisciplinary component of the scientific community has been called to evaluate the real risks associated with the use of products containing ENM, and is today in the process of developing specific definitions and testing strategies for nanomaterials. At ECSIN we are developing an integrated multidisciplinary methodological approach for the evaluation of the biological effects of ENM on the environment and human health. While our testing strategy agrees with the most widely advanced line of work at the European level, the choice of methods and optimization of protocols is made with an extended treatment of details. Our attention to the methodological and technical details is based on the acknowledgment that the innovative characteristics of matter at the nano-size range may influence the existing testing methods in a partially unpredictable manner, an aspect which is frequently recognized at the discussion level but oftentimes disregarded at the laboratory bench level. This work outlines the most important steps of our testing approach. In particular, each step will be briefly discussed in terms of potential technical and methodological pitfalls that we have encountered, and which are often ignored in nanotoxicology research. The final aim is to draw attention to the need of preliminary studies in developing reliable tests, a crucial aspect to confirm the suitability of the chosen analytical and toxicological methods to be used for the specific tested nanoparticle, and to express the idea that in nanotoxicology,"devil is in the detail".

  5. ECSIN's methodological approach for hazard evaluation of engineered nanomaterials

    International Nuclear Information System (INIS)

    Bregoli, Lisa; Benetti, Federico; Venturini, Marco; Sabbioni, Enrico

    2013-01-01

    The increasing production volumes and commercialization of engineered nanomaterials (ENM), together with data on their higher biological reactivity when compared to bulk counterpart and ability to cross biological barriers, have caused concerns about their potential impacts on the health and safety of both humans and the environment. A multidisciplinary component of the scientific community has been called to evaluate the real risks associated with the use of products containing ENM, and is today in the process of developing specific definitions and testing strategies for nanomaterials. At ECSIN we are developing an integrated multidisciplinary methodological approach for the evaluation of the biological effects of ENM on the environment and human health. While our testing strategy agrees with the most widely advanced line of work at the European level, the choice of methods and optimization of protocols is made with an extended treatment of details. Our attention to the methodological and technical details is based on the acknowledgment that the innovative characteristics of matter at the nano-size range may influence the existing testing methods in a partially unpredictable manner, an aspect which is frequently recognized at the discussion level but oftentimes disregarded at the laboratory bench level. This work outlines the most important steps of our testing approach. In particular, each step will be briefly discussed in terms of potential technical and methodological pitfalls that we have encountered, and which are often ignored in nanotoxicology research. The final aim is to draw attention to the need of preliminary studies in developing reliable tests, a crucial aspect to confirm the suitability of the chosen analytical and toxicological methods to be used for the specific tested nanoparticle, and to express the idea that in nanotoxicology,'devil is in the detail'.

  6. Characterization of nanomaterial test solutions for terrestrial plant dose-response studies: A comparative study of DLS and SAXS

    Science.gov (United States)

    Industrial applications of nanomaterials have expanded at an increasing rate in recent years, accompanied by the need for comprehensive toxicological assessments to establish environmental health and safety standards. Relatively few studies have examined the effects of nanoparti...

  7. Nanomaterials environmental risks and recycling: Actual issues

    Directory of Open Access Journals (Sweden)

    Živković Dragana

    2014-01-01

    Full Text Available Nanotechnologies are being spoken of as the driving force behind a new industrial revolution. Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. The size of nanoparticles allows them to interact strongly with biological structures, so they present potential human and environmental health risk. Nanometer size presents also a problem for separation, recovery, and reuse of the particulate matter. Therefore, industrial-scale manufacturing and use of nanomaterials could have strong impact on human health and the environment or the problematic of nanomaterials recycling. The catch-all term ''nanotechnology' is not sufficiently precise for risk governance and risk management purposes. The estimation of possible risks depends on a consideration of the life cycle of the material being produced, which involves understanding the processes and materials used in manufacture, the likely interactions between the product and individuals or the environment during its manufacture and useful life, and the methods used in its eventual disposal. From a risk-control point of view it will be necessary to systematically identify those critical issues, which should be looked at in more detail. Brief review of actual trends in nanomaterials environmental risks and recycling is given in this paper.

  8. Uncertainties of size measurements in electron microscopy characterization of nanomaterials in foods

    DEFF Research Database (Denmark)

    Dudkiewicz, Agnieszka; Boxall, Alistair B. A.; Chaudhry, Qasim

    2015-01-01

    Electron microscopy is a recognized standard tool for nanomaterial characterization, and recommended by the European Food Safety Authority for the size measurement of nanomaterials in food. Despite this, little data have been published assessing the reliability of the method, especially for size...... measurement of nanomaterials characterized by a broad size distribution and/or added to food matrices. This study is a thorough investigation of the measurement uncertainty when applying electron microscopy for size measurement of engineered nanomaterials in foods. Our results show that the number of measured...

  9. Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids.

    Science.gov (United States)

    Eichmann, Shannon L; Burnham, Nancy A

    2017-09-14

    Globally, a small percentage of oil is recovered from reservoirs using primary and secondary recovery mechanisms, and thus a major focus of the oil industry is toward developing new technologies to increase recovery. Many new technologies utilize surfactants, macromolecules, and even nanoparticles, which are difficult to deploy in harsh reservoir conditions and where failures cause material aggregation and sticking to rock surfaces. To combat these issues, typically material properties are adjusted, but recent studies show that adjusting the dispersing fluid chemistry could have significant impact on material survivability. Herein, the effect of injection fluid salinity and composition on nanomaterial fate is explored using atomic force microscopy (AFM). The results show that the calcium content in reservoir fluids affects the interactions of an AFM tip with a calcite surface, as surrogates for nanomaterials interacting with carbonate reservoir rock. The extreme force sensitivity of AFM provides the ability to elucidate small differences in adhesion at the pico-Newton (pN) level and provides direct information about material survivability. Increasing the calcium content mitigates adhesion at the pN-scale, a possible means to increase nanomaterial survivability in oil reservoirs or to control nanomaterial fate in other aqueous environments.

  10. Risk management strategy to increase the safety of workers in the nanomaterials industry

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Min-Pei, E-mail: lingmp@mail.cmu.edu.tw [Department of Health Risk Management, China Medical University, Taichung 40402, Taiwan, ROC (China); Lin, Wei-Chao; Liu, Chia-Chyuan [Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC (China); Huang, Yi-Shiao; Chueh, Miao-Ju [Industrial Safety and Health Association of the ROC, Taipei 11670, Taiwan, ROC (China); Shih, Tung-Sheng [Institute of Occupational Safety and Health, Council of Labor Affairs, Taipei 22143, Taiwan, ROC (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer On-site assessment of nanomaterials using physiochemical and cytotoxic analysis can help identify risks for each nanomaterials manufacturing plant. Black-Right-Pointing-Pointer The risk of the nanomaterials manufacturing plants can be divided into three levels based on exposure routes (tier 1), aspect identification (tier 2), and toxicological screening (tier 3). Black-Right-Pointing-Pointer According to the different risk levels, the precautionary risk management (PRM) such as technology control, engineering control, and personal protective equipment were applied. Black-Right-Pointing-Pointer The PRM strategy can be effectively reduced workers risks for nanomaterial industries. - Abstract: In recent years, many engineered nanomaterials (NMs) have been produced, but increasing research has revealed that these may have toxicities far greater than conventional materials and cause significant adverse health effects. At present, there is insufficient data to determine the permissible concentrations of NMs in the workplace. There is also a lack of toxicity data and environmental monitoring results relating to complete health risk assessment. In view of this, we believe that workers in the NMs industry should be provided with simple and practical risk management strategy to ensure occupational health and safety. In this study, we developed a risk management strategy based on the precautionary risk management (PRM). The risk of the engineered NMs manufacturing plants can be divided into three levels based on aspect identification, solubility tests, dermal absorption, and cytotoxic analyses. The risk management strategies include aspects relating to technology control, engineering control, personal protective equipment, and monitoring of the working environment for each level. Here we report the first case in which a simple and practical risk management strategy applying in specific engineered NMs manufacturing plants. We are

  11. Risk management strategy to increase the safety of workers in the nanomaterials industry

    International Nuclear Information System (INIS)

    Ling, Min-Pei; Lin, Wei-Chao; Liu, Chia-Chyuan; Huang, Yi-Shiao; Chueh, Miao-Ju; Shih, Tung-Sheng

    2012-01-01

    Highlights: ► On-site assessment of nanomaterials using physiochemical and cytotoxic analysis can help identify risks for each nanomaterials manufacturing plant. ► The risk of the nanomaterials manufacturing plants can be divided into three levels based on exposure routes (tier 1), aspect identification (tier 2), and toxicological screening (tier 3). ► According to the different risk levels, the precautionary risk management (PRM) such as technology control, engineering control, and personal protective equipment were applied. ► The PRM strategy can be effectively reduced workers risks for nanomaterial industries. - Abstract: In recent years, many engineered nanomaterials (NMs) have been produced, but increasing research has revealed that these may have toxicities far greater than conventional materials and cause significant adverse health effects. At present, there is insufficient data to determine the permissible concentrations of NMs in the workplace. There is also a lack of toxicity data and environmental monitoring results relating to complete health risk assessment. In view of this, we believe that workers in the NMs industry should be provided with simple and practical risk management strategy to ensure occupational health and safety. In this study, we developed a risk management strategy based on the precautionary risk management (PRM). The risk of the engineered NMs manufacturing plants can be divided into three levels based on aspect identification, solubility tests, dermal absorption, and cytotoxic analyses. The risk management strategies include aspects relating to technology control, engineering control, personal protective equipment, and monitoring of the working environment for each level. Here we report the first case in which a simple and practical risk management strategy applying in specific engineered NMs manufacturing plants. We are confident that our risk management strategy can be effectively reduced engineered NM industries risks for

  12. Sunlight-induced Transformations of Graphene-based Nanomaterials in Aquatic Environments

    Science.gov (United States)

    Graphene-based nanomaterials and other related carbon nanomaterials (CNMs) can be released from products during their life cycles. Upon entry into aquatic environments, they are potentially transformed by photochemical reactions, oxidation reactions and biological processes, all ...

  13. Effects of metal composition and ratio on peptide-templated multimetallic PdPt nanomaterials

    International Nuclear Information System (INIS)

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.; Merino, Kyle C.; Drummy, Lawrence F.

    2017-01-01

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bioinspired approaches have become increasingly popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a three-dimensional template for formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive toward a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied by transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted, which indicated a slight catalytic enhancement for the multicomponent materials. Finally, these results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.

  14. Effects of Metal Composition and Ratio on Peptide-Templated Multimetallic PdPt Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.; Merino, Kyle C.; Drummy, Lawrence F.; Lee, Sungsik; Reinhart, Benjamin; Ren, Yang; Munro, Catherine J.; Pylypenko, Svitlana; Frenkel, Anatoly I.; Bedford, Nicholas M.; Knecht, Marc R.

    2017-02-22

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bio-inspired approaches have become increasing popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a 3D template for the formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive towards a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied using transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted which indicated a slight catalytic enhancement for the multicomponent materials. These results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.

  15. Cooperative nanomaterials systems for cancer diagnosis and therapeutics

    Science.gov (United States)

    Park, Ji Ho

    The unique electromagnetic and biologic properties of nanomaterials are being harnessed to build powerful new medical technologies. Particularly, there have been recently increasing interests in cancer nanotechnology, wherein nanomaterials play an important role in ultrasensitive imaging, targeting, and therapy of cancer. However, these nanomaterials typically function as individual units and are designed to independently perform their tasks. In this dissertation, new cooperative nanosystems consisting of two distinct nanomaterials that work together to target, identify, or treat tumors in vivo were studied. In the first two chapters, the synthesis of worm-shaped dextran-coated iron oxide nanoparticles (nanoworms, NW) exhibiting substantial in vivo circulation times and significant tumor targeting when coated with tumor-homing peptides were studied. NWs are also found to display a greater magnetic resonance (MR) response than the spherical nanoparticles. Next, two types of multifunctional nanoparticles were fabricated for simultaneous detection and treatment of cancer. Micellar hybrid nanoparticles (MHN) that contain magnetic nanoparticles, quantum dots, and an anti-cancer drug doxorubicin (DOX) within a single PEG-modified phospholipid micelle were first prepared. Simultaneous multimodal imaging (MR and fluorescence) and targeted drug delivery in vitro and in vivo was performed using DOX-incorporated targeted MHN. Secondly, luminescent porous silicon nanoparticles (LPSINP) that were drug-loadable, biodegradable and relatively non-toxic were prepared. In contrast to most inorganic nanomaterials, LPSINP were degraded in vivo in a relatively short time with no noticeable toxicity. The clearance and degradation of intravenously injected LPSINP in the bladder, liver, and spleen were established by whole-body fluorescence imaging. Finally, two types of cooperative nanomaterials systems to amplify targeting and deliver drugs efficiently to regions of tumor invasion were

  16. On the experimental approaches for the assessment of the release of engineered nanomaterials from nanocomposites by physical degradation processes

    Science.gov (United States)

    Blázquez, M.; Egizabal, A.; Unzueta, I.

    2014-08-01

    The LIFE+ Project SIRENA, Simulation of the release of nanomaterials from consumer products for environmental exposure assessment, (LIFE11 ENV/ES/596) has set up a Technological Surveillance System (TSS) to trace technical references at worldwide level related to nanocomposites and the release from nanocomposites. So far a total of seventy three items of different nature (from peer reviewed articles to presentations and contributions to congresses) have been selected and classified as "nanomaterials release simulation technologies". In present document, different approaches for the simulation of different life cycle stages through the physical degradation of polymer nanocomposites at laboratory scale are assessed. In absence of a reference methodology, the comparison of the different protocols used still remains a challenge.

  17. Considerations on the EU definition of a nanomaterial: science to support policy making.

    Science.gov (United States)

    Bleeker, Eric A J; de Jong, Wim H; Geertsma, Robert E; Groenewold, Monique; Heugens, Evelyn H W; Koers-Jacquemijns, Marjorie; van de Meent, Dik; Popma, Jan R; Rietveld, Anton G; Wijnhoven, Susan W P; Cassee, Flemming R; Oomen, Agnes G

    2013-02-01

    In recent years, an increasing number of applications and products containing or using nanomaterials have become available. This has raised concerns that some of these materials may introduce new risks for humans or the environment. A clear definition to discriminate nanomaterials from other materials is prerequisite to include provisions for nanomaterials in legislation. In October 2011 the European Commission published the 'Recommendation on the definition of a nanomaterial', primarily intended to provide unambiguous criteria to identify materials for which special regulatory provisions might apply, but also to promote consistency on the interpretation of the term 'nanomaterial'. In this paper, the current status of various regulatory frameworks of the European Union with regard to nanomaterials is described, and major issues relevant for regulation of nanomaterials are discussed. This will contribute to better understanding the implications of the choices policy makers have to make in further regulation of nanomaterials. Potential issues that need to be addressed and areas of research in which science can contribute are indicated. These issues include awareness on situations in which nano-related risks may occur for materials that fall outside the definition, guidance and further development of measurement techniques, and dealing with changes during the life cycle. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. A redox proteomics approach to investigate the mode of action of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Riebeling, Christian [German Federal Institute for Risk Assessment (BfR), Department of Chemicals and Product Safety, Berlin (Germany); Wiemann, Martin [IBE R& D gGmbH, Institute for Lung Health, Münster (Germany); Schnekenburger, Jürgen [Biomedical Technology Center, Westfälische Wilhelms-University, Münster (Germany); Kuhlbusch, Thomas A.J. [Institute of Energy and Environmental Technology (IUTA) e.V., Air Quality & Sustainable Nanotechnology, Duisburg (Germany); Center for Nanointegration CENIDE, University of Duisburg-Essen, Duisburg, Germany, (Germany); Wohlleben, Wendel [BASF SE, Material Physics, Ludwigshafen (Germany); Luch, Andreas [German Federal Institute for Risk Assessment (BfR), Department of Chemicals and Product Safety, Berlin (Germany); Haase, Andrea, E-mail: andrea.haase@bfr.bund.de [German Federal Institute for Risk Assessment (BfR), Department of Chemicals and Product Safety, Berlin (Germany)

    2016-05-15

    Numbers of engineered nanomaterials (ENMs) are steadily increasing. Therefore, alternative testing approaches with reduced costs and high predictivity suitable for high throughput screening and prioritization are urgently needed to ensure a fast and effective development of safe products. In parallel, extensive research efforts are targeted to understanding modes of action of ENMs, which may also support the development of new predictive assays. Oxidative stress is a widely accepted paradigm associated with different adverse outcomes of ENMs. It has frequently been identified in in vitro and in vivo studies and different assays have been developed for this purpose. Fluorescent dye based read-outs are most frequently used for cell testing in vitro but may be limited due to possible interference of the ENMs. Recently, other assays have been put forward such as acellular determination of ROS production potential using methods like electron spin resonance, antioxidant quantification or the use of specific sensors. In addition, Omics based approaches have gained increasing attention. In particular, redox proteomics can combine the assessment of oxidative stress with the advantage of getting more detailed mechanistic information. Here we propose a comprehensive testing strategy for assessing the oxidative stress potential of ENMs, which combines acellular methods and fast in vitro screening approaches, as well as a more involved detailed redox proteomics approach. This allows for screening and prioritization in a first tier and, if required, also for unraveling mechanistic details down to compromised signaling pathways. - Highlights: • Oxidative stress is a general paradigm for nanomaterial hazard mechanism of action. • Reactive oxygen species generation can be predicted using acellular assays. • Cellular assays based on fluorescence suffer from interference by nanomaterials. • Protein carbonylation is an irreversible and predictive mark of oxidative stress.

  19. FROM ZERO-DIMENSIONAL TO 2-DIMENSIONAL CARBON NANOMATERIALS - part I: TYPES OF CNs

    Directory of Open Access Journals (Sweden)

    Cătălin IANCU

    2012-05-01

    Full Text Available In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. In this review paper are presented some of the most important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. The synthesis techniques are used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional CNs (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons, one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes, and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls.

  20. Development and In Vitro Toxicity Evaluation of Alternative Sustainable Nanomaterials

    Science.gov (United States)

    Novel nanomaterial types are rapidly being developed for the value they may add to consumer products without sufficient evaluation of implications for human health, toxicity, environmental impact and long-term sustainability. Nanomaterials made of metals, semiconductors and vario...

  1. Perspectives on the Emerging Applications of Multifaceted Biomedical Polymeric Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammed Gumel

    2015-01-01

    Full Text Available Biodegradable and biocompatible polymeric nanomaterials, serving as biomedical devices have garnered significant attention as a promising solution to therapeutic management of many chronic diseases. Despite their potentials, majority of the synthetic nanomaterials used in biomedical applications lack crucial properties, for example, ligand binding sites, responsiveness, and switchability to efficiently deliver intended drugs to the target site. Advancements in manipulating nanoscale geometry have incurred the incorporation of triggered release mechanism within the nanomaterials design. This expanded their potential applications beyond nanocarriers to theranostics exhibiting both tandem drug delivery and diagnostic capabilities. Additionally, it highlights possibilities to design nanomaterials that could translate chemical response(s to photometric display, thus making affordable biosensors and actuators readily available for biomedical exploitation. It is anticipated that, in the near future, these implementations could be made to access some of the most difficult therapy locations, for example, blood brain barrier to provide efficient management of Alzheimer, Huntington, and other neurodegenerative diseases. This review aims to serve as a reference platform by providing the readers with the overview of the recent advancements and cutting-edge techniques employed in the production and instrumentation of such nanomaterials.

  2. Biomedical Applications of Zinc Oxide Nanomaterials

    Science.gov (United States)

    Zhang, Yin; Nayak, Tapas R.; Hong, Hao; Cai, Weibo

    2013-01-01

    Nanotechnology has witnessed tremendous advancement over the last several decades. Zinc oxide (ZnO), which can exhibit a wide variety of nanostructures, possesses unique semiconducting, optical, and piezoelectric properties hence has been investigated for a wide variety of applications. One of the most important features of ZnO nanomaterials is low toxicity and biodegradability. Zn2+ is an indispensable trace element for adults (~10 mg of Zn2+ per day is recommended) and it is involved in various aspects of metabolism. Chemically, the surface of ZnO is rich in -OH groups, which can be readily functionalized by various surface decorating molecules. In this review article, we summarized the current status of the use of ZnO nanomaterials for biomedical applications, such as biomedical imaging (which includes fluorescence, magnetic resonance, positron emission tomography, as well as dual-modality imaging), drug delivery, gene delivery, and biosensing of a wide array of molecules of interest. Research in biomedical applications of ZnO nanomaterials will continue to flourish over the next decade, and much research effort will be needed to develop biocompatible/biodegradable ZnO nanoplatforms for potential clinical translation. PMID:24206130

  3. Applications of radiotracer techniques for the toxicology studies of nanomaterials

    International Nuclear Information System (INIS)

    Ma Yuhui; Zhang Zhiyong; Zhang Yuan; He Xiao; Zhang Haifeng; Chai Zhifang

    2008-01-01

    With the rapid development of nanosciences and nanotechnology, a wide variety of manufactured nanomaterials are now used in commodities, pharmaceutics, cosmetics, biomedical products, and industries. While nanomaterials possess more novel and unique physicochemical properties than bulk materials, they also have an unpredictable impact on human health. In the toxicology studies of nanomaterials, it is essential to know the basic behaviors in vivo, that is absorption, distribution, metabolism, and excretion (ADME) of these newly designed materials. Radiotracer techniques are especially well suited to such studies and has got the chance to demonstrate its enchantment. In this presentation, studies on radiotracer techniques used in nanotoxicology will be reviewed and new progresses at Institute of High Energy Physics, including the label methods and behaviors of labeled nanomaterials, such as fullerene, carbon nanotubes, and nanometer metal oxide in animals and in aquatic environments will be reported. (authors)

  4. Theoretical and experimental study: the size dependence of decomposition thermodynamics of nanomaterials

    International Nuclear Information System (INIS)

    Cui, Zixiang; Duan, Huijuan; Li, Wenjiao; Xue, Yongqiang

    2015-01-01

    In the processes of preparation and application of nanomaterials, the decomposition reactions of nanomaterials are often involved. However, there is a dramatic difference in decomposition thermodynamics between nanomaterials and the bulk counterparts, and the difference depends on the size of the particles that compose the nanomaterials. In this paper, the decomposition model of a nanoparticle was built, the theory of decomposition thermodynamics of nanomaterials was proposed, and the relations of the size dependence of thermodynamic quantities for the decomposition reactions were deduced. In experiment, taking the thermal decomposition of nano-Cu 2 (OH) 2 CO 3 with different particle sizes (the range of radius is at 8.95–27.4 nm) as a system, the reaction thermodynamic quantities were determined, and the regularities of size dependence of the quantities were summarized. These experimental regularities consist with the above thermodynamic relations. The results show that there is a significant effect of the size of particles composing a nanomaterial on the decomposition thermodynamics. When all the decomposition products are gases, the differences in thermodynamic quantities of reaction between the nanomaterials and the bulk counterparts depend on the particle size; while when one of the decomposition products is a solid, the differences depend on both the initial particle size of the nanoparticle and the decomposition ratio. When the decomposition ratio is very small, these differences are only related to the initial particle size; and when the radius of the nanoparticles approaches or exceeds 10 nm, the reaction thermodynamic functions and the logarithm of the equilibrium constant are linearly associated with the reciprocal of radius, respectively. The thermodynamic theory can quantificationally describe the regularities of the size dependence of thermodynamic quantities for decomposition reactions of nanomaterials, and contribute to the researches and the

  5. Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation

    International Nuclear Information System (INIS)

    Stone, Vicki; Nowack, Bernd; Baun, Anders; Brink, Nico van den; Kammer, Frank von der; Dusinska, Maria; Handy, Richard; Hankin, Steven; Hasselloev, Martin; Joner, Erik; Fernandes, Teresa F.

    2010-01-01

    NanoImpactNet is a European Commission Framework Programme 7 (FP7) funded project that provides a forum for the discussion of current opinions on nanomaterials in relation to human and environmental issues. In September 2008, in Zurich, a NanoImpactNet environmental workshop focused on three key questions: 1.What properties should be characterised for nanomaterials used in environmental and ecotoxicology studies? 2.What reference materials should be developed for use in environmental and ecotoxicological studies? 3.Is it possible to group different nanomaterials into categories for consideration in environmental studies? Such questions have been, at least partially, addressed by other projects/workshops especially in relation to human health effects. Such projects provide a useful basis on which this workshop was based, but in this particular case these questions were reformulated in order to focus specifically on environmental studies. The workshop participants, through a series of discussion and reflection sessions, generated the conclusions listed below. The physicochemical characterisation information identified as important for environmental studies included measures of aggregation/agglomeration/dispersability, size, dissolution (solubility), surface area, surface charge, surface chemistry/composition, with the assumption that chemical composition would already be known. There is a need to have test materials for ecotoxicology, and several substances are potentially useful, including TiO 2 nanoparticles, polystyrene beads labelled with fluorescent dyes, and silver nanoparticles. Some of these test materials could then be developed into certified reference materials over time. No clear consensus was reached regarding the classification of nanomaterials into categories to aid environmental studies, except that a chemistry-based classification system was a reasonable starting point, with some modifications. It was suggested, that additional work may be required

  6. Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Vicki, E-mail: v.stone@napier.ac.uk [School of Life Sciences, Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT (United Kingdom); Nowack, Bernd [Materials, Products and the Environment Group, Empa - Swiss Federal Laboratories for Materials Testing and Research, Lerchenfeldstrasse 5 CH - 9014 St. Gallen (Switzerland); Baun, Anders [Department of Environmental Engineering, Technical University of Denmark, NanoDTU, Building 113, 2800 Kgs. Lyngby (Denmark); Brink, Nico van den [Alterra, P.O. Box 47, 6700 AA Wageningen (Netherlands); Kammer, Frank von der [Department of Environmental Geosciences, Vienna University, Althanstrasse 14, Wien 1090 (Austria); Dusinska, Maria [Health Effects Laboratory, Centre for Ecological Economics, Norwegian Institute for Air Research (NILU), Instituttveien, 18, 2027 Kjeller (Norway); Handy, Richard [University of Plymouth, Davy Building, Drake Circus, Plymouth PL4 8AA (United Kingdom); Hankin, Steven [Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP (United Kingdom); Hasselloev, Martin [Department of Chemistry, Environmental Nanoparticle Research Group, Goeteborg University, SE-412 96 Goeteborg (Sweden); Joner, Erik [Bioforsk Soil and Environment, Fredrik A Dahls vei 20, N-1432 Aas (Norway); Fernandes, Teresa F. [School of Life Sciences, Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT (United Kingdom)

    2010-03-01

    NanoImpactNet is a European Commission Framework Programme 7 (FP7) funded project that provides a forum for the discussion of current opinions on nanomaterials in relation to human and environmental issues. In September 2008, in Zurich, a NanoImpactNet environmental workshop focused on three key questions: 1.What properties should be characterised for nanomaterials used in environmental and ecotoxicology studies? 2.What reference materials should be developed for use in environmental and ecotoxicological studies? 3.Is it possible to group different nanomaterials into categories for consideration in environmental studies? Such questions have been, at least partially, addressed by other projects/workshops especially in relation to human health effects. Such projects provide a useful basis on which this workshop was based, but in this particular case these questions were reformulated in order to focus specifically on environmental studies. The workshop participants, through a series of discussion and reflection sessions, generated the conclusions listed below. The physicochemical characterisation information identified as important for environmental studies included measures of aggregation/agglomeration/dispersability, size, dissolution (solubility), surface area, surface charge, surface chemistry/composition, with the assumption that chemical composition would already be known. There is a need to have test materials for ecotoxicology, and several substances are potentially useful, including TiO{sub 2} nanoparticles, polystyrene beads labelled with fluorescent dyes, and silver nanoparticles. Some of these test materials could then be developed into certified reference materials over time. No clear consensus was reached regarding the classification of nanomaterials into categories to aid environmental studies, except that a chemistry-based classification system was a reasonable starting point, with some modifications. It was suggested, that additional work may be

  7. Electrode nanomaterials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yaroslavtsev, A B; Kulova, T L; Skundin, A M

    2015-01-01

    The state-of-the-art in the field of cathode and anode nanomaterials for lithium-ion batteries is considered. The use of these nanomaterials provides higher charge and discharge rates, reduces the adverse effect of degradation processes caused by volume variations in electrode materials upon lithium intercalation and deintercalation and enhances the power and working capacity of lithium-ion batteries. In discussing the cathode materials, attention is focused on double phosphates and silicates of lithium and transition metals and also on vanadium oxides. The anode materials based on nanodispersions of carbon, silicon, certain metals, oxides and on nanocomposites are also described. The bibliography includes 714 references

  8. The effects of nanomaterials on blood coagulation in hemostasis and thrombosis.

    Science.gov (United States)

    Simak, Jan; De Paoli, Silvia

    2017-09-01

    The blood coagulation balance in the organism is achieved by the interaction of the blood platelets (PLTs) with the plasma coagulation system (PCS) and the vascular endothelial cells. In healthy organism, these systems prevent thrombosis and, in events of vascular damage, enable blood clotting to stop bleeding. The dysregulation of hemostasis may cause serious thrombotic and/or hemorrhagic pathologies. Numerous engineered nanomaterials are being investigated for biomedical purposes and are unavoidably exposed to the blood. Also, nanomaterials may access vascular system after occupational, environmental, or other types of exposure. Thus, it is essential to evaluate the effects of engineered nanomaterials on hemostasis. This review focuses on investigations of nanomaterial interactions with the blood components involved in blood coagulation: the PCS and PLTs. Particular emphases include the pathophysiology of effects of nanomaterials on the PCS, including the kallikrein-kinin system, and on PLTs. Methods for investigating these interactions are briefly described, and a review of the most important studies on the interactions of nanomaterials with plasma coagulation and platelets is provided. WIREs Nanomed Nanobiotechnol 2017, 9:e1448. doi: 10.1002/wnan.1448 For further resources related to this article, please visit the WIREs website. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  9. Nanomaterials derived from metal-organic frameworks

    Science.gov (United States)

    Dang, Song; Zhu, Qi-Long; Xu, Qiang

    2018-01-01

    The thermal transformation of metal-organic frameworks (MOFs) generates a variety of nanostructured materials, including carbon-based materials, metal oxides, metal chalcogenides, metal phosphides and metal carbides. These derivatives of MOFs have characteristics such as high surface areas, permanent porosities and controllable functionalities that enable their good performance in sensing, gas storage, catalysis and energy-related applications. Although progress has been made to tune the morphologies of MOF-derived structures at the nanometre scale, it remains crucial to further our knowledge of the relationship between morphology and performance. In this Review, we summarize the synthetic strategies and optimized methods that enable control over the size, morphology, composition and structure of the derived nanomaterials. In addition, we compare the performance of materials prepared by the MOF-templated strategy and other synthetic methods. Our aim is to reveal the relationship between the morphology and the physico-chemical properties of MOF-derived nanostructures to optimize their performance for applications such as sensing, catalysis, and energy storage and conversion.

  10. Synthesis, Characterization, and Application of 1-D Cerium Oxide Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin

    2010-09-01

    Full Text Available The present work provides a comprehensive overview of the recent progress of research work toward developing new one dimensional (1-D ceria (CeO2 nanomaterials. The review has been classified into three parts: the preparation procedures with identification of the existing different dimensional ceria nanomaterials, the formation mechanisms, and an analysis of their applications. From literature survey, it is inaugurated that the fundamental structures of the ceria nanomaterials constructively dominate their properties and applications. In addition, this work will also provide a perspective on the future technical trends for the development of different dimensional CeO2 nanomaterials.

  11. A multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans

    Science.gov (United States)

    Jung, Sang-Kyu; Qu, Xiaolei; Aleman-Meza, Boanerges; Wang, Tianxiao; Riepe, Celeste; Liu, Zheng; Li, Qilin; Zhong, Weiwei

    2015-01-01

    The booming nanotech industry has raised public concerns about the environmental health and safety impact of engineered nanomaterials (ENMs). High-throughput assays are needed to obtain toxicity data for the rapidly increasing number of ENMs. Here we present a suite of high-throughput methods to study nanotoxicity in intact animals using Caenorhabditis elegans as a model. At the population level, our system measures food consumption of thousands of animals to evaluate population fitness. At the organism level, our automated system analyzes hundreds of individual animals for body length, locomotion speed, and lifespan. To demonstrate the utility of our system, we applied this technology to test the toxicity of 20 nanomaterials under four concentrations. Only fullerene nanoparticles (nC60), fullerol, TiO2, and CeO2 showed little or no toxicity. Various degrees of toxicity were detected from different forms of carbon nanotubes, graphene, carbon black, Ag, and fumed SiO2 nanoparticles. Aminofullerene and UV irradiated nC60 also showed small but significant toxicity. We further investigated the effects of nanomaterial size, shape, surface chemistry, and exposure conditions on toxicity. Our data are publicly available at the open-access nanotoxicity database www.QuantWorm.org/nano. PMID:25611253

  12. Why the Immune System Should Be Concerned by Nanomaterials?

    Directory of Open Access Journals (Sweden)

    Marc J. Pallardy

    2017-05-01

    Full Text Available Particles possess huge specific surface area and therefore nanomaterials exhibit unique characteristics, such as special physical properties and chemical hyper-reactivity, which make them particularly attractive but also raise numerous questions concerning their safety. Interactions of nanomaterials with the immune system can potentially lead to immunosuppression, hypersensitivity (allergy, immunogenicity and autoimmunity, involving both innate and adaptive immune responses. Inherent physical and chemical NP characteristics may influence their immunotoxicity, i.e., the adverse effects that can result from exposure. This review will focus on the possible interaction of nanomaterials including protein aggregates with the innate immune system with specific emphasis on antigen-presenting cells, i.e., dendritic cells, macrophages and monocytes.

  13. NaKnowBaseTM: The EPA Nanomaterials Research ...

    Science.gov (United States)

    The ability to predict the environmental and health implications of engineered nanomaterials is an important research priority due to the exponential rate at which nanotechnology is being incorporated into consumer, industrial and biomedical applications. To address this need and develop predictive capability, we have created the NaKnowbaseTM, which provides a platform for the curation and dissemination of EPA nanomaterials data to support functional assay development, hazard risk models and informatic analyses. To date, we have combined relevant physicochemical parameters from other organizations (e.g., OECD, NIST), with those requested for nanomaterial data submitted to EPA under the Toxic Substances Control Act (TSCA). Physiochemical characterization data were collated from >400 unique nanomaterials including metals, metal oxides, carbon-based and hybrid materials evaluated or synthesized by EPA researchers. We constructed parameter requirements and table structures for encoding research metadata, including experimental factors and measured response variables. As a proof of concept, we illustrate how SQL-based queries facilitate a range of interrogations including, for example, relationships between nanoparticle characteristics and environmental or toxicological endpoints. The views expressed in this poster are those of the authors and may not reflect U.S. EPA policy. The purpose of this submission for clearance is an abstract for submission to a scientific

  14. Nanotechnology in reproductive medicine: emerging applications of nanomaterials.

    Science.gov (United States)

    Barkalina, Natalia; Charalambous, Charis; Jones, Celine; Coward, Kevin

    2014-07-01

    In the last decade, nanotechnology has been extensively introduced for biomedical applications, including bio-detection, drug delivery and diagnostic imaging, particularly in the field of cancer diagnostics and treatment. However, there is a growing trend towards the expansion of nanobiotechnological tools in a number of non-cancer applications. In this review, we discuss the emerging uses of nanotechnology in reproductive medicine and reproductive biology. For the first time, we summarise the available evidence regarding the use of nanomaterials as experimental tools for the detection and treatment of malignant and benign reproductive conditions. We also present an overview of potential applications for nanomaterials in reproductive biology, discuss the benefits and concerns associated with their use in a highly delicate system of reproductive tissues and gametes, and address the feasibility of this innovative and potentially controversial approach in the clinical setting and for investigative research into the mechanisms underlying reproductive diseases. This unique review paper focuses on the emerging use of nanotechnology in reproductive medicine and reproductive biology, highlighting the role of nanomaterials in the detection and treatment of various reproductive conditions, keeping in mind the benefits and potential concerns associated with nanomaterial use in the delicate system of reproductive tissue and gametes. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Development of a Control Banding Tool for Nanomaterials

    Directory of Open Access Journals (Sweden)

    M. Riediker

    2012-01-01

    Full Text Available Control banding (CB can be a useful tool for managing the potential risks of nanomaterials. The here proposed CB, which should be part of an overall risk control strategy, groups materials by hazard and emission potential. The resulting decision matrix proposes control bands adapted to the risk potential levels and helps define an action plan. If this plan is not practical and financially feasible, a full risk assessment is launched. The hazard banding combines key concepts of nanomaterial toxicology: translocation across biological barriers, fibrous nature, solubility, and reactivity. Already existing classifications specific to the nanomaterial can be used “as is.” Otherwise, the toxicity of bulk or analogous substances gives an initial hazard band, which is increased if the substance is not easily soluble or if it has a higher reactivity than the substance. The emission potential bands are defined by the nanomaterials' physical form and process characteristics. Quantities, frequencies, and existing control measures are taken into account during the definition of the action plan. Control strategies range from room ventilation to full containment with expert advice. This CB approach, once validated, can be easily embedded in risk management systems. It allows integrating new toxicity data and needs no exposure data.

  16. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives.

    Science.gov (United States)

    Navya, P N; Daima, Hemant Kumar

    2016-01-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  17. Graphene-polymer-enzyme hybrid nanomaterials for biosensors

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a general chemical method for the synthesis of biocompatible hybrid nanomaterials which can be used in the development of new- type enzyme based biosensors. A one-step facile method is presented, in which polyethylenimine (PEI) serves as both a reducing agent for the redu......The invention relates to a general chemical method for the synthesis of biocompatible hybrid nanomaterials which can be used in the development of new- type enzyme based biosensors. A one-step facile method is presented, in which polyethylenimine (PEI) serves as both a reducing agent...

  18. Covalent immobilization of lipase onto chitosan-mesoporous silica hybrid nanomaterials by carboxyl functionalized ionic liquids as the coupling agent.

    Science.gov (United States)

    Xiang, Xinran; Suo, Hongbo; Xu, Chao; Hu, Yi

    2018-05-01

    Chitosan-mesoporous silica SBA-15 hybrid nanomaterials (CTS-SBA-15) were synthesized by means of carboxyl functionalized ionic liquids as the coupling agent. The as-prepared CTS-SBA-15 support was characterized by TEM, FTIR, TG and nitrogen adsorption-desorption techniques. Porcine pancreas lipase (PPL) was then bound to the hybrid nanomaterials by using the cross-linking reagent glutaraldehyde (GA). Further, the parameters like cross-linking concentration, time and ratio of supports to enzyme were optimized. The property of immobilized lipase were tested in detail by enzyme activity assays. The results indicated that the hybrid nanomaterials could form three-dimensional (3D) structure with homogeneous mesoporous structures and immobilized PPL revealed excellent enzymatic performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Synergetic Effects of Combined Nanomaterials for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Michael Holzinger

    2017-05-01

    Full Text Available Nanomaterials have become essential components for the development of biosensors since such nanosized compounds were shown to clearly increase the analytical performance. The improvements are mainly related to an increased surface area, thus providing an enhanced accessibility for the analyte, the compound to be detected, to the receptor unit, the sensing element. Nanomaterials can also add value to biosensor devices due to their intrinsic physical or chemical properties and can even act as transducers for the signal capture. Among the vast amount of examples where nanomaterials demonstrate their superiority to bulk materials, the combination of different nano-objects with different characteristics can create phenomena which contribute to new or improved signal capture setups. These phenomena and their utility in biosensor devices are summarized in a non-exhaustive way where the principles behind these synergetic effects are emphasized.

  20. A framework for health-related nanomaterial grouping.

    Science.gov (United States)

    Gkika, D A; Nolan, J W; Vansant, E F; Vordos, N; Kontogoulidou, C; Mitropoulos, A Ch; Cool, P; Braet, J

    2017-06-01

    Nanotechnology has been in the limelight since its emergence and its products affect everyday lives. Nanomaterials are characterized by features such as size and shape, thus rendering their possible number essentially unlimited, which in turn makes them difficult to study and categorize regarding possible dangers. This work suggests that grouping could allow studying them with limited testing efforts without endangering safety. Initially, the materials are identified and grouped according to their applications in health/medicine, as well as on their environmentally-friendly potential. The materials are then categorized using various toxicity classification methods to identify those with highest risks and group them with others that demonstrate similar behavior. The materials studied show promising uses in diagnostics, drug delivery, biosensors, water purification, oil spill cleaning, emission control and other fields. The toxicity risk assessment shows that the majority pose little to moderate risk, however there are certain materials that can be extremely hazardous or even cause death under specific circumstances. A risk mitigation plan was also developed. Nanomaterials applications, including drug delivery, cancer treatment, waste treatment, solar energy generation etc. can be very beneficiary, but at the same time, these materials can be extremely harmful or even cause death, thus making the need to prioritize research on high risk materials crucial. A clear regulatory framework that addresses both benefits and risks and communicates that information effectively should play an important part in European and worldwide efforts. The risk analysis validated the impression that there is limited research on nanomaterial toxicity risks, which calls for a more organized approach. The framework outlined in this work can be utilized by researchers as well as government bodies, in order to form regulatory policies and adopt a universally accepted labeling system. This

  1. THE ROLE OF NANOMATERIALS IN COSMETICS: NATIONAL AND INTERNATIONAL LEGISLATIVE ASPECTS

    Directory of Open Access Journals (Sweden)

    Adriana Melo

    2015-05-01

    Full Text Available Nanotechnology is currently one of the fastest growing scientific fields. The products of this science have become part of our everyday lives. However, to date, regulatory agencies have not yet established a single definition for nanomaterials and nanotechnology. Therefore, each country has its own definitions and legislation to control products containing nanomaterials. Being relatively new materials, there are no long-term studies showing their impact on human health and the environment. Consequently, countries control the amount of nanomaterials present in cosmetics, allowing the end consumer to choose which cosmetic to use, by choosing products with or without nanomaterials. Therefore, the primary objective of this study was to identify the most used nanomaterials in cosmetics and verify whether these formulations are in accordance with the laws in force in the United States, the European Union and Brazil, thereby determining if the cosmetics on the market are in line with the existing laws in these three economic powers. This study is unique and will contribute to furthering the discussion on existing laws pertinent to the use of nanotechnology in cosmetics.

  2. Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honghu [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering. Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.

  3. Nanomaterials in consumer's goods: the problems of risk assessment

    International Nuclear Information System (INIS)

    Gmoshinski, I V; Khotimchenko, S A

    2015-01-01

    Nanotechnology and engineered nanomaterials are currently used in wide variety of cosmetic products, while their use in food industry, packaging materials, household chemicals etc. still includes a limited number of items and does not show a significant upward trend. However, the problem of priority nanomaterials associated risks is relevant due to their high production volumes and an constantly growing burden on the environment and population. In accordance with the frequency of use in mass-produced consumer goods, leading priority nanomaterials are silver nanoparticles (NPs) and (by a wide margin) NPs of gold, platinum, and titanium dioxide. Frequency of nanosized silica introduction into food products as a food additive, at the moment, seems to be underestimated, since the use of this nanomaterial is not declared by manufacturers of products and objective control of its content is difficult. Analysis of literature data on toxicological properties of nanomaterials shows that currently accumulated amount of information is sufficient to establish the safe doses of nanosized silver, gold and titanium dioxide. Data have been provided in a series of studies concerning the effect of oral intake of nanosized silica on the condition of laboratory animals, including on the performance of the immune system. The article examines the existing approaches to the assessment of population exposure to priority nanomaterials, characteristics of existing problems and risk management. (paper)

  4. Recent Development of Nanomaterial-Doped Conductive Polymers

    Science.gov (United States)

    Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.

    2017-12-01

    Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.

  5. NanoCRED: A transparent framework to assess the regulatory adequacy of ecotoxicity data for nanomaterials – relevance and reliability revisited

    DEFF Research Database (Denmark)

    Hartmann, Nanna B.; Ågerstrand, Malene; Lützhøft, Hans-Christian Holten

    2017-01-01

    nanomaterials are known to behave very differently in ecotoxicity tests compared to the conventional soluble chemicals, for which most guidelines were developed. Therefore non-guideline tests, or tests following modified test guidelines, can provide valuable information and should not per se be considered less...

  6. Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics.

    Science.gov (United States)

    Secor, Ethan B; Hersam, Mark C

    2015-02-19

    Carbon and post-carbon nanomaterials present desirable electrical, optical, chemical, and mechanical attributes for printed electronics, offering low-cost, large-area functionality on flexible substrates. In this Perspective, recent developments in carbon nanomaterial inks are highlighted. Monodisperse semiconducting single-walled carbon nanotubes compatible with inkjet and aerosol jet printing are ideal channels for thin-film transistors, while inkjet, gravure, and screen-printable graphene-based inks are better-suited for electrodes and interconnects. Despite the high performance achieved in prototype devices, additional effort is required to address materials integration issues encountered in more complex systems. In this regard, post-carbon nanomaterial inks (e.g., electrically insulating boron nitride and optically active transition-metal dichalcogenides) present promising opportunities. Finally, emerging work to extend these nanomaterial inks to three-dimensional printing provides a path toward nonplanar devices. Overall, the superlative properties of these materials, coupled with versatile assembly by printing techniques, offer a powerful platform for next-generation printed electronics.

  7. Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials.

    Science.gov (United States)

    Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2018-02-21

    The incorporation of biomolecules into nanomaterials generates functional nanosystems with novel and advanced properties, presenting great potential for applications in various fields. Nucleobases, nucleosides and nucleotides, as building blocks of nucleic acids and biological coenzymes, constitute necessary components of the foundation of life. In recent years, as versatile biomolecules for the construction or regulation of functional nanomaterials, they have stimulated interest in researchers, due to their unique properties such as structural diversity, multiplex binding sites, self-assembly ability, stability, biocompatibility, and chirality. In this review, strategies for the synthesis of nanomaterials and the regulation of their morphologies and functions using nucleobases, nucleosides, and nucleotides as building blocks, templates or modulators are summarized alongside selected applications. The diverse applications range from sensing, bioimaging, and drug delivery to mimicking light-harvesting antenna, the construction of logic gates, and beyond. Furthermore, some perspectives and challenges in this emerging field are proposed. This review is directed toward the broader scientific community interested in biomolecule-based functional nanomaterials.

  8. Nanomaterials for biosensing applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael eHolzinger

    2014-08-01

    Full Text Available A biosensor device is defined by its biological, or bioinspired receptor unit with unique specificities towards corresponding analytes. These analytes are often of biological origin like DNAs or proteins from the immune system (antibodies, antigens of diseases or infections. Such analytes can also be simple molecules like glucose or pollutants when a biological receptor unit with particular specificity is available. One of many other challenges in biosensor development is the efficient signal capture of the biological recognition event (transduction. Such transducers translate the interaction of the analyte with the biological element into electrochemical, electrochemiluminescent, magnetic, gravimetric, or optical signals. In order to increase sensitivities and to lower detection limits down to even individual molecules, nanomaterials are promising candidates due to the possibility to immobilize an enhanced quantity of bioreceptor units at reduced volumes and even to act itself as transduction element. Among such nanomaterials, gold nanoparticles, semi-conductor quantum dots, polymer nanoparticles, carbon nanotubes, nanodiamonds, and graphene are intensively studied. Due to the vast evolution of this research field, this review summarizes in a non-exhaustive way the advantages of nanomaterials by focusing on nano-objects which provide further beneficial properties than just an enhanced surface area.

  9. Strain-controlled electrocatalysis on multimetallic nanomaterials

    Science.gov (United States)

    Luo, Mingchuan; Guo, Shaojun

    2017-11-01

    Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain-adsorption-reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field.

  10. Nanomaterials in the Environment: Perspectives on in Vivo Terrestrial Toxicity Testing

    Directory of Open Access Journals (Sweden)

    Monique C. P. Mendonça

    2017-10-01

    Full Text Available Over the last decade, engineered nanomaterials (NMs brought a revolutionary development in many sectors of human life including electronics, paints, textiles, food, agriculture, and health care. However, the exponential growth in the number of NMs applications resulted in uncertainties regarding their environmental impacts. Currently, the common approach for assessing the toxicity of NMs such as, carbon—(fullerenes, single- and multi-walled carbon nanotubes, mineral—(gold and silver nanoparticles, cerium and zinc oxide, silicon and titanium dioxide, and organic-based NMs (dendrimers includes standard guidelines applied to all chemical compounds. Nevertheless, NMs differ from traditional materials as their physicochemical and surface properties influence the toxic rather than their composition alone. Considering such NMs specificities, adaptations in some methods are necessary to ensure that environmental and human health risks are accurately investigated. In this context, the focus of this mini-review is to summarize the current knowledge in nanotoxicology regarding relevant organisms and experimental assays for assessing the terrestrial toxicity of NMs.

  11. Development of a Control Banding Tool for Nanomaterials

    OpenAIRE

    Riediker, M.; Ostiguy, C.; Triolet, J.; Troisfontaine, P.; Vernez, D.; Bourdel, G.; Thieriet, N.; Cadène, A.

    2012-01-01

    Control banding (CB) can be a useful tool for managing the potential risks of nanomaterials. The here proposed CB, which should be part of an overall risk control strategy, groups materials by hazard and emission potential. The resulting decision matrix proposes control bands adapted to the risk potential levels and helps define an action plan. If this plan is not practical and financially feasible, a full risk assessment is launched. The hazard banding combines key concepts of nanomaterial t...

  12. Remaining life assessment of carbon steel boiler headers by repeated creep testing

    Energy Technology Data Exchange (ETDEWEB)

    Drew, M. [ANSTO, Materials and Engineering Science, New Illawarra Road, Lucas Heights, PMB 1 Menai, NSW 2234 (Australia)]. E-mail: michael.drew@ansto.gov.au; Humphries, S. [ANSTO, Materials and Engineering Science, New Illawarra Road, Lucas Heights, PMB 1 Menai, NSW 2234 (Australia); Thorogood, K. [ANSTO, Materials and Engineering Science, New Illawarra Road, Lucas Heights, PMB 1 Menai, NSW 2234 (Australia); Barnett, N. [BlueScope Steel, P.O. Box 1854, Wollongong, NSW (Australia)

    2006-05-15

    The condition of carbon steel boiler headers that have been in service for over 25 years has been assessed periodically by NDT, dimensional measurements, replication and accelerated creep testing. Historical temperature records were limited, so estimates of effective header temperatures were made from replicas. These estimates were compared with header stub thermocouple readings. At about 280,000 service hours, samples were chain-drilled from the headers for accelerated creep testing. These test results indicated that the headers had satisfactory remaining life. Nine years after the original samples were taken, additional samples were removed from one header at 337,000 service hours. The creep rupture properties measured from the repeated tests were almost identical to the initial results. A mild degree of random, nodular graphite was found in the samples and its effect on creep properties is discussed.

  13. Balanced improvement of high performance concrete material properties with modified graphite nanomaterials

    Science.gov (United States)

    Peyvandi, Amirpasha

    of exposure to chloride solutions, pointing at the benefits of nanoplatelets towards enhancement of concrete resistance to chloride ion diffusion. It was also found that the intensity of Thaumasite, a key species marking sulfate attack on cement hydrates, was lowered with the addition of graphite nanoplatelets in concrete exposed to sulfate solutions. Experimental evaluations were conducted on scaled-up production of concrete nanocomposite in precast concrete plants. Full-scale reinforced concrete pipes and beams were produced using concrete nanocomposites. Durability and structural tests indicated that the use of graphite nanoplatelets, alone or in combination with synthetic (PVA) fibers, produced significant gains in the durability characteristics, and also benefited the structural performance of precast reinforced concrete products. The material and scaled-up structural investigations conducted in the project concluded that lower-cost graphite nanomaterials (e.g., graphite nanoplatelets) offer significant potentials as multi-functional additives capable of enhancing the barrier, durability and mechanical performance of concrete materials. The benefits of graphite nanomaterials tend to be more pronounced in higher-performance concrete materials.

  14. Computational design of safer nanomaterials

    NARCIS (Netherlands)

    Burello, E.

    2015-01-01

    Nanomaterials are expected to find applications in numerous consumer products, posing the challenge to guarantee their safety and environmental sustainability before they can be transferred from research labs to end-consumer products. One emerging solution, called safe design, relies on the

  15. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.

    Science.gov (United States)

    Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros

    2014-09-16

    The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based

  16. MAPLE deposition of nanomaterials

    International Nuclear Information System (INIS)

    Caricato, A.P.; Arima, V.; Catalano, M.; Cesaria, M.; Cozzoli, P.D.; Martino, M.; Taurino, A.; Rella, R.; Scarfiello, R.; Tunno, T.; Zacheo, A.

    2014-01-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  17. MAPLE deposition of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P., E-mail: annapaola.caricato@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Arima, V.; Catalano, M. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Cesaria, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Cozzoli, P.D. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Martino, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Taurino, A.; Rella, R. [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, I-73100 Lecce (Italy); Scarfiello, R. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Tunno, T. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Zacheo, A. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy)

    2014-05-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  18. Synthesis and post-processing of nanomaterials using microreaction technology

    International Nuclear Information System (INIS)

    Chang, Chih-Hung; Paul, Brian K.; Remcho, Vincent T.; Atre, Sundar; Hutchison, James E.

    2008-01-01

    A critical barrier to the routine use of nanomaterials is the tedious, expensive means of their synthesis. Microreaction technology takes advantage of the large surface area-to-volume ratios within microchannel structures to accelerate heat and mass transport. This accelerated transport allows for rapid changes in reaction temperatures and concentrations leading to more uniform heating and mixing which can have dramatic impacts on macromolecular yields and nanoparticle size distributions. Benefits of microreaction technology include higher yield and reactant conversion, better energy efficiency and less by-product generation. Microreactors can help minimize the environmental impact of nanoproduction by enabling solvent free mixing, integrated separation techniques and reagent recycling. The possibility of synthesizing nanomaterials in the required volumes at the point-of-use eliminates the need to store and transport potentially hazardous materials and provides the flexibility for tailoring complex functional nanomaterials. Recognizing these benefits for nanosynthesis, continuous flow microreactors have been used by several research groups to synthesize and characterize nanomaterials. An overview of these efforts and issues related to scale up and other post synthesis processes such as separation and deposition are presented in this paper.

  19. The potential and biological test on cloned cassava crop remains on local sheep

    Science.gov (United States)

    Ginting, R.; Umar, S.; Hanum, C.

    2018-02-01

    This research aims at knowing the potential of cloned cassava crop remains dry matter and the impact of the feeding of the cloned cassava crop remains based complete feed on the consumption, the body weight gain, and the feed conversion of the local male sheep with the average of initial body weight of 7.75±1.75 kg. The design applied in the first stage research was random sampling method with two frames of tile and the second stage research applied Completely Randomized Design (CRD) with three (3) treatments and four (4) replicates. These treatments consisted of P1 (100% grass); P2 (50% grass, 50% complete feed pellet); P3 (100% complete feed from the raw material of cloned cassava crop remaining). Statistical tests showed that the feeding of complete feed whose raw material was from cloned cassava crop remains gave a highly significant impact on decreasing feed consumption, increasing body weight, lowering feed conversion, and increasing crude protein digestibility. The conclusion is that the cloned cassava crop remains can be used as complete sheep feed to replace green grass and can give the best result.

  20. Structure and multiscale mechanics of carbon nanomaterials

    CERN Document Server

    2016-01-01

    This book aims at providing a broad overview on the relationship between structure and mechanical properties of carbon nanomaterials from world-leading scientists in the field. The main aim is to get an in-depth understanding of the broad range of mechanical properties of carbon materials based on their unique nanostructure and on defects of several types and at different length scales. Besides experimental work mainly based on the use of (in-situ) Raman and X-ray scattering and on nanoindentation, the book also covers some aspects of multiscale modeling of the mechanics of carbon nanomaterials.

  1. Synthesis and characterization of different morphological SnS nanomaterials

    International Nuclear Information System (INIS)

    Chaki, Sunil H; Chaudhary, Mahesh D; Deshpande, M P

    2014-01-01

    SnS in three nano forms possessing different morphologies such as particles, whiskers and ribbons were synthesised by chemical route. The morphology variation was brought about in the chemical route synthesis by varying a synthesis parameter such as temperature and influencing the synthesis by use of surfactant. The elemental composition determination by energy dispersive analysis of x-rays (EDAX) showed that all three synthesized SnS nanomaterials were tin deficient. The x-ray diffraction (XRD) study of the three SnS nanomaterials showed that all of them possess orthorhombic structure. The Raman spectra of the three SnS nanomaterials showed that all three samples possess three common distinguishable peaks. In them two peaks lying at 98 ± 1 cm −1 and 224 ± 4 cm −1 are the characteristic A g mode of SnS. The third peak lying at 302 ± 1 cm −1 is associated with secondary Sn 2 S 3 phase. The transmission electron microscopy (TEM) confirmed the respective morphologies. The optical analysis showed that they possess direct as well as indirect optical bandgap. The electrical transport properties study on the pellets prepared from the different nanomaterials of SnS showed them to be semiconducting and p-type in nature. The current–voltage (I–V) plots of the silver (Ag)/SnS nanomaterials pellets for dark and incandescent illumination showed that all configurations showed good ohmic behaviour except Ag/SnS nanoribbons pellet configuration under illumination. All the obtained results are discussed in detail. (paper)

  2. Advanced nanomaterials and their applications in renewable energy

    CERN Document Server

    Liu, Jingbo Louise

    2015-01-01

    Advanced Nanomaterials and Their Applications in Renewable Energy presents timely topics related to nanomaterials' feasible synthesis and characterization, and their application in the energy fields. In addition, the book provides insights and scientific discoveries in toxicity study, with information that is easily understood by a wide audience. Advanced energy materials are important in designing materials that have greater physical, electronic, and optical properties. This book emphasizes the fundamental physics and chemistry underlying the techniques used to develop solar and fuel cell

  3. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  4. Nanomaterials for fuel cell catalysis

    CSIR Research Space (South Africa)

    Ozoemena, KI

    2016-01-01

    Full Text Available Global experts provide an authoritative source of information on the use of electrochemical fuel cells, and in particular discuss the use of nanomaterials to enhance the performance of existing energy systems. The book covers the state of the art...

  5. Chemical Design of Functional Nanomaterials

    DEFF Research Database (Denmark)

    Egeblad, Kresten

    This thesis deals with a very specific class of functional nanomaterials known as mesoporous zeolites. Zeolites are a class of crystalline aluminosilicate minerals characterized by featuring pores or cavities of molecular dimensions as part of their crystal structure. Mesoporous zeolites are zeol...

  6. Effects of engineered nanomaterials on microbial catalyzed biogeochemical processes in sediments

    Energy Technology Data Exchange (ETDEWEB)

    Gao Jie, E-mail: jgao@perc.ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States); Wang Yu; Hovsepyan, Anna [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States); Bonzongo, Jean-Claude J., E-mail: bonzongo@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States)

    2011-02-15

    Engineered nanomaterials (ENMs) are anticipated to find use in many human activities and commercial products. Concerns are therefore being raised regarding their environmental fate and toxicological implications, which remain largely unknown. In this study, we investigate the effects of C{sub 60}, nano-Ag and CdSe quantum dots (QD) on microbial-catalyzed oxidation of organic matter in freshwater sediments. Sediment slurries spiked with sodium acetate at a final concentration of 150 mg/L were separately treated with pre-identified toxic levels of the tested ENMs. The study focused primarily on acetate oxidation by nitrate reducing bacteria. Sediment slurries were incubated under anaerobic conditions in parallel with control samples, and changes in concentrations of acetate, nitrate and nitrite tracked over time. The results showed that tested C{sub 60} concentration completely inhibited the microbial oxidation of acetate, whereas the addition of nano-Ag and CdSe QD to sediment slurries negatively affected the rates of acetate oxidation. Under conditions with nitrate as prevalent electron acceptor, reaction rates of acetate degradation decreased from 0.44 day{sup -1} in control slurries to 0.24 day{sup -1} and 0.20 day{sup -1} in slurries treated with nano-Ag and CdSe QD, respectively. These preliminary results call for further investigations on potential long-term effects of ENMs on microbial driven basic ecosystem services.

  7. 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.

    Science.gov (United States)

    Huang, Xiao; Tan, Chaoliang; Yin, Zongyou; Zhang, Hua

    2014-04-09

    Two-dimensional (2D) nanomaterials, such as graphene and transition metal dichalcogenides (TMDs), receive a lot of attention, because of their intriguing properties and wide applications in catalysis, energy-storage devices, electronics, optoelectronics, and so on. To further enhance the performance of their application, these 2D nanomaterials are hybridized with other functional nanostructures. In this review, the latest studies of 2D nanomaterial-based hybrid nanostructures are discussed, focusing on their preparation methods, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Remediation of water and wastewater by using engineered nanomaterials: A review.

    Science.gov (United States)

    Bishoge, Obadia K; Zhang, Lingling; Suntu, Shaldon L; Jin, Hui; Zewde, Abraham A; Qi, Zhongwei

    2018-05-12

    Nanotechnology is currently a fast-rising socioeconomic and political knowledge-based technology owing to the unique characteristics of its engineered nanomaterials. This branch of technology is useful for water and wastewater remediation. Many scientists and researchers have been conducting different studies and experiments on the applications of engineered nanomaterials at the local to international level. This review mainly aims to provide a current overview of existing knowledge on engineered nanomaterials and their applications in water and wastewater remediation. Furthermore, the present risks and challenges of nanotechnology are examined.

  9. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  10. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  11. Synthesis and Characterization of Three Dimensional Nanostructures Based on Interconnected Carbon Nanomaterials

    Science.gov (United States)

    Koizumi, Ryota

    This thesis addresses various types of synthetic methods for novel three dimensional nanomaterials and nanostructures based on interconnected carbon nanomaterials using solution chemistry and chemical vapor deposition (CVD) methods. Carbon nanotube (CNT) spheres with porous and scaffold structures consisting of interconnected CNTs were synthesized by solution chemistry followed by freeze-drying, which have high elasticity under nano-indentation tests. This allows the CNT spheres to be potentially applied to mechanical dampers. CNTs were also grown on two dimensional materials--such as reduced graphene oxide (rGO) and hexagonal boron nitride (h-BN)--by CVD methods, which are chemically interconnected. CNTs on rGO and h-BN interconnected structures performed well as electrodes for supercapacitors. Furthermore, unique interconnected flake structures of alpha-phase molybdenum carbide were developed by a CVD method. The molybdenum carbide can be used for a catalyst of hydrogen evolution reaction activity as well as an electrode for supercapacitors.

  12. Redox electrodes comprised of polymer-modified carbon nanomaterials

    Science.gov (United States)

    Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team

    2013-03-01

    A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.

  13. Biocompatible Nanomaterials and Nanodevices Promising for Biomedical Applications

    Science.gov (United States)

    Firkowska, Izabela; Giannona, Suna; Rojas-Chapana, José A.; Luecke, Klaus; Brüstle, Oliver; Giersig, Michael

    Nanotechnology applied to biology requires a thorough understanding of how molecules, sub-cellular entities, cells, tissues, and organs function and how they are structured. The merging of nanomaterials and life science into hybrids of controlled organization and function is possible, assuming that biology is nanostructured, and therefore man-made nano-materials can structurally mimic nature and complement each other. By taking advantage of their special properties, nanomaterials can stimulate, respond to and interact with target cells and tissues in controlled ways to induce desired physiological responses with a minimum of undesirable effects. To fulfill this goal the fabrication of nano-engineered materials and devices has to consider the design of natural systems. Thus, engineered micro-nano-featured systems can be applied to biology and biomedicine to enable new functionalities and new devices. These include, among others, nanostructured implants providing many advantages over existing, conventional ones, nanodevices for cell manipulation, and nanosensors that would provide reliable information on biological processes and functions.

  14. Contributions and mechanisms of action of graphite nanomaterials in ultra high performance concrete

    Science.gov (United States)

    Sbia, Libya Ahmed

    Ultra-high performance concrete (UHPC) reaches high strength and impermeability levels by using a relatively large volume fraction of a dense binder with fine microstructure in combination with high-quality aggregates of relatively small particle size, and reinforcing fibers. The dense microstructure of the cementitions binder is achieved by raising the packing density of the particulate matter, which covers sizes ranging from few hundred nanometers to few millimeters. The fine microstructure of binder in UHPC is realized by effective use of pozzolans to largely eliminate the coarse crystalline particles which exist among cement hydrates. UHPC incorporates (steel) fibers to overcome the brittleness of its dense, finely structured cementitious binder. The main thrust of this research is to evaluate the benefits of nanmaterials in UHPC. The dense, finely structure cementitious binder as well as the large volume fraction of the binder in UHPC benefit the dispersion of nanomaterials, and their interfacial interactions. The relatively close spacing of nanomaterials within the cementitious binder of UHPC enables them to render local reinforcement effects in critically stressed regions such as those in the vicinity of steel reinforcement and prestressing strands as well as fibers. Nanomaterials can also raise the density of the binder in UHPC by extending the particle size distribution down to the few nanometers range. Comprehensive experimental studies supported by theoretical investigations were undertake in order to optimize the use of nanomaterials in UHPC, identity the UHPC (mechanical) properties which benefit from the introduction of nanomaterials, and define the mechanisms of action of nanomaterials in UHPC. Carbon nanofiber was the primary nanomaterial used in this investigation. Some work was also conducted with graphite nanoplates. The key hypotheses of the project were as follows: (i) nanomaterials can make important contributions to the packing density of the

  15. Operationalization and application of “early warning signs” to screen nanomaterials for harmful properties operationalizationand application of “early warning signs” to screen nanomaterials for harmful properties

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Nielsen, K. N.; Knudsen, N.

    endeavors. This paper explores ho w the first lesson - “Acknowledge and respond to ignorance, uncertainty and risk in techn ology appraisal” could be applied to screen nanomaterials. In cases of ignorance, uncertainty a nd risk, the EEA recommends paying particular attention to important warning signs suc h...... as novelty, persistency, whether materials are readily dispersed in the environment, whether t hey bioaccumulate or lead to potentially irreversible action. Through an analysis of these c riteria using five well-known nanomaterials (titanium dioxide, carbon nanotubes, liposomes, pol y(lactic-co-glycolic acid....... Finally, we discuss how these warning sig ns can be used by different stakeholders such as nanomaterial researchers and developers, compani es and regulators to design benign nanomaterials, communicate what is known about nano -risks and decide on whether to implement precautionary regulatory measures....

  16. Particle size distribution of iron nanomaterials in biological medium by SR-SAXS method

    International Nuclear Information System (INIS)

    Jing Long; Feng Weiyue; Wang Bing; Wang Meng; Ouyang Hong; Zhao Yuliang; Chai Zhifang; Wang Yun; Wang Huajiang; Zhu Motao; Wu Zhonghua

    2009-01-01

    A better understanding of biological effects of nanomaterials in organisms requests knowledge of the physicochemical properties of nanomaterials in biological systems. Affected by high concentration salts and proteins in biological medium, nanoparticles are much easy to agglomerate,hence the difficulties in characterizing size distribution of the nanomaterials in biological medium.In this work, synchrotron radiation small angle X-ray scattering(SR-SAXS) was used to determine size distributions of Fe, Fe 2 O 3 and Fe 3 O 4 nanoparticles of various concentrations in PBS and DMEM culture medium. The results show that size distributions of the nanomaterials could perfectly analyzed by SR-SAXS. The SR-SAXS data were not affected by the particle content and types of the dispersion medium.It is concluded that SR-SAXS can be used for size measurement of nanomaterials in unstable dispersion systems. (authors)

  17. Impact of organic and inorganic nanomaterials in the soil microbial community structure

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Veronica; Lopes, Isabel [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Rocha-Santos, Teresa [ISEIT/Viseu, Instituto Piaget, Estrada do Alto do Gaio, Galifonge, 3515-776 Lordosa, Viseu (Portugal); Santos, Ana L. [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Rasteiro, Graca M.; Antunes, Filipe [CIEPQPF, Department of Chemical Engineering, Faculty of Science and Technology, Polo II, University of Coimbra, 3030-290 Coimbra (Portugal); Goncalves, Fernando; Soares, Amadeu M.V.M.; Cunha, Angela; Almeida, Adelaide [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Gomes, Newton N.C.M., E-mail: gomesncm@ua.pt [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Pereira, Ruth [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre 4169-007 Porto (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal)

    2012-05-01

    In this study the effect of organic and inorganic nanomaterials (NMs) on the structural diversity of the soil microbial community was investigated by Denaturing Gradient Gel Electrophoresis, after amplification with universal primers for the bacterial region V6-V8 of 16S rDNA. The polymers of carboxylmethyl-cellulose (CMC), of hydrophobically modified CMC (HM-CMC), and hydrophobically modified polyethylglycol (HM-PEG); the vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide (SDS/DDAB) and of monoolein/sodium oleate (Mo/NaO); titanium oxide (TiO{sub 2}), titanium silicon oxide (TiSiO{sub 4}), CdSe/ZnS quantum dots, gold nanorods, and Fe/Co magnetic fluid were the NMs tested. Soil samples were incubated, for a period of 30 days, after being spiked with NM suspensions previously characterized by Dynamic Light Scattering (DLS) or by an ultrahigh-resolution scanning electron microscope (SEM). The analysis of similarities (ANOSIM) of DGGE profiles showed that gold nanorods, TiO{sub 2}, CMC, HM-CMC, HM-PEG, and SDS/DDAB have significantly affected the structural diversity of the soil bacterial community. - Highlights: Black-Right-Pointing-Pointer Organic and inorganic nanomaterials on soil microbial community. Black-Right-Pointing-Pointer Structural diversity was investigated by Denaturing Gradient Gel Electrophoresis. Black-Right-Pointing-Pointer All the organic nanomaterials, TiO{sub 2} and gold nanorods significantly affected the structural diversity.

  18. Impact of organic and inorganic nanomaterials in the soil microbial community structure

    International Nuclear Information System (INIS)

    Nogueira, Verónica; Lopes, Isabel; Rocha-Santos, Teresa; Santos, Ana L.; Rasteiro, Graça M.; Antunes, Filipe; Gonçalves, Fernando; Soares, Amadeu M.V.M.; Cunha, Angela; Almeida, Adelaide; Gomes, Newton N.C.M.; Pereira, Ruth

    2012-01-01

    In this study the effect of organic and inorganic nanomaterials (NMs) on the structural diversity of the soil microbial community was investigated by Denaturing Gradient Gel Electrophoresis, after amplification with universal primers for the bacterial region V6–V8 of 16S rDNA. The polymers of carboxylmethyl-cellulose (CMC), of hydrophobically modified CMC (HM-CMC), and hydrophobically modified polyethylglycol (HM-PEG); the vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide (SDS/DDAB) and of monoolein/sodium oleate (Mo/NaO); titanium oxide (TiO 2 ), titanium silicon oxide (TiSiO 4 ), CdSe/ZnS quantum dots, gold nanorods, and Fe/Co magnetic fluid were the NMs tested. Soil samples were incubated, for a period of 30 days, after being spiked with NM suspensions previously characterized by Dynamic Light Scattering (DLS) or by an ultrahigh-resolution scanning electron microscope (SEM). The analysis of similarities (ANOSIM) of DGGE profiles showed that gold nanorods, TiO 2 , CMC, HM-CMC, HM-PEG, and SDS/DDAB have significantly affected the structural diversity of the soil bacterial community. - Highlights: ► Organic and inorganic nanomaterials on soil microbial community. ► Structural diversity was investigated by Denaturing Gradient Gel Electrophoresis. ► All the organic nanomaterials, TiO 2 and gold nanorods significantly affected the structural diversity.

  19. Nanomaterials in construction and demolition - how can we assess the risk if we don't know where they are?

    International Nuclear Information System (INIS)

    Jones, Wendy; Gibb, Alistair; Goodier, Chris; Bust, Phil; Jin, Jie; Song, Mo

    2015-01-01

    This research, funded by the Institution of Occupational Safety and Health in the United Kingdom, has used a combination of literature review, web searching and unstructured interviews with a range of industry professionals to compile a list of products used in construction and the built environment which might contain nanomaterials. Samples of these products have been analysed using Scanning Electron Microscopy and Energy Dispersive X- Ray Spectroscopy to investigate whether nanomaterials are actually present and to what extent. Preliminary results of this testing are presented here. It is concluded that there is a discrepancy between the academic literature and the reality regarding the current application of nanomaterials in the construction industry and the built environment. There are also inaccuracies and deficiencies in the information provided by manufacturers which makes it difficult to accurately assess the location and application of nanomaterials within the industry. Further testing is planned to evaluate the risk of nanoparticle release from nano-enabled building products at their end of life by reproducing common demolition and recycling processes such as crushing, grinding, burning and melting. Results of this will form the basis of practical guidance for the construction, demolition and recycling industries to help them identify where particular protection or control measures may be appropriate as well as providing reassurance where no additional action is required. (paper)

  20. Nanomaterials: Regulation and Risk Assessment

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Grieger, Khara Deanne; Baun, Anders

    2013-01-01

    , the Water Framework Directive, pharmaceuticals regulation, and the Novel Foods Regulation. Current regulation of nanomaterials entail three overall challenges: 1) limitations in regard to terminology and definitions of key terms such as a “substance,” “novel food,” etc.; 2) safety assessment requirements...

  1. Management of nanomaterials safety in research environment

    Directory of Open Access Journals (Sweden)

    Riediker Michael

    2010-12-01

    Full Text Available Abstract Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health. The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3 - highest hazard to Nano1 - lowest hazard. Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal. The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and

  2. Management of nanomaterials safety in research environment.

    Science.gov (United States)

    Groso, Amela; Petri-Fink, Alke; Magrez, Arnaud; Riediker, Michael; Meyer, Thierry

    2010-12-10

    Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3--highest hazard to Nano1--lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting

  3. Flows of engineered nanomaterials through the recycling process in Switzerland

    International Nuclear Information System (INIS)

    Caballero-Guzman, Alejandro; Sun, Tianyin; Nowack, Bernd

    2015-01-01

    Highlights: • Recycling is one of the likely end-of-life fates of nanoproducts. • We assessed the material flows of four nanomaterials in the Swiss recycling system. • After recycling, most nanomaterials will flow to landfills or incineration plants. • Recycled construction waste, plastics and textiles may contain nanomaterials. - Abstract: The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, for example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO 2 , nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled inputs

  4. Intracellular Delivery of Nanomaterials via an Inertial Microfluidic Cell Hydroporator.

    Science.gov (United States)

    Deng, Yanxiang; Kizer, Megan; Rada, Miran; Sage, Jessica; Wang, Xing; Cheon, Dong-Joo; Chung, Aram J

    2018-04-11

    The introduction of nanomaterials into cells is an indispensable process for studies ranging from basic biology to clinical applications. To deliver foreign nanomaterials into living cells, traditionally endocytosis, viral and lipid nanocarriers or electroporation are mainly employed; however, they critically suffer from toxicity, inconsistent delivery, and low throughput and are time-consuming and labor-intensive processes. Here, we present a novel inertial microfluidic cell hydroporator capable of delivering a wide range of nanomaterials to various cell types in a single-step without the aid of carriers or external apparatus. The platform inertially focuses cells into the channel center and guides cells to collide at a T-junction. Controlled compression and shear forces generate transient membrane discontinuities that facilitate passive diffusion of external nanomaterials into the cell cytoplasm while maintaining high cell viability. This hydroporation method shows superior delivery efficiency, is high-throughput, and has high controllability; moreover, its extremely simple and low-cost operation provides a powerful and practical strategy in the applications of cellular imaging, biomanufacturing, cell-based therapies, regenerative medicine, and disease diagnosis.

  5. Release-ability of nano fillers from different nanomaterials (toward the acceptability of nanoproduct)

    International Nuclear Information System (INIS)

    Golanski, L.; Guiot, A.; Pras, M.; Malarde, M.; Tardif, F.

    2012-01-01

    It is of great interest to set up a reproducible and sensitive method able to qualify nanomaterials before their market introduction in terms of their constitutive nanoparticle release-ability in usage. Abrasion was performed on polycarbonate, epoxy, and PA11 polymers containing carbone nanotubes (CNT) up to 4 %wt. Using Taber linear standard tool and standard abrasion conditions no release from polymer coatings containing CNT was measured. In this study, new practical tools inducing non-standardized stresses able to compete with van der Waals forces were developed and tested on model polymers, showing controlled CNT dispersion. These stresses are still realistic, corresponding to scratching, instantaneous mechanical shocks, and abrasion of the surface. They offer an efficient way to quantify if release is possible from nanomaterials under different mechanical stresses and therefore give an idea about the mechanisms that favors it. Release under mechanical shocks and hard abrasion was obtained using these tools but only when nanomaterials present a bad dispersion of CNT within the epoxy matrix. Under the same conditions no release was obtained from the same material presenting a good dispersion. The CNT used in this study showed an external diameter Dext = 12 nm, an internal diameter Din = 5 nm, and a mean length of 1 μm. Release from paints under hard abrasion using a standard rotative Taber tool was obtained from a intentionaly non-optimized paint containing SiO 2 nanoparticles up to 35 %wt. The primary diameter of the SiO 2 was estimated to be around 12 nm. A metallic rake was efficient to remove nanoparticles from a non-woven fabric nanomaterial.

  6. Nanomaterials for Hydrogen Storage Applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael U. Niemann

    2008-01-01

    Full Text Available Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc. and their hydrogen storage characteristics are outlined.

  7. European regulation affecting nanomaterials – review of limitations and future recommendations

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Baun, Anders

    2012-01-01

    After learning about the potential risks associated with various specific nanomaterials, concerns have been raised about adequacy of existing regulation in Europe and what should be done to address any potential regulatory gaps related to nanomaterials. Understanding the limitations of the curren...

  8. The application of nanomaterials in controlled drug delivery for bone regeneration.

    Science.gov (United States)

    Shi, Shuo; Jiang, Wenbao; Zhao, Tianxiao; Aifantis, Katerina E; Wang, Hui; Lin, Lei; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Li, Xiaoming

    2015-12-01

    Bone regeneration is a complicated process that involves a series of biological events, such as cellular recruitment, proliferation and differentiation, and so forth, which have been found to be significantly affected by controlled drug delivery. Recently, a lot of research studies have been launched on the application of nanomaterials in controlled drug delivery for bone regeneration. In this article, the latest research progress in this area regarding the use of bioceramics-based, polymer-based, metallic oxide-based and other types of nanomaterials in controlled drug delivery for bone regeneration are reviewed and discussed, which indicates that the controlling drug delivery with nanomaterials should be a very promising treatment in orthopedics. Furthermore, some new challenges about the future research on the application of nanomaterials in controlled drug delivery for bone regeneration are described in the conclusion and perspectives part. Copyright © 2015 Wiley Periodicals, Inc.

  9. Nanofabrication and Nanopatterning of Carbon Nanomaterials for Flexible Electronics

    Science.gov (United States)

    Ding, Junjun

    Stretchable electrodes have increasingly drawn attention as a vital component for flexible electronic devices. Carbon nanomaterials such as graphene and carbon nanotubes (CNTs) exhibit properties such as high mechanical flexibility and strength, optical transparency, and electrical conductivity which are naturally required for stretchable electrodes. Graphene growth, nanopatterning, and transfer processes are important steps to use graphene as flexible electrodes. However, advances in the large-area nanofabrication and nanopatterning of carbon nanomaterials such as graphene are necessary to realize the full potential of this technology. In particular, laser interference lithography (LIL), a fast and low cost large-area nanoscale patterning technique, shows tremendous promise for the patterning of graphene and other nanostructures for numerous applications. First, it was demonstrated that large-area nanopatterning and the transfer of chemical vapor deposition (CVD) grown graphene via LIL and plasma etching provide a reliable method to provide large area nanoengineered graphene on various target substrates. Then, to improve the electrode performance under large strain (naturally CVD grown graphene sheet will crack at tensile strains larger than 1%), a corrugated graphene structure on PDMS was designed, fabricated, and tested, with experimental results indicating that this approach successfully allows the graphene sheets to withstand cyclic tensile strains up to 15%. Lastly, to further enhance the performance of carbon-based stretchable electrodes, an approach was developed which coupled graphene and vertically aligned CNT (VACNT) on a flexible PDMS substrate. Characterization of the graphene-VACNT hybrid shows high electrical conductivity and durability through 50 cycles of loading up to 100% tensile strain. While flexible electronics promise tremendous advances in important technological areas such as healthcare, sensing, energy, and wearable electronics, continued

  10. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity

    International Nuclear Information System (INIS)

    Harper, Bryan; Thomas, Dennis; Chikkagoudar, Satish; Baker, Nathan; Tang, Kaizhi; Heredia-Langner, Alejandro; Lins, Roberto; Harper, Stacey

    2015-01-01

    The integration of rapid assays, large datasets, informatics, and modeling can overcome current barriers in understanding nanomaterial structure–toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here, we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality in developing embryonic zebrafish, were established at realistic exposure levels and used to develop a hazard ranking of diverse nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both the core composition and outermost surface chemistry of nanomaterials. The resulting clusters guided the development of a surface chemistry-based model of gold nanoparticle toxicity. Our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. Research should continue to focus on methodologies for determining nanomaterial hazard based on multiple sub-lethal responses following realistic, low-dose exposures, thus increasing the availability of quantitative measures of nanomaterial hazard to support the development of nanoparticle structure–activity relationships

  11. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Bryan [Oregon State University (United States); Thomas, Dennis; Chikkagoudar, Satish; Baker, Nathan [Pacific Northwest National Laboratory (United States); Tang, Kaizhi [Intelligent Automation, Inc. (United States); Heredia-Langner, Alejandro [Pacific Northwest National Laboratory (United States); Lins, Roberto [CPqAM, Oswaldo Cruz Foundation, FIOCRUZ-PE (Brazil); Harper, Stacey, E-mail: stacey.harper@oregonstate.edu [Oregon State University (United States)

    2015-06-15

    The integration of rapid assays, large datasets, informatics, and modeling can overcome current barriers in understanding nanomaterial structure–toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here, we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality in developing embryonic zebrafish, were established at realistic exposure levels and used to develop a hazard ranking of diverse nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both the core composition and outermost surface chemistry of nanomaterials. The resulting clusters guided the development of a surface chemistry-based model of gold nanoparticle toxicity. Our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. Research should continue to focus on methodologies for determining nanomaterial hazard based on multiple sub-lethal responses following realistic, low-dose exposures, thus increasing the availability of quantitative measures of nanomaterial hazard to support the development of nanoparticle structure–activity relationships.

  12. Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials

    DEFF Research Database (Denmark)

    Baun, Anders; Sayre, Phil; Steinhäuser, Klaus Günter

    2017-01-01

    The widespread use of manufactured nanomaterials (MN) increases the need for describing and predicting their environmental fate and behaviour. A number of recent reviews have addressed the scientific challenges in disclosing the governing processes for the environmental fate and behaviour of MNs,...... data. Gaps do however exist in test methods for environmental fate, such as methods to estimate heteroagglomeration and the tendency for MNs to transform in the environment.......The widespread use of manufactured nanomaterials (MN) increases the need for describing and predicting their environmental fate and behaviour. A number of recent reviews have addressed the scientific challenges in disclosing the governing processes for the environmental fate and behaviour of MNs......, however there has been less focus on the regulatory adequacy of the data available for MN. The aim of this paper is therefore to review data, testing protocols and guidance papers which describe the environmental fate and behaviour of MN with a focus on their regulatory reliability and relevance. Given...

  13. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures.

    Science.gov (United States)

    Faramarzi, Mohammad Ali; Sadighi, Armin

    2013-03-01

    The synthesis of inorganic nanomaterials and nanostructures by the means of diverse physical, chemical, and biological principles has been developed in recent decades. The nanoscale materials and structures creation continue to be an active area of researches due to the exciting properties of the resulting nanomaterials and their innovative applications. Despite physical and chemical approaches which have been used for a long time to produce nanomaterials, biological resources as green candidates that can replace old production methods have been focused in recent years to generate various inorganic nanoparticles (NPs) or other nanoscale structures. Cost-effective, eco-friendly, energy efficient, and nontoxic produced nanomaterials using diverse biological entities have been received increasing attention in the last two decades in contrast to physical and chemical methods owe using toxic solvents, generate unwanted by-products, and high energy consumption which restrict the popularity of these ways employed in nanometric science and engineering. In this review, the biosynthesis of gold, silver, gold-silver alloy, magnetic, semiconductor nanocrystals, silica, zirconia, titania, palladium, bismuth, selenium, antimony sulfide, and platinum NPs, using bacteria, actinomycetes, fungi, yeasts, plant extracts and also informational bio-macromolecules including proteins, polypeptides, DNA, and RNA have been reported extensively to mention the current status of the biological inorganic nanomaterial production. In other hand, two well-known wet chemical techniques, namely chemical reduction and sol-gel methods, used to produce various types of nanocrystalline powders, metal oxides, and hybrid organic-inorganic nanomaterials have presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials.

    Science.gov (United States)

    Lawrence, J R; Swerhone, G D W; Dynes, J J; Korber, D R; Hitchcock, A P

    2016-02-01

    There is a critical need for methods that provide simultaneous detection, identification, quantitation and visualization of nanomaterials at their interface with biological and environmental systems. The approach should allow speciation as well as elemental analysis. Using the intrinsic X-ray absorption properties, soft X-ray scanning transmission X-ray spectromicroscopy (STXM) allows characterization and imaging of a broad range of nanomaterials, including metals, oxides and organic materials, and at the same time is able to provide detailed mapping of biological components. Thus, STXM offers considerable potential for application to research on nanomaterials in biology and the environment. The potential and limitations of STXM in this context are discussed using a range of examples, focusing on the interaction of nanomaterials with microbial cells, biofilms and extracellular polymers. The studies outlined include speciation and mapping of metal-containing nanomaterials (Ti, Ni, Cu) and carbon-based nanomaterials (multiwalled carbon nanotubes, C60 fullerene). The benefits of X-ray fluorescence detection in soft X-ray STXM are illustrated with a study of low levels of Ni in a natural river biofilm. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  15. Categorization framework to aid exposure assessment of nanomaterials in consumer products

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Michelson, Evan S.; Kamper, Anja

    2008-01-01

    Exposure assessment is crucial for risk assessment for nanomaterials. We propose a framework to aid exposure assessment in consumer products. We determined the location of the nanomaterials and the chemical identify of the 580 products listed in the inventory maintained by the Woodrow Wilson Inte...

  16. Occupational Exposure Assessment of Nanomaterials using Control Banding Tools

    DEFF Research Database (Denmark)

    Liguori, Biase

    , are relatively advanced, and they are good foundations for an advanced exposure assessment. Considering the tiered approach for workplace assessment proposed by the OECD, these two tools could be situated, between Tier 1 (Information gathering) and Tier 2 (Basic exposure assessment). Moreover, the thesis......Nanotechnology can be termed as the “new industrial revolution”. A broad range of potential benefits in various applications for the environment and everyday life of humans can be related to the use of nanotechnology. Nanomaterials are used in a large variety of products already in the market......, and because of their novel physical and chemical characteristics, the application of nanomaterials is projected to increase further. This will inevitably increase the production of nanomaterials with potential increase of exposure for the workers which are the first in line expected to become exposed...

  17. FROM ZERO-DIMENSIONAL TO 2-DIMENSIONAL CARBON NANOMATERIALS - part II: GRAPHENE

    Directory of Open Access Journals (Sweden)

    Cătălin IANCU

    2012-05-01

    Full Text Available As was presented in the first part of this review paper, lately, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. In this review paper are presented some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. In this part of the paper are presented the synthesis techniques used to produce the two-dimensional carbon nanomaterials (including graphene, and also the most important properties and potential applications of graphene.

  18. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    Science.gov (United States)

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.

  19. Raman studies of the interactions of fibrous carbon nanomaterials with albumin

    Science.gov (United States)

    Wesełucha-Birczyńska, Aleksandra; Morajka, Krzysztof; Stodolak-Zych, Ewa; Długoń, Elżbieta; Dużyja, Maria; Lis, Tomasz; Gubernat, Maciej; Ziąbka, Magdalena; Błażewicz, Marta

    2018-05-01

    Adsorption or immobilization of proteins on synthetic surfaces is a key issue in the context of the biocompatibility of implant materials, especially those intended for the needs of cardiac surgery but also for the construction of biosensors or nanomaterials used as drug carriers. The subject of research was the analysis of Raman spectra of two types of fibrous carbon nanomaterials, of great potential for biomedical applications, incubated with human serum albumin (HSA). The first nanomaterial has been created on the layer of MWCNTs deposited by electrophoretic method (EPD) and then covered by thin film of pyrolytic carbon introduced by chemical vapor deposition process (CVD). The second material was formed from carbonized nanofibers prepared via electrospinning (ESCNFs) of polyacrylonitrile (PAN) precursor and then covered with pyrolytic carbon (CVD). The G-band blue-shift towards the position of about 1600 cm-1, observed for both studied surfaces, clearly indicates the albumin (HSA) adhesion to the surface. The G and G' (2D) peak shift was employed to assess the stress build up on the carbon nanomaterials. The surface nano- and micro-topography as well as the method of ordering the carbon nanomaterial has a significant influence on the mode of surface-protein interaction.

  20. Flight Tests of a Remaining Flying Time Prediction System for Small Electric Aircraft in the Presence of Faults

    Science.gov (United States)

    Hogge, Edward F.; Kulkarni, Chetan S.; Vazquez, Sixto L.; Smalling, Kyle M.; Strom, Thomas H.; Hill, Boyd L.; Quach, Cuong C.

    2017-01-01

    This paper addresses the problem of building trust in the online prediction of a battery powered aircraft's remaining flying time. A series of flight tests is described that make use of a small electric powered unmanned aerial vehicle (eUAV) to verify the performance of the remaining flying time prediction algorithm. The estimate of remaining flying time is used to activate an alarm when the predicted remaining time is two minutes. This notifies the pilot to transition to the landing phase of the flight. A second alarm is activated when the battery charge falls below a specified limit threshold. This threshold is the point at which the battery energy reserve would no longer safely support two repeated aborted landing attempts. During the test series, the motor system is operated with the same predefined timed airspeed profile for each test. To test the robustness of the prediction, half of the tests were performed with, and half were performed without, a simulated powertrain fault. The pilot remotely engages a resistor bank at a specified time during the test flight to simulate a partial powertrain fault. The flying time prediction system is agnostic of the pilot's activation of the fault and must adapt to the vehicle's state. The time at which the limit threshold on battery charge is reached is then used to measure the accuracy of the remaining flying time predictions. Accuracy requirements for the alarms are considered and the results discussed.

  1. Selenium and tellurium nanomaterials

    Science.gov (United States)

    Piacenza, Elena; Presentato, Alessandro; Zonaro, Emanuele; Lampis, Silvia; Vallini, Giovanni; Turner, Raymond J.

    2018-04-01

    Over the last 40 years, the rapid and exponential growth of nanotechnology led to the development of various synthesis methodologies to generate nanomaterials different in size, shape and composition to be applied in various fields. In particular, nanostructures composed of Selenium (Se) or Tellurium (Te) have attracted increasing interest, due to their intermediate nature between metallic and non-metallic elements, being defined as metalloids. Indeed, this key shared feature of Se and Te allows us the use of their compounds in a variety of applications fields, such as for manufacturing photocells, photographic exposure meters, piezoelectric devices, and thermoelectric materials, to name a few. Considering also that the chemical-physical properties of elements result to be much more emphasized when they are assembled at the nanoscale range, huge efforts have been made to develop highly effective synthesis methods to generate Se- or Te-nanomaterials. In this context, the present book chapter will explore the most used chemical and/or physical methods exploited to generate different morphologies of metalloid-nanostructures, focusing also the attention on the major advantages, drawbacks as well as the safety related to these synthetic procedures.

  2. Simulating Exposure Concentrations of Engineered Nanomaterials in Surface Water Systems: Release of WASP8

    Science.gov (United States)

    Knightes, C. D.; Bouchard, D.; Zepp, R. G.; Henderson, W. M.; Han, Y.; Hsieh, H. S.; Avant, B. K.; Acrey, B.; Spear, J.

    2017-12-01

    The unique properties of engineered nanomaterials led to their increased production and potential release into the environment. Currently available environmental fate models developed for traditional contaminants are limited in their ability to simulate nanomaterials' environmental behavior. This is due to an incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. The well-known Water Quality Analysis Simulation Program (WASP) was updated to incorporate nanomaterial-specific processes, specifically hetero-aggregation with particulate matter. In parallel with this effort, laboratory studies were used to quantify parameter values parameters necessary for governing processes in surface waters. This presentation will discuss the recent developments in the new architecture for WASP8 and the newly constructed Advanced Toxicant Module. The module includes advanced algorithms for increased numbers of state variables: chemicals, solids, dissolved organic matter, pathogens, temperature, and salinity. This presentation will focus specifically on the incorporation of nanomaterials, with the applications of the fate and transport of hypothetical releases of Multi-Walled Carbon Nanotubes (MWCNT) and Graphene Oxide (GO) into the headwaters of a southeastern US coastal plains river. While this presentation focuses on nanomaterials, the advanced toxicant module can also simulate metals and organic contaminants.

  3. Study on the performance of ZnO nanomaterial-based surface acoustic wave ultraviolet detectors

    International Nuclear Information System (INIS)

    Peng, Wenbo; He, Yongning; Zhao, Xiaolong; Liu, Han; Kang, Xue; Wen, Changbao

    2013-01-01

    A ZnO nanomaterial-based surface acoustic wave (SAW) ultraviolet (UV) detector is highly desirable for UV radiation detection due to its high sensitivity. In this work, firstly the ZnO nanomaterial-based SAW UV detectors operating at three different frequencies (∼50, ∼100 and ∼200 MHz) were fabricated. Then, four ZnO nanomaterial sensing layers with different thicknesses were synthesized on the SAW UV detectors operating at ∼200 MHz. The morphology, crystallization and photoluminescence of ZnO nanomaterial sensing layers were characterized using the scanning electron microscopy, transmission electron microscopy, x-ray diffraction and fluorescence spectrometer, respectively. The SAW UV detectors based on different operating frequencies and ZnO nanomaterial sensing layer's thicknesses were exposed under UV illumination at a wavelength of 365 nm and their UV responses were measured. The experimental results indicate that the frequency shift of ZnO nanomaterial-based SAW UV detector can be significantly improved by increasing operating frequency or ZnO nanomaterial sensing layer's thickness. Furthermore, the detectors exhibit good selectivity of UV illumination, an ultrahigh UV sensitivity of about 9.6 ppm (µW cm −2 ) −1  and fast transient properties. The experimental results agree well with the acousto-electric effect theory. What deserves to be noted is that, under a UV intensity of 150 µW cm −2 , the frequency shift of the SAW UV detector operating at ∼50 MHz with a thin ZnO nanomaterial sensing layer was only ∼50 kHz while that of the SAW UV detector operating at ∼200 MHz with a thick ZnO nanomaterial sensing layer could reach ∼292 kHz. These results suggest the huge potential applications of ultra-sensitive ZnO nanomaterial-based SAW UV detectors for remote wireless UV and radiation monitoring. (paper)

  4. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae

    International Nuclear Information System (INIS)

    Mesarič, Tina; Gambardella, Chiara; Milivojević, Tamara; Faimali, Marco; Drobne, Damjana; Falugi, Carla; Makovec, Darko; Jemec, Anita; Sepčić, Kristina

    2015-01-01

    Highlights: • Carbon-based nanomaterials adsorb onto the body surface of A. salina larvae. • Surface adsorption results in concentration–dependent inhibition of larval swimming. • Carbon-based nanomaterials induce no significant mortality of A. salina larvae. - Abstract: We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration–dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5 mg/mL carbon black and 0.1 mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change

  5. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae

    Energy Technology Data Exchange (ETDEWEB)

    Mesarič, Tina, E-mail: tina.mesaric84@gmail.com [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Gambardella, Chiara, E-mail: chiara.gambardella@ge.ismar.cnr.it [Institute of Marine Sciences, National Research Council, Genova (Italy); Milivojević, Tamara, E-mail: milivojevictamara@gmail.com [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Faimali, Marco, E-mail: marco.faimali@ismar.cnr.it [Institute of Marine Sciences, National Research Council, Genova (Italy); Drobne, Damjana, E-mail: damjana.drobne@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Centre of Excellence in Nanoscience and Nanotechnology (CO Nanocentre), Ljubljana (Slovenia); Centre of Excellence in Advanced Materials and Technologies for the Future (CO NAMASTE), Ljubljana (Slovenia); Falugi, Carla, E-mail: carlafalugi@hotmail.it [Department of Earth, Environment and Life Sciences, University of Genova, Genova (Italy); Makovec, Darko, E-mail: darko.makovec@ijs.si [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Jemec, Anita, E-mail: anita.jemec@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Sepčić, Kristina, E-mail: kristina.sepcic@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia)

    2015-06-15

    Highlights: • Carbon-based nanomaterials adsorb onto the body surface of A. salina larvae. • Surface adsorption results in concentration–dependent inhibition of larval swimming. • Carbon-based nanomaterials induce no significant mortality of A. salina larvae. - Abstract: We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration–dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5 mg/mL carbon black and 0.1 mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change.

  6. Optical and thermal response of single-walled carbon nanotube–copper sulfide nanoparticle hybrid nanomaterials

    International Nuclear Information System (INIS)

    Tseng, Yi-Hsuan; He Yuan; Que Long; Lakshmanan, Santana; Yang Chang; Chen Wei

    2012-01-01

    This paper reports the optical and thermal response of a single-walled carbon nanotube–copper sulfide nanoparticle (SWNT–CuS NP) hybrid nanomaterial and its application as a thermoelectric generator. The hybrid nanomaterial was synthesized using oleylamine molecules as the linker molecules between SWNTs and CuS NPs. Measurements found that the hybrid nanomaterial has significantly increased light absorption (up to 80%) compared to the pure SWNT. Measurements also found that the hybrid nanomaterial thin-film devices exhibit a clear optical and thermal switching effect, which can be further enhanced up to 10 × by asymmetric illumination of light and thermal radiation on the thin-film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials is demonstrated, indicating a new route for achieving thermoelectricity. (paper)

  7. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures.

    Science.gov (United States)

    Piacenza, Elena; Presentato, Alessandro; Turner, Raymond J

    2018-02-25

    In the last 15 years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids, DNA, and polysaccharides) or secondary metabolites (e.g. flavonoids, terpenoids, glycosides, organic acids, and alkaloids) naturally produced by organisms have been indicated as main contributors to the stabilization of Bio-Me-nanostructures. Nevertheless, the chemical-physical mechanisms behind the ability of these molecules in providing stability to Bio-Me-nanomaterials are unknown. In this context, transposing the stabilization theory of chemically synthesized Me-nanomaterials (Ch-Me-nanomaterials) to biogenic materials can be used towards a better comprehension of macromolecules and secondary metabolites role as stabilizing agents of Bio-Me-nanomaterials. According to this theory, nanomaterials are generally featured by high thermodynamic instability in suspension, due to their high surface area and surface energy. This feature leads to the necessity to stabilize chemical nanostructures, even during or directly after their synthesis, through the development of (i) electrostatic, (ii) steric, or (iii) electrosteric interactions occurring between molecules and nanomaterials in suspension. Based on these three mechanisms, this review is focused on parallels between the stabilization of biogenic or chemical nanomaterials, suggesting which chemical-physical mechanisms may be

  8. Review of Research on Template Methods in Preparation of Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yadian Xie

    2016-01-01

    Full Text Available The nanomaterials have been widely used in various fields, such as photonics, catalysis, and adsorption, because of their unique physical and chemical properties. Therefore, their production methods are of utmost importance. Compared with traditional synthetic methods, the template method can effectively control the morphology, particle size, and structure during the preparation of nanomaterials, which is an effective method for their synthesis. The key for the template method is to choose different templates, which are divided into hard template and soft template according to their different structures. In this paper, the effects of different types of templates on the morphology of nanomaterials during their preparation are investigated from two aspects: hard template and soft template, combined with the mechanism of action.

  9. Engineered nanomaterials: toward effective safety management in research laboratories.

    Science.gov (United States)

    Groso, Amela; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Hofmann, Heinrich; Meyer, Thierry

    2016-03-15

    It is still unknown which types of nanomaterials and associated doses represent an actual danger to humans and environment. Meanwhile, there is consensus on applying the precautionary principle to these novel materials until more information is available. To deal with the rapid evolution of research, including the fast turnover of collaborators, a user-friendly and easy-to-apply risk assessment tool offering adequate preventive and protective measures has to be provided. Based on new information concerning the hazards of engineered nanomaterials, we improved a previously developed risk assessment tool by following a simple scheme to gain in efficiency. In the first step, using a logical decision tree, one of the three hazard levels, from H1 to H3, is assigned to the nanomaterial. Using a combination of decision trees and matrices, the second step links the hazard with the emission and exposure potential to assign one of the three nanorisk levels (Nano 3 highest risk; Nano 1 lowest risk) to the activity. These operations are repeated at each process step, leading to the laboratory classification. The third step provides detailed preventive and protective measures for the determined level of nanorisk. We developed an adapted simple and intuitive method for nanomaterial risk management in research laboratories. It allows classifying the nanoactivities into three levels, additionally proposing concrete preventive and protective measures and associated actions. This method is a valuable tool for all the participants in nanomaterial safety. The users experience an essential learning opportunity and increase their safety awareness. Laboratory managers have a reliable tool to obtain an overview of the operations involving nanomaterials in their laboratories; this is essential, as they are responsible for the employee safety, but are sometimes unaware of the works performed. Bringing this risk to a three-band scale (like other types of risks such as biological, radiation

  10. A review and perspective of existing research on the release of nanomaterials from solid nanocomposites.

    Science.gov (United States)

    Froggett, Stephan J; Clancy, Shaun F; Boverhof, Darrell R; Canady, Richard A

    2014-04-07

    Advances in adding nanomaterials to various matrices have occurred in tandem with the identification of potential hazards associated with exposure to pure forms of nanomaterials. We searched multiple research publication databases and found that, relative to data generated on potential nanomaterial hazards or exposures, very little attention has focused on understanding the potential and conditions for release of nanomaterials from nanocomposites. However, as a prerequisite to exposure studying release is necessary to inform risk assessments. We identified fifty-four studies that specifically investigated the release of nanomaterials, and review them in the following release scenario groupings: machining, weathering, washing, contact and incineration. While all of the identified studies provided useful information, only half were controlled experiments. Based on these data, the debris released from solid, non-food nanocomposites contains in varying frequencies, a mixture of four types of debris. Most frequently identified are (1) particles of matrix alone, and slightly less often, the (2) matrix particles exhibit the nanomaterial partially or fully embedded; far less frequently is (3) the added nanomaterial entirely dissociated from the matrix identified: and most rare are (4) dissolved ionic forms of the added nanomaterial. The occurrence of specific debris types appeared to be dependent on the specific release scenario and environment. These data highlight that release from nanocomposites can take multiple forms and that additional research and guidance would be beneficial, allowing for more consistent characterization of the release potential of nanomaterials. In addition, these data support calls for method validation and standardization, as well as understanding how laboratory release scenarios relate to real-world conditions. Importantly, as risk is considered to be a function of the inherent hazards of a substance and the actual potential for exposure, data

  11. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.

    Science.gov (United States)

    Kurbanoglu, Sevinc; Ozkan, Sibel A; Merkoçi, Arben

    2017-03-15

    In recent years great progress has been made in applying nanomaterials to design novel biosensors. Use of nanomaterials offers to biosensing platforms exceptional optical, electronic and magnetic properties. Nanomaterials can increase the surface of the transducing area of the sensors that in turn bring an increase in catalytic behaviors. They have large surface-to-volume ratio, controlled morphology and structure that also favor miniaturization, an interesting advantage when the sample volume is a critical issue. Biosensors have great potential for achieving detect-to-protect devices: devices that can be used in detections of pollutants and other treating compounds/analytes (drugs) protecting citizens' life. After a long term focused scientific and financial efforts/supports biosensors are expected now to fulfill their promise such as being able to perform sampling and analysis of complex samples with interest for clinical or environment fields. Among all types of biosensors, enzymatic biosensors, the most explored biosensing devices, have an interesting property, the inherent inhibition phenomena given the enzyme-substrate complex formation. The exploration of such phenomena is making remarkably important their application as research and applied tools in diagnostics. Different inhibition biosensor systems based on nanomaterials modification has been proposed and applied. The role of nanomaterials in inhibition-based biosensors for the analyses of different groups of drugs as well as contaminants such as pesticides, phenolic compounds and others, are discussed in this review. This deep analysis of inhibition-based biosensors that employ nanomaterials will serve researchers as a guideline for further improvements and approaching of these devices to real sample applications so as to reach society needs and such biosensor market demands. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. New Nanomaterials and Luminescent Optical Sensors for Detection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Natalia A. Burmistrova

    2015-10-01

    Full Text Available Accurate methods that can continuously detect low concentrations of hydrogen peroxide (H2O2 have a huge application potential in biological, pharmaceutical, clinical and environmental analysis. Luminescent probes and nanomaterials are used for fabrication of sensors for H2O2 that can be applied for these purposes. In contrast to previous reviews focusing on the chemical design of molecular probes for H2O2, this mini-review highlights the latest luminescent nanoparticular materials and new luminescent optical sensors for H2O2 in terms of the nanomaterial composition and luminescent receptor used in the sensors. The nanomaterial section is subdivided into schemes based on gold nanoparticles, polymeric nanoparticles with embedded enzymes, probes showing aggregation-induced emission enhancement, quantum dots, lanthanide-based nanoparticles and carbon based nanomaterials, respectively. Moreover, the sensors are ordered according to the type of luminescent receptor used within the sensor membranes. Among them are lanthanide complexes, metal-ligand complexes, oxidic nanoparticles and organic dyes. Further, the optical sensors are confined to those that are capable to monitor the concentration of H2O2 in a sample over time or are reusable. Optical sensors responding to gaseous H2O2 are not covered. All nanomaterials and sensors are characterized with respect to the analytical reaction towards H2O2, limit of detection (LOD, analytical range, electrolyte, pH and response time/incubation time. Applications to real samples are given. Finally, we assess the suitability of the nanomaterials to be used in membrane-based sensors and discuss future trends and perspectives of these sensors in biomedical research.

  13. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy.

    Science.gov (United States)

    Liang, Hao; Zhang, Xiao-Bing; Lv, Yifan; Gong, Liang; Wang, Ruowen; Zhu, Xiaoyan; Yang, Ronghua; Tan, Weihong

    2014-06-17

    CONSPECTUS: DNA performs a vital function as a carrier of genetic code, but in the field of nanotechnology, DNA molecules can catalyze chemical reactions in the cell, that is, DNAzymes, or bind with target-specific ligands, that is, aptamers. These functional DNAs with different modifications have been developed for sensing, imaging, and therapeutic systems. Thus, functional DNAs hold great promise for future applications in nanotechnology and bioanalysis. However, these functional DNAs face challenges, especially in the field of biomedicine. For example, functional DNAs typically require the use of cationic transfection reagents to realize cellular uptake. Such reagents enter the cells, increasing the difficulty of performing bioassays in vivo and potentially damaging the cell's nucleus. To address this obstacle, nanomaterials, such as metallic, carbon, silica, or magnetic materials, have been utilized as DNA carriers or assistants. In this Account, we describe selected examples of functional DNA-containing nanomaterials and their applications from our recent research and those of others. As models, we have chosen to highlight DNA/nanomaterial complexes consisting of gold nanoparticles, graphene oxides, and aptamer-micelles, and we illustrate the potential of such complexes in biosensing, imaging, and medical diagnostics. Under proper conditions, multiple ligand-receptor interactions, decreased steric hindrance, and increased surface roughness can be achieved from a high density of DNA that is bound to the surface of nanomaterials, resulting in a higher affinity for complementary DNA and other targets. In addition, this high density of DNA causes a high local salt concentration and negative charge density, which can prevent DNA degradation. For example, DNAzymes assembled on gold nanoparticles can effectively catalyze chemical reactions even in living cells. And it has been confirmed that DNA-nanomaterial complexes can enter cells more easily than free single

  14. Facile synthesis of gold nanomaterials with unusual crystal structures.

    Science.gov (United States)

    Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua

    2017-11-01

    Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

  15. Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission.

    Science.gov (United States)

    Shu, Tong; Wang, Jianxing; Su, Lei; Zhang, Xueji

    2018-07-04

    Recent researches in metal nanoclusters (NCs) have prompted their promising practical applications in biomedical fields as novel inorganic luminophores. More recently, to further improve the photoluminescence (PL) performance of NCs, the aggregation-induced emission (AIE) effect has been introduced to develop highly luminescent metal NCs and metal complex materials. In this review, we start our discussion from recent progresses on AIE materials developments. Then, we address our understandings on the PL properties of thiolated metal NCs. Subsequently, we link thiolated metal NCs with AIE effect. We also highlight some recent advances in synthesizing the AIE-type metal complex nanomaterials. We finally discuss visions and directions for future development of AIE-type metal complex nanomaterials.

  16. Nanomaterials: Science and applications in the lithium–sulfur battery

    KAUST Repository

    Ma, Lin

    2015-06-01

    © 2015 Elsevier Ltd. All rights reserved. Reliable and cost-effective technologies for electrical energy storage are in great demand in sectors of the global economy ranging from portable devices, transportation, and sustainable production of electricity from intermittent sources. Among the various electrochemical energy storage options under consideration, rechargeable lithium-sulfur (Li-S) batteries remain the most promising platform for reversibly storing large amounts of electrical energy at moderate cost set by the inherent cell chemistry. The success of Li-S storage technology in living up to this promise calls for solutions to fundamental problems associated with the inherently low electrical conductivity of sulfur and sulfides, and the complex solution chemistry of lithiated sulfur compounds in commonly used electrolytes. These problems appear well posed for innovative solutions using nanomaterials and for fundamental answers guided by the tools of nanotechnology. Beginning with a review of the current understanding of Li-S battery chemistry and operation, this review discusses how advances in nano-characterization and theoretical studies of the Li-S system are helping advance the understanding of the Li-S battery. Factors that prevent Li-S cells from realizing the theoretical capacity set by their chemistry are discussed both in terms of the impressive advances in cell design enabled by nanomaterials and recent progress aimed at nanoengineering the cathode and other cell components. Perspectives and directions for future development of the Li-S storage platform are discussed based on accumulated knowledge from previous efforts in the field as well as from the accumulated experience of the writers of this review.

  17. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    Science.gov (United States)

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. State of the safety assessment and current use of nanomaterials in food and food production

    NARCIS (Netherlands)

    Bouwmeester, H.; Brandhoff, P.N.; Marvin, H.J.P.; Weigel, S.; Peters, R.J.B.

    2014-01-01

    Nanomaterials are developed for and applied in food, food additives, supplements and food contact materials. In an inventory of internet databases 140 products in the food and food-related sectors were identified that claim to contain nanomaterials. A great diversity of nanomaterials is applied,

  19. Sensors As Tools for Quantitation, Nanotoxicity and Nanomonitoring Assessment of Engineered Nanomaterials

    Science.gov (United States)

    The discovery of fullerenes in 1985 has ushered in an explosive growth in the applications of engineered nanomaterials and consumer products. Nanotechnology and engineered nanomaterials (ENMs) are being incorporated into a range of commercial products such as consumer electronic...

  20. Reference materials and representative test materials: the nanotechnology case

    International Nuclear Information System (INIS)

    Roebben, G.; Rasmussen, K.; Kestens, V.; Linsinger, T. P. J.; Rauscher, H.; Emons, H.; Stamm, H.

    2013-01-01

    An increasing number of chemical, physical and biological tests are performed on manufactured nanomaterials for scientific and regulatory purposes. Existing test guidelines and measurement methods are not always directly applicable to or relevant for nanomaterials. Therefore, it is necessary to verify the use of the existing methods with nanomaterials, thereby identifying where modifications are needed, and where new methods need to be developed and validated. Efforts for verification, development and validation of methods as well as quality assurance of (routine) test results significantly benefit from the availability of suitable test and reference materials. This paper provides an overview of the existing types of reference materials and introduces a new class of test materials for which the term ‘representative test material’ is proposed. The three generic concepts of certified reference material, reference material(non-certified) and representative test material constitute a comprehensive system of benchmarks that can be used by all measurement and testing communities, regardless of their specific discipline. This paper illustrates this system with examples from the field of nanomaterials, including reference materials and representative test materials developed at the European Commission’s Joint Research Centre, in particular at the Institute for Reference Materials and Measurements (IRMM), and at the Institute for Health and Consumer Protection (IHCP).

  1. Flows of engineered nanomaterials through the recycling process in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Caballero-Guzman, Alejandro; Sun, Tianyin; Nowack, Bernd, E-mail: nowack@empa.ch

    2015-02-15

    Highlights: • Recycling is one of the likely end-of-life fates of nanoproducts. • We assessed the material flows of four nanomaterials in the Swiss recycling system. • After recycling, most nanomaterials will flow to landfills or incineration plants. • Recycled construction waste, plastics and textiles may contain nanomaterials. - Abstract: The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, for example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO{sub 2}, nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled inputs.

  2. Biomedical Applications of Nanotechnology and Nanomaterials

    OpenAIRE

    Vinay Bhardwaj; Ajeet Kaushik

    2017-01-01

    The spurring growth and clinical adoption of nanomaterials and nanotechnology in medicine, i.e. “nanomedicine”, to shape global health care system is a collective effort that comprises academia research, industrial drive, and political and financial support from government.[...

  3. Photo and radiation chemistry of polymeric systems and nanomaterials

    International Nuclear Information System (INIS)

    Mikhaylov, A.I.

    2004-01-01

    New approaches of analytical ESR-spectroscopy to studying of free-radical and electron-transport processes at radiation-chemical and photochemical modification both fictionalization of polymeric systems and nanomaterials were surveyed. Measuring techniques using of ESR-spectroscopy of paramagnetic centers were fulfilled. The radiation-chemical processes of modification, microencapsulation and kinetic stabilization of thermodynamically incompatible systems and interfaces for nanomaterials including fullerenes, nanotubes, nanofibres, etc. and composites on the basis of synthetic and natural polymers including plant fibers, fluoropolymers, polyolefins, etc. were developed

  4. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  5. Comparison of occupational exposure assessment tools and concepts for nanomaterials

    DEFF Research Database (Denmark)

    Liguori, Biase; Hansen, Steffen Foss; Baun, Anders

    The development, production and application of engineered nanomaterials have been growing in different fields. This leads to a consequent increased potential of exposure to nanomaterials in the working environment. However to determine the potential exposure risk is a challenging task for risk...... for Nanomaterials”; “NanoSafer vs. 1.1 – A web-based precautionary risk assessment tool for manufactured nanomaterials using first order modeling” Based on the literature information we have analyzed these tools and discussed elements regarding: the domain of application and whether it accounts for the nanospecific...... factor or nano-relevance; the work exposure scenario, for which types of processes they may be used; are the tools using the source-transmission-receptor approach; the input data requirements; whether the tools included qualitative or semi-quantitative or quantitative evaluations of the exposure; whether...

  6. Modification and characterization of (energetic) nanomaterials

    NARCIS (Netherlands)

    Heijden, A.E.D.M. van der; Creyghton, Y.L.M.; Peppel, R.J.E. van de; Abadjieva, E.

    2010-01-01

    Nanomaterials are a topic of increased interest, since they have properties which differ from their macroscopic counterparts. Many applications nowadays take advantage of the new functionalities which natural and manufactured nanoparticles possess. Based on these developments, also the research on

  7. Post engineered nanomaterials lifespan: nanowastes classification, legislative development/implementation challenges, and proactive approaches

    CSIR Research Space (South Africa)

    Musee, N

    2012-05-01

    Full Text Available -1 NANOLCA Symposium, "Safety issues and regulatory challenges of nanomaterials", San Sebastian, Spain, 3-4 May 2012 Post engineered nanomaterials lifespan: nanowastes classification, legislative development/implementation challenges, and proactive...

  8. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

    Science.gov (United States)

    Choi, Seon-Jin; Kim, Il-Doo

    2018-03-01

    Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

  9. Removal of Pharmaceutical Compounds from Hospital Wastewaters Using Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Hasan Bagheri

    2016-06-01

    Full Text Available Over the past few years, residual pharmaceuticals (antibiotics, anticonvulsants, antipyretics drugs, hormones have begun to be considered as emerging environmental pollutants due to their continuous input and persistence to aquatic ecosystem even at low concentrations. Therefore, the development of efficient, cost-effective, and stable methods and materials for the wastewaters treatment have gained more recognition in recent years. In the path of meeting these developments, nanomaterials have attracted much attention as economical, convenient and ecofriendly tools for removing of pharmaceuticals from the hospital wastewaters because of their unique properties. The present review deals with recent advances in removal and/or destruction of residual pharmaceutical in wastewater samples using nanomaterials including metal nanoparticles, carbon nanotubes and nanofilters. In spite of using a variety of nanomaterials to remove the residual of pharmaceuticals, there is still a dearth of successful applicability of them in industrial processes. Therefore, some defects of nanomaterials to be used for the removal of pharmaceutical contaminate in environmental samples and their impacts on human health and environment is briefly discussed.

  10. Recent advances in aptasensors based on graphene and graphene-like nanomaterials.

    Science.gov (United States)

    Ping, Jianfeng; Zhou, Yubin; Wu, Yuanyuan; Papper, Vladislav; Boujday, Souhir; Marks, Robert S; Steele, Terry W J

    2015-02-15

    Graphene and graphene-like two-dimensional nanomaterials have aroused tremendous research interest in recent years due to their unique electronic, optical, and mechanical properties associated with their planar structure. Aptamers have exhibited many advantages as molecular recognition elements for sensing devices compared to traditional antibodies. The marriage of two-dimensional nanomaterials and aptamers has emerged many ingenious aptasensing strategies for applications in the fields of clinical diagnosis and food safety. This review highlights current advances in the development and application of two-dimensional nanomaterials-based aptasensors with the focus on two main signal-transducing mechanisms, i.e. electrochemical and optical. A special attention is paid to graphene, a one-atom thick layer of graphite with exceptional properties, representing a fastgrowing field of research. In view of the unique properties of two-dimensional nanostructures and their inherent advantages of synthetic aptamers, we expect that high-performance two-dimensional nanomaterials-based aptasensing devices will find extensive applications in environmental monitoring, biomedical diagnostics, and food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

    Science.gov (United States)

    Choi, Seon-Jin; Kim, Il-Doo

    2018-05-01

    Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

  12. Review of Research on Template Methods in Preparation of Nanomaterials

    OpenAIRE

    Yadian Xie; Duygu Kocaefe; Chunying Chen; Yasar Kocaefe

    2016-01-01

    The nanomaterials have been widely used in various fields, such as photonics, catalysis, and adsorption, because of their unique physical and chemical properties. Therefore, their production methods are of utmost importance. Compared with traditional synthetic methods, the template method can effectively control the morphology, particle size, and structure during the preparation of nanomaterials, which is an effective method for their synthesis. The key for the template method is to choose di...

  13. Polymer-mediated formation of polyoxomolybdate nanomaterials

    Science.gov (United States)

    Wan, Quan

    A polymer-mediated synthetic pathway to a polyoxomolybdate nanomaterial is investigated in this work. Block copolymers or homopolymers containing poly(ethylene oxide) (PEO) are mixed with a MoO2(OH)(OOH) aqueous solution to form a golden gel or viscous solution. As revealed by synchrotron X-ray scattering measurements, electron microscopy, and other characterization techniques, the final dark blue polyoxomolybdate product is a highly ordered simple cubic network similar to certain zeolite structure but with a much larger lattice constant of ˜5.2 nm. The average size of the cube-like single crystals is close to 1 mum. Based on its relatively low density (˜2.2 g/cm3), the nanomaterial can be highly porous if the amount of the residual polymer can be substantially reduced. The valence of molybdenum is ˜5.7 based on cerimetric titration, representing the mixed-valence nature of the polyoxomolybdate structure. The self-assembled structures (if any) of the polymer gel do not have any correlation with the final polyoxomolybdate nanostructure, excluding the possible role of polymers being a structure-directing template. On the other hand, the PEO polymer stabilizes the precursor molybdenum compound through coordination between its ether oxygen atoms and molybdenum atoms, and reduces the molybdenum (VI) precursor compound with its hydroxyl group being a reducing agent. The rare simple cubic ordering necessitates the existence of special affinities among the polyoxomolybdate nanosphere units resulted from the reduction reaction. Our mechanism study shows that the acidified condition is necessary for the synthesis of the mixed-valence polyoxomolybdate clusters, while H2O2 content modulates the rate of the reduction reaction. The polymer degradation is evidenced by the observation of a huge viscosity change, and is likely through a hydrolysis process catalyzed by molybdenum compounds. Cube-like polyoxomolybdate nanocrystals with size of ˜40 nm are obtained by means of

  14. Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Industrial Technologies Program

    2011-01-05

    This brochure describes the 31 R&D projects that AMO supports to accelerate the commercial manufacture and use of nanomaterials for enhanced energy efficiency. These cost-shared projects seek to exploit the unique properties of nanomaterials to improve the functionality of industrial processes and products.

  15. Regulating nanomaterials: bottlenecks and perspectives in EU legislation on chemicals and products

    NARCIS (Netherlands)

    Vogelezang-Stoute, E.

    2012-01-01

    This article examines some of the challenges that nanomaterials involve for the EU legislator, due to the specific features of these materials and their uncertain risks for human health and the environment. The reporting and information requirements for the marketing of nanomaterials form a focal

  16. Redefining risk research priorities for nanomaterials

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Baun, Anders; Owen, R.

    2010-01-01

    Chemical-based risk assessment underpins the current approach to responsible development of nanomaterials (NM). It is now recognised, however, that this process may take decades, leaving decision makers with little support in the near term. Despite this, current and near future research efforts...

  17. Toxicology of Nanomaterials: Permanent interactive learning

    Directory of Open Access Journals (Sweden)

    Castranova Vince

    2009-10-01

    Full Text Available Abstract Particle and Fibre Toxicology wants to play a decisive role in a time where particle research is challenged and driven by the developments and applications of nanomaterials. This aim is not merely quantitative in publishing a given number of papers on nanomaterials, but also qualitatively since the field of nanotoxicology is rapidly emerging and benchmarks for good science are needed. Since then a number of things have happened that merit further analysis. The interactive learning issue is best shown by report and communications on the toxicology of multi-wall carbon nanotubes (CNT. A special workshop on the CNT has now been organized twice in Nagano (Japan and this editorial contains a summary of the most important outcomes. Finally, we take the opportunity discuss some recent reports from the nanotech literature, and more specifically a Chinese study that claims severe consequences of nanoparticle exposure.

  18. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy

    Directory of Open Access Journals (Sweden)

    Lai David

    2005-10-01

    Full Text Available Abstract The rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institute Research Foundation/Risk Science Institute convened an expert working group to develop a screening strategy for the hazard identification of engineered nanomaterials. The working group report presents the elements of a screening strategy rather than a detailed testing protocol. Based on an evaluation of the limited data currently available, the report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for nanomaterials. Oral, dermal, inhalation, and injection routes of exposure are included recognizing that, depending on use patterns, exposure to nanomaterials may occur by any of these routes. The three key elements of the toxicity screening strategy are: Physicochemical Characteristics, In Vitro Assays (cellular and non-cellular, and In Vivo Assays. There is a strong likelihood that biological activity of nanoparticles will depend on physicochemical parameters not routinely considered in toxicity screening studies. Physicochemical properties that may be important in understanding the toxic effects of test materials include particle size and size distribution, agglomeration state, shape, crystal structure, chemical composition, surface area, surface chemistry, surface charge, and porosity. In vitro techniques allow specific biological and mechanistic pathways to be isolated and tested under controlled conditions, in ways that are not feasible in in vivo tests. Tests are suggested for portal-of-entry toxicity for lungs, skin, and the mucosal membranes, and target organ toxicity for endothelium, blood, spleen, liver, nervous system, heart, and kidney. Non-cellular assessment

  19. Influence of instruments performance and material properties on exposure assessment of airborne engineered nanomaterials

    DEFF Research Database (Denmark)

    Levin, Marcus

    Over the last decades, materials engineered of nanosized structures have increased tremendously, in terms of both produced tonnage and economic market share. This, together with the fact that some of these engineered nanomaterials have shown an increased toxicological effect in humans as compared...... characteristics, and highlights necessary improvements for future adaptions of new metrics into regulatory testing and occupational exposure limits....

  20. Magnetic characterization techniques for nanomaterials

    CERN Document Server

    2017-01-01

    Sixth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Magnetic Characterization Techniques for Nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  1. Relative risk analysis of several manufactured nanomaterials: an insurance industry context.

    Science.gov (United States)

    Robichaud, Christine Ogilvie; Tanzil, Dicksen; Weilenmann, Ulrich; Wiesner, Mark R

    2005-11-15

    A relative risk assessment is presented for the industrial fabrication of several nanomaterials. The production processes for five nanomaterials were selected for this analysis, based on their current or near-term potential for large-scale production and commercialization: single-walled carbon nanotubes, bucky balls (C60), one variety of quantum dots, alumoxane nanoparticles, and nano-titanium dioxide. The assessment focused on the activities surrounding the fabrication of nanomaterials, exclusive of any impacts or risks with the nanomaterials themselves. A representative synthesis method was selected for each nanomaterial based on its potential for scaleup. A list of input materials, output materials, and waste streams for each step of fabrication was developed and entered into a database that included key process characteristics such as temperature and pressure. The physical-chemical properties and quantities of the inventoried materials were used to assess relative risk based on factors such as volatility, carcinogenicity, flammability, toxicity, and persistence. These factors were first used to qualitatively rank risk, then combined using an actuarial protocol developed by the insurance industry for the purpose of calculating insurance premiums for chemical manufacturers. This protocol ranks three categories of risk relative to a 100 point scale (where 100 represents maximum risk): incident risk, normal operations risk, and latent contamination risk. Results from this analysis determined that relative environmental risk from manufacturing each of these five materials was comparatively low in relation to other common industrial manufacturing processes.

  2. PHYTOTOXICOLOGICAL TESTS - APPLICATIONS OF FOILS BASED ON GRAPHENE (GRAPHENE OXIDE

    Directory of Open Access Journals (Sweden)

    Petra ROUPCOVÁ

    2016-12-01

    Full Text Available This paper discusses the problematics of phytotoxicity of chemicals. It mainly focuses on the phytotoxicity of nanomaterials made of graphene. It describes phytotoxicological tests performed with foils from materials belonging to the graphene family. It also describes testing the influence of plants on these films. Furthermore, the paper discusses the issues of mutual influence between plants and tested nanomaterials.

  3. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  4. Direct Observation of Magnetocrystalline Anisotropy Tuning Magnetization Configurations in Uniaxial Magnetic Nanomaterials

    KAUST Repository

    Zhu, Shimeng; Fu, Jiecai; Li, Hongli; Zhu, Liu; Hu, Yang; Xia, Weixing; Zhang, Xixiang; Peng, Yong; Zhang, Junli

    2018-01-01

    Discovering the effect of magnetic anisotropy on the magnetization configurations of magnetic nanomaterials is essential and significant for not only enriching the fundamental knowledge of magnetics but also facilitating the designs of desired magnetic nanostructures for diverse technological applications, such as data storage devices, spintronic devices, and magnetic nanosensors. Herein, we present a direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials with hexagonal structure by means of three modeled samples. The magnetic configuration in polycrystalline BaFe12O19 nanoslice is a curling structure, revealing that the effect of magnetocrystalline anisotropy in uniaxial magnetic nanomaterials can be broken by forming an amorphous structure or polycrystalline structure with tiny grains. Both single crystalline BaFe12O19 nanoslice and individual particles of single-particle-chain BaFe12O19 nanowire appear in a single domain state, revealing a dominant role of magnetocrystalline anisotropy in the magnetization configuration of uniaxial magnetic nanomaterials. These observations are further verified by micromagnetic computational simulations.

  5. Direct Observation of Magnetocrystalline Anisotropy Tuning Magnetization Configurations in Uniaxial Magnetic Nanomaterials

    KAUST Repository

    Zhu, Shimeng

    2018-03-20

    Discovering the effect of magnetic anisotropy on the magnetization configurations of magnetic nanomaterials is essential and significant for not only enriching the fundamental knowledge of magnetics but also facilitating the designs of desired magnetic nanostructures for diverse technological applications, such as data storage devices, spintronic devices, and magnetic nanosensors. Herein, we present a direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials with hexagonal structure by means of three modeled samples. The magnetic configuration in polycrystalline BaFe12O19 nanoslice is a curling structure, revealing that the effect of magnetocrystalline anisotropy in uniaxial magnetic nanomaterials can be broken by forming an amorphous structure or polycrystalline structure with tiny grains. Both single crystalline BaFe12O19 nanoslice and individual particles of single-particle-chain BaFe12O19 nanowire appear in a single domain state, revealing a dominant role of magnetocrystalline anisotropy in the magnetization configuration of uniaxial magnetic nanomaterials. These observations are further verified by micromagnetic computational simulations.

  6. Distress in unaffected individuals who decline, delay or remain ineligible for genetic testing for hereditary diseases: a systematic review.

    Science.gov (United States)

    Heiniger, Louise; Butow, Phyllis N; Price, Melanie A; Charles, Margaret

    2013-09-01

    Reviews on the psychosocial aspects of genetic testing for hereditary diseases typically focus on outcomes for carriers and non-carriers of genetic mutations. However, the majority of unaffected individuals from high-risk families do not undergo predictive testing. The aim of this review was to examine studies on psychosocial distress in unaffected individuals who delay, decline or remain ineligible for predictive genetic testing. Systematic searches of Medline, CINAHL, PsychINFO, PubMed and handsearching of related articles published between 1990 and 2012 identified 23 articles reporting 17 different studies that were reviewed and subjected to quality assessment. Findings suggest that definitions of delaying and declining are not always straightforward, and few studies have investigated psychological distress among individuals who remain ineligible for testing. Findings related to distress in delayers and decliners have been mixed, but there is evidence to suggest that cancer-related distress is lower in those who decline genetic counselling and testing, compared with testers, and that those who remain ineligible for testing experience more anxiety than tested individuals. Psychological, personality and family history vulnerability factors were identified for decliners and individuals who are ineligible for testing. The small number of studies and methodological limitations preclude definitive conclusions. Nevertheless, subgroups of those who remain untested appear to be at increased risk for psychological morbidity. As the majority of unaffected individuals do not undergo genetic testing, further research is needed to better understand the psychological impact of being denied the option of testing, declining and delaying testing. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Preventive strategy for nanomaterials. Special report; Vorsorgestrategien fuer Nanomaterialien. Sondergutachten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In this special report the German Advisory Council on the Environment (SRU) gives recommendations for a responsible, precautionary manner of use of this technology. The goal is to permit innovation while at the same time identifying and mitigating risks at an early stage. The SRU sees an urgent need for regulatory action in regard to nanomaterials and demands greater transparency concerning their use in consumer products. In the event of substantiated concerns these must be acted upon in accordance with the precautionary principle with due consideration to the risks and opportunities involved. Making this possible will require much legal reform. Nanomaterials and nanoproducts are in principle subject to materials and product-related as well as environmental legislation. Due to the special features of nanomaterials, however, not all of these legal instruments can be applied in practice. For example, procedures for chemicals registration and product approval do not provide for a separate identification, nor, consequently, for an assessment of nanomaterials. The SRU recommends a quick closure of these regulatory gaps currently existing for nanomaterials. For this it will be necessary to give a binding definition of what constitutes a nanomaterial, treat nanomaterials as a class of their own in the risk assessment of chemicals and provide for their registration on the basis of a suitably designed data record. Any generalisation in regard to the risks associated with nanomaterials should be avoided, since some materials are safe according to present knowledge, while others have a risk potential. The SRU sees particular reason for concern regarding the use of nanomaterials in sprays readily available to consumers, the increasing marketing of nanosilver products and the manufacture of and subsequent processing of carbon nanotubes suspected of causing cancer, especially those with a large length to cross-section ratio. Public authorities and consumers often have no

  8. The Use of Nanomaterials and Microfluidics in Medical Diagnostics

    DEFF Research Database (Denmark)

    Ashley, Jon; Sun, Yi

    2018-01-01

    and manipulation of materials, systems, and devices at the nanometer scale. The development of nanomaterials and nano-devices can be classified into two general approaches. The top down approach deals exclusively with developing nanostructures through machining, templating and lithographic techniques and refers...... nanotechnology followed by a brief summary of bottom-up approaches to developing nanomaterials and their use in medical diagnostics. Then a discussion on the top-down approach will focus on nano-devices, methods for fabrication and the applications of these devices in medical diagnostics. The chapter will go...

  9. Method to synthesize metal chalcogenide monolayer nanomaterials

    Science.gov (United States)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  10. NANO(materials): EHS, Research, INnovation, ReGulation

    OpenAIRE

    GOTTARDO STEFANIA; MECH AGNIESZKA; QUIROS PESUDO LAIA; CRUTZEN HUGUES

    2017-01-01

    This collection contains data, results, information and tools derived from research and institutional activities regarding the environment, health and safety matters for supporting sustainable innovation for regulatory purposes, with a focus on nanomaterials.

  11. The current state of engineered nanomaterials in consumer goods and waste streams: the need to develop nanoproperty-quantifiable sensors for monitoring engineered nanomaterials

    Directory of Open Access Journals (Sweden)

    Wise K

    2011-07-01

    Full Text Available Kelsey Wise, Murphy BrasuelDepartment of Chemistry and Biochemistry, Colorado College, Colorado Springs, CO, USAAbstract: As nanomaterials are harnessed for medicine and other technological advances, an understanding of the toxicology of these new materials is required to inform our use. This toxicological knowledge will be required to establish the medical and environmental regulations required to protect consumers and those involved in nanomaterial manufacturing. Nanoparticles of titanium oxide, carbon nanotubes, semiconductor quantum dots, gold, and silver represent a high percentage of the nanotechnology currently available or currently poised to reach consumers. For these nanoparticles, this review aims to identify current applications, the current methods used for characterization and quantification, current environmental concentrations (if known, and an introduction to the toxicology research. Continued development of analytical tools for the characterization and quantification of nanomaterials in complex environmental and biological samples will be required for our understanding of the toxicology and environmental impact of nanomaterials. Nearly all materials exhibit toxicity at a high enough concentration. Robust, rapid, and cost effective analytical techniques will be required to determine current background levels of anthropogenic, accidental, and engineered nanoparticles in air, water, and soil. The impact of the growing number of engineered nanoparticles used in consumer goods and medical applications can then be estimated. This will allow toxicological profiles relevant to the demonstrated or predicted environmental concentrations to be determined.Keywords: titanium dioxide nanoparticles, carbon nanotubes, semiconductor quantum dots, gold nanoparticles, silver nanoparticles, nanoparticles environmental concentrations

  12. Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy

    Science.gov (United States)

    Ryan Wagner; Robert J. Moon; Arvind Raman

    2016-01-01

    Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose...

  13. Characterization of the silicon nanopillar-surface filled and grafted with nanomaterials

    International Nuclear Information System (INIS)

    He, Yuan; Che, Xiangchen; Que, Long

    2014-01-01

    This paper reports the characterization of the silicon nanopillar-surface filled and grafted with nanomaterials. Usually a silicon nanopillar-surface contains nanopillars and air among them. The air is not a good medium to absorb and trap the incoming photons. In order to improve this capability, the air should be replaced with other material. To this end, copper sulfide–gold (CuS–Au) core–shell nanostructures and silver nanoplates are used as two representative substitutes for air among the nanopillars. Experiments find that the reflectance of the nanomaterial-coated nanopillar-surface can be reduced at least 50% compared to that of the bare nanopillar-surface. Different nanomaterial-coated nanopillar-surface can tune the optical reflectance and absorption profile, thereby trapping photons in different wavelength ranges. (paper)

  14. Moving toward exposure and risk evaluation of nanomaterials: challenges and future directions.

    Science.gov (United States)

    Thomas, Treye; Bahadori, Tina; Savage, Nora; Thomas, Karluss

    2009-01-01

    Nanotechnology, the commercial development of engineered nanomaterials, promises breakthrough innovations by enhancing the performance of existing consumer products and enabling development of new devices, architectures, and applications. Although these materials and applications are being developed at an explosive pace, a fundamental understanding of any potential human health and environmental risks resulting from exposure throughout the lifecycle of these materials has not advanced as rapidly. Past experience has demonstrated that successful introduction of a new technology occurs more readily if it is precipitated by a robust appreciation for any inherent risks associated with the technology. Such understanding allows the timely development of occupational and consumer exposure standards that might be needed to protect human health and the environment. Although risk is recognized as the product of hazard and exposure, too often exposure patterns are poorly characterized, and risk is based primarily or exclusively on the hazard characterization. The extent of exposure to nanomaterials in currently available commercial products is relatively unknown. Given the number of commercial products that claim to contain engineered nanomaterials, it is possible that human and environmental exposure to these materials is widespread. This paper is intended to highlight the importance of exposure assessment for determining the potential risks of nanomaterials. In essence, this is a call to action to the community of exposure scientists, toxicologists, and risk assessors to develop, consider, and incorporate requisite exposure information in the risk assessment of nanomaterials. Without an integrated approach, it will be difficult to meaningfully assess the risks of nanomaterials, realize their potential benefits, and foster their sustainable development. (c) 2009 John Wiley & Sons, Inc.

  15. Review of ORD Nanomaterial Case Studies Workshop

    Science.gov (United States)

    The following is a letter report from the Executive Committee of the BOSC concerning the review of the ORD Nanomaterial Case Studies Workshop: Developing a Comprehensive Environmental Assessment Research Strategy for Nanoscale Titanium Dioxide.

  16. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material

    International Nuclear Information System (INIS)

    Tao, Y.B.; Lin, C.H.; He, Y.L.

    2015-01-01

    Highlights: • Nanocomposite phase change materials were prepared and characterized. • Larger specific surface area is more efficient to enhance specific heat. • Columnar structure is more efficient to enhance thermal conductivity. • Thermal conductivity enhancement is the key. • Single walled carbon nanotube is the optimal nanomaterial additive. - Abstract: To enhance the performance of high temperature salt phase change material, four kinds of carbon nanomaterials with different microstructures were mixed into binary carbonate eutectic salts to prepare carbonate salt/nanomaterial composite phase change material. The microstructures of the nanomaterial and composite phase change material were characterized by scanning electron microscope. The thermal properties such as melting point, melting enthalpy, specific heat, thermal conductivity and total thermal energy storage capacity were characterized. The results show that the nanomaterial microstructure has great effects on composite phase change material thermal properties. The sheet structure Graphene is the best additive to enhance specific heat, which could be enhanced up to 18.57%. The single walled carbon nanotube with columnar structure is the best additive to enhance thermal conductivity, which could be enhanced up to 56.98%. Melting point increases but melting enthalpy decreases with nanomaterial specific surface area increase. Although the additives decrease the melting enthalpy of composite phase change material, they also enhance the specific heat. As a combined result, the additives have little effects on thermal energy storage capacity. So, for phase change material performance enhancement, more emphasis should be placed on thermal conductivity enhancement and single walled carbon nanotube is the optimal nanomaterial additive

  17. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.

    Science.gov (United States)

    Divya, Kizhmuri P; Miroshnikov, Mikhail; Dutta, Debjit; Vemula, Praveen Kumar; Ajayan, Pulickel M; John, George

    2016-09-20

    The allure of integrating the tunable properties of soft nanomaterials with the unique optical and electronic properties of metal nanoparticles has led to the development of organic-inorganic hybrid nanomaterials. A promising method for the synthesis of such organic-inorganic hybrid nanomaterials is afforded by the in situ generation of metal nanoparticles within a host organic template. Due to their tunable surface morphology and porosity, soft organic materials such as gels, liquid crystals, and polymers that are derived from various synthetic or natural compounds can act as templates for the synthesis of metal nanoparticles of different shapes and sizes. This method provides stabilization to the metal nanoparticles by the organic soft material and advantageously precludes the use of external reducing or capping agents in many instances. In this Account, we exemplify the green chemistry approach for synthesizing these materials, both in the choice of gelators as soft material frameworks and in the reduction mechanisms that generate the metal nanoparticles. Established herein is the core design principle centered on conceiving multifaceted amphiphilic soft materials that possess the ability to self-assemble and reduce metal ions into nanoparticles. Furthermore, these soft materials stabilize the in situ generated metal nanoparticles and retain their self-assembly ability to generate metal nanoparticle embedded homogeneous organic-inorganic hybrid materials. We discuss a remarkable example of vegetable-based drying oils as host templates for metal ions, resulting in the synthesis of novel hybrid nanomaterials. The synthesis of metal nanoparticles via polymers and self-assembled materials fabricated via cardanol (a bioorganic monomer derived from cashew nut shell liquid) are also explored in this Account. The organic-inorganic hybrid structures were characterized by several techniques such as UV-visible spectroscopy, scanning electron microscopy (SEM), and

  18. Carbon Nanomaterials in Biological Studies and Biomedicine.

    Science.gov (United States)

    Teradal, Nagappa L; Jelinek, Raz

    2017-09-01

    The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Perspectives on the design of safer nanomaterials and manufacturing processes

    International Nuclear Information System (INIS)

    Geraci, Charles; Heidel, Donna; Sayes, Christie; Hodson, Laura; Schulte, Paul; Eastlake, Adrienne; Brenner, Sara

    2015-01-01

    A concerted effort is being made to insert Prevention through Design principles into discussions of sustainability, occupational safety and health, and green chemistry related to nanotechnology. Prevention through Design is a set of principles, which includes solutions to design out potential hazards in nanomanufacturing including the design of nanomaterials, and strategies to eliminate exposures and minimize risks that may be related to the manufacturing processes and equipment at various stages of the lifecycle of an engineered nanomaterial

  20. Perspectives on the design of safer nanomaterials and manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Geraci, Charles [National Institute for Occupational Safety and Health (United States); Heidel, Donna [Bureau Veritas North America, Inc. (United States); Sayes, Christie [Baylor University (United States); Hodson, Laura, E-mail: lhodson@cdc.gov; Schulte, Paul; Eastlake, Adrienne [National Institute for Occupational Safety and Health (United States); Brenner, Sara [Colleges of Nanoscale Science and Engineering at State University of New York Polytechnic Institute, (SUNY Poly) (United States)

    2015-09-15

    A concerted effort is being made to insert Prevention through Design principles into discussions of sustainability, occupational safety and health, and green chemistry related to nanotechnology. Prevention through Design is a set of principles, which includes solutions to design out potential hazards in nanomanufacturing including the design of nanomaterials, and strategies to eliminate exposures and minimize risks that may be related to the manufacturing processes and equipment at various stages of the lifecycle of an engineered nanomaterial.

  1. Molecularly Imprinted Nanomaterials for Sensor Applications

    Science.gov (United States)

    Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof

    2013-01-01

    Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356

  2. Systems and methods for automated production of multi-composition nanomaterial

    KAUST Repository

    Wu, Tao

    2015-12-24

    Various methods and systems are provided for production of nanowires or other nanomaterials. In one example, among others, a system includes a furnace configured to heat at least a portion of a tube, a material feeder coupled to a first end of the tube, and a vacuum pumping system coupled to a second end of the tube. The material feeder can include a source material manipulator that can position a source material in a fixture of a feeder arm and a linear manipulator that can extend the fixture into the tube, where it can be heated to produce a precursor vapor that can be used to form a nanomaterial on a substrate. In another example, a method includes extending a fixture holding source material into a furnace tube, drawing a precursor vapor produced from the source material across a substrate in the furnace tube, and forming nanomaterial on the substrate.

  3. Can control banding be useful for the safe handling of nanomaterials? A systematic review

    Science.gov (United States)

    Eastlake, Adrienne; Zumwalde, Ralph; Geraci, Charles

    2016-06-01

    CB to existing exposure controls previously recommended by an industrial hygienist. It was determined that the selection of exposure controls using CB were consistent with those recommended by an industrial hygienist for 19 out of 32 (59.4 %) job activities. A higher level of exposure control was recommended for nine out of 32 (28.1 %) job activities using CB, while four out of 32 (12.5 %) job activities had in-place exposure controls that were more stringent than those recommended using CB. After evaluation using GRADE, evidence indicated that the use of CB Nanotool can recommend exposure controls for many ENM job activities that would be consistent with those recommended by an experienced industrial hygienist. The use of CB for reducing exposures to ENMs has the potential to be an effective risk management strategy when information is limited on the health risk to the nanomaterial and/or there is an absence of an occupational exposure limit. However, there remains a lack of evidence to conclude that the use of CB can provide adequate exposure control in all work environments. Additional validation work is needed to provide more data to support the use of CB for the safe handling of ENMs.

  4. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    International Nuclear Information System (INIS)

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill

    2015-01-01

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. - Highlights: • We review the types of carbon nanomaterials used in electrochemical sensors. • Different materials and sensor designs are compared for classes of biomolecules. • Future challenges of better sensor design and implementation are assessed

  5. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill, E-mail: jventon@virginia.edu

    2015-08-05

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. - Highlights: • We review the types of carbon nanomaterials used in electrochemical sensors. • Different materials and sensor designs are compared for classes of biomolecules. • Future challenges of better sensor design and implementation are assessed.

  6. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery

    Directory of Open Access Journals (Sweden)

    Teerapong Yata

    2014-01-01

    Full Text Available Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage, viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage.

  7. Plasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection

    Directory of Open Access Journals (Sweden)

    Jaewook Lee

    2017-10-01

    Full Text Available Plasmonic nanomaterials (P-NM are receiving attention due to their excellent properties, which include surface-enhanced Raman scattering (SERS, localized surface plasmon resonance (LSPR effects, plasmonic resonance energy transfer (PRET, and magneto optical (MO effects. To obtain such plasmonic properties, many nanomaterials have been developed, including metal nanoparticles (MNP, bimetallic nanoparticles (bMNP, MNP-decorated carbon nanotubes, (MNP-CNT, and MNP-modified graphene (MNP-GRP. These P-NMs may eventually be applied to optical biosensing systems due to their unique properties. Here, probe biomolecules, such as antibodies (Ab, probe DNA, and probe aptamers, were modified on the surface of plasmonic materials by chemical conjugation and thiol chemistry. The optical property change in the plasmonic nanomaterials was monitored based on the interaction between the probe biomolecules and target virus. After bioconjugation, several optical properties, including fluorescence, plasmonic absorbance, and diffraction angle, were changed to detect the target biomolecules. This review describes several P-NMs as potential candidates of optical sensing platforms and introduces various applications in the optical biosensing field.

  8. Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans.

    Science.gov (United States)

    Li, Ping; Xu, Tiantian; Wu, Siyu; Lei, Lili; He, Defu

    2017-10-01

    Nanomaterials of graphene and its derivatives have been widely applied in recent years, but whose impacts on the environment and health are still not well understood. In the present study, the potential adverse effects of graphite (G), graphite oxide nanoplatelets (GO) and graphene quantum dots (GQDs) on the motor nervous system were investigated using nematode Caenorhabditis elegans as the assay system. After being characterized using TEM, SEM, XPS and PLE, three nanomaterials were chronically exposed to C. elegans for 6 days. In total, 50-100 mg l -1 GO caused a significant reduction in the survival rate, but G and GDDs showed low lethality on nematodes. After chronic exposure of sub-lethal dosages, three nanomaterials were observed to distribute primarily in the pharynx and intestine; but GQDs were widespread in nematode body. Three graphene-based nanomaterials resulted in significant declines in locomotor frequency of body bending, head thrashing and pharynx pumping. In addition, mean speed, bending angle-frequency and wavelength of the crawling movement were significantly reduced after exposure. Using transgenic nematodes, we found high concentrations of graphene-based nanomaterials induced down-expression of dat-1::GFP and eat-4::GFP, but no significant changes in unc-47::GFP. This indicates that graphene-based nanomaterials can lead to damages in the dopaminergic and glutamatergic neurons. The present data suggest that chronic exposure of graphene-based nanomaterials may cause neurotoxicity risks of inducing behavioral deficits and neural damage. These findings provide useful information to understand the toxicity and safe application of graphene-based nanomaterials. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Cytotoxicity and Efflux Pump Inhibition Induced by Molybdenum Disulfide and Boron Nitride Nanomaterials with Sheetlike Structure.

    Science.gov (United States)

    Liu, Su; Shen, Zhuoyan; Wu, Bing; Yu, Yue; Hou, Hui; Zhang, Xu-Xiang; Ren, Hong-Qiang

    2017-09-19

    Sheetlike molybdenum disulfide (MoS 2 ) and boron nitride (BN) nanomaterials have attracted attention in the past few years due to their unique material properties. However, information on adverse effects and their underlying mechanisms for sheetlike MoS 2 and BN nanomaterials is rare. In this study, cytotoxicities of sheetlike MoS 2 and BN nanomaterials on human hepatoma HepG2 cells were systematically investigated at different toxic end points. Results showed that MoS 2 and BN nanomaterials decreased cell viability at 30 μg/mL and induced adverse effects on intracellular ROS generation (≥2 μg/mL), mitochondrial depolarization (≥4 μg/mL), and membrane integrity (≥8 μg/mL for MoS 2 and ≥2 μg/mL for BN). Furthermore, this study first found that low exposure concentrations (0.2-2 μg/mL) of MoS 2 and BN nanomaterials could increase plasma membrane fluidity and inhibit transmembrane ATP binding cassette (ABC) efflux transporter activity, which make both nanomaterials act as a chemosensitizer (increasing arsenic toxicity). Damage to plasma membrane and release of soluble Mo or B species might be two reasons that both nanomaterials inhibit efflux pump activities. This study provides a systematic understanding of the cytotoxicity of sheetlike MoS 2 and BN nanomaterials at different exposure levels, which is important for their safe use.

  10. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ma, Jan [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Chunzhong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2012-08-08

    Supercapacitors have attracted huge attention in recent years as they have the potential to satisfy the demand of both huge energy and power density in many advanced technologies. However, poor conductivity and cycling stability remains to be the major challenge for its widespread application. Various strategies have been developed for meeting the ever-increasing energy and power demands in supercapacitors. This Research News article aims to review recent progress in the development of mesoporous carbon incorporated metal oxide nanomaterials, especially metal oxide nanoparticles confined in ordered mesoporous carbon and 1D metal oxides coated with a layer of mesoporous carbon for high-performance supercapacitor applications. In addition, a recent trend in supercapacitor development - hierarchical porous graphitic carbons (HPGC) combining macroporous cores, mesoporous walls, and micropores as an excellent support for metal oxides - is also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Development of a systematic method to assess similarity between nanomaterials for human hazard evaluation purposes - lessons learnt.

    NARCIS (Netherlands)

    Vdz Park, Margriet; Catalán, Julia; Ferraz, Natalia; Cabellos, Joan; Vanhauten, Ralph; Vázquez-Campos, Socorro; Janer, Gemma

    2018-01-01

    Within the EU FP-7 GUIDEnano project, a methodology was developed to systematically quantify the similarity between a nanomaterial (NM) that has been tested in toxicity studies and the NM for which risk needs to be evaluated, for the purpose of extrapolating toxicity data between the two materials.

  12. Two-Dimensional Metal Oxide Nanomaterials for Next-Generation Rechargeable Batteries.

    Science.gov (United States)

    Mei, Jun; Liao, Ting; Kou, Liangzhi; Sun, Ziqi

    2017-12-01

    The exponential increase in research focused on two-dimensional (2D) metal oxides has offered an unprecedented opportunity for their use in energy conversion and storage devices, especially for promising next-generation rechargeable batteries, such as lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs), as well as some post-lithium batteries, including lithium-sulfur batteries, lithium-air batteries, etc. The introduction of well-designed 2D metal oxide nanomaterials into next-generation rechargeable batteries has significantly enhanced the performance of these energy-storage devices by providing higher chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier-/charge-transport kinetics, which have greatly promoted the development of nanotechnology and the practical application of rechargeable batteries. Here, the recent progress in the application of 2D metal oxide nanomaterials in a series of rechargeable LIBs, NIBs, and other post lithium-ion batteries is reviewed relatively comprehensively. Current opportunities and future challenges for the application of 2D nanomaterials in energy-storage devices to achieve high energy density, high power density, stable cyclability, etc. are summarized and outlined. It is believed that the integration of 2D metal oxide nanomaterials in these clean energy devices offers great opportunities to address challenges driven by increasing global energy demands. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multi-criteria decision analysis and environmental risk assessment for nanomaterials

    International Nuclear Information System (INIS)

    Linkov, Igor; Satterstrom, F. Kyle; Steevens, Jeffery; Ferguson, Elizabeth; Pleus, Richard C.

    2007-01-01

    Nanotechnology is a broad and complex discipline that holds great promise for innovations that can benefit mankind. Yet, one must not overlook the wide array of factors involved in managing nanomaterial development, ranging from the technical specifications of the material to possible adverse effects in humans. Other opportunities to evaluate benefits and risks are inherent in environmental health and safety (EHS) issues related to nanotechnology. However, there is currently no structured approach for making justifiable and transparent decisions with explicit trade-offs between the many factors that need to be taken into account. While many possible decision-making approaches exist, we believe that multi-criteria decision analysis (MCDA) is a powerful and scientifically sound decision analytical framework for nanomaterial risk assessment and management. This paper combines state-of-the-art research in MCDA methods applicable to nanotechnology with a hypothetical case study for nanomaterial management. The example shows how MCDA application can balance societal benefits against unintended side effects and risks, and how it can also bring together multiple lines of evidence to estimate the likely toxicity and risk of nanomaterials given limited information on physical and chemical properties. The essential contribution of MCDA is to link this performance information with decision criteria and weightings elicited from scientists and managers, allowing visualization and quantification of the trade-offs involved in the decision-making process

  14. Multi-criteria decision analysis and environmental risk assessment for nanomaterials

    Science.gov (United States)

    Linkov, Igor; Satterstrom, F. Kyle; Steevens, Jeffery; Ferguson, Elizabeth; Pleus, Richard C.

    2007-08-01

    Nanotechnology is a broad and complex discipline that holds great promise for innovations that can benefit mankind. Yet, one must not overlook the wide array of factors involved in managing nanomaterial development, ranging from the technical specifications of the material to possible adverse effects in humans. Other opportunities to evaluate benefits and risks are inherent in environmental health and safety (EHS) issues related to nanotechnology. However, there is currently no structured approach for making justifiable and transparent decisions with explicit trade-offs between the many factors that need to be taken into account. While many possible decision-making approaches exist, we believe that multi-criteria decision analysis (MCDA) is a powerful and scientifically sound decision analytical framework for nanomaterial risk assessment and management. This paper combines state-of-the-art research in MCDA methods applicable to nanotechnology with a hypothetical case study for nanomaterial management. The example shows how MCDA application can balance societal benefits against unintended side effects and risks, and how it can also bring together multiple lines of evidence to estimate the likely toxicity and risk of nanomaterials given limited information on physical and chemical properties. The essential contribution of MCDA is to link this performance information with decision criteria and weightings elicited from scientists and managers, allowing visualization and quantification of the trade-offs involved in the decision-making process.

  15. Combustion synthesis of cadmium sulphide nanomaterials

    Indian Academy of Sciences (India)

    Anion-doped cadmium sulphide nanomaterials have been synthesized by using combustionmethod at normal atmospheric conditions. Oxidant/fuel ratios have been optimized in order to obtain CdS with best characteristics. Formation of CdS and size of crystallite were identified by X-ray diffraction and confirmed by ...

  16. Considerations on the EU definition of a nanomaterial: science to support policy making

    NARCIS (Netherlands)

    Bleeker, E.A.J.; de Jong, W.H.; Geertsma, R.E.; Groenewold, M.; Heugens, E.H.W.; Koers-Jacquemijns, M.; van de Meent, D.; Popma, J.R.; Rietveld, A.G.; Wijnhoven, S.W.P.; Cassee, F.R.; Oomen, A.G.

    2013-01-01

    In recent years, an increasing number of applications and products containing or using nanomaterials have become available. This has raised concerns that some of these materials may introduce new risks for humans or the environment. A clear definition to discriminate nanomaterials from other

  17. Discovering Specific Conditions for Compliance with Soft Regulation Related to Work with Nanomaterials

    NARCIS (Netherlands)

    Reichow, Aline; Dorbeck-Jung, Barbel R.

    2013-01-01

    At workplaces where nanomaterials are produced or used, risk assessment and risk management are extremely difficult tasks since there is still limited evidence about the risks of nanomaterials. Measurement methods for nanoparticles are contested and safety standards have not yet been developed

  18. Non-quantum electronic responses of zinc oxide nanomaterials

    International Nuclear Information System (INIS)

    Kim, Hansoo; Kim, Younghyun

    2013-01-01

    The influence of the high surface-to-volume ratio of ZnO nanomaterials, whose sizes are large enough to exclude the quantum effect, on electronic properties was investigated by spatially resolved valence electron energy loss spectroscopy. ZnO nanowires, nanoplates, and nanotubes with different sizes were fabricated and characterized. Both the reduced volume and the increased surface area of the large ZnO nanomaterials were found to be able to modify electronic properties significantly. Hence, a nanoplate and a nanotube with very small volumes show unique energy loss functions and dielectric functions different from those of bulk ZnO at all the probe points. On the other hand, a nanowire with a relatively large diameter (70 nm) has electronic properties similar to those of bulk ZnO at the center. However, they are dissimilar at the edge of the nanowire due to the component of surface parallel to the electron path and the reduced interaction volume. Moreover, some interband transitions shift positions and bulk plasmons change oscillator strength depending upon the size of the volume and the geometry of the surface. These empirical results demonstrate that semiconducting nanomaterials larger than the exciton Bohr radius can still behave differently from bulk materials due to the high ratio between surface area and volume. (paper)

  19. Synthesis of well-dispersed ZnO nanomaterials by directly calcining zinc stearate

    International Nuclear Information System (INIS)

    Guo Guangsheng; Shi Chen; Tao Dongliang; Qian Weizhong; Han Dongmei

    2009-01-01

    Well-dispersed ZnO nanomaterials were synthesized by direct calcination of zinc stearate. Results from Fourier transform infrared (FT-IR) spectra and X-ray diffraction (XRD) indicated both the decomposition degree of organic ligand and the purity of calcined products were increased with the calcination temperature. The influence of decomposition temperature on the morphology of ZnO nanomaterials was investigated by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The experimental results revealed the morphology of ZnO transformed from nanosheets to hexagonal nanopyramids and then to nanoparticles at 573, 673 and 773 K respectively. Finally, a morphology evolution model of ZnO nanomaterials under different temperatures was proposed

  20. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review.

    Science.gov (United States)

    Putzbach, William; Ronkainen, Niina J

    2013-04-11

    The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.

  1. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Niina J. Ronkainen

    2013-04-01

    Full Text Available The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.

  2. Determination of optical band gap of powder-form nanomaterials with improved accuracy

    Science.gov (United States)

    Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul

    2017-10-01

    Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.

  3. Assessing the Environmental Safety of Engineered Nanomaterials

    Science.gov (United States)

    Nanotechnology research in the United States is coordinated under the National Nano-technology Initiative with the goal of fostering development and implementation of nanomaterials and products that incorporate them and assuring that they are environmentally safe. The environmen...

  4. Electrical discharge machining of carbon nanomaterials in air: machining characteristics and the advanced field emission applications

    International Nuclear Information System (INIS)

    Ok, Jong Girl; Kim, Bo Hyun; Chung, Do Kwan; Sung, Woo Yong; Lee, Seung Min; Lee, Se Won; Kim, Wal Jun; Park, Jin Woo; Chu, Chong Nam; Kim, Yong Hyup

    2008-01-01

    A reliable and precise machining process, electrical discharge machining (EDM), was investigated in depth as a novel method for the engineering of carbon nanomaterials. The machining characteristics of EDM applied to carbon nanomaterials 'in air' were systematically examined using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The EDM process turned out to 'melt' carbon nanomaterials with the thermal energy generated by electrical discharge, which makes both the materially and geometrically unrestricted machining of nanomaterials possible. Since the EDM process conducted in air requires neither direct contact nor chemical agents, it protects the carbon nanomaterial workpieces against physical damage and unnecessary contamination. From this EDM method, several advanced field emission applications including 'top-down' patterning and the creative lateral comb-type triode device were derived, while our previously reported study on emission uniformity enhancement by the EDM method was also referenced. The EDM method has great potential as a clean, effective and practical way to utilize carbon nanomaterials for various uses

  5. Synthesis of carbon nanomaterials from different pyrolysis techniques: a review

    Science.gov (United States)

    Umer Zahid, Muhammad; Pervaiz, Erum; Hussain, Arshad; Shahzad, Muhammad Imran; Niazi, Muhammad Bilal Khan

    2018-05-01

    In the current age, the significance of carbon-based nanomaterials for many applications has made the efforts for the facile synthesis methods from abundantly available wastes in a cost-effective way. Pyrolysis in a broad spectrum is commonly employed for the synthesis of carbon nanostructures by thermally treating the organic waste. The mechanism of growth of the nanoparticles determines the functional distribution of nanoparticles based on the growing size, medium, and physio-chemical properties. Carbon nanomaterial’s growth is a complicated process which is profoundly influenced by temperature, catalyst, and type of precursor. Nowadays, significant progress has been made in improving nanomaterial’s growth techniques, opening new paths for commercial production of carbon-based nanomaterials. The most promising are the methods involving hydrocarbon-rich organic waste as the feed source. In this review, synthesis of carbon-based nanomaterials, specifically carbon nanotubes (CNTs), Carbon nanofibers (CNFs) and Graphene (G) are discussed by different pyrolysis techniques. Furthermore, the review explores recent advancements made in the context of pyrolysis.

  6. Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Bhat, Swetha S M; Jang, Ho Won

    2017-08-10

    In recent years, bismuth-based nanomaterials have drawn considerable interest as potential candidates for photoelectrochemical (PEC) water splitting owing to their narrow band gaps, nontoxicity, and low costs. The unique electronic structure of bismuth-based materials with a well-dispersed valence band comprising Bi 6s and O 2p orbitals offers a suitable band gap to harvest visible light. This Review presents significant advancements in exploiting bismuth-based nanomaterials for solar water splitting. An overview of the different strategies employed and the new ideas adopted to improve the PEC performance of bismuth-based nanomaterials are discussed. Morphology control, the construction of heterojunctions, doping, and co-catalyst loading are several approaches that are implemented to improve the efficiency of solar water splitting. Key issues are identified and guidelines are suggested to rationalize the design of efficient bismuth-based materials for sunlight-driven water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: Results of a one-year field-scale experiment.

    Science.gov (United States)

    Liang, Shu-Xuan; Jin, Yu; Liu, Wei; Li, Xiliang; Shen, Shi-Gang; Ding, Ling

    2017-04-01

    The effect of the combined application of nano-hydroxyapatite (NHAP) or nano-carbon black (NCB) on the phytoextraction of Pb by ryegrass was investigated as an enhanced remediation technique for soils by field-scale experiment. After the addition of 0.2% NHAP or NCB to the soil, temporal variation of the uptake of Pb in aboveground parts and roots were observed. Ryegrass shoot concentrations of Pb were lower with nano-materials application than without nano-materials for the first month. However, the shoot concentrations of Pb were significantly increased with nano-materials application, in particular NHAP groups. The ryegrass root concentrations of Pb were lower with nano-materials application for the first month. These results indicated that nano-materials had significant effects on stabilization of lead, especially at the beginning of the experiment. Along with the experimental proceeding, phytotoxicity was alleviated after the incorporation of nano-materials. The ryegrass biomass was significantly higher with nano-materials application. Consequently, the Pb phytoextraction potential of ryegrass significantly increased with nano-materials application compared to the gounps without nano-materials application. The total removal rates of soil Pb were higher after combined application of NHAP than NCB. NHAP is more suitable than NCB for in-situ remediation of Pb-contaminated soils. The ryegrass translocation factor exhibited a marked increase with time. It was thought that the major role of NHP and NBA might be to alleviate the Pb phytotoxicity and increase biomass of plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials.

    Science.gov (United States)

    Wu, Zhen-Yu; Liang, Hai-Wei; Chen, Li-Feng; Hu, Bi-Cheng; Yu, Shu-Hong

    2016-01-19

    Three dimensional (3D) carbon nanomaterials exhibit great application potential in environmental protection, electrochemical energy storage and conversion, catalysis, polymer science, and advanced sensors fields. Current methods for preparing 3D carbon nanomaterials, for example, carbonization of organogels, chemical vapor deposition, and self-assembly of nanocarbon building blocks, inevitably involve some drawbacks, such as expensive and toxic precursors, complex equipment and technological requirements, and low production ability. From the viewpoint of practical application, it is highly desirable to develop a simple, cheap, and environmentally friendly way for fabricating 3D carbon nanomaterials in large scale. On the other hand, in order to extend the application scope and improve the performance of 3D carbon nanomaterials, we should explore efficient strategies to prepare diverse functional nanomaterials based on their 3D carbon structure. Recently, many researchers tend to fabricate high-performance 3D carbon-based nanomaterials from biomass, which is low cost, easy to obtain, and nontoxic to humans. Bacterial cellulose (BC), a typical biomass material, has long been used as the raw material of nata-de-coco (an indigenous dessert food of the Philippines). It consists of a polysaccharide with a β-1,4-glycosidic linkage and has a interconnected 3D porous network structure. Interestingly, the network is made up of a random assembly of cellulose nanofibers, which have a high aspect ratio with a diameter of 20-100 nm. As a result, BC has a high specific surface area. Additionally, BC hydrogels can be produced on an industrial scale via a microbial fermentation process at a very low price. Thus, it can be an ideal platform for design of 3D carbon-based functional nanomaterials. Before our work, no systematic work and summary on this topic had been reported. This Account presents the concepts and strategies of our studies on BC in the past few years, that is

  9. Shape-selective synthesis of Sn(MoO4)2 nanomaterials for catalysis and supercapacitor applications.

    Science.gov (United States)

    Sakthikumar, K; Ede, Sivasankara Rao; Mishra, Soumyaranjan; Kundu, Subrata

    2016-06-07

    Size and shape-selective Sn(MoO4)2 nanomaterials have been synthesized for the first time using a simple hydrothermal route by the reaction of Sn(ii) chloride salt with sodium molybdate in CTAB micellar media under stirring at 60 °C temperature for about three hours. Needle-like and flake-like Sn(MoO4)2 nanomaterials were synthesized by optimizing the CTAB to metal salt molar ratio and by controlling other reaction parameters. The eventual diameter and length of the nanoneedles are ∼100 ± 10 nm and ∼850 ± 100 nm respectively. The average diameter of the flakes is ∼250 ± 50 nm. The synthesized Sn(MoO4)2 nanomaterials can be used in two potential applications, namely, catalytic reduction of nitroarenes and as an anodic material in electrochemical supercapacitors. From the catalysis study, it was observed that the Sn(MoO4)2 nanomaterials could act as a potential catalyst for the successful photochemical reduction of nitroarenes into their respective aminoarenes within a short reaction time. From the supercapacitor study, it was observed that the Sn(MoO4)2 nanomaterials of different shapes show different specific capacitance (Cs) values and the highest Cs value was observed for Sn(MoO4)2 nanomaterials having a flake-like morphology. The highest Cs value observed was 109 F g(-1) at a scan rate of 5 mV s(-1) for the flake-like Sn(MoO4)2 nanomaterials. The capacitor shows an excellent long cycle life along with 70% retention of the Cs value, even after 4000 consecutive cycles at a current density of 8 mA cm(-2). Other than the applications in catalysis and supercapacitors, the synthesized nanomaterials can find further applications in photoluminescence, sensor and other energy-related devices.

  10. Engineered nanomaterials: Exposures, hazards and risk prevention.

    Science.gov (United States)

    Nanotechnology presents the possibility of revolutionizing many aspects of our lives. People in many settings (academic, small and large industrial, and the general public) are either developing or using engineered nanomaterials (ENMs). However, understanding of the health and sa...

  11. DNA mediated wire-like clusters of self-assembled TiO₂ nanomaterials: supercapacitor and dye sensitized solar cell applications.

    Science.gov (United States)

    Nithiyanantham, U; Ramadoss, Ananthakumar; Ede, Sivasankara Rao; Kundu, Subrata

    2014-07-21

    A new route for the formation of wire-like clusters of TiO₂ nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO₂ nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO₂ NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 ± 5 nm ranges, whereas the length of the nanowires varies in the 2-3 μm range. The synthesized wire-like DNA-TiO₂ nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO₂ nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g(-1) was observed for TiO₂ having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO₂ nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO₂ nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water.

  12. Stevia rebaudiana loaded titanium oxide nanomaterials as an antidiabetic agent in rats

    Directory of Open Access Journals (Sweden)

    Ariadna Langle

    Full Text Available Abstract Stevia rebaudiana (Bertoni Bertoni, Asteraceae, is a plant with hypoglycemic and antihyperlipidemic properties. S. rebaudiana (SrB has become a lead candidate for the treatment of the diabetes mellitus. However, chronic administrations of S. rebaudiana are required to cause the normoglycemic effect. Importantly, nanomaterials in general and titanium dioxide (TiO2 in particular have become effective tools for drug delivery. In this work, we obtained TiO2 nanomaterials with SrB at different concentrations (10, 20 and 30 µM by sol–gel method. After this nanomaterials were characterized by Fourier transform infrared spectroscopy and transmission electron microscopy. Where it was demonstrated, the presence of the S. rebaudiana in TiO2 nanomaterials, which were observed as hemispherical agglomerated particles of different sizes. The nanomaterials were evaluated in male rats whose diabetes mellitus-phenotype was induced by alloxan (200 mg/kg, i.p.. The co-administration of TiO2-SrB (20 and 30 µM induced a significant and permanent decrease in the glucose concentration since 4 h, until 30 days post-administration. Likewise, the concentrations of insulin, glycosylated hemoglobin, cholesterol, and triacylglycerides showed a significant recovery to basal levels. The major finding of the study was that the TiO2-SrB (20 and 30 µM has a potent and prolonged activity antidiabetic. TiO2 can be considered like an appropriated vehicle in the continuous freeing of active substances to treat of diabetes mellitus.

  13. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM)

    International Nuclear Information System (INIS)

    Westmeier, Dana; Stauber, Roland H.; Docter, Dominic

    2016-01-01

    Besides the wide use of engineered nanomaterials (ENM) in technical products, their application spectrum in biotechnology and biomedicine is steadily increasing. In complex physiological environments the physico-chemical properties and the behavior of nanoparticles (NPs) are challenging to characterize. Biomolecules rapidly adsorb to the nanomaterial, leading to the formation of the protein/biomolecule corona, which critically affects the nanomaterials' (patho)biological and technical identities. This formation can trigger an immune response and affect nanoparticles' toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the (protein)corona-nanoparticle interaction and discuss how the corona modulates both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers. - Highlights: • “Nanotoxicology” has emerged an autonomous field with an explosive growth. • Nanomaterials adsorb (bio)molecules forming the so-called (bio)molecule corona. • (Fine-)tune of the corona composition could enable new possibilities in nanomedicine.

  14. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery.

    Science.gov (United States)

    Chen, Daiqin; Dougherty, Casey A; Zhu, Kaicheng; Hong, Hao

    2015-07-28

    Carbon based nanomaterials have attracted significant attention over the past decades due to their unique physical properties, versatile functionalization chemistry, and biological compatibility. In this review, we will summarize the current state-of-the-art applications of carbon nanomaterials in cancer imaging and drug delivery/therapy. The carbon nanomaterials will be categorized into fullerenes, nanotubes, nanohorns, nanodiamonds, nanodots and graphene derivatives based on their morphologies. The chemical conjugation/functionalization strategies of each category will be introduced before focusing on their applications in cancer imaging (fluorescence/bioluminescence, magnetic resonance (MR), positron emission tomography (PET), single-photon emission computed tomography (SPECT), photoacoustic, Raman imaging, etc.) and cargo (chemo/gene/therapy) delivery. The advantages and limitations of each category and the potential clinical utilization of these carbon nanomaterials will be discussed. Multifunctional carbon nanoplatforms have the potential to serve as optimal candidates for image-guided delivery vectors for cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM)

    Energy Technology Data Exchange (ETDEWEB)

    Westmeier, Dana; Stauber, Roland H.; Docter, Dominic, E-mail: docter@uni-mainz.de

    2016-05-15

    Besides the wide use of engineered nanomaterials (ENM) in technical products, their application spectrum in biotechnology and biomedicine is steadily increasing. In complex physiological environments the physico-chemical properties and the behavior of nanoparticles (NPs) are challenging to characterize. Biomolecules rapidly adsorb to the nanomaterial, leading to the formation of the protein/biomol