WorldWideScience

Sample records for testing large cicc

  1. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: II. Significant reduction of strand movement and strand damage in short twist pitch CICCs

    International Nuclear Information System (INIS)

    Sanabria, Carlos; Lee, Peter J; Starch, William; Larbalestier, David C; Devred, Arnaud

    2015-01-01

    Prototype cable-in-conduit-conductors (CICCs) destined for use in the toroidal field and central solenoid coils of the ITER experimental fusion reactor underwent severe cyclic loading in the SULTAN facility. Their autopsies revealed significant and permanent transverse strand migration due to the large Lorentz forces of the SULTAN test. The movement resulted in a 3%–7% void fraction increase on the low pressure (LP) side of the longer twist pitch CICCs. However, short twist pitch conductors exhibited less than 1% void fraction increase in the LP side, as well as a complete absence of the Nb 3 Sn filament fractures observed in the longer twist pitch conductors. We report here a detailed strand-to-cable analysis of short and longer ‘baseline’ twist pitch CICCs. It was found that the use of internal tin (IT) strands in the longer ‘baseline’ twist pitch CICCs can be beneficial possibly because of their superior stiffness—which better resist strand movement—while the use of bronze process strands showed more movement and poorer cyclic test performance. This was not the case for the short twist pitch CICC. Such conductor design seems to work well with both strand types. But it was found that despite the absence of filament fractures, the short twist pitch CICC made from the IT strands studied here developed severe strand distortion during cabling which resulted in diffusion barrier breaks and Sn contamination of the Cu stabilizer during the heat treatment. Conversely, the short twist pitch CICC made from bronze process strands preserved diffusion barrier integrity. (paper)

  2. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full testing in SULTAN: 1. The mechanical role of copper strands in a CICC

    International Nuclear Information System (INIS)

    Sanabria, Carlos; Lee, Peter J; Starch, William; Blum, Timothy; Larbalestier, David C; Devred, Arnaud; Jewell, Matthew C; Pong, Ian; Martovetsky, Nicolai

    2015-01-01

    Cables made with Nb 3 Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER central solenoid (CS) coils and they must survive up to 60 000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post-mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force on the strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after the SULTAN test was lower for the CICC without Cu strands. The post-mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. It was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation. (paper)

  3. KSTAR Busline CICC Development

    International Nuclear Information System (INIS)

    Kim, C. S.; Park, Y. M.; Lee, Y. J.; Lee, K. S.; Bang, E. N.; Song, N. H.; Chang, Y. B.; Kwag, S. W.; Shim, S. H.; Bak, J. S.

    2006-01-01

    It requires a superconducting(SC) cable-in-conduit conductor (ICCC) consists of NbTi/Cu strands, thin stainless steel (STS) tape, and STS jacket. Total required length is around 1 km. Superconducting cable is divided by 7 sections; A ∼ F sections consisted with NbTi/Cu strands and G section consisted with pure copper strands only. The design of A ∼ F sections are same as that for superconducting coils. G section is added as the stabilizer. For the case of SC coil, the diameter of CICC is restricted due to overall size and the design value of magnetic field strength. However, SC busline is a little bit free from the restriction and much more important the stability against current charging. So, it was added the G section in busline CICC as a stabilizer. In 567 total strands it contains 324 SC strands. The strands in sections A ∼ F are twisted. The twist pitch is important since it influence to heat exchange efficiency and heat losses due to current charging and the variation of magnet fields. In 1st stage, two SC strands and a pure copper strands are to be twisted each others with the twist pitch 40 mm. It is important since the first twist pitch directly influence to AC losses during current supply. In each sections, there are 81 strands twisted following four stages. Final twist pitch of A ∼ G sections is 307 mm. Final twist pitch is one of important parameter in designing the terminal lap joint. Terminal lap joint length must be almost same or longer to reduce the joint resistance. If the joint length is too short, the electrical contact resistance between SC strands and copper block of the joint becomes higher since the strands are twisted and some portion of SC strands can apart longer than others from the copper joint block. Another important parameter for the effectiveness of heat exchange between the strands and super-critical helium (SHe) flowing through the CICC is the void fraction inside the STS jacket

  4. Modified friction factor correlation for CICC's based on a porous media analogy

    Science.gov (United States)

    Lewandowska, Monika; Bagnasco, Maurizio

    2011-09-01

    A modified correlation for the bundle friction factor in CICC's based on a porous media analogy is presented. The correlation is obtained by the analysis of the collected pressure drop data measured for 23 CICC's. The friction factors predicted by the proposed correlation are compared with those resulting from the pressure drop data for two CICC's measured recently using cryogenic helium in the SULTAN test facility at EPFL-CRPP.

  5. FENIX experimental results of large-scale CICC made of bronze-processed Nb3Sn strands

    International Nuclear Information System (INIS)

    Shen, S.S.; Felker, B.; Moller, J.M.; Parker, J.M.; Isono, T.; Yasukawa, Y.; Hosono, F.; Nishi, M.

    1994-01-01

    The Fusion ENgineering International eXperiments (FENIX) Test Facility recently has successfully complete the testing of a pair of Nb 3 rSn cable-in-conduit conductors developed by the Japan Atomic Energy Research Institute. These conductors, made of bronze-processed strands, were designed to operate stably with 40-kA transport current at a magnetic field of 13 T. In addition to the measurements of major design parameters such as current-sharing temperature, FENIX provided several experiments specifically designed to provide results urgently needed by magnet designers. Performed experiments include measurements of ramp-rate limit, current-distribution, stability, and joint performance. This paper presents the design and results of these special experiments

  6. Comparisons of internal self-field magnetic flux densities between recent Nb{sub 3}Sn fusion magnet CICC cable designs

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. P. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    The Cable-In-Conduit-Conductor (CICC) for the ITER tokamak Central Solenoid (CS) has undergone design change since the first prototype conductor sample was tested in 2010. After tests showed that the performance of initial conductor samples degraded rapidly without stabilization, an alternate design with shorter sub-cable twist pitches was tested and discovered to satisfy performance requirements, namely that the minimum current sharing temperature (Tcs) remained above a given limit under DC bias. With consistent successful performance of ITER CS conductor CICC samples using the alternate design, an attempt is made here to revisit the internal electromagnetic properties of the CICC cable design to identify any correlation with conductor performance. Results of this study suggest that there may be a simple link between the Nb3Sn CICC internal self-field and its Tcs performance. The study also suggests that an optimization process should exist that can further improve the performance of Nb3Sn based CICC.

  7. Optimization of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction

    International Nuclear Information System (INIS)

    Nijhuis, A; Van Lanen, E P A; Rolando, G

    2012-01-01

    The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable bundles, wound in different stages, which are twisted to counter coupling loss caused by time-changing external magnet fields. The selection of the twist pitch lengths has major implications for the performance of the cable in the case of strain-sensitive superconductors, i.e. Nb 3 Sn, as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. At present, this is a great challenge for the ITER central solenoid (CS) CICCs and the solution presented here could be a breakthrough for not only the ITER CS but also for CICC applications in general. After proposing longer twist pitches in 2006 and successful confirmation by short sample tests later on, the ITER toroidal field (TF) conductor cable pattern was improved accordingly. As the restrictions for coupling loss are more demanding for the CS conductors than for the TF conductors, it was believed that longer pitches would not be applicable for the conductors in the CS coils. In this paper we explain how, with the use of the TEMLOP model and the newly developed models JackPot-ACDC and CORD, the design of a CICC can be improved appreciably, particularly for the CS conductor layout. For the first time a large improvement is predicted not only providing very low sensitivity to electromagnetic load and thermal axial cable stress variations but at the same time much lower AC coupling loss. Reduction of the transverse load and warm-up–cool-down degradation can be reached by applying longer twist pitches in a particular sequence for the sub-stages, offering a large cable transverse stiffness, adequate axial flexibility and maximum allowed lateral strand support. Analysis of short sample (TF conductor) data reveals that increasing the twist pitch can lead to a gain of the effective axial compressive strain of more than 0.3% with practically no degradation from bending. This is probably explained

  8. Effective bending strain estimated from I c test results of a D-shaped Nb3Al CICC coil fabricated with a react-and-wind process for the National Centralized Tokamak

    International Nuclear Information System (INIS)

    Ando, T.; Kizu, K.; Miura, Y.M.; Tsuchiya, K.; Matsukawa, M.; Tamai, H.; Ishida, S.; Koizumi, N.; Okuno, K.

    2005-01-01

    Japan National Centralized Tokamak (NCT) is a superconducting tokamak proposed as a modification to JT-60U. As part of the R and D for the National Centralized Tokamak, a two-turn, approximately 2 m tall, D-shaped Nb 3 Al coil was wound and tested using a full-size cable-in-conduit conductor (CICC). The Nb 3 Al cable-in-conductor was bent following the heat treatment reaction with a maximum bending strain of 0.4% to simulate the react-and-wind fabrication. The comparison of the coil performance to the measured strand data shows that the effective axial strain of the conductor strands is essentially zero despite the 0.4% bending strain of the conductor. This suggests that the strands in the cable slipped relatively to each other during bending of the conduit, thus reducing the effective strain transmitted to the strands. This result is very encouraging for the low-cost fabrication of high-current-density fusion coils using the react-and-wind method

  9. Validation of a strand-level CICC-joint coupling loss model

    NARCIS (Netherlands)

    van Lanen, E.P.A.; van Nugteren, J.; Nijhuis, Arend

    2012-01-01

    Calculating the coupling losses in cable-in-conduit conductor (CICC) joints requires a large amount of numerical effort, which is why the numerical system is often reduced by grouping strands together. However, to better understand the loss behaviour, and eventually the stability mechanism in such

  10. Large Rotor Test Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — This test apparatus, when combined with the National Full-Scale Aerodynamics Complex, produces a thorough, full-scale test capability. The Large Rotor Test Apparatus...

  11. Large scale reflood test

    International Nuclear Information System (INIS)

    Hirano, Kemmei; Murao, Yoshio

    1980-01-01

    The large-scale reflood test with a view to ensuring the safety of light water reactors was started in fiscal 1976 based on the special account act for power source development promotion measures by the entrustment from the Science and Technology Agency. Thereafter, to establish the safety of PWRs in loss-of-coolant accidents by joint international efforts, the Japan-West Germany-U.S. research cooperation program was started in April, 1980. Thereupon, the large-scale reflood test is now included in this program. It consists of two tests using a cylindrical core testing apparatus for examining the overall system effect and a plate core testing apparatus for testing individual effects. Each apparatus is composed of the mock-ups of pressure vessel, primary loop, containment vessel and ECCS. The testing method, the test results and the research cooperation program are described. (J.P.N.)

  12. Stability in a long length NbTi CICC

    CERN Document Server

    Bottura, L; Gislon, P; Spadoni, M; Bellucci, P; Muzzi, L; Turtu, S; Catitti, A; Chiarelli, S; Della Corte, A; Di Ferdinando, E

    2001-01-01

    A crucial issue for a superconducting coil in order to be safely used in the magnetic system of a fusion reactor is stability against all foreseen disturbances. To simulate the fusion machine conditions, including off-normal events, e.g. plasma disruptions, the energy deposition has to be spread over a "long length" cable in conduit conductor (CICC) and a background magnetic field is needed. We have therefore designed and built an experiment consisting of an instrumented NbTi test module inserted in a pair of co-axial pulsed copper coils. A 0.6 m diameter superconducting coil provides a background magnetic field up to 3 T. Calibration of the energy inductively coupled between the pulsed coils and the module has been obtained measuring the system temperature increase just after the pulse by means of thermometers positioned along the conductor. Stability vs. operating current I/sub op/ has been examined for different helium temperatures and different background magnetic fields. The finite element code Gandalf f...

  13. Large scale model testing

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Polachova, H.; Stepanek, S.

    1989-01-01

    Fracture mechanics and fatigue calculations for WWER reactor pressure vessels were checked by large scale model testing performed using large testing machine ZZ 8000 (with a maximum load of 80 MN) at the SKODA WORKS. The results are described from testing the material resistance to fracture (non-ductile). The testing included the base materials and welded joints. The rated specimen thickness was 150 mm with defects of a depth between 15 and 100 mm. The results are also presented of nozzles of 850 mm inner diameter in a scale of 1:3; static, cyclic, and dynamic tests were performed without and with surface defects (15, 30 and 45 mm deep). During cyclic tests the crack growth rate in the elastic-plastic region was also determined. (author). 6 figs., 2 tabs., 5 refs

  14. Large coil test facility

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.

    1980-01-01

    Final design of the facility is nearing completion, and 20% of the construction has been accomplished. A large vacuum chamber, houses the test assembly which is coupled to appropriate cryogenic, electrical, instrumentation, diagnostc systems. Adequate assembly/disassembly areas, shop space, test control center, offices, and test support laboratories are located in the same building. Assembly and installation operations are accomplished with an overhead crane. The major subsystems are the vacuum system, the test stand assembly, the cryogenic system, the experimental electric power system, the instrumentation and control system, and the data aquisition system

  15. Characterization, Genome Sequence, and Analysis of Escherichia Phage CICC 80001, a Bacteriophage Infecting an Efficient L-Aspartic Acid Producing Escherichia coli.

    Science.gov (United States)

    Xu, Youqiang; Ma, Yuyue; Yao, Su; Jiang, Zengyan; Pei, Jiangsen; Cheng, Chi

    2016-03-01

    Escherichia phage CICC 80001 was isolated from the bacteriophage contaminated medium of an Escherichia coli strain HY-05C (CICC 11022S) which could produce L-aspartic acid. The phage had a head diameter of 45-50 nm and a tail of about 10 nm. The one-step growth curve showed a latent period of 10 min and a rise period of about 20 min. The average burst size was about 198 phage particles per infected cell. Tests were conducted on the plaques, multiplicity of infection, and host range. The genome of CICC 80001 was sequenced with a length of 38,810 bp, and annotated. The key proteins leading to host-cell lysis were phylogenetically analyzed. One protein belonged to class II holin, and the other two belonged to the endopeptidase family and N-acetylmuramoyl-L-alanine amidase family, respectively. The genome showed the sequence identity of 82.7% with that of Enterobacteria phage T7, and carried ten unique open reading frames. The bacteriophage resistant E. coli strain designated CICC 11021S was breeding and its L-aspartase activity was 84.4% of that of CICC 11022S.

  16. Correlation between degradation and broadness of the transition in CICC

    International Nuclear Information System (INIS)

    Martovetsky, Nicolai

    2013-01-01

    Cable in conduit conductor (CICC) performance is characterized in terms of relationships involving the electric field (E), voltage (V), temperature (T), current (I), magnetic field (B) and strain. Development of the electrical field in the V–T or V–I transitions in CICCs is exponential. These transitions plotted in the coordinates log E versus T or log E versus I look like straight lines. ITER Nb 3 Sn CICCs show degradation of properties versus load cycles that could be attributed to plastic deformation of the Nb 3 Sn strands or fracture of the superconducting filaments. The degradation is expressed in terms of the reduction of the current sharing temperature T cs or critical current I c , respectively. It was noticed long ago that degradation is accompanied by a significant broadening of the V–T or V–I transition, that looks like a change in the slope in the semi-log coordinate plot. This paper presents some systematic observations of correlations between the critical parameters and broadness of the transition in many CICCs. In most cases, the broadness of the transition seems to be a more sensitive indicator of the conductor damage even in cases where T cs degradation is not clearly seen. T cs degradation typically becomes obvious later in the cycling, especially after warm-up and following cool-down and more cycling. In some cases, a CICC manifests temporary or even a permanent growth of T cs with load cycles, especially in the latest measurements of the CS conductors with short twist pitches. A possible mechanism of degradation that allows qualitative explanation of this phenomenon is discussed and is supported by the voltage measurements on the cable in the TFUS1 sample with the voltage taps penetrating the jacket to the cable. (paper)

  17. Analysis of ITER NbTi and Nb3Sn CICCs experimental minimum quench energy with JackPot, MCM and THEA models

    Science.gov (United States)

    Bagni, T.; Duchateau, J. L.; Breschi, M.; Devred, A.; Nijhuis, A.

    2017-09-01

    Cable-in-conduit conductors (CICCs) for ITER magnets are subjected to fast changing magnetic fields during the plasma-operating scenario. In order to anticipate the limitations of conductors under the foreseen operating conditions, it is essential to have a better understanding of the stability margin of magnets. In the last decade ITER has launched a campaign for characterization of several types of NbTi and Nb3Sn CICCs comprising quench tests with a singular sine wave fast magnetic field pulse and relatively small amplitude. The stability tests, performed in the SULTAN facility, were reproduced and analyzed using two codes: JackPot-AC/DC, an electromagnetic-thermal numerical model for CICCs, developed at the University of Twente (van Lanen and Nijhuis 2010 Cryogenics 50 139-148) and multi-constant-model (MCM) (Turck and Zani 2010 Cryogenics 50 443-9), an analytical model for CICCs coupling losses. The outputs of both codes were combined with thermal, hydraulic and electric analysis of superconducting cables to predict the minimum quench energy (MQE) (Bottura et al 2000 Cryogenics 40 617-26). The experimental AC loss results were used to calibrate the JackPot and MCM models and to reproduce the energy deposited in the cable during an MQE test. The agreement between experiments and models confirm a good comprehension of the various CICCs thermal and electromagnetic phenomena. The differences between the analytical MCM and numerical JackPot approaches are discussed. The results provide a good basis for further investigation of CICC stability under plasma scenario conditions using magnetic field pulses with lower ramp rate and higher amplitude.

  18. NbTi Strands Verification for ITER PF CICC Process Qualification of CNDA

    Science.gov (United States)

    Liu, F.; Liu, H.; Liu, S.; Liu, B.; Lei, L.; Wu, Y.

    2014-05-01

    China is in charge of most of Poloidal Field (PF) conductors production for the International Thermonuclear Experimental Reactor (ITER). The execution for PF conductors shall be in three main phases. According to ITER Procurement Arrangement (PA), the Domestic Agency (DA) shall be required to verify the room and low temperature acceptance tests carried out by the strand suppliers. As the reference laboratory of Chinese DA (CNDA), the superconducting strands test laboratory of Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) was undertaking the task of strands verification for ITER conductors. The verification test includes: diameter, Nickel plating thickness, copper-to-non-copper volume ratio, twist pitch direction and length, standard critical current (IC) and resistive transition index (n), residual resistance ration (RRR), and hysteresis loss. 48 NbTi strands with 7 billets were supplied for the PF Cable-In-Conduit Conductor (CICC) process qualification. In total, 54 samples were measured. The verification level for PF CICC process qualification was 100%. The test method, facility and results of each item are described in detail in this publication.

  19. Numerical simulation of CICC design based on optimization of ratio of copper to superconductor

    International Nuclear Information System (INIS)

    Jiang Huawei; Li Yuan; Yan Shuailing

    2007-01-01

    For cable-in-conduit conductor (CICC) structure design, a numeric simulation is proposed for conductor configuration based on optimization of ratio of copper to superconductor. The simulation outcome is in agreement with engineering design one. (authors)

  20. Development and fabrication of superconducting hybrid Cable-In-Conduit-Conductor (CICC) for indigenous fusion programme

    International Nuclear Information System (INIS)

    Singh, A.K.; Hussain, M.M.; Abdulla, K.K.; Singh, R.P.

    2011-01-01

    The Atomic Fuels Division has initiated development and fabrication of Cable-In-Conduit-Conductor (CICC) of various configurations, for superconducting fusion grade magnets required for their indigenous Fusion Programme. The process involves development of high grade superconducting multifilamentary wire, multi stage cabling of superconducting as well as copper wires and, finally, jacketing of the cables in SS316LN tubes. The overview of the development and fabrication of CICC is presented in this article. (author)

  1. Large shaft development test plan

    International Nuclear Information System (INIS)

    Krug, A.D.

    1984-03-01

    This test plan proposes the conduct of shaft liner tests as part of the large shaft development test proposed for the Hanford Site in support of the repository development program. The objectives of these tests are to develop techniques for measuring liner alignment (straightness), both construction assembly alignment and downhole cumulative alignment, and to assess the alignment information as a real time feedback to aid the installation procedure. The test plan is based upon installing a 16 foot ID shaft liner into a 20 foot diameter shaft to a depth of 1000 feet. This test plan is considered to be preliminary in that it was prepared as input for the decision to determine if development testing is required in this area. Should the decision be made to proceed with development testing, this test plan shall be updated and revised. 6 refs., 2 figs

  2. Large shaft development test plan

    International Nuclear Information System (INIS)

    Krug, A.D.

    1984-03-01

    This test plan proposes the conduct of a large shaft development test at the Hanford site in support of the repository development program. The purpose and objective of the test plan is to obtain the information necessary to establish feasibility and to predict the performance of the drilling system used to drill large diameter shafts. The test plan is based upon drilling a 20 ft diameter shaft to a depth of 1,000 feet. The test plan specifies series of tests to evaluate the performance of the downhole assembly, the performance of the rig, and the ability of the system to cope with geologic hazards. The quality of the hole produced will also be determined. This test plan is considered to be preliminary in that it was prepared as input for the decision to determine if development testing is required in this area. Should the decision be made to proceed with development testing, this test plan shall be updated and revised. 6 refs., 2 figs., 3 tabs

  3. Short initial length quench on CICC of ITER TF coils

    International Nuclear Information System (INIS)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.; Lacroix, B.; Bessette, D.; Rodriguez-Mateos, F.; Coatanea-Gouachet, M.; Gauthier, F.

    2014-01-01

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of the voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed

  4. Short initial length quench on CICC of ITER TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.; Lacroix, B. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bessette, D.; Rodriguez-Mateos, F. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Coatanea-Gouachet, M. [ELC Engineering, 350 chemin du Verladet, F-13290 Les Milles (France); Gauthier, F. [Soditech Ingenierie, 4 bis allée des Gabians, ZI La Frayère, 06150 Cannes (France)

    2014-01-29

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of the voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed.

  5. Large scale cross hole testing

    International Nuclear Information System (INIS)

    Ball, J.K.; Black, J.H.; Doe, T.

    1991-05-01

    As part of the Site Characterisation and Validation programme the results of the large scale cross hole testing have been used to document hydraulic connections across the SCV block, to test conceptual models of fracture zones and obtain hydrogeological properties of the major hydrogeological features. The SCV block is highly heterogeneous. This heterogeneity is not smoothed out even over scales of hundreds of meters. Results of the interpretation validate the hypothesis of the major fracture zones, A, B and H; not much evidence of minor fracture zones is found. The uncertainty in the flow path, through the fractured rock, causes sever problems in interpretation. Derived values of hydraulic conductivity were found to be in a narrow range of two to three orders of magnitude. Test design did not allow fracture zones to be tested individually. This could be improved by testing the high hydraulic conductivity regions specifically. The Piezomac and single hole equipment worked well. Few, if any, of the tests ran long enough to approach equilibrium. Many observation boreholes showed no response. This could either be because there is no hydraulic connection, or there is a connection but a response is not seen within the time scale of the pumping test. The fractional dimension analysis yielded credible results, and the sinusoidal testing procedure provided an effective means of identifying the dominant hydraulic connections. (10 refs.) (au)

  6. Transverse Load Optimisation in Nb3Sn CICC Design; Influence of Cabling, Void Fraction and Strand Stiffness

    NARCIS (Netherlands)

    Nijhuis, Arend; Ilyin, Y.

    2006-01-01

    We have developed a model that describes the transverse load degradation in Nb3Sn CICCs, based on strand and cable properties, and that is capable of predicting how such degradation can be prevented. The Nb3Sn cable in conduit conductors (CICCs) for the International Thermonuclear Experimental

  7. Large block test status report

    International Nuclear Information System (INIS)

    Wilder, D.G.; Lin, W.; Blair, S.C.

    1997-01-01

    This report is intended to serve as a status report, which essentially transmits the data that have been collected to date on the Large Block Test (LBT). The analyses of data will be performed during FY98, and then a complete report will be prepared. This status report includes introductory material that is not needed merely to transmit data but is available at this time and therefore included. As such, this status report will serve as the template for the future report, and the information is thus preserved

  8. LARGE BLOCK TEST STATUS REPORT

    International Nuclear Information System (INIS)

    D.G. WILDER, W. LIN, S.C. BLAIR, T. BUSCHECK, R.C. CARLSON, K. LEE, A. MEIKE, A.L. RAMIREZ, J.L. WAGONER, AND J. WANG

    1997-01-01

    This report is intended to serve as a status report, which essentially transmits the data that have been collected to date on the Large Block Test (LBT). The analyses of data will be performed during FY98, and then a complete report will be prepared. This status report includes introductory material that is not needed merely to transmit data but is available at this time and therefore included. As such, this status report will serve as the template for the future report, and the information is thus preserved. The United States Department of Energy (DOE) is investigatinq the suitability of Yucca Mountain (YM) as a potential site for the nation's first high-level nuclear waste repository. As shown in Fig. 1-1, the site is located about 120 km northwest of Las Vegas, Nevada, in an area of uninhabited desert

  9. Transverse load optimization in Nb3Sn CICC design; influence of cabling, void fraction and strand stiffness

    International Nuclear Information System (INIS)

    Nijhuis, A; Ilyin, Y

    2006-01-01

    We have developed a model that describes the transverse load degradation in Nb 3 Sn CICCs, based on strand and cable properties, and that is capable of predicting how such degradation can be prevented. The Nb 3 Sn cable in conduit conductors (CICCs) for the International Thermonuclear Experimental Reactor (ITER) show a significant degradation in their performance with increasing electromagnetic load. Not only do the differences in the thermal contraction of the composite materials affect the critical current and temperature margin, but mostly electromagnetic forces cause significant transverse strand contact and bending strain in the Nb 3 Sn layers. Here, we present the model for transverse electro-magnetic load optimization (TEMLOP) and report the first results of computations for the ITER type of conductors, based on the measured properties of the internal tin strand used for the toroidal field model coil (TFMC). As input, the model uses data describing the behaviour of single strands under periodic bending and contact loads, measured with the TARSIS set-up, enabling a discrimination in performance reduction per specific load and strand type. The most important conclusion of the model computations is that the problem of the severe degradation of large CICCs can be drastically and straightforwardly improved by increasing the pitch length of subsequent cabling stages. It is the first time that an increase of the pitches has been proposed and no experimental data are available yet to confirm this beneficial outcome of the TEMLOP model. Larger pitch lengths will result in a more homogeneous distribution of the stresses and strains in the cable by significantly moderating the local peak stresses associated with the intermediate-length twist pitches. The twist pitch scheme of the present conductor layout turns out to be unfortunately close to a worst-case scenario. The model also makes clear that strand bending is the dominant mechanism causing degradation. The

  10. Cool-down performance of CICC superconducting coils for the CHMFL

    Science.gov (United States)

    Xie, Y.; Li, J.; Ouyang, Z. R.

    2017-10-01

    A hybrid magnet composed of a water-cooled magnet and a superconducting magnet was developed at the High Magnetic Field Laboratory of the Chinese Academy of Sciences. The superconducting coils made of Nb3Sn CICC were cooled by the forced flow of supercritical helium at 4.5 K. The paper presents the cryogenic system framework, and reports the characteristics of the supercritical helium in a cable-in-conduit conductor (CICC), including the friction factor change during the cooling process, the heat transfer coefficient from 4.6 K to 6.8 K, and the helium mass flow rate distribution. After the 23-day cooling process, the temperature reached 4.5 K. The operation process was introduced in the paper.

  11. Numerical estimation of stability and improvement for coolant passage design in Hollow type CICC; Hollow gata CICC no reikyaku ryuro kaizen to anteisei no suchiteki kento

    Energy Technology Data Exchange (ETDEWEB)

    Miyauchi, M. [Yamagata Univ., Yamagata (Japan); Yoshiki, H. [The Univ. of Tokyo, Tokyo (Japan)

    1999-06-07

    The Hollow type CICC has a central channel (Hole) and is separated from surrounding bundle by a spiral tape with a gap, heat of a strand can effectively be convected to the Hole zone. However, even strong convection currents are induced in two ends of a thermal generating zone, but the heat is accumulated in the central part, and stability margin drops while relatively a long time heat has input for about 100 msec. In this study, the helium deposit inside the heating zone is reduced by a little design changing of the spiral tape that separates the bundle and the hole and efforts of improving stability of low energy density against heating are attempted. The instability caused by low energy and a long time heat invasion of the CICC appears also in simulation of Zanino at el. using a MITHRANDIR code. At this time, a method for calculating overflow of helium flowing to the bundle/Hole taking references of a branch current model and a joint flow model that are used in engine simulations is developed. (NEDO)

  12. The acyl-CoA binding protein affects Monascus pigment production in Monascus ruber CICC41233.

    Science.gov (United States)

    Long, Chuannan; Liu, Mengmeng; Chen, Xia; Wang, Xiaofang; Ai, Mingqiang; Cui, Jingjing; Zeng, Bin

    2018-02-01

    The present study verified whether acyl-coenzyme A (acyl-CoA)-binding protein (ACBP) affected the production of Monascus pigments (MPs) in Monascus ruber CICC41233 (MrACBP). Phylogenetic analysis revealed that the cloned Mracbp gene, which encoded the MrACBP protein, exhibited the closest match (99% confidence level) to the gene from Penicilliopsis zonata . The MrACBP and maltose-binding protein (MBP) were simultaneously expressed in Escherichia coli Rosetta DE3 in the form of a fusion protein. The microscale thermophoresis binding assay revealed that the purified MBP-MrACBP exhibited a higher affinity for myristoyl-CoA (Kd = 88.16 nM) than for palmitoyl-CoA (Kd = 136.07 nM) and octanoyl-CoA (Kd = 270.9 nM). Further, the Mracbp gene was homologously overexpressed in M. ruber CICC41233, and a positive transformant M. ruber ACBP5 was isolated. The fatty acid myristic acid in M. ruber ACBP5 was lower than that in the parent strain M. ruber CICC41233. However, when compared with the parent strain, the production of total MPs, water-soluble pigment, and ethanol-soluble pigment in M. ruber ACBP5 increased by 11.67, 9.80, and 12.70%, respectively, after 6 days. The relative gene expression level, as determined by a quantitative real-time polymerase chain reaction analysis, of the key genes acbp , pks , mppr1 , fasA , and fasB increased by 4.03-, 3.58-, 1.67-, 2.11-, and 2.62-fold after 6 days. These data demonstrate the binding preference of MrACBP for myristoyl-CoA, and its influence on MPs production.

  13. Large area damage testing of optics

    International Nuclear Information System (INIS)

    Sheehan, L.; Kozlowski, M.; Stolz, C.

    1996-01-01

    The damage threshold specifications for the National Ignition Facility will include a mixture of standard small-area tests and new large-area tests. During our studies of laser damage and conditioning processes of various materials we have found that some damage morphologies are fairly small and this damage does not grow with further illumination. This type of damage might not be detrimental to the laser performance. We should therefore assume that some damage can be allowed on the optics, but decide on a maximum damage allowance of damage. A new specification of damage threshold termed open-quotes functional damage thresholdclose quotes was derived. Further correlation of damage size and type to system performance must be determined in order to use this measurement, but it is clear that it will be a large factor in the optics performance specifications. Large-area tests have verified that small-area testing is not always sufficient when the optic in question has defect-initiated damage. This was evident for example on sputtered polarizer and mirror coatings where the defect density was low enough that the features could be missed by standard small- area testing. For some materials, the scale-length at which damage non-uniformities occur will effect the comparison of small-area and large-area tests. An example of this was the sub-aperture tests on KD*P crystals on the Beamlet test station. The tests verified the large-area damage threshold to be similar to that found when testing a small-area. Implying that for this KD*P material, the dominate damage mechanism is of sufficiently small scale-length that small-area testing is capable of determining the threshold. The Beamlet test station experiments also demonstrated the use of on-line laser conditioning to increase the crystals damage threshold

  14. Startup of large coil test facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils. (author)

  15. Large Payload Ground Transportation and Test Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  16. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  17. Self-field calculation of CICC with fast direct Biot–Savart integration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Li, Yingxu [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou, Youhe [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2014-04-15

    Highlights: • An algorithm of fast direct Biot–Savart integration (FDBS) is proposed. • FDBS calculates the self-field of ITER cable-in-conduit conductor (CICC). • FDBS is more effective and easier to implement. • This new method will benefit future magnet design. - Abstract: ITER magnetic device (Tokamak) requires a strong magnetic field produced by charged cable conductors and external sources to arrive at stable and reliable magnetic confinement performance. Before manufacturing and assembling conductors, preliminary analysis of self-field induction is helpful for reducing the cost of varying-parameter experiments. Spatial helix shape of numerous strand elements and multi-level twist of the finalized cable, known as CICC type, make it unpractical to direct use finite-element methods and other numerical procedures for self-field calculation. An algorithm FDBS (fast direct Biot–Savart integration) is proposed to surmount this difficulty, which improves the traditional method (DBS, direct implementing Biot–Savart law for all strand sources) in terms of computational effort. As such the complexity reduces to O(N) from the original O(N{sup 2}) and speed enhancement is achieved in the parallel computation environment. FDBS calculates out a detailed self-field profile for the uncompressed ITER TF conductors carrying uniform current at each cabling level; the layered self-field distribution becomes more indistinct for higher level subcable.

  18. Self-field calculation of CICC with fast direct Biot–Savart integration

    International Nuclear Information System (INIS)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen; Zhou, Youhe

    2014-01-01

    Highlights: • An algorithm of fast direct Biot–Savart integration (FDBS) is proposed. • FDBS calculates the self-field of ITER cable-in-conduit conductor (CICC). • FDBS is more effective and easier to implement. • This new method will benefit future magnet design. - Abstract: ITER magnetic device (Tokamak) requires a strong magnetic field produced by charged cable conductors and external sources to arrive at stable and reliable magnetic confinement performance. Before manufacturing and assembling conductors, preliminary analysis of self-field induction is helpful for reducing the cost of varying-parameter experiments. Spatial helix shape of numerous strand elements and multi-level twist of the finalized cable, known as CICC type, make it unpractical to direct use finite-element methods and other numerical procedures for self-field calculation. An algorithm FDBS (fast direct Biot–Savart integration) is proposed to surmount this difficulty, which improves the traditional method (DBS, direct implementing Biot–Savart law for all strand sources) in terms of computational effort. As such the complexity reduces to O(N) from the original O(N 2 ) and speed enhancement is achieved in the parallel computation environment. FDBS calculates out a detailed self-field profile for the uncompressed ITER TF conductors carrying uniform current at each cabling level; the layered self-field distribution becomes more indistinct for higher level subcable

  19. The Expanded Large Scale Gap Test

    Science.gov (United States)

    1987-03-01

    NSWC TR 86-32 DTIC THE EXPANDED LARGE SCALE GAP TEST BY T. P. LIDDIARD D. PRICE RESEARCH AND TECHNOLOGY DEPARTMENT ’ ~MARCH 1987 Ap~proved for public...arises, to reduce the spread in the LSGT 50% gap value.) The worst charges, such as those with the highest or lowest densities, the largest re-pressed...Arlington, VA 22217 PE 62314N INS3A 1 RJ14E31 7R4TBK 11 TITLE (Include Security CIlmsilficatiorn The Expanded Large Scale Gap Test . 12. PEIRSONAL AUTHOR() T

  20. Transverse heat transfer coefficient in the dual channel ITER TF CICCs Part II. Analysis of transient temperature responses observed during a heat slug propagation experiment

    Science.gov (United States)

    Lewandowska, Monika; Herzog, Robert; Malinowski, Leszek

    2015-01-01

    A heat slug propagation experiment in the final design dual channel ITER TF CICC was performed in the SULTAN test facility at EPFL-CRPP in Villigen PSI. We analyzed the data resulting from this experiment to determine the equivalent transverse heat transfer coefficient hBC between the bundle and the central channel of this cable. In the data analysis we used methods based on the analytical solutions of a problem of transient heat transfer in a dual-channel cable, similar to Renard et al. (2006) and Bottura et al. (2006). The observed experimental and other limits related to these methods are identified and possible modifications proposed. One result from our analysis is that the hBC values obtained with different methods differ by up to a factor of 2. We have also observed that the uncertainties of hBC in both methods considered are much larger than those reported earlier.

  1. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  2. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1985-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  3. EPFM verification by a large scale test

    International Nuclear Information System (INIS)

    Okamura, H.; Yagawa, G.; Hidaka, T.; Sato, M.; Urabe, Y.; Iida, M.

    1993-01-01

    Step B test was carried out as one of the elastic plastic fracture mechanics (EPFR) study in Japanese PTS integrity research project. In step B test bending load was applied to the large flat specimen with thermal shock. Tensile load was kept constant during the test. Estimated stable crack growth at the deepest point of the crack was 3 times larger than the experimental value in the previous analysis. In order to diminish the difference between them from the point of FEM modeling, more precise FEM mesh was introduced. According to the new analysis, the difference considerably decreased. That is, stable crack growth evaluation was improved by adopting precise FEM model near the crack tip and the difference was almost same order as that in the NKS4-1 test analysis by MPA. 8 refs., 17 figs., 5 tabs

  4. Large Liquid Rocket Testing: Strategies and Challenges

    Science.gov (United States)

    Rahman, Shamim A.; Hebert, Bartt J.

    2005-01-01

    Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or

  5. Underground large scale test facility for rocks

    International Nuclear Information System (INIS)

    Sundaram, P.N.

    1981-01-01

    This brief note discusses two advantages of locating the facility for testing rock specimens of large dimensions in an underground space. Such an environment can be made to contribute part of the enormous axial load and stiffness requirements needed to get complete stress-strain behavior. The high pressure vessel may also be located below the floor level since the lateral confinement afforded by the rock mass may help to reduce the thickness of the vessel

  6. GEOMECHANICAL OBSERVATIONS DURING THE LARGE BLOCK TEST

    International Nuclear Information System (INIS)

    STEPHEN C. BLAIR AND STEPHANIE A. WOOD

    1998-01-01

    This paper presents an overview of the geomechanical studies conducted at the Large Block Test at Fran Ridge, near Yucca Mountain, Nevada. The 3-dimensional geomechanical response of the rock to heating is being monitored using instrumentation mounted in boreholes and on the surface of the block. Results show that thermal expansion of the block began a few hours after the start of heating, and is closely correlated with the thermal history. Horizontal expansion increases as a linear function of height. Comparison of observed deformations with continuum simulations shows that below the heater plane deformation is smaller than predicted, while above the heater plane, observed deformation is larger than predicted, and is consistent with opening of vertical fractures. Fracture monitors indicate that movement on a large horizontal fracture is associated with hydrothermal behavior

  7. Testing Einstein's Gravity on Large Scales

    Science.gov (United States)

    Prescod-Weinstein, Chandra

    2011-01-01

    A little over a decade has passed since two teams studying high redshift Type Ia supernovae announced the discovery that the expansion of the universe was accelerating. After all this time, we?re still not sure how cosmic acceleration fits into the theory that tells us about the large-scale universe: General Relativity (GR). As part of our search for answers, we have been forced to question GR itself. But how will we test our ideas? We are fortunate enough to be entering the era of precision cosmology, where the standard model of gravity can be subjected to more rigorous testing. Various techniques will be employed over the next decade or two in the effort to better understand cosmic acceleration and the theory behind it. In this talk, I will describe cosmic acceleration, current proposals to explain it, and weak gravitational lensing, an observational effect that allows us to do the necessary precision cosmology.

  8. Large bundle BWR test CORA-18: Test results

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Sepold, L.; Schanz, G.; Schumacher, G.

    1998-04-01

    The CORA out-of-pile experiments are part of the international Severe Fuel Damage (SFD) Program. They were performed to provide information on the damage progression of Light Water Reactor (LWR) fuel elements in Loss-of-coolant Accidents in the temperature range 1200 C to 2400 C. CORA-18 was the large BWR bundle test corresponding to the PWR test CORA-7. It should investigate if there exists an influence of the BWR bundle size on the fuel damage behaviour. Therefore, the standard-type BWR CORA bundle with 18 fuel rod simulators was replaced by a large bundle with two additional surrounding rows of 30 rods (48 rods total). Power input and steam flow were increased proportionally to the number of fuel rod simulators to give the same initial heat-up rate of about 1 K/s as in the smaller bundles. Emphasis was put on the initial phase of the damage progression. More information on the chemical composition of initial and intermediate interaction products and their relocation behaviour should be obtained. Therefore, power and steam input were terminated after the onset of the temperature escalation. (orig.) [de

  9. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  10. Large scale injection test (LASGIT) modelling

    International Nuclear Information System (INIS)

    Arnedo, D.; Olivella, S.; Alonso, E.E.

    2010-01-01

    Document available in extended abstract form only. With the objective of understanding the gas flow processes through clay barriers in schemes of radioactive waste disposal, the Lasgit in situ experiment was planned and is currently in progress. The modelling of the experiment will permit to better understand of the responses, to confirm hypothesis of mechanisms and processes and to learn in order to design future experiments. The experiment and modelling activities are included in the project FORGE (FP7). The in situ large scale injection test Lasgit is currently being performed at the Aespoe Hard Rock Laboratory by SKB and BGS. An schematic layout of the test is shown. The deposition hole follows the KBS3 scheme. A copper canister is installed in the axe of the deposition hole, surrounded by blocks of highly compacted MX-80 bentonite. A concrete plug is placed at the top of the buffer. A metallic lid anchored to the surrounding host rock is included in order to prevent vertical movements of the whole system during gas injection stages (high gas injection pressures are expected to be reached). Hydration of the buffer material is achieved by injecting water through filter mats, two placed at the rock walls and two at the interfaces between bentonite blocks. Water is also injected through the 12 canister filters. Gas injection stages are performed injecting gas to some of the canister injection filters. Since the water pressure and the stresses (swelling pressure development) will be high during gas injection, it is necessary to inject at high gas pressures. This implies mechanical couplings as gas penetrates after the gas entry pressure is achieved and may produce deformations which in turn lead to permeability increments. A 3D hydro-mechanical numerical model of the test using CODE-BRIGHT is presented. The domain considered for the modelling is shown. The materials considered in the simulation are the MX-80 bentonite blocks (cylinders and rings), the concrete plug

  11. Pareto-Optimization of HTS CICC for High-Current Applications in Self-Field

    Directory of Open Access Journals (Sweden)

    Giordano Tomassetti

    2018-01-01

    Full Text Available The ENEA superconductivity laboratory developed a novel design for Cable-in-Conduit Conductors (CICCs comprised of stacks of 2nd-generation REBCO coated conductors. In its original version, the cable was made up of 150 HTS tapes distributed in five slots, twisted along an aluminum core. In this work, taking advantage of a 2D finite element model, able to estimate the cable’s current distribution in the cross-section, a multiobjective optimization procedure was implemented. The aim of optimization was to simultaneously maximize both engineering current density and total current flowing inside the tapes when operating in self-field, by varying the cross-section layout. Since the optimization process involved both integer and real geometrical variables, the choice of an evolutionary search algorithm was strictly necessary. The use of an evolutionary algorithm in the frame of a multiple objective optimization made it an obliged choice to numerically approach the problem using a nonstandard fast-converging optimization algorithm. By means of this algorithm, the Pareto frontiers for the different configurations were calculated, providing a powerful tool for the designer to achieve the desired preliminary operating conditions in terms of engineering current density and/or total current, depending on the specific application field, that is, power transmission cable and bus bar systems.

  12. Testing for structural changes in large portfolios

    OpenAIRE

    Posch, Peter N.; Ullmann, Daniel; Wied, Dominik

    2015-01-01

    Model free tests for constant parameters often fail to detect structural changes in high dimensions. In practice, this corresponds to a portfolio with many assets and a reasonable long time series. We reduce the dimensionality of the problem by looking a compressed panel of time series obtained by cluster analysis and the principal components of the data. Using our methodology we are able to extend a test for a constant correlation matrix from a sub portfolio to whole indices a...

  13. Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.X.; Wang, X.; Gao, Y.W., E-mail: ywgao@lzu.edu.cn; Zhou, Y.H.

    2013-11-15

    Highlights: • We develop an analytical model based on the hierarchical approach of classical wire rope theory. • The numerical model is set up through ABAQUS to verify and enhance the theoretical model. • We calculate two concerned mechanical response: global displacement–load curve and local axial strain distribution. • Elastic–plasticity is the main character in loading curve, and the friction between adjacent strands plays a significant role in the distribution map. -- Abstract: An unexpected degradation frequently occurs in superconducting cable (CICC) due to the mechanical response (deformation) when suffering from electromagnetic load and thermal load during operation. Because of the cable's hierarchical twisted configuration, it is difficult to quantitatively model the mechanical response. In addition, the local mechanical characteristics such as strain distribution could be hardly monitored via experimental method. To address this issue, we develop an analytical model based on the hierarchical approach of classical wire rope theory. This approach follows the algorithm advancing successively from n + 1 stage (e.g. 3 × 3 × 5 subcable) to n stage (e.g. 3 × 3 subcable). There are no complicated numerical procedures required in this model. Meanwhile, the numerical model is set up through ABAQUS to verify and enhance the theoretical model. Subsequently, we calculate two concerned mechanical responses: global displacement–load curve and local axial strain distribution. We find that in the global displacement–load curve, the elastic–plasticity is the main character, and the higher-level cable shows enhanced nonlinear characteristics. As for the local distribution, the friction among adjacent strands plays a significant role in this map. The magnitude of friction strongly influences the regularity of the distribution at different twisted stages. More detailed results are presented in this paper.

  14. Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation

    International Nuclear Information System (INIS)

    Li, Y.X.; Wang, X.; Gao, Y.W.; Zhou, Y.H.

    2013-01-01

    Highlights: • We develop an analytical model based on the hierarchical approach of classical wire rope theory. • The numerical model is set up through ABAQUS to verify and enhance the theoretical model. • We calculate two concerned mechanical response: global displacement–load curve and local axial strain distribution. • Elastic–plasticity is the main character in loading curve, and the friction between adjacent strands plays a significant role in the distribution map. -- Abstract: An unexpected degradation frequently occurs in superconducting cable (CICC) due to the mechanical response (deformation) when suffering from electromagnetic load and thermal load during operation. Because of the cable's hierarchical twisted configuration, it is difficult to quantitatively model the mechanical response. In addition, the local mechanical characteristics such as strain distribution could be hardly monitored via experimental method. To address this issue, we develop an analytical model based on the hierarchical approach of classical wire rope theory. This approach follows the algorithm advancing successively from n + 1 stage (e.g. 3 × 3 × 5 subcable) to n stage (e.g. 3 × 3 subcable). There are no complicated numerical procedures required in this model. Meanwhile, the numerical model is set up through ABAQUS to verify and enhance the theoretical model. Subsequently, we calculate two concerned mechanical responses: global displacement–load curve and local axial strain distribution. We find that in the global displacement–load curve, the elastic–plasticity is the main character, and the higher-level cable shows enhanced nonlinear characteristics. As for the local distribution, the friction among adjacent strands plays a significant role in this map. The magnitude of friction strongly influences the regularity of the distribution at different twisted stages. More detailed results are presented in this paper

  15. Altitude Testing of Large Liquid Propellant Engines

    Science.gov (United States)

    Maynard, Bryon T.; Raines, Nickey G.

    2010-01-01

    The National Aeronautics and Space Administration entered a new age on January 14, 2004 with President Bush s announcement of the creation the Vision for Space Exploration that will take mankind back to the Moon and on beyond to Mars. In January, 2006, after two years of hard, dedicated labor, engineers within NASA and its contractor workforce decided that the J2X rocket, based on the heritage of the Apollo J2 engine, would be the new engine for the NASA Constellation Ares upper stage vehicle. This engine and vehicle combination would provide assured access to the International Space Station to replace that role played by the Space Shuttle and additionally, would serve as the Earth Departure Stage, to push the Crew Excursion Vehicle out of Earth Orbit and head it on a path for rendezvous with the Moon. Test as you fly, fly as you test was chosen to be the guiding philosophy and a pre-requisite for the engine design, development, test and evaluation program. An exhaustive survey of national test facility assets proved the required capability to test the J2X engine at high altitude for long durations did not exist so therefore, a high altitude/near space environment testing capability would have to be developed. After several agency concepts the A3 High Altitude Testing Facility proposal was selected by the J2X engine program on March 2, 2007 and later confirmed by a broad panel of NASA senior leadership in May 2007. This facility is to be built at NASA s John C. Stennis Space Center located near Gulfport, Mississippi. 30 plus years of Space Shuttle Main Engine development and flight certification testing makes Stennis uniquely suited to support the Vision For Space Exploration Return to the Moon. Propellant handling infrastructure, engine assembly facilities, a trained and dedicated workforce and a broad and varied technical support base will all ensure that the A3 facility will be built on time to support the schedule needs of the J2X engine and the ultimate flight

  16. Large coil test facility conceptual design report

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.; Mann, T.L.

    1978-02-01

    In the development of a superconducting toroidal field (TF) magnet for The Next Step (TNS) tokamak reactor, several different TF coils, about half TNS size, will be built and tested to permit selection of a design and fabrication procedure for full-scale TNS coils. A conceptual design has been completed for a facility to test D-shaped TF coils, 2.5 x 3.5-m bore, operating at 4-6 K, cooled either by boiling helium or by forced-flow supercritical helium. Up to six coils can be accommodated in a toroidal array housed in a single vacuum tank. The principal components and systems in the facility are an 11-m vacuum tank, a test stand providing structural support and service connections for the coils, a liquid nitrogen system, a system providing helium both as saturated liquid and at supercritical pressure, coils to produce a pulsed vertical field at any selected test coil position, coil power supplies, process instrumentation and control, coil diagnostics, and a data acquisition and handling system. The test stand structure is composed of a central bucking post, a base structure, and two horizontal torque rings. The coils are bolted to the bucking post, which transmits all gravity loads to the base structure. The torque ring structure, consisting of beams between adjacent coils, acts with the bucking structure to react all the magnetic loads that occur when the coils are energized. Liquid helium is used to cool the test stand structure to 5 K to minimize heat conduction to the coils. Liquid nitrogen is used to precool gaseous helium during system cooldown and to provide thermal radiation shielding

  17. Jumps of the local magnetic field near CICC during external magnetic field ramp and their connection with the ramp rate limitation

    International Nuclear Information System (INIS)

    Vysotsky, V.S.; Takayasu, M.; Minervini, J.V.

    1997-01-01

    A new method has been developed to study Ramp Rate Limitation (RRL) phenomena. Samples of ITER-type cable-in-conduit (CICC) subcable were instrumented with local field sensors such as Hall probes and pick-up coils and then subjected to rapidly changing external magnetic field. The authors found that during fast field sweeps some discontinuous changes, or jumps occur in the local field. They believe that these jumps indicate a fast current redistribution processes inside CICC. Detailed information about local magnetic field jumps during changing field is presented. Possible origin of the jumps and their connection with RRL are discussed

  18. Experience with the instrumentation tests in large sodium test facilities

    International Nuclear Information System (INIS)

    Lauhoff, Th.; Ruppert, E.; Stehle, H.; Vinzens, K.

    1976-01-01

    A facility is described for fast breeder core components (AKB) to test specially instrumented fuel dummies and blanket elements, and also absorber elements under simulated normal and extreme reactor conditions. In addition to endurance testing of a special sodium and high temperature sub-assembly, instrumentation is provided to investigate thermohydraulic and vibrational behaviour of core elements. During tests of > 3000 h at temperatures above 820 K the main sub-assembly characteristics, e.g. pressure drop, leakage flow, vibration and noise spectra can be reproduced. The use of eddy current flow meters, strain gauges, magnetostrictive noise sensors, pressure transducers, thermocouples, and acoustic surveillance devices, are described. (U.K.)

  19. Analysis of ITER NbTi and Nb3Sn CICCs experimental minimum quench energy with JackPot, MCM and THEA models

    NARCIS (Netherlands)

    Bagni, T.; Duchateau, J.L.; Breschi, M.; Devred, A.; Nijhuis, A.

    2017-01-01

    Cable-in-conduit conductors (CICCs) for ITER magnets are subjected to fast changing magnetic fields during the plasma-operating scenario. In order to anticipate the limitations of conductors under the foreseen operating conditions, it is essential to have a better understanding of the stability

  20. Trends in large-scale testing of reactor structures

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    2003-01-01

    Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)

  1. Test on large-scale seismic isolation elements, 2

    International Nuclear Information System (INIS)

    Mazda, T.; Moteki, M.; Ishida, K.; Shiojiri, H.; Fujita, T.

    1991-01-01

    Seismic isolation test program of Central Research Inst. of Electric Power Industry (CRIEPI) to apply seismic isolation to Fast Breeder Reactor (FBR) plant was started in 1987. In this test program, demonstration test of seismic isolation elements was considered as one of the most important research items. Facilities for testing seismic isolation elements were built in Abiko Research Laboratory of CRIEPI. Various tests of large-scale seismic isolation elements were conducted up to this day. Many important test data to develop design technical guidelines was obtained. (author)

  2. Testing of large prestressing tendon end anchorage regions

    International Nuclear Information System (INIS)

    Johnson, T.E.

    1976-01-01

    Tests were performed on concrete end anchorage regions for prestressing tendons with ultimate strengths of approximately 8,900 kN. One test structure simulated a full scale concrete containment buttress and the other two test specimens were concrete blocks. The behavior of the test structure and specimens, when subjected to loading, was monitored by strain gages and dial gages. The testing illustrated that all of the amounts of reinforcing tested should be acceptable for the end anchor zones of large tendons presently used in prestressed concrete containment structures. (author)

  3. The IEA large coil task test results in IFSMTF

    International Nuclear Information System (INIS)

    Lubell, M.S.; Clinard, J.A.; Dresner, L.

    1987-01-01

    The Large Coil Task (LCT) is an international collaboration of the United States, EURATOM, Japan, and Switzerland to develop large superconducting magnets for fusion reactors. The testing phase of LCT was completed on September 3, 1987. All six coils exceeded the design goals, both as single coils and in six-coil toroidal tests. In addition, a symmetric torus test was performed in which a maximum field of 9 T was reached in all coils simultaneously. These are by far the largest magnets (either in size, weight, or stored energy) ever to achieve such a field. 6 refs., 6 figs., 3 tabs

  4. A Cryogenic Test Stand for Large Superconducting Solenoid Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Orris, D. [Fermilab; Soyars, W. [Fermilab; Sylvester, C. [Fermilab

    2013-01-01

    A new test stand for testing large superconducting solenoid magnets at the Fermilab Central Helium Liquifier (CHL) has been designed, and operated. This test stand has been used to test a coupling coil for the Muon Ionization Cooling Experiment (MICE), and future uses include solenoids for the Fermilab mu2e experiment. This paper describes the test stand design and operation including controlled cool-down and warm-up. Overviews of the process controls system and the quench management system are also included.

  5. Remote aerosol testing of large size HEPA filter banks

    International Nuclear Information System (INIS)

    Franklin, B.; Pasha, M.; Bronger, C.A.

    1987-01-01

    Different methods of testing HEPA filter banks are described. Difficulties in remote testing of large banks of HEPA filters in series with minimum distances between banks, and with no available access upstream and downstream of the filter house, are discussed. Modifications incorporated to make the filter system suitable for remote testing without personnel re-entry into the filter house are described for a 51,000 m/sup 3//hr filter unit at the WIPP site

  6. Rotation analysis on large complex superconducting cables based on numerical modeling and experiments

    NARCIS (Netherlands)

    Qin, Jinggang; Yue, Donghua; Zhang, Xingyi; Wu, Yu; Liu, Xiaochuan; Liu, Huajun; Jin, Huan; Dai, Chao; Nijhuis, Arend; Zhou, Chao; Devred, Arnaud

    2018-01-01

    The conductors used in large fusion reactors, e.g. ITER, CFETR and DEMO, are made of cable-in-conduit conductor (CICC) with large diameters up to about 50 mm. The superconducting and copper strands are cabled around a central spiral and then wrapped with stainless-steel tape of 0.1 mm thickness. The

  7. The amyR-deletion strain of Aspergillus niger CICC2462 is a suitable host strain to express secreted protein with a low background.

    Science.gov (United States)

    Zhang, Hui; Wang, Shuang; Zhang, Xiang Xiang; Ji, Wei; Song, Fuping; Zhao, Yue; Li, Jie

    2016-04-28

    The filamentous fungus Aspergillus niger is widely exploited as an important expression host for industrial production. The glucoamylase high-producing strain A. niger CICC2462 has been used as a host strain for the establishment of a secretion expression system. It expresses recombinant xylanase, mannase and asparaginase at a high level, but some high secretory background proteins in these recombinant strains still remain, such as alpha-amylase and alpha-glucosidase; lead to a low-purity of fermentation products. The aim was to construct an A. niger host strain with a low background of protein secretion. The transcription factor amyR was deleted in A. niger CICC2462, and the results from enzyme activity assays and SDS-PAGE analysis showed that the glucoamylase and amylase activities of the ∆amyR strains were significantly lower than those of the wild-type strain. High-throughput RNA-sequencing and shotgun LC-MS/MS proteomic technology analysis demonstrated that the expression of amylolytic enzymes was decreased at both the transcriptional and translational levels in the ∆amyR strain. Interestingly, the ∆amyR strain growth rate better than the wild-type strain. Our findings clearly indicated that the ∆amyR strain of A. niger CICC2462 can be used as a host strain with a low background of protein secretion.

  8. Large scale sodium interactions. Part 1. Test facility design

    International Nuclear Information System (INIS)

    King, D.L.; Smaardyk, J.E.; Sallach, R.A.

    1977-01-01

    During the design of the test facility for large scale sodium interaction testing, an attempt was made to keep the system as simple and yet versatile as possible; therefore, a once through design was employed as opposed to any type of conventional sodium ''loop.'' The initial series of tests conducted at the facility call for rapidly dropping from 20 kg to 225 kg of sodium at temperatures from 825 0 K to 1125 0 K into concrete crucibles. The basic system layout is described. A commercial drum heater is used to melt the sodium which is in 55 gallon drums and then a slight argon pressurization is used to force the liquid sodium through a metallic filter and into a dump tank. Then the sodium dump tank is heated to the desired temperature. A diaphragm is mechanically ruptured and the sodium is dumped into a crucible that is housed inside a large steel test chamber

  9. Software Manages Documentation in a Large Test Facility

    Science.gov (United States)

    Gurneck, Joseph M.

    2001-01-01

    The 3MCS computer program assists and instrumentation engineer in performing the 3 essential functions of design, documentation, and configuration management of measurement and control systems in a large test facility. Services provided by 3MCS are acceptance of input from multiple engineers and technicians working at multiple locations;standardization of drawings;automated cross-referencing; identification of errors;listing of components and resources; downloading of test settings; and provision of information to customers.

  10. Economic testing of large integrated switching circuits - a challenge to the test engineer

    International Nuclear Information System (INIS)

    Kreinberg, W.

    1978-01-01

    With reference to large integrated switching circuits, one can use an incoming standard programme test or the customer's switching circuits. The author describes the development of suitable, extensive and economical test programmes. (orig.) [de

  11. Large source test stand for H-(D-) ion source

    International Nuclear Information System (INIS)

    Larson, R.; McKenzie-Wilson, R.

    1981-01-01

    The Brookhaven National Laboratory Neutral Beam Group has constructed a large source test stand for testing of the various source modules under development. The first objective of the BNL program is to develop a source module capable of delivering 10A of H - (D - ) at 25 kV operating in the steady state mode with satisfactory gas and power efficiency. The large source test stand contains gas supply and vacuum pumping systems, source cooling systems, magnet power supplies and magnet cooling systems, two arc power supplies rated at 25 kW and 50 kW, a large battery driven power supply and an extractor electrode power supply. Figure 1 is a front view of the vacuum vessel showing the control racks with the 36'' vacuum valves and refrigerated baffles mounted behind. Figure 2 shows the rear view of the vessel with a BNL Mk V magnetron source mounted in the source aperture and also shows the cooled magnet coils. Currently two types of sources are under test: a large magnetron source and a hollow cathode discharge source

  12. Testing for Granger causality in large mixed-frequency VARs

    NARCIS (Netherlands)

    Götz, T.B.; Hecq, A.W.

    2014-01-01

    In this paper we analyze Granger causality testing in a mixed-frequency VAR, originally proposed by Ghysels (2012), where the difference in sampling frequencies of the variables is large. In particular, we investigate whether past information on a low-frequency variable help in forecasting a

  13. Beam test of a large area silicon drift detector

    International Nuclear Information System (INIS)

    Castoldi, A.; Chinnici, S.; Gatti, E.; Longoni, A.; Palma, F.; Sampietro, M.; Rehak, P.; Ballocchi, G.; Kemmer, J.; Holl, P.; Cox, P.T.; Giacomelli, P.; Vacchi, A.

    1992-01-01

    The results from the tests of the first large area (4 x 4 cm 2 ) planar silicon drift detector prototype in a pion beam are reported. The measured position resolution in the drift direction is (σ=40 ± 10)μm

  14. Cable tray ultimate strength test employing a large shaker table

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, K.; Myojin, K.; Imai, K. [The Kansai Electric Power Co., Osaka (Japan); Fuyama, H. [Mitsubishi Heavy Industries Ltd, Takasago (Japan); Kokubo, E. [Mitsubishi Heavy Industdries Ltd, Kobe (Japan)

    2004-07-01

    Ultimate behaviors of cable trays, used in nuclear plants, have not been well studied since cable trays are designed based on conservative design criteria. In this study, by employing a large shaker table, an ultimate strength test was conducted for cable trays used in nuclear power plants. This report describes the results of shaker table test. The following results were obtained. First, in an S{sub 2} earthquake, the damping ratio was so large - more than 30% due to the rubbing of cables - that a large response was not present and the strains in the support were within the elastic limits. Secondly, the support was strong enough to sustain the cable trays even when the strain in the support was 20 times larger than the elastic limit. (authors)

  15. Shielding design for testing room of large container scanner

    International Nuclear Information System (INIS)

    Liu Yisi; Miao Qitian; Zhou Liye

    1997-01-01

    Testing facility for large container scanner is a most advanced anti-smuggle tool. The X-ray scanning principle is adopted in this system. The X-ray was collimated a ted as a fan-shape beam. The accelerator only supplies the ray beam when the container is scanned. The irradiation time is less than one minute per test. The X-ray burst irradiation and highly collimated a ted scanning beam of this system is different from the common industrial irradiation accelerator. The shielding design of the 1:1 large container scanner introduced has better collimation level because of tri-collimation. The irradiation dose is less than 150 μGy per test, which is obviously lower than importations

  16. Contact mechanical characteristics of Nb3Sn strands under transverse electromagnetic loads in the CICC cross-section

    International Nuclear Information System (INIS)

    Zhu Jiyue; Luo Wei; Zhou Youhe; Zheng Xiaojing

    2012-01-01

    This paper presents a new code for the two-dimensional discrete element method (DEM) and relevant simulations to quantitatively characterize the contact force behavior of the Nb 3 Sn strands in the ITER CICC cross-section under a transverse electromagnetic load. In order to obtain the essential parameters in the contact force model employed in the DEM, a simulation of the experiments conducted by Nijhuis et al (2004 IEEE Trans. Appl. Supercond. 14 1489–94) is first performed, where the load–displacement curve predicted by the code is in good agreement with the measurements. After that, the contact force chain between strands and its distribution is quantitatively analyzed by the code. It is found that the contact force distribution among strands is heterogeneous and strongly anisotropic. In other words, the force chain distribution, which determines the behavior of the assembly of strands with discrete media, and the distribution of area average magnitude of the contact force are obviously inhomogeneous. To describe this inhomogeneity, here, the probability density function (PDF) is used in the statistical analysis. The numerical results show that the PDFs of the magnitudes of the resultant contact force, normal contact force, and tangential contact force all decay with an exponential law, and that PDFs of the directions of the contact forces are all anisotropic and exhibit about six periodic changes in which the peak values in the direction parallel to the applied electromagnetic load are appreciably larger than the other peaks. (paper)

  17. Numerical investigation on transverse heat transfer properties in cross section of full size Nb3Sn CICC ITER conductor

    Directory of Open Access Journals (Sweden)

    Shuming Jia

    2015-05-01

    Full Text Available The contact mechanical characteristics in the cross section of the Nb3Sn cable are sensitive to the cryogenic cooling and cyclic transverse electromagnetic loads, which may affect the cable’s performance. In this paper, based on a proposed discrete dynamic model (DEM, where the contact heat transfer among strands and the convective heat transfer in liquid helium are taken into account, the cooling process under two heat transfer mechanisms is performed. Simulation results show that the temperature variation of Poloidal Field Insert Sample (PFIS cable with time agrees well with the existing experimental results, and the role of contact heat transfer cannot be neglected during cryogenic cooling. It is obtained from the further analysis that the effect of contact heat transfer becomes more prominent with the decrease of mass flow rate of liquid helium, which leads to the stress status within cable changed significantly. With the temperature boundary condition imposed on the cable radial direction, the effective thermal conductivity (ETC of cable can be obtained. It can be found that the ETC increases with increasing the transverse loads and is sensitive to the low temperature environment, while it is not affected by load cycles basically. These results may provide the guide for the design and application of the future CICC conductors.

  18. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    Science.gov (United States)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  19. Large scale and performance tests of the ATLAS online software

    International Nuclear Information System (INIS)

    Alexandrov; Kotov, V.; Mineev, M.; Roumiantsev, V.; Wolters, H.; Amorim, A.; Pedro, L.; Ribeiro, A.; Badescu, E.; Caprini, M.; Burckhart-Chromek, D.; Dobson, M.; Jones, R.; Kazarov, A.; Kolos, S.; Liko, D.; Lucio, L.; Mapelli, L.; Nassiakou, M.; Schweiger, D.; Soloviev, I.; Hart, R.; Ryabov, Y.; Moneta, L.

    2001-01-01

    One of the sub-systems of the Trigger/DAQ system of the future ATLAS experiment is the Online Software system. It encompasses the functionality needed to configure, control and monitor the DAQ. Its architecture is based on a component structure described in the ATLAS Trigger/DAQ technical proposal. Regular integration tests ensure its smooth operation in test beam setups during its evolutionary development towards the final ATLAS online system. Feedback is received and returned into the development process. Studies of the system behavior have been performed on a set of up to 111 PCs on a configuration which is getting closer to the final size. Large scale and performance test of the integrated system were performed on this setup with emphasis on investigating the aspects of the inter-dependence of the components and the performance of the communication software. Of particular interest were the run control state transitions in various configurations of the run control hierarchy. For the purpose of the tests, the software from other Trigger/DAQ sub-systems has been emulated. The author presents a brief overview of the online system structure, its components and the large scale integration tests and their results

  20. Large scale high strain-rate tests of concrete

    Directory of Open Access Journals (Sweden)

    Kiefer R.

    2012-08-01

    Full Text Available This work presents the stages of development of some innovative equipment, based on Hopkinson bar techniques, for performing large scale dynamic tests of concrete specimens. The activity is centered at the recently upgraded HOPLAB facility, which is basically a split Hopkinson bar with a total length of approximately 200 m and with bar diameters of 72 mm. Through pre-tensioning and suddenly releasing a steel cable, force pulses of up to 2 MN, 250 μs rise time and 40 ms duration can be generated and applied to the specimen tested. The dynamic compression loading has first been treated and several modifications in the basic configuration have been introduced. Twin incident and transmitter bars have been installed with strong steel plates at their ends where large specimens can be accommodated. A series of calibration and qualification tests has been conducted and the first real tests on concrete cylindrical specimens of 20cm diameter and up to 40cm length have commenced. Preliminary results from the analysis of the recorded signals indicate proper Hopkinson bar testing conditions and reliable functioning of the facility.

  1. Hydrogen-combustion analyses of large-scale tests

    International Nuclear Information System (INIS)

    Gido, R.G.; Koestel, A.

    1986-01-01

    This report uses results of the large-scale tests with turbulence performed by the Electric Power Research Institute at the Nevada Test Site to evaluate hydrogen burn-analysis procedures based on lumped-parameter codes like COMPARE-H2 and associated burn-parameter models. The test results: (1) confirmed, in a general way, the procedures for application to pulsed burning, (2) increased significantly our understanding of the burn phenomenon by demonstrating that continuous burning can occur, and (3) indicated that steam can terminate continuous burning. Future actions recommended include: (1) modification of the code to perform continuous-burn analyses, which is demonstrated, (2) analyses to determine the type of burning (pulsed or continuous) that will exist in nuclear containments and the stable location if the burning is continuous, and (3) changes to the models for estimating burn parameters

  2. Hydrogen-combustion analyses of large-scale tests

    International Nuclear Information System (INIS)

    Gido, R.G.; Koestel, A.

    1986-01-01

    This report uses results of the large-scale tests with turbulence performed by the Electric Power Research Institute at the Nevada Test Site to evaluate hydrogen burn-analysis procedures based on lumped-parameter codes like COMPARE-H2 and associated burn-parameter models. The test results (a) confirmed, in a general way, the procedures for application to pulsed burning, (b) increased significantly our understanding of the burn phenomenon by demonstrating that continuous burning can occur and (c) indicated that steam can terminate continuous burning. Future actions recommended include (a) modification of the code to perform continuous-burn analyses, which is demonstrated, (b) analyses to determine the type of burning (pulsed or continuous) that will exist in nuclear containments and the stable location if the burning is continuous, and (c) changes to the models for estimating burn parameters

  3. Using Large Scale Test Results for Pedagogical Purposes

    DEFF Research Database (Denmark)

    Dolin, Jens

    2012-01-01

    The use and influence of large scale tests (LST), both national and international, has increased dramatically within the last decade. This process has revealed a tension between the legitimate need for information about the performance of the educational system and teachers to inform policy......, and the teachers’ and students’ use of this information for pedagogical purposes in the classroom. We know well how the policy makers interpret and use the outcomes of such tests, but we know less about how teachers make use of LSTs to inform their pedagogical practice. An important question is whether...... there is a contradiction between the political system’s use of LST and teachers’ (possible) pedagogical use of LST. And if yes: What is a contradiction based on? This presentation will give some results from a systematic review on how tests have influenced the pedagogical practice. The research revealed many of the fatal...

  4. Prospective detection of large prediction errors: a hypothesis testing approach

    International Nuclear Information System (INIS)

    Ruan, Dan

    2010-01-01

    Real-time motion management is important in radiotherapy. In addition to effective monitoring schemes, prediction is required to compensate for system latency, so that treatment can be synchronized with tumor motion. However, it is difficult to predict tumor motion at all times, and it is critical to determine when large prediction errors may occur. Such information can be used to pause the treatment beam or adjust monitoring/prediction schemes. In this study, we propose a hypothesis testing approach for detecting instants corresponding to potentially large prediction errors in real time. We treat the future tumor location as a random variable, and obtain its empirical probability distribution with the kernel density estimation-based method. Under the null hypothesis, the model probability is assumed to be a concentrated Gaussian centered at the prediction output. Under the alternative hypothesis, the model distribution is assumed to be non-informative uniform, which reflects the situation that the future position cannot be inferred reliably. We derive the likelihood ratio test (LRT) for this hypothesis testing problem and show that with the method of moments for estimating the null hypothesis Gaussian parameters, the LRT reduces to a simple test on the empirical variance of the predictive random variable. This conforms to the intuition to expect a (potentially) large prediction error when the estimate is associated with high uncertainty, and to expect an accurate prediction when the uncertainty level is low. We tested the proposed method on patient-derived respiratory traces. The 'ground-truth' prediction error was evaluated by comparing the prediction values with retrospective observations, and the large prediction regions were subsequently delineated by thresholding the prediction errors. The receiver operating characteristic curve was used to describe the performance of the proposed hypothesis testing method. Clinical implication was represented by miss

  5. Large-area photogrammetry based testing of wind turbine blades

    Science.gov (United States)

    Poozesh, Peyman; Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter; Harvey, Eric; Yarala, Rahul

    2017-03-01

    An optically based sensing system that can measure the displacement and strain over essentially the entire area of a utility-scale blade leads to a measurement system that can significantly reduce the time and cost associated with traditional instrumentation. This paper evaluates the performance of conventional three dimensional digital image correlation (3D DIC) and three dimensional point tracking (3DPT) approaches over the surface of wind turbine blades and proposes a multi-camera measurement system using dynamic spatial data stitching. The potential advantages for the proposed approach include: (1) full-field measurement distributed over a very large area, (2) the elimination of time-consuming wiring and expensive sensors, and (3) the need for large-channel data acquisition systems. There are several challenges associated with extending the capability of a standard 3D DIC system to measure entire surface of utility scale blades to extract distributed strain, deflection, and modal parameters. This paper only tries to address some of the difficulties including: (1) assessing the accuracy of the 3D DIC system to measure full-field distributed strain and displacement over the large area, (2) understanding the geometrical constraints associated with a wind turbine testing facility (e.g. lighting, working distance, and speckle pattern size), (3) evaluating the performance of the dynamic stitching method to combine two different fields of view by extracting modal parameters from aligned point clouds, and (4) determining the feasibility of employing an output-only system identification to estimate modal parameters of a utility scale wind turbine blade from optically measured data. Within the current work, the results of an optical measurement (one stereo-vision system) performed on a large area over a 50-m utility-scale blade subjected to quasi-static and cyclic loading are presented. The blade certification and testing is typically performed using International

  6. Large-scale fracture mechancis testing -- requirements and possibilities

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1993-01-01

    Application of fracture mechanics to very important and/or complicated structures, like reactor pressure vessels, brings also some questions about the reliability and precision of such calculations. These problems become more pronounced in cases of elastic-plastic conditions of loading and/or in parts with non-homogeneous materials (base metal and austenitic cladding, property gradient changes through material thickness) or with non-homogeneous stress fields (nozzles, bolt threads, residual stresses etc.). For such special cases some verification by large-scale testing is necessary and valuable. This paper discusses problems connected with planning of such experiments with respect to their limitations, requirements to a good transfer of received results to an actual vessel. At the same time, an analysis of possibilities of small-scale model experiments is also shown, mostly in connection with application of results between standard, small-scale and large-scale experiments. Experience from 30 years of large-scale testing in SKODA is used as an example to support this analysis. 1 fig

  7. Testing AGN unification via inference from large catalogs

    Science.gov (United States)

    Nikutta, Robert; Ivezic, Zeljko; Elitzur, Moshe; Nenkova, Maia

    2018-01-01

    Source orientation and clumpiness of the central dust are the main factors in AGN classification. Type-1 QSOs are easy to observe and large samples are available (e.g. in SDSS), but obscured type-2 AGN are dimmer and redder as our line of sight is more obscured, making it difficult to obtain a complete sample. WISE has found up to a million QSOs. With only 4 bands and a relatively small aperture the analysis of individual sources is challenging, but the large sample allows inference of bulk properties at a very significant level.CLUMPY (www.clumpy.org) is arguably the most popular database of AGN torus SEDs. We model the ensemble properties of the entire WISE AGN content using regularized linear regression, with orientation-dependent CLUMPY color-color-magnitude (CCM) tracks as basis functions. We can reproduce the observed number counts per CCM bin with percent-level accuracy, and simultaneously infer the probability distributions of all torus parameters, redshifts, additional SED components, and identify type-1/2 AGN populations through their IR properties alone. We increase the statistical power of our AGN unification tests even further, by adding other datasets as axes in the regression problem. To this end, we make use of the NOAO Data Lab (datalab.noao.edu), which hosts several high-level large datasets and provides very powerful tools for handling large data, e.g. cross-matched catalogs, fast remote queries, etc.

  8. submitter Design and Manufacturing of a 45 kA at 10 T REBCO-CORC Cable-in-Conduit Conductor for Large-Scale Magnets

    CERN Document Server

    Mulder, Tim; Mentink, Matthias; Silva, Helder; van der Laan, Danko; Dhalle, Marc; ten Kate, Herman

    2016-01-01

    The European Organization for Nuclear Research (CERN) is developing high-current ReBCO-CORC strand-based cables for use in future large-scale detector magnets. A six-around-one, forced flow gas-cooled ReBCO-CORC cable-in-conduit conductor (CICC) is envisioned for application in magnets operating in the 20-40 K temperature range. A CICC, rated for 45 kA at 4.2 K and 10 T, is designed and in production. The CICC comprises a cable of six CORC strands helically wound around a tube. The cable has an expected current density of 105 $A/mm^2$ at 10 T/4.2 K, which corresponds to an overall current density of 53 $A/mm^2$. A cable current density of 110 $A/mm^2$ can be reached when increasing the temperature to 20 K and operating in a magnetic field of 5 T.

  9. Segmentation by Large Scale Hypothesis Testing - Segmentation as Outlier Detection

    DEFF Research Database (Denmark)

    Darkner, Sune; Dahl, Anders Lindbjerg; Larsen, Rasmus

    2010-01-01

    a microscope and we show how the method can handle transparent particles with significant glare point. The method generalizes to other problems. THis is illustrated by applying the method to camera calibration images and MRI of the midsagittal plane for gray and white matter separation and segmentation......We propose a novel and efficient way of performing local image segmentation. For many applications a threshold of pixel intensities is sufficient but determine the appropriate threshold value can be difficult. In cases with large global intensity variation the threshold value has to be adapted...... locally. We propose a method based on large scale hypothesis testing with a consistent method for selecting an appropriate threshold for the given data. By estimating the background distribution we characterize the segment of interest as a set of outliers with a certain probability based on the estimated...

  10. Large-Scale Spray Releases: Initial Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  11. Interpretation of large-strain geophysical crosshole tests

    International Nuclear Information System (INIS)

    Drnevich, V.P.; Salgado, R.; Ashmawy, A.; Grant, W.P.; Vallenas, P.

    1995-10-01

    At sites in earthquake-prone areas, the nonlinear dynamic stress-strain behavior of soil with depth is essential for earthquake response analyses. A seismic crosshole test has been developed where large dynamic forces are applied in a borehole. These forces generate shear strains in the surrounding soil that are well into the nonlinear range. The shear strain amplitudes decrease with distance from the source. Velocity sensors located in three additional holes at various distances from the source hole measure the particle velocity and the travel time of the shear wave from the source. This paper provides an improved, systematic interpretation scheme for the data from these large-strain geophysical crosshole tests. Use is made of both the measured velocities at each sensor and the travel times. The measured velocity at each sensor location is shown to be a good measure of the soil particle velocity at that location. Travel times to specific features on the velocity time history, such as first crossover, are used to generate travel time curves for the waves which are nonlinear. At some distance the amplitudes reduce to where the stress-strain behavior is essentially linear and independent of strain amplitude. This fact is used together with the measurements at the three sensor locations in a rational approach for fitting curves of shear wave velocity versus distance from the source hole that allow the determination of the shear wave velocity and the shear strain amplitude at each of the sensor locations as well as the shear wave velocity associated with small-strain (linear) behavior. The method is automated using off-the-shelf PC-based software. The method is applied to large-strain crosshole tests performed as part of the studies for the design and construction of the proposed Multi-Function Waste Tank Facility planned for Hanford Site

  12. Mechanical test of the model coil wound with large conductor

    International Nuclear Information System (INIS)

    Hiue, Hisaaki; Sugimoto, Makoto; Nakajima, Hideo; Yasukawa, Yukio; Yoshida, Kiyoshi; Hasegawa, Mitsuru; Ito, Ikuo; Konno, Masayuki.

    1992-09-01

    The high rigidity and strength of the winding pack are required to realize the large superconducting magnet for the fusion reactor. This paper describes mechanical tests concerning the rigidity of the winding pack. Samples were prepared to evaluate the adhesive strength between conductors and insulators. Epoxy and Bismaleimide-Triazine resin (BT resin) were used as the conductor insulator. The stainless steel (SS) 304 bars, whose surface was treated mechanically and chemically, was applied to the modeled conductor. The model coil was would with the model conductors covered with the insulator by grand insulator. A winding model combining 3 x 3 conductors was produced for measuring shearing rigidity. The sample was loaded with pure shearing force at the LN 2 temperature. The bar winding sample, by 8 x 6 conductors, was measured the bending rigidity. These three point bending tests were carried out at room temperature. The pancake winding sample was loaded with compressive forces to measure compressive rigidity of winding. (author)

  13. Large-Scale Spray Releases: Additional Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used

  14. Properties Important To Mixing For WTP Large Scale Integrated Testing

    International Nuclear Information System (INIS)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-01-01

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i

  15. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i

  16. Rock sealing - large scale field test and accessory investigations

    International Nuclear Information System (INIS)

    Pusch, R.

    1988-03-01

    The experience from the pilot field test and the basic knowledge extracted from the lab experiments have formed the basis of the planning of a Large Scale Field Test. The intention is to find out how the 'instrument of rock sealing' can be applied to a number of practical cases, where cutting-off and redirection of groundwater flow in repositories are called for. Five field subtests, which are integrated mutually or with other Stripa projects (3D), are proposed. One of them concerns 'near-field' sealing, i.e. sealing of tunnel floors hosting deposition holes, while two involve sealing of 'disturbed' rock around tunnels. The fourth concerns sealing of a natural fracture zone in the 3D area, and this latter test has the expected spin-off effect of obtaining additional information on the general flow pattern around the northeastern wing of the 3D cross. The fifth test is an option of sealing structures in the Validation Drift. The longevity of major grout types is focussed on as the most important part of the 'Accessory Investigations', and detailed plans have been worked out for that purpose. It is foreseen that the continuation of the project, as outlined in this report, will yield suitable methods and grouts for effective and long-lasting sealing of rock for use at stategic points in repositories. (author)

  17. Using GIFTS on the Cray-1 for the large coil test facility test: stand design analysis

    International Nuclear Information System (INIS)

    Baudry, T.V.; Gray, W.H.

    1981-06-01

    The GIFTS finite element program has been used extensively throughout the Large Coil Test Facility (LCTF) test stand design analysis. Effective use has been made of GIFTS both as a preprocessor to other finite element programs and as a complete structural analysis package. The LCTF test stand design involved stress analysis ranging from simple textbook-type problems to very complicated three-dimensional structural problems. Two areas of the design analysis are discussed

  18. Iodine oxides in large-scale THAI tests

    International Nuclear Information System (INIS)

    Funke, F.; Langrock, G.; Kanzleiter, T.; Poss, G.; Fischer, K.; Kühnel, A.; Weber, G.; Allelein, H.-J.

    2012-01-01

    Highlights: ► Iodine oxide particles were produced from gaseous iodine and ozone. ► Ozone replaced the effect of ionizing radiation in the large-scale THAI facility. ► The mean diameter of the iodine oxide particles was about 0.35 μm. ► Particle formation was faster than the chemical reaction between iodine and ozone. ► Deposition of iodine oxide particles was slow in the absence of other aerosols. - Abstract: The conversion of gaseous molecular iodine into iodine oxide aerosols has significant relevance in the understanding of the fission product iodine volatility in a LWR containment during severe accidents. In containment, the high radiation field caused by fission products released from the reactor core induces radiolytic oxidation into iodine oxides. To study the characteristics and the behaviour of iodine oxides in large scale, two THAI tests Iod-13 and Iod-14 were performed, simulating radiolytic oxidation of molecular iodine by reaction of iodine with ozone, with ozone injected from an ozone generator. The observed iodine oxides form submicron particles with mean volume-related diameters of about 0.35 μm and show low deposition rates in the THAI tests performed in the absence of other nuclear aerosols. Formation of iodine aerosols from gaseous precursors iodine and ozone is fast as compared to their chemical interaction. The current approach in empirical iodine containment behaviour models in severe accidents, including the radiolytic production of I 2 -oxidizing agents followed by the I 2 oxidation itself, is confirmed by these THAI tests.

  19. Large scale reflood test with cylindrical core test facility (CCTF). Core I. FY 1979 tests

    International Nuclear Information System (INIS)

    Murao, Yoshio; Akimoto, Hajime; Okubo, Tsutomu; Sudoh, Takashi; Hirano, Kenmei

    1982-03-01

    This report presents the results of analysis of the data obtained in the CCTF Core I test series (19 tests) in FY. 1979 as an interim report. The Analysis of the test results showed that: (1) The present safety evaluation model on the reflood phenomena during LOCA conservatively represents the phenomena observed in the tests except for the downcomer thermohydrodynamic behavior. (2) The downcomer liquid level rose slowly and it took long time for the water to reach a terminal level or the spill-over level. It was presume that such a results was due to an overly conservative selection of the ECC flow rate. This presumption will be checked against a future test result for an increased flow rate. The loop-seal-water filling test was unsuccessful due to a premature power shutdown by the core protection circuit. The test will be conducted again. The tests to be performed in the future are summerized. Tests for investigation of the refill phenomena were also proposed. (author)

  20. Results of Large-Scale Spacecraft Flammability Tests

    Science.gov (United States)

    Ferkul, Paul; Olson, Sandra; Urban, David L.; Ruff, Gary A.; Easton, John; T'ien, James S.; Liao, Ta-Ting T.; Fernandez-Pello, A. Carlos; Torero, Jose L.; Eigenbrand, Christian; hide

    2017-01-01

    For the first time, a large-scale fire was intentionally set inside a spacecraft while in orbit. Testing in low gravity aboard spacecraft had been limited to samples of modest size: for thin fuels the longest samples burned were around 15 cm in length and thick fuel samples have been even smaller. This is despite the fact that fire is a catastrophic hazard for spaceflight and the spread and growth of a fire, combined with its interactions with the vehicle cannot be expected to scale linearly. While every type of occupied structure on earth has been the subject of full scale fire testing, this had never been attempted in space owing to the complexity, cost, risk and absence of a safe location. Thus, there is a gap in knowledge of fire behavior in spacecraft. The recent utilization of large, unmanned, resupply craft has provided the needed capability: a habitable but unoccupied spacecraft in low earth orbit. One such vehicle was used to study the flame spread over a 94 x 40.6 cm thin charring solid (fiberglasscotton fabric). The sample was an order of magnitude larger than anything studied to date in microgravity and was of sufficient scale that it consumed 1.5 of the available oxygen. The experiment which is called Saffire consisted of two tests, forward or concurrent flame spread (with the direction of flow) and opposed flame spread (against the direction of flow). The average forced air speed was 20 cms. For the concurrent flame spread test, the flame size remained constrained after the ignition transient, which is not the case in 1-g. These results were qualitatively different from those on earth where an upward-spreading flame on a sample of this size accelerates and grows. In addition, a curious effect of the chamber size is noted. Compared to previous microgravity work in smaller tunnels, the flame in the larger tunnel spread more slowly, even for a wider sample. This is attributed to the effect of flow acceleration in the smaller tunnels as a result of hot

  1. A large scale test of the gaming-enhancement hypothesis

    Directory of Open Access Journals (Sweden)

    Andrew K. Przybylski

    2016-11-01

    Full Text Available A growing research literature suggests that regular electronic game play and game-based training programs may confer practically significant benefits to cognitive functioning. Most evidence supporting this idea, the gaming-enhancement hypothesis, has been collected in small-scale studies of university students and older adults. This research investigated the hypothesis in a general way with a large sample of 1,847 school-aged children. Our aim was to examine the relations between young people’s gaming experiences and an objective test of reasoning performance. Using a Bayesian hypothesis testing approach, evidence for the gaming-enhancement and null hypotheses were compared. Results provided no substantive evidence supporting the idea that having preference for or regularly playing commercially available games was positively associated with reasoning ability. Evidence ranged from equivocal to very strong in support for the null hypothesis over what was predicted. The discussion focuses on the value of Bayesian hypothesis testing for investigating electronic gaming effects, the importance of open science practices, and pre-registered designs to improve the quality of future work.

  2. A large scale test of the gaming-enhancement hypothesis.

    Science.gov (United States)

    Przybylski, Andrew K; Wang, John C

    2016-01-01

    A growing research literature suggests that regular electronic game play and game-based training programs may confer practically significant benefits to cognitive functioning. Most evidence supporting this idea, the gaming-enhancement hypothesis , has been collected in small-scale studies of university students and older adults. This research investigated the hypothesis in a general way with a large sample of 1,847 school-aged children. Our aim was to examine the relations between young people's gaming experiences and an objective test of reasoning performance. Using a Bayesian hypothesis testing approach, evidence for the gaming-enhancement and null hypotheses were compared. Results provided no substantive evidence supporting the idea that having preference for or regularly playing commercially available games was positively associated with reasoning ability. Evidence ranged from equivocal to very strong in support for the null hypothesis over what was predicted. The discussion focuses on the value of Bayesian hypothesis testing for investigating electronic gaming effects, the importance of open science practices, and pre-registered designs to improve the quality of future work.

  3. Large-Scale Seismic Test Program at Hualien, Taiwan

    International Nuclear Information System (INIS)

    Tang, H.T.; Graves, H.L.; Yeh, Y.S.

    1991-01-01

    The Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, is a follow-on to the soil-structure interaction (SSI) experiments at Lotung, Taiwan. The planned SSI studies will be performed at a stiff soil site in Hualien, Taiwan, that historically has had slightly more destructive earthquakes in the past than Lotung. The objectives of the LSST project is as follows: To obtain earthquake-induced SSI data at a stiff soil site having similar prototypical nuclear power plant soil conditions. To confirm the findings and methodologies validated against the Lotung soft soil SSI data for prototypical plant condition applications. To further validate the technical basis of realistic SSI analysis approaches. To further support the resolution of USI A-40 Seismic Design Criteria issue. These objectives will be accomplished through an integrated and carefully planned experimental program consisting of: soil characterization, test model design and field construction, instrumentation layout and deployment, in-situ geophysical information collection, forced vibration test, and synthesis of results and findings. The LSST is a joint effort among many interested parties. EPRI and Taipower are the organizers of the program and have the lead in planning and managing the program

  4. Large-Scale Seismic Test Program at Hualien, Taiwan

    International Nuclear Information System (INIS)

    Tang, H.T.; Graves, H.L.; Chen, P.C.

    1992-01-01

    The Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, is a follow-on to the soil-structure interaction (SSI) experiments at Lotung, Taiwan. The planned SSI studies will be performed at a stiff soil site in Hualien, Taiwan, that historically has had slightly more destructive earthquakes in the past than Lotung. The LSST is a joint effort among many interested parties. Electric Power Research Institute (EPRI) and Taipower are the organizers of the program and have the lead in planning and managing the program. Other organizations participating in the LSST program are US Nuclear Regulatory Commission, the Central Research Institute of Electric Power Industry, the Tokyo Electric Power Company, the Commissariat A L'Energie Atomique, Electricite de France and Framatome. The LSST was initiated in January 1990, and is envisioned to be five years in duration. Based on the assumption of stiff soil and confirmed by soil boring and geophysical results the test model was designed to provide data needed for SSI studies covering: free-field input, nonlinear soil response, non-rigid body SSI, torsional response, kinematic interaction, spatial incoherency and other effects. Taipower had the lead in design of the test model and received significant input from other LSST members. Questions raised by LSST members were on embedment effects, model stiffness, base shear, and openings for equipment. This paper describes progress in site preparation, design and construction of the model and development of an instrumentation plan

  5. Large scale intender test program to measure sub gouge displacements

    Energy Technology Data Exchange (ETDEWEB)

    Been, Ken; Lopez, Juan [Golder Associates Inc, Houston, TX (United States); Sancio, Rodolfo [MMI Engineering Inc., Houston, TX (United States)

    2011-07-01

    The production of submarine pipelines in an offshore environment covered with ice is very challenging. Several precautions must be taken such as burying the pipelines to protect them from ice movement caused by gouging. The estimation of the subgouge displacements is a key factor in pipeline design for ice gouged environments. This paper investigated a method to measure subgouge displacements. An experimental program was implemented in an open field to produce large scale idealized gouges on engineered soil beds (sand and clay). The horizontal force required to produce the gouge, the subgouge displacements in the soil and the strain imposed by these displacements were monitored on a buried model pipeline. The results showed that for a given keel, the gouge depth was inversely proportional to undrained shear strength in clay. The subgouge displacements measured did not show a relationship with the gouge depth, width or soil density in sand and clay tests.

  6. In situ vitrification large-scale operational acceptance test analysis

    International Nuclear Information System (INIS)

    Buelt, J.L.; Carter, J.G.

    1986-05-01

    A thermal treatment process is currently under study to provide possible enhancement of in-place stabilization of transuranic and chemically contaminated soil sites. The process is known as in situ vitrification (ISV). In situ vitrification is a remedial action process that destroys solid and liquid organic contaminants and incorporates radionuclides into a glass-like material that renders contaminants substantially less mobile and less likely to impact the environment. A large-scale operational acceptance test (LSOAT) was recently completed in which more than 180 t of vitrified soil were produced in each of three adjacent settings. The LSOAT demonstrated that the process conforms to the functional design criteria necessary for the large-scale radioactive test (LSRT) to be conducted following verification of the performance capabilities of the process. The energy requirements and vitrified block size, shape, and mass are sufficiently equivalent to those predicted by the ISV mathematical model to confirm its usefulness as a predictive tool. The LSOAT demonstrated an electrode replacement technique, which can be used if an electrode fails, and techniques have been identified to minimize air oxidation, thereby extending electrode life. A statistical analysis was employed during the LSOAT to identify graphite collars and an insulative surface as successful cold cap subsidence techniques. The LSOAT also showed that even under worst-case conditions, the off-gas system exceeds the flow requirements necessary to maintain a negative pressure on the hood covering the area being vitrified. The retention of simulated radionuclides and chemicals in the soil and off-gas system exceeds requirements so that projected emissions are one to two orders of magnitude below the maximum permissible concentrations of contaminants at the stack

  7. Assembly and installation of the large coil test facility test stand

    International Nuclear Information System (INIS)

    Queen, C.C. Jr.

    1983-01-01

    The Large Coil Test Facility (LCTF) was built to test six tokamak-type superconducting coils, with three to be designed and built by US industrial teams and three provided by Japan, Switzerland, and Euratom under an international agreement. The facility is designed to test these coils in an environment which simulates that of a tokamak. The heart of this facility is the test stand, which is made up of four major assemblies: the Gravity Base Assembly, the Bucking Post Assembly, the Torque Ring Assembly, and the Pulse Coil Assembly. This paper provides a detailed review of the assembly and installation of the test stand components and the handling and installation of the first coil into the test stand

  8. Large animal models for vaccine development and testing.

    Science.gov (United States)

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Test results on systems developed for SST-1 tokamak

    International Nuclear Information System (INIS)

    Bora, D.

    2003-01-01

    Steady state Superconducting Tokamak (SST-1) is a large aspect ratio tokamak, configured to run double null diverted plasmas with significant elongation (κ) and triangularity Superconducting (SC) magnets are deployed for both the toroidal and poloidal field coils in SST-1. A NbTi based cable-in-conduit conductor (CICC) has been fabricated by M/S Hitachi Cables Ltd., Japan under specification and supervision of IPR. The suitability of this CICC for the SST-1 magnets has been validated through test carried out on a model coil (MC) wound from this CICC. Toroidal and poloidal SC magnets have been fabricated and factory acceptance tests have been performed. SC magnets require liquid helium (LHe) cooled current leads, electrical isolators at LHe temperature, superconducting bus bars and LHe transfer lines. Full scale prototypes of these have been developed and tested successfully. SC magnets will be cooled to 4.5K by forced flow of supercritical Helium through the CICC. A 1 kW grade liquefier/refrigerator has been installed and is in final stages of commissioning at IPR. SST-1 deploys a fully welded ultra high vacuum vessel, made up of 16 vessel sectors having ports and 16 rings with D-shaped cross-section. To establish the fabrication methodology for this, a full scale proto-type of the vessel with two vessel sectors and three rings has been fabricated and tested successfully. Based on this the fabrication of the vessel sectors and rings is in final stage of fabrication. Liquid nitrogen cooled radiation shield are deployed between the vacuum vessel and SC magnets as well as SC magnets and cryostat, to minimize the radiation losses at the SC magnets. SST-1 will have three different high power radio frequency (RF) systems to additionally heat and non-inductively drive plasma current to sustain the plasma in steady state for a duration of up to 1000 sec. Ion cyclotron resonance frequency (ICRF) and electron cyclotron resonance frequency (ECRF) systems will primarily be

  10. Large-coil-test-facility fault-tree analysis

    International Nuclear Information System (INIS)

    1982-01-01

    An operating-safety study is being conducted for the Large Coil Test Facility (LCTF). The purpose of this study is to provide the facility operators and users with added insight into potential problem areas that could affect the safety of personnel or the availability of equipment. This is a preliminary report, on Phase I of that study. A central feature of the study is the incorporation of engineering judgements (by LCTF personnel) into an outside, overall view of the facility. The LCTF was analyzed in terms of 32 subsystems, each of which are subject to failure from any of 15 generic failure initiators. The study identified approximately 40 primary areas of concern which were subjected to a computer analysis as an aid in understanding the complex subsystem interactions that can occur within the facility. The study did not analyze in detail the internal structure of the subsystems at the individual component level. A companion study using traditional fault tree techniques did analyze approximately 20% of the LCTF at the component level. A comparison between these two analysis techniques is included in Section 7

  11. Large-scale field testing on flexible shallow landslide barriers

    Science.gov (United States)

    Bugnion, Louis; Volkwein, Axel; Wendeler, Corinna; Roth, Andrea

    2010-05-01

    Open shallow landslides occur regularly in a wide range of natural terrains. Generally, they are difficult to predict and result in damages to properties and disruption of transportation systems. In order to improve the knowledge about the physical process itself and to develop new protection measures, large-scale field experiments were conducted in Veltheim, Switzerland. Material was released down a 30° inclined test slope into a flexible barrier. The flow as well as the impact into the barrier was monitored using various measurement techniques. Laser devices recording flow heights, a special force plate measuring normal and shear basal forces as well as load cells for impact pressures were installed along the test slope. In addition, load cells were built in the support and retaining cables of the barrier to provide data for detailed back-calculation of load distribution during impact. For the last test series an additional guiding wall in flow direction on both sides of the barrier was installed to achieve higher impact pressures in the middle of the barrier. With these guiding walls the flow is not able to spread out before hitting the barrier. A special constructed release mechanism simulating the sudden failure of the slope was designed such that about 50 m3 of mixed earth and gravel saturated with water can be released in an instant. Analysis of cable forces combined with impact pressures and velocity measurements during a test series allow us now to develop a load model for the barrier design. First numerical simulations with the software tool FARO, originally developed for rockfall barriers and afterwards calibrated for debris flow impacts, lead already to structural improvements on barrier design. Decisive for the barrier design is the first dynamic impact pressure depending on the flow velocity and afterwards the hydrostatic pressure of the complete retained material behind the barrier. Therefore volume estimation of open shallow landslides by assessing

  12. Development of a vacuum leak test method for large-scale superconducting magnet test facilities

    International Nuclear Information System (INIS)

    Kawano, Katsumi; Hamada, Kazuya; Okuno, Kiyoshi; Kato, Takashi

    2006-01-01

    Japan Atomic Energy Agency (JAEA) has developed leak detection technology for liquid helium temperature experiments in large-scale superconducting magnet test facilities. In JAEA, a cryosorption pump that uses an absorbent cooled by liquid nitrogen with a conventional helium leak detector, is used to detect helium gas that is leaking from pressurized welded joints of pipes and valves in a vacuum chamber. The cryosorption pump plays the role of decreasing aerial components, such as water, nitrogen and oxygen, to increase the sensitivity of helium leak detection. The established detection sensitivity for helium leak testing is 10 -10 to 10 -9 Pam 3 /s. A total of 850 welded and mechanical joints inside the cryogenic test facility for the ITER Central Solenoid Model Coil (CSMC) experiments have been tested. In the test facility, 73 units of glass fiber-reinforced plastic (GFRP) insulation break are used. The amount of helium permeation through the GFRP was recorded during helium leak testing. To distinguish helium leaks from insulation-break permeation, the helium permeation characteristic of the GFRP part was measured as a function of the time of helium charging. Helium permeation was absorbed at 6 h after helium charging, and the detected permeation is around 10 -7 Pam 3 /s. Using the helium leak test method developed, CSMC experiments have been successfully completed. (author)

  13. Status of prototype rupture disc testing in the large leak test rig

    International Nuclear Information System (INIS)

    Amos, J.C.

    1979-09-01

    The prototype CRBRP double membrane rupture disc assembly is being performance tested in conjunction with the LLTR Series II Large Leak Program. In May 1979, the double membrane disc assembly was inadvertently activated during sodium system pressure instrument calibration. This experience indicated that the rupture disc burst at essentially the design burst pressure when a gradually increasing state pressure was applied. The area of membrane opening was found to be about 25 to 30% of the cross-sectional area. In July 1979, the disc assembly was again tested (this time in a single membrane configuration) in conjunction with the first LLTR Series II Test A-1a (inert gas injection). Test data indicated that the disc burst in about 35 ms at essentially the design burst pressure with an opening of about 30% of the cross-sectional area. The pressure immediately downstream of the disc dropped below atmospheric pressure following the rupture tube event (releasing high pressure nitrogen into sodium) for about 1.5 seconds before increasing to a maximum of 30 psig. This behavior raises a question on the adequacy of a downstream pressure device for rapid sensing of disc rupture and initiating plant shutdown following a large SWR event. 14 figures

  14. Test on large-scale seismic isolation elements

    International Nuclear Information System (INIS)

    Mazda, T.; Shiojiri, H.; Oka, Y.; Fujita, T.; Seki, M.

    1989-01-01

    Demonstration test of seismic isolation elements is considered as one of the most important items in the application of seismic isolation system to fast breeder reactor (FBR) plant. Facilities for testing seismic isolation elements have been built. This paper reports on tests for fullscale laminated rubber bearing and reduced scale models are conducted. From the result of the tests, the laminated rubber bearings turn out to satisfy the specification. Their basic characteristics are confirmed from the tests with fullscale and reduced scale models. The ultimate capacity of the bearings under the condition of ordinary temperature are evaluated

  15. Successful performances of the EU-AltTF sample, a large size Nb{sub 3}Sn cable-in-conduit conductor with rectangular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Della Corte, A; Corato, V; Di Zenobio, A; Fiamozzi Zignani, C; Muzzi, L; Polli, G M; Reccia, L; Turtu, S [Associazione EURATOM-ENEA sulla Fusione, Via E Fermi 45, 00044 Frascati, Rome (Italy); Bruzzone, P [EPFL-CRPP, Fusion Technology, 5232 Villigen PSI (Switzerland); Salpietro, E [European Fusion Development Agreement, Close Support Unit, Boltzmannstrasse 2, 85748 Garching (Germany); Vostner, A, E-mail: antonio.dellacorte@enea.i [Fusion for Energy, c/ Josep Pla 2, Edificio B3, 08019 Barcelona (Spain)

    2010-04-15

    One of the design features which yet offers interesting margins for performance optimization of cable-in-conduit conductors (CICCs), is their geometry. For relatively small size Nb{sub 3}Sn CICCs, operating at high electromagnetic pressure, such as those for the EDIPO project, it has been experimentally shown that a design based on a rectangular layout with higher aspect ratio leads to the best performance, especially in terms of degradation with electromagnetic loads. To extend this analysis to larger size Nb{sub 3}Sn CICCs, we manufactured and tested, in the SULTAN facility, an ITER toroidal field (TF) cable, inserted into a thick stainless steel tube and then compacted to a high aspect ratio rectangular shape. Besides establishing a new record in Nb{sub 3}Sn CICC performances for ITER TF type cables, the very good test results confirmed that the conductor properties improve not only by lowering the void fraction and raising the cable twist pitch, as already shown during the ITER TFPRO and the EDIPO test campaigns, but also by the proper optimization of the conductor shape with respect to the electromagnetic force distribution. The sample manufacturing steps, along with the main test results, are presented here.

  16. Helium leak testing of large pressure vessels or subassemblies

    International Nuclear Information System (INIS)

    Hopkins, J.S.; Valania, J.J.

    1977-01-01

    Specifications for pressure-vessel components [such as the intermediate heat exchangers (IHX)] for service in the liquid metal fast breeder reactor facilities require helium leak testing of pressure boundaries to very exacting standards. The experience of Foster Wheeler Energy Corporation (FWEC) in successfully leak-testing the IHX shells and bundle assemblies now installed in the Fast Flux Test Facility at Richland, WA is described. Vessels of a somewhat smaller size for the closed loop heat exchanger system in the Fast Flux Test Facility have also been fabricated and helium leak tested for integrity of the pressure boundary by FWEC. Specifications on future components call for helium leak testing of the tube to tubesheet welds of the intermediate heat exchangers

  17. Large test rigs verify Clinch River control rod reliability

    International Nuclear Information System (INIS)

    Michael, H.D.; Smith, G.G.

    1983-01-01

    The purpose of the Clinch River control test programme was to use multiple full-scale prototypic control rod systems for verifying the system's ability to perform reliably during simulated reactor power control and emergency shutdown operations. Two major facilities, the Shutdown Control Rod and Maintenance (Scram) facility and the Dynamic and Seismic Test (Dast) facility, were constructed. The test programme of each facility is described. (UK)

  18. Teaching to the Test: A Very Large Red Herring

    Science.gov (United States)

    Phelps, Richard P.

    2016-01-01

    Elevating teaching-to-the-test to dogma, from the beginning with the distortion of J.J. Cannell's 1980s "Lake Wobegon" findings, has served to divert attention from scandals that should have threatened US educators' almost complete control of their own evaluation. Had the test cheating scandal Dr. Cannell uncovered been portrayed…

  19. Structural fatigue test results for large wind turbine blade sections

    Science.gov (United States)

    Faddoul, J. R.; Sullivan, T. L.

    1982-01-01

    In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).

  20. Large coil task and results of testing US coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1986-01-01

    The United States, EURATOM, Japan, and Switzerland have collaborated since 1978 in development of superconducting toroidal field coils for fusion reactor applications. The United States provided a test facility nd three coils; the other participants, one coil each. All coils have the same interface dimensions and performance requirements (stable at 8 T), but internal design was decided by each team. Two US coil teams chose bath-cooled NbTi, 10-kA conductors. One developed a Nb 3 Sn conductor, cooled by internal flow, rated at 18 kA. All US coils have diagnostic instrumentation and imbedded heaters that enable stability tests and simulated nuclear heating experiments. In single-coil tests, each coil operated at full current in self-field (6.4 T). In six-coil tests that began in July 1986, one US coil and the Japanese coil hve been successfully operated at full current at 8 T. The other coils have operated as background coils while awaiting their turn as test coil. Coil tests have been informative and results gratifying. The facility has capably supported coil testing and its operation has provided information that will be useful in designing future fusion systems. Coil capabilities beyond nominal design points will be determined

  1. Teaching to the test: A very large red herring

    Directory of Open Access Journals (Sweden)

    Richard P. Phelps

    2016-05-01

    Full Text Available Elevating teaching-to-the-test to dogma, from the beginning with the distortion of Dr. Cannell’s findings, has served to divert attention from scandals that should have threatened US educators’ almost complete control of their own evaluation.[10] Had the scandal Dr. Cannell uncovered been portrayed honestly to the public—educators cheat on tests administered internally with lax security—the obvious solution would have been to externally manage all assessments (Oliphant, 2011. Recent test cheating scandals in Atlanta, Washington, DC, and elsewhere once again drew attention to a serious problem. But, instead of blaming lax security and internally managed test administration, most educators blamed the stakes and alleged undue pressure that ensues (Phelps 2011a. Their recommendation, as usual: drop the stakes and reduce the amount of testing. Never mind the ironies: they want oversight lifted so they may operate with none, and they admit that they cannot be trusted to administer tests to our children properly, but we should trust them to educate our children properly if we leave them alone. Perhaps the most profound factoids revealed by the more recent scandals were, first, that the cheating had continued for ten years in Atlanta before any responsible person attempted to stop it and, even then, it required authorities outside the education industry to report the situation honestly. Second, in both Atlanta and Washington, DC, education industry test security consultants repeatedly declared the systems free of wrongdoing (Phelps 2011b. Meanwhile, thirty years after J. J. Cannell first showed us how lax security leads to corrupted test scores, regardless the stakes, test security remains cavalierly loose. We have teachers administering state tests in their own classrooms to their own students, principals distributing and collecting test forms in their own schools. Security may be high outside the schoolhouse door, but inside, too much is left

  2. Development of large insulator rings for the TOKAMAK Fusion Test Reactor

    International Nuclear Information System (INIS)

    Brown, T.; Tobin, A.

    1977-01-01

    Research and development leading to the manufacture of large ceramic insulator rings for the TFTR (TOKAMAK Fusion Test Reactor). Material applictions, fabrication approach and testing activities are highlighted

  3. Progress report on pre-test calculations for the large block test

    International Nuclear Information System (INIS)

    Lee, K.H.

    1995-01-01

    The U.S. Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) is investigating the suitability of the Topopah Spring tuff in the thick vadose zone at Yucca Mountain, Nevada, as a host rock for permanent disposal of high-level radioactive waste. As part of the YMP, a group of field tests, referred to as the Large Block Test (LBT), will be conducted on a large electrically heated block of Topopah Spring tuff, isolated at Fran Ridge, Nevada Test Site. The block, which will be 3 x 3 m in horizontal dimensions and 4.5 m in height, will be heated by electrical heaters. The goals of the LBT axe to gain information on the coupled thermal-mechanical-hydrological-chemical processes active in the near-field environment of a repository; to provide field data for testing and calibrating models; and to help the development of measurement systems and techniques. This progress report presents results of on-going numerical modeling calculations carried out in support of the LBT design. An equivalent continuum model with an upper boundary temperature of 60 degrees C was used to simulate the hydrothermal response of the block to heating over a one-year period. The total heating power was started at 1500 W and later reduced to maintain an approximately uniform temperature of 138-140 degrees C. For a homogeneous bulk permeability case, the results show the formation of a distinct dry-out zone in and around the heater plane, and well-developed condensation zones above and below the heater plane. For a heterogeneous permeability distribution, the condensation zone above the heater plane was not well developed. This difference in results suggests that water saturation changes might be sensitive to changes in bulk permeability distribution. Rock temperatures were almost unaffected by permeability distribution. Heat flow was dominated by conduction. No liquid flow through the top of the block was predicted

  4. Application of flexible scope in large testing laboratories

    Directory of Open Access Journals (Sweden)

    Carina Di Candia

    2011-04-01

    Full Text Available According as the international definition of Flexible Scope, a laboratory must demonstrate face with the accreditation body that it has the knowledge, experience and competence to work within the full range of its flexible scope, as well as possessing suitable laboratory environments and equipment. The laboratory must also demonstrate that it has a management system in place that can control its proposed approach while continuing to comply with the requirements of ISO 17025:2005. In case of UKAS (Unites Kingdom Accreditation Service, prior to offering accreditation for flexible scope they must have a high degree of confidence that the staff are technically competent and that the management system controlling certain key processes as development, review, validation and authorization.LATU apply these requirements since 2004 as "Unified Tests". Until this date, LATU was doing the same type of tests in different materials departments using different equipment, personal, and testing quality control. In order to that were defined cross disciplinary groups to analyze this topic approaching in personal competence and quality control tests improvement, and resource's decrease. For example, LATU has the Unified Test Tensile Strength accredited by UKAS in: corrugated and solid fiberboard, paper board, linerboard, cork plugs, plastic bags, plastic sheeting, paper, woven fabrics, plastic woven bags and woven plastic. As a result of the Unified Tests was generated a general unified manage procedure with unified criteria's, responsibilities and actions. Was written a unique testing procedure not only with the actual flexible scope and the flexibilities limits but also the compliance requirements of ISO 17025 and the accreditations body methodology. We could decrease the amount of documentation to control. Was defined the methodology and implemented periodicaly internal inter comparisons between departments in order to valid the unified tests and has a unique

  5. QCD tests and large momentum-transfer reactions at CBA

    International Nuclear Information System (INIS)

    Longacre, R.; Tannenbaum, M.J.

    1983-03-01

    It is desirable to try to find fundamental tests of QCD which are sensitive to the specific properties of gluons and the non-Alelian structure of the theory, which would show that the theory is computable above leading order, and which are insensitive to the extraneous parameters such as structure functions, fragmentation functions and the like. Such tests can occur when higher-order corrections produce interference effects which must be zero in lowest order. One such effect is the linear polarization of direct single photons produced in p-p collisions. It is claimed that this polarization provides a rigorous test of perturbative QCD as well as an important check on the color hypothesis. This latter aspect is particularly attractive because the polarization involves the three-gluon interaction and the equality of the quark-gluon and three-gluon coupling in an essential way. Plans for studies at the CBA are discussed

  6. Experimental testing of moorings for large floating wave energy converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    2016-01-01

    This paper presents the outcome of a test campaign, which investigates the behaviour of a synthetic mooring system applied to the Floating Power Plant wave energy converter. The study investigates the motion and tension response under operational and extreme sea states expected at the deployment ...

  7. Test of a large size acrylic scintillation counter

    International Nuclear Information System (INIS)

    Bertino, M.; De Zorzi, G.; Zanello, D.

    1984-01-01

    We have tested the behaviour of an acrylic scintillator measuring the attenuation length and the time resolution of a 7.8 m long counter. On a small sample the photon yield relative to the NE 110 plastic has been measured. (orig.)

  8. Large block migration experiments: INTRAVAL phase 1, Test Case 9

    Energy Technology Data Exchange (ETDEWEB)

    Gureghian, A.B.; Noronha, C.J. (Battelle, Willowbrook, IL (USA). Office of Waste Technology Development); Vandergraaf, T.T. (Atomic Energy of Canada Ltd., Ottawa, ON (Canada))

    1990-08-01

    The development of INTRAVAL Test Case 9, as presented in this report, was made possible by a past subsidiary agreement to the bilateral cooperative agreement between the US Department of Energy (DOE) and Atomic Energy of Canada Limited (AECL) encompassing various aspects of nuclear waste disposal research. The experimental aspect of this test case, which included a series of laboratory experiments designed to quantify the migration of tracers in a single, natural fracture, was undertaken by AECL. The numerical simulation of the results of these experiments was performed by the Battelle Office of Waste Technology Development (OWTD) by calibrating an in-house analytical code, FRACFLO, which is capable of predicting radionuclide transport in an idealized fractured rock. Three tracer migration experiments were performed, using nonsorbing uranine dye for two of them and sorbing Cs-137 for the third. In addition, separate batch experiments were performed to determine the fracture surface and rock matrix sorption coefficients for Cs-137. The two uranine tracer migration experiment were used to calculate the average fracture aperture and to calibrate the model for the fracture dispersivity and matrix diffusion coefficient. The predictive capability of the model was then tested by simulating the third, Cs-137, tracer test without changing the parameter values determined from the other experiments. Breakthrough curves of both the experimental and numerical results obtained at the outlet face of the fracture are presented for each experiment. The reported spatial concentration profiles for the rock matrix are based solely on numerical predictions. 22 refs., 12 figs., 8 tabs.

  9. Second progress report on pre-test calculations for the large block test

    International Nuclear Information System (INIS)

    Lee, K.H.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) is investigating the suitability of the Topopah Spring tuff in the thick vadose zone at Yucca Mountain, Nevada, as a host rock for permanent disposal of high-level radioactive waste. As part of the YMP, a group of field tests, called the Large Block Test (LBT), will be conducted on a large electrically heated block of Topopah Spring tuff. The block will be heated by electrical heaters. The goals of the LBT are to gain information on the coupled thermal-mechanical-hydrological-chemical processes that will be active in the near-field environment of a repository; to provide field data for testing and calibrating models; and to help in the development of measurement systems and techniques. In this second progress report, we present results of the final set of numerical modeling calculations performed in support of the LBT design. The results include block temperatures and heat fluxes across the surfaces. The results are applied primarily to the design of guard heaters to enforce adiabatic conditions along the block walls. Conduction-only runs are adequate to estimate the thermal behavior of the system, because earlier calculations showed that heat transfer in the block is expected to be dominated by conduction. In addition, conduction-only runs can be made at substantially shorter execution times than full hydrothermal runs. We also run a two-dimensional, hydrothermal, discrete fracture model, with 200-μm vertical fractures parallel to the heaters and occurring at a uniform spacing of 30 cm. The results show the development of distinct dryout and recondensation zones. The dryout zones are thickest at the fractures and thinnest in the matrix midway between the fractures

  10. The Rights and Responsibility of Test Takers When Large-Scale Testing Is Used for Classroom Assessment

    Science.gov (United States)

    van Barneveld, Christina; Brinson, Karieann

    2017-01-01

    The purpose of this research was to identify conflicts in the rights and responsibility of Grade 9 test takers when some parts of a large-scale test are marked by teachers and used in the calculation of students' class marks. Data from teachers' questionnaires and students' questionnaires from a 2009-10 administration of a large-scale test of…

  11. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    International Nuclear Information System (INIS)

    Alvarez, Marcello; Baldauf, T.; Bond, J. Richard; Dalal, N.; Putter, R. D.; Dore, O.; Green, Daniel; Hirata, Chris; Huang, Zhiqi; Huterer, Dragan; Jeong, Donghui; Johnson, Matthew C.; Krause, Elisabeth; Loverde, Marilena; Meyers, Joel; Meeburg, Daniel; Senatore, Leonardo; Shandera, Sarah; Silverstein, Eva; Slosar, Anze; Smith, Kendrick; Zaldarriaga, Matias; Assassi, Valentin; Braden, Jonathan; Hajian, Amir; Kobayashi, Takeshi; Stein, George; Engelen, Alexander van

    2014-01-01

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large-scale structure is, however, from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude floc\

  12. Altitude simulation facility for testing large space motors

    Science.gov (United States)

    Katz, U.; Lustig, J.; Cohen, Y.; Malkin, I.

    1993-02-01

    This work describes the design of an altitude simulation facility for testing the AKM motor installed in the 'Ofeq' satellite launcher. The facility, which is controlled by a computer, consists of a diffuser and a single-stage ejector fed with preheated air. The calculations of performance and dimensions of the gas extraction system were conducted according to a one-dimensional analysis. Tests were carried out on a small-scale model of the facility in order to examine the design concept, then the full-scale facility was constructed and operated. There was good agreement among the results obtained from the small-scale facility, from the full-scale facility, and from calculations.

  13. Goethite Bench-scale and Large-scale Preparation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the

  14. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Marcello [Univ. of Toronto, ON (Canada); Baldauf, T. [Inst. of Advanced Studies, Princeton, NJ (United States); Bond, J. Richard [Univ. of Toronto, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada); Dalal, N. [Univ. of Illinois, Urbana-Champaign, IL (United States); Putter, R. D. [Jet Propulsion Lab., Pasadena, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Dore, O. [Jet Propulsion Lab., Pasadena, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Green, Daniel [Univ. of Toronto, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada); Hirata, Chris [The Ohio State Univ., Columbus, OH (United States); Huang, Zhiqi [Univ. of Toronto, ON (Canada); Huterer, Dragan [Univ. of Michigan, Ann Arbor, MI (United States); Jeong, Donghui [Pennsylvania State Univ., University Park, PA (United States); Johnson, Matthew C. [York Univ., Toronto, ON (Canada); Perimeter Inst., Waterloo, ON (Canada); Krause, Elisabeth [Stanford Univ., CA (United States); Loverde, Marilena [Univ. of Chicago, IL (United States); Meyers, Joel [Univ. of Toronto, ON (Canada); Meeburg, Daniel [Univ. of Toronto, ON (Canada); Senatore, Leonardo [Stanford Univ., CA (United States); Shandera, Sarah [Pennsylvania State Univ., University Park, PA (United States); Silverstein, Eva [Stanford Univ., CA (United States); Slosar, Anze [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Kendrick [Perimeter Inst., Waterloo, Toronto, ON (Canada); Zaldarriaga, Matias [Univ. of Toronto, ON (Canada); Assassi, Valentin [Cambridge Univ. (United Kingdom); Braden, Jonathan [Univ. of Toronto, ON (Canada); Hajian, Amir [Univ. of Toronto, ON (Canada); Kobayashi, Takeshi [Perimeter Inst., Waterloo, Toronto, ON (Canada); Univ. of Toronto, ON (Canada); Stein, George [Univ. of Toronto, ON (Canada); Engelen, Alexander van [Univ. of Toronto, ON (Canada)

    2014-12-15

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large-scale structure is, however, from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude f$loc\\atop{NL}$ (f$eq\\atop{NL}$), natural target levels of sensitivity are Δf$loc, eq\\atop{NL}$ ≃ 1. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.

  15. Testing of valves and associated systems in large scale experiments

    International Nuclear Information System (INIS)

    Becker, M.

    1985-01-01

    The system examples dealt with are selected so that they cover a wide spectrum of technical tasks and limits. Therefore the flowing medium varies from pure steam flow via a mixed flow of steam and water to pure water flow. The valves concerned include those whose main function is opening, and also those whose main function is the secure closing. There is a certain limitation in that the examples are taken from Boiling Water Reactor technology. The main procedure in valve and system testing described is, of course, not limited to the selected examples, but applies generally in powerstation and process technology. (orig./HAG) [de

  16. Vibration phenomena in large scale pressure suppression tests

    International Nuclear Information System (INIS)

    Aust, E.; Boettcher, G.; Kolb, M.; Sattler, P.; Vollbrandt, J.

    1982-01-01

    Structure und fluid vibration phenomena (acceleration, strain; pressure, level) were observed during blow-down experiments simulating a LOCA in the GKSS full scale multivent pressure suppression test facility. The paper describes first the source related excitations during the two regimes of condensation oscillation and of chugging, and deals then with the response vibrations of the facility's wetwell. Modal analyses of the wetwell were run using excitation by hammer and by shaker in order to separate phenomena that are particular to the GKSS facility from more general ones, i.e. phenomena specific to the fluid related parameters of blowdown and to the geometry of the vent pipes only. The lowest periodicities at about 12 and 16 Hz stem from the vent acoustics. A frequency of about 36 to 38 Hz prominent during chugging seems to result from the lowest local models of two of the wetwell's walls when coupled by the wetwell pool. Further peaks found during blowdown in the spectra of signals at higher frequencies correspond to global vibration modes of the wetwell. (orig.)

  17. Large scale gas injection test (Lasgit): Results from two gas injection tests

    International Nuclear Information System (INIS)

    Cuss, R. J.; Harrington, J. F.; Noy, D. J.; Wikman, A.; Sellin, P.

    2011-01-01

    This paper describes the initial results from a large scale gas injection test (Lasgit) performed at the Aespoe Hard Rock Laboratory (Sweden)). Lasgit is a full-scale field-scale experiment based on the Swedish KBS-3V repository concept, examining the processes controlling gas and water flow in compact buffer bentonite. The first 2 years of the test focused on the artificial hydration of the bentonite buffer. This was followed by a programme of hydraulic and gas injection tests which ran from day 843 to 1110. A further period of artificial hydration occurred from day 1110 to 1385, followed by a more complex programme of gas injection testing which remains on going (day 1385+). After 2 years of hydration, hydraulic conductivity and specific storage values in the lower filter array were found to range from 9 x 10 -14 to 1.6 x 10 -13 m/s and 5.5 x 10 -5 to 4.4 x 10 -4 m -1 respectively, with the injection filter FL903 yielding values of 7.5 x 10 -14 m/s and 2.5 x 10 -5 m -1 . A second set of hydraulic measurements were performed over 1 year and a half later yielding similar values, in the range 7.8 x 10 -14 m/s and 1.3 x 10 -13 m/s. The hydraulic conductivity of FL903 had reduced slightly to 5.3 x 10 -14 m/s while specific storage had increased to 4.0 x 10 -5 m -1 . Both datasets agree with laboratory values performed on small-scale saturated samples. Two sets of gas injection tests were performed over a 3 year period. During the course of testing, gas entry pressure was found to increase from around 650 kPa to approximately 1.3 MPa, indicative of the maturation of the clay. The sequential reduction in volumetric flow rate and lack of correlation between the rate of gas inflow and the gas pressure gradient observed during constant pressure steps prior to major gas entry, is suggestive of a reduction in gas permeability of the buffer and indicates only limited quantities of gas can be injected into the clay without interacting with the continuum stress field. Major gas

  18. Development of large insulator rings for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Brown, T.; Tobin, A.

    1978-01-01

    This paper discusses research and development leading to the manufacture of large ceramic insulator rings for the TFTR (TOKAMAK Fusion Test Reactor). Material applications, fabrication approach and testing activities are highlighted

  19. Numerical investigation on transverse heat transfer properties in cross section of full size Nb{sub 3}Sn CICC ITER conductor

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shuming; Wang, Dengming [Key Laboratory of Mechanics on Environment and Disaster in Western China, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Department of Mechanics, School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000 (China); Zheng, Xiaojing, E-mail: xjzheng@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Department of Mechanics, School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000 (China); School of Electronical and Machanical Engineering, Xidian University, Xi’an, 710071 (China)

    2015-05-15

    The contact mechanical characteristics in the cross section of the Nb{sub 3}Sn cable are sensitive to the cryogenic cooling and cyclic transverse electromagnetic loads, which may affect the cable’s performance. In this paper, based on a proposed discrete dynamic model (DEM), where the contact heat transfer among strands and the convective heat transfer in liquid helium are taken into account, the cooling process under two heat transfer mechanisms is performed. Simulation results show that the temperature variation of Poloidal Field Insert Sample (PFIS) cable with time agrees well with the existing experimental results, and the role of contact heat transfer cannot be neglected during cryogenic cooling. It is obtained from the further analysis that the effect of contact heat transfer becomes more prominent with the decrease of mass flow rate of liquid helium, which leads to the stress status within cable changed significantly. With the temperature boundary condition imposed on the cable radial direction, the effective thermal conductivity (ETC) of cable can be obtained. It can be found that the ETC increases with increasing the transverse loads and is sensitive to the low temperature environment, while it is not affected by load cycles basically. These results may provide the guide for the design and application of the future CICC conductors.

  20. Load reduction test method of similarity theory and BP neural networks of large cranes

    Science.gov (United States)

    Yang, Ruigang; Duan, Zhibin; Lu, Yi; Wang, Lei; Xu, Gening

    2016-01-01

    Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.

  1. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Orris, D. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Rabehl, R. [Fermilab; Sylvester, C. [Fermilab; Tartaglia, M. [Fermilab

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls with data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.

  2. Hydrologic test plans for large-scale, multiple-well tests in support of site characterization at Hanford, Washington

    International Nuclear Information System (INIS)

    Rogers, P.M.; Stone, R.; Lu, A.H.

    1985-01-01

    The Basalt Waste Isolation Project is preparing plans for tests and has begun work on some tests that will provide the data necessary for the hydrogeologic characterization of a site located on a United States government reservation at Hanford, Washington. This site is being considered for the Nation's first geologic repository of high level nuclear waste. Hydrogeologic characterization of this site requires several lines of investigation which include: surface-based small-scale tests, testing performed at depth from an exploratory shaft, geochemistry investigations, regional studies, and site-specific investigations using large-scale, multiple-well hydraulic tests. The large-scale multiple-well tests are planned for several locations in and around the site. These tests are being designed to provide estimates of hydraulic parameter values of the geologic media, chemical properties of the groundwater, and hydrogeologic boundary conditions at a scale appropriate for evaluating repository performance with respect to potential radionuclide transport

  3. The importance of pre-planning for large hydrostatic test programs

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Andrew Keith [WorleyParsons Calgary, Calgary, AB (Canada); Wong, Everett Clementi [Enbridge Pipelines Inc., Edmonton, AB (Canada)

    2010-07-01

    During the design phase of a pipeline project, large hydrostatic test programs are required to locate and secure water sources. Many companies complete hydrostatic test planning through high level desktop analysis, however this technique can result in important unplanned costs and schedule delays. The aim of this paper is to assess the cost benefits of pre-planning large hydrostatic test programs versus the costs of unplanned delays in the execution of hydrostatic testing. This comparison was based on the successful application of pre-planning of 57 mainline hydrostatic tests in the construction of the Line 4 Extension and Alberta Clipper Expansion oil pipelines by Enbridge Pipelines Inc. Results showed that costs of delays and uncertainty during construction far outweigh the costs of pre-planning. This study highlighted that pre-planning for large hydrostatic test programs should be carried out in the execution of large pipeline projects to ensure success.

  4. Outline of sodium-water reaction test in case of large leak with SWAT-3 testing equipments

    International Nuclear Information System (INIS)

    Sato, Minoru

    1978-01-01

    The key component in sodium-cooled fast reactors in steam generators, and the sodium-water reaction owing to the break of heating tubes may cause serious damages in equipments and pipings. The main factor controlling this phenomenon is the rate of leak of water. When the rate of water leak is small, the propagation of heating tube breaking may occur owing to ''wastage phenomenon'', on the other hand, when the rate of water leak is large, the phenomena of explosive pressure and flow occur due to the reaction heat and a large quantity of hydrogen generated by the reaction. In PNC, the testing equipments of SWAT-2 for small water leak and SWAT-1 for large leak were constructed, and the development test has been carried out to establish the method of safety design experimentally. The synthetic test equipment for the safety of steam generators, SWAT-3, was constructed to carry out the large water leak test in the scale close to actual plants. The object of the test, the outline of the test equipment, the phenomena of pressure and flow in the water injection test, the confirmation of the occurrence of secondary breaking of adjacent heating tubes, and the disposal of reaction products are described in this paper. This test is till going on, and the final conclusion will be reported later. (Kako, I.)

  5. Quality assurance aspects of the major procurements for the Large Coil Test Facility

    International Nuclear Information System (INIS)

    Taylor, D.J.; Thompson, P.B.; Ryan, T.L.; Queen, C.C.; Halstead, E.L.; Murphy, J.L.; Wood, R.J.

    1983-01-01

    The Large Coil Test Facility (LCTF) project is comprised of the test stand, supporting cryogenic systems, instrumentation, data acquisition, and utilities necessary for testing the large superconducting coils of the Large Coil Program (LCP). A significant portion of the facility hardware has been obtained through procurement actions with industrial suppliers. This paper addresses the project's experience in formulation and execution of quality assurance (QA) actions relative to several of the major items procured. Project quality assurance planning and specific features related to procurement activities for several of the more specialized test facility components are described. These component procurements include: (1) the coil test stand's major structural item (the bucking post) purchased from foreign industry; (2) fabrication and testing of high-current power supplies; (3) industrial fabrication of specialized instrumentation (voltage-tap signal conditioning modules); and (4) fabrication, installation, and testing of the liquid helium piping system

  6. Correlation analysis for forced vibration test of the Hualien large scale seismic test (LSST) program

    International Nuclear Information System (INIS)

    Sugawara, Y.; Sugiyama, T.; Kobayashi, T.; Yamaya, H.; Kitamura, E.

    1995-01-01

    The correlation analysis for a forced vibration test of a 1/4-scale containment SSI test model constructed in Hualien, Taiwan was carried out for the case of after backfilling. Prior to this correlation analysis, the structural properties were revised to adjust the calculated fundamental frequency in the fixed base condition to that derived from the test results. A correlation analysis was carried out using the Lattice Model which was able to estimate the soil-structure effects with embedment. The analysis results coincide well with test results and it is concluded that the mathematical soil-structure interaction model established by the correlation analysis is efficient in estimating the dynamic soil-structure interaction effect with embedment. This mathematical model will be applied as a basic model for simulation analysis of earthquake observation records. (author). 3 refs., 12 figs., 2 tabs

  7. Large expansion joint movement test; Teste de movimentacao de juntas de expansao de grande porte

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Jorivaldo; Veiga, Jordana Luiza Barbosa da Costa [PETROBRAS, Rio de Janeiro, RJ (Brazil); Veiga, Jose Carlos [Teadit, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper show the results obtained in a movement test realized on metallic bellows expansion joints used in the turbo expander duct system. A test device was developed. For dada acquisition a dynamometer was used and the tests were performed on gimbal expansion joints type. The joints were pressurized with water during the test. Data acquisition was realized at the design, operation and room pressure. The expansion joints were tested rotating them to the design angular movement of 3 deg and 6 deg degrees. The reactions for each degree of movement were recorded during loading and unloading. The tests confirmed that the expansion joints presented no-interference from construction, which configure in an adequate acceptance proceeding. It was noted the influence of internal pressure on reaction forces during expansion joints movements, these forces are not taken into consideration on theoretical calculations of EJMA design equations. The influence of friction on expansion joints hinges are significant and shall be considered on piping design and mitigated using friction reduction devices. (author)

  8. Testing, development and demonstration of large scale solar district heating systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Perers, Bengt

    2015-01-01

    In 2013-2014 the project “Testing, development and demonstration of large scale solar district heating systems” was carried out within the Sino-Danish Renewable Energy Development Programme, the so called RED programme jointly developed by the Chinese and Danish governments. In the project Danish...... know how on solar heating plants and solar heating test technology have been transferred from Denmark to China, large solar heating systems have been promoted in China, test capabilities on solar collectors and large scale solar heating systems have been improved in China and Danish-Chinese cooperation...

  9. Analysis of the applicability of fracture mechanics on the basis of large scale specimen testing

    International Nuclear Information System (INIS)

    Brumovsky, M.; Polachova, H.; Sulc, J.; Anikovskij, V.; Dragunov, Y.; Rivkin, E.; Filatov, V.

    1988-01-01

    The verification is dealt with of fracture mechanics calculations for WWER reactor pressure vessels by large scale model testing performed on the large testing machine ZZ 8000 (maximum load of 80 MN) in the Skoda Concern. The results of testing a large set of large scale test specimens with surface crack-type defects are presented. The nominal thickness of the specimens was 150 mm with defect depths between 15 and 100 mm, the testing temperature varying between -30 and +80 degC (i.e., in the temperature interval of T ko ±50 degC). Specimens with a scale of 1:8 and 1:12 were also tested, as well as standard (CT and TPB) specimens. Comparisons of results of testing and calculations suggest some conservatism of calculations (especially for small defects) based on Linear Elastic Fracture Mechanics, according to the Nuclear Reactor Pressure Vessel Codes which use the fracture mechanics values from J IC testing. On the basis of large scale tests the ''Defect Analysis Diagram'' was constructed and recommended for brittle fracture assessment of reactor pressure vessels. (author). 7 figs., 2 tabs., 3 refs

  10. The development of large-aperture test system of infrared camera and visible CCD camera

    Science.gov (United States)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  11. Large scale sodium-water reaction tests for Monju steam generators

    International Nuclear Information System (INIS)

    Sato, M.; Hiroi, H.; Hori, M.

    1976-01-01

    To demonstrate the safe design of the steam generator system of the prototype fast reactor Monju against the postulated large leak sodium-water reaction, a large scale test facility SWAT-3 was constructed. SWAT-3 is a 1/2.5 scale model of the Monju secondary loop on the basis of the iso-velocity modeling. Two tests have been conducted in SWAT-3 since its construction. The test items using SWAT-3 are discussed, and the description of the facility and the test results are presented

  12. Automated X-ray television complex for testing large dynamic objects

    International Nuclear Information System (INIS)

    Gusev, E.A.; Luk'yanenko, Eh.A.; Chelnokov, V.B.; Kuleshov, V.K.; Alkhimov, Yu.V.

    1992-01-01

    An automated X-ray television complex on the base of matrix gas-dischage large-area (2.1x1.0 m) converter for testing large cargoes and containers, as well as for inductrial article diagnostics is described. The complex pulsed operation with the 512 kbytes television digital memory unit provides for testing dynamic objects under minimal doses (20-100 μR)

  13. Acquisition and preparation of specimens of rock for large-scale testing

    International Nuclear Information System (INIS)

    Watkins, D.J.

    1981-01-01

    The techniques used for acquisition and preparation of large specimens of rock for laboratory testing depend upon the location of the specimen, the type of rock and the equipment available at the sampling site. Examples are presented to illustrate sampling and preparation techniques used for two large cylindrical samples of granitic material, one pervasively fractured and one containing a single fracture

  14. Large Scale Leach Test Facility: Development of equipment and methods, and comparison to MCC-1 leach tests

    International Nuclear Information System (INIS)

    Pellarin, D.J.; Bickford, D.F.

    1985-01-01

    This report describes the test equipment and methods, and documents the results of the first large-scale MCC-1 experiments in the Large Scale Leach Test Facility (LSLTF). Two experiments were performed using 1-ft-long samples sectioned from the middle of canister MS-11. The leachant used in the experiments was ultrapure deionized water - an aggressive and well characterized leachant providing high sensitivity for liquid sample analyses. All the original test plan objectives have been successfully met. Equipment and procedures have been developed for large-sample-size leach testing. The statistical reliability of the method has been determined, and ''bench mark'' data developed to relate small scale leach testing to full size waste forms. The facility is unique, and provides sampling reliability and flexibility not possible in smaller laboratory scale tests. Future use of this facility should simplify and accelerate the development of leaching models and repository specific data. The factor of less than 3 for leachability, corresponding to a 200,000/1 increase in sample volume, enhances the credibility of small scale test data which precedes this work, and supports the ability of the DWPF waste form to meet repository criteria

  15. A testing facility for large scale models at 100 bar and 3000C to 10000C

    International Nuclear Information System (INIS)

    Zemann, H.

    1978-07-01

    A testing facility for large scale model tests is in construction under support of the Austrian Industry. It will contain a Prestressed Concrete Pressure Vessel (PCPV) with hot linear (300 0 C at 100 bar), an electrical heating system (1.2 MW, 1000 0 C), a gas supply system, and a cooling system for the testing space. The components themselves are models for advanced high temperature applications. The first main component which was tested successfully was the PCPV. Basic investigation of the building materials, improvements of concrete gauges, large scale model tests and measurements within the structural concrete and on the liner from the beginning of construction during the period of prestressing, the period of stabilization and the final pressurizing tests have been made. On the basis of these investigations a computer controlled safety surveillance system for long term high pressure, high temperature tests has been developed. (author)

  16. Test Procedure for Axially Loaded Bucket Foundations in Sand (Large Yellow Box)

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina

    This is a practical guide for preparing the soil, running a CPT test, installing a scaled bucket foundation model and running a test in the large yellow sand box cos(Kristina) in the geotechnical laboratory at Aalborg University. The test procedure is used for the examination of statically...... and cyclically axially loaded bucket foundation model In dense sand. The foundation model in scale of approximately 1:10 compared to the prototype size. The guide describes the step-by-step procedure for tests with and without surface pressure. A detailed description of test setup using the large yellow sand box...... for a monopile testing was provided by Thomassen (2015a), procedure for monopile testing can be found in Thomassen (2015b), while safety instructions were given by Vaitkunaite et al. (2014)....

  17. Transmitted wavefront testing with large dynamic range based on computer-aided deflectometry

    Science.gov (United States)

    Wang, Daodang; Xu, Ping; Gong, Zhidong; Xie, Zhongmin; Liang, Rongguang; Xu, Xinke; Kong, Ming; Zhao, Jun

    2018-06-01

    The transmitted wavefront testing technique is demanded for the performance evaluation of transmission optics and transparent glass, in which the achievable dynamic range is a key issue. A computer-aided deflectometric testing method with fringe projection is proposed for the accurate testing of transmitted wavefronts with a large dynamic range. Ray tracing of the modeled testing system is carried out to achieve the virtual ‘null’ testing of transmitted wavefront aberrations. The ray aberration is obtained from the ray tracing result and measured slope, with which the test wavefront aberration can be reconstructed. To eliminate testing system modeling errors, a system geometry calibration based on computer-aided reverse optimization is applied to realize accurate testing. Both numerical simulation and experiments have been carried out to demonstrate the feasibility and high accuracy of the proposed testing method. The proposed testing method can achieve a large dynamic range compared with the interferometric method, providing a simple, low-cost and accurate way for the testing of transmitted wavefronts from various kinds of optics and a large amount of industrial transmission elements.

  18. Most experiments done so far with limited plants. Large-scale testing ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Most experiments done so far with limited plants. Large-scale testing needs to be done with objectives such as: Apart from primary transformants, their progenies must be tested. Experiments on segregation, production of homozygous lines, analysis of expression levels in ...

  19. Role of optometry school in single day large scale school vision testing

    Science.gov (United States)

    Anuradha, N; Ramani, Krishnakumar

    2015-01-01

    Background: School vision testing aims at identification and management of refractive errors. Large-scale school vision testing using conventional methods is time-consuming and demands a lot of chair time from the eye care professionals. A new strategy involving a school of optometry in single day large scale school vision testing is discussed. Aim: The aim was to describe a new approach of performing vision testing of school children on a large scale in a single day. Materials and Methods: A single day vision testing strategy was implemented wherein 123 members (20 teams comprising optometry students and headed by optometrists) conducted vision testing for children in 51 schools. School vision testing included basic vision screening, refraction, frame measurements, frame choice and referrals for other ocular problems. Results: A total of 12448 children were screened, among whom 420 (3.37%) were identified to have refractive errors. 28 (1.26%) children belonged to the primary, 163 to middle (9.80%), 129 (4.67%) to secondary and 100 (1.73%) to the higher secondary levels of education respectively. 265 (2.12%) children were referred for further evaluation. Conclusion: Single day large scale school vision testing can be adopted by schools of optometry to reach a higher number of children within a short span. PMID:25709271

  20. Fourteen years of test experience with short-circuit withstand capability of large power transformers

    NARCIS (Netherlands)

    Smeets, R.P.P.; Paske, te L.H.

    2010-01-01

    Experience is reported of short-circuit testing of large power transformers during the past 14 years by KEMA in the Netherlands. In total, 119 transformers > 25 MVA participated in the survey. KEMA shows that at initial access to standard IEC short-circuit tests, 28% failed initially in a wide range

  1. Sixteen years of test experiences with short-circuit withstand capability of large power transformers

    NARCIS (Netherlands)

    Smeets, R.P.P.; Paske, te L.H.

    2012-01-01

    Experience is reported of short-circuit testing of large power transformers during the past 16 years by KEMA in the Netherlands. In total, 174 transformers > 25 MVA participated in the survey. KEMA shows that at initial access to standard IEC short-circuit tests, 24% failed initially in a wide range

  2. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    Science.gov (United States)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  3. Testing Cross-Sectional Correlation in Large Panel Data Models with Serial Correlation

    Directory of Open Access Journals (Sweden)

    Badi H. Baltagi

    2016-11-01

    Full Text Available This paper considers the problem of testing cross-sectional correlation in large panel data models with serially-correlated errors. It finds that existing tests for cross-sectional correlation encounter size distortions with serial correlation in the errors. To control the size, this paper proposes a modification of Pesaran’s Cross-sectional Dependence (CD test to account for serial correlation of an unknown form in the error term. We derive the limiting distribution of this test as N , T → ∞ . The test is distribution free and allows for unknown forms of serial correlation in the errors. Monte Carlo simulations show that the test has good size and power for large panels when serial correlation in the errors is present.

  4. Modification of the Rappaport rapid test in large-scale testing for syphilis. Evaluation of the rapid plate and rapid card tests.

    Science.gov (United States)

    Ghinsberg, R; Meir, E; Blumstein, G; Kafeman, R

    1975-11-01

    The Rappaport rapid (RR) plate and card tests were developed as modifications of the RR tube test to permit rapid and inexpensive screening of large numbers of subjects for the diagnosis of syphilis. More than 2,000 sera were examined in parallel by the Venereal Disease Research Laboratory (VDRL) slide test, the rapid plasma reagin (RPR) card test and the RR plate and card tests. There was complete agreement between the RR plate and card tests and the VDRL slide and RPR card tests in 96.6% of sera. In a selected group of 1,530 sera examined, in addition, by the fluorescent treponemal antibody absorption (FTA-ABS) test, there was agreement between the RR plate and card tests and the FTA-ABS test in 74.3% of sera and between the VDRL and RPR tests and the FTA-ABS test in 73.7% of sera. The RR plate test was found to be sufficiently sensitive and specific for the diagnosis of syphilis, although the VDRL slide test is perhaps more sensitive in primary and late latent syphilis. Since the antigen used in the RR tests is colored and stable and the sera do not require inactivation before the test, the tests are easier to perform than the VDRL slide test: the RR plate and card tests could therefore replace the VDRL test as a screening test, with hardly any loss of accuracy.

  5. The testing of thermal-mechanical-hydrological-chemical processes using a large block

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.; Blair, S.C.; Buscheck, T.A.; Chesnut, D.A.; Glassley, W.E.; Lee, K.; Roberts, J.J.

    1994-01-01

    The radioactive decay heat from nuclear waste packages may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near-field environment of a repository. A group of tests on a large block (LBT) are planned to provide a timely opportunity to test and calibrate some of the TMHC model concepts. The LBT is advantageous for testing and verifying model concepts because the boundary conditions are controlled, and the block can be characterized before and after the experiment. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m will be sawed and isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block will be collected for laboratory testing of some individual thermal-mechanical, hydrological, and chemical processes. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. The large block will be heated with one heater in each borehole and guard heaters on the sides so that a dry-out zone and a condensate zone will exist simultaneously. Temperature, moisture content, pore pressure, chemical composition, stress and displacement will be measured throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes

  6. RELAPS choked flow model and application to a large scale flow test

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1980-01-01

    The RELAP5 code was used to simulate a large scale choked flow test. The fluid system used in the test was modeled in RELAP5 using a uniform, but coarse, nodalization. The choked mass discharge rate was calculated using the RELAP5 choked flow model. The calulations were in good agreement with the test data, and the flow was calculated to be near thermal equilibrium

  7. Large scale vibration tests on pile-group effects using blast-induced ground motion

    International Nuclear Information System (INIS)

    Katsuichirou Hijikata; Hideo Tanaka; Takayuki Hashimoto; Kazushige Fujiwara; Yuji Miyamoto; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. Their test-structures were exactly the same. One structure had 25 steel piles and the other had 4 piles. The test pit was backfilled with sand of appropriate grain size distributions to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. Dynamic modal tests of the pile-supported structures and PS measurements of the test pit were performed before and after the vibration tests to detect changes in the natural frequencies of the soil-pile-structure systems and the soil stiffness. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1,683 cm/s 2 according to the distances between the test site and the blast areas. (authors)

  8. A Combined Ethical and Scientific Analysis of Large-scale Tests of Solar Climate Engineering

    Science.gov (United States)

    Ackerman, T. P.

    2017-12-01

    Our research group recently published an analysis of the combined ethical and scientific issues surrounding large-scale testing of stratospheric aerosol injection (SAI; Lenferna et al., 2017, Earth's Future). We are expanding this study in two directions. The first is extending this same analysis to other geoengineering techniques, particularly marine cloud brightening (MCB). MCB has substantial differences to SAI in this context because MCB can be tested over significantly smaller areas of the planet and, following injection, has a much shorter lifetime of weeks as opposed to years for SAI. We examine issues such as the role of intent, the lesser of two evils, and the nature of consent. In addition, several groups are currently considering climate engineering governance tools such as a code of ethics and a registry. We examine how these tools might influence climate engineering research programs and, specifically, large-scale testing. The second direction of expansion is asking whether ethical and scientific issues associated with large-scale testing are so significant that they effectively preclude moving ahead with climate engineering research and testing. Some previous authors have suggested that no research should take place until these issues are resolved. We think this position is too draconian and consider a more nuanced version of this argument. We note, however, that there are serious questions regarding the ability of the scientific research community to move to the point of carrying out large-scale tests.

  9. Applicability of laboratory data to large scale tests under dynamic loading conditions

    International Nuclear Information System (INIS)

    Kussmaul, K.; Klenk, A.

    1993-01-01

    The analysis of dynamic loading and subsequent fracture must be based on reliable data for loading and deformation history. This paper describes an investigation to examine the applicability of parameters which are determined by means of small-scale laboratory tests to large-scale tests. The following steps were carried out: (1) Determination of crack initiation by means of strain gauges applied in the crack tip field of compact tension specimens. (2) Determination of dynamic crack resistance curves of CT-specimens using a modified key-curve technique. The key curves are determined by dynamic finite element analyses. (3) Determination of strain-rate-dependent stress-strain relationships for the finite element simulation of small-scale and large-scale tests. (4) Analysis of the loading history for small-scale tests with the aid of experimental data and finite element calculations. (5) Testing of dynamically loaded tensile specimens taken as strips from ferritic steel pipes with a thickness of 13 mm resp. 18 mm. The strips contained slits and surface cracks. (6) Fracture mechanics analyses of the above mentioned tests and of wide plate tests. The wide plates (960x608x40 mm 3 ) had been tested in a propellant-driven 12 MN dynamic testing facility. For calculating the fracture mechanics parameters of both tests, a dynamic finite element simulation considering the dynamic material behaviour was employed. The finite element analyses showed a good agreement with the simulated tests. This prerequisite allowed to gain critical J-integral values. Generally the results of the large-scale tests were conservative. 19 refs., 20 figs., 4 tabs

  10. Microstructural Analyses of Topopah Spring Tuff from the Large Block Test at Fran Ridge, Nevada

    International Nuclear Information System (INIS)

    Roberts, J.J.

    2000-01-01

    Microstructural information (e.g., porosity, pore size distribution, and surface area) of porous media is critical to understanding water transport mechanisms and physical properties and their bearing on geophysical measurements. We report microstructural data obtained by mercury injection porosimetry (MIP) on 33 samples of densely welded Topopah Spring tuff from Fran Ridge, Yucca Mountain, Nevada Test Site (NTS), Nevada. The characterization of these samples is also important for the interpretation and analysis of the Large Block Test (LBT) performed in support of the Yucca Mountain Project (YMP). This report includes previously published data on samples from the same location (Roberts and Lin, 1996). We also present information from the Yucca Mountain Site Characterization Project/Lawrence Livermore National Laboratory (YMSCP/LLNL) Large Block Test Engineering Plan (Wilder, 1995) to allow correlation of our data directly to various planes within the Large Block

  11. Internal quality evolution of a large test system – an industrial study

    Directory of Open Access Journals (Sweden)

    Kovács Attila

    2016-12-01

    Full Text Available This paper presents our empirical observations related to the evolution of a large automated test system. The system observed is used in the industry as a test tool for complex telecommunication systems, itself consisting of more than one million lines of source code. This study evaluates how different changes during the development have changed the number of observed Code Smells in the test system. We have monitored the development of the test scripts and measured the code quality characteristics over a five years period.

  12. A heated large block test for high level nuclear waste management

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.; Blair, S.C.; Buscheck, T.A.; Glassley, W.E.; Lee, K.; Owens, M.W.; Roberts, J.J.

    1995-01-01

    The radioactive decay heat from high-level nuclear waste may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the host rock of a repository. A heated large block test (LBT) is designed to understand some of the TNMC processes. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m was isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block were collected for laboratory testing of some individual thermal-mechanical, thermal-hydrological, and thermal-chemical processes. The large block will be heated by heaters within so that a dryout zone and a condensate zone will exist simultaneously. Guard heaters on the block sides will be used to minimize horizontal heat losses. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. Temperature, moisture content, pore pressure, chemical composition, stress, displacement, electrical resistivity, acoustic emissions, and acoustic velocities will be measured throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes. The progress of the project is presented in this paper

  13. Evaluation of simulated-LOCA tests that produced large fuel cladding ballooning

    International Nuclear Information System (INIS)

    Powers, D.A.; Meyer, R.O.

    1979-02-01

    A description is given of the NRC review and evaluation of simulated-LOCA tests that produced large axially extended ballooing in Zircaloy fuel cladding. Technical summaries are presented on the likelihood of the transient that was used in the tests, the effects of temperature variations on strain localization, and the results of other similar experiments. It is concluded that (a) the large axially extended deformations were an artifact of the experimental technique, (b) current NRC licensing positions are not invalidated by this new information, and (c) no new research programs are needed to study this phenomenon

  14. Thermal anchoring of wires in large scale superconducting coil test experiment

    International Nuclear Information System (INIS)

    Patel, Dipak; Sharma, A.N.; Prasad, Upendra; Khristi, Yohan; Varmora, Pankaj; Doshi, Kalpesh; Pradhan, S.

    2013-01-01

    Highlights: • We addressed how thermal anchoring in large scale coil test is different compare to small cryogenic apparatus? • We did precise estimation of thermal anchoring length at 77 K and 4.2 K heat sink in large scale superconducting coil test experiment. • We addressed, the quality of anchoring without covering entire wires using Kapton/Teflon tape. • We obtained excellent results in temperature measurement without using GE Varnish by doubling estimated anchoring length. -- Abstract: Effective and precise thermal anchoring of wires in cryogenic experiment is mandatory to measure temperature in milikelvin accuracy and to avoid unnecessary cooling power due to additional heat conduction from room temperature (RT) to operating temperature (OT) through potential, field, displacement and stress measurement instrumentation wires. Instrumentation wires used in large scale superconducting coil test experiments are different compare to cryogenic apparatus in terms of unique construction and overall diameter/area due to errorless measurement in large time-varying magnetic field compare to small cryogenic apparatus, often shielded wires are used. Hence, along with other variables, anchoring techniques and required thermal anchoring length are entirely different in this experiment compare to cryogenic apparatus. In present paper, estimation of thermal anchoring length of five different types of instrumentation wires used in coils test campaign at Institute for Plasma Research (IPR), India has been discussed and some temperature measurement results of coils test campaign have been presented

  15. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    International Nuclear Information System (INIS)

    Contalbrigo, M.; Baltzell, N.; Benmokhtar, F.; Barion, L.; Cisbani, E.; El Alaoui, A.; Hafidi, K.; Hoek, M.; Kubarovsky, V.; Lagamba, L.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Montgomery, R.; Movsisyan, A.; Musico, P.; Orecchini, D.; Orlandi, A.; Pappalardo, L.L.; Pereira, S.

    2014-01-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here. - Highlights: • A novel hybrid-optics configuration was proven to work with a large RICH prototype. • Innovative RICH components were studied both in laboratory tests and test-beams. • Aerogel of large Rayleigh scattering length at n=1.05 was characterized. • Novel vs commercially available multi-anode photomultipliers were compared. • The response of SiPM matrices to Cherenkov light was tested at various temperatures

  16. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it [INFN Sezione di Ferrara and University of Ferrara (Italy); Baltzell, N. [Argonne National Laboratory, IL (United States); Benmokhtar, F. [Christopher Newport University, VA (United States); Duquesne University, PA (United States); Barion, L. [INFN Sezione di Ferrara and University of Ferrara (Italy); Cisbani, E. [INFN Sezione di Roma – Gruppo Collega to Sanità (Italy); Italian National Institute of Health (Italy); El Alaoui, A. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Argonne National Laboratory, IL (United States); Hafidi, K. [Argonne National Laboratory, IL (United States); Hoek, M. [Glasgow University (United Kingdom); J. Gutenberg Universität, Mainz (Germany); Kubarovsky, V. [Thomas Jefferson National Laboratory, VA (United States); Lagamba, L. [INFN Sezione di Bari, University of Bari (Italy); Lucherini, V. [INFN Laboratori Nazionali di Frascati (Italy); Malaguti, R. [INFN Sezione di Ferrara and University of Ferrara (Italy); Mirazita, M. [INFN Laboratori Nazionali di Frascati (Italy); Montgomery, R. [Glasgow University (United Kingdom); INFN Laboratori Nazionali di Frascati (Italy); Movsisyan, A. [INFN Sezione di Ferrara and University of Ferrara (Italy); Musico, P. [INFN Sezione di Genova (Italy); Orecchini, D.; Orlandi, A. [INFN Laboratori Nazionali di Frascati (Italy); Pappalardo, L.L. [INFN Sezione di Ferrara and University of Ferrara (Italy); Pereira, S. [INFN Laboratori Nazionali di Frascati (Italy); and others

    2014-12-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here. - Highlights: • A novel hybrid-optics configuration was proven to work with a large RICH prototype. • Innovative RICH components were studied both in laboratory tests and test-beams. • Aerogel of large Rayleigh scattering length at n=1.05 was characterized. • Novel vs commercially available multi-anode photomultipliers were compared. • The response of SiPM matrices to Cherenkov light was tested at various temperatures.

  17. Post-test analysis of semiscale large-break test S-06-3 using TRAC-PF1

    International Nuclear Information System (INIS)

    Boyack, B.E.

    1982-01-01

    The Transient Reactor Analysis Code (TRAC) is an advanced systems code for light-water-reactor accident analysis. The code was developed originally to analyze large-break loss-of-coolant accidents (LOCAs) and running time was not a primary development criterion. TRAC-PF1 was developed because increased application of the code to long transients such as small-break LOCAs required a faster-running code version. Although developed for long transients, its performance on large-break transients is still important. This paper assesses the ability of TRAC-PF1 to predict large-break-LOCA Test S-06-3 conducted in the Semiscale Mod-1 facility

  18. On the testing fast response NPP's valves of large nominal bores and high parameters

    International Nuclear Information System (INIS)

    Majorov, A.P.; Ostretsov, I.N.

    1990-01-01

    Investigation technique for valves of large norminal bores and high parameters which is based on application of simulation effect for operation and accident loadings during movement of valve lock at bench tests with medium flow rate by 100-1000 times less than during operation is given. Loading simulation technique is provided using simulator of lock loading. Investigation results are essential to make decision concerning advisability of serial production of fittings without full-scale test conducting

  19. Comparison of vibration test results for Atucha II NPP and large scale concrete block models

    International Nuclear Information System (INIS)

    Iizuka, S.; Konno, T.; Prato, C.A.

    2001-01-01

    In order to study the soil structure interaction of reactor building that could be constructed on a Quaternary soil, a comparison study of the soil structure interaction springs was performed between full scale vibration test results of Atucha II NPP and vibration test results of large scale concrete block models constructed on Quaternary soil. This comparison study provides a case data of soil structure interaction springs on Quaternary soil with different foundation size and stiffness. (author)

  20. Effect of Twist Pitch in the Strands on the Saturation and Losses in the Nb3Sn Strands for the ITER TF CICC

    International Nuclear Information System (INIS)

    Martovetsky, N.N.

    2007-01-01

    cryostability limit (by Stekly), or if there are enough losses to bring the temperature above the current sharing temperature taking into account limited heat capacity of the CICC, the strand will not recover, and the CICC will go normal. Conservatively, we will consider that if we find an instantaneous unstable situation, it is not acceptable. In presence of a transport current, the situation is sensitive to the direction of the strand twist, direction of the pulsed field and direction of the transport current. Recently, ITER decided to increase the twist pitch of the TF strands from 15 mm to 30 mm to improve the stability of the strands against the longitudinal field. In this report we will quantify the effects of this proposed change and perform a trade off study. The issue is that by increasing the twist pitch of the strands we not only increase the coupling losses in the transverse magnetic field, as expected in classical multifilamentary composite superconductors, but also increase the hysteresis losses in the strands with internal tin. In classical multifilamentary superconductors, twist pitch change should not cause an increase of the hysteresis losses in the transverse field. However the high Nb3Sn content internal tin strands develop transverse links, which couple the filaments into clusters. These links turn out to contribute a significant fraction to hysteresis losses [5]. If we project the results of [5] onto the ITER proposal to increase the twist pitch from 15 to 30 mm, we should expect the hysteresis losses to increase by a factor of two, which will likely disqualify strands with 30 mm twist pitch. This very strand twisted to 15 mm twist pitch would likely pass the ITER criteria. So, increasing the twist pitch has a very negative consequence and we need to make sure that it is absolutely necessary. Recently, A. Vostner (private communication) reported preliminary results on the losses in candidate TF strands. In agreement with what was reported in [5]; he found

  1. Large-scale tests of aqueous scrubber systems for LMFBR vented containment

    International Nuclear Information System (INIS)

    McCormack, J.D.; Hilliard, R.K.; Postma, A.K.

    1980-01-01

    Six large-scale air cleaning tests performed in the Containment Systems Test Facility (CSTF) are described. The test conditions simulated those postulated for hypothetical accidents in an LMFBR involving containment venting to control hydrogen concentration and containment overpressure. Sodium aerosols were generated by continously spraying sodium into air and adding steam and/or carbon dioxide to create the desired Na 2 O 2 , Na 2 CO 3 or NaOH aerosol. Two air cleaning systems were tested: (a) spray quench chamber, educator venturi scrubber and high efficiency fibrous scrubber in series; and (b) the same except with the spray quench chamber eliminated. The gas flow rates ranged up to 0.8 m 3 /s (1700 acfm) at temperatures to 313 0 C (600 0 F). Quantities of aerosol removed from the gas stream ranged up to 700 kg per test. The systems performed very satisfactorily with overall aerosol mass removal efficiencies exceeding 99.9% in each test

  2. The large-scale vented combustion test facility at AECL-WL: description and preliminary test results

    International Nuclear Information System (INIS)

    Loesel Sitar, J.; Koroll, G.W.; Dewit, W.A.; Bowles, E.M.; Harding, J.; Sabanski, C.L.; Kumar, R.K.

    1997-01-01

    Implementation of hydrogen mitigation systems in nuclear reactor containments requires testing the effectiveness of the mitigation system, reliability and availability of the hardware, potential consequences of its use and the technical basis for hardware placement, on a meaningful scale. Similarly, the development and validation of containment codes used in nuclear reactor safety analysis require detailed combustion data from medium- and large-scale facilities. A Large-Scale Combustion Test Facility measuring 10 m x 4 m x 3 m (volume, 120 m 3 ) has been constructed and commissioned at Whiteshell Laboratories to perform a wide variety of combustion experiments. The facility is designed to be versatile so that many geometrical configurations can be achieved. The facility incorporates extensive capabilities for instrumentation and high speed data acquisition, on-line gas sampling and analysis. Other features of the facility include operation at elevated temperatures up to 150 degrees C, easy access to the interior, and remote operation. Initial thermodynamic conditions in the facility can be controlled to within 0.1 vol% of constituent gases. The first series of experiments examined vented combustion in the full 120 m 3 -volume configuration with vent areas in the range of 0.56 to 2.24 m 2 . The experiments were performed at ∼27 degrees C and near-atmospheric pressures, with hydrogen concentrations in the range of 8 to 12% by volume. This paper describes the Large-Scale Vented Combustion Test Facility and preliminary results from the first series of experiments. (author)

  3. Seismic proving tests on the reliability for large components and equipment of nuclear power plants

    International Nuclear Information System (INIS)

    Ohno, Tokue; Tanaka, Nagatoshi

    1988-01-01

    Since Japan has destructive earthquakes frequently, the structural reliability for large components and equipment of nuclear power plants are rigorously required. They are designed using sophisticated seismic analyses and have not yet encountered a destructive earthquake. When nuclear power plants are planned, it is very important that the general public understand the structural reliability during and after an earthquake. Seismic Proving Tests have been planned by Ministry of International Trade and Industry (Miti) to comply with public requirement in Japan. A large-scale high-performance vibration table was constructed at Tasted Engineering Laboratory of Nuclear Power Engineering Test Center (NU PEC), in order to prove the structural reliability by vibrating the test model (of full scale or close to the actual size) in the condition of a destructive earthquake. As for the test models, the following four items were selected out of large components and equipment important to the safety: Reactor Containment Vessel; Primary Coolant Loop or Primary Loop Recirculation System; Reactor Pressure Vessel; and Reactor Core Internals. Here is described a brief of the vibration table, the test method and the results of the tests on PWR Reactor Containment Vessel and BWR Primary Loop Recirculation System (author)

  4. Testing of Large-Scale ICV Glasses with Hanford LAW Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Kim, Dong-Sang; Vienna, John D.; Matyas, Josef; Smith, Donald E.; Schweiger, Michael J.; Yeager, John D.

    2005-03-01

    Preliminary glass compositions for immobilizing Hanford low-activity waste (LAW) by the in-container vitrification (ICV) process were initially fabricated at crucible- and engineering-scale, including simulants and actual (radioactive) LAW. Glasses were characterized for vapor hydration test (VHT) and product consistency test (PCT) responses and crystallinity (both quenched and slow-cooled samples). Selected glasses were tested for toxicity characteristic leach procedure (TCLP) responses, viscosity, and electrical conductivity. This testing showed that glasses with LAW loading of 20 mass% can be made readily and meet all product constraints by a far margin. Glasses with over 22 mass% Na2O can be made to meet all other product quality and process constraints. Large-scale testing was performed at the AMEC, Geomelt Division facility in Richland. Three tests were conducted using simulated LAW with increasing loadings of 12, 17, and 20 mass% Na2O. Glass samples were taken from the test products in a manner to represent the full expected range of product performance. These samples were characterized for composition, density, crystalline and non-crystalline phase assemblage, and durability using the VHT, PCT, and TCLP tests. The results, presented in this report, show that the AMEC ICV product with meets all waste form requirements with a large margin. These results provide strong evidence that the Hanford LAW can be successfully vitrified by the ICV technology and can meet all the constraints related to product quality. The economic feasibility of the ICV technology can be further enhanced by subsequent optimization.

  5. Built-In Data-Flow Integration Testing in Large-Scale Component-Based Systems

    Science.gov (United States)

    Piel, Éric; Gonzalez-Sanchez, Alberto; Gross, Hans-Gerhard

    Modern large-scale component-based applications and service ecosystems are built following a number of different component models and architectural styles, such as the data-flow architectural style. In this style, each building block receives data from a previous one in the flow and sends output data to other components. This organisation expresses information flows adequately, and also favours decoupling between the components, leading to easier maintenance and quicker evolution of the system. Integration testing is a major means to ensure the quality of large systems. Their size and complexity, together with the fact that they are developed and maintained by several stake holders, make Built-In Testing (BIT) an attractive approach to manage their integration testing. However, so far no technique has been proposed that combines BIT and data-flow integration testing. We have introduced the notion of a virtual component in order to realize such a combination. It permits to define the behaviour of several components assembled to process a flow of data, using BIT. Test-cases are defined in a way that they are simple to write and flexible to adapt. We present two implementations of our proposed virtual component integration testing technique, and we extend our previous proposal to detect and handle errors in the definition by the user. The evaluation of the virtual component testing approach suggests that more issues can be detected in systems with data-flows than through other integration testing approaches.

  6. A large block heater test for high level nuclear waste management

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.

    1994-07-01

    The radioactive decay heat from nuclear waste packages may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near-field environment of a repository. A group of tests on a large block (LBT) are planned to provide a timely opportunity to test and calibrate some of the TMHC model concepts. The LBT is advantageous for testing and verifying model concepts because the boundary conditions are controlled, and the block can be characterized before and after the experiment. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m will be sawed and isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block will be collected for laboratory testing of some individual thermal-mechanical hydrological and chemical processes. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. The large block will be heated by heaters within and guard heaters on the sides so that a dry-out zone and a condensate zone will exist simultaneously. Temperature, moisture content, pore pressure, chemical composition, stress, and displacement will be throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes. The progress of the project is presented in this paper

  7. Large animal and primate models of spinal cord injury for the testing of novel therapies.

    Science.gov (United States)

    Kwon, Brian K; Streijger, Femke; Hill, Caitlin E; Anderson, Aileen J; Bacon, Mark; Beattie, Michael S; Blesch, Armin; Bradbury, Elizabeth J; Brown, Arthur; Bresnahan, Jacqueline C; Case, Casey C; Colburn, Raymond W; David, Samuel; Fawcett, James W; Ferguson, Adam R; Fischer, Itzhak; Floyd, Candace L; Gensel, John C; Houle, John D; Jakeman, Lyn B; Jeffery, Nick D; Jones, Linda Ann Truett; Kleitman, Naomi; Kocsis, Jeffery; Lu, Paul; Magnuson, David S K; Marsala, Martin; Moore, Simon W; Mothe, Andrea J; Oudega, Martin; Plant, Giles W; Rabchevsky, Alexander Sasha; Schwab, Jan M; Silver, Jerry; Steward, Oswald; Xu, Xiao-Ming; Guest, James D; Tetzlaff, Wolfram

    2015-07-01

    Large animal and primate models of spinal cord injury (SCI) are being increasingly utilized for the testing of novel therapies. While these represent intermediary animal species between rodents and humans and offer the opportunity to pose unique research questions prior to clinical trials, the role that such large animal and primate models should play in the translational pipeline is unclear. In this initiative we engaged members of the SCI research community in a questionnaire and round-table focus group discussion around the use of such models. Forty-one SCI researchers from academia, industry, and granting agencies were asked to complete a questionnaire about their opinion regarding the use of large animal and primate models in the context of testing novel therapeutics. The questions centered around how large animal and primate models of SCI would be best utilized in the spectrum of preclinical testing, and how much testing in rodent models was warranted before employing these models. Further questions were posed at a focus group meeting attended by the respondents. The group generally felt that large animal and primate models of SCI serve a potentially useful role in the translational pipeline for novel therapies, and that the rational use of these models would depend on the type of therapy and specific research question being addressed. While testing within these models should not be mandatory, the detection of beneficial effects using these models lends additional support for translating a therapy to humans. These models provides an opportunity to evaluate and refine surgical procedures prior to use in humans, and safety and bio-distribution in a spinal cord more similar in size and anatomy to that of humans. Our results reveal that while many feel that these models are valuable in the testing of novel therapies, important questions remain unanswered about how they should be used and how data derived from them should be interpreted. Copyright © 2015 Elsevier

  8. Geomechanics investigations in support of the large block test at Fran Ridge, Nye County, Nevada

    International Nuclear Information System (INIS)

    Blair, S.C.; Berge, P.; Kansa, E.; Lin, Wunan; Roberts, J.

    1994-01-01

    The Yucca Mountain Site Characterization Project is investigating the Topopah Spring Tuff at Yucca Mountain, Nevada for its suitability as a host rock for the disposal of high level nuclear wastes. The Lawrence Livermore National Laboratory is planning a large block test (LBT) to investigate coupled thermal-mechanical-hydrological and geochemical processes that may occur in the repository near-field environment

  9. Initial characterization of the ATR [Advanced Test Reactor] Large Gamma Facility

    International Nuclear Information System (INIS)

    Schnitzler, B.G.; Rogers, J.W.

    1986-05-01

    Radiation fields in the ATR Large Gamma Facility test volume are characterized. The preliminary characterization efforts described in this report include total dose rate measurements in the facility, development of a simple methodology for calculating radiation fields from the ATR fuel element power histories, and a comparison of the measured and calculated values

  10. A facility for the test of large area muon chambers at high rates

    CERN Document Server

    Agosteo, S; Belli, G; Bonifas, A; Carabelli, V; Gatignon, L; Hessey, N P; Maggi, M; Peigneux, J P; Reithler, H; Silari, Marco; Vitulo, P; Wegner, M

    2000-01-01

    Operation of large area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz/\\scm. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate.

  11. A facility for the test of large-area muon chambers at high rates

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S.; Altieri, S.; Belli, G.; Bonifas, A.; Carabelli, V.; Gatignon, L.; Hessey, N.; Maggi, M.; Peigneux, J.-P.; Reithler, H. E-mail: hans.reithler@cern.ch; Silari, M.; Vitulo, P.; Wegner, M

    2000-09-21

    Operation of large-area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz cm{sup -2}. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high-energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate. (authors)

  12. Test of the CLAS12 RICH large-scale prototype in the direct proximity focusing configuration

    Energy Technology Data Exchange (ETDEWEB)

    Anefalos Pereira, S.; Lucherini, V.; Mirazita, M.; Orlandi, A.; Orecchini, D.; Pisano, S.; Tomassini, S.; Viticchie, A. [Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Baltzell, N.; El Alaoui, A.; Hafidi, K. [Physics Division, Argonne National Laboratory, Argonne, IL (United States); Barion, L.; Contalbrigo, M.; Malaguti, R.; Movsisyan, A.; Pappalardo, L.L.; Squerzanti, S. [INFN, Ferrara (Italy); Benmokhtar, F. [Department of Physics, Duquesne University, Pittsburgh, PA (United States); Brooks, W. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Cisbani, E. [Gruppo Sanita and Istituto Superiore di Sanita, INFN, Rome (Italy); Hoek, M.; Phillips, J. [School of Physics and Astronomy, Kelvin Building, University of Glasgow, Scotland (United Kingdom); Kubarovsky, V. [Thomas Jefferson National Accelerator Facility, Jefferson Laboratory, Newport News, VA (United States); Lagamba, L.; Perrino, R. [INFN, Bari (Italy); Montgomery, R.A. [Laboratori Nazionali di Frascati, INFN, Frascati (Italy); School of Physics and Astronomy, Kelvin Building, University of Glasgow, Scotland (United Kingdom); Musico, P. [INFN, Genova (Italy); Rossi, P. [Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Thomas Jefferson National Accelerator Facility, Jefferson Laboratory, Newport News, VA (United States); Turisini, M. [INFN, Ferrara (Italy); Universidad Tecnica Federico Santa Maria, Valparaiso (Chile)

    2016-02-15

    A large-area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3GeV/c up to 8GeV/c for the CLAS12 experiment at the upgraded 12GeV continuous electron beam accelerator facility of Jefferson Laboratory. The adopted solution foresees a novel hybrid optics design based on aerogel radiator, composite mirrors and highly packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large-angle tracks). We report here the results of the tests of a large-scale prototype of the RICH detector performed with the hadron beam of the CERN T9 experimental hall for the direct detection configuration. The tests demonstrated that the proposed design provides the required pion-to-kaon rejection factor of 1: 500 in the whole momentum range. (orig.)

  13. DYNAMIC TENSILE TESTING WITH A LARGE SCALE 33 MJ ROTATING DISK IMPACT MACHINE

    OpenAIRE

    Kussmaul , K.; Zimmermann , C.; Issler , W.

    1985-01-01

    A recently completed testing machine for dynamic tensile tests is described. The machine consists essentially of a pendulum which holds the specimen and a large steel disk with a double striking nose fixed to its circumference. Disk diameter measures 2000 mm, while its mass is 6400 kg. The specimens to be tested are tensile specimens with a diameter of up to 20 mm and 300 mm length or CT 15 specimens at various temperatures. Loading velocity ranges from 1 to 150 m/s. The process of specimen-n...

  14. Wind Resource Assessment – Østerild National Test Centre for Large Wind Turbines

    OpenAIRE

    Hansen, Brian Ohrbeck; Courtney, Michael; Mortensen, Niels Gylling

    2014-01-01

    This report presents a wind resource assessment for the seven test stands at the Østerild National Test Centre for Large Wind Turbines in Denmark. Calculations have been carried out mainly using wind data from three on-site wind lidars. The generalized wind climates applied in the wind resource calculations for the seven test stands are based on correlations between a short period of on-site wind data from the wind lidars with a long-term reference. The wind resource assessment for the seven ...

  15. Vibration tests on pile-group foundations using large-scale blast excitation

    International Nuclear Information System (INIS)

    Tanaka, Hideo; Hijikata, Katsuichirou; Hashimoto, Takayuki; Fujiwara, Kazushige; Kontani, Osamu; Miyamoto, Yuji; Suzuki, Atsushi

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. One structure had 25 steel tubular piles and the other had 4 piles. The super-structures were exactly the same. The test pit was backfilled with sand of appropriate grain size distributions in order to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1683 cm/s 2 according to the distances between the test site and the blast areas. Maximum strains were 13,400 micro-strains were recorded at the pile top of the 4-pile structure, which means that these piles were subjected to yielding

  16. Investigations on efficiency of the emergency cooling by means of large-scale tests

    International Nuclear Information System (INIS)

    Hicken, E.F.

    1982-01-01

    The RSK guidelines contain the maximum permissible loads (max. cladding tube temperature 1200 0 C, max. Zr/H 2 O-reaction of 1% Zr). Their observance implies that only a small number of fuel rods fail. The safety research has to produce the evidence that the limiting loads are not exceeded. The analytical investigations on the emergency cooling behaviour could so far only be verified in scaled-down test facilities. After about 100 tests in four different large-scale test facilities the experimental investigations on the blow-down phase for large cracks are finished in the main. With the refill- and flood process the systems behaviour in scaled down test stands, the multidimensional conditions in the reactor pressure vessel can, however, only be simulated on the original scale. More experiments are planned as part of the 2D/3D-project (CCTF , SCTF, UPTF) and as part of the PKL-tests, so that more than 200 tests in seven plants will be available then. As to the small cracks the physical phenomena are known. The current investigations are used to increase the reliability of statement. After their being finished approximately 300 tests in seven plants will be available. (orig./HP) [de

  17. Mock-up test of remote controlled dismantling apparatus for large-sized vessels (contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Myodo, Masato; Miyajima, Kazutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Okane, Shogo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2001-03-01

    The Remote dismantling apparatus, which is equipped with multi-units for functioning of washing, cutting, collection of cut pieces and so on, has been constructed to dismantle the large-sized vessels in the JAERI's Reprocessing Test Facility (JRTF). The apparatus has five-axis movement capability and its operation is performed remotely. The mock-up tests were performed to evaluate the applicability of the apparatus to actual dismantling activities by using the mock-ups of LV-3 and LV-5 in the facility. It was confirmed that each unit was satisfactory functioned by remote operation. Efficient procedures for dismantling the large-sized vessel was studied and various date was obtained in the mock-up tests. This apparatus was found to be applicable for the actual dismantling activity in JRTF. (author)

  18. Testing and qualification of CIRCE venturi-nozzle flow meter for large scale experiments

    International Nuclear Information System (INIS)

    Ambrosini, W.; Forgione, N.; Oriolo, F.; Tarantino, M.; Agostini, P.; Benamati, G.; Bertacci, G.; Elmi, N.; Alemberti, A.; Cinotti, L.; Scaddozzo, G.

    2005-01-01

    This paper is focused on the tests carried out at the ENEA Brasimone Centre for the qualification of a large Venturi-Nozzle flow meter operating in Lead Bismuth Eutectic (LBE). Such flow meter has been selected to provide flow rate measurements during the thermal-hydraulic tests that will be performed on the experimental facility CIRCE. This large-scale facility is installed at the ENEA Brasimone Centre for studying the fluid-dynamics and operating behaviour of ADS reactor plants, as well as to qualify several components intended to be used in the LBE technology. The Venturi-Nozzle flow meter has been supplied by the Euromisure s.r.l., together with the calculated theoretical characteristic equation. The results obtained by the tests performed allowed to qualify this theoretical curve supplied by the manufacturer, that presents a very good agreement especially at high flow rate values. (authors)

  19. Mock-up test of remote controlled dismantling apparatus for large-sized vessels (contract research)

    International Nuclear Information System (INIS)

    Myodo, Masato; Miyajima, Kazutoshi; Okane, Shogo

    2001-03-01

    The Remote dismantling apparatus, which is equipped with multi-units for functioning of washing, cutting, collection of cut pieces and so on, has been constructed to dismantle the large-sized vessels in the JAERI's Reprocessing Test Facility (JRTF). The apparatus has five-axis movement capability and its operation is performed remotely. The mock-up tests were performed to evaluate the applicability of the apparatus to actual dismantling activities by using the mock-ups of LV-3 and LV-5 in the facility. It was confirmed that each unit was satisfactory functioned by remote operation. Efficient procedures for dismantling the large-sized vessel was studied and various date was obtained in the mock-up tests. This apparatus was found to be applicable for the actual dismantling activity in JRTF. (author)

  20. A European collaboration research programme to study and test large scale base isolated structures

    International Nuclear Information System (INIS)

    Renda, V.; Verzeletti, G.; Papa, L.

    1995-01-01

    The improvement of the technology of innovative anti-seismic mechanisms, as those for base isolation and energy dissipation, needs of testing capability for large scale models of structures integrated with these mechanisms. These kind experimental tests are of primary importance for the validation of design rules and the setting up of an advanced earthquake engineering for civil constructions of relevant interest. The Joint Research Centre of the European Commission offers the European Laboratory for Structural Assessment located at Ispra - Italy, as a focal point for an international european collaboration research programme to test large scale models of structure making use of innovative anti-seismic mechanisms. A collaboration contract, opened to other future contributions, has been signed with the national italian working group on seismic isolation (Gruppo di Lavoro sull's Isolamento Sismico GLIS) which includes the national research centre ENEA, the national electricity board ENEL, the industrial research centre ISMES and producer of isolators ALGA. (author). 3 figs

  1. Ultrasonic testing of pre-turned contours for large components made of ductile iron

    International Nuclear Information System (INIS)

    Schmitte, Till; Chichkov, Nikolai; Nemitz, Oliver; Orth, Thomas; Hocks, Heinrich Jr.; Rusche, Sascha; Opalla, Dirk; Frank, Joerg

    2015-01-01

    In the ultrasonic testing of large, thick-walled components made of ductile iron partial acoustic paths of several meters are needed. Considered here are cylindrical components such as the body of CASTOR containers with diameters 2-3 m, a height of up to 6 m and a wall thickness of 500 mm. So far, an automated technique for this is not available, therefore such components are checked in a complex and lengthy process by manual ultrasonic testing. The development and design of the testing by means of simulations and the realization as a mobile testing device are topics of this paper. Measurements on a reference body with test reflectors in different depths are presented and discussed. [de

  2. Test of large-scale specimens and models as applied to NPP equipment materials

    International Nuclear Information System (INIS)

    Timofeev, B.T.; Karzov, G.P.

    1993-01-01

    The paper presents the test results on low-cycle fatigue, crack growth rate and fracture toughness of large-scale specimens and structures, manufactured from steel, widely applied in power engineering industry and used for the production of NPP equipment with VVER-440 and VVER-1000 reactors. The obtained results are compared with available test results of standard specimens and calculation relations, accepted in open-quotes Calculation Norms on Strength.close quotes At the fatigue crack initiation stage the experiments were performed on large-scale specimens of various geometry and configuration, which permitted to define 15X2MFA steel fracture initiation resistance by elastic-plastic deformation of large material volume by homogeneous and inhomogeneous state. Besides the above mentioned specimen tests in the regime of low-cycle loading, the test of models with nozzles were performed and a good correlation of the results on fatigue crack initiation criterium was obtained both with calculated data and standard low-cycle fatigue tests. It was noted that on the Paris part of the fatigue fracture diagram a specimen thickness increase does not influence fatigue crack growth resistance by tests in air both at 20 and 350 degrees C. The estimation of the comparability of the results, obtained on specimens and models was also carried out for this stage of fracture. At the stage of unstable crack growth by static loading the experiments were conducted on specimens of various thickness for 15X2MFA and 15X2NMFA steels and their welded joints, produced by submerged arc welding, in as-produced state (the beginning of service) and after embrittling heat treatment, simulating neutron fluence attack (the end of service). The obtained results give evidence of the possibility of the reliable prediction of structure elements brittle fracture using fracture toughness test results on relatively small standard specimens. 35 refs., 23 figs

  3. Large-scale seismic test for soil-structure interaction research in Hualien, Taiwan

    International Nuclear Information System (INIS)

    Ueshima, T.; Kokusho, T.; Okamoto, T.

    1995-01-01

    It is important to evaluate dynamic soil-structure interaction more accurately in the aseismic design of important facilities such as nuclear power plants. A large-scale model structure with about 1/4th of commercial nuclear power plants was constructed on the gravelly layers in seismically active Hualien, Taiwan. This international joint project is called 'the Hualien LSST Project', where 'LSST' is short for Large-Scale Seismic Test. In this paper, research tasks and responsibilities, the process of the construction work and research tasks along the time-line, main results obtained up to now, and so on in this Project are described. (J.P.N.)

  4. Defect testing of large aperture optics based on high resolution CCD camera

    International Nuclear Information System (INIS)

    Cheng Xiaofeng; Xu Xu; Zhang Lin; He Qun; Yuan Xiaodong; Jiang Xiaodong; Zheng Wanguo

    2009-01-01

    A fast testing method on inspecting defects of large aperture optics was introduced. With uniform illumination by LED source at grazing incidence, the image of defects on the surface of and inside the large aperture optics could be enlarged due to scattering. The images of defects were got by high resolution CCD camera and microscope, and the approximate mathematical relation between viewing dimension and real dimension of defects was simulated. Thus the approximate real dimension and location of all defects could be calculated through the high resolution pictures. (authors)

  5. Fuel-rod response during the large-break LOCA Test LOC-6

    International Nuclear Information System (INIS)

    Vinjamuri, K.; Cook, B.A.; Hobbins, R.R.

    1981-01-01

    The large break Loss of Coolant Accident (LOCA) Test LOC-6 was conducted in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory by EG and G Idaho, Inc. The objectives of the PBF LOCA tests are to obtain in-pile cladding ballooning data under blowdown and reflood conditions and assess how well out-of-pile ballooning data represent in-pile fuel rod behavior. The primary objective of the LOC-6 test was to determine the effects of internal rod pressures and prior irradiation on the deformation behavior of fuel rods that reached cladding temperatures high in the alpha phase of zircaloy. Test LOC-6 was conducted with four rods of PWR 15 x 15 design with the exception of fuel stack length (89 cm) and enrichment (12.5 W% 235 U). Each rod was surrounded by an individual flow shroud

  6. ROSA-IV Large Scale Test Facility (LSTF) system description for second simulated fuel assembly

    International Nuclear Information System (INIS)

    1990-10-01

    The ROSA-IV Program's Large Scale Test Facility (LSTF) is a test facility for integral simulation of thermal-hydraulic response of a pressurized water reactor (PWR) during small break loss-of-coolant accidents (LOCAs) and transients. In this facility, the PWR core nuclear fuel rods are simulated using electric heater rods. The simulated fuel assembly which was installed during the facility construction was replaced with a new one in 1988. The first test with this second simulated fuel assembly was conducted in December 1988. This report describes the facility configuration and characteristics as of this date (December 1988) including the new simulated fuel assembly design and the facility changes which were made during the testing with the first assembly as well as during the renewal of the simulated fuel assembly. (author)

  7. The Hualien Large-Scale Seismic Test for soil-structure interaction research

    International Nuclear Information System (INIS)

    Tang, H.T.; Stepp, J.C.; Cheng, Y.H.

    1991-01-01

    A Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, has been initiated with the primary objective of obtaining earthquake-induced SSI data at a stiff soil site having similar prototypical nuclear power plant soil conditions. Preliminary soil boring, geophysical testing and ambient and earthquake-induced ground motion monitoring have been conducted to understand the experiment site conditions. More refined field and laboratory tests will be conducted such as the state-of-the-art freezing sampling technique and the large penetration test (LPT) method to characterize the soil constitutive behavior. The test model to be constructed will be similar to the Lotung model. The instrumentation layout will be designed to provide data for studies of SSI, spatial incoherence, soil stability, foundation uplifting, ground motion wave field and structural response. A consortium consisting of EPRI, Taipower, CRIEPI, TEPCO, CEA, EdF and Framatome has been established to carry out the project. It is envisaged that the Hualien SSI array will be ready to record earthquakes by the middle of 1992. The duration of the recording scheduled for five years. (author)

  8. Introduction to Large-sized Test Facility for validating Containment Integrity under Severe Accidents

    International Nuclear Information System (INIS)

    Na, Young Su; Hong, Seongwan; Hong, Seongho; Min, Beongtae

    2014-01-01

    An overall assessment of containment integrity can be conducted properly by examining the hydrogen behavior in the containment building. Under severe accidents, an amount of hydrogen gases can be generated by metal oxidation and corium-concrete interaction. Hydrogen behavior in the containment building strongly depends on complicated thermal hydraulic conditions with mixed gases and steam. The performance of a PAR can be directly affected by the thermal hydraulic conditions, steam contents, gas mixture behavior and aerosol characteristics, as well as the operation of other engineering safety systems such as a spray. The models in computer codes for a severe accident assessment can be validated based on the experiment results in a large-sized test facility. The Korea Atomic Energy Research Institute (KAERI) is now preparing a large-sized test facility to examine in detail the safety issues related with hydrogen including the performance of safety devices such as a PAR in various severe accident situations. This paper introduces the KAERI test facility for validating the containment integrity under severe accidents. To validate the containment integrity, a large-sized test facility is necessary for simulating complicated phenomena induced by an amount of steam and gases, especially hydrogen released into the containment building under severe accidents. A pressure vessel 9.5 m in height and 3.4 m in diameter was designed at the KAERI test facility for the validating containment integrity, which was based on the THAI test facility with the experimental safety and the reliable measurement systems certified for a long time. This large-sized pressure vessel operated in steam and iodine as a corrosive agent was made by stainless steel 316L because of corrosion resistance for a long operating time, and a vessel was installed in at KAERI in March 2014. In the future, the control systems for temperature and pressure in a vessel will be constructed, and the measurement system

  9. Development and Execution of a Large-scale DDT Tube Test for IHE Material Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Gary Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Broilo, Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lopez-Pulliam, Ian Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vaughan, Larry Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-24

    Insensitive High Explosive (IHE) Materials are defined in Chapter IX of the DOE Explosive Safety Standard (DOE-STD-1212-2012) as being materials that are massdetonable explosives that are so insensitive that the probability of accidental initiation or transition from burning to detonation is negligible1. There are currently a number of tests included in the standard that are required to qualify a material as IHE, however, none of the tests directly evaluate for the transition from burning to detonation (aka deflagration-to-detonation transition, DDT). Currently, there is a DOE complex-wide effort to revisit the IHE definition in DOE-STD-1212-2012 and change the qualification requirements. The proposal lays out a new approach, requiring fewer, but more appropriate tests, for IHE Material qualification. One of these new tests is the Deflagration-to-Detonation Test. According to the redefinition proposal, the purpose of the new deflagration-todetonation test is “to demonstrate that an IHE material will not undergo deflagration-to-detonation under stockpile relevant conditions of scale, confinement, and material condition. Inherent in this test design is the assumption that ignition does occur, with onset of deflagration. The test design will incorporate large margins and replicates to account for the stochastic nature of DDT events.” In short, the philosophy behind this approach is that if a material fails to undergo DDT in a significant over-test, then it is extremely unlikely to do so in realistic conditions. This effort will be valuable for the B61 LEP to satisfy their need qualify the new production lots of PBX 9502. The work described in this report is intended as a preliminary investigation to support the proposed design of an overly conservative, easily fielded DDT test for updated IHE Material Qualification standard. Specifically, we evaluated the aspects of confinement, geometry, material morphology and temperature. We also developed and tested a

  10. Testing and assessment of a large BGO detector for beach monitoring of radioactive particles

    International Nuclear Information System (INIS)

    Graaf, E.R. van der; Rigollet, C.; Maleka, P.P.; Jones, D.G.

    2007-01-01

    The Beach Monitoring Steering Group (BMSG) was set up by UKAEA to explore whether improved systems for beach monitoring of radioactive particles are available. The BMSG commissioned the British Geological Survey (BGS) and the Nuclear Geophysics Division of the Kernfysisch Versneller Instituut (KVI/NGD), and other companies, to test their most sensitive system. This paper presents the results of trials in a specially created test facility at UKAEA Harwell with a large BGO detector. The detector's size and weight mean that it would be suitable for vehicle deployment but would be too large and heavy to carry in areas that could not be accessed by a vehicle. However, it would be possible to use the same methodology that is described here with a smaller detector capable of being carried in a backpack, albeit with reduced sensitivity for particle detection. The approach that we present is also applicable, with modifications, to the detection of offshore particles using a towed seabed detector

  11. Computer-based data acquisition system in the Large Coil Test Facility

    International Nuclear Information System (INIS)

    Gould, S.S.; Layman, L.R.; Million, D.L.

    1983-01-01

    The utilization of computers for data acquisition and control is of paramount importance on large-scale fusion experiments because they feature the ability to acquire data from a large number of sensors at various sample rates and provide for flexible data interpretation, presentation, reduction, and analysis. In the Large Coil Test Facility (LCTF) a Digital Equipment Corporation (DEC) PDP-11/60 host computer with the DEC RSX-11M operating system coordinates the activities of five DEC LSI-11/23 front-end processors (FEPs) via direct memory access (DMA) communication links. This provides host control of scheduled data acquisition and FEP event-triggered data collection tasks. Four of the five FEPs have no operating system

  12. Group Centric Networking: Large Scale Over the Air Testing of Group Centric Networking

    Science.gov (United States)

    2016-11-01

    Large Scale Over-the-Air Testing of Group Centric Networking Logan Mercer, Greg Kuperman, Andrew Hunter, Brian Proulx MIT Lincoln Laboratory...performance of Group Centric Networking (GCN), a networking protocol developed for robust and scalable communications in lossy networks where users are...devices, and the ad-hoc nature of the network . Group Centric Networking (GCN) is a proposed networking protocol that addresses challenges specific to

  13. Testing the Big Bang: Light elements, neutrinos, dark matter and large-scale structure

    Science.gov (United States)

    Schramm, David N.

    1991-01-01

    Several experimental and observational tests of the standard cosmological model are examined. In particular, a detailed discussion is presented regarding: (1) nucleosynthesis, the light element abundances, and neutrino counting; (2) the dark matter problems; and (3) the formation of galaxies and large-scale structure. Comments are made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing and the cosmological and astrophysical constraints on it.

  14. Test methods of total dose effects in very large scale integrated circuits

    International Nuclear Information System (INIS)

    He Chaohui; Geng Bin; He Baoping; Yao Yujuan; Li Yonghong; Peng Honglun; Lin Dongsheng; Zhou Hui; Chen Yusheng

    2004-01-01

    A kind of test method of total dose effects (TDE) is presented for very large scale integrated circuits (VLSI). The consumption current of devices is measured while function parameters of devices (or circuits) are measured. Then the relation between data errors and consumption current can be analyzed and mechanism of TDE in VLSI can be proposed. Experimental results of 60 Co γ TDEs are given for SRAMs, EEPROMs, FLASH ROMs and a kind of CPU

  15. Ultrasonic testing of large blocks for prestressed cast iron pressure vessels

    International Nuclear Information System (INIS)

    Stelling, H.A.

    1979-01-01

    Ultrasonic tests were made on plate specimen and large blocks of perlit cast iron with lamellar graphite. Aims of the investigations were the control of material porperties, the flaw detection and flaw classification. The material properties were classified by sound velocity and attenuation measurements. Flaw detection and flaw size estimation methods were modified with regard to the acoustic properties, the microstructure and the reflectivity of typical flaws in castings. Special localisation and flaw size estimation techniques are discussed. (orig.)

  16. Site Release Report for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits

    International Nuclear Information System (INIS)

    K.E. Rasmuson

    2002-01-01

    The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope and aspect were chosen for comparison to

  17. Site Release Reports for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits

    Energy Technology Data Exchange (ETDEWEB)

    K.E. Rasmuson

    2002-04-02

    The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope

  18. Illustration of the WPS benefit through BATMAN test series: Tests on large specimens under WPS loading configurations

    International Nuclear Information System (INIS)

    Yuritzinn, T.; Ferry, L.; Chapuliot, S.; Mongabure, P.; Moinereau, D.; Dahl, A.; Gilles, P.

    2008-01-01

    To study the effects of warm pre-stressing on the toughness of reactor pressure vessel steel, the 'Commissariat a l Energie Atomique', in collaboration with 'Electricite de France' and AREVA-NP, has made a study combining modeling and a series of experiments on large specimens submitted to a thermal shock or isothermal cooling. The tests were made on 18MND5 ferritic steel bars, containing a short or large fatigue pre-crack. The effect of 'warm pre-stressing' was confirmed, in the two cases of a fast thermal shock creating a gradient across the thickness of the bar and for gradual uniform cooling. In both cases, no propagation was observed during the thermal transient. Fracture occurred under low temperature conditions, at the end of the test when the tensile load was increased. The failure loads recorded were substantially higher than during pre-stressing. To illustrate the benefit of the WPS effect, numerical interpretations were performed using either global approach or local approach criteria. WPS effect and capability of models to predict it were then clearly shown. (authors)

  19. Thermal test of the insulation structure for LH 2 tank by using the large experimental apparatus

    Science.gov (United States)

    Kamiya, S.; Onishi, K.; Konshima, N.; Nishigaki, K.

    Conceptual designs of large mass LH 2 (liquid hydrogen) storage systems, whose capacity is 50,000 m3, have been studied in the Japanese hydrogen project, World Energy Network (WE-NET) [K. Fukuda, in: WE-NET Hydrogen Energy Symposium, 1999, P1-P41]. This study has concluded that their thermal insulation structures for the huge LH 2 tanks should be developed. Their actual insulation structures comprise not only the insulation material but also reinforced members and joints. To evaluate their thermal performance correctly, a large test specimen including reinforced members and joints will be necessary. After verifying the thermal performance of a developed large experimental apparatus [S. Kamiya, Cryogenics 40 (1) (2000) 35] for measuring the thermal conductance of various insulation structures, we tested two specimens, a vacuum multilayer insulation (MLI) with a glass fiber reinforced plastic (GFRP) support and a vacuum solid insulation (microtherm ®) with joints. The thermal background test for verifying the thermal design of the experimental apparatus showed that the background heat leak is 0.1 W, small enough to satisfy apparatus performance requirement. The thermal conductance measurements of specimens also showed that thermal heat fluxes of MLI with a GFRP support and microtherm ® are 8 and 5.4 W/m2, respectively.

  20. TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY

    International Nuclear Information System (INIS)

    Wang Xin; Chen Xuelei; Park, Changbom

    2012-01-01

    The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.

  1. Large Cryogenic Infrastructure for LHC Superconducting Magnet and Cryogenic Component Tests: Layout, Commissioning and Operational Experience

    International Nuclear Information System (INIS)

    Calzas, C.; Chanat, D.; Knoops, S.; Sanmarti, M.; Serio, L.

    2004-01-01

    The largest cryogenic test facility at CERN, located at Zone 18, is used to validate and to test all main components working at cryogenic temperature in the LHC (Large Hadron Collider) before final installation in the machine tunnel. In total about 1300 main dipoles, 400 main quadrupoles, 5 RF-modules, eight 1.8 K refrigeration units will be tested in the coming years.The test facility has been improved and upgraded over the last few years and the first 18 kW refrigerator for the LHC machine has been added to boost the cryogenic capacity for the area via a 25,000 liter liquid helium dewar. The existing 6 kW refrigerator, used for the LHC Test String experiments, will also be employed to commission LHC cryogenic components.We report on the design and layout of the test facility as well as the commissioning and the first 10,000 hours operational experience of the test facility and the 18 kW LHC refrigerator

  2. Incorporating Direct Rapid Immunohistochemical Testing into Large-Scale Wildlife Rabies Surveillance

    Directory of Open Access Journals (Sweden)

    Kevin Middel

    2017-06-01

    Full Text Available Following an incursion of the mid-Atlantic raccoon variant of the rabies virus into southern Ontario, Canada, in late 2015, the direct rapid immunohistochemical test for rabies (dRIT was employed on a large scale to establish the outbreak perimeter and to diagnose specific cases to inform rabies control management actions. In a 17-month period, 5800 wildlife carcasses were tested using the dRIT, of which 307 were identified as rabid. When compared with the gold standard fluorescent antibody test (FAT, the dRIT was found to have a sensitivity of 100% and a specificity of 98.2%. Positive and negative test agreement was shown to be 98.3% and 99.1%, respectively, with an overall test agreement of 98.8%. The average cost to test a sample was $3.13 CAD for materials, and hands-on technical time to complete the test is estimated at 0.55 h. The dRIT procedure was found to be accurate, fast, inexpensive, easy to learn and perform, and an excellent tool for monitoring the progression of a wildlife rabies incursion.

  3. A Large Hemi-Anechoic Enclosure for Community-Compatible Aeroacoustic Testing of Aircraft Propulsion Systems

    Science.gov (United States)

    Cooper, Beth A.

    1993-01-01

    A large hemi-anechoic (absorptive walls and acoustically hard floor) noise control enclosure has been erected around a complex of test stands at the NASA Lewis Research Center in Cleveland, Ohio. This new state-of-the-art Aeroacoustic Propulsion Laboratory (APL) provides an all-weather, semisecure test environment while limiting noise to acceptable levels in surrounding residential neighborhoods. The 39.6 m (130 ft) diameter geodesic dome structure houses the new Nozzle Aeroacoustic Test Rig (NATR), an ejector-powered M = 0.3 free jet facility for acoustic testing of supersonic aircraft exhaust nozzles and turbomachinery. A multi-axis, force-measuring Powered Lift Facility (PLF) stand for testing of Short Takeoff Vertical Landing (STOVL) vehicles is also located within the dome. The design of the Aeroacoustic Propulsion Laboratory efficiently accomodates the research functions of two separate test rigs, one of which (NATR) requires a specialized environment for taking acoustic measurements. Absorptive fiberglass wedge treatment on the interior surface of the dome provides a hemi-anechoic interior environment for obtaining the accurate acoustic measurements required to meet research program goals. The APL is the first known geodesic dome structure to incorporate transmission-loss properties as well as interior absorption into a free-standing, community-compatible, hemi-anechoic test facility.

  4. Using collaborative two-stage examinations to address test anxiety in a large enrollment gateway course.

    Science.gov (United States)

    Fournier, Kimberly A; Couret, Jannelle; Ramsay, Jason B; Caulkins, Joshua L

    2017-09-01

    Large enrollment foundational courses are perceived as "high stakes" because of their potential to act as barriers for progression to the next course or admittance to a program. The nature of gateway courses makes them ideal settings to explore the relationship between anxiety, pedagogical interventions, and student performance. Here, two-stage collaborative examinations were implemented to improve test-taking skills and address widespread test anxiety in an introductory human anatomy course. Test anxiety data were collected (using the Motivated Strategies for Learning Questionnaire) before the first examination and last examination. Most students experienced decreased test anxiety over the course of the semester; however, some students may have experienced performance limiting conditions due to test anxiety at the end of the semester based on academic ability in the course (in "C" students when compared to "A" students: P < 0.00006 and "B" students: P < 0.05), overall academic ability (in academically weaker students: P < 0.025), and demographic factors (in women: P < 0.025). The strongest performances on examinations were primarily observed in already academically strong students (mean individual performance: P < 0.000, mean group performance: P < 0.000). Furthermore, changes in test anxiety were not significantly associated with the group portion of the examinations. Patterns of changes in test anxiety over the course of the semester underscore a complex interaction between test anxiety, student background, and student performance. Results suggest that pathways for test anxiety in "high stakes" courses may be separate from the mechanisms responsible for the benefits of collaborative testing. Anat Sci Educ 10: 409-422. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  5. Evaluation of proxy tests for SFSN: evidence for mixed small and large fiber dysfunction.

    Directory of Open Access Journals (Sweden)

    Hamid Ebadi

    Full Text Available BACKGROUND: Though intra-epidermal nerve fiber density (IENFD is considered the gold standard for diagnosis of small fiber sensory neuropathy (SFSN, we aimed to determine if novel threshold values derived from standard tests of small or large fiber function could serve as diagnostic alternatives. METHODS: Seventy-four consecutive patients with painful polyneuropathy and normal nerve conduction studies (NCS were defined as SFSN cases or controls by distal IENFD <5.4 and ≥5.4 fibers/mm, respectively. Diagnostic performance of small fiber [cooling (CDT and heat perception (HP thresholds, axon reflex-mediated neurogenic vasodilatation] and large fiber function tests [vibration perception thresholds (VPT and sural nerve conduction parameters] were determined by receiver operating-characteristic (ROC curve analyses. RESULTS: The 26(35% SFSN cases had mean IENFD 3.3±1.7 fibers/mm and the 48(65% controls 9.9±2.9 fibers/mm. Male gender (p = 0.02 and older age (p = 0.02 were associated with SFSN cases compared to controls. VPT were higher and CDT lower in SFSN cases, but the largest magnitude of differences was observed for sural nerve amplitude. It had the greatest area under the ROC curve (0.75 compared to all other tests (p<0.001 for all comparisons and the optimal threshold value of ≤12 µV defined SFSN cases with 80% sensitivity and 72% specificity. CONCLUSION: In patients presenting with polyneuropathy manifestations and normal NCS, though small fiber function tests were intuitively considered the best alternative measures to predict reduced IENFD, their diagnostic performance was poor. Instead, novel threshold values within the normal range for large fiber tests should be considered as an alternative strategy to select subjects for skin biopsy in diagnostic protocols for SFSN.

  6. Development and tests of large nuclear turbo-generator welded rotors

    International Nuclear Information System (INIS)

    Colombie, H.; Thiery, M.; Rotzinger, R.; Pelissou, C.; Tabacco, C.; Fernagut, V.

    2015-01-01

    Turbo-generators require large forgings for the rotor and it is a worldwide practice to manufacture turbo-generator rotor bodies as single piece forgings. Rotors for nuclear applications (4-pole rotors design, 1500/1800 rpm) require forgings of up to 2.0 m diameter and ultra large ingots with weight more than 500 tons. Nowadays only few forge masters can deliver such forgings in the world. Based on the large welding experience Alstom has gained over decades on steam and gas turbines and Alstom's multi piece shrunk turbo-generator rotors, it was suggested to manufacture 4-pole turbo-generator rotors by welding the shaft from aligned cylindrical forgings. Compared to turbine welded rotors, the shaft of a turbo-generator rotor presents differences linked to dimensions/weight, weld depth and electrical application. The manufacture of a 2 disc model allowed to prove through electrical and mechanical analysis the reliability of the concept as well as the reliability of the manufacturing processes through material tests, micro sections, electrical component tests, weld geometry, welding processes (TIG,SAW,...), weld inspection (Ultrasonic testing, radiographic inspection,...) weld heat treatments and machining. Then a full rotor able to replace a single forging rotor was manufactured in order to validate and prove to potential customers the validity of the welded rotor technology. During the first order from EDF of a welded 900 MW spare rotor, the procedure for the Non Destructive Test on a slotted rotor was developed upon EDF request in order to compare future Non Destructive Testing with the finger print of the new rotor. This complete rotor was delivered to EDF in January 2013. This rotor is in operation in a nuclear unit since November 2013. (authors)

  7. PANDA: a Large Scale Multi-Purpose Test Facility for LWR Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Dreier, Joerg; Paladino, Domenico; Huggenberger, Max; Andreani, Michele [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Research Department, Paul Scherrer Institut (PSI), CH-5232 Villigen PSI (Switzerland); Yadigaroglu, George [ETH Zuerich, Technoparkstrasse 1, Einstein 22- CH-8005 Zuerich (Switzerland)

    2008-07-01

    PANDA is a large-scale multi-purpose thermal-hydraulics test facility, built and operated by PSI. Due to its modular structure, PANDA provides flexibility for a variety of applications, ranging from integral containment system investigations, primary system tests, component experiments to large-scale separate-effects tests. For many applications, the experimental results are directly used for example for concept demonstrations or for the characterisation of phenomena or components, but all the experimental data generated in the various test campaigns is unique and was or/and will still be widely used for the validation and improvement of a variety of computer codes, including codes with 3D capabilities, for reactor safety analysis. The paper provides an overview of the already completed and on-going research programs performed in the PANDA facility in the different area of applications, including the main results and conclusions of the investigations. In particular the advanced passive containment cooling system concept investigations of the SBWR, ESBWR as well as of the SWR1000 in relation to various aspects are presented and the main findings are summarised. Finally the goals, planned investigations and expected results of the on-going OECD project SETH-2 are presented. (authors)

  8. Design of the coolant system for the Large Coil Test Facility pulse coils

    International Nuclear Information System (INIS)

    Bridgman, C.; Ryan, T.L.

    1983-01-01

    The pulse coils will be a part of the Large Coil Test Facility in Oak Ridge, Tennessee, which is designed to test six large tokamak-type superconducting coils. The pulse coil set consists of two resistive coaxial solenoid coils, mounted so that their magnetic axis is perpendicular to the toroidal field lines of the test coil. The pulse coils provide transient vertical fields at test coil locations to simulate the pulsed vertical fields present in tokamak devices. The pulse coils are designed to be pulsed for 30 s every 150 s, which results in a Joule heating of 116 kW per coil. In order to provide this capability, the pulse coil coolant system is required to deliver 6.3 L/s (100 gpm) of subcooled liquid nitrogen at 10-atm absolute pressure. The coolant system can also cool down each pulse coil from room temperature to liquid nitrogen temperature. This paper provides details of the pumping and heat exchange equipment designed for the coolant system and of the associated instrumentation and controls

  9. PANDA: a Large Scale Multi-Purpose Test Facility for LWR Safety Research

    International Nuclear Information System (INIS)

    Dreier, Joerg; Paladino, Domenico; Huggenberger, Max; Andreani, Michele; Yadigaroglu, George

    2008-01-01

    PANDA is a large-scale multi-purpose thermal-hydraulics test facility, built and operated by PSI. Due to its modular structure, PANDA provides flexibility for a variety of applications, ranging from integral containment system investigations, primary system tests, component experiments to large-scale separate-effects tests. For many applications, the experimental results are directly used for example for concept demonstrations or for the characterisation of phenomena or components, but all the experimental data generated in the various test campaigns is unique and was or/and will still be widely used for the validation and improvement of a variety of computer codes, including codes with 3D capabilities, for reactor safety analysis. The paper provides an overview of the already completed and on-going research programs performed in the PANDA facility in the different area of applications, including the main results and conclusions of the investigations. In particular the advanced passive containment cooling system concept investigations of the SBWR, ESBWR as well as of the SWR1000 in relation to various aspects are presented and the main findings are summarised. Finally the goals, planned investigations and expected results of the on-going OECD project SETH-2 are presented. (authors)

  10. The large scale in-situ PRACLAY heater and seal tests in URL HADES, Mol, Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Xiangling Li; Guangjing Chen; Verstricht, Jan; Van Marcke, Philippe; Troullinos, Ioannis [ESV EURIDICE, Mol (Belgium)

    2013-07-01

    In Belgium, the URL HADES was constructed in the Boom Clay formation at the Mol site to investigate the feasibility of geological disposal in a clay formation. Since 1995, the URL R and D programme has focused on large scale demonstration tests like the PRACLAY Heater and Seal tests. The main objective of the Heater Test is to demonstrate that the thermal load generated by the heat-emitting waste will not jeopardise the safety functions of the host rock. The primary objective of the Seal Test is to provide suitable hydraulic boundary conditions for the Heater Test. The Seal Test also provides an opportunity to investigate the in-situ behaviour of a bentonite-based EBS. The PRACLAY gallery was constructed in 2007 and the hydraulic seal was installed in 2010. The bentonite is hydrated both naturally and artificially. The swelling, total pressure and pore pressure of the bentonite are continuously measured and analysed by numerical simulations to get a better understanding of this hydration processes. The timing of switching on the heater depends on the progress of the bentonite hydration, as a sufficient seal swelling is needed to fulfill its role. A set of conditions to be met for the heater switch-on and its schedule will be given. (authors)

  11. Large scale steam flow test: Pressure drop data and calculated pressure loss coefficients

    International Nuclear Information System (INIS)

    Meadows, J.B.; Spears, J.R.; Feder, A.R.; Moore, B.P.; Young, C.E.

    1993-12-01

    This report presents the result of large scale steam flow testing, 3 million to 7 million lbs/hr., conducted at approximate steam qualities of 25, 45, 70 and 100 percent (dry, saturated). It is concluded from the test data that reasonable estimates of piping component pressure loss coefficients for single phase flow in complex piping geometries can be calculated using available engineering literature. This includes the effects of nearby upstream and downstream components, compressibility, and internal obstructions, such as splitters, and ladder rungs on individual piping components. Despite expected uncertainties in the data resulting from the complexity of the piping geometry and two-phase flow, the test data support the conclusion that the predicted dry steam K-factors are accurate and provide useful insight into the effect of entrained liquid on the flow resistance. The K-factors calculated from the wet steam test data were compared to two-phase K-factors based on the Martinelli-Nelson pressure drop correlations. This comparison supports the concept of a two-phase multiplier for estimating the resistance of piping with liquid entrained into the flow. The test data in general appears to be reasonably consistent with the shape of a curve based on the Martinelli-Nelson correlation over the tested range of steam quality

  12. Large-Grain Superconducting Gun Cavity Testing Program Phase One Closing Report

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bellavia, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cullen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dai, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Degen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hahn, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Masi, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schultheiss, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seda, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kellerman, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tallerico, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Todd, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-10-31

    This report details the experimental configuration and RF testing results for the first phase of a large-grained niobium electron gun cavity testing program being conducted in the Small Vertical Testing Facility in the Collider-Accelerator Department. This testing is meant to explore multi-pacting in the cavity and shed light on the behavior of a counterpart cavity of identical geometry installed in the Energy Recovery LINAC being constructed in the Collider-Accelerator Department at Brookhaven National Laboratory. This test found that the Q of the large-grained cavity at 4 K reached ~6.5 × 108 and at 2 K reached a value of ~6 × 109. Both of these values are about a factor of 10 lower than would be expected for this type of cavity given the calculated surface resistance and the estimated geometry factor for this half-cell cavity. In addition, the cavity reached a peak voltage of 0.6 MV before there was sig-nificant decline in the Q value and a substantial increase in field emission. This relatively low volt-age, coupled with the low Q and considerable field emission suggest contamination of the cavity interior, possibly during experimental assembly. The results may also suggest that additional chemical etching of the interior surface of the cavity may be beneficial. Throughout the course of testing, various challenges arose including slow helium transfer to the cryostat and cable difficulties. These difficulties and others were eventually resolved, and the re-port discusses the operating experience of the experiment thus far and the plans for future work aimed at exploring the nature of multipacting with a copper cathode inserted into the cavity.

  13. Re-evaluation of the 1995 Hanford Large Scale Drum Fire Test Results

    International Nuclear Information System (INIS)

    Yang, J M

    2007-01-01

    A large-scale drum performance test was conducted at the Hanford Site in June 1995, in which over one hundred (100) 55-gal drums in each of two storage configurations were subjected to severe fuel pool fires. The two storage configurations in the test were pallet storage and rack storage. The description and results of the large-scale drum test at the Hanford Site were reported in WHC-SD-WM-TRP-246, ''Solid Waste Drum Array Fire Performance,'' Rev. 0, 1995. This was one of the main references used to develop the analytical methodology to predict drum failures in WHC-SD-SQA-ANAL-501, 'Fire Protection Guide for Waste Drum Storage Array,'' September 1996. Three drum failure modes were observed from the test reported in WHC-SD-WM-TRP-246. They consisted of seal failure, lid warping, and catastrophic lid ejection. There was no discernible failure criterion that distinguished one failure mode from another. Hence, all three failure modes were treated equally for the purpose of determining the number of failed drums. General observations from the results of the test are as follows: (lg b ullet) Trash expulsion was negligible. (lg b ullet) Flame impingement was identified as the main cause for failure. (lg b ullet) The range of drum temperatures at failure was 600 C to 800 C. This is above the yield strength temperature for steel, approximately 540 C (1,000 F). (lg b ullet) The critical heat flux required for failure is above 45 kW/m 2 . (lg b ullet) Fire propagation from one drum to the next was not observed. The statistical evaluation of the test results using, for example, the student's t-distribution, will demonstrate that the failure criteria for TRU waste drums currently employed at nuclear facilities are very conservative relative to the large-scale test results. Hence, the safety analysis utilizing the general criteria described in the five bullets above will lead to a technically robust and defensible product that bounds the potential consequences from postulated

  14. Mechanical design, analysis and testing of a large-range compliant microgripper

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2016-04-01

    Full Text Available This paper presents the mechanical design, analysis, fabrication, and testing procedures of a new large-range microgripper which is based on a flexible hinge structure. The uniqueness of the gripper is that the gripper arms not only provide large gripping range but also deliver approximately rectilinear movement as the displacement in nonworking direction is extremely small. The large gripping range is enabled by a mechanism design based on dual-stage flexure amplifier to magnify the stroke of piezoelectric actuator. The first-stage amplifier is a modified version of the Scott Russell (SR mechanism and the second-stage amplifier contains a parallel mechanism. The displacement amplification ratio of the modified SR mechanism in the gripper has been enlarged to 3.56 times of the conventional design. Analytical static models of the gripper mechanism are developed and validated through finite-element analysis (FEA simulation. Results show that the gripping range is over 720 µm with a resonant frequency of 70.7 Hz and negligible displacement in nonworking direction. The total amplification ratio of the input displacement is 16.13. Moreover, a prototype of the gripper is developed by using aluminium 7075 for experimental testing. Experimental results validate the analytical model and FEA simulation results. The proposed microgripper can be employed in various microassembly applications such as pick-and-place of optical fibre.

  15. Active self-testing noise measurement sensors for large-scale environmental sensor networks.

    Science.gov (United States)

    Domínguez, Federico; Cuong, Nguyen The; Reinoso, Felipe; Touhafi, Abdellah; Steenhaut, Kris

    2013-12-13

    Large-scale noise pollution sensor networks consist of hundreds of spatially distributed microphones that measure environmental noise. These networks provide historical and real-time environmental data to citizens and decision makers and are therefore a key technology to steer environmental policy. However, the high cost of certified environmental microphone sensors render large-scale environmental networks prohibitively expensive. Several environmental network projects have started using off-the-shelf low-cost microphone sensors to reduce their costs, but these sensors have higher failure rates and produce lower quality data. To offset this disadvantage, we developed a low-cost noise sensor that actively checks its condition and indirectly the integrity of the data it produces. The main design concept is to embed a 13 mm speaker in the noise sensor casing and, by regularly scheduling a frequency sweep, estimate the evolution of the microphone's frequency response over time. This paper presents our noise sensor's hardware and software design together with the results of a test deployment in a large-scale environmental network in Belgium. Our middle-range-value sensor (around €50) effectively detected all experienced malfunctions, in laboratory tests and outdoor deployments, with a few false positives. Future improvements could further lower the cost of our sensor below €10.

  16. The use of test scores from large-scale assessment surveys: psychometric and statistical considerations

    Directory of Open Access Journals (Sweden)

    Henry Braun

    2017-11-01

    Full Text Available Abstract Background Economists are making increasing use of measures of student achievement obtained through large-scale survey assessments such as NAEP, TIMSS, and PISA. The construction of these measures, employing plausible value (PV methodology, is quite different from that of the more familiar test scores associated with assessments such as the SAT or ACT. These differences have important implications both for utilization and interpretation. Although much has been written about PVs, it appears that there are still misconceptions about whether and how to employ them in secondary analyses. Methods We address a range of technical issues, including those raised in a recent article that was written to inform economists using these databases. First, an extensive review of the relevant literature was conducted, with particular attention to key publications that describe the derivation and psychometric characteristics of such achievement measures. Second, a simulation study was carried out to compare the statistical properties of estimates based on the use of PVs with those based on other, commonly used methods. Results It is shown, through both theoretical analysis and simulation, that under fairly general conditions appropriate use of PV yields approximately unbiased estimates of model parameters in regression analyses of large scale survey data. The superiority of the PV methodology is particularly evident when measures of student achievement are employed as explanatory variables. Conclusions The PV methodology used to report student test performance in large scale surveys remains the state-of-the-art for secondary analyses of these databases.

  17. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear-waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analysis indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. The success of the License Application (LA) hinges largely on how effectively we validate the process models that provide the basis for performance assessment. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests duration of 6-7 yr (including 4 yr of full-power heating) is required. The parallel use of highly accelerated, shorter-duration tests may provide timely information for the LA, provided that the applicability of the test results can be validated against ongoing nominal-rate heater tests

  18. Deep hydraulic tests in a large earth-slide rich in clay

    Science.gov (United States)

    Ronchetti, Francesco; Piccinini, Leonardo; Deiana, Manuela; Corsini, Alessandro

    2017-04-01

    Different hydraulic tests have been conducted and replicated in a large earth slide characterized by a landslide body that is rich in clay, has a mean thickness of 30 meters, and is located in the Northern Apennines, Italy. All the tests were performed to estimate the hydrogeological properties of the landslide and to design future mitigation measures. To define the geometry of the sliding mass, the stratigraphy in more than 15 boreholes was analyzed. The boreholes were subsequently equipped with inclinometers and open standpipe piezometers. According to the stratigraphy, the landslide body is characterized by the presence of gravel layers in a clay-rich matrix. This study compares the results from the different techniques applied to 2 boreholes, 5 open standpipe piezometers and 1 well. The number of tests performed for each test type were 31 slug tests (ST), 4 falling head tests (FT), 5 low-flow pumping tests (PT), 1 point dilution (PD) test, and 2 aquifer tests (AT). Moreover, the test data was evaluated with different solutions. The ST data was evaluated with the Hvorslev and KGS solutions; the FT data was evaluated with the AGI and Hvorslev solutions; the PT data was evaluated with the Muskat solutions; the AT data was evaluated with the Theis, Cooper-Jacob, Neuman, Moench and Tartakosky-Neuman solutions; and the PD test data was evaluated with the classical solution where Darcy velocity is calculated as a function of the rate of dilution. The results show that hydraulic conductivity (K), storage (S) and specific storage (Ss) vary in the horizontal plane and with the depth (K ranges between 1.0E-5 and 1.0E-8 m/s; S ranges between 4.0E-3 and 5E-5; and Ss ranges between 1.0E-3 and 3.0E-3 1/m). The horizontal and vertical variability is correlated with the lithologic heterogeneity highlighted by the borehole stratigraphy. Moreover, all the hydraulic tests conducted on the landslide body give highly consistent results. Comparison of results derived from different

  19. In situ vitrification: Preliminary results from the first large-scale radioactive test

    International Nuclear Information System (INIS)

    Buelt, J.L.; Westsik, J.H.

    1988-02-01

    The first large-scale radioactive test (LSRT) of In Situ Vitrification (ISV) has been completed. In Situ Vitrification is a process whereby joule heating immobilizes contaminated soil in place by converting it to a durable glass and crystalline waste form. The LSRT was conducted at an actual transuranic contaminated soil site on the Department of Energy's Hanford Site. The test had two objectives: (1) determine large-scale processing performance and (2) produce a waste form that can be fully evaluated as a potential technique for the final disposal of transuranic-contaminated soil sites at Hanford. This accomplishment has provided technical data to evaluate the ISV process for its potential in the final disposition of transuranic-contaminated soil sites at Hanford. Because of the test's successful completion, within a year technical data on the vitrified soil will be available to determine how well the process incorporates transuranics into the waste form and how well the form resists leaching of transuranics. Preliminary results available include retention of transuranics and other elements within the waste form during processing and the efficiency of the off-gas treatment system in removing contaminants from the gaseous effluents. 13 refs., 10 figs., 5 tabs

  20. Calculating p-values and their significances with the Energy Test for large datasets

    Science.gov (United States)

    Barter, W.; Burr, C.; Parkes, C.

    2018-04-01

    The energy test method is a multi-dimensional test of whether two samples are consistent with arising from the same underlying population, through the calculation of a single test statistic (called the T-value). The method has recently been used in particle physics to search for samples that differ due to CP violation. The generalised extreme value function has previously been used to describe the distribution of T-values under the null hypothesis that the two samples are drawn from the same underlying population. We show that, in a simple test case, the distribution is not sufficiently well described by the generalised extreme value function. We present a new method, where the distribution of T-values under the null hypothesis when comparing two large samples can be found by scaling the distribution found when comparing small samples drawn from the same population. This method can then be used to quickly calculate the p-values associated with the results of the test.

  1. Second-Generation Large Civil Tiltrotor 7- by 10-Foot Wind Tunnel Test Data Report

    Science.gov (United States)

    Theodore, Colin R.; Russell, Carl R.; Willink, Gina C.; Pete, Ashley E.; Adibi, Sierra A.; Ewert, Adam; Theuns, Lieselotte; Beierle, Connor

    2016-01-01

    An approximately 6-percent scale model of the NASA Second-Generation Large Civil Tiltrotor (LCTR2) Aircraft was tested in the U.S. Army 7- by 10-Foot Wind Tunnel at NASA Ames Research Center January 4 to April 19, 2012, and September 18 to November 1, 2013. The full model was tested, along with modified versions in order to determine the effects of the wing tip extensions and nacelles; the wing was also tested separately in the various configurations. In both cases, the wing and nacelles used were adopted from the U.S. Army High Efficiency Tilt Rotor (HETR) aircraft, in order to limit the cost of the experiment. The full airframe was tested in high-speed cruise and low-speed hover flight conditions, while the wing was tested only in cruise conditions, with Reynolds numbers ranging from 0 to 1.4 million. In all cases, the external scale system of the wind tunnel was used to collect data. Both models were mounted to the scale using two support struts attached underneath the wing; the full airframe model also used a third strut attached at the tail. The collected data provides insight into the performance of the preliminary design of the LCTR2 and will be used for computational fluid dynamics (CFD) validation and the development of flight dynamics simulation models.

  2. Large scale gas injection test (Lasgit) performed at the Aespoe Hard Rock Laboratory. Summary report 2008

    International Nuclear Information System (INIS)

    Cuss, R.J.; Harrington, J.F.; Noy, D.J.

    2010-02-01

    This report describes the set-up, operation and observations from the first 1,385 days (3.8 years) of the large scale gas injection test (Lasgit) experiment conducted at the Aespoe Hard Rock Laboratory. During this time the bentonite buffer has been artificially hydrated and has given new insight into the evolution of the buffer. After 2 years (849 days) of artificial hydration a canister filter was identified to perform a series of hydraulic and gas tests, a period that lasted 268 days. The results from the gas test showed that the full-scale bentonite buffer behaved in a similar way to previous laboratory experiments. This confirms the up-scaling of laboratory observations with the addition of considerable information on the stress responses throughout the deposition hole. During the gas testing stage, the buffer was continued to artificially hydrate. Hydraulic results, from controlled and uncontrolled events, show that the buffer continues to mature and has yet to reach full maturation. Lasgit has yielded high quality data relating to the hydration of the bentonite and the evolution in hydrogeological properties adjacent to the deposition hole. The initial hydraulic and gas injection tests confirm the correct working of all control and data acquisition systems. Lasgit has been in successful operation for in excess of 1,385 days

  3. Large scale gas injection test (Lasgit) performed at the Aespoe Hard Rock Laboratory. Summary report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cuss, R.J.; Harrington, J.F.; Noy, D.J. (British Geological Survey (United Kingdom))

    2010-02-15

    This report describes the set-up, operation and observations from the first 1,385 days (3.8 years) of the large scale gas injection test (Lasgit) experiment conducted at the Aespoe Hard Rock Laboratory. During this time the bentonite buffer has been artificially hydrated and has given new insight into the evolution of the buffer. After 2 years (849 days) of artificial hydration a canister filter was identified to perform a series of hydraulic and gas tests, a period that lasted 268 days. The results from the gas test showed that the full-scale bentonite buffer behaved in a similar way to previous laboratory experiments. This confirms the up-scaling of laboratory observations with the addition of considerable information on the stress responses throughout the deposition hole. During the gas testing stage, the buffer was continued to artificially hydrate. Hydraulic results, from controlled and uncontrolled events, show that the buffer continues to mature and has yet to reach full maturation. Lasgit has yielded high quality data relating to the hydration of the bentonite and the evolution in hydrogeological properties adjacent to the deposition hole. The initial hydraulic and gas injection tests confirm the correct working of all control and data acquisition systems. Lasgit has been in successful operation for in excess of 1,385 days

  4. Scramjet test flow reconstruction for a large-scale expansion tube, Part 2: axisymmetric CFD analysis

    Science.gov (United States)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2017-11-01

    This paper presents the second part of a study aiming to accurately characterise a Mach 10 scramjet test flow generated using a large free-piston-driven expansion tube. Part 1 described the experimental set-up, the quasi-one-dimensional simulation of the full facility, and the hybrid analysis technique used to compute the nozzle exit test flow properties. The second stage of the hybrid analysis applies the computed 1-D shock tube flow history as an inflow to a high-fidelity two-dimensional-axisymmetric analysis of the acceleration tube. The acceleration tube exit flow history is then applied as an inflow to a further refined axisymmetric nozzle model, providing the final nozzle exit test flow properties and thereby completing the analysis. This paper presents the results of the axisymmetric analyses. These simulations are shown to closely reproduce experimentally measured shock speeds and acceleration tube static pressure histories, as well as nozzle centreline static and impact pressure histories. The hybrid scheme less successfully predicts the diameter of the core test flow; however, this property is readily measured through experimental pitot surveys. In combination, the full test flow history can be accurately determined.

  5. A new cryogenic test facility for large superconducting devices at CERN

    CERN Document Server

    Perin, A; Serio, L; Stewart, L; Benda, V; Bremer, J; Pirotte, O

    2015-01-01

    To expand CERN testing capability to superconducting devices that cannot be installed in existing test facilities because of their size and/or mass, CERN is building a new cryogenic test facility for large and heavy devices. The first devices to be tested in the facility will be the S-FRS superconducting magnets for the FAIR project that is currently under construction at the GSI Research Center in Darmstadt, Germany. The facility will include a renovated cold box with 1.2 kW at 4.5 K equivalent power with its compression system, two independent 15 kW liquid nitrogen precooling and warm-up units, as well as a dedicated cryogenic distribution system providing cooling power to three independent test benches. The article presents the main input parameters and constraints used to define the cryogenic system and its infrastructure. The chosen layout and configuration of the facility is presented and the characteristics of the main components are described.

  6. Strength and permeability tests on ultra-large Stripa granite core

    International Nuclear Information System (INIS)

    Thorpe, R.; Watkins, D.J.; Ralph, W.E.; Hsu, R.; Flexser, S.

    1980-09-01

    This report presents the results of laboratory tests on a 1 meter diameter by 2 meters high sample of granitic (quartz monzonite) rock from the Stripa mine in Sweden. The tests were designed to study the mechanical and hydraulic properties of the rock. Injection and withdrawal permeability tests were performed at several levels of axial stress using a borehole through the long axis of the core. The sample was pervasively fractured and its behavior under uniaxial compressive stress was very complicated. Its stress-strain behavior at low stresses was generally similar to that of small cores containing single healed fractures. However, this large core failed at a peak stress of 7.55 MPa, much less than the typical strength measured in small cores. The complex failure mechanism included a significant creep component. The sample was highly permeable, with flows-per-unit head ranging from 0.11 to 1.55 cm 2 /sec. Initial application of axial load caused a decrease in permeability, but this was followed by rapid increase in conductivity coincident with the failure of the core. The hydraulic regime in the fracture system was too intricate to be satisfactorily modeled by simple analogs based on the observed closure of the principal fractures. The test results contribute to the data base being compiled for the rock mass at the Stripa site, but their proper application will require synthesis of results from several laboratory and in situ test programs

  7. High Energy Performance Tests of Large Volume LaBr{sub 3}:Ce Detector

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A.; Gondal, M.A.; Khiari, F.Z.; Dastageer, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M.M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2015-07-01

    High energy prompt gamma ray tests of a large volume cylindrical 100 mm x 100 mm (height x diameter) LaBr{sub 3}:Ce detector were carried out using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. In this study prompt gamma-rays yield were measured from water samples contaminated with toxic elements such nickel, chromium and mercury compounds with gamma ray energies up to 10 MeV. The experimental yield of prompt gamma-rays from toxic elements were compared with the results of Monte Carlo calculations. In spite of its higher intrinsic background due to its larger volume, an excellent agreement between the experimental and calculated yields of high energy gamma-rays from Ni, Cr and Hg samples has been achieved for the large volume LaBr{sub 3}:Ce detector. (authors)

  8. Large-scale numerical simulations of star formation put to the test

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Haugbølle, Troels

    2016-01-01

    (SEDs), calculated from large-scalenumerical simulations, to observational studies, thereby aiding in boththe interpretation of the observations and in testing the fidelity ofthe simulations. Methods: The adaptive mesh refinement code,RAMSES, is used to simulate the evolution of a 5 pc × 5 pc ×5 pc...... to calculate evolutionary tracers Tbol andLsmm/Lbol. It is shown that, while the observeddistributions of the tracers are well matched by the simulation, theygenerally do a poor job of tracking the protostellar ages. Disks formearly in the simulation, with 40% of the Class 0 protostars beingencircled by one...

  9. Testing the big bang: Light elements, neutrinos, dark matter and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (United States) Fermi National Accelerator Lab., Batavia, IL (United States))

    1991-06-01

    In this series of lectures, several experimental and observational tests of the standard cosmological model are examined. In particular, detailed discussion is presented regarding nucleosynthesis, the light element abundances and neutrino counting; the dark matter problems; and the formation of galaxies and large-scale structure. Comments will also be made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing'' and the cosmological and astrophysical constraints on it. 126 refs., 8 figs., 2 tabs.

  10. Large scale FCI experiments in subassembly geometry. Test facility and model experiments

    International Nuclear Information System (INIS)

    Beutel, H.; Gast, K.

    A program is outlined for the study of fuel/coolant interaction under SNR conditions. The program consists of a) under water explosion experiments with full size models of the SNR-core, in which the fuel/coolant system is simulated by a pyrotechnic mixture. b) large scale fuel/coolant interaction experiments with up to 5kg of molten UO 2 interacting with liquid sodium at 300 deg C to 600 deg C in a highly instrumented test facility simulating an SNR subassembly. The experimental results will be compared to theoretical models under development at Karlsruhe. Commencement of the experiments is expected for the beginning of 1975

  11. Usability Testing of a Large, Multidisciplinary Library Database: Basic Search and Visual Search

    Directory of Open Access Journals (Sweden)

    Jody Condit Fagan

    2006-09-01

    Full Text Available Visual search interfaces have been shown by researchers to assist users with information search and retrieval. Recently, several major library vendors have added visual search interfaces or functions to their products. For public service librarians, perhaps the most critical area of interest is the extent to which visual search interfaces and text-based search interfaces support research. This study presents the results of eight full-scale usability tests of both the EBSCOhost Basic Search and Visual Search in the context of a large liberal arts university.

  12. A possible early experimental test for a large ΔG(x,Q2)

    International Nuclear Information System (INIS)

    Sivers, D.; Ramsey, G.

    1988-01-01

    A proposal that the net spin carried by gluons in a polarized proton may be very large compared to 1/2 has recently received considerable theoretical attention. There exists a unique opportunity to test for this dramatic possibility using an existing experimental setup. We urge the consideration of a precision measurement (+-10μb) of Δσ/sub L//sup jet/(pp; p 0 ,√s) at p 0 2 = 5 GeV 2 and s = 400 GeV 2 using the Fermilab polarized beam facility. 10 refs

  13. K Basin Sludge Conditioning Testing. Nitric Acid Dissolution Testing of K East Area Sludge Composite, Small- and Large-Scale Testing

    International Nuclear Information System (INIS)

    Carlson, C.D.; Delegard, C.H.; Burgeson, I.E.; Schmidt, A.J.; Silvers, K.L.

    1998-01-01

    This report describes work performed by Pacific Northwest National Laboratory (PNNL) for Numatec Hanford Corporation (NHC) to support the development of the K Basin Sludge Treatment System. For this work, testing was performed to examine the dissolution behavior of a K East Basin floor and Weasel Pit sludge composite, referred to as K East area sludge composite, in nitric acid at the following concentrations: 2 M, 4 M, 6 M and 7.8 M. With the exception of one high solids loading test the nitric acid was added at 4X the stoichiometric requirement (assuming 100% of the sludge was uranium metal). The dissolution tests were conducted at boiling temperatures for 24 hours. Most of the tests were conducted with approximately2.5 g of sludge (dry basis). The high solids loading test was conducted with approximately7 g of sludge. A large-scale dissolution test was conducted with 26.5 g of sludge and 620 mL of 6 M nitric acid. The objectives of this test were to (1) generate a sufficient quantity of acid-insoluble residual solids for use in leaching studies, and (2) examine the dissolution behavior of the sludge composite at a larger scale

  14. A large-scale radiometric micro-quantitative complement fixation test for serum antibody titration

    International Nuclear Information System (INIS)

    Bengali, Z.H.; Levine, P.H.; Das, S.R.

    1980-01-01

    A micro-quantitative complement fixation (CF) procedure based on 51 Cr release is described. The method employs 50% hemolysis as end point and the alternation equation to calculate the amount of complement involved in the hemolytic reaction. Compared to the conventional CF tests, the radiometric procedure described here is very precise and consistently reproducible. Also, since only 3 4-fold dilutions of sera are used for the titration of antibodies over a wide range of concentrations, the test is very concise and is economical to perform. Its format is amenable to automation and computerization. This radioimetric CF procedure is thus most useful for large-scale immunological research and epidemiological surveilance studies. (Auth.)

  15. Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests

    Directory of Open Access Journals (Sweden)

    Xijia Gu

    2010-08-01

    Full Text Available We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor.

  16. Test of Relativistic Gravity for Propulsion at the Large Hadron Collider

    Science.gov (United States)

    Felber, Franklin

    2010-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  17. Materials of large wind turbine blades: Recent results in testing and modeling

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl; Nijssen, Rogier

    2012-01-01

    The reliability of rotor blades is the pre-condition for the development and wide use of large wind turbines. In order to accurately predict and improve the wind turbine blade behavior, three main aspects of the reliability and strength of rotor blades were considered: (i) development of methods...... of the effect of the microstructure of wind turbine blade composites on their strength and ways of microstructural optimization of the materials. By testing reference coupons, the effect of testing parameters (temperature and frequency) on the lifetime of blade composites was investigated, and the input data...... clustering, misalignments, interface properties and other factors on the strength and lifetime of the wind turbine blade materials were investigated in the micromechanical finite element simulations. The results described in this paper stem from the Rotor Structure and Materials task of the UPWIND project...

  18. Mobile work station concept for assembly of large space structures (zero gravity simulation tests)

    Science.gov (United States)

    Heard, W. L., Jr.; Bush, H. G.; Wallsom, R. E.; Jensen, J. K.

    1982-03-01

    The concept presented is intended to enhance astronaut assembly of truss structure that is either too large or complex to fold for efficient Shuttle delivery to orbit. The potential of augmented astronaut assembly is illustrated by applying the result of the tests to a barebones assembly of a truss structure. If this structure were assembled from the same nestable struts that were used in the Mobile Work Station assembly tests, the spacecraft would be 55 meters in diameter and consist of about 500 struts. The struts could be packaged in less than 1/2% of the Shuttle cargo bay volume and would take up approximately 3% of the mass lift capability. They could be assembled in approximately four hours. This assembly concept for erectable structures is not only feasible, but could be used to significant economic advantage by permitting the superior packaging feature of erectable structures to be exploited and thereby reduce expensive Shuttle delivery flights.

  19. Large scale testing of nitinol shape memory alloy devices for retrofitting of bridges

    International Nuclear Information System (INIS)

    Johnson, Rita; Emmanuel Maragakis, M; Saiid Saiidi, M; Padgett, Jamie E; DesRoches, Reginald

    2008-01-01

    A large scale testing program was conducted to determine the effects of shape memory alloy (SMA) restrainer cables on the seismic performance of in-span hinges of a representative multiple-frame concrete box girder bridge subjected to earthquake excitations. Another objective of the study was to compare the performance of SMA restrainers to that of traditional steel restrainers as restraining devices for reducing hinge displacement and the likelihood of collapse during earthquakes. The results of the tests show that SMA restrainers performed very well as restraining devices. The forces in the SMA and steel restrainers were comparable. However, the SMA restrainer cables had minimal residual strain after repeated loading and exhibited the ability to undergo many cycles with little strength and stiffness degradation. In addition, the hysteretic damping that was observed in the larger ground accelerations demonstrated the ability of the materials to dissipate energy. An analytical study was conducted to assess the anticipated seismic response of the test setup and evaluate the accuracy of the analytical model. The results of the analytical simulation illustrate that the analytical model was able to match the responses from the experimental tests, including peak stresses, strains, forces, and hinge openings

  20. Detailed design of the large-bore 8 T superconducting magnet for the NAFASSY test facility

    Science.gov (United States)

    Corato, V.; Affinito, L.; Anemona, A.; Besi Vetrella, U.; Di Zenobio, A.; Fiamozzi Zignani, C.; Freda, R.; Messina, G.; Muzzi, L.; Perrella, M.; Reccia, L.; Tomassetti, G.; Turtù, S.; della Corte, A.

    2015-03-01

    The ‘NAFASSY’ (NAtional FAcility for Superconducting SYstems) facility is designed to test wound conductor samples under high-field conditions at variable temperatures. Due to its unique features, it is reasonable to assume that in the near future NAFASSY will have a preeminent role at the international level in the qualification of long coiled cables in operative conditions. The magnetic system consists of a large warm bore background solenoid, made up of three series-connected grading sections obtained by winding three different Nb3Sn Cable-in-Conduit Conductors. Thanks to the financial support of the Italian Ministry for University and Research the low-field coil is currently under production. The design has been properly modified to allow the system to operate also as a stand-alone facility, with an inner bore diameter of 1144 mm. This magnet is able to provide about 7 T on its axis and about 8 T close to the insert inner radius, giving the possibility of performing a test relevant for large-sized NbTi or medium-field Nb3Sn conductors. The detailed design of the 8 T magnet, including the electro-magnetic, structural and thermo-hydraulic analysis, is here reported, as well as the production status.

  1. In Situ Vitrification preliminary results from the first large-scale radioactive test

    International Nuclear Information System (INIS)

    Buelt, J.L.; Westsik, J.H.

    1988-01-01

    The first large-scale radioactive test (LSRT) of In Situ Vitrification (ISV) has been completed. In Situ Vitrification is a process whereby joule heating immobilizes contaminated soil in place by converting it to a durable glass and crystalline waste form. The LSRT was conducted at an actual transuranic contaminated soil site on the Department of Energy's Hanford Site. The test had two objectives: 1) determine large-scale processing performance and 2) produce a waste form that can be fully evaluated as a potential technique for the final disposal of transuranic-contaminated soil sites at Hanford. This accomplishment has provided technical data to evaluate the ISV process for its potential in the final disposition of transuranic-contaminated soil sites at Hanford. The LSRT was completed in June 1987 after 295 hours of operation and 460 MWh of electrical energy dissipated to the molten soil. This resulted in a minimum of a 450-t block of vitrified soil extending to a depth of 7.3m (24 ft). The primary contaminants vitrified during the demonstration were Pu and Am transuranics, but also included up to 26,000 ppm fluorides. Preliminary data show that their retention in the vitrified product exceeded predictions meaning that fewer contaminants needed to be removed from the gaseous effluents by the processing equipment. The gaseous effluents were contained and treated throughout the run; that is, no radioactive or hazardous chemical releases were detected

  2. Noise Localization Method for Model Tests in a Large Cavitation Tunnel Using a Hydrophone Array

    Directory of Open Access Journals (Sweden)

    Cheolsoo Park

    2016-02-01

    Full Text Available Model tests are performed in order to predict the noise level of a full ship and to control its noise signature. Localizing noise sources in the model test is therefore an important research subject along with measuring noise levels. In this paper, a noise localization method using a hydrophone array in a large cavitation tunnel is presented. The 45-channel hydrophone array was designed using a global optimization technique for noise measurement. A set of noise experiments was performed in the KRISO (Korea Research Institute of Ships & Ocean Engineering large cavitation tunnel using scaled models, including a ship with a single propeller, a ship with twin propellers and an underwater vehicle. The incoherent broadband processors defined based on the Bartlett and the minimum variance (MV processors were applied to the measured data. The results of data analysis and localization are presented in the paper. Finally, it is shown that the mechanical noise, as well as the propeller noise can be successfully localized using the proposed localization method.

  3. Static Pull Testing of a New Type of Large Deformation Cable with Constant Resistance

    Directory of Open Access Journals (Sweden)

    Zhigang Tao

    2017-01-01

    Full Text Available A new type of energy-absorbing cable, Constant-Resistance Large Deformation cable (CRLD cable with three different specifications, has been recently developed and tested. An effective cable should occupy the ability of absorbing deformation energy from these geodisaster loads and additionally must be able to yield with the sliding mass movements and plastic deformation over large distances at high displacement rates. The new cable mainly consists of constant-resistance casing tube and frictional cone unit that transfers the load from the slope. When experiencing a static or dynamic load and especially the load exceeding the constant resistance force (CR-F, a static friction force derived from the movement of frictional cone unit in casing tube of CRLD cable, the frictional cone unit will move in the casing tube along the axis and absorb deformation energy, accordingly. In order to assess the performance of three different specified cables in situ, a series of field static pull tests have been performed. The results showed that the first type of CRLD cable can yield 2000 mm displacement while acting 850 kN static pull load, which is superior to that of other two types, analyzing based on the length of the displacement and the level of static pull load.

  4. Test-retest reliability of trunk motor variability measured by large-array surface electromyography.

    Science.gov (United States)

    Abboud, Jacques; Nougarou, François; Loranger, Michel; Descarreaux, Martin

    2015-01-01

    The objective of this study was to evaluate the test-retest reliability of the trunk muscle activity distribution in asymptomatic participants during muscle fatigue using large-array surface electromyography (EMG). Trunk muscle activity distribution was evaluated twice, with 3 to 4 days between them, in 27 asymptomatic volunteers using large-array surface EMG. Motor variability, assessed with 2 different variables (the centroid coordinates of the root mean square map and the dispersion variable), was evaluated during a low back muscle fatigue task. Test-retest reliability of muscle activity distribution was obtained using Pearson correlation coefficients. A shift in the distribution of EMG amplitude toward the lateral-caudal region of the lumbar erector spinae induced by muscle fatigue was observed. Moderate to very strong correlations were found between both sessions in the last 3 phases of the fatigue task for both motor variability variables, whereas weak to moderate correlations were found in the first phases of the fatigue task only for the dispersion variable. These findings show that, in asymptomatic participants, patterns of EMG activity are less reliable in initial stages of muscle fatigue, whereas later stages are characterized by highly reliable patterns of EMG activity. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  5. Large scale access tests and online interfaces to ATLAS conditions databases

    International Nuclear Information System (INIS)

    Amorim, A; Lopes, L; Pereira, P; Simoes, J; Soloviev, I; Burckhart, D; Schmitt, J V D; Caprini, M; Kolos, S

    2008-01-01

    The access of the ATLAS Trigger and Data Acquisition (TDAQ) system to the ATLAS Conditions Databases sets strong reliability and performance requirements on the database storage and access infrastructures. Several applications were developed to support the integration of Conditions database access with the online services in TDAQ, including the interface to the Information Services (IS) and to the TDAQ Configuration Databases. The information storage requirements were the motivation for the ONline A Synchronous Interface to COOL (ONASIC) from the Information Service (IS) to LCG/COOL databases. ONASIC avoids the possible backpressure from Online Database servers by managing a local cache. In parallel, OKS2COOL was developed to store Configuration Databases into an Offline Database with history record. The DBStressor application was developed to test and stress the access to the Conditions database using the LCG/COOL interface while operating in an integrated way as a TDAQ application. The performance scaling of simultaneous Conditions database read accesses was studied in the context of the ATLAS High Level Trigger large computing farms. A large set of tests were performed involving up to 1000 computing nodes that simultaneously accessed the LCG central database server infrastructure at CERN

  6. A new modification of summary-based analysis method for large software system testing

    Directory of Open Access Journals (Sweden)

    A. V. Sidorin

    2015-01-01

    Full Text Available The automated testing tools becoming a frequent practice require thorough computer-aided testing of large software systems, including system inter-component interfaces. To achieve a good coverage, one should overcome scalability problems of different methods of analysis. These problems arise from impossibility to analyze all the execution paths. The objective of this research is to build a method for inter-procedural analysis, which efficiency enables us to analyse large software systems (such as Android OS codebase as a whole for a reasonable time (no more than 4 hours. This article reviews existing methods of software analysis to detect their potential defects. It focuses on the symbolic execution method since it is widely used both in static analysis of source code and in hybrid analysis of object files and intermediate representation (concolic testing. The method of symbolic execution involves separation of a set of input data values into equivalence classes while choosing an execution path. The paper also considers advantages of this method and its shortcomings. One of the main scalability problems is related to inter-procedural analysis. Analysis time grows rapidly if an inlining method is used for inter-procedural analysis. So this work proposes a summary-based analysis method to solve scalability problems. Clang Static Analyzer, an open source static analyzer (a part of the LLVM project, has been chosen as a target system. It allows us to compare performance of inlining and summary-based inter-procedural analysis. A mathematical model for preliminary estimations is described in order to identify possible factors of performance improvement.

  7. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Mirarchi, D.; Redaelli, S.; Scandale, W.; Hall, G.

    2017-01-01

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going. (orig.)

  8. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    Science.gov (United States)

    Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.

    2017-06-01

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going.

  9. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Mirarchi, D.; Redaelli, S.; Scandale, W. [CERN, European Organization for Nuclear Research, Geneva 23 (Switzerland); Hall, G. [Imperial College, Blackett Laboratory, London (United Kingdom)

    2017-06-15

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going. (orig.)

  10. Rapid impact testing for quantitative assessment of large populations of bridges

    Science.gov (United States)

    Zhou, Yun; Prader, John; DeVitis, John; Deal, Adrienne; Zhang, Jian; Moon, Franklin; Aktan, A. Emin

    2011-04-01

    Although the widely acknowledged shortcomings of visual inspection have fueled significant advances in the areas of non-destructive evaluation and structural health monitoring (SHM) over the last several decades, the actual practice of bridge assessment has remained largely unchanged. The authors believe the lack of adoption, especially of SHM technologies, is related to the 'single structure' scenarios that drive most research. To overcome this, the authors have developed a concept for a rapid single-input, multiple-output (SIMO) impact testing device that will be capable of capturing modal parameters and estimating flexibility/deflection basins of common highway bridges during routine inspections. The device is composed of a trailer-mounted impact source (capable of delivering a 50 kip impact) and retractable sensor arms, and will be controlled by an automated data acquisition, processing and modal parameter estimation software. The research presented in this paper covers (a) the theoretical basis for SISO, SIMO and MIMO impact testing to estimate flexibility, (b) proof of concept numerical studies using a finite element model, and (c) a pilot implementation on an operating highway bridge. Results indicate that the proposed approach can estimate modal flexibility within a few percent of static flexibility; however, the estimated modal flexibility matrix is only reliable for the substructures associated with the various SIMO tests. To overcome this shortcoming, a modal 'stitching' approach for substructure integration to estimate the full Eigen vector matrix is developed, and preliminary results of these methods are also presented.

  11. Sampling based uncertainty analysis of 10% hot leg break LOCA in large scale test facility

    International Nuclear Information System (INIS)

    Sengupta, Samiran; Kraina, V.; Dubey, S. K.; Rao, R. S.; Gupta, S. K.

    2010-01-01

    Sampling based uncertainty analysis was carried out to quantify uncertainty in predictions of best estimate code RELAP5/MOD3.2 for a thermal hydraulic test (10% hot leg break LOCA) performed in the Large Scale Test Facility (LSTF) as a part of an IAEA coordinated research project. The nodalisation of the test facility was qualified for both steady state and transient level by systematically applying the procedures led by uncertainty methodology based on accuracy extrapolation (UMAE); uncertainty analysis was carried out using the Latin hypercube sampling (LHS) method to evaluate uncertainty for ten input parameters. Sixteen output parameters were selected for uncertainty evaluation and uncertainty band between 5 th and 95 th percentile of the output parameters were evaluated. It was observed that the uncertainty band for the primary pressure during two phase blowdown is larger than that of the remaining period. Similarly, a larger uncertainty band is observed relating to accumulator injection flow during reflood phase. Importance analysis was also carried out and standard rank regression coefficients were computed to quantify the effect of each individual input parameter on output parameters. It was observed that the break discharge coefficient is the most important uncertain parameter relating to the prediction of all the primary side parameters and that the steam generator (SG) relief pressure setting is the most important parameter in predicting the SG secondary pressure

  12. Model design for Large-Scale Seismic Test Program at Hualien, Taiwan

    International Nuclear Information System (INIS)

    Tang, H.T.; Graves, H.L.; Chen, P.C.

    1991-01-01

    The Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, is a follow-on to the soil-structure interaction (SSI) experiments at Lotung, Taiwan. The planned SSI studies will be performed at a stiff soil site in Hualien, Taiwan, that historically has had slightly more destructive earthquakes in the past than Lotung. The LSST is a joint effort among many interested parties. Electric Power Research Institute (EPRI) and Taipower are the organizers of the program and have the lead in planning and managing the program. Other organizations participating in the LSST program are US Nuclear Regulatory Commission (NRC), the Central Research Institute of Electric Power Industry (CRIEPI), the Tokyo Electric Power Company (TEPCO), the Commissariat A L'Energie Atomique (CEA), Electricite de France (EdF) and Framatome. The LSST was initiated in January 1990, and is envisioned to be five years in duration. Based on the assumption of stiff soil and confirmed by soil boring and geophysical results the test model was designed to provide data needed for SSI studies covering: free-field input, nonlinear soil response, non-rigid body SSI, torsional response, kinematic interaction, spatial incoherency and other effects. Taipower had the lead in design of the test model and received significant input from other LSST members. Questions raised by LSST members were on embedment effects, model stiffness, base shear, and openings for equipment. This paper describes progress in site preparation, design and construction of the model and development of an instrumentation plan

  13. LOFT/LP-02-6, Loss of Fluid Test, 1. OECD Large Break Experiment

    International Nuclear Information System (INIS)

    1989-01-01

    1 - Description of test facility: The LOFT Integral Test Facility is a scale model of a LPWR. The intent of the facility is to model the nuclear, thermal-hydraulic phenomena which would take place in a LPWR during a LOCA. The general philosophy in scaling coolant volumes and flow areas in LOFT was to use the ratio of the LOFT core [50 MW(t)] to a typical LPWR core [3000 MW(t)]. For some components, this factor is not applied; however, it is used as extensively as practical. In general, components used in LOFT are similar in design to those of a LPWR. Because of scaling and component design, the LOFT LOCA is expected to closely model a LPWR LOCA. 2 - Description of test: The fourth OECD LOFT experiment was conducted on 3 October 1983. This was the first OECD LOFT large break experiment. The initial and boundary conditions were chosen to be representative of USNRC licensing limits for commercial PWRs. This included loss of off-site power coincident with LOCA initiation. This experiment included the first use in LOFT of pressurized fuel rods in the center bundle. The experiment was initiated by opening the quick-opening blow-down valves in the broken hot and cold legs. 3 - Experimental limitations or shortcomings: Short core and steam generator, excessive core bypass, other scaling compromises, and lack of adequate measurements in certain areas

  14. ORNL Pre-test Analyses of A Large-scale Experiment in STYLE

    International Nuclear Information System (INIS)

    Williams, Paul T.; Yin, Shengjun; Klasky, Hilda B.; Bass, Bennett Richard

    2011-01-01

    Oak Ridge National Laboratory (ORNL) is conducting a series of numerical analyses to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management non-RPV Components (STYLE). STYLE is a European cooperative effort to assess the structural integrity of (non-reactor pressure vessel) reactor coolant pressure boundary components relevant to ageing and life-time management and to integrate the knowledge created in the project into mainstream nuclear industry assessment codes. ORNL contributes work-in-kind support to STYLE Work Package 2 (Numerical Analysis/Advanced Tools) and Work Package 3 (Engineering Assessment Methods/LBB Analyses). This paper summarizes the current status of ORNL analyses of the STYLE Mock-Up3 large-scale experiment to simulate and evaluate crack growth in a cladded ferritic pipe. The analyses are being performed in two parts. In the first part, advanced fracture mechanics models are being developed and performed to evaluate several experiment designs taking into account the capabilities of the test facility while satisfying the test objectives. Then these advanced fracture mechanics models will be utilized to simulate the crack growth in the large scale mock-up test. For the second part, the recently developed ORNL SIAM-PFM open-source, cross-platform, probabilistic computational tool will be used to generate an alternative assessment for comparison with the advanced fracture mechanics model results. The SIAM-PFM probabilistic analysis of the Mock-Up3 experiment will utilize fracture modules that are installed into a general probabilistic framework. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those results generated using the deterministic 3D nonlinear finite-element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite

  15. LOFT/LP-LB-1, Loss of Fluid Test, Large-Break LOCA Experiment

    International Nuclear Information System (INIS)

    1989-01-01

    1 - Description of test facility: The LOFT Integral Test Facility is a scale model of a LPWR. The intent of the facility is to model the nuclear, Thermal-hydraulic phenomena which would take place in a LPWR during a LOCA. The general philosophy in scaling coolant volumes and flow areas in LOFT was to use the ratio of the LOFT core [50 MW(t)] to a typical LPWR core [3000 MW(t)]. For some components, this factor is not applied; however, it is used as extensively as practical. In general, components used in LOFT are similar in design to those of a LPWR. Because of scaling and component design, the LOFT LOCE is expected to closely model a LPWR LOCA. 2 - Description of test: Experiment LP-LB-1 was conducted on 3 February 1984 in the Loss-of-Fluid Test (LOFT) facility at the Idaho National Engineering Laboratory under the auspices of the Organization for Economic Cooperation and Development. The primary objectives of Experiment LP-LB-1 were to determine system transient characteristics and to assess code predictive capabilities for design basis large-break loss-of-coolant accidents in pressurized water reactors (PWRs). This experiment simulated a double-ended offset shear of one inlet pipe in a four-loop PWR and was initiated from conditions representative of licensing limits in a PWR. Other boundary conditions for the simulation were loss of offsite power, rapid primary coolant pump coast down, and United Kingdom minimum safeguard emergency core coolant injection rates. The nuclear fuel rods were not pressurized. The transient was initiated by opening the quick-opening blowdown valves in the broken loop hot and cold legs. 3 - Experimental limitations or shortcomings: Short core and steam generator, excessive core bypass, other scaling compromises, and lack of adequate measurements in certain areas

  16. Real-time graphic display system for ROSA-V Large Scale Test Facility

    International Nuclear Information System (INIS)

    Kondo, Masaya; Anoda, Yoshinari; Osaki, Hideki; Kukita, Yutaka; Takigawa, Yoshio.

    1993-11-01

    A real-time graphic display system was developed for the ROSA-V Large Scale Test Facility (LSTF) experiments simulating accident management measures for prevention of severe core damage in pressurized water reactors (PWRs). The system works on an IBM workstation (Power Station RS/6000 model 560) and accommodates 512 channels out of about 2500 total measurements in the LSTF. It has three major functions: (a) displaying the coolant inventory distribution in the facility primary and secondary systems; (b) displaying the measured quantities at desired locations in the facility; and (c) displaying the time histories of measured quantities. The coolant inventory distribution is derived from differential pressure measurements along vertical sections and gamma-ray densitometer measurements for horizontal legs. The color display indicates liquid subcooling calculated from pressure and temperature at individual locations. (author)

  17. Structural safety of HDR reactor building during large scale vibration tests

    International Nuclear Information System (INIS)

    Stangenberg, F.; Zinn, R.

    1985-01-01

    In the second phase of the HDR investigations, a high shaker excitation of the building is planned using a large shaker which will be located on the operating floor and will be brought up to speed in a balanced condition and then unbalanced and decoupled from the drive system. With decreasing speed the shaker comes in resonance with the building frequencies and its energy is transferred to the building. In this paper the structural safety of the reactor building during the projected shaker tests is analysed. Dynamic response calculations with coupling between building and shaker by simultaneously integrating the equilibrium equations of both building and shaker are presented. The resulting building stresses, soil pressures etc. are compared with allowable values. (orig.)

  18. Potential for large-diameter NTD silicon production in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Herring, J.S.; Korenke, R.E.

    1984-01-01

    The Advanced Test Reactor (ATR) is a 250-MW(t) flux-trap reactor located at the Idaho National Engineering Laboratory (INEL). Within the reflector are four 124-mm-diameter I-holes, which are available for silicon irradiation. Two large irradiation volumes of 0.5 m x 0.4 m x 1.2 m and 0.5 m x 0.2 m x 1.2 m are also available for transmutation doping. Thermal fluxes in these locations range from 0.56 to 23.0 x 10 12 nt/cm 3 -s. Use of the ATR for providing neutron transmutation doping (NTD) services in sizes not available elsewhere in the United States may be feasible

  19. Testing the statistical isotropy of large scale structure with multipole vectors

    International Nuclear Information System (INIS)

    Zunckel, Caroline; Huterer, Dragan; Starkman, Glenn D.

    2011-01-01

    A fundamental assumption in cosmology is that of statistical isotropy - that the Universe, on average, looks the same in every direction in the sky. Statistical isotropy has recently been tested stringently using cosmic microwave background data, leading to intriguing results on large angular scales. Here we apply some of the same techniques used in the cosmic microwave background to the distribution of galaxies on the sky. Using the multipole vector approach, where each multipole in the harmonic decomposition of galaxy density field is described by unit vectors and an amplitude, we lay out the basic formalism of how to reconstruct the multipole vectors and their statistics out of galaxy survey catalogs. We apply the algorithm to synthetic galaxy maps, and study the sensitivity of the multipole vector reconstruction accuracy to the density, depth, sky coverage, and pixelization of galaxy catalog maps.

  20. Experience Gained From the Construction, Test and Operation of the Large 4-T CMS Coil

    CERN Document Server

    Hervé, A; Curé, B; Fabbricatore, P; Gaddi, A; Kircher, F; Sgobba, S

    2008-01-01

    The 4-T, 6-m free bore CMS solenoid has been successfully tested, operated and mapped at CERN during the autumn of 2006; R&D studies started in 1993 and the construction proper in 1997. The main parameters of this 100 MUS$ project (including yoke) were then considered beyond what was thought possible, as the total stored magnetic energy reaches 2.6 GJ for a specific magnetic energy density exceeding 11 kJ/kg of cold mass. During this period, the international design and construction team had to make several important technical choices, in particular mechanical, to maximize the chances of reaching the nominal induction of 4 Tesla. The paper will review these choices in the light of what is presently known and examine if better solutions would be possible today for constructing a new large high-field thin solenoid for a future detector magnet.

  1. The New Era of Precision Cosmology: Testing Gravity at Large Scales

    Science.gov (United States)

    Prescod-Weinstein, Chanda

    2011-01-01

    Cosmic acceleration may be the biggest phenomenological mystery in cosmology today. Various explanations for its cause have been proposed, including the cosmological constant, dark energy and modified gravities. Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy ore modified gravity implement the Press & Schechter formalism (PGF). However, does the PGF apply in all cosmologies? The search is on for a better understanding of universality in the PGF In this talk, I explore the potential for universality and talk about what dark matter haloes may be able to tell us about cosmology. I will also discuss the implications of this and new cosmological experiments for better understanding our theory of gravity.

  2. Laboratory and test beam results from a large-area silicon drift detector

    CERN Document Server

    Bonvicini, V; Giubellino, P; Gregorio, A; Idzik, M; Kolojvari, A A; Montaño-Zetina, L M; Nouais, D; Petta, C; Rashevsky, A; Randazzo, N; Reito, S; Tosello, F; Vacchi, A; Vinogradov, L I; Zampa, N

    2000-01-01

    A very large-area (6.75*8 cm/sup 2/) silicon drift detector with integrated high-voltage divider has been designed, produced and fully characterised in the laboratory by means of ad hoc designed MOS injection electrodes. The detector is of the "butterfly" type, the sensitive area being subdivided into two regions with a maximum drift length of 3.3 cm. The device was also tested in a pion beam (at the CERN PS) tagged by means of a microstrip detector telescope. Bipolar VLSI front-end cells featuring a noise of 250 e/sup -/ RMS at 0 pF with a slope of 40 e/sup -//pF have been used to read out the signals. The detector showed an excellent stability and featured the expected characteristics. Some preliminary results will be presented. (12 refs).

  3. Microfluidic very large scale integration (VLSI) modeling, simulation, testing, compilation and physical synthesis

    CERN Document Server

    Pop, Paul; Madsen, Jan

    2016-01-01

    This book presents the state-of-the-art techniques for the modeling, simulation, testing, compilation and physical synthesis of mVLSI biochips. The authors describe a top-down modeling and synthesis methodology for the mVLSI biochips, inspired by microelectronics VLSI methodologies. They introduce a modeling framework for the components and the biochip architecture, and a high-level microfluidic protocol language. Coverage includes a topology graph-based model for the biochip architecture, and a sequencing graph to model for biochemical application, showing how the application model can be obtained from the protocol language. The techniques described facilitate programmability and automation, enabling developers in the emerging, large biochip market. · Presents the current models used for the research on compilation and synthesis techniques of mVLSI biochips in a tutorial fashion; · Includes a set of "benchmarks", that are presented in great detail and includes the source code of several of the techniques p...

  4. Microfluidic very large-scale integration for biochips: Technology, testing and fault-tolerant design

    DEFF Research Database (Denmark)

    Araci, Ismail Emre; Pop, Paul; Chakrabarty, Krishnendu

    2015-01-01

    of this paper is on continuous-flow biochips, where the basic building block is a microvalve. By combining these microvalves, more complex units such as mixers, switches, multiplexers can be built, hence the name of the technology, “microfluidic Very Large-Scale Integration” (mVLSI). A roadblock......Microfluidic biochips are replacing the conventional biochemical analyzers by integrating all the necessary functions for biochemical analysis using microfluidics. Biochips are used in many application areas, such as, in vitro diagnostics, drug discovery, biotech and ecology. The focus...... presents the state-of-the-art in the mVLSI platforms and emerging research challenges in the area of continuous-flow microfluidics, focusing on testing techniques and fault-tolerant design....

  5. Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds

    Science.gov (United States)

    Flather, C.H.; Sauer, J.R.

    1996-01-01

    The hypothesis that Neotropical migrant birds may be undergoing widespread declines due to land use activities on the breeding grounds has been examined primarily by synthesizing results from local studies. Growing concern for the cumulative influence of land use activities on ecological systems has heightened the need for large-scale studies to complement what has been observed at local scales. We investigated possible landscape effects on Neotropical migrant bird populations for the eastern United States by linking two large-scale inventories designed to monitor breeding-bird abundances and land use patterns. The null hypothesis of no relation between landscape structure and Neotropical migrant abundance was tested by correlating measures of landscape structure with bird abundance, while controlling for the geographic distance among samples. Neotropical migrants as a group were more 'sensitive' to landscape structure than either temperate migrants or permanent residents. Neotropical migrants tended to be more abundant in landscapes with a greater proportion of forest and wetland habitats, fewer edge habitats, large forest patches, and with forest habitats well dispersed throughout the scene. Permanent residents showed few correlations with landscape structure and temperate migrants were associated with habitat diversity and edge attributes rather than with the amount, size, and dispersion of forest habitats. The association between Neotropical migrant abundance and forest fragmentation differed among physiographic strata, suggesting that land-scape context affects observed relations between bird abundance and landscape structure. Finally, associations between landscape structure and temporal trends in Neotropical migrant abundance were negatively correlated with forest habitats. These results suggest that extrapolation of patterns observed in some landscapes is not likely to hold regionally, and that conservation policies must consider the variation in landscape

  6. Biomechanical testing and material characterization for the rat large intestine: regional dependence of material parameters.

    Science.gov (United States)

    Sokolis, Dimitrios P; Orfanidis, Ioannis K; Peroulis, Michalis

    2011-12-01

    The function of the large bowel is to absorb water from the remaining indigestible food matter and subsequently pass useless waste material from the body, but there has been only a small amount of data in the literature on its biomechanical characteristics that would facilitate our understanding of its transport function. Our study aims to fill this gap by affording comprehensive inflation/extension data of intestinal segments from distinct areas, spanning a physiologically relevant deformation range (100-130% axial stretches and 0-15 mmHg lumen pressures). These data were characterized by the Fung-type exponential model in the thick-walled setting, showing reasonable agreement, i.e. root-mean-square error ~30%. Based on optimized material parameters, i.e. a(1)testing and material characterization results for the large intestine of healthy young animals are expected to aid in comprehending the adaptation/remodeling that occurs with ageing, pathological conditions and surgical procedures, as well as for the development of suitable biomaterials for replacement.

  7. A Polar Rover for Large-Scale Scientific Surveys: Design, Implementation and Field Test Results

    Directory of Open Access Journals (Sweden)

    Yuqing He

    2015-10-01

    Full Text Available Exploration of polar regions is of great importance to scientific research. Unfortunately, due to the harsh environment, most of the regions on the Antarctic continent are still unreachable for humankind. Therefore, in 2011, the Chinese National Antarctic Research Expedition (CHINARE launched a project to design a rover to conduct large-scale scientific surveys on the Antarctic. The main challenges for the rover are twofold: one is the mobility, i.e., how to make a rover that could survive the harsh environment and safely move on the uneven, icy and snowy terrain; the other is the autonomy, in that the robot should be able to move at a relatively high speed with little or no human intervention so that it can explore a large region in a limit time interval under the communication constraints. In this paper, the corresponding techniques, especially the polar rover's design and autonomous navigation algorithms, are introduced in detail. Subsequently, an experimental report of the fields tests on the Antarctic is given to show some preliminary evaluation of the rover. Finally, experiences and existing challenging problems are summarized.

  8. Large superconductors and joints for fusion magnets: From conceptual design to testing at full scale

    Science.gov (United States)

    Ciazynski, D.; Duchateau, J. L.; Decool, P.; Libeyre, P.; Turck, B.

    2001-02-01

    A new kind of superconductor, using the cable-in-conduit concept, is emerging, mainly in the context of fusion activity. At present no large Nb3Sn magnet in the world is operating using this concept. The difficulty of this technology, which has now been studied for 20 years, is that it requires major advances in several interconnected new fields, such as handling a large number (1000) of superconducting strands, high current conductors (50 kA), forced flow cryogenics, Nb3Sn technology, low loss conductors in pulsed operation, high current connections and high voltage insulation (10 kV), as well as demonstration of its economical and industrial feasibility. CEA has been very much involved, during the past ten years, in this development, which took place in the framework of the NET and ITER technological programmes. One major milestone was reached in 1998-1999 with the successful tests by Euratom-CEA of three full size conductor and connection samples in the SULTAN facility in Switzerland.

  9. Daily online testing in large classes: boosting college performance while reducing achievement gaps.

    Directory of Open Access Journals (Sweden)

    James W Pennebaker

    Full Text Available An in-class computer-based system, that included daily online testing, was introduced to two large university classes. We examined subsequent improvements in academic performance and reductions in the achievement gaps between lower- and upper-middle class students in academic performance. Students (N = 901 brought laptop computers to classes and took daily quizzes that provided immediate and personalized feedback. Student performance was compared with the same data for traditional classes taught previously by the same instructors (N = 935. Exam performance was approximately half a letter grade above previous semesters, based on comparisons of identical questions asked from earlier years. Students in the experimental classes performed better in other classes, both in the semester they took the course and in subsequent semester classes. The new system resulted in a 50% reduction in the achievement gap as measured by grades among students of different social classes. These findings suggest that frequent consequential quizzing should be used routinely in large lecture courses to improve performance in class and in other concurrent and subsequent courses.

  10. Test-particle simulations of SEP propagation in IMF with large-scale fluctuations

    Science.gov (United States)

    Kelly, J.; Dalla, S.; Laitinen, T.

    2012-11-01

    The results of full-orbit test-particle simulations of SEPs propagating through an IMF which exhibits large-scale fluctuations are presented. A variety of propagation conditions are simulated - scatter-free, and scattering with mean free path, λ, of 0.3 and 2.0 AU - and the cross-field transport of SEPs is investigated. When calculating cross-field displacements the Parker spiral geometry is accounted for and the role of magnetic field expansion is taken into account. It is found that transport across the magnetic field is enhanced in the λ =0.3 AU and λ =2 AU cases, compared to the scatter-free case, with the λ =2 AU case in particular containing outlying particles that had strayed a large distance across the IMF. Outliers are catergorized by means of Chauvenet's criterion and it is found that typically between 1 and 2% of the population falls within this category. The ratio of latitudinal to longitudinal diffusion coefficient perpendicular to the magnetic field is typically 0.2, suggesting that transport in latitude is less efficient.

  11. Strength and fatigue testing of large size wind turbines rotors. Vol. II: Full size natural vibration and static strength test, a reference case

    Energy Technology Data Exchange (ETDEWEB)

    Arias, F.; Soria, E.

    1996-12-01

    This report shows the methods and procedures selected to define a strength test for large size wind turbine, anyway in particular it application on a 500 kW blade and it results obtained in the test carried out in july of 1995 in Asinel`s test plant (Madrid). Henceforth, this project is designed in an abbreviate form whit the acronym SFAT. (Author)

  12. Strength and fatigue testing of large size wind turbines rotors. Volume II. Full size natural vibration and static strength test, a reference case

    International Nuclear Information System (INIS)

    Arias, F.; Soria, E.

    1996-01-01

    This report shows the methods and procedures selected to define a strength test for large size wind turbine, anyway in particularly it application on a 500 kW blade and it results obtained in the test carried out in july of 1995 in Asinel test plant (Madrid). Henceforth, this project is designed in an abbreviate form whit the acronym SFAT. (Author)

  13. Test Station for Magnetization Measurements on Large Quantities of Superconducting Strands

    CERN Document Server

    Le Naour, S; Billan, J; Genest, J

    2001-01-01

    In the superconducting main magnets of the Large Hadron Collider (LHC), persistent currents in the superconductor determine the field quality at injection field. For this reason it is necessary to check the magnetization of the cable strands during their production. During four years, this requires measurements of the width of the strand magnetization hysteresis loop at 0.5 T, 1.9 K, at a rate of up to eight samples per day. This paper describes the design, construction and the first results of a magnetization test station built for this purpose. The samples are cooled in a cryostat, with a 2-m long elliptic tail. This tail is inserted in a normal conducting dipole magnet with a field between ± 1.5 T. Racetrack pick-up coils, integrated in the cryostat, detect the voltage due to flux change, which is then integrated numerically. The sample holder can contain eight strand samples, each 20 cm long. The test station operates in two modes: either the sample is fixed while the external field is changed, or the sa...

  14. Supervision software for string 2 magnet test facility of large hadron collider project

    International Nuclear Information System (INIS)

    Mayya, Y.S.; Sanadhya, Vivek; Lal, Pradeep; Goel, Vijay; Mukhopadhyay, S.; Saha, Shilpi

    2001-01-01

    The Supervisory Control and Data Acquisition (SCADA) software for the String 2 test facility at CERN, Geneva is developed by BARC under the framework of CERN-DAE collaboration for LHC. The supervision application is developed using PCVue32 SCADA/MMI software. The String 2 test facility prototypes one full cell of LHC and is aimed at studying and validating the individual and collective behaviour of the superconducting magnets, before installing in the tunnel. The software integrates monitoring and supervisory control of all the main subsystems of String 2 such as Cryogenics, Vacuum, Power converters, Magnet protection, Energy extraction and interlock systems. It incorporates animated process synoptics, loop and equipment control panels, configurable trend windows for real-time and historical trending of process parameters, user settability for interlock and alarm thresholds, logging of process events, equipment faults and operator activity. The plant equipment are controlled by a variety of field located Programmable Logic Controllers and VME crates which communicate process IO to the central IO server using both vendor specific and custom protocols. The system leverages OPC (OLE for Process Controls) technology for realising a generic IO server. A large number of geographically distributed client stations are arranged to provide the process specific operator interface and these are connected to the Main IO server over CERN wide intranet and internet. (author)

  15. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  16. Contributions to large scale and performance tests of the ATLAS online software

    International Nuclear Information System (INIS)

    Badescu, E.; Caprini, M.

    2003-01-01

    One of the sub-system of the Trigger/DAQ system of the future ATLAS experiment is the Online Software system. It encompasses the functionality needed to configure, control and monitor the DAQ. Its architecture is based on a component structure described in the ATLAS Trigger/DAQ technical proposal. Online Software is responsible for control, supervision and internal communication, excluding the event data flow. For the final ATLAS experiment in 2006 it is expected that it will have to control up to 1000 processors. The core components are the run control, process manager, configuration database, inter process communication, message reporting system and information exchange system. The auxiliary components, namely resource manager, online bookkeeper and the integrated graphical user interface were in use for tests. All the components are unit tested for functionality, fault tolerance, performance and scalability. Extended functionality tests are performed at CERN and remote institutes before each official release. The test objective was the verification of the scalability of the system to a configuration containing a large number of nodes. The aim was to study the interaction between the components, to identify critical areas and to investigate the variation and optimization of online system parameters. The timing of the data acquisition transition phases were recorded and analysed. The information on all processes and their relationships, the run control hierarchy in the online system as well as startup and shutdown dependencies are defined in the configuration database data file. Timing measurements were performed for the transitions shown in the paper and defined as follows: Setup: start online server infrastructure; Close: remove online infrastructure; Boot: start all supervised processes; Shutdown: stop all supervised processes; Cold start: start the supervised processes and go to the Running state; Cold stop: reverse of the cold start phase; Luke warm start

  17. Performance on large-scale science tests: Item attributes that may impact achievement scores

    Science.gov (United States)

    Gordon, Janet Victoria

    Significant differences in achievement among ethnic groups persist on the eighth-grade science Washington Assessment of Student Learning (WASL). The WASL measures academic performance in science using both scenario and stand-alone question types. Previous research suggests that presenting target items connected to an authentic context, like scenario question types, can increase science achievement scores especially in underrepresented groups and thus help to close the achievement gap. The purpose of this study was to identify significant differences in performance between gender and ethnic subgroups by question type on the 2005 eighth-grade science WASL. MANOVA and ANOVA were used to examine relationships between gender and ethnic subgroups as independent variables with achievement scores on scenario and stand-alone question types as dependent variables. MANOVA revealed no significant effects for gender, suggesting that the 2005 eighth-grade science WASL was gender neutral. However, there were significant effects for ethnicity. ANOVA revealed significant effects for ethnicity and ethnicity by gender interaction in both question types. Effect sizes were negligible for the ethnicity by gender interaction. Large effect sizes between ethnicities on scenario question types became moderate to small effect sizes on stand-alone question types. This indicates the score advantage the higher performing subgroups had over the lower performing subgroups was not as large on stand-alone question types compared to scenario question types. A further comparison examined performance on multiple-choice items only within both question types. Similar achievement patterns between ethnicities emerged; however, achievement patterns between genders changed in boys' favor. Scenario question types appeared to register differences between ethnic groups to a greater degree than stand-alone question types. These differences may be attributable to individual differences in cognition

  18. Beam calorimetry at the large negative ion source test facility ELISE: Experimental setup and latest results

    International Nuclear Information System (INIS)

    Nocentini, Riccardo; Bonomo, Federica; Ricci, Marina; Pimazzoni, Antonio; Fantz, Ursel; Heinemann, Bernd; Riedl, Rudolf; Wünderlich, Dirk

    2016-01-01

    Highlights: • ELISE is the first step in the European roadmap for the development of the ITER NBI. • Several beam diagnostic tools have been installed, the latest results are presented. • A gaussian fit procedure has been implemented to characterize the large ion beam. • Average beamlet group inhomogeneity is maximum 13%, close to the ITER target of 10%. • Beam divergence measured by calorimeter agrees with the BES measurements within 30%. - Abstract: The test facility ELISE is the first step within the European roadmap for the development of the ITER NBI system. ELISE is equipped with a 1 × 0.9 m"2 radio frequency negative ion source (half the ITER source size) and an ITER-like 3-grid extraction system which can extract an H"− or D"− beam for 10 s every 3 min (limited by available power supplies) with a total acceleration voltage of up to 60 kV. In the beam line of ELISE several beam diagnostic tools have been installed with the aim to evaluate beam intensity, divergence and uniformity. A copper diagnostic calorimeter gives the possibility to measure the beam power density profile with high resolution. The measurements are performed by an IR micro-bolometer camera and 48 thermocouples embedded in the calorimeter. A gaussian fit procedure has been implemented in order to characterize the large negative ion beam produced by ELISE. The latest results obtained from the beam calorimetry at ELISE show that the average beamlet group inhomogeneity is maximum 13%. The measured beam divergence agrees with the one measured by beam emission spectroscopy within 30%.

  19. Testing modified gravity at large distances with the HI Nearby Galaxy Survey's rotation curves

    Science.gov (United States)

    Mastache, Jorge; Cervantes-Cota, Jorge L.; de la Macorra, Axel

    2013-03-01

    Recently a new—quantum motivated—theory of gravity has been proposed that modifies the standard Newtonian potential at large distances when spherical symmetry is considered. Accordingly, Newtonian gravity is altered by adding an extra Rindler acceleration term that has to be phenomenologically determined. Here we consider a standard and a power-law generalization of the Rindler modified Newtonian potential. The new terms in the gravitational potential are hypothesized to play the role of dark matter in galaxies. Our galactic model includes the mass of the integrated gas, and stars for which we consider three stellar mass functions (Kroupa, diet-Salpeter, and free mass model). We test this idea by fitting rotation curves of seventeen low surface brightness galaxies from the HI Nearby Galaxy Survey (THINGS). We find that the Rindler parameters do not perform a suitable fit to the rotation curves in comparison to standard dark matter profiles (Navarro-Frenk-White and Burkert) and, in addition, the computed parameters of the Rindler gravity show a high spread, posing the model as a nonacceptable alternative to dark matter.

  20. Identifiability in N-mixture models: a large-scale screening test with bird data.

    Science.gov (United States)

    Kéry, Marc

    2018-02-01

    Binomial N-mixture models have proven very useful in ecology, conservation, and monitoring: they allow estimation and modeling of abundance separately from detection probability using simple counts. Recently, doubts about parameter identifiability have been voiced. I conducted a large-scale screening test with 137 bird data sets from 2,037 sites. I found virtually no identifiability problems for Poisson and zero-inflated Poisson (ZIP) binomial N-mixture models, but negative-binomial (NB) models had problems in 25% of all data sets. The corresponding multinomial N-mixture models had no problems. Parameter estimates under Poisson and ZIP binomial and multinomial N-mixture models were extremely similar. Identifiability problems became a little more frequent with smaller sample sizes (267 and 50 sites), but were unaffected by whether the models did or did not include covariates. Hence, binomial N-mixture model parameters with Poisson and ZIP mixtures typically appeared identifiable. In contrast, NB mixtures were often unidentifiable, which is worrying since these were often selected by Akaike's information criterion. Identifiability of binomial N-mixture models should always be checked. If problems are found, simpler models, integrated models that combine different observation models or the use of external information via informative priors or penalized likelihoods, may help. © 2017 by the Ecological Society of America.

  1. Large-Scale Pumping Test Recommendations for the 200-ZP-1 Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    Spane, Frank A.

    2010-09-08

    CH2M Hill Plateau Remediation Company (CHPRC) is currently assessing aquifer characterization needs to optimize pump-and-treat remedial strategies (e.g., extraction well pumping rates, pumping schedule/design) in the 200-ZP-1 operable unit (OU), and in particular for the immediate area of the 241 TX-TY Tank Farm. Specifically, CHPRC is focusing on hydrologic characterization opportunities that may be available for newly constructed and planned ZP-1 extraction wells. These new extraction wells will be used to further refine the 3-dimensional subsurface contaminant distribution within this area and will be used in concert with other existing pump-and-treat wells to remediate the existing carbon tetrachloride contaminant plume. Currently, 14 extraction wells are actively used in the Interim Record of Decision ZP-1 pump-and-treat system for the purpose of remediating the existing carbon tetrachloride contamination in groundwater within this general area. As many as 20 new extraction wells and 17 injection wells may be installed to support final pump-and-treat operations within the OU area. It should be noted that although the report specifically refers to the 200-ZP-1 OU, the large-scale test recommendations are also applicable to the adjacent 200-UP-1 OU area. This is because of the similar hydrogeologic conditions exhibited within these two adjoining OU locations.

  2. DnaSAM: Software to perform neutrality testing for large datasets with complex null models.

    Science.gov (United States)

    Eckert, Andrew J; Liechty, John D; Tearse, Brandon R; Pande, Barnaly; Neale, David B

    2010-05-01

    Patterns of DNA sequence polymorphisms can be used to understand the processes of demography and adaptation within natural populations. High-throughput generation of DNA sequence data has historically been the bottleneck with respect to data processing and experimental inference. Advances in marker technologies have largely solved this problem. Currently, the limiting step is computational, with most molecular population genetic software allowing a gene-by-gene analysis through a graphical user interface. An easy-to-use analysis program that allows both high-throughput processing of multiple sequence alignments along with the flexibility to simulate data under complex demographic scenarios is currently lacking. We introduce a new program, named DnaSAM, which allows high-throughput estimation of DNA sequence diversity and neutrality statistics from experimental data along with the ability to test those statistics via Monte Carlo coalescent simulations. These simulations are conducted using the ms program, which is able to incorporate several genetic parameters (e.g. recombination) and demographic scenarios (e.g. population bottlenecks). The output is a set of diversity and neutrality statistics with associated probability values under a user-specified null model that are stored in easy to manipulate text file. © 2009 Blackwell Publishing Ltd.

  3. Development and verification test on remote plasma cutting of large metallic waste

    International Nuclear Information System (INIS)

    Ozawa, Tamotsu; Yamada, Kunitaka; Abe, Tadashi

    1979-01-01

    Plasma cutting is the cutting method to melt and scatter cut objects by generating arc between an electrode in a nozzle and the cut objects and making working gas fed to surround it into high temperature, high speed plasma jet. In case of remote plasma cutting, a torch for the plasma cutting is operated remotely with a manipulator from the outside of a cell. At the time of planning the method of breaking up solid wastes, the type of cutting machines and the method of remote operation of the cutting machines and cut objects were examined. It was decided to adopt plasma cutting machines, because their cutting capability such as materials, thickness and cutting speed is excellent, and the construction and handling are simple. The form of the solid wastes to be cut is not uniform, accordingly the method of manipulator operation was adopted to respond to various forms flexibly. Cut objects are placed on a turntable to change the position successively. In case of remote plasma cutting, the controls of torch speed and gap must be made with a manipulator. The use of light-shielding glasses reduces largely the watchability of cut objects and becomes hindrance in the operation. As for the safety aspect, the suitable gas for cutting, which does not contain hydrogen, must be selected. The tests carried out for two years since November, 1977, are reported in this paper, and most of the problems have been solved. (Kako, I.)

  4. FutureGen 2.0 Oxy-combustion Large Scale Test – Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kenison, LaVesta [URS, Pittsburgh, PA (United States); Flanigan, Thomas [URS, Pittsburgh, PA (United States); Hagerty, Gregg [URS, Pittsburgh, PA (United States); Gorrie, James [Air Liquide, Kennesaw, GA (United States); Leclerc, Mathieu [Air Liquide, Kennesaw, GA (United States); Lockwood, Frederick [Air Liquide, Kennesaw, GA (United States); Falla, Lyle [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Macinnis, Jim [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Fedak, Mathew [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Yakle, Jeff [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Williford, Mark [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States); Wood, Paul [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States)

    2016-04-01

    The primary objectives of the FutureGen 2.0 CO2 Oxy-Combustion Large Scale Test Project were to site, permit, design, construct, and commission, an oxy-combustion boiler, gas quality control system, air separation unit, and CO2 compression and purification unit, together with the necessary supporting and interconnection utilities. The project was to demonstrate at commercial scale (168MWe gross) the capability to cleanly produce electricity through coal combustion at a retrofitted, existing coal-fired power plant; thereby, resulting in near-zeroemissions of all commonly regulated air emissions, as well as 90% CO2 capture in steady-state operations. The project was to be fully integrated in terms of project management, capacity, capabilities, technical scope, cost, and schedule with the companion FutureGen 2.0 CO2 Pipeline and Storage Project, a separate but complementary project whose objective was to safely transport, permanently store and monitor the CO2 captured by the Oxy-combustion Power Plant Project. The FutureGen 2.0 Oxy-Combustion Large Scale Test Project successfully achieved all technical objectives inclusive of front-end-engineering and design, and advanced design required to accurately estimate and contract for the construction, commissioning, and start-up of a commercial-scale "ready to build" power plant using oxy-combustion technology, including full integration with the companion CO2 Pipeline and Storage project. Ultimately the project did not proceed to construction due to insufficient time to complete necessary EPC contract negotiations and commercial financing prior to expiration of federal co-funding, which triggered a DOE decision to closeout its participation in the project. Through the work that was completed, valuable technical, commercial, and programmatic lessons were learned. This project has significantly advanced the development of near-zero emission technology and will

  5. Experiments on hydraulically-compensated Compressed Air Energy Storage (CAES) system using large-diameter vertical pipe two-phase flow test facility: test facility and test procedure

    International Nuclear Information System (INIS)

    Ohtsu, Iwao; Murata, Hideo; Kukita, Yutaka; Kumamaru, Hiroshige.

    1996-07-01

    JAERI, the University of Tokyo, the Central Research Institute of Electric Power Industry and Shimizu Corporation jointing performed and experimental study on two-phase flow in the hydraulically-compensated Compressed Air Energy Storage (CAES) system with a large-diameter vertical pipe two-phase flow test facility from 1993 to 1995. A hydraulically-compensated CAES system is a proposed, conceptual energy storage system where energy is stored in the form of compressed air in an underground cavern which is sealed by a deep (several hundred meters) water shaft. The shaft water head maintains a constant pressure in the cavern, of several mega Pascals, even during loading or unloading of the cavern with air. The dissolved air in the water, however, may create voids in the shaft when the water rises through the shaft during the loading, being forced by the air flow into the cavern. The voids may reduce the effective head of the shaft, and thus the seal may fail, if significant bubbling should occur in the shaft. This bubbling phenomenon (termed 'Champaign effect') and potential failure of the water seal ('blowout') are simulated in a scaled-height, scaled-diameter facility. Carbon dioxide is used to simulate high solubility of air in the full-height, full-pressure system. This report describes the expected and potential two-phase flow phenomena in a hydraulically-compensated CAES system, the test facility and the test procedure, a method to estimate quantities which are not directly measured by using measured quantities and hydrodynamic basic equations, and desirable additional instrumentation. (author)

  6. The research of the test-class method based on interface object in the software integration test of the large container inspection system

    International Nuclear Information System (INIS)

    Sun Shaohua; Chen Zhiqiang; Zhang Li; Gao Wenhuan; Kang Kejun

    2000-01-01

    Software test is the important stage in software process. The has been mature theory, method and model for unit test in practice. But for integration test, there is not regular method to adhere to. The author presents a new method, developed during the development of the large container inspection system, named test class method based on interface object. In this method a set of basic test-class based on the concept of class in the object-oriented method is established and the method of combining the interface graph and the class set is used to describe the test process. So the strict control and the scientific management for the test process are achieved. The conception of test database is introduced in this method, thus the traceability and the repeatability of test process are improved

  7. The research of the test-class method based on interface object in the software integration test of the large container inspection system

    International Nuclear Information System (INIS)

    Sun Shaohua; Chen Zhiqiang; Zhang Li; Gao Wenhuan; Kang Kejun

    2001-01-01

    Software test is the important stage in software process. There has been mature theory, method and model for unit test in practice. But for integration test, there is not regular method to adhere to. The author presents a new method, developed during the development of the large container inspection system, named test-class method based on interface object. A set of basis test-class based on the concept of class in the object-oriented method is established and the method of combining the interface graph and the class set is used to describe the test process. So the strict control and the scientific management for the test process are achieved. The conception of test database is introduced in this method, thus the traceability and the repeatability of test process are improved

  8. Time and frequency domain analyses of the Hualien Large-Scale Seismic Test

    International Nuclear Information System (INIS)

    Kabanda, John; Kwon, Oh-Sung; Kwon, Gunup

    2015-01-01

    Highlights: • Time- and frequency-domain analysis methods are verified against each other. • The two analysis methods are validated against Hualien LSST. • The nonlinear time domain (NLTD) analysis resulted in more realistic response. • The frequency domain (FD) analysis shows amplification at resonant frequencies. • The NLTD analysis requires significant modeling and computing time. - Abstract: In the nuclear industry, the equivalent-linear frequency domain analysis method has been the de facto standard procedure primarily due to the method's computational efficiency. This study explores the feasibility of applying the nonlinear time domain analysis method for the soil–structure-interaction analysis of nuclear power facilities. As a first step, the equivalency of the time and frequency domain analysis methods is verified through a site response analysis of one-dimensional soil, a dynamic impedance analysis of soil–foundation system, and a seismic response analysis of the entire soil–structure system. For the verifications, an idealized elastic soil–structure system is used to minimize variables in the comparison of the two methods. Then, the verified analysis methods are used to develop time and frequency domain models of Hualien Large-Scale Seismic Test. The predicted structural responses are compared against field measurements. The models are also analyzed with an amplified ground motion to evaluate discrepancies of the time and frequency domain analysis methods when the soil–structure system behaves beyond the elastic range. The analysis results show that the equivalent-linear frequency domain analysis method amplifies certain frequency bands and tends to result in higher structural acceleration than the nonlinear time domain analysis method. A comparison with field measurements shows that the nonlinear time domain analysis method better captures the frequency distribution of recorded structural responses than the frequency domain

  9. Recent Developments in Language Assessment and the Case of Four Large-Scale Tests of ESOL Ability

    Science.gov (United States)

    Stoynoff, Stephen

    2009-01-01

    This review article surveys recent developments and validation activities related to four large-scale tests of L2 English ability: the iBT TOEFL, the IELTS, the FCE, and the TOEIC. In addition to describing recent changes to these tests, the paper reports on validation activities that were conducted on the measures. The results of this research…

  10. Large-Scale Academic Achievement Testing of Deaf and Hard-of-Hearing Students: Past, Present, and Future

    Science.gov (United States)

    Qi, Sen; Mitchell, Ross E.

    2012-01-01

    The first large-scale, nationwide academic achievement testing program using Stanford Achievement Test (Stanford) for deaf and hard-of-hearing children in the United States started in 1969. Over the past three decades, the Stanford has served as a benchmark in the field of deaf education for assessing student academic achievement. However, the…

  11. Seismic tests of a pile-supported structure in liquefiable sand using large-scale blast excitation

    International Nuclear Information System (INIS)

    Kamijo, Naotaka; Saito, Hideaki; Kusama, Kazuhiro; Kontani, Osamu; Nigbor, Robert

    2004-01-01

    Extensive, large-amplitude vibration tests of a pile-supported structure in a liquefiable sand deposit have been performed at a large-scale mining site. Ground motions from large-scale blasting operations were used as excitation forces for vibration tests. A simple pile-supported structure was constructed in an excavated 3 m-deep pit. The test pit was backfilled with 100% water-saturated clean uniform sand. Accelerations were measured on the pile-supported structure, in the sand in the test pit, and in the adjacent free field. Excess pore water pressures in the test pit and strains of one pile were also measured. Vibration tests were performed with six different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 20 Gals to 1353 Gals. These alternations of acceleration provided different degrees of liquefaction in the test pit. Sand boiling phenomena were observed in the test pit with larger input motions. This paper outlines vibration tests and investigates the test results

  12. Ensuring production-worthy OPC recipes using large test structure arrays

    Science.gov (United States)

    Cork, Christopher; Zimmermann, Rainer; Mei, Xin; Shahin, Alexander

    2007-03-01

    . An OPC correction recipe which gives acceptable verification results, based solely on one customer GDS is clearly not sufficient to guarantee that all future tape-outs from multiple customers will be similarly clean. Ad hoc changes made in reaction to problems seen at verification are risky, while they may solve one particular layout issue on one product there is no guarantee that the problem may simply shift to another configuration on a yet to be manufactured part. The need to re-qualify a recipe over multiple products at each recipe change can easily results in excessive computational requirements. A single layer at an advanced node typically needs overnight runs on a large processor farm. Much of this layout, however, is extremely repetitive, made from a few standard cells placed tens of thousands of times. An alternative and more efficient approach, suggested by this paper as a screening methodology, is to encapsulate the problematic structures into a programmable test structure array. The dimensions of these test structures are parameterized in software such that they can be generated with these dimensions varied over the space of the design rules and conceivable design styles. By verifying the new recipe over these test structures one could more quickly gain confidence that this recipe would be robust over multiple tape-outs. This paper gives some examples of the implementation of this methodology.

  13. Large scale permeability test of the granite in the stipa mine and thermal conductivity test. Technical project report No. 2

    International Nuclear Information System (INIS)

    Lundstroem, L.; Stills, H.

    1978-03-01

    The investigated properties of the granite bedrock at Stripa may be summarized as follows: The permeability is very low, 0.4 x 10 -10 m/s, and independent of the pressure gradient. The permeability is reduced by 50 percent at a temperature increase from +10 0 C to +35 0 C. The thermal conductivity was determined in situ to be about 4 W/m 0 C which largely agrees with laboratory determinations. The effective porosity was determined to be 0.012 percent. 12 figs

  14. Affordable Electro-Magnetic Interference (EMI) Testing on Large Space Vehicles

    Science.gov (United States)

    Aldridge, Edward; Curry, Bruce; Scully, Robert

    2015-01-01

    Objective: Perform System-Level EMI testing of the Orion Exploration Flight Test-1 (EFT-1) spacecraft in situ in the Kennedy Space Center's Neil Armstrong Operations & Checkout (O&C) Facility in 6 days. The only way to execute the system-level EMI testing and meet this schedule challenge was to perform the EMI testing in situ in the Final Assembly & System Test (FAST) Cell in a reverberant mode, not the direct illumination mode originally planned. This required the unplanned construction of a Faraday Cage around the vehicle and FAST Cell structure. The presence of massive steel platforms created many challenges to developing an efficient screen room to contain the RF energy and yield an effective reverberant chamber. An initial effectiveness test showed marginal performance, but improvements implemented afterward resulted in the final test performing surprisingly well! The paper will explain the design, the challenges, and the changes that made the difference in performance!

  15. Design and test of box girder for a large wind turbine blade

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Tesauro, Angelo; Bitsche, Robert

    This report is covering the structural design and full scale test of a box girder as a part of the project “Demonstration of new blade design using manufacturing process simulations” supported by the EUDP program. A box girder with a predetermined outer geometry was designed using new inventions...... that the manufacturing process could include the new inventions. Subsequently the box girder was transported to the blade test facility at DTU Wind Energy. A series of test was performed with the blade to investigate the behaviour during loading, and finally the girder was loaded to ultimate failure. The report includes...... the description of the test setup, the test and an overview over the results from the test performed on the box girder. During the final test the box girder failed at 58 % of the expected ultimate load. Unfortunately, no definite conclusion could be made concerning the failure mechanism....

  16. Fuel containment and damage tolerance in large composite primary aircraft structures. Phase 2: Testing

    Science.gov (United States)

    Sandifer, J. P.; Denny, A.; Wood, M. A.

    1985-01-01

    Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.

  17. Manufacturing development of the Westinghouse Nb3Sn coil for the Large Coil Test Program

    International Nuclear Information System (INIS)

    Young, J.L.; Vota, T.L.; Singh, S.K.

    1983-01-01

    The Westinghouse Nb 3 Sn Magnet for the Oak Ridge National Laboratory Large Coil Program (LCP) is currently well into the manufacturing phase. This paper identifies the manufacturing processes and development tasks for his unique, advanced coil

  18. Testing the QCD string at large Nc from the thermodynamics of the hadronic phase

    Science.gov (United States)

    Cohen, Thomas D.

    2007-02-01

    It is generally believed that in the limit of a large number of colors (Nc) the description of confinement via flux tubes becomes valid and QCD can be modeled accurately via a hadronic string theory—at least for highly excited states. QCD at large Nc also has a well-defined deconfinement transition at a temperature Tc. In this talk it is shown how the thermodyanmics of the metastable hadronic phase of QCD (above Tc) at large NC can be related directly to properties of the effective QCD string. The key points in the derivation is the weakly interacting nature of hadrons at large Nc and the existence of a Hagedorn temperature TH for the effective string theory. From this it can be seen at large Nc and near TH, the energy density and pressure of the hadronic phase scale as E ˜ (TH - T)-(D⊥-6)/2 (for D⊥ TH - T)-(D⊥-4)/2 (for D⊥ TH > Tc this behavior is of relevance only to the metastable phase. The prospect of using this result to extract D⊥ via lattice simulations of the metastable hadronic phase at moderately large Nc is discussed.

  19. Critical Joints in Large Composite Primary Aircraft Structures. Volume 3: Ancillary Test Results

    Science.gov (United States)

    Bunin, Bruce L.; Sagui, R. L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints for composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of a comprehensive ancillary test program are summarized, consisting of single-bolt composite joint specimens tested in a variety of configurations. These tests were conducted to characterize the strength and load deflection properties that are required for multirow joint analysis. The composite material was Toray 300 fiber and Ciba-Geigy 914 resin, in the form of 0.005 and 0.01 inch thick unidirectional tape. Tests were conducted in single and double shear for loaded and unloaded hole configurations under both tensile and compressive loading. Two different layup patterns were examined. All tests were conducted at room temperature. In addition, the results of NASA Standard Toughness Test (NASA RP 1092) are reported, which were conducted for several material systems.

  20. Fuel containment and damage tolerance for large composite primary aircraft structures. Phase 1: Testing

    Science.gov (United States)

    Sandifer, J. P.

    1983-01-01

    Technical problems associated with fuel containment and damage tolerance of composite material wings for transport aircraft were identified. The major tasks are the following: (1) the preliminary design of damage tolerant wing surface using composite materials; (2) the evaluation of fuel sealing and lightning protection methods for a composite material wing; and (3) an experimental investigation of the damage tolerant characteristics of toughened resin graphite/epoxy materials. The test results, the test techniques, and the test data are presented.

  1. Forced vibration test on large scale model on soft rock site

    International Nuclear Information System (INIS)

    Kobayashi, Toshio; Fukuoka, Atsunobu; Izumi, Masanori; Miyamoto, Yuji; Ohtsuka, Yasuhiro; Nasuda, Toshiaki.

    1991-01-01

    Forced vibration tests were conducted in order to investigate the embedment effect on dynamic soil-structure interaction. Two model structures were constructed on actual soil about 60 m apart, after excavating the ground to 5 m depth. For both models, the sinusoidal forced vibration tests were performed with the conditions of different embedment depth, namely non-embedment, half-embedment and full-embedment. As the test results, the increase in both natural frequency and damping factor due to the embedment effects can be observed, and the soil impedances calculated from test results are discussed. (author)

  2. Icing Simulation Research Supporting the Ice-Accretion Testing of Large-Scale Swept-Wing Models

    Science.gov (United States)

    Yadlin, Yoram; Monnig, Jaime T.; Malone, Adam M.; Paul, Bernard P.

    2018-01-01

    The work summarized in this report is a continuation of NASA's Large-Scale, Swept-Wing Test Articles Fabrication; Research and Test Support for NASA IRT contract (NNC10BA05 -NNC14TA36T) performed by Boeing under the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) contract. In the study conducted under RTAPS, a series of icing tests in the Icing Research Tunnel (IRT) have been conducted to characterize ice formations on large-scale swept wings representative of modern commercial transport airplanes. The outcome of that campaign was a large database of ice-accretion geometries that can be used for subsequent aerodynamic evaluation in other experimental facilities and for validation of ice-accretion prediction codes.

  3. Performance testing of prototype live loaded packed stem seals for large gate valves in pressurized hot water

    International Nuclear Information System (INIS)

    Pothier, N.E.

    1976-01-01

    Prototype live loaded packed stem seals for large gate valves have been tested in a laboratory. The test fluid was demineralized water at 547 K, 8.27 MPa and pH 10. Nine packing configurations were tested; three different commercial brands of asbestos/graphite valve packings and three different sizes for each packing brand. Conventional and live loaded packed stem seals are briefly described. Stem leakage, packing consolidation and stem friction data are given. For all tests, leakage rates of less than 10 g d -1 were observed. It was also observed that stem friction was significantly affected by thermal expansion of the stem. (author)

  4. Large Dataset of Acute Oral Toxicity Data Created for Testing in Silico Models (ASCCT meeting)

    Science.gov (United States)

    Acute toxicity data is a common requirement for substance registration in the US. Currently only data derived from animal tests are accepted by regulatory agencies, and the standard in vivo tests use lethality as the endpoint. Non-animal alternatives such as in silico models are ...

  5. PISA - An Example of the Use and Misuse of Large-Scale Comparative Tests

    DEFF Research Database (Denmark)

    Dolin, Jens

    2007-01-01

    The article will analyse PISA - particularly the part dealing with science - as an example of a major comparative evaluation. PISA will first be described and then analysed on the basis of test theory, which will address some detailed technical aspects of the test as well as the broader issue...

  6. An engineering methodology for implementing and testing VLSI (Very Large Scale Integrated) circuits

    Science.gov (United States)

    Corliss, Walter F., II

    1989-03-01

    The engineering methodology for producing a fully tested VLSI chip from a design layout is presented. A 16-bit correlator, NPS CORN88, that was previously designed, was used as a vehicle to demonstrate this methodology. The study of the design and simulation tools, MAGIC and MOSSIM II, was the focus of the design and validation process. The design was then implemented and the chip was fabricated by MOSIS. This fabricated chip was then used to develop a testing methodology for using the digital test facilities at NPS. NPS CORN88 was the first full custom VLSI chip, designed at NPS, to be tested with the NPS digital analysis system, Tektronix DAS 9100 series tester. The capabilities and limitations of these test facilities are examined. NPS CORN88 test results are included to demonstrate the capabilities of the digital test system. A translator, MOS2DAS, was developed to convert the MOSSIM II simulation program to the input files required by the DAS 9100 device verification software, 91DVS. Finally, a tutorial for using the digital test facilities, including the DAS 9100 and associated support equipments, is included as an appendix.

  7. Digital Image Correlation Techniques Applied to Large Scale Rocket Engine Testing

    Science.gov (United States)

    Gradl, Paul R.

    2016-01-01

    Rocket engine hot-fire ground testing is necessary to understand component performance, reliability and engine system interactions during development. The J-2X upper stage engine completed a series of developmental hot-fire tests that derived performance of the engine and components, validated analytical models and provided the necessary data to identify where design changes, process improvements and technology development were needed. The J-2X development engines were heavily instrumented to provide the data necessary to support these activities which enabled the team to investigate any anomalies experienced during the test program. This paper describes the development of an optical digital image correlation technique to augment the data provided by traditional strain gauges which are prone to debonding at elevated temperatures and limited to localized measurements. The feasibility of this optical measurement system was demonstrated during full scale hot-fire testing of J-2X, during which a digital image correlation system, incorporating a pair of high speed cameras to measure three-dimensional, real-time displacements and strains was installed and operated under the extreme environments present on the test stand. The camera and facility setup, pre-test calibrations, data collection, hot-fire test data collection and post-test analysis and results are presented in this paper.

  8. Development of large aperture telescope technology (LATT): test results on a demonstrator bread-board

    Science.gov (United States)

    Briguglio, R.; Xompero, M.; Riccardi, A.; Lisi, F.; Duò, F.; Vettore, C.; Gallieni, D.; Tintori, M.; Lazzarini, P.; Patauner, C.; Biasi, R.; D'Amato, F.; Pucci, M.; Pereira do Carmo, João.

    2017-11-01

    The concept of a low areal density primary mirror, actively controlled by actuators, has been investigated through a demonstration prototype. A spherical mirror (400 mm diameter, 2.7 Kg mass) has been manufactured and tested in laboratory and on the optical bench, to verify performance, controllability and optical quality. In the present paper we will describe the prototype and the test results.

  9. Using Raters from India to Score a Large-Scale Speaking Test

    Science.gov (United States)

    Xi, Xiaoming; Mollaun, Pam

    2011-01-01

    We investigated the scoring of the Speaking section of the Test of English as a Foreign Language[TM] Internet-based (TOEFL iBT[R]) test by speakers of English and one or more Indian languages. We explored the extent to which raters from India, after being trained and certified, were able to score the TOEFL examinees with mixed first languages…

  10. Achievement Gap Projection for Standardized Testing through Logistic Regression within a Large Arizona School District

    Science.gov (United States)

    Kellermeyer, Steven Bruce

    2011-01-01

    In the last few decades high-stakes testing has become more political than educational. The Districts within Arizona are bound by the mandates of both AZ LEARNS and the No Child Left Behind Act of 2001. At the time of this writing, both legislative mandates relied on the Arizona Instrument for Measuring Standards (AIMS) as State Tests for gauging…

  11. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    Science.gov (United States)

    Fleischer, Van Tran

    2015-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  12. Statistical homogeneity tests applied to large data sets from high energy physics experiments

    Science.gov (United States)

    Trusina, J.; Franc, J.; Kůs, V.

    2017-12-01

    Homogeneity tests are used in high energy physics for the verification of simulated Monte Carlo samples, it means if they have the same distribution as a measured data from particle detector. Kolmogorov-Smirnov, χ 2, and Anderson-Darling tests are the most used techniques to assess the samples’ homogeneity. Since MC generators produce plenty of entries from different models, each entry has to be re-weighted to obtain the same sample size as the measured data has. One way of the homogeneity testing is through the binning. If we do not want to lose any information, we can apply generalized tests based on weighted empirical distribution functions. In this paper, we propose such generalized weighted homogeneity tests and introduce some of their asymptotic properties. We present the results based on numerical analysis which focuses on estimations of the type-I error and power of the test. Finally, we present application of our homogeneity tests to data from the experiment DØ in Fermilab.

  13. Design and test of box girder for a large wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Tesauro, A.; Bitsche, R. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2012-09-15

    This report is covering the structural design and full scale test of a box girder as a part of the project ''Demonstration of new blade design using manufacturing process simulations'' supported by the EUDP program. A box girder with a predetermined outer geometry was designed using new inventions, which create an inner structure in the box girder. With a combination of advanced FEM analysis and the inventions it was possible to reduce the material thickness of the cap by up to 40%. The new design of the box girder was manufactured at SSP Technology A/S, where it was demonstrated that the manufacturing process could include the new inventions. Subsequently the box girder was transported to the blade test facility at DTU Wind Energy. A series of test was performed with the blade to investigate the behaviour during loading, and finally the girder was loaded to ultimate failure. The report includes the description of the test setup, the test and an overview over the results from the test performed on the box girder. During the final test the box girder failed at 58 % of the expected ultimate load. Unfortunately, no definite conclusion could be made concerning the failure mechanism. (Author)

  14. Pile load test on large diameter steel pipe piles in Timan-Pechora, Russia

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, S. [Golder Associates Inc., Houston, TX (United States); Tart, B. [Golder Associates Inc., Anchorage, AK (United States); Swartz, R. [Paragon Engineering Services Inc., Houston, TX (United States)

    1994-12-31

    Pile load testing conducted in May and June of 1993 at the Polar Lights Ardalin project in Arkangelsk province, Russia, was documented. Pile load testing was conducted to determine the ultimate and allowable pile loads for varying pile lengths and ground temperature conditions and to provide creep test data for deformation under constant load. The piles consisted of 20 inch diameter steel pipe piles driven open ended through prebored holes into the permafrost soils. Ultimate pile capacities, adfreeze bond, and creep properties observed were discussed. 10 figs., 4 tabs.

  15. Large-scale, multi-compartment tests in PANDA for LWR-containment analysis and code validation

    International Nuclear Information System (INIS)

    Paladino, Domenico; Auban, Olivier; Zboray, Robert

    2006-01-01

    The large-scale thermal-hydraulic PANDA facility has been used for the last years for investigating passive decay heat removal systems and related containment phenomena relevant for next-generation and current light water reactors. As part of the 5. EURATOM framework program project TEMPEST, a series of tests was performed in PANDA to experimentally investigate the distribution of hydrogen inside the containment and its effect on the performance of the Passive Containment Cooling System (PCCS) designed for the Economic Simplified Boiling Water Reactor (ESBWR). In a postulated severe accident, a large amount of hydrogen could be released in the Reactor Pressure Vessel (RPV) as a consequence of the cladding Metal- Water (M-W) reaction and discharged together with steam to the Drywell (DW) compartment. In PANDA tests, hydrogen was simulated by using helium. This paper illustrates the results of a TEMPEST test performed in PANDA and named as Test T1.2. In Test T1.2, the gas stratification (steam-helium) patterns forming in the large-scale multi-compartment PANDA DW, and the effect of non-condensable gas (helium) on the overall behaviour of the PCCS were identified. Gas mixing and stratification in a large-scale multi-compartment system are currently being further investigated in PANDA in the frame of the OECD project SETH. The testing philosophy in this new PANDA program is to produce data for code validation in relation to specific phenomena, such as: gas stratification in the containment, gas transport between containment compartments, wall condensation, etc. These types of phenomena are driven by buoyant high-momentum injections (jets) and/or low momentum injection (plumes), depending on the transient scenario. In this context, the new SETH tests in PANDA are particularly valuable to produce an experimental database for code assessment. This paper also presents an overview of the PANDA SETH tests and the major improvements in instrumentation carried out in the PANDA

  16. Large-scale testing of women in Copenhagen has not reduced the prevalence of Chlamydia trachomatis infections

    DEFF Research Database (Denmark)

    Westh, Henrik Torkil; Kolmos, H J

    2003-01-01

    OBJECTIVE: To examine the impact of a stable, large-scale enzyme immunoassay (EIA) Chlamydia trachomatis testing situation in Copenhagen, and to estimate the impact of introducing a genomic-based assay with higher sensitivity and specificity. METHODS: Over a five-year study period, 25 305-28 505...... and negative predictive values of the Chlamydia test result, new screening strategies for both men and women in younger age groups will be necessary if chlamydial infections are to be curtailed....

  17. Large Scale Model Test Investigation on Wave Run-Up in Irregular Waves at Slender Piles

    DEFF Research Database (Denmark)

    Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke

    2013-01-01

    An experimental large scale study on wave run-up generated loads on entrance platforms for offshore wind turbines was performed. The experiments were performed at GrosserWellenkanal (GWK), Forschungszentrum Küste (FZK) in Hannover, Germany. The present paper deals with the run-up heights determin...

  18. The Impact of Financing Surpluses and Large Financing Deficits on Tests of the Pecking Order Theory

    NARCIS (Netherlands)

    de Jong, Abe; Verbeek, Marno; Verwijmeren, Patrick

    2010-01-01

    This paper extends the basic pecking order model of Shyam-Sunder and Myers by separating the effects of financing surpluses, normal deficits, and large deficits. Using a panel of US firms over the period 1971-2005, we find that the estimated pecking order coefficient is highest for surpluses (0.90),

  19. 49 CFR 178.960 - Preparation of Large Packagings for testing.

    Science.gov (United States)

    2010-10-01

    ... the case of liquids. Bags must be filled to the maximum mass at which they may be used. For Large... transported. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total...). Average values should fall within these limits. Short-term fluctuations and measurement limitations may...

  20. The evolution of juvenile animal testing for small and large molecules.

    Science.gov (United States)

    Baldrick, Paul

    2013-11-01

    Recent formalised regulatory requirements for ensuring safe use of new drugs in children has increased the requirement, when considered relevant, to perform juvenile animal testing before commencing paediatric clinical trials. A key goal of this work is to identify or examine for a developmental or toxicity finding not seen in other toxicology testing. With our current knowledge, this paper examines what types of testing are occurring, what novel findings are being seen and their relevance in the safety evaluation process. Furthermore, trends for now and the future in the type of juvenile animal testing will be described including a need for more focused study designs and more published data on modern cross-species postnatal development. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analyses indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests to be applicable to actual repository conditions, a minimum heater test duration of 6-7 yr (including 4 yr of full-power heating) is required

  2. Analysis and experimental validation of through-thickness cracked large-scale biaxial fracture tests

    International Nuclear Information System (INIS)

    Wiesner, C.S.; Goldthorpe, M.R.; Andrews, R.M.; Garwood, S.J.

    1999-01-01

    Since 1984 TWI has been involved in an extensive series of tests investigating the effects of biaxial loading on the fracture behaviour of A533B steel. Testing conditions have ranged from the lower to upper shelf regions of the transition curve and covered a range of biaxiality ratios. In an attempt to elucidate the trends underlying the experimental results, finite element-based mechanistic models were used to analyse the effects of biaxial loading. For ductile fracture, a modified Gunson model was used and important effects on tearing behaviour were found for through thickness cracked wide plates, as observed in upper shelf tests. For cleavage fracture, both simple T-stress methods and the Anderson-Dodds and Beremin models were used. Whilst the effect of biaxiality on surface cracked plates was small, a marked effect of biaxial loading was found for the through-thickness crack. To further validate the numerical predictions for cleavage fracture, TWI have performed an additional series of lower shelf through thickness cracked biaxial wide plate fracture tests. These tests were performed using various biaxiality loading conditions varying from simple uniaxial loading, through equibiaxial loading, to a biaxiality ratio equivalent to a circumferential crack in a pressure vessel. These tests confirmed the predictions that there is a significant effect of biaxial loading on cleavage fracture of through thickness cracked plate. (orig.)

  3. A fast multilocus test with adaptive SNP selection for large-scale genetic-association studies

    KAUST Repository

    Zhang, Han

    2013-09-11

    As increasing evidence suggests that multiple correlated genetic variants could jointly influence the outcome, a multilocus test that aggregates association evidence across multiple genetic markers in a considered gene or a genomic region may be more powerful than a single-marker test for detecting susceptibility loci. We propose a multilocus test, AdaJoint, which adopts a variable selection procedure to identify a subset of genetic markers that jointly show the strongest association signal, and defines the test statistic based on the selected genetic markers. The P-value from the AdaJoint test is evaluated by a computationally efficient algorithm that effectively adjusts for multiple-comparison, and is hundreds of times faster than the standard permutation method. Simulation studies demonstrate that AdaJoint has the most robust performance among several commonly used multilocus tests. We perform multilocus analysis of over 26,000 genes/regions on two genome-wide association studies of pancreatic cancer. Compared with its competitors, AdaJoint identifies a much stronger association between the gene CLPTM1L and pancreatic cancer risk (6.0 × 10(-8)), with the signal optimally captured by two correlated single-nucleotide polymorphisms (SNPs). Finally, we show AdaJoint as a powerful tool for mapping cis-regulating methylation quantitative trait loci on normal breast tissues, and find many CpG sites whose methylation levels are jointly regulated by multiple SNPs nearby.

  4. The experimental setup of a large field operational test for cooperative driving vehicles at the A270

    NARCIS (Netherlands)

    Broek, T.H.A. van den; Netten, B.D.; Hoedemaeker, M.; Ploeg, J.

    2010-01-01

    In this paper, a large field operational test (FOT) for cooperative driving systems, which take place on a public highway, is discussed. The experimental setup consist of a specific driver support system, which is closely related to cooperative adaptive cruise control (CACC) systems. Instead of

  5. Solving large test-day models by iteration on data and preconditioned conjugate gradient.

    Science.gov (United States)

    Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A

    1999-12-01

    A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm.

  6. A Large Aperture, High Energy Laser System for Optics and Optical Component Testing

    International Nuclear Information System (INIS)

    Nostrand, M.C.; Weiland, T.L.; Luthi, R.L.; Vickers, J.L.; Sell, W.D.; Stanley, J.A.; Honig, J.; Auerbach, J.; Hackel, R.P.; Wegner, P.J.

    2003-01-01

    A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm 2 high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics

  7. SULTAN test facility for large-scale vessel coolability in natural convection at low pressure

    International Nuclear Information System (INIS)

    Rouge, S.

    1997-01-01

    The SULTAN facility (France/CEA/CENG) was designed to study large-scale structure coolability by water in boiling natural convection. The objectives are to measure the main characteristics of two-dimensional, two-phase flow, in order to evaluate the recirculation mass flow in large systems, and the limits of the critical heat flux (CHF) for a wide range of thermo-hydraulic (pressure, 0.1-0.5 MPa; inlet temperature, 50-150 C; mass flow velocity, 5-4400 kg s -1 m -2 ; flux, 100-1000 kW m -2 ) and geometric (gap, 3-15 cm; inclination, 0-90 ) parameters. This paper makes available the experimental data obtained during the first two campaigns (90 , 3 cm; 10 , 15 cm): pressure drop differential pressure (DP) = f(G), CHF limits, local profiles of temperature and void fraction in the gap, visualizations. Other campaigns should confirm these first results, indicating a favourable possibility of the coolability of large surfaces under natural convection. (orig.)

  8. Design and construction of a large reinforced concrete containment model to be tested to failure

    International Nuclear Information System (INIS)

    Ucciferro, J.J.; Horschel, D.S.

    1987-01-01

    The US Nuclear Regulatory Commission is investigating the performance of LWR containments subjected to severe accidents. This work is being performed by the Containment Integrity Division at Sandia National Laboratories (Sandia). The latest research effort involves the testing of a 1/6-scale reinforced concrete containment model. The containment, which was designed and constructed by United Engineers and Constructors, is the largest and most complex model of its kind. The design and construction of the containment model are the subject of this paper. The objective of the containment model tests is to generate data that can be used to qualify methods for reliably predicting the response of LWR containment buildings to severe accident loads. The data recorded during testing include deformations and leakage past sealing surfaces, as well as strains and displacements of the containment shell

  9. A Low Heat Inleak Cryogenic Station for Testing HTS Current Leads for the Large Hadron Collider

    CERN Document Server

    Ballarino, A; Gomes, P; Métral, L; Serio, L; Suraci, A

    1999-01-01

    The LHC will be equipped with about 8000 superconducting magnets of all types. The total current to be transported into the cryogenic enclosure amounts to some 3360 kA. In order to reduce the heat load into the liquid helium, CERN intends to use High Temperature Superconducting (HTS) material for leads having current ratings up to 13 kA. The resistive part of the leads is cooled by forced flow of gaseous helium between 20 K and 300 K. The HTS part of the lead is immersed in a 4.5 K liquid helium bath, operates in self cooling conditions and is hydraulically separated from the resistive part. A cryogenic test station has been designed and built in order to assess the thermal and electrical performances of 13 kA prototype current leads. We report on the design, commissioning and operation of the cryogenic test station and illustrate its performance by typical test results of HTS current leads.

  10. Determination of soil liquefaction characteristics by large-scale laboratory tests

    International Nuclear Information System (INIS)

    1975-05-01

    The testing program described in this report was carried out to study the liquefaction behavior of a clean, uniform, medium sand. Horizontal beds of this sand, 42 inches by 90 inches by 4 inches were prepared by pluviation with a special sand spreader, saturated, and tested in a shaking table system designed for this program, which applied a horizontal cyclic shear stress to the specimens. Specimen size was selected to reduce boundary effects as much as possible. Values of pore pressures and shear strains developed during the tests are presented for sand specimens at relative densities of 54, 68, 82, and 90 percent, and the results interpreted to determine the values of the stress ratio causing liquefaction at the various relative densities

  11. Liquid Methane Testing With a Large-Scale Spray Bar Thermodynamic Vent System

    Science.gov (United States)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Flachbart, R. H.; Sisco, J. D.; Schnell. A. R.

    2014-01-01

    NASA's Marshall Space Flight Center conducted liquid methane testing in November 2006 using the multipurpose hydrogen test bed outfitted with a spray bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with densified methane that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 to 420 W at a fill level of approximately 90%. It was noted that as the fluid passed through the Joule-Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This Technical Publication describes conditions that correspond with metastability and its detrimental effects on TVS performance. The observed conditions were primarily functions of methane densification and helium pressurization; therefore, assurance must be provided that metastable conditions have been circumvented in future applications of thermodynamic venting to in-space methane storage.

  12. Test and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder

    Science.gov (United States)

    Schultz, Marc R.; Sleight, David W.; Gardner, Nathaniel W.; Rudd, Michelle T.; Hilburger, Mark W.; Palm, Tod E.; Oldfield, Nathan J.

    2018-01-01

    Structural stability is an important design consideration for launch-vehicle shell structures and it is well known that the buckling response of such shell structures can be very sensitive to small geometric imperfections. As part of an effort to develop new buckling design guidelines for sandwich composite cylindrical shells, an 8-ft-diameter honeycomb-core sandwich composite cylinder was tested under pure axial compression to failure. The results from this test are compared with finite-element-analysis predictions and overall agreement was very good. In particular, the predicted buckling load was within 1% of the test and the character of the response matched well. However, it was found that the agreement could be improved by including composite material nonlinearity in the analysis, and that the predicted buckling initiation site was sensitive to the addition of small bending loads to the primary axial load in analyses.

  13. Testing and evaluation of large-area heliostats for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, J.W.; Houser, R.M.

    1993-02-01

    Two heliostats representing the state-of-the-art in glass-metal designs for central receiver (and photovoltaic tracking) applications were tested and evaluated at the National Solar Thermal Test Facility in Albuquerque, New Mexico from 1986 to 1992. These heliostats have collection areas of 148 and 200 m{sup 2} and represent low-cost designs for heliostats that employ glass-metal mirrors. The evaluation encompassed the performance and operational characteristics of the heliostats, and examined heliostat beam quality, the effect of elevated winds on beam quality, heliostat drives and controls, mirror module reflectance and durability, and the overall operational and maintenance characteristics of the two heliostats. A comprehensive presentation of the results of these and other tests is presented. The results are prefaced by a review of the development (in the United States) of heliostat technology.

  14. Wavefront control of the Large Optics Test and Integration Site (LOTIS) 6.5m Collimator

    Energy Technology Data Exchange (ETDEWEB)

    West, Steven C.; Bailey, Samuel H.; Burge, James H.; Cuerden, Brian; Hagen, Jeff; Martin, Hubert M.; Tuell, Michael T.

    2010-06-20

    The LOTIS Collimator provides scene projection within a 6.5m diameter collimated beam used for optical testing research in air and vacuum. Diffraction-limited performance (0.4 to 5{mu}m wavelength) requires active wavefront control of the alignment and primary mirror shape. A hexapod corrects secondary mirror alignment using measurements from collimated sources directed into the system with nine scanning pentaprisms. The primary mirror shape is controlled with 104 adjustable force actuators based on figure measurements from a center-of-curvature test. A variation of the Hartmann test measures slopes by monitoring the reflections from 36 small mirrors bonded to the optical surface of the primary mirror. The Hartmann source and detector are located at the f/15 Cassegrain focus. Initial operation has demonstrated a closed-loop 110nmrms wavefront error in ambient air over the 6.5mcollimated beam.

  15. Thermal tests of large recirculation cooling installations for nuclear power plants

    Science.gov (United States)

    Balunov, B. F.; Lychakov, V. D.; Il'in, V. A.; Shcheglov, A. A.; Maslov, O. P.; Rasskazova, N. A.; Rakhimov, R. Z.; Boyarov, R. A.

    2017-11-01

    The article presents the results from thermal tests of some recirculation installations for cooling air in nuclear power plant premises, including the volume under the containment. The cooling effect in such installations is produced by pumping water through their heat-transfer tubes. Air from the cooled room is blown by a fan through a bundle of transversely finned tubes and is removed to the same room after having been cooled. The finning of tubes used in the tested installations was made of Grade 08Kh18N10T and Grade 08Kh18N10 stainless steels or Grade AD1 aluminum. Steel fins were attached to the tube over their entire length by means of high-frequency welding. Aluminum fins were extruded on a lathe from the external tube sheath into which a steel tube had preliminarily been placed. Although the fin extrusion operation was accompanied by pressing the sheath inner part to the steel tube, tight contact between them over the entire surface was not fully achieved. In view of this, the air gap's thermal resistance coefficient was introduced in calculating the heat transfer between the heat-transferring media. The air gap average thickness was determined from the test results taking into account the gap variation with temperature due to different linear expansion coefficients of steel and aluminum. These tests, which are part of the acceptance tests of the considered installations, were carried out at the NPO TsKTI test facility and were mainly aimed at checking if the obtained thermal characteristics were consistent with the values calculated according to the standard recommendations with introduction, if necessary, of modifications to those recommendations.

  16. Weld testing in the fabrication of large-diameter pipes; Schweissnahtpruefung bei der Fertigung von Grossrohren

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.; Fuchs, T.; Hassler, U.; Hanke, R. [Fraunhofer-Institut fuer Integrierte Schaltungen (IIS), Fuerth (Germany). EZRT; Matzen, H.U.; Kraemer, J. [GE Inspection Technologies, Ahrensburg (Germany); Lindenschmidt, H. [Butting, Knesebeck (Germany); Behrendt, R.; Kostka, G.; Schmitt, P. [Fraunhofer-Institut fuer Integrierte Schaltungen (IIS), Erlangen (Germany)

    2007-07-01

    Fully automatic radiographic testing of cast light metal components is a state of the art technology. The contribution describes its application in weld testing. A new method for evaluating X-rays of welds is presented which were tested using an innovative X-ray camera with maximum spatial resolution and a wide range of grey values. Further, a novel concept for handling test objects significantly shortens testing times. The pipes are not moved longitudinally; instead, the longitudinal motion is made by the X-ray emitter and sensor, which reduces the testing time by up to 30 percent. The specially developed X-ray detector has a sensitive surface of 200 mm x 50 mm with a total of 4.2 million pixels. Neither the evaluation electronics nor the light-sensitive camera chip are exposed to the direct X-radiation so that no damage will occur at photoenergies up to at least 250 keV. Many tests, e.g. according to EN 13068 and EN 462-5, have shown that the image quality in general and especially the local resolution exceeds the specifications of the EN 584 standard on weld testing with X-ray films. The pictures taken by the camera serve as input data for fully automatic evaluation. All stages of image processing implement 16-bit digitalisation depth in order to make use of the high dynamic range of gray value images. This means that in the whole processing chain, there will be no loss of information from downscaling of the gray values. In the first stage of image processing, the gray values are transformed into penetrated material thicknesses in preparation of the measurement of fault length in the direction of incidence at a later stage. In the next stage, external boundaries and the middle of the weld are detected, followed by an adaptive filtering stage. Additionally, information on the accurate location of the weld is transmitted to the control system of the mechanical parts, so that optimum positioning of the weld with respect to the camera is ensured. The adaptive filter

  17. Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work

    Science.gov (United States)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.

  18. Testing of the large bore single aperture 1-meter superconducting dipoles made with phenolic inserts

    CERN Document Server

    Boschmann, H; Dubbeldam, R L; Kirby, G A; Lucas, J; Ostojic, R; Russenschuck, Stephan; Siemko, A; Taylor, T M; Vanenkov, I; Weterings, W

    1998-01-01

    Two identical single aperture 1-metre superconducting dipoles have been built in collaboration with HMA Power Systems and tested at CERN. The 87.8 mm aperture magnets feature a single layer coil wound using LHC main dipole outer layer cable, phenolic spacer type collars, and a keyed two part structural iron yoke. The magnets are designed as models of the D1 separation dipole in the LHC experimental insertions, whose nominal field is 4.5 T at 4.5 K. In this report we present the test results of the two magnets at 4.3 K and 1.9 K.

  19. Large-scale academic achievement testing of deaf and hard-of-hearing students: past, present, and future.

    Science.gov (United States)

    Qi, Sen; Mitchell, Ross E

    2012-01-01

    The first large-scale, nationwide academic achievement testing program using Stanford Achievement Test (Stanford) for deaf and hard-of-hearing children in the United States started in 1969. Over the past three decades, the Stanford has served as a benchmark in the field of deaf education for assessing student academic achievement. However, the validity and reliability of using the Stanford for this special student population still require extensive scrutiny. Recent shifts in educational policy environment, which require that schools enable all children to achieve proficiency through accountability testing, warrants a close examination of the adequacy and relevance of the current large-scale testing of deaf and hard-of-hearing students. This study has three objectives: (a) it will summarize the historical data over the last three decades to indicate trends in academic achievement for this special population, (b) it will analyze the current federal laws and regulations related to educational testing and special education, thereby identifying gaps between policy and practice in the field, especially identifying the limitations of current testing programs in assessing what deaf and hard-of-hearing students know, and (c) it will offer some insights and suggestions for future testing programs for deaf and hard-of-hearing students.

  20. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to −25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  1. Development work on superconducting coils for a Large Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Cornish, D.N.; Deis, D.W.; Harvey, A.R.; Hirzel, D.G.; Johnston, J.E.; Leber, R.L.; Nelson, R.L.; Zbasnik, J.P.

    1977-01-01

    This article has summarized development work directed toward obtaining the data required to design and build the superconducting coils for MFTF. The methods for fabricating the conductor and joining lengths of the conductor are almost finalized, and the building of the test coil and associated equipment is now well under way

  2. Thirteen years test experience with short-circuit withstand capability of large power transformers

    NARCIS (Netherlands)

    Smeets, R.P.P.; Paske, te L.H.; Leufkens, P.P.; Fogelberg, T.

    2009-01-01

    The ability to withstand a short circuit is recognised more and more as an essential characteristic of power transformers. IEC and IEEE Standards, as well as other national standards specify short-circuit testing and how to check the withstand capability. Unfortunately, however, there is extensive

  3. Verification of the analytical fracture assessments methods by a large scale pressure vessel test

    Energy Technology Data Exchange (ETDEWEB)

    Keinanen, H; Oberg, T; Rintamaa, R; Wallin, K

    1988-12-31

    This document deals with the use of fracture mechanics for the assessment of reactor pressure vessel. Tests have been carried out to verify the analytical fracture assessment methods. The analysis is focused on flaw dimensions and the scatter band of material characteristics. Results are provided and are compared to experimental ones. (TEC).

  4. Cryo-optical testing of large aspheric reflectors operating in the sub mm range

    Science.gov (United States)

    Roose, S.; Houbrechts, Y.; Mazzoli, A.; Ninane, N.; Stockman, Y.; Daddato, R.; Kirschner, V.; Venacio, L.; de Chambure, D.

    2006-02-01

    The cryo-optical testing of the PLANCK primary reflector (elliptical off-axis CFRP reflector of 1550 mm x 1890 mm) is one of the major issue in the payload development program. It is requested to measure the changes of the Surface Figure Error (SFE) with respect to the best ellipsoid, between 293 K and 50 K, with a 1 μm RMS accuracy. To achieve this, Infra Red interferometry has been used and a dedicated thermo mechanical set-up has been constructed. This paper summarises the test activities, the test methods and results on the PLANCK Primary Reflector - Flight Model (PRFM) achieved in FOCAL 6.5 at Centre Spatial de Liege (CSL). Here, the Wave Front Error (WFE) will be considered, the SFE can be derived from the WFE measurement. After a brief introduction, the first part deals with the general test description. The thermo-elastic deformations will be addressed: the surface deformation in the medium frequency range (spatial wavelength down to 60 mm) and core-cell dimpling.

  5. Fabrication and radio frequency test of large-area MgB2 films on niobium substrates

    Science.gov (United States)

    Ni, Zhimao; Guo, Xin; Welander, Paul B.; Yang, Can; Franzi, Matthew; Tantawi, Sami; Feng, Qingrong; Liu, Kexin

    2017-04-01

    Magnesium diboride (MgB2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB2 films on metal substrates is needed. In this work, high quality MgB2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩ at 4 K and 11.4 GHz. The fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB2 films are presented.

  6. Factors associated with willingness to accept a routine offer of HIV test in a large referral hospital in Western Kenya.

    Science.gov (United States)

    Mangeni, J N; Ballidawa, J B; Ndege, S

    2012-03-01

    Although Voluntary Counseling and Testing (VCT) has existed for more than 10 years, majority of Kenyans still do not know their HIV status, thus necessitating the introduction of other testing strategies to increase the number of people taking the test. The routine offer of an HIV test to all patients in health-care settings has been proposed to increase access to care. The main objective of this study was to identify factors associated with willingness to accept a routine offer of an HIV test. This was a cross sectional study. The Setting was in the Outpatient department at a large Referral Hospital in Western Kenya. A total of 384 adult patients (both males and females) were recruited using systematic random sampling. Information was collected on basic socio demographic characteristics, knowledge about the routine offer of an HIV test, attitudes towards the testing and HIV testing practise. Of the 384 respondents, 64.3% were unaware about the routine offer of HIV testing in Health facilities. Multivariate analysis identified the main predictors of willingness to accept an HIV test offered in hospital as the age (OR 3.7, C.I 0.068-1.075), level of education (OR 3.4, C.I 0.186-62.602), Knowledge about the routine HIV testing (OR 4.6,C.I 2.118-9.847), self-perception of HIV risk (OR 8.4,C.I 3.424-20.496) and attitude towards routine offer of HIV testing (OR 9.2, C.I 0.042-0.284). There is a need to come up with tailored training on the routine offer of an HIV test and devising strategies to address the main factors that influence the decision for patients to test as identified above.

  7. IoT European Large-Scale Pilots – Integration, Experimentation and Testing

    OpenAIRE

    Guillén, Sergio Gustavo; Sala, Pilar; Fico, Giuseppe; Arredondo, Maria Teresa; Cano, Alicia; Posada, Jorge; Gutierrez, Germán; Palau, Carlos; Votis, Konstantinos; Verdouw, Cor N.; Wolfert, Sjaak; Beers, George; Sundmaeker, Harald; Chatzikostas, Grigoris; Ziegler, Sébastien

    2017-01-01

    The IoT European Large-Scale Pilots Programme includes the innovation consortia that are collaborating to foster the deployment of IoT solutions in Europe through the integration of advanced IoT technologies across the value chain, demonstration of multiple IoT applications at scale and in a usage context, and as close as possible to operational conditions. The programme projects are targeted, goal-driven initiatives that propose IoT approaches to specific real-life industrial/societal challe...

  8. Specimen Test of Large-Heat-Input Fusion Welding Method for Use of SM570TMCP

    Directory of Open Access Journals (Sweden)

    Dongkyu Lee

    2015-01-01

    Full Text Available In this research, the large-heat-input welding conditions optimized to use the rear plate and the high-performance steel of SM570TMCP, a new kind of steel suitable for the requirements of prospective customers, are proposed. The goal of this research is to contribute to securing the welding fabrication optimized to use the high-strength steel and rear steel plates in the field of construction industry in the future. This research is judged to contribute to securing the welding fabrication optimized to use the high-strength steel and rear steel plates in the field of construction industry in the future.

  9. Testing of Bearing Materials for Large Two-stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Klit, Peder; Persson, Sebastian; Vølund, Anders

    2013-01-01

    In large two-stroke marine diesel engines bearings are designed with the intention that these need not be replaced during the life of the engine. The design has shown very good service experiences. The design parameters of the main bearings are, among others, based on the average maximum specific...... load which the bearing should operate under. In general, the frictional loss is less than 1% of the nominal power of the engine but is still a target for optimization. Fatigue mechanisms of bearing lining material are not fully understood and the design limits with regards to minimum oil film thickness...

  10. Testing of bearing materials for large two-stroke marine diesel engines

    DEFF Research Database (Denmark)

    Vølund, Anders; Klit, Peder; Persson, Sebastian

    2017-01-01

    In large two-stroke marine diesel engines, bearings are designed to last the lifetime of the engine. The design has shown very good service experiences. The design parameters of the main bearings are, among others, based on the average maximum specific load which the bearing should operate under....... In general, the frictional loss is less than 1% of the nominal power of the engine but is still a target for optimization. Fatigue mechanisms of bearing lining material are not fully understood and the design limits with regards to minimum oil film thickness, max oil film pressure and oil film pressure...

  11. Simulation test of PIUS-type reactor with large scale experimental apparatus

    International Nuclear Information System (INIS)

    Tamaki, M.; Tsuji, Y.; Ito, T.; Tasaka, K.; Kukita, Yutaka

    1995-01-01

    A large scale experimental apparatus for simulating the PIUS-type reactor has been constructed keeping the volumetric scaling ratio to the realistic reactor model. Fundamental experiments such as a steady state operation and a pump trip simulation were performed. Experimental results were compared with those obtained by the small scale apparatus in JAERI. We have already reported the effectiveness of the feedback control for the primary loop pump speed (PI control) for the stable operation. In this paper this feedback system is modified and the PID control is introduced. This new system worked well for the operation of the PIUS-type reactor even in a rapid transient condition. (author)

  12. Fabrication, test and performance of very large X-ray CCDs designed for astrophysical applications

    CERN Document Server

    Soltau, H; Meidinger, N; Stoetter, D; Strüder, L; Trümper, J E; Zanthier, C V; Braeuniger, H; Briel, U; Carathanassis, D; Dennerl, K; Engelhard, S; Haberl, F; Hartmann, R; Hartner, G; Hauff, D; Hippmann, H; Holl, P; Kendziorra, E; Krause, N; Lechner, P; Pfeffermann, E; Popp, M; Reppin, C; Seitz, H; Solc, P; Stadlbauer, T; Weber, U; Weichert, U

    2000-01-01

    A 6x6 cm sup 2 large X-ray CCD has been developed and fabricated at the Semiconductor Laboratory of the Max-Planck-Institut fuer Extraterrestrische Physik. The CCD has been designed for the focal plane cameras of two satellite missions. The concept is a fully depleted pn-CCD which is sensitive over the whole wafer thickness of about 300 mu m. It has been especially developed for X-ray detection delivering a high quantum efficiency over the energy range between 0.2 and 15 keV. A production yield of 27% was achieved. Seven good (almost) defect-free wafers were produced within the performance requirements, i.e. for temperatures below 180 K they show a homogeneous noise level smaller than 5 e sup - , a uniform spectral response with an energy resolution of 130 eV for Mn-K subalpha and a reduction of the sensitive area due to defects by less than 0.3%. Three CCDs have now been integrated in the flight cameras. The presentation comprises special aspects related with the fabrication of very large CCDs, a summary of ...

  13. Large fluctuations of the macroscopic current in diffusive systems: a numerical test of the additivity principle.

    Science.gov (United States)

    Hurtado, Pablo I; Garrido, Pedro L

    2010-04-01

    Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  14. Software architecture for the ORNL large-coil test facility data system

    International Nuclear Information System (INIS)

    Blair, E.T.; Baylor, L.R.

    1986-01-01

    The VAX-based data-acquisition system for the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL) is a second-generation system that evolved from a PDP-11/60-based system used during the initial phase of facility testing. The VAX-based software represents a layered implementation that provides integrated access to all of the data sources within the system, decoupling end-user data retrieval from various front-end data sources through a combination of software architecture and instrumentation data bases. Independent VAX processes manage the various front-end data sources, each being responsible for controlling, monitoring, acquiring, and disposing data and control parameters for access from the data retrieval software. This paper describes the software architecture and the functionality incorporated into the various layers of the data system

  15. Software architecture for the ORNL large coil test facility data system

    International Nuclear Information System (INIS)

    Blair, E.T.; Baylor, L.R.

    1986-01-01

    The VAX-based data acquisition system for the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL) is a second-generation system that evolved from a PDP-11/60-based system used during the initial phase of facility testing. The VAX-based software represents a layered implementation that provides integrated access to all of the data sources within the system, deoupling end-user data retrieval from various front-end data sources through a combination of software architecture and instrumentation data bases. Independent VAX processes manage the various front-end data sources, each being responsible for controlling, monitoring, acquiring and disposing data and control parameters for access from the data retrieval software. This paper describes the software architecture and the functionality incorporated into the various layers of the data system

  16. Software architecture for the ORNL large coil test facility data system

    International Nuclear Information System (INIS)

    Blair, E.T.; Baylor, L.R.

    1986-01-01

    The VAX based data acquisition system for the international fusion superconducting magnetic test facility (IFSMTF) at Oak Ridge National Laboratory (ORNL) is a second generation system that evolved from a PDP-11/60 based system used during the initial phase of facility testing. The VAX based software represents a layered implementation that provides integrated access to all of the data sources within the system, decoupling en-user data retrieval from various front-end data sources through a combination of software architecture and instrumentation data bases. Independent VAX processes manage the various front-end data sources, each being responsible for controlling, monitoring, acquiring, and disposing data and control parameters for access from the data retrieval software

  17. Design and manufacture of large lightweight composite reflectors for microwave testing

    Science.gov (United States)

    Towers, P.

    The installation of the largest compact microwave test range constructed to date prompted the design and manufacture of a 250-sq ft parabolic reflector supported by a lightweight, dimensionally stable structure that could be produced at relatively low cost to high tolerances. These tolerances had, moreover, to be maintained during transport and erection in an indoor test range that was remote from the manufacturing site. The dish designed to meet these requirements consisted of an 'egg box' structure with epoxy/glass composite skin-aluminum honeycomb core sandwich construction. Tiles of this same material formed the substrate for a strickled syntactic-filled epoxy resin grout that was subsequently machined to form the silver-coated reflector surface.

  18. Structural degradation of a large composite wind turbine blade in a full-scale fatigue test

    DEFF Research Database (Denmark)

    Chen, Xiao

    carried out at a coupon level to characterize fatigue degradation of composite materials, there is no much study focusing on fatigue degradation of rotor blades at a fullscale structural level. Do structural properties of composite blades degrade in a similar manner to what has been observed in material...... tests at a coupon level? What might be the concerns one should take into account when predicting residual structural properties of rotor blades? To answer, at least to a partial extent, these questions, this study conducts a full-scale fatigue test on a 47m composite rotor blade according to IEC 61400......Wind turbine blades are expected to sustain a high number of loading cycles typically up to a magnitude of 1,000 million during their targeted service lifetime of 20-25 years. Structural properties of composite blades degrade with the time. Although substantial studies, such as [1,2], have been...

  19. Computed versus measured response of HDR reactor building in large scale shaking tests

    International Nuclear Information System (INIS)

    Werkle, H.; Waas, G.

    1987-01-01

    The earthquake resistant design of NPP structures and their installations is commonly based on linear analysis methods. Nonlinear effects, which may occur during strong earthquakes, are approximately accounted for in the analysis by adjusting the structural damping values. Experimental investigations of nonlinear effects were performed with an extremely heavy shaker at the decommissioned HDR reactor building in West Germany. The tests were directed by KfK (Nuclear Research Center Karlsruhe, West Germany) and supported by several companies and institutes from West Germany, Switzerland and the USA. The objective was the dynamic repsonse behaviour of the structure, piping and components to strong earthquake-like shaking including nonlinear effects. This paper presents some results of safety analyses and measurements, which were performed prior and during the test series. It was intended to shake the building up to a level where only a marginal safety against global structural failure was left

  20. Standardized testing with chlorhexidine in perioperative allergy – a large single-centre evaluation

    DEFF Research Database (Denmark)

    Schjørring Opstrup, Morten; Malling, Hans-Jørgen; Krøigaard, Mogens

    2014-01-01

    the diameter of negative control. Chlorhexidine allergy was post hoc defined as a relevant clinical reaction to chlorhexidine combined with two or more positive tests. Based on this definition, sensitivity and specificity were estimated for each test. RESULTS: In total, 22 out of 228 patients (9.6%) met...... the definition of allergy to chlorhexidine. Estimated sensitivity and specificity: specific IgE (sensitivity 100% and specificity 97%), HR (sensitivity 55% and specificity 99%), SPT (sensitivity 95% and specificity 97%) and IDT (sensitivity 68% and specificity 100%). CONCLUSIONS: In patients investigated...... for suspected perioperative allergic reactions, 9.6% were diagnosed with allergy to chlorhexidine. Using our definition of chlorhexidine allergy, the highest combined estimated sensitivity and specificity was found for specific IgE and SPT. This article is protected by copyright. All rights reserved....

  1. Design and test of a large plasma torch for environmental recycling

    International Nuclear Information System (INIS)

    Tuszewski, M.

    1996-01-01

    A 2.5-inch inductive plasma torch has been tested with up to 600 kW rf power and with argon, nitrogen, and oxygen gases. A complete power balance is obtained from electrical, thermal, and radiation measurements. These data indicate that torch efficiencies of up to 30% are obtained with molecular gases, while efficiencies around 15% are obtained with argon. The efficiencies obtained with molecular gases almost triple earlier torch efficiencies and confirm substantially the predictions of a torch model developed during a previous CRADA. Torch efficiencies of up to 50% could be obtained in future tests with an improved rf power supply, with steam gas, and with larger torch dimensions. Future applications of the Plasma Energy Recycle and Conversion (PERC) process could include the high explosives of DOE's nuclear weapons, chemical and biological remediation, and the treatment and volume reduction of radioactive mixed waste

  2. Large scale sodium interactions. Part 2. Preliminary test results for limestone concrete

    International Nuclear Information System (INIS)

    Smaardyk, J.E.; Sutherland, H.J.; King, D.L.; Dahlgren, D.A.

    1977-01-01

    Any sodium cooled reactor system must consider the interaction of hot sodium with cell liners, and given either a failed liner or a hypothetical core disruptive accident, the interaction of hot sodium with concrete. The data base available for safety assessments involving these interactions is limited, especially for the concrete and failed liner interactions. To better understand what happens when hot sodium comes in contact with concrete, a series of tests is being carried out to investigate sodium-concrete reactions under conditions which are similar to actual reactor accident conditions. Tests cover the cases of sodium spills on bare concrete and on cells with defective steel liners. Specific objectives have been to obtain a complete description of the sodium/concrete interaction including heat balance, gas evolution and flow, movement and heat generation of the reaction zone, reaction product formation, and the layering or movement of the products

  3. Paranormal psychic believers and skeptics: a large-scale test of the cognitive differences hypothesis.

    Science.gov (United States)

    Gray, Stephen J; Gallo, David A

    2016-02-01

    Belief in paranormal psychic phenomena is widespread in the United States, with over a third of the population believing in extrasensory perception (ESP). Why do some people believe, while others are skeptical? According to the cognitive differences hypothesis, individual differences in the way people process information about the world can contribute to the creation of psychic beliefs, such as differences in memory accuracy (e.g., selectively remembering a fortune teller's correct predictions) or analytical thinking (e.g., relying on intuition rather than scrutinizing evidence). While this hypothesis is prevalent in the literature, few have attempted to empirically test it. Here, we provided the most comprehensive test of the cognitive differences hypothesis to date. In 3 studies, we used online screening to recruit groups of strong believers and strong skeptics, matched on key demographics (age, sex, and years of education). These groups were then tested in laboratory and online settings using multiple cognitive tasks and other measures. Our cognitive testing showed that there were no consistent group differences on tasks of episodic memory distortion, autobiographical memory distortion, or working memory capacity, but skeptics consistently outperformed believers on several tasks tapping analytical or logical thinking as well as vocabulary. These findings demonstrate cognitive similarities and differences between these groups and suggest that differences in analytical thinking and conceptual knowledge might contribute to the development of psychic beliefs. We also found that psychic belief was associated with greater life satisfaction, demonstrating benefits associated with psychic beliefs and highlighting the role of both cognitive and noncognitive factors in understanding these individual differences.

  4. HIV testing uptake and prevalence among adolescents and adults in a large home-based HIV testing program in Western Kenya.

    Science.gov (United States)

    Wachira, Juddy; Ndege, Samson; Koech, Julius; Vreeman, Rachel C; Ayuo, Paul; Braitstein, Paula

    2014-02-01

    To describe HIV testing uptake and prevalence among adolescents and adults in a home-based HIV counseling and testing program in western Kenya. Since 2007, the Academic Model Providing Access to Healthcare program has implemented home-based HIV counseling and testing on a large scale. All individuals aged ≥13 years were eligible for testing. Data from 5 of 8 catchments were included in this analysis. We used descriptive statistics and multivariate logistic regression to examine testing uptake and HIV prevalence among adolescents (13-18 years), younger adults (19-24 years), and older adults (≥25 years). There were 154,463 individuals eligible for analyses as follows: 22% adolescents, 19% younger adults, and 59% older adults. Overall mean age was 32.8 years and 56% were female. HIV testing was high (96%) across the following 3 groups: 99% in adolescents, 98% in younger adults, and 94% in older adults (P < 0.001). HIV prevalence was higher (11.0%) among older adults compared with younger adults (4.8%) and adolescents (0.8%) (P < 0.001). Those who had ever previously tested for HIV were less likely to accept HIV testing (adjusted odds ratio: 0.06, 95% confidence interval: 0.05 to 0.07) but more likely to newly test HIV positive (adjusted odds ratio: 1.30, 95% confidence interval: 1.21 to 1.40). Age group differences were evident in the sociodemographic and socioeconomic factors associated with testing uptake and HIV prevalence, particularly, gender, relationship status, and HIV testing history. Sociodemographic and socioeconomic factors were independently associated with HIV testing and prevalence among the age groups. Community-based treatment and prevention strategies will need to consider these factors.

  5. Testing of a Stitched Composite Large-Scale Multi-Bay Pressure Box

    Science.gov (United States)

    Jegley, Dawn; Rouse, Marshall; Przekop, Adam; Lovejoy, Andrew

    2016-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to develop technologies to reduce aviation's impact on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe to enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company have worked together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composite structures. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together. The PRSEUS concept is designed to maintain residual load carrying capabilities under a variety of damage scenarios. A series of building block tests were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. The final step in the building block series is an 80%-scale pressure box representing a portion of the center section of a Hybrid Wing Body (HWB) transport aircraft. The testing of this article under maneuver load and internal pressure load conditions is the subject of this paper. The experimental evaluation of this article, along with the other building block tests and the accompanying analyses, has demonstrated the viability of a PRSEUS center body for the HWB vehicle. Additionally, much of the development effort is also applicable to traditional tube-and-wing aircraft, advanced aircraft configurations, and other structures where weight and through-the-thickness strength are design considerations.

  6. Large-Scale Liquid Hydrogen Testing of Variable Density Multilayer Insulation with a Foam Substrate

    Science.gov (United States)

    Martin, J. J.; Hastings, L.

    2001-01-01

    The multipurpose hydrogen test bed (MHTB), with an 18-cu m liquid hydrogen tank, was used to evaluate a combination foam/multilayer combination insulation (MLI) concept. The foam element (Isofoam SS-1171) insulates during ground hold/ascent flight, and allowed a dry nitrogen purge as opposed to the more complex/heavy helium purge subsystem normally required. The 45-layer MLI was designed for an on-orbit storage period of 45 days. Unique WI features include a variable layer density, larger but fewer double-aluminized Mylar perforations for ascent to orbit venting, and a commercially established roll-wrap installation process that reduced assembly man-hours and resulted in a roust, virtually seamless MLI. Insulation performance was measured during three test series. The spray-on foam insulation (SOFI) successfully prevented purge gas liquefaction within the MLI and resulted in the expected ground hold heat leak of 63 W/sq m. The orbit hold tests resulted in heat leaks of 0.085 and 0.22 W/sq m with warm boundary temperatures of 164 and 305 K, respectively. Compared to the best previously measured performance with a traditional MLI system, a 41-percent heat leak reduction with 25 fewer MLI layers was achieved. The MHTB MLI heat leak is half that calculated for a constant layer density MLI.

  7. Performing a Large-Scale Modal Test on the B2 Stand Crane at NASA's Stennis Space Center

    Science.gov (United States)

    Stasiunas, Eric C.; Parks, Russel A.; Sontag, Brendan D.

    2018-01-01

    A modal test of NASA's Space Launch System (SLS) Core Stage is scheduled to occur at the Stennis Space Center B2 test stand. A derrick crane with a 150-ft long boom, located at the top of the stand, will be used to suspend the Core Stage in order to achieve defined boundary conditions. During this suspended modal test, it is expected that dynamic coupling will occur between the crane and the Core Stage. Therefore, a separate modal test was performed on the B2 crane itself, in order to evaluate the varying dynamic characteristics and correlate math models of the crane. Performing a modal test on such a massive structure was challenging and required creative test setup and procedures, including implementing both AC and DC accelerometers, and performing both classical hammer and operational modal analysis. This paper describes the logistics required to perform this large-scale test, as well as details of the test setup, the modal test methods used, and an overview and application of the results.

  8. A Test of Macromolecular Crystallization in Microgravity: Large, Well-Ordered Insulin Crystals

    Science.gov (United States)

    Borgstahl, Gloria E. O.; Vahedi-Faridi, Ardeschir; Lovelace, Jeff; Bellamy, Henry D.; Snell, Edward H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Crystals of insulin grown in microgravity on space shuttle mission STS-95 were extremely well-ordered and unusually large (many > 2 mm). The physical characteristics of six microgravity and six earth-grown crystals were examined by X-ray analysis employing superfine f slicing and unfocused synchrotron radiation. This experimental setup allowed hundreds of reflections to be precisely examined for each crystal in a short period of time. The microgravity crystals were on average 34 times larger, had 7 times lower mosaicity, had 54 times higher reflection peak heights and diffracted to significantly higher resolution than their earth grown counterparts. A single mosaic domain model could account for reflections in microgravity crystals whereas reflections from earth crystals required a model with multiple mosaic domains. This statistically significant and unbiased characterization indicates that the microgravity environment was useful for the improvement of crystal growth and resultant diffraction quality in insulin crystals and may be similarly useful for macromolecular crystals in general.

  9. Single-field consistency relations of large scale structure part III: test of the equivalence principle

    Energy Technology Data Exchange (ETDEWEB)

    Creminelli, Paolo [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste, 34151 (Italy); Gleyzes, Jérôme; Vernizzi, Filippo [CEA, Institut de Physique Théorique, Gif-sur-Yvette cédex, F-91191 France (France); Hui, Lam [Physics Department and Institute for Strings, Cosmology and Astroparticle Physics, Columbia University, New York, NY, 10027 (United States); Simonović, Marko, E-mail: creminel@ictp.it, E-mail: jerome.gleyzes@cea.fr, E-mail: lhui@astro.columbia.edu, E-mail: msimonov@sissa.it, E-mail: filippo.vernizzi@cea.fr [SISSA, via Bonomea 265, Trieste, 34136 (Italy)

    2014-06-01

    The recently derived consistency relations for Large Scale Structure do not hold if the Equivalence Principle (EP) is violated. We show it explicitly in a toy model with two fluids, one of which is coupled to a fifth force. We explore the constraints that galaxy surveys can set on EP violation looking at the squeezed limit of the 3-point function involving two populations of objects. We find that one can explore EP violations of order 10{sup −3}÷10{sup −4} on cosmological scales. Chameleon models are already very constrained by the requirement of screening within the Solar System and only a very tiny region of the parameter space can be explored with this method. We show that no violation of the consistency relations is expected in Galileon models.

  10. Research status and needs for shear tests on large-scale reinforced concrete containment elements

    International Nuclear Information System (INIS)

    Oesterle, R.G.; Russell, H.G.

    1982-01-01

    Reinforced concrete containments at nuclear power plants are designed to resist forces caused by internal pressure, gravity, and severe earthquakes. The size, shape, and possible stress states in containments produce unique problems for design and construction. A lack of experimental data on the capacity of reinforced concrete to transfer shear stresses while subjected to biaxial tension has led to cumbersome if not impractical design criteria. Research programs recently conducted at the Construction Technology Laboratories and at Cornell University indicate that design criteria for tangential, peripheral, and radial shear are conservative. This paper discusses results from recent research and presents tentative changes for shear design provisions of the current United States code for containment structures. Areas where information is still lacking to fully verify new design provisions are discussed. Needs for further experimental research on large-scale specimens to develop economical, practical, and reliable design criteria for resisting shear forces in containment are identified. (orig.)

  11. An overview of an experimental program for testing large reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Farrar, C.R.; Bennett, J.G.

    1989-01-01

    The Seismic Category I Structures Program is being carried out at the Los Alamos National Laboratory under sponsorship of the US Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research. In the class of structure being investigated, the primary lateral load-resisting structural element is the reinforced concrete shear wall. Previous results from microconcrete models indicated that these structures responded to seismic excitations with initial frequencies that were reduced by factors of 2 or more over those calculated based on an uncracked cross-section strength-of-materials approach. Furthermore, though the structures themselves were shown to have sufficient reserve margins, the equipment and piping are designed to response spectra that are based on uncracked cross-sectional member properties, and these spectra may not be inappropriate for actual building responses. The current phase of the program is aimed at verification of these conclusions using conventional concrete structures to demonstrate that previous microconcrete results can be scaled to prototype structures. A new configuration of a shear wall structure was designed and tested to investigate the analytical-experimental differences observed during the previous model testing. Shear wall height-to-length aspect ratios were to vary from 1 to 0.25. Percentage steel ratios were to vary from 0.25% to 0.6% by area, in both horizontal and vertical directions. The test structures are shown in Fig. 1. TRG-1 and -2 were constructed with microconcrete. TRG-3, -4, -5, and -6 were constructed with conventional (19-mm aggregate) concrete. 11 refs., 4 figs

  12. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    International Nuclear Information System (INIS)

    Kosek, Jacek; Lopez, Roberto; Tommasini, Davide; Rodriguez-Mateos, Felix

    2014-01-01

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes

  13. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    Energy Technology Data Exchange (ETDEWEB)

    Kosek, Jacek [Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland and CERN, Geneva 23,CH-1211 (Switzerland); Lopez, Roberto; Tommasini, Davide [CERN, Geneva 23,CH-1211 (Switzerland); Rodriguez-Mateos, Felix [CERN, Geneva 23,CH-1211, Switzerland and ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France)

    2014-01-29

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes.

  14. Development, installation and testing of a large-scale tidal current turbine

    Energy Technology Data Exchange (ETDEWEB)

    Thake, J.

    2005-10-15

    This report summarises the findings of the Seaflow project to investigate the feasibility of building and operating a commercial scale marine current horizontal axis tidal turbine and to evaluate the long-term economics of producing electricity using tidal turbines. Details are given of competitive tidal stream technologies and their commercial status, the selection of the site on the North Devon coast of the UK, and the evaluation of the turbine design, manufacture, testing, installation, commissioning, and maintenance of the turbine. The organisations working on the Seaflow project and cost estimations are discussed.

  15. Modelling and operation strategies of DLR's large scale thermocline test facility (TESIS)

    Science.gov (United States)

    Odenthal, Christian; Breidenbach, Nils; Bauer, Thomas

    2017-06-01

    In this work an overview of the TESIS:store thermocline test facility and its current construction status will be given. Based on this, the TESIS:store facility using sensible solid filler material is modelled with a fully transient model, implemented in MATLAB®. Results in terms of the impact of filler site and operation strategies will be presented. While low porosity and small particle diameters for the filler material are beneficial, operation strategy is one key element with potential for optimization. It is shown that plant operators have to ponder between utilization and exergetic efficiency. Different durations of the charging and discharging period enable further potential for optimizations.

  16. Test in a beam of large-area Micromegas chambers for sampling calorimetry

    CERN Document Server

    Adloff, C.; Dalmaz, A.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Jacquemier, J.; Karyotakis, Y.; Koletsou, I.; Peltier, F.; Samarati, J.; Vouters, G.

    2014-06-11

    Application of Micromegas for sampling calorimetry puts specific constraints on the design and performance of this gaseous detector. In particular, uniform and linear response, low noise and stability against high ionisation density deposits are prerequisites to achieving good energy resolution. A Micromegas-based hadronic calorimeter was proposed for an application at a future linear collider experiment and three technologically advanced prototypes of 1$\\times$1 m$^{2}$ were constructed. Their merits relative to the above-mentioned criteria are discussed on the basis of measurements performed at the CERN SPS test-beam facility.

  17. A self-testing method of large analog circuits in electronic embedded systems

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, Z, E-mail: zbczaja@pg.gda.p [Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Optoelectronics and Electronic Systems, ul. G. Narutowicza 11/12, 80-233 Gdansk (Poland)

    2010-07-01

    A new self-testing method of high-order filters consisting of a chain of first- or second-order filter units of mixed-signal electronic embedded systems controlled by microcontrollers or DSPs is presented in the paper. The main idea of the method bases on the fact that the signal response of the given filter unit is treated as the signal stimulation of the next filter unit. Thanks to this, a simple reconfigurable BIST consisting of only internal devices of the microcontroller controlling the system was obtained.

  18. A self-testing method of large analog circuits in electronic embedded systems

    International Nuclear Information System (INIS)

    Czaja, Z

    2010-01-01

    A new self-testing method of high-order filters consisting of a chain of first- or second-order filter units of mixed-signal electronic embedded systems controlled by microcontrollers or DSPs is presented in the paper. The main idea of the method bases on the fact that the signal response of the given filter unit is treated as the signal stimulation of the next filter unit. Thanks to this, a simple reconfigurable BIST consisting of only internal devices of the microcontroller controlling the system was obtained.

  19. Testing for identification of locking, maintenance and ratification of large expansion joints; Teste para identificacao de travamento, manutencao e aceitacao de junta de expansao de grande porte

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Jordana Luiza Barbosa da Costa; Lemos, Ricardo Jose Fernandes; Medeiros, Jorivaldo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Piping systems connected to large machines must have high reliability. In particular systems that have traditionally turbo expander large diameter and operate at high temperatures (up to 760 deg C) and low pressure (less than 4 kgf/cm2). This paper focuses on verification, maintenance and ratification of the correct functioning of expansion joints ('JE') of a piping system (72 inches external diameter), connected to a turbo expander system. After verification of 'JE's' locking, it was necessary to intervene in the system to restore the correct operation, for reasons of delivery, only maintenance was carried out in the expansion joints connected to this system. These expansion joints were tested before and after the maintenance to ensure proper operation after installation and verify that the locking system had its origin in 'JE'. This paper presents the degradation observed in JE, maintenance performed and the results of the tests. (author)

  20. Antineutrophil Cytoplasmic Antibodies Testing in a Large Cohort of Unselected Greek Patients

    Directory of Open Access Journals (Sweden)

    Konstantinos Tsiveriotis

    2011-01-01

    Full Text Available Objective. To retrospectively evaluate ANCA testing in a cohort of unselected Greek in- and outpatients. Methods. In 10803 consecutive serum samples, ANCA were tested by indirect immunofluorescence (IIF and ELISA. ELISA in inpatients was performed only on IIF positive sera. Results. Low prevalence (6.0% of IIF positive samples was observed. Among these samples, 63.5% presented perinuclear (p-ANCA, 9.3% cytoplasmic (c-ANCA and 27.2% atypical (x-ANCA pattern. 16.1% of p-ANCA were antimyeloperoxidase (anti-MPO positive, whereas 68.3% of c-ANCA were antiproteinase-3 (anti-PR3 positive. Only 17 IIF negative outpatients' samples were ELISA positive. ANCA-associated vasculitides (AAV, connective tissue disorders and gastrointestinal disorders represented 20.5%, 23.9%, and 21.2% of positive results, respectively. AAV patients exhibited higher rates of MPO/PR3 specificity compared to non-AAV (93.8% versus 8%. Conclusions. This first paper on Greek patients supports that screening for ANCA by IIF and confirming positive results by ELISA minimize laboratory charges without sacrificing diagnostic accuracy.

  1. Electrodynamic levitated train. Erlangen large-scale test plant is being converted to long stator technology

    Energy Technology Data Exchange (ETDEWEB)

    Muckelberg, E

    1976-10-01

    The development work for a future high-power fast train have been marked for years by the competition of two magnetic levitation systems, i.e., the electrodynamic levitation system (EDS) with superconducting magnets and the electromagnetic levitation system (EMS). The present study particularly deals with the EDS system. The vehicle is driven by a linear motor. The levitation height is between 10 cm and 30 cm without any complicated control in the EDS system. The disadvantage with this system, however, is that a starting and landing device is needed as a certain starting speed is required before the levitation process fully begins. The first levitation tests were possible on a round course at the beginning of May 1976. A second test stand is being put into operation at present. The first results are reported. Finally, possible development trends are indicated. It seems possible that the end project 'high-power fast train' will be a combination of the EMS and EDS systems.

  2. Large-scale demonstration test plan for digface data acquisition system

    International Nuclear Information System (INIS)

    Roybal, L.G.; Svoboda, J.M.

    1994-11-01

    Digface characterization promotes the use of online site characterization and monitoring during waste retrieval efforts, a need that arises from safety and efficiency considerations during the cleanup of a complex waste site. Information concerning conditions at the active digface can be used by operators as a basis for adjusting retrieval activities to reduce safety risks and to promote an efficient transition between retrieval and downstream operations. Most importantly, workers are given advance warning of upcoming dangerous conditions. In addition, detailed knowledge of digface conditions provides a basis for selecting tools and methods that avoid contamination spread and work stoppages. In FY-94, work began in support of a largescale demonstration coordinating the various facets of a prototype digface remediation operation including characterization, contaminant suppression, and cold waste retrieval. This test plan describes the activities that will be performed during the winter of FY-95 that are necessary to assess the performance of the data acquisition and display system in its initial integration with hardware developed in the Cooperative Telerobotic Retrieval (CTR) program. The six specific objectives of the test are determining system electrical noise, establishing a dynamic background signature of the gantry crane and associated equipment, determining the resolution of the overall system by scanning over known objects, reporting the general functionality of the overall data acquisition system, evaluating the laser topographic functionality, and monitoring the temperature control features of the electronic package

  3. Implementation of computerized add-on testing for hospitalized patients in a large academic medical center.

    Science.gov (United States)

    Kim, Ji Yeon; Kamis, Irina K; Singh, Balaji; Batra, Shalini; Dixon, Roberta H; Dighe, Anand S

    2011-05-01

    Physician requests for additional testing on an existing laboratory specimen (add-ons) are resource intensive and generally require a phone call to the laboratory. Verbal orders such as these have been noted to be associated with errors in accuracy. The aim of this study was to compare a novel computerized system for add-on requests to the prior verbal system. We compare the computerized add-on request system to the verbal system with respect to order completeness and workflow. We demonstrate that the computerized add-on system resulted in the complete in-laboratory documentation of the add-on request 100% of the time, compared to 58% with the verbal add-on system. In addition, we show that documentation of a verbal add-on request in the electronic medical record (EMR) occurred for 4% of requests, while in the computerized system EMR documentation occurred 100% of the time. We further demonstrate that the computerized add-on request process was well accepted by providers and did not significantly change the test mix of the add-on requests. In computerized physician order entry (CPOE) implementations, add-on order functionality should be considered so these orders are documented in the EMR.

  4. Automation and Upgrade of Thermal System for Large 38-Year Young Test Facility

    Science.gov (United States)

    Webb, Andrew

    2000-01-01

    The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38-years was one of the driving design factors for the size of the equipment. The installation was completed on-time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.

  5. Automation and Upgrade of Thermal System for Large 38-Year-Young Test Facility

    Science.gov (United States)

    Webb, Andrew T.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38 years was one of the driving design factors for the size of the equipment. The installation was completed on time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.

  6. Spearman's "law of diminishing returns" and the role of test reliability investigated in a large sample of Danish military draftees

    DEFF Research Database (Denmark)

    Teasdale, Thomas William; Hartmann, P.

    2005-01-01

    The present article investigates Spearman's "Law of Diminishing Returns" (SLODR), which hypothesizes that the g saturation for cognitive tests is lower for high ability subjects than for low ability subjects. This hypothesis was tested in a large sample of Danish military draftees (N = 6757) who...... were representative of the young adult male population, aged 18-19, and tested with a group-administered intelligence test comprised of four subtests. The aim of the study was twofold. The first was to reproduce previous SLODR findings by the present authors. This was done by replicating...... in reliability could account for the difference in g saturation across ability groups. The results showed that the reliability was larger for the High ability group, thereby not explaining the present findings....

  7. Cryogenic testing of by-pass diode stacks for the superconducting magnets of the large hadron collider at CERN

    International Nuclear Information System (INIS)

    Della Corte, A.; Catitti, A.; Chiarelli, S.; Di Ferdinando, E.; Verdini, L.; Gharib, A.; Hagedorn, D.; Turtu, S.; Basile, G. L.; Taddia, G.; Talli, M.; Viola, R.

    2002-01-01

    A dedicated facility prepared by ENEA (Italian Agency for Energy and Environment) for the cryogenic testing of by-pass diodes for the protection of the CERN Large Hadron Collider main magnets will be described. This experimental activity is in the frame of a contract awarded to OCEM, an Italian firm active in the field of electronic devices and power supplies, in collaboration with ENEA, for the manufacture and testing of all the diode stacks. In particular, CERN requests the measurement of the reverse and forward voltage diode characteristics at 300 K and 77 K, and endurance test cycles at liquid helium temperature. The experimental set-up at ENEA and data acquisition system developed for the scope will be described and the test results reported

  8. Design and testing of microfabricated surgical tools for large animal probe insertion

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Shelly [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-05

    Neural probes provide therapeutic stimulation for neuropsychiatric disorders or record neural activity to investigate the workings of the brain. Researchers utilize 6 mm long temporary silicon stiffeners attached with biodissolvable adhesive to insert flexible neural probes into rat brains, but increasing the probe length fivefold makes inserting large animal probes a significant challenge because of an increased potential for buckling. This study compared the insertion success rates of 6 mm and 30 mm long silicon stiffeners that were 80 μm wide and 30 μm thick, and ascertained the material thickness and modulus of elasticity that would provide successful insertion for a 30 mm probe. Using a microdrive, stiffeners were inserted into an agarose brain phantom at controlled insertion speeds while being video-recorded. Twenty-five percent of the 30 mm silicon stiffeners fully inserted at speeds approximately four times higher than the target rate of 0.13 mm/s, while 100 percent of the 6 mm silicon stiffeners inserted successfully at target speed. Critical buckling loads (Pcr) were calculated for the 6 mm and 30 mm silicon stiffeners, and for 30 mm diamond and tungsten stiffeners, with thicknesses varying from 30-80 μm. Increasing the thickness of the material by 10 μm, 20 μm and 30 μm improved the Pcr by 2.4, 4.7 and 8.2 times, respectively, independent of the material, and substituting diamond for silicon multiplied the buckling capacity by 5.0 times. Stiffeners made of silicon for large animal probe insertion are not strong enough to withstand buckling upon insertion without a significant increase in thickness. Replacing silicon with diamond and increasing the thickness of the stiffener to 50 μm would afford a stiffener with the same Pcr capacity as the 6 mm silicon stiffener that had a 100 percent insertion success rate. Experiments should continue with diamond to determine a minimum thickness that will ensure successful

  9. A Large Scale Test of the Effect of Social Class on Prosocial Behavior

    Science.gov (United States)

    Korndörfer, Martin; Egloff, Boris; Schmukle, Stefan C.

    2015-01-01

    Does being from a higher social class lead a person to engage in more or less prosocial behavior? Psychological research has recently provided support for a negative effect of social class on prosocial behavior. However, research outside the field of psychology has mainly found evidence for positive or u-shaped relations. In the present research, we therefore thoroughly examined the effect of social class on prosocial behavior. Moreover, we analyzed whether this effect was moderated by the kind of observed prosocial behavior, the observed country, and the measure of social class. Across eight studies with large and representative international samples, we predominantly found positive effects of social class on prosociality: Higher class individuals were more likely to make a charitable donation and contribute a higher percentage of their family income to charity (32,090 ≥ N ≥ 3,957; Studies 1–3), were more likely to volunteer (37,136 ≥N ≥ 3,964; Studies 4–6), were more helpful (N = 3,902; Study 7), and were more trusting and trustworthy in an economic game when interacting with a stranger (N = 1,421; Study 8) than lower social class individuals. Although the effects of social class varied somewhat across the kinds of prosocial behavior, countries, and measures of social class, under no condition did we find the negative effect that would have been expected on the basis of previous results reported in the psychological literature. Possible explanations for this divergence and implications are discussed. PMID:26193099

  10. Revisiting LOFT L2-5 large break test in BEMUSE project context. Sensitivity studies

    International Nuclear Information System (INIS)

    Perez, Marina; Batet, Lluis; Pretel, Carme; Reventos, Francesc

    2005-01-01

    Full text of publication follows: Best estimate codes simulate NPPs behavior in principle without any special conservative assumptions. Due to several factors like code solution methods or user effects, the output parameters calculated have an uncertainty associated. The quantification of the these uncertainties becomes crucial when a safety statement is to be made. It is in this scope that GAMA group from CSNI (OECD/NEA) proposed the international BEMUSE project (Best Estimate - Uncertainty and Sensitivity Evaluation) having as main objective the evaluation of different methodologies for the uncertainty and sensitivity analysis of best-estimate code calculations. A number of methodologies prepared in different countries are used in the development of the project activities. The program work consists of 6 phases and currently the first two have already been concluded. Phase II consists in revisiting the ISP-13, the LOFT loss of coolant experiment L2-5 which simulated a double ended 200% cold leg break of a commercial PWR simultaneous with a loss of site power. In order to connect phase II with phase III, in which the uncertainty analysis will be carried out, quite a large number of sensitivity analysis have been performed by simulating system failures and varying fuel elements parameters among others. The presentation will focus on the results of the sensitivity analysis as well as its importance with regards to the uncertainty studies. The methodology used by UPC team was developed by ENUSA and the work is supported by the Spanish regulatory organization. (authors)

  11. An experimental test on large animals of MCNP application for whole body counting

    International Nuclear Information System (INIS)

    Borisov, N.; Yatsenko, V.; Kochetkov, O.; Gusev, I.; Vlasov, P.; Kalistratova, V.; Nisimov, P.; Levochkin, F.; Borovkov, M.; Stolyarov, V.; Tsedish, S.; Tyurin, I.; Franck, D.; Carlan, L. de

    2005-01-01

    Measurements of actinide body burden using whole body counting spectrometry is hampered due to intensive absorption of γ-rays inside the patient's body, which depends on the anatomy of a patient. To establish the correspondence between pulse-height-spectra intensity and radionuclide activity, Monte Carlo calculations are widely used. For such calculations, the radiation transport geometry is usually described in terms of small rectangular boxes (voxels) retrieved from computed tomography or magnetic resonance images. The software for Monte Carlo-assisted calibration of whole body counting, which performs automatic creation of individual MCNP voxel phantoms, was checked in a quasi-in vivo experiment on large animals. During the experiment, pigs of 35-40 kg body mass were used as phantoms for measurement of actinides body burden. 241 Am was administered (via injection of a radioactive solution or via implantation of plastic capsules containing the radioactive material) into the lungs of pigs. The pigs were measured using the pure germanium low-energy γ-spectrometers. The images of animals were obtained using the computed tomography machine. On the base of these tomograms, MCNP4c2 calculations were done to obtain the pulse-height-spectra of the whole body counters. The experimental results were reproduced in calculations with error of less than 30% for 241 Am administered via injection and less than 10% for 241 Am administered inside the capsules. (authors)

  12. A Large Scale Test of the Effect of Social Class on Prosocial Behavior.

    Science.gov (United States)

    Korndörfer, Martin; Egloff, Boris; Schmukle, Stefan C

    2015-01-01

    Does being from a higher social class lead a person to engage in more or less prosocial behavior? Psychological research has recently provided support for a negative effect of social class on prosocial behavior. However, research outside the field of psychology has mainly found evidence for positive or u-shaped relations. In the present research, we therefore thoroughly examined the effect of social class on prosocial behavior. Moreover, we analyzed whether this effect was moderated by the kind of observed prosocial behavior, the observed country, and the measure of social class. Across eight studies with large and representative international samples, we predominantly found positive effects of social class on prosociality: Higher class individuals were more likely to make a charitable donation and contribute a higher percentage of their family income to charity (32,090 ≥ N ≥ 3,957; Studies 1-3), were more likely to volunteer (37,136 ≥N ≥ 3,964; Studies 4-6), were more helpful (N = 3,902; Study 7), and were more trusting and trustworthy in an economic game when interacting with a stranger (N = 1,421; Study 8) than lower social class individuals. Although the effects of social class varied somewhat across the kinds of prosocial behavior, countries, and measures of social class, under no condition did we find the negative effect that would have been expected on the basis of previous results reported in the psychological literature. Possible explanations for this divergence and implications are discussed.

  13. Design, construction, and quality tests of the large Al-alloy mandrels for the CMS coil

    CERN Document Server

    Sgobba, Stefano; Fabbricatore, P; Farinon, S; Gaddi, A; Lauro, A; Levesy, B; Loche, L; Rondeaux, F; Sequeira-Lopes-Tavares, S; Valle, N

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. Almost all large indirectly cooled solenoids constructed to date (e.g., Zeus, Aleph, Delphi, Finuda, Babar) comprise Al-alloy mandrels fabricated by welding together plates bent to the correct radius. The external cylinder of CMS will consist of five modules having an inner diameter of 6.8 m, a thickness of 50 mm and an individual length of 2.5 m. It will be manufactured by bending and welding thick plates (75 mm) of the strain hardened aluminum alloy EN AW-5083-H321. The required high geometrical tolerances and mechanical strength (a yield strength of 209 MPa at 4.2 K) impose a critical appraisal of the design, the fabrication techniques, the welding procedures and the quality controls. The thick flanges at both ends of each module will be fabricated as seamless rolled rings, circu...

  14. Development and testing of an innovative short-term large wind ramp forecasting system

    Energy Technology Data Exchange (ETDEWEB)

    Zack, J.W. [AWS Truepower LLC, Troy, NY (United States)

    2010-07-01

    This PowerPoint presentation discussed a ramp forecasting tool designed for use in a region of Texas with a high wind-generating capacity. Large system-wide ramps frequently occur in the region, and curtailments are common due to transmission constraints. The average hourly load of the power system is 32,101 MW. Wind power capacity in the region is 9382 MW. However, actual production rarely exceeds 6500 MW due to the curtailments. The short-term ramp forecasting tool was designed to aid in grid management decisions for the 0-6 hour ahead period as well as to address issues related to wind farm time series data and the lack of situational awareness information. The tool provided rapid updates for grid point wind analysis with feature detection and tracking algorithms and a rapid update cycle model. The tool also featured a suite of web-based applications that included deterministic ramp even forecasts, power production time series forecasts, and situational awareness products that are updated every 15 minutes. A performance evaluation study of the tool was provided. tabs., figs.

  15. Solar wind stream evolution at large heliocentric distances - Experimental demonstration and the test of a model

    Science.gov (United States)

    Gosling, J. T.; Hundhausen, A. J.; Bame, S. J.

    1976-01-01

    A stream propagation model which neglects all dissipation effects except those occurring at shock interfaces, was used to compare Pioneer-10 solar wind speed observations, during the time when Pioneer 10, the earth, and the sun were coaligned, with near-earth Imp-7 observations of the solar wind structure, and with the theoretical predictions of the solar wind structure at Pioneer 10 derived from the Imp-7 measurements, using the model. The comparison provides a graphic illustration of the phenomenon of stream steepening in the solar wind with the attendant formation of forward-reverse shock pairs and the gradual decay of stream amplitudes with increasing heliocentric distance. The comparison also provides a qualitative test of the stream propagation model.

  16. A nonparametric empirical Bayes framework for large-scale multiple testing.

    Science.gov (United States)

    Martin, Ryan; Tokdar, Surya T

    2012-07-01

    We propose a flexible and identifiable version of the 2-groups model, motivated by hierarchical Bayes considerations, that features an empirical null and a semiparametric mixture model for the nonnull cases. We use a computationally efficient predictive recursion (PR) marginal likelihood procedure to estimate the model parameters, even the nonparametric mixing distribution. This leads to a nonparametric empirical Bayes testing procedure, which we call PRtest, based on thresholding the estimated local false discovery rates. Simulations and real data examples demonstrate that, compared to existing approaches, PRtest's careful handling of the nonnull density can give a much better fit in the tails of the mixture distribution which, in turn, can lead to more realistic conclusions.

  17. Fabrication and testing of gas filled targets for large scale plasma experiments on Nova

    International Nuclear Information System (INIS)

    Stone, G.F.; Spragge, M.; Wallace, R.J.; Rivers, C.J.

    1995-01-01

    An experimental campaign on the Nova laser was started in July 1993 to study one st of target conditions for the point design of the National Ignition Facility (NIF). The targets were specified to investigate the current NIF target conditions--a plasma of ∼3 keV electron temperature and an electron density of ∼1.0 E + 21 cm -3 . A gas cell target design was chosen to confine as gas of ∼0.01 cm 3 in volume at ∼ 1 atmosphere. This paper will describe the major steps and processes necessary in the fabrication, testing and delivery of these targets for shots on the Nova Laser at LLNL

  18. WWER type reactor primary loop imitation on large test loop facility in MARIA reactor

    International Nuclear Information System (INIS)

    Moldysh, A.; Strupchevski, A.; Kmetek, Eh.; Spasskov, V.P.; Shumskij, A.M.

    1982-01-01

    At present in Poland in cooperation with USSR a nuclear water loop test facility (WL) in 'MARIA' reactor in Sverke is under construction. The program objective is to investigate processes occuring in WWER reactor under emergency conditions, first of all after the break of the mainprimary loop circulation pipe-line. WL with the power of about 600 kW consists of three major parts: 1) an active loop, imitating the undamaged loops of the WWER reactor; 2) a passive loop assignedfor modelling the broken loop of the WWER reactor; 3) the emergency core cooling system imitating the corresponding full-scale system. The fuel rod bundle consists of 18 1 m long rods. They were fabricated according to the standard WWER fuel technology. In the report some general principles of WWERbehaviour imitation under emergency conditions are given. They are based on the operation experience obtained from 'SEMISCALE' and 'LOFT' test facilities in the USA. A description of separate modelling factors and criteria effects on the development of 'LOCA'-type accident is presented (the break cross-section to the primary loop volume ratio, the pressure differential between inlet and outlet reactor chambers, the pressure drop rate in the loop, the coolant flow rate throuh the core etc.). As an example a comparison of calculated flow rate variations for the WWER-1000 reactor and the model during the loss-of-coolant accident with the main pipe-line break at the core inlet is given. Calculations have been carried out with the use of TECH'-M code [ru

  19. Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion

    International Nuclear Information System (INIS)

    Dobranich, Dean; Blanchat, Thomas K.

    2008-01-01

    Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System

  20. Dynamic correction of the laser beam coordinate in fabrication of large-sized diffractive elements for testing aspherical mirrors

    Science.gov (United States)

    Shimansky, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.

    2017-05-01

    This paper presents a method of improving the accuracy of a circular laser system in fabrication of large-diameter diffractive optical elements by means of a polar coordinate system and the results of their use. An algorithm for correcting positioning errors of a circular laser writing system developed at the Institute of Automation and Electrometry, SB RAS, is proposed and tested. Highprecision synthesized holograms fabricated by this method and the results of using these elements for testing the 6.5 m diameter aspheric mirror of the James Webb space telescope (JWST) are described..

  1. Aquaporin-4 antibody in neuromyelitis optica: re-testing study in a large population from China.

    Science.gov (United States)

    Long, Youming; Liang, Junyan; Zhong, Rong; Wu, Linzhan; Qiu, Wei; Lin, Shaopeng; Gao, Cong; Chen, Xiaohui; Zheng, Xueping; Yang, Ning; Gao, Min; Wang, Zhanhang

    2017-09-01

    Aquaporin-4 (AQP4) antibody sero-positivity is critically important in neuromyelitis optica (NMO). However, the sensitivity of different assays is highly variable. Repeating detection with a highly sensitive assay in a large population is necessary in the case of so-called negative NMO. Retrospective analysis where AQP4 antibodies were detected by commercial cell-based assay (CBA), in-house M23-CBA and in-house M1-CBA. Of the 1011 serum samples, 206 (20.4%) were sero-positive by primary commercial CBA. In the retest, all 206 participants positive by primary commercial CBA also yielded positive results by in-house M23-CBA and the second commercial CBA again, but only 124 positive in in-house M1-CBA. Among the 805 participants negative by primary commercial CBA, 71 participants were positive for in-house M23-CBA, of which 20 participants were positive for the second commercial CBA, and none were positive by in-house M1-CBA. Of the 171 cerebral spinal fluid samples, 75 (43.9%) were positive by primary commercial CBA. All 75 participants positive by primary commercial CBA also yielded positive results by in-house M23-CBA and the second commercial CBA. Forty-nine (65.3%) of these 75 participants were positive by in-house M1-CBA. Among the 96 participants negative by primary commercial CBA, 15 participants were positive for in-house M23-CBA and none were positive by in-house M1-CBA and the second commercial CBA. Different AQP4 isoforms in CBA result in different detection effects, and in-house M23-CBA is the most sensitive method. Some AQP4 antibody-negative NMO may be subject to diagnostic uncertainty due to limitations of the assays.

  2. Further examination of embedded performance validity indicators for the Conners' Continuous Performance Test and Brief Test of Attention in a large outpatient clinical sample.

    Science.gov (United States)

    Sharland, Michael J; Waring, Stephen C; Johnson, Brian P; Taran, Allise M; Rusin, Travis A; Pattock, Andrew M; Palcher, Jeanette A

    2018-01-01

    Assessing test performance validity is a standard clinical practice and although studies have examined the utility of cognitive/memory measures, few have examined attention measures as indicators of performance validity beyond the Reliable Digit Span. The current study further investigates the classification probability of embedded Performance Validity Tests (PVTs) within the Brief Test of Attention (BTA) and the Conners' Continuous Performance Test (CPT-II), in a large clinical sample. This was a retrospective study of 615 patients consecutively referred for comprehensive outpatient neuropsychological evaluation. Non-credible performance was defined two ways: failure on one or more PVTs and failure on two or more PVTs. Classification probability of the BTA and CPT-II into non-credible groups was assessed. Sensitivity, specificity, positive predictive value, and negative predictive value were derived to identify clinically relevant cut-off scores. When using failure on two or more PVTs as the indicator for non-credible responding compared to failure on one or more PVTs, highest classification probability, or area under the curve (AUC), was achieved by the BTA (AUC = .87 vs. .79). CPT-II Omission, Commission, and Total Errors exhibited higher classification probability as well. Overall, these findings corroborate previous findings, extending them to a large clinical sample. BTA and CPT-II are useful embedded performance validity indicators within a clinical battery but should not be used in isolation without other performance validity indicators.

  3. Designing a large scale combined pumping and tracer test in a fracture zone at Palmottu, Finland

    International Nuclear Information System (INIS)

    Gustafsson, E.; Nordqvist, R.; Korkealaakso, J.; Galarza, G.

    1997-01-01

    The Palmottu Natural Analogue Project in Finland continued as an EC-supported international analogue project in 1996, in order to study radionuclide migration in a natural uranium-rich environment. The site is located in an area of crystalline bedrock, characterized by granites and metamorphic rocks. The uranium deposit extends from the surface to a depth of more than 300 m, and have a thickness of up to 15 m. An overall aim of the project is to increase knowledge of factors affecting mobilization and retardation of uranium in crystalline bedrock. One of the important tasks within the project is to characterize the major flow paths for the groundwater, i.e. important hydraulic features, around the orebody. A planned experiment in one such feature, a sub-horizontal fracture zone which cross-cuts the uranium mineralization. The objectives of the planned combined pumping and tracer test is to verify and further up-date the present hydro-structural model around the central part of the mineralization, increase the current understanding about the hydraulic and solute transport properties of the sub-horizontal fracture zone, as well as to verify and further characterize its hydraulic boundaries. (author)

  4. Small Changes Yield Large Results at NIST's Net-Zero Energy Residential Test Facility.

    Science.gov (United States)

    Fanney, A Hunter; Healy, William; Payne, Vance; Kneifel, Joshua; Ng, Lisa; Dougherty, Brian; Ullah, Tania; Omar, Farhad

    2017-12-01

    The Net-Zero Energy Residential Test Facility (NZERTF) was designed to be approximately 60 % more energy efficient than homes meeting the 2012 International Energy Conservation Code (IECC) requirements. The thermal envelope minimizes heat loss/gain through the use of advanced framing and enhanced insulation. A continuous air/moisture barrier resulted in an air exchange rate of 0.6 air changes per hour at 50 Pa. The home incorporates a vast array of extensively monitored renewable and energy efficient technologies including an air-to-air heat pump system with a dedicated dehumidification cycle; a ducted heat-recovery ventilation system; a whole house dehumidifier; a photovoltaic system; and a solar domestic hot water system. During its first year of operation the NZERTF produced an energy surplus of 1023 kWh. Based on observations during the first year, changes were made to determine if further improvements in energy performance could be obtained. The changes consisted of installing a thermostat that incorporated control logic to minimize the use of auxiliary heat, using a whole house dehumidifier in lieu of the heat pump's dedicated dehumidification cycle, and reducing the ventilation rate to a value that met but did not exceed code requirements. During the second year of operation the NZERTF produced an energy surplus of 2241 kWh. This paper describes the facility, compares the performance data for the two years, and quantifies the energy impact of the weather conditions and operational changes.

  5. Big Bang nucleosynthesis: Accelerator tests and can Ω/sub B/ really be large

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1987-10-01

    The first collider tests of cosmological theory are now underway. The number of neutrino families in nature, N/sub nu/, plays a key role in elementary particle physics as well as in the synthesis of the light elements during the early evolution of the Universe. Standard Big Bang Nucleosynthesis argues for N/sub nu/ = 3 +- 1. Current limits on N/sub nu/ from the CERN anti pp collider and e + e - colliders are presented and compared to the cosmological bound. Supernova SN 1987A is also shown to give a limit on N/sub nu/ comparable to current accelerator bounds. All numbers are found to be small thus verifying the Big Bang model at an earlier epoch than is possible by traditional astronomical observations. Future measurements at SLC and LEP will further tighten this argument. Another key prediction of the standard Big Bang Nucleosynthesis is that the baryon density must be small (Ω/sub B/ ≤ 0.1). Recent attempts to try to subvert this argument using homogeneities of various types are shown to run afoul of the 7 Li abundance which has now become a rather firm constraint. 18 refs., 2 figs

  6. Optimized Gen-II FeCrAl cladding production in large quantity for campaign testing

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sun, Zhiqian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-03

    There are two major objectives in this report; (1) to optimize microstructure control of ATF FeCrAl alloys during tube drawing processes, and (2) to provide an update on the progress of ATF FeCrAl tube production via commercial manufacturers. Experimental efforts have been made to optimize the process parameters balancing the tube fabricability, especially for tube drawing processes, and microstructure control of the final tube products. Lab-scale sheet materials of Gen II FeCrAl alloys (Mo-containing and Nb-containing FeCrAl alloys) were used in the study, combined with a stepwise warm-rolling process and intermediate annealing, aiming to simulate the tube drawing process in a commercial tube manufacturer. The intermediate annealing at 650ºC for 1h was suggested for the tube-drawing process of Mo-containing FeCrAl alloys because it successfully softened the material by recovering the work hardening introduced through the rolling step, without inducing grain coarsening due to recrystallization. The final tube product is expected to have stabilized deformed microstructure providing the improved tensile properties with sufficient ductility. Optimization efforts on Nb-containing FeCrAl alloys focused on the effect of alloying additions and annealing conditions on the stability of deformed microstructure. Relationships between the second-phase precipitates (Fe2Nb-Laves phase) and microstructure stability are discussed. FeCrAl tube production through commercial tube manufacturers is currently in progress. Three different manufacturers, Century Tubes, Inc. (CTI), Rhenium Alloys, Inc. (RAI), and Superior Tube Company, Inc. (STC), are providing capabilities for cold-drawing, warm-drawing, and HPTR cold-pilgering, respectively. The first two companies are currently working on large quantity tube production (expected 250 ft length) of Gen I model FeCrAl alloy (B136Y3, at CTI) and Gen II (C35M4, at RAI), with the process parameters obtained from the experimental

  7. Concurrent Validity and Feasibility of Short Tests Currently Used to Measure Early Childhood Development in Large Scale Studies.

    Directory of Open Access Journals (Sweden)

    Marta Rubio-Codina

    Full Text Available In low- and middle-income countries (LIMCs, measuring early childhood development (ECD with standard tests in large scale surveys and evaluations of interventions is difficult and expensive. Multi-dimensional screeners and single-domain tests ('short tests' are frequently used as alternatives. However, their validity in these circumstances is unknown. We examined the feasibility, reliability, and concurrent validity of three multi-dimensional screeners (Ages and Stages Questionnaires (ASQ-3, Denver Developmental Screening Test (Denver-II, Battelle Developmental Inventory screener (BDI-2 and two single-domain tests (MacArthur-Bates Short-Forms (SFI and SFII, WHO Motor Milestones (WHO-Motor in 1,311 children 6-42 months in Bogota, Colombia. The scores were compared with those on the Bayley Scales of Infant and Toddler Development (Bayley-III, taken as the 'gold standard'. The Bayley-III was given at a center by psychologists; whereas the short tests were administered in the home by interviewers, as in a survey setting. Findings indicated good internal validity of all short tests except the ASQ-3. The BDI-2 took long to administer and was expensive, while the single-domain tests were quickest and cheapest and the Denver-II and ASQ-3 were intermediate. Concurrent validity of the multi-dimensional tests' cognitive, language, and fine motor scales with the corresponding Bayley-III scale was low below 19 months. However, it increased with age, becoming moderate-to-high over 30 months. In contrast, gross motor scales' concurrence was high under 19 months and then decreased. Of the single-domain tests, the WHO-Motor had high validity with gross motor under 16 months, and the SFI and SFII expressive scales showed moderate correlations with language under 30 months. Overall, the Denver-II was the most feasible and valid multi-dimensional test and the ASQ-3 performed poorly under 31 months. By domain, gross motor development had the highest concurrence

  8. Distribution of ground rigidity and ground model for seismic response analysis in Hualian project of large scale seismic test

    International Nuclear Information System (INIS)

    Kokusho, T.; Nishi, K.; Okamoto, T.; Tanaka, Y.; Ueshima, T.; Kudo, K.; Kataoka, T.; Ikemi, M.; Kawai, T.; Sawada, Y.; Suzuki, K.; Yajima, K.; Higashi, S.

    1997-01-01

    An international joint research program called HLSST is proceeding. HLSST is large-scale seismic test (LSST) to investigate soil-structure interaction (SSI) during large earthquake in the field in Hualien, a high seismic region in Taiwan. A 1/4-scale model building was constructed on the gravelly soil in this site, and the backfill material of crushed stone was placed around the model plant after excavation for the construction. Also the model building and the foundation ground were extensively instrumental to monitor structure and ground response. To accurately evaluate SSI during earthquakes, geotechnical investigation and forced vibration test were performed during construction process namely before/after base excavation, after structure construction and after backfilling. And the distribution of the mechanical properties of the gravelly soil and the backfill are measured after the completion of the construction by penetration test and PS-logging etc. This paper describes the distribution and the change of the shear wave velocity (V s ) measured by the field test. Discussion is made on the effect of overburden pressure during the construction process on V s in the neighbouring soil and, further on the numerical soil model for SSI analysis. (orig.)

  9. Impact of Isothermal Aging and Testing Temperature on Large Flip-Chip BGA Interconnect Mechanical Shock Performance

    Science.gov (United States)

    Lee, Tae-Kyu; Chen, Zhiqiang; Guirguis, Cherif; Akinade, Kola

    2017-10-01

    The stability of solder interconnects in a mechanical shock environment is crucial for large body size flip-chip ball grid array (FCBGA) electronic packages. Additionally, the junction temperature increases with higher electric power condition, which brings the component into an elevated temperature environment, thus introducing another consideration factor for mechanical stability of interconnection joints. Since most of the shock performance data available were produced at room temperature, the effect of elevated temperature is of interest to ensure the reliability of the device in a mechanical shock environment. To achieve a stable␣interconnect in a dynamic shock environment, the interconnections must tolerate mechanical strain, which is induced by the shock wave input and reaches the particular component interconnect joint. In this study, large body size (52.5 × 52.5 mm2) FCBGA components assembled on 2.4-mm-thick boards were tested with various isothermal pre-conditions and testing conditions. With a heating element embedded in the test board, a test temperature range from room temperature to 100°C was established. The effects of elevated temperature on mechanical shock performance were investigated. Failure and degradation mechanisms are identified and discussed based on the microstructure evolution and grain structure transformations.

  10. Technology of CCS coal utilization (outline of large-size demonstration test for CCS); CCS tan riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Konno, K [Center for Coal Utilization, Japan, Tokyo (Japan); Hironaka, H [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-09-01

    The coal cartridge system (CCS) is a series of the total system, in which coal is processed centrally at a supply base for each unit of consumer areas, supplied as pulverized coal in bulk units, and coal ash after combustion is recovered and treated. The system is expected of advantages resulted from the centralized production, elimination of handling troubles, and cleanliness. Following a small scale demonstration test, a large demonstration test for practically usable scale has begun in 1990, and completed in fiscal 1995. This paper introduces the CCS and reports the result of the test. In the large demonstration test, a supply station (with manufacturing capability of 200,000 tons a year) was installed in the Aichi refinery of Idemitsu Kosan Co., Ltd., and systematization on quality design and system technologies has been carried out. Long-term continuous operation for five years was achieved (operation time of the supply facilities was about 19,000 hours) without a failure and accident, to which every elemental technology was evaluated highly, and convenience and reliability of the system was verified. 13 figs., 3 tabs.

  11. Fault injection as a test method for an FPGA in charge of data readout for a large tracking detector

    CERN Document Server

    Roed, K; Richter, M; Fehlker, D; Helstrup, H; Alme, J; Ullaland, K

    2011-01-01

    This paper describes how fault injection has been implemented as a test method for an FPGA in an existing hardware configuration setup. As this FPGA is in charge of data readout for a large tracking detector, the reliability of this FPGA is of high importance. Due to the complexity of the readout electronics, irradiation testing is technically difficult at this stage of the system commissioning. The work presented in this paper is therefore motivated by introducing fault injection as an alternative method to characterize failures caused by SEUs. It is a method to study the effect that a configuration upset may have on the operation of the FPGA. The target platform consists of two independent modules for data acquisition and detector control functionality. Fault injection to test the response of the data acquisition module is made possible by implementing the solution as part of the detector control functionality. Correct implementation is validated by a simple shift register design. Our results demonstrate th...

  12. Quench protection test results and comparative simulations on the first 10 meter prototype dipoles for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Rodriguez-Mateos, F.; Gerin, G.; Marquis, A.

    1996-01-01

    The first 10 meter long dipole prototypes made by European Industry within the framework of the R and D program for the Large Hadron Collider (LHC) have been tested at CERN. As a part of the test program, a series of quench protection tests have been carried out in order to qualify the basic protection scheme foreseen for the LHC dipoles (quench heaters and cold diodes). Results are presented on the quench heater performance, and on the maximum temperatures and voltages observed during quenches under the so-called machine conditions. Moreover, an update of the quench simulation package specially developed at CERN (QUABER 2) has been recently made. Details on this new version of QUABER are given. Simulation runs have been made specifically to validate the model with the results from the measurements on quench protection mentioned above

  13. Test of ITER conductors in SULTAN: An update

    International Nuclear Information System (INIS)

    Bruzzone, Pierluigi; Stepanov, Boris; Wesche, Rainer; Herzog, Robert; Calzolaio, Ciro; Vogel, Martin

    2011-01-01

    The ITER Toroidal Field (TF) conductor qualification phase has been carried out by testing short sample prototype conductors in the SULTAN test facility. This phase, started in 2007, has been substantially completed after minor adjustment of the conductor specification and test procedures. All the parties involved in the TF conductor procurement passed the qualification phase. Starting 2010, the samples for TF process qualification phase are tested in SULTAN. A summary of the results for all the ITER Qualification samples and an updated statistics are presented for the V-I and V-T characteristics of the cable-in-conduit conductors (CICC), including Nb 3 Sn and NbTi samples assembled with either a 'bottom joint' or a 'U-bend'. The technical improvements of the test facility are reported, including the enhanced cyclic loading rate and the calibration of the current meter. An outlook of the ITER conductor tests in the coming years is also presented.

  14. Testing the transferability of regression equations derived from small sub-catchments to a large area in central Sweden

    Directory of Open Access Journals (Sweden)

    C. Xu

    2003-01-01

    Full Text Available There is an ever increasing need to apply hydrological models to catchments where streamflow data are unavailable or to large geographical regions where calibration is not feasible. Estimation of model parameters from spatial physical data is the key issue in the development and application of hydrological models at various scales. To investigate the suitability of transferring the regression equations relating model parameters to physical characteristics developed from small sub-catchments to a large region for estimating model parameters, a conceptual snow and water balance model was optimised on all the sub-catchments in the region. A multiple regression analysis related model parameters to physical data for the catchments and the regression equations derived from the small sub-catchments were used to calculate regional parameter values for the large basin using spatially aggregated physical data. For the model tested, the results support the suitability of transferring the regression equations to the larger region. Keywords: water balance modelling,large scale, multiple regression, regionalisation

  15. Large scale seismic test research at Hualien site in Taiwan. Results of site investigation and characterization of the foundation ground

    International Nuclear Information System (INIS)

    Okamoto, Toshiro; Kokusho, Takeharu; Nishi, Koichi

    1998-01-01

    An international joint research program called ''HLSST'' is under way. Large-Scale Seismic Test (LSST) is to be conducted to investigate Soil-Structure Interaction (SSI) during large earthquakes in the field in Hualien, a high seismic region in Taiwan. A 1/4-scale model building was constructed on the excavated gravelly ground, and the backfill material of crushed stones was placed around the model plant. The model building and the foundation ground were extensively instrumented to monitor structure and ground response. To accurately evaluate SSI during earthquakes, geotechnical investigation and forced vibration test were performed during construction process namely before/after the base excavation, after the structure construction and after the backfilling. Main results are as follows. (1) The distribution of the mechanical properties of the gravelly soil are measured by various techniques including penetration tests and PS-logging and it found that the shear wave velocities (Vs) change clearly and it depends on changing overburden pressures during the construction process. (2) Measuring Vs in the surrounding soils, it found that the Vs is smaller than that at almost same depth in the farther location. Discussion is made further on the numerical soil model for SSI analysis. (author)

  16. Closing the feedback loop: engaging students in large first-year mathematics test revision sessions using pen-enabled screens

    Science.gov (United States)

    Donovan, Diane; Loch, Birgit

    2013-01-01

    How can active learning, peer learning and prompt feedback be achieved in large first-year mathematics classes? Further, what technologies may support these aims? In this article, we assert that test revision sessions in first-year mathematics held in a technology-enhanced lecture theatre can be highly interactive with students solving problems, learning from each other and receiving immediate feedback. This is facilitated by pen-enabled screens and synchronization software. We argue that the educational benefits achievable through the technology do outweigh the technological distractions, and that these benefits can be achieved by focused, targeted one-off sessions and not only by a semester-long, regular approach. Repeat mid-semester test revision sessions were offered on a non-compulsory basis using pen-enabled screens for all students. Students worked practice test questions and marked solutions to mathematical problems on the screens. Students' work was then displayed anonymously for their peers to see. Answers were discussed with the whole class. We discuss outcomes from two offerings of these sessions using student feedback and lecturer reflections and show the impact of participation on self-reported student confidence. Pedagogical approaches that the technology allowed for the first time in a large class are highlighted. Students responded uniformly positively.

  17. A progress report for the large block test of the coupled thermal-mechanical-hydrological-chemical processes

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.

    1994-10-01

    This is a progress report on the Large Block Test (LBT) project. The purpose of the LBT is to study some of the coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near field of a nuclear waste repository under controlled boundary conditions. To do so, a large block of Topopah Spring tuff will be heated from within for about 4 to 6 months, then cooled down for about the same duration. Instruments to measure temperature, moisture content, stress, displacement, and chemical changes will be installed in three directions in the block. Meanwhile, laboratory tests will be conducted on small blocks to investigate individual thermal-mechanical, thermal-hydrological, and thermal-chemical processes. The fractures in the large block will be characterized from five exposed surfaces. The minerals on fracture surfaces will be studied before and after the test. The results from the LBT will be useful for testing and building confidence in models that will be used to predict TMHC processes in a repository. The boundary conditions to be controlled on the block include zero moisture flux and zero heat flux on the sides, constant temperature on the top, and constant stress on the outside surfaces of the block. To control these boundary conditions, a load-retaining frame is required. A 3 x 3 x 4.5 m block of Topopah Spring tuff has been isolated on the outcrop at Fran Ridge, Nevada Test Site. Pre-test model calculations indicate that a permeability of at least 10 -15 m 2 is required so that a dryout zone can be created within a practical time frame when the block is heated from within. Neutron logging was conducted in some of the vertical holes to estimate the initial moisture content of the block. It was found that about 60 to 80% of the pore volume of the block is saturated with water. Cores from the vertical holes have been used to map the fractures and to determine the properties of the rock. A current schedule is included in the report

  18. Post-irradiation examinations and high-temperature tests on undoped large-grain UO{sub 2} discs

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J., E-mail: jean.noirot@cea.fr [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Pontillon, Y. [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Yagnik, S. [EPRI, P.O. Box 10412, Palo Alto, CA 94303-0813 (United States); Turnbull, J.A. [Independent Consultant (United Kingdom)

    2015-07-15

    Within the Nuclear Fuel Industry Research (NFIR) programme, several fuel variants –in the form of thin circular discs – were irradiated in the Halden Boiling Water Reactor (HBWR) at burn-ups up to ∼100 GWd/t{sub HM}. The design of the fuel assembly was similar to that used in other HBWR programmes: the assembly contained several rods with fuel discs sandwiched between Mo discs, which limited temperature differences within each fuel disc. One such variant was made of large-grain UO{sub 2} discs (3D grain size = ∼45 μm) which were subjected to three burn-ups: 42, 72 and 96 GWd/t{sub HM}. Detailed characterizations of some of these irradiated large-grain UO{sub 2} discs were performed in the CEA Cadarache LECA-STAR hot laboratory. The techniques used included electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). Comparisons were then carried out with more standard grain size UO{sub 2} discs irradiated under the same conditions. Examination of the high burn-up large-grain UO{sub 2} discs revealed the limited formation of a high burn-up structure (HBS) when compared with the standard-grain UO{sub 2} discs at similar burn-up. High burn-up discs were submitted to temperature transients up to 1200 °C in the heating test device called Merarg at a relatively low temperature ramp rate (0.2 °C/s). In addition to the total gas release during these tests, the release peaks throughout the temperature ramp were monitored. Tests at 1600 °C were also conducted on the 42 GWd/t{sub HM} discs. The fuels were then characterized with the same microanalysis techniques as those used before the tests, to investigate the effects of these tests on the fuel’s microstructure and on the fission gas behaviour. This paper outlines the high resistance of this fuel to gas precipitation at high temperature and to HBS formation at high burn-up. It also shows the similarity of the positions, within the grains, where HBS forms

  19. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries

    Directory of Open Access Journals (Sweden)

    Han Bucong

    2012-11-01

    Full Text Available Abstract Background Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. Results We evaluated support vector machines (SVM as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33% of 13.56M PubChem, 1,496 (0.89% of 168 K MDDR, and 719 (7.73% of 9,305 MDDR compounds similar to the known inhibitors. Conclusions SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates.

  20. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries.

    Science.gov (United States)

    Han, Bucong; Ma, Xiaohua; Zhao, Ruiying; Zhang, Jingxian; Wei, Xiaona; Liu, Xianghui; Liu, Xin; Zhang, Cunlong; Tan, Chunyan; Jiang, Yuyang; Chen, Yuzong

    2012-11-23

    Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors. SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates.

  1. Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes

    Science.gov (United States)

    Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.

    2014-01-01

    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.

  2. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z.; Chin, Y.S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  3. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    International Nuclear Information System (INIS)

    Liang, Z.; Chin, Y.S.

    2014-01-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  4. The development of a capability for aerodynamic testing of large-scale wing sections in a simulated natural rain environment

    Science.gov (United States)

    Bezos, Gaudy M.; Cambell, Bryan A.; Melson, W. Edward

    1989-01-01

    A research technique to obtain large-scale aerodynamic data in a simulated natural rain environment has been developed. A 10-ft chord NACA 64-210 wing section wing section equipped with leading-edge and trailing-edge high-lift devices was tested as part of a program to determine the effect of highly-concentrated, short-duration rainfall on airplane performance. Preliminary dry aerodynamic data are presented for the high-lift configuration at a velocity of 100 knots and an angle of attack of 18 deg. Also, data are presented on rainfield uniformity and rainfall concentration intensity levels obtained during the calibration of the rain simulation system.

  5. Cross-validation of the Dot Counting Test in a large sample of credible and non-credible patients referred for neuropsychological testing.

    Science.gov (United States)

    McCaul, Courtney; Boone, Kyle B; Ermshar, Annette; Cottingham, Maria; Victor, Tara L; Ziegler, Elizabeth; Zeller, Michelle A; Wright, Matthew

    2018-01-18

    To cross-validate the Dot Counting Test in a large neuropsychological sample. Dot Counting Test scores were compared in credible (n = 142) and non-credible (n = 335) neuropsychology referrals. Non-credible patients scored significantly higher than credible patients on all Dot Counting Test scores. While the original E-score cut-off of ≥17 achieved excellent specificity (96.5%), it was associated with mediocre sensitivity (52.8%). However, the cut-off could be substantially lowered to ≥13.80, while still maintaining adequate specificity (≥90%), and raising sensitivity to 70.0%. Examination of non-credible subgroups revealed that Dot Counting Test sensitivity in feigned mild traumatic brain injury (mTBI) was 55.8%, whereas sensitivity was 90.6% in patients with non-credible cognitive dysfunction in the context of claimed psychosis, and 81.0% in patients with non-credible cognitive performance in depression or severe TBI. Thus, the Dot Counting Test may have a particular role in detection of non-credible cognitive symptoms in claimed psychiatric disorders. Alternative to use of the E-score, failure on ≥1 cut-offs applied to individual Dot Counting Test scores (≥6.0″ for mean grouped dot counting time, ≥10.0″ for mean ungrouped dot counting time, and ≥4 errors), occurred in 11.3% of the credible sample, while nearly two-thirds (63.6%) of the non-credible sample failed one of more of these cut-offs. An E-score cut-off of 13.80, or failure on ≥1 individual score cut-offs, resulted in few false positive identifications in credible patients, and achieved high sensitivity (64.0-70.0%), and therefore appear appropriate for use in identifying neurocognitive performance invalidity.

  6. Thermography During Thermal Test of the Gaia Deployable Sunshield Assembly Qualification Model in the ESTEC Large Space Simulator

    Science.gov (United States)

    Simpson, R.; Broussely, M.; Edwards, G.; Robinson, D.; Cozzani, A.; Casarosa, G.

    2012-07-01

    The National Physical Laboratory (NPL) and The European Space Research and Technology Centre (ESTEC) have performed for the first time successful surface temperature measurements using infrared thermal imaging in the ESTEC Large Space Simulator (LSS) under vacuum and with the Sun Simulator (SUSI) switched on during thermal qualification tests of the GAIA Deployable Sunshield Assembly (DSA). The thermal imager temperature measurements, with radiosity model corrections, show good agreement with thermocouple readings on well characterised regions of the spacecraft. In addition, the thermal imaging measurements identified potentially misleading thermocouple temperature readings and provided qualitative real-time observations of the thermal and spatial evolution of surface structure changes and heat dissipation during hot test loadings, which may yield additional thermal and physical measurement information through further research.

  7. Biaxial direct tensile tests in a large range of strain rates. Results on a ferritic nuclear steel

    Energy Technology Data Exchange (ETDEWEB)

    Albertini, C.; Labibes, K.; Montagnani, M.; Pizzinato, E.V.; Solomos, G.; Viaccoz, B. [Commission of the European Communities, Ispra (Italy). Joint Research Centre

    2000-09-01

    Constitutive equations are usually calibrated only trough the experimental results obtained by means of unixial tests because of the lack of adequate biaxial experimental data especially at high strain rate conditions. These data are however important for the validation of analytical models and also for the predictions of mechanical behaviour of real structures subjected to multiaxial loading by numerical simulations. In this paper some developments are shown concerning biaxial cruciform specimens and different experimental machines allowing biaxial tests in a large range of strain rates. This experimental campaign has also allowed study of the influence of changing the strain paths. Diagrams of equivalent stress versus straining direction and also equivalent plastic fracture strain versus straining direction are shown. (orig.)

  8. Investigation with automatic ultrasonic equipment to trace flaws in a large test piece, and experience gained in carrying out inspections

    International Nuclear Information System (INIS)

    Lindner, J.P.

    1975-01-01

    Based on the FRG codes providing guide lines for the Reactor Safety Commission regarding the size and location of flaws to be detected during in-service inspections, investigations were carried out into the possibility of detecting defects in thick-walled reactor pressure vessel components with the aid of ultrasonic inspection systems. A large test rig was used and, in a similar manner to the in-service inspections on a reactor, the tests were carried out with remote-controlled, automatically guided inspection equipment. For this purpose, a test specimen weighing about 10 tons was produced and provided with two weld seams having a large number of artificial defects. Essential parameters for the various reflectors in the test specimen were the size, location, angle and roughness or structure of the reflecting surfaces. As it is known that austenitic cladding has a considerable influence on flaw detection, the tests were undertaken first without cladding and then with cladding. A manipulator was designed for automatic remote-controlled inspection with which the inspection system travels on a meandering route over the area to be inspected. The inspection system employed was of the same type as the one used for baseline tests during external inspections of reactor vessel walls with parallel surfaces. Digital data collection was by a magnetic tape recorder designed to store both the data of the ultrasonic inspection system as well as the allied position data. The data stored on the tape are evaluated with electronic data processing programmes especially developed for this purpose. These programmes allow locally coherent indication patterns to be prepared, thus simplifying the interpretation of the data obtained. The author initially describes the equipment with the aid of which the studies were undertaken. A detailed discussion is then presented on the design of the test specimen and the inspection systems employed. Following this, the results obtained are explained and

  9. Technical basis and programmatic requirements for large block testing of coupled thermal-mechanical-hydrological-chemical processes

    International Nuclear Information System (INIS)

    Lin, Wunan.

    1993-09-01

    This document contains the technical basis and programmatic requirements for a scientific investigation plan that governs tests on a large block of tuff for understanding the coupled thermal- mechanical-hydrological-chemical processes. This study is part of the field testing described in Section 8.3.4.2.4.4.1 of the Site Characterization Plan (SCP) for the Yucca Mountain Project. The first, and most important objective is to understand the coupled TMHC processes in order to develop models that will predict the performance of a nuclear waste repository. The block and fracture properties (including hydrology and geochemistry) can be well characterized from at least five exposed surfaces, and the block can be dismantled for post-test examinations. The second objective is to provide preliminary data for development of models that will predict the quality and quantity of water in the near-field environment of a repository over the current 10,000 year regulatory period of radioactive decay. The third objective is to develop and evaluate the various measurement systems and techniques that will later be employed in the Engineered Barrier System Field Tests (EBSFT)

  10. On-Line Radiation Test Facility for Industrial Equipment needed for the Large Hadron Collider at CERN

    CERN Document Server

    Rausch, R

    1999-01-01

    The future Large Hadron Collider to be built at CERN will use superconducting magnets cooled down to 1.2 K. To preserve the superconductivity, the energy deposition dose levels in equipment located outside the cryostat, in the LHC tunnel, are calculated to be of the order of 1 to 10 Gy per year. At such dose levels, no major radiation-damage problems are to be expected, and the possibility of installing Commercial Of The Shelf (COTS) electronic equipment in the LHC tunnel along the accelerator is considered. To this purpose, industrial electronic equipment and circuits have to be qualified and tested against radiation to insure their long term stability and reliability. An on-line radiation test facility has been setup at the CERN Super Proton Synchrotron (SPS) and a program of on-line tests for electronic equipment is ongoing. Equipment tested includes Industrial Programmable Logic Controllers (PLCs) from several manufacturers, standard VME modules, Fieldbuses like Profibus, WorldFIP and CAN, various electro...

  11. Scramjet test flow reconstruction for a large-scale expansion tube, Part 1: quasi-one-dimensional modelling

    Science.gov (United States)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2017-11-01

    Large-scale free-piston driven expansion tubes have uniquely high total pressure capabilities which make them an important resource for development of access-to-space scramjet engine technology. However, many aspects of their operation are complex, and their test flows are fundamentally unsteady and difficult to measure. While computational fluid dynamics methods provide an important tool for quantifying these flows, these calculations become very expensive with increasing facility size and therefore have to be carefully constructed to ensure sufficient accuracy is achieved within feasible computational times. This study examines modelling strategies for a Mach 10 scramjet test condition developed for The University of Queensland's X3 facility. The present paper outlines the challenges associated with test flow reconstruction, describes the experimental set-up for the X3 experiments, and then details the development of an experimentally tuned quasi-one-dimensional CFD model of the full facility. The 1-D model, which accurately captures longitudinal wave processes, is used to calculate the transient flow history in the shock tube. This becomes the inflow to a higher-fidelity 2-D axisymmetric simulation of the downstream facility, detailed in the Part 2 companion paper, leading to a validated, fully defined nozzle exit test flow.

  12. Scramjet test flow reconstruction for a large-scale expansion tube, Part 1: quasi-one-dimensional modelling

    Science.gov (United States)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2018-07-01

    Large-scale free-piston driven expansion tubes have uniquely high total pressure capabilities which make them an important resource for development of access-to-space scramjet engine technology. However, many aspects of their operation are complex, and their test flows are fundamentally unsteady and difficult to measure. While computational fluid dynamics methods provide an important tool for quantifying these flows, these calculations become very expensive with increasing facility size and therefore have to be carefully constructed to ensure sufficient accuracy is achieved within feasible computational times. This study examines modelling strategies for a Mach 10 scramjet test condition developed for The University of Queensland's X3 facility. The present paper outlines the challenges associated with test flow reconstruction, describes the experimental set-up for the X3 experiments, and then details the development of an experimentally tuned quasi-one-dimensional CFD model of the full facility. The 1-D model, which accurately captures longitudinal wave processes, is used to calculate the transient flow history in the shock tube. This becomes the inflow to a higher-fidelity 2-D axisymmetric simulation of the downstream facility, detailed in the Part 2 companion paper, leading to a validated, fully defined nozzle exit test flow.

  13. A summary of the conclusions of generic issue 113: Dynamic qualification and testing of large bore hydraulic snubbers

    International Nuclear Information System (INIS)

    Ware, A.G.; Nitzel, M.E.

    1993-01-01

    The Nuclear Regulatory Commission (NRC) developed Generic Issue 113, Dynamic Qualification and Testing of Large Bore Hydraulic Snubbers (LBHSs), with the objective of evaluating the reliability of LBHSs in operating commercial nuclear power plants. For the purposes of this research, LBHSs were defined as those hydraulic snubbers with rated load capacities ≥50 kips. Relatively high LBHS failure rates were common during the early 1980s; however, industry actions taken during the last several years in response to increased inspection and testing requirements have resulted in lower LBHS failure rates. To address the issue of LBHS adequacy, the NRC developed Generic Issue 113 (GI-113). This paper provides a summary of the important findings of the GI-113 research program and a discussion of the recommendations that were made in NUREG/CR-5416. Fifteen potential improvements in LBHS reliability were identified, covering the areas of design, environmental (including dynamic) qualification, functional testing, visual inspection, and personnel training. Probabilistic risk assessment studies were used to perform a cost/benefit analysis for each. There were five potential improvements in functional testing and visual inspections with low cost/benefit ratios for both existing and future nuclear plants, and an additional six potential improvements that were determined to be cost beneficial only for future plants. Further investigations of the single failure of snubbers that could damage critical components or systems were recommended in NUREG/CR-5416

  14. Proceedings of the Joint IAEA/CSNI Specialists' Meeting on Fracture Mechanics Verification by Large-Scale Testing

    International Nuclear Information System (INIS)

    1993-10-01

    This report provides the proceedings of a Specialists' Meeting on Fracture Mechanics Verification by Large-Scale Testing that was held in Oak Ridge, Tennessee, on October 23-25, 1992. The meeting was jointly sponsored by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development. In particular, the International Working Group (IWG) on Life Management of Nuclear Power Plants (LMNPP) was the IAEA sponsor, and the Principal Working Group 3 (PWG-3) (Primary System Component Integrity) of the Committee for the Safety of Nuclear Installations (CSNI) was the NEA's sponsor. This meeting was preceded by two prior international activities that were designed to examine the state-of-the-art in fracture analysis capabilities and emphasized applications to the safety evaluation of nuclear power facilities. The first of those two activities was an IAEA Specialists' Meeting on Fracture Mechanics Verification by Large-Scale Testing that was held at the Staatliche Materialprufungsanstalt (MPA) in Stuttgart, Germany, on May 25-27, 1988; the proceedings of that meeting were published 1991.1 The second activity was the CSNI/PWG-3's Fracture Assessment Group's Project FALSIRE (Fracture Analyses of Large-Scale International Reference Experiments). The proceedings of the FALSIRE workshop that was held in Boston, Massachusetts, U.S.A., on May 8-10, 1990, was recently published by the Oak Ridge National Laboratory (ORNL). Those previous activities identified capabilities and shortcomings of various fracture analysis methods based on analyses of six available large-scale experiments. Different modes of fracture behavior, which ranged from brittle to ductile, were considered. In addition, geometry, size, constraint and multiaxial effects were considered. While generally good predictive capabilities were demonstrated for brittle fracture, issues were identified relative to predicting fracture behavior at higher

  15. Investigation of bacterial transport in the large-block test, a thermally perturbed block of Topopah Spring tuff

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.I.; Meike, A.; Chuu, Y.J.; Sawvel, A.; Lin, W.

    1999-07-01

    Transport of bacteria is investigated as part of the Large-Block Test (LBT), a thermally perturbed block of Topopah Spring tuff. Two bacterial species, Bacillus subtilis and Arthrobacter oxydans, were isolated from the Yucca Mountain Tuff. Natural mutants that can grow under the simultaneous presence of the two antibiotics, streptomycin and rifampicin, were selected from these species by laboratory procedures, cultured, and injected into the five heater boreholes of the large block hours before heating was initiated. The temperature, as measured 5 cm above one of the heater boreholes, rose slowly over a matter of months to a maximum of 142 C and to 60 C at the top and bottom of the block. Samples were collected from boreholes located approximately 5 ft below the injection points. Double-drug-resistant microbes also appeared in the heater boreholes where the temperature had been sustainably high throughout the test. The number of double-drug-resistant bacteria that were identified in the collection boreholes increased with time until the heater was deactivated. Negative indications in the collection holes after the heater was deactivated support the supposition that these bacteria were the species that were injected. An apparent homogeneous distribution among the collection boreholes suggests no pattern to the migration of bacteria through the block. The relationship between bacterial migration and the movement of water is not yet understood. These observations indicate the possibility of rapid bacterial transport in a thermally perturbed geologic setting. The implications for colloid transport need to be reviewed.

  16. Investigation of bacterial transport in the large-block test, a thermally perturbed block of Topopah Spring tuff

    International Nuclear Information System (INIS)

    Chen, C.I.; Meike, A.; Chuu, Y.J.; Sawvel, A.; Lin, W.

    1999-01-01

    Transport of bacteria is investigated as part of the Large-Block Test (LBT), a thermally perturbed block of Topopah Spring tuff. Two bacterial species, Bacillus subtilis and Arthrobacter oxydans, were isolated from the Yucca Mountain Tuff. Natural mutants that can grow under the simultaneous presence of the two antibiotics, streptomycin and rifampicin, were selected from these species by laboratory procedures, cultured, and injected into the five heater boreholes of the large block hours before heating was initiated. The temperature, as measured 5 cm above one of the heater boreholes, rose slowly over a matter of months to a maximum of 142 C and to 60 C at the top and bottom of the block. Samples were collected from boreholes located approximately 5 ft below the injection points. Double-drug-resistant microbes also appeared in the heater boreholes where the temperature had been sustainably high throughout the test. The number of double-drug-resistant bacteria that were identified in the collection boreholes increased with time until the heater was deactivated. Negative indications in the collection holes after the heater was deactivated support the supposition that these bacteria were the species that were injected. An apparent homogeneous distribution among the collection boreholes suggests no pattern to the migration of bacteria through the block. The relationship between bacterial migration and the movement of water is not yet understood. These observations indicate the possibility of rapid bacterial transport in a thermally perturbed geologic setting. The implications for colloid transport need to be reviewed

  17. Test of Gravity on Large Scales with Weak Gravitational Lensing and Clustering Measurements of SDSS Luminous Red Galaxies

    Science.gov (United States)

    Reyes, Reinabelle; Mandelbaum, R.; Seljak, U.; Gunn, J.; Lombriser, L.

    2009-01-01

    We perform a test of gravity on large scales (5-50 Mpc/h) using 70,000 luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) DR7 with redshifts 0.16largely independent of galaxy bias and sigma_8. In particular, E_G is sensitive to the relation between the spatial and temporal scalar perturbations in the space-time metric. While these two potentials are equivalent in concordance cosmology (GR+LCDM) in the absence of anisotropic stress, they are not equivalent in alternative theories of gravity in general, so that different models make different predictions for E_G. We find E_G=0.37±0.05 averaged over scales 5test in future galaxy surveys such as LSST, for which a very high signal-to-noise measurement will be possible.

  18. Design and Initial Tests of the Tracker-Converter ofthe Gamma-ray Large Area Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W.B.; Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; De; Drell, P.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Germani, S.; Giannitrapani, R.; Giglietto, N.; /UC, Santa Cruz /INFN, Pisa /Pisa U. /INFN, Trieste /INFN,

    2007-04-16

    The Tracker subsystem of the Large Area Telescope (LAT) science instrument of the Gamma-ray Large Area Space Telescope (GLAST) mission has been completed and tested. It is the central detector subsystem of the LAT and serves both to convert an incident gamma-ray into an electron-positron pair and to track the pair in order to measure the gamma-ray direction. It also provides the principal trigger for the LAT. The Tracker uses silicon strip detectors, read out by custom electronics, to detect charged particles. The detectors and electronics are packaged, along with tungsten converter foils, in 16 modular, high-precision carbon-composite structures. It is the largest silicon-strip detector system ever built for launch into space, and its aggressive design emphasizes very low power consumption, passive cooling, low noise, high efficiency, minimal dead area, and a structure that is highly transparent to charged particles. The test program has demonstrated that the system meets or surpasses all of its performance specifications as well as environmental requirements. It is now installed in the completed LAT, which is being prepared for launch in early 2008.

  19. Multi-parameter decoupling and slope tracking control strategy of a large-scale high altitude environment simulation test cabin

    Directory of Open Access Journals (Sweden)

    Li Ke

    2014-12-01

    Full Text Available A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements.

  20. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  1. Testing on a Large Scale Running the ATLAS Data Acquisition and High Level Trigger Software on 700 PC Nodes

    CERN Document Server

    Burckhart-Chromek, Doris; Adragna, P; Alexandrov, L; Amorim, A; Armstrong, S; Badescu, E; Baines, J T M; Barros, N; Beck, H P; Bee, C; Blair, R; Bogaerts, J A C; Bold, T; Bosman, M; Caprini, M; Caramarcu, C; Ciobotaru, M; Comune, G; Corso-Radu, A; Cranfield, R; Crone, G; Dawson, J; Della Pietra, M; Di Mattia, A; Dobinson, Robert W; Dobson, M; Dos Anjos, A; Dotti, A; Drake, G; Ellis, Nick; Ermoline, Y; Ertorer, E; Falciano, S; Ferrari, R; Ferrer, M L; Francis, D; Gadomski, S; Gameiro, S; Garitaonandia, H; Gaudio, G; George, S; Gesualdi-Mello, A; Gorini, B; Green, B; Haas, S; Haberichter, W N; Hadavand, H; Haeberli, C; Haller, J; Hansen, J; Hauser, R; Hillier, S J; Höcker, A; Hughes-Jones, R E; Joos, M; Kazarov, A; Kieft, G; Klous, S; Kohno, T; Kolos, S; Korcyl, K; Kordas, K; Kotov, V; Kugel, A; Landon, M; Lankford, A; Leahu, L; Leahu, M; Lehmann-Miotto, G; Le Vine, M J; Liu, W; Maeno, T; Männer, R; Mapelli, L; Martin, B; Masik, J; McLaren, R; Meessen, C; Meirosu, C; Mineev, M; Misiejuk, A; Morettini, P; Mornacchi, G; Müller, M; Garcia-Murillo, R; Nagasaka, Y; Negri, A; Padilla, C; Pasqualucci, E; Pauly, T; Perera, V; Petersen, J; Pope, B; Albuquerque-Portes, M; Pretzl, K; Prigent, D; Roda, C; Ryabov, Yu; Salvatore, D; Schiavi, C; Schlereth, J L; Scholtes, I; Sole-Segura, E; Seixas, M; Sloper, J; Soloviev, I; Spiwoks, R; Stamen, R; Stancu, S; Strong, S; Sushkov, S; Szymocha, T; Tapprogge, S; Teixeira-Dias, P; Torres, R; Touchard, F; Tremblet, L; Ünel, G; Van Wasen, J; Vandelli, W; Vaz-Gil-Lopes, L; Vermeulen, J C; von der Schmitt, H; Wengler, T; Werner, P; Wheeler, S; Wickens, F; Wiedenmann, W; Wiesmann, M; Wu, X; Yasu, Y; Yu, M; Zema, F; Zobernig, H; Computing In High Energy and Nuclear Physics

    2006-01-01

    The ATLAS Data Acquisition (DAQ) and High Level Trigger (HLT) software system will be comprised initially of 2000 PC nodes which take part in the control, event readout, second level trigger and event filter operations. This high number of PCs will only be purchased before data taking in 2007. The large CERN IT LXBATCH facility provided the opportunity to run in July 2005 online functionality tests over a period of 5 weeks on a stepwise increasing farm size from 100 up to 700 PC dual nodes. The interplay between the control and monitoring software with the event readout, event building and the trigger software has been exercised the first time as an integrated system on this large scale. New was also to run algorithms in the online environment for the trigger selection and in the event filter processing tasks on a larger scale. A mechanism has been developed to package the offline software together with the DAQ/HLT software and to distribute it via peer-to-peer software efficiently to this large pc cluster. T...

  2. Testing on a Large Scale running the ATLAS Data Acquisition and High Level Trigger Software on 700 PC Nodes

    CERN Document Server

    Burckhart-Chromek, Doris; Adragna, P; Albuquerque-Portes, M; Alexandrov, L; Amorim, A; Armstrong, S; Badescu, E; Baines, J T M; Barros, N; Beck, H P; Bee, C; Blair, R; Bogaerts, J A C; Bold, T; Bosman, M; Caprini, M; Caramarcu, C; Ciobotaru, M; Comune, G; Corso-Radu, A; Cranfield, R; Crone, G; Dawson, J; Della Pietra, M; Di Mattia, A; Dobinson, Robert W; Dobson, M; Dos Anjos, A; Dotti, A; Drake, G; Ellis, Nick; Ermoline, Y; Ertorer, E; Falciano, S; Ferrari, R; Ferrer, M L; Francis, D; Gadomski, S; Gameiro, S; Garcia-Murillo, R; Garitaonandia, H; Gaudio, G; George, S; Gesualdi-Mello, A; Gorini, B; Green, B; Haas, S; Haberichter, W N; Hadavand, H; Haeberli, C; Haller, J; Hansen, J; Hauser, R; Hillier, S J; Hughes-Jones, R E; Höcker, A; Joos, M; Kazarov, A; Kieft, G; Klous, S; Kohno, T; Kolos, S; Korcyl, K; Kordas, K; Kotov, V; Kugel, A; Landon, M; Lankford, A; Le Vine, M J; Leahu, L; Leahu, M; Lehmann-Miotto, G; Liu, W; Maeno, T; Mapelli, L; Martin, B; Masik, J; McLaren, R; Meessen, C; Meirosu, C; Mineev, M; Misiejuk, A; Morettini, P; Mornacchi, G; Männer, R; Müller, M; Nagasaka, Y; Negri, A; Padilla, C; Pasqualucci, E; Pauly, T; Perera, V; Petersen, J; Pope, B; Pretzl, K; Prigent, D; Roda, C; Ryabov, Yu; Salvatore, D; Schiavi, C; Schlereth, J L; Scholtes, I; Seixas, M; Sloper, J; Sole-Segura, E; Soloviev, I; Spiwoks, R; Stamen, R; Stancu, S; Strong, S; Sushkov, S; Szymocha, T; Tapprogge, S; Teixeira-Dias, P; Torres, R; Touchard, F; Tremblet, L; Van Wasen, J; Vandelli, W; Vaz-Gil-Lopes, L; Vermeulen, J C; Wengler, T; Werner, P; Wheeler, S; Wickens, F; Wiedenmann, W; Wiesmann, M; Wu, X; Yasu, Y; Yu, M; Zema, F; Zobernig, H; von der Schmitt, H; Ünel, G; Computing In High Energy and Nuclear Physics

    2006-01-01

    The ATLAS Data Acquisition (DAQ) and High Level Trigger (HLT) software system will be comprised initially of 2000 PC nodes which take part in the control, event readout, second level trigger and event filter operations. This high number of PCs will only be purchased before data taking in 2007. The large CERN IT LXBATCH facility provided the opportunity to run in July 2005 online functionality tests over a period of 5 weeks on a stepwise increasing farm size from 100 up to 700 PC dual nodes. The interplay between the control and monitoring software with the event readout, event building and the trigger software has been exercised the first time as an integrated system on this large scale. New was also to run algorithms in the online environment for the trigger selection and in the event filter processing tasks on a larger scale. A mechanism has been developed to package the offline software together with the DAQ/HLT software and to distribute it via peer-to-peer software efficiently to this large pc cluster. T...

  3. IN-SITU TEST EXPERIMENTAL RESEARCH ON LEAKAGE OF LARGE DIAMETER PRE-STRESSED CONCRETE CYLINDER PIPE (PCCP

    Directory of Open Access Journals (Sweden)

    Jianjun Luo

    2016-10-01

    Full Text Available In recent years, a big number of large diameter pre-stressed concrete cylinder pipe (PCCP lines have been applied to the Mid-route of the South-to-North Water Transfer Project. However, the leakage problem of PCCP causes annually heavy economic losses to our country. In such a context of situation, how to detect leaks rapidly and precisely after pipes appear cracks in water supply system has great significance. Based on the study and analysis of the characteristic structure of large diameter PCCP, a new leak detection system using fiber Bragg grating sensors, which can capture signals of water pressure change, is proposed. The feasibility, reliability and practicability of the system could be acceptable according to data achieved from in–situ tests. Moreover, the leak detection system can monitor in real-time of dynamic change of water pressure. The equations of the leakage quantity and water pressure have been presented in this paper, which can provide technical guidelines for large diameter PCCP lines maintenance.

  4. Investigation of bacterial transport in the large-block test, a thermally perturbed block of Topopah Spring Tuff

    International Nuclear Information System (INIS)

    Chen, C. I.; Chuu, Y. J.; Lin, W.; Meike, A.; Sawvel, A.

    1998-01-01

    This study investigates the transport of bacteria in a large, thermally perturbed block of Topopah Spring tuff. The study was part of the Large-Block Test (LBT), thermochemical and physical studies conducted on a 10 ft x 10 ft x 14 ft block of volcanic tuff excavated on 5 of 6 sides out of Fran Ridge, Nevada. Two bacterial species, Bacillus subtilis and Arthrobacter oxydans, were isolated from the Yucca Mountain tuff. Natural mutants that can grow under the simultaneous presence of the two antibiotics, streptomycin and rifampicin, were selected from these species by laboratory procedures. The double-drug-resistant mutants, which could be thus distinguished from the indigenous species, were injected into the five heater boreholes of the large block hours before heating was initiated. The temperature, as measured 5 cm above one of the heater boreholes, rose slowly and steadily over a matter of months to a maximum of 142 C. Samples (cotton cloths inserted the length of the hole, glass fiber swabs, and filter papers) were collected from the boreholes that were approximately 5 ft below the injection points. Double-drug-resistant bacteria were found in the collection boreholes nine months after injection. Surprisingly, they also appeared in the heater boreholes where the temperature had been sustainably high throughout the test. These bacteria appear to be the species that were injected. The number of double-drug-resistant bacteria that were identified in the collection boreholes increased with time. An apparent homogeneous distribution among the observation boreholes and heater boreholes suggests that a random motion could be the pattern that the bacteria migrated in the block. These observations indicated the possibility of rapid bacterial transport in a thermally perturbed geologic setting

  5. Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin

    Directory of Open Access Journals (Sweden)

    E. H. Sutanudjaja

    2011-09-01

    Full Text Available The current generation of large-scale hydrological models does not include a groundwater flow component. Large-scale groundwater models, involving aquifers and basins of multiple countries, are still rare mainly due to a lack of hydro-geological data which are usually only available in developed countries. In this study, we propose a novel approach to construct large-scale groundwater models by using global datasets that are readily available. As the test-bed, we use the combined Rhine-Meuse basin that contains groundwater head data used to verify the model output. We start by building a distributed land surface model (30 arc-second resolution to estimate groundwater recharge and river discharge. Subsequently, a MODFLOW transient groundwater model is built and forced by the recharge and surface water levels calculated by the land surface model. Results are promising despite the fact that we still use an offline procedure to couple the land surface and MODFLOW groundwater models (i.e. the simulations of both models are separately performed. The simulated river discharges compare well to the observations. Moreover, based on our sensitivity analysis, in which we run several groundwater model scenarios with various hydro-geological parameter settings, we observe that the model can reasonably well reproduce the observed groundwater head time series. However, we note that there are still some limitations in the current approach, specifically because the offline-coupling technique simplifies the dynamic feedbacks between surface water levels and groundwater heads, and between soil moisture states and groundwater heads. Also the current sensitivity analysis ignores the uncertainty of the land surface model output. Despite these limitations, we argue that the results of the current model show a promise for large-scale groundwater modeling practices, including for data-poor environments and at the global scale.

  6. Fracture toughness of partially welded joints of SUS316 stainless steel at 4 K by large bend tests

    International Nuclear Information System (INIS)

    Nishimura, A.; Tobler, R.L.; Tamura, H.; Imagawa, S.; Mito, T.; Yamamoto, J.; Motojima, O.; Takahashi, H.; Suzuki, S.

    1996-01-01

    Austenitic stainless steels in relatively thick sections are specified in support structure designs for huge superconducting magnets in fusion energy machines such as the Large Helical Device (LHD). In the LHD under construction at the National Institute for Fusion Science (NIFS) in Japan, partial welding of SUS 316 stainless steel is employed to fabricate the 100-mm thick coil can and coil support structures. Partial welding lowers the heat input and reduces residual deformation after welding. The main disadvantage is that a sizable crack-like defect remains embedded in the unwelded portion of the primary structural component. Here, SUS 316 stainless steel bars were partially welded and tested in 3-point bending to evaluate the effect of natural cracks on fusion zone toughness at 4 K. The specimens had a cross-section 87.5 mm x 175 mm and were fractured in liquid helium using a 10 MN cryogenic mechanical testing machine. In two tests, unstable fracture occurred at maximum load and at critical stress intensity factors K max = 227 and 228 MPa√m. Results indicate a high resistance to fracture initiation but no stable tearing. Therefore, no resistance to crack propagation may exist in a fusion zone at a weld root under cryogenic temperature

  7. Gust load alleviation wind tunnel tests of a large-aspect-ratio flexible wing with piezoelectric control

    Directory of Open Access Journals (Sweden)

    Ying Bi

    2017-02-01

    Full Text Available An active control technique utilizing piezoelectric actuators to alleviate gust-response loads of a large-aspect-ratio flexible wing is investigated. Piezoelectric materials have been extensively used for active vibration control of engineering structures. In this paper, piezoelectric materials further attempt to suppress the vibration of the aeroelastic wing caused by gust. The motion equation of the flexible wing with piezoelectric patches is obtained by Hamilton’s principle with the modal approach, and then numerical gust responses are analyzed, based on which a gust load alleviation (GLA control system is proposed. The gust load alleviation system employs classic proportional-integral-derivative (PID controllers which treat piezoelectric patches as control actuators and acceleration as the feedback signal. By a numerical method, the control mechanism that piezoelectric actuators can be used to alleviate gust-response loads is also analyzed qualitatively. Furthermore, through low-speed wind tunnel tests, the effectiveness of the gust load alleviation active control technology is validated. The test results agree well with the numerical results. Test results show that at a certain frequency range, the control scheme can effectively alleviate the z and x wingtip accelerations and the root bending moment of the wing to a certain extent. The control system gives satisfying gust load alleviation efficacy with the reduction rate being generally over 20%.

  8. LOFT/L2-5, Loss of Fluid Test, 3. NRC L2 Large Break LOCA Experiment

    International Nuclear Information System (INIS)

    1992-01-01

    1 - Description of test facility: The LOFT Integral Test Facility is a scale model of a LPWR. The intent of the facility is to model the nuclear, thermal-hydraulic phenomena which would take place in a LPWR during a LOCA. The general philosophy in scaling coolant volumes and flow areas in LOFT was to use the ratio of the LOFT core [50 MW(t)] to a typical LPWR core [3000 MW(t)]. For some components, this factor is not applied; however, it is used as extensively as practical. In general, components used in LOFT are similar in design to those of a LPWR. Because of scaling and component design, the LOFT LOCA is expected to closely model a LPWR LOCA. 2 - Description of test: This experiment was the third of the NRC L2 Series of nuclear large Break LOCA experiments, conducted on 16 June 1981. It simulated a 100% cold leg break with a maximum heat generation of 40 kW/m and rapid pump coast down

  9. ROSA-V large scale test facility (LSTF) system description for the third and fourth simulated fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mitsuhiro; Nakamura, Hideo; Ohtsu, Iwao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    The Large Scale Test Facility (LSTF) is a full-height and 1/48 volumetrically scaled test facility of the Japan Atomic Energy Research Institute (JAERI) for system integral experiments simulating the thermal-hydraulic responses at full-pressure conditions of a 1100 MWe-class pressurized water reactor (PWR) during small break loss-of-coolant accidents (SBLOCAs) and other transients. The LSTF can also simulate well a next-generation type PWR such as the AP600 reactor. In the fifth phase of the Rig-of-Safety Assessment (ROSA-V) Program, eighty nine experiments have been conducted at the LSTF with the third simulated fuel assembly until June 2001, and five experiments have been conducted with the newly-installed fourth simulated fuel assembly until December 2002. In the ROSA-V program, various system integral experiments have been conducted to certify effectiveness of both accident management (AM) measures in beyond design basis accidents (BDBAs) and improved safety systems in the next-generation reactors. In addition, various separate-effect tests have been conducted to verify and develop computer codes and analytical models to predict non-homogeneous and multi-dimensional phenomena such as heat transfer across the steam generator U-tubes under the presence of non-condensable gases in both current and next-generation reactors. This report presents detailed information of the LSTF system with the third and fourth simulated fuel assemblies for the aid of experiment planning and analyses of experiment results. (author)

  10. Large scale centrifuge test of a geomembrane-lined landfill subject to waste settlement and seismic loading.

    Science.gov (United States)

    Kavazanjian, Edward; Gutierrez, Angel

    2017-10-01

    A large scale centrifuge test of a geomembrane-lined landfill subject to waste settlement and seismic loading was conducted to help validate a numerical model for performance based design of geomembrane liner systems. The test was conducted using the 240g-ton centrifuge at the University of California at Davis under the U.S. National Science Foundation Network for Earthquake Engineering Simulation Research (NEESR) program. A 0.05mm thin film membrane was used to model the liner. The waste was modeled using a peat-sand mixture. The side slope membrane was underlain by lubricated low density polyethylene to maximize the difference between the interface shear strength on the top and bottom of the geomembrane and the induced tension in it. Instrumentation included thin film strain gages to monitor geomembrane strains and accelerometers to monitor seismic excitation. The model was subjected to an input design motion intended to simulate strong ground motion from the 1994 Hyogo-ken Nanbu earthquake. Results indicate that downdrag waste settlement and seismic loading together, and possibly each phenomenon individually, can induce potentially damaging tensile strains in geomembrane liners. The data collected from this test is publically available and can be used to validate numerical models for the performance of geomembrane liner systems. Published by Elsevier Ltd.

  11. LOFT/L2-3, Loss of Fluid Test, 2. NRC L2 Large Break LOCA Experiment

    International Nuclear Information System (INIS)

    1992-01-01

    1 - Description of test facility: The LOFT Integral Test Facility is a scale model of a LPWR. The intent of the facility is to model the nuclear, thermal-hydraulic phenomena which would take place in a LPWR during a LOCA. The general philosophy in scaling coolant volumes and flow areas in LOFT was to use the ratio of the LOFT core [50 MW(t)] to a typical LPWR core [3000 MW(t)]. For some components, this factor is not applied; however, it is used as extensively as practical. In general, components used in LOFT are similar in design to those of a LPWR. Because of scaling and component design, the LOFT LOCA is expected to closely model a LPWR LOCA. 2 - Description of test: This experiment was the second of the NRC L2 Series of nuclear large Break LOCA experiments, and was conducted on 12 May 1979. It simulated a 100% cold leg break with a maximum heat generation of 39 kW/m

  12. First AC loss test and analysis of a Bi2212 cable-in-conduit conductor for fusion application

    Science.gov (United States)

    Qin, Jinggang; Shi, Yi; Wu, Yu; Li, Jiangang; Wang, Qiuliang; He, Yuxiang; Dai, Chao; Liu, Fang; Liu, Huajun; Mao, Zhehua; Nijhuis, Arend; Zhou, Chao; Devred, Arnaud

    2018-01-01

    The main goal of the Chinese fusion engineering test reactor (CFETR) is to build a fusion engineering tokamak reactor with a fusion power of 50-200 MW, and plan to test the breeding tritium during the fusion reaction. This may require a maximum magnetic field of the central solenoid and toroidal field coils up to 15 T. New magnet technologies should be developed for the next generation of fusion reactors with higher requirements. Bi2Sr2CaCu2Ox (Bi2212) is considered as a potential and promising superconductor for the magnets in the CFETR. R&D activities are ongoing at the Institute of Plasma Physics, Chinese Academy of Sciences for demonstration of the feasibility of a CICC based on Bi2212 round wire. One sub-size conductor cabled with 42 wires was designed, manufactured and tested with limited strand indentation during cabling and good transport performance. In this paper, the first test results and analysis on the AC loss of Bi2212 round wires and cabled conductor samples are presented. Furthermore, the impact of mechanical load on the AC loss of the sub-size conductor is investigated to represent the operation conditions with electromagnetic loads. The first tests provide an essential basis for the validation of Bi2212 CICC and its application in fusion magnets.

  13. Ultrasonic Nondestructive Evaluation of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) During Large-Scale Load Testing and Rod Push-Out Testing

    Science.gov (United States)

    Johnston, Patrick H.; Juarez, Peter D.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. The HWB has long been a focus of NASA's environmentally responsible aviation (ERA) project, following a building block approach to structures development, culminating with the testing of a nearly full-scale multi-bay box (MBB), representing a segment of the pressurized, non-circular fuselage portion of the HWB. PRSEUS is an integral structural concept wherein skins, frames, stringers and tear straps made of variable number of layers of dry warp-knit carbon-fiber stacks are stitched together, then resin-infused and cured in an out-of-autoclave process. The PRSEUS concept has the potential for reducing the weight and cost and increasing the structural efficiency of transport aircraft structures. A key feature of PRSEUS is the damage-arresting nature of the stitches, which enables the use of fail-safe design principles. During the load testing of the MBB, ultrasonic nondestructive evaluation (NDE) was used to monitor several sites of intentional barely-visible impact damage (BVID) as well as to survey the areas surrounding the failure cracks after final loading to catastrophic failure. The damage-arresting ability of PRSEUS was confirmed by the results of NDE. In parallel with the large-scale structural testing of the MBB, mechanical tests were conducted of the PRSEUS rod-to-overwrap bonds, as measured by pushing the rod axially from a short length of stringer.

  14. Long-term resource variation and group size: A large-sample field test of the Resource Dispersion Hypothesis

    Directory of Open Access Journals (Sweden)

    Morecroft Michael D

    2001-07-01

    Full Text Available Abstract Background The Resource Dispersion Hypothesis (RDH proposes a mechanism for the passive formation of social groups where resources are dispersed, even in the absence of any benefits of group living per se. Despite supportive modelling, it lacks empirical testing. The RDH predicts that, rather than Territory Size (TS increasing monotonically with Group Size (GS to account for increasing metabolic needs, TS is constrained by the dispersion of resource patches, whereas GS is independently limited by their richness. We conducted multiple-year tests of these predictions using data from the long-term study of badgers Meles meles in Wytham Woods, England. The study has long failed to identify direct benefits from group living and, consequently, alternative explanations for their large group sizes have been sought. Results TS was not consistently related to resource dispersion, nor was GS consistently related to resource richness. Results differed according to data groupings and whether territories were mapped using minimum convex polygons or traditional methods. Habitats differed significantly in resource availability, but there was also evidence that food resources may be spatially aggregated within habitat types as well as between them. Conclusions This is, we believe, the largest ever test of the RDH and builds on the long-term project that initiated part of the thinking behind the hypothesis. Support for predictions were mixed and depended on year and the method used to map territory borders. We suggest that within-habitat patchiness, as well as model assumptions, should be further investigated for improved tests of the RDH in the future.

  15. Construction and testing of a large scale prototype of a silicon tungsten electromagnetic calorimeter for a future lepton collider

    International Nuclear Information System (INIS)

    Rouëné, Jérémy

    2013-01-01

    The CALICE collaboration is preparing large scale prototypes of highly granular calorimeters for detectors to be operated at a future linear electron positron collider. After several beam campaigns at DESY, CERN and FNAL, the CALICE collaboration has demonstrated the principle of highly granular electromagnetic calorimeters with a first prototype called physics prototype. The next prototype, called technological prototype, addresses the engineering challenges which come along with the realisation of highly granular calorimeters. This prototype will comprise 30 layers where each layer is composed of four 9×9 cm 2 silicon wafers. The front end electronics is integrated into the detector layers. The size of each pixel is 5×5 mm 2 . This prototype enters its construction phase. We present results of the first layers of the technological prototype obtained during beam test campaigns in spring and summer 2012. According to these results the signal over noise ratio of the detector exceeds the R and D goal of 10:1

  16. Implementation and testing of a fault detection software tool for improving control system performance in a large commercial building

    Energy Technology Data Exchange (ETDEWEB)

    Salsbury, T.I.; Diamond, R.C.

    2000-05-01

    This paper describes a model-based, feedforward control scheme that can detect faults in the controlled process and improve control performance over traditional PID control. The tool uses static simulation models of the system under control to generate feed-forward control action, which acts as a reference of correct operation. Faults that occur in the system cause discrepancies between the feedforward models and the controlled process. The scheme facilitates detection of faults by monitoring the level of these discrepancies. We present results from the first phase of tests on a dual-duct air-handling unit installed in a large office building in San Francisco. We demonstrate the ability of the tool to detect a number of preexisting faults in the system and discuss practical issues related to implementation.

  17. Improvement of a high current DC power supply system for testing the large scaled superconducting cables and magnets

    International Nuclear Information System (INIS)

    Yamada, Shuichi; Chikaraishi, Hirotaka; Tanahashi, Shugo

    1993-11-01

    A dc 75 kA power supply system was constructed to test the superconducting (SC) R and D cables and magnets for the Large Helical Device. It consists of three 25 kA unit banks. A unit bank has two double-star-rectifier connections with the inter-phase reactors. A digital feedback control method is applied to the automatic current regulation (ACR) in each unit bank. For shortening the dead time of the feedback process, a new algorithm of a digital phase controller for the ACR is investigated. A Bode diagram of the feedback process is directly measured. It is confirmed that the dead time of the feedback process is reduced to one sixth, and that the feedback gain of PID compensation is improved by a factor of two from the original method. (author)

  18. Lightweight electric-powered vehicles. Which financial incentives after the large-scale field tests at Mendrisio?

    International Nuclear Information System (INIS)

    Keller, M.; Frick, R.; Hammer, S.

    1999-08-01

    How should lightweight electric-powered vehicles be promoted, after the large-scale fleet test being conducted at Mendrisio (southern Switzerland) is completed in 2001, and are there reasons to put question marks behind the current approach? The demand for electric vehicles, and particularly the one in the automobile category, has remained at a persistently low level. As it proved, any appreciable improvement of this situation is almost impossible, even with substantial financial incentives. However, the unsatisfactory sales figures have little to do with the nature of the fleet test itself or with the specific conditions at Mendrisio. The problem is rather of structural nature. For (battery-operated) electric cars the main problem at present is the lack of an expanding market which could become self-supporting with only a few additional incentives. Various strategies have been evaluated. Two alternatives were considered in particular: a strategy to promote explicitly electric vehicles ('EL-strategy'), and a strategy to promote efficient road vehicles in general which would have to meet specific energy and environmental-efficiency criteria ('EF-strategy'). The EL-strategies make the following dilemma clear. If the aim is to raise the share of these vehicles up to 5% of all cars on the road (or even 8%) in a mid-term prospect, then substantial interventions in the relevant vehicle markets would be required, either with penalties for conventional cars, or a large-scale funding scheme, or interventions at the supply level. The study suggests a differentiated strategy with two components: (i) 'institutionalised' promotion with the aim of a substantial increase of the share of 'efficient' vehicles (independently of the propulsion technology), and (ii) the continuation of pilot and demonstration projects for the promotion of different types of innovative technologies. (author) [de

  19. An Accurate Method for Inferring Relatedness in Large Datasets of Unphased Genotypes via an Embedded Likelihood-Ratio Test

    KAUST Repository

    Rodriguez, Jesse M.

    2013-01-01

    Studies that map disease genes rely on accurate annotations that indicate whether individuals in the studied cohorts are related to each other or not. For example, in genome-wide association studies, the cohort members are assumed to be unrelated to one another. Investigators can correct for individuals in a cohort with previously-unknown shared familial descent by detecting genomic segments that are shared between them, which are considered to be identical by descent (IBD). Alternatively, elevated frequencies of IBD segments near a particular locus among affected individuals can be indicative of a disease-associated gene. As genotyping studies grow to use increasingly large sample sizes and meta-analyses begin to include many data sets, accurate and efficient detection of hidden relatedness becomes a challenge. To enable disease-mapping studies of increasingly large cohorts, a fast and accurate method to detect IBD segments is required. We present PARENTE, a novel method for detecting related pairs of individuals and shared haplotypic segments within these pairs. PARENTE is a computationally-efficient method based on an embedded likelihood ratio test. As demonstrated by the results of our simulations, our method exhibits better accuracy than the current state of the art, and can be used for the analysis of large genotyped cohorts. PARENTE\\'s higher accuracy becomes even more significant in more challenging scenarios, such as detecting shorter IBD segments or when an extremely low false-positive rate is required. PARENTE is publicly and freely available at http://parente.stanford.edu/. © 2013 Springer-Verlag.

  20. Results of Large-Scale Testing on Effects of Anti-Foam Agent on Gas Retention and Release

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Charles W.; Guzman-Leong, Consuelo E.; Arm, Stuart T.; Butcher, Mark G.; Golovich, Elizabeth C.; Jagoda, Lynette K.; Park, Walter R.; Slaugh, Ryan W.; Su, Yin-Fong; Wend, Christopher F.; Mahoney, Lenna A.; Alzheimer, James M.; Bailey, Jeffrey A.; Cooley, Scott K.; Hurley, David E.; Johnson, Christian D.; Reid, Larry D.; Smith, Harry D.; Wells, Beric E.; Yokuda, Satoru T.

    2008-01-03

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. The waste treatment process in the pretreatment facility will mix both Newtonian and non-Newtonian slurries in large process tanks. Process vessels mixing non-Newtonian slurries will use pulse jet mixers (PJMs), air sparging, and recirculation pumps. An anti-foam agent (AFA) will be added to the process streams to prevent surface foaming, but may also increase gas holdup and retention within the slurry. The work described in this report addresses gas retention and release in simulants with AFA through testing and analytical studies. Gas holdup and release tests were conducted in a 1/4-scale replica of the lag storage vessel operated in the Pacific Northwest National Laboratory (PNNL) Applied Process Engineering Laboratory using a kaolin/bentonite clay and AZ-101 HLW chemical simulant with non-Newtonian rheological properties representative of actual waste slurries. Additional tests were performed in a small-scale mixing vessel in the PNNL Physical Sciences Building using liquids and slurries representing major components of typical WTP waste streams. Analytical studies were directed at discovering how the effect of AFA might depend on gas composition and predicting the effect of AFA on gas retention and release in the full-scale plant, including the effects of mass transfer to the sparge air. The work at PNNL was part of a larger program that included tests conducted at Savannah River National Laboratory (SRNL) that is being reported separately. SRNL conducted gas holdup tests in a small-scale mixing vessel using the AZ-101 high-level waste (HLW) chemical simulant to investigate the effects of different AFAs, their components, and of adding noble metals. Full-scale, single-sparger mass transfer tests were also conducted at SRNL in water and AZ-101 HLW simulant to provide data for PNNL

  1. Optical emission spectroscopy at the large RF driven negative ion test facility ELISE: Instrumental setup and first results

    International Nuclear Information System (INIS)

    Wünderlich, D.; Fantz, U.; Franzen, P.; Riedl, R.; Bonomo, F.

    2013-01-01

    One of the main topics to be investigated at the recently launched large (A source = 1.0 × 0.9 m 2 ) ITER relevant RF driven negative ion test facility ELISE (Extraction from a Large Ion Source Experiment) is the connection between the homogeneity of the plasma parameters close to the extraction system and the homogeneity of the extracted negative hydrogen ion beam. While several diagnostics techniques are available for measuring the beam homogeneity, the plasma parameters are determined by optical emission spectroscopy (OES) solely. First OES measurements close to the extraction system show that without magnetic filter field the vertical profile of the plasma emission is more or less symmetric, with maxima of the emission representing the projection of the plasma generation volumes, and a distinct minimum in between. The profile changes with the strength of the magnetic filter field but under all circumstances the plasma emission in ELISE is much more homogeneous compared to the smaller IPP prototype sources. Planned after this successful demonstration of the ELISE OES system is to combine OES with tomography in order to determine locally resolved values for the plasma parameters

  2. Absolute pitch among students at the Shanghai Conservatory of Music: a large-scale direct-test study.

    Science.gov (United States)

    Deutsch, Diana; Li, Xiaonuo; Shen, Jing

    2013-11-01

    This paper reports a large-scale direct-test study of absolute pitch (AP) in students at the Shanghai Conservatory of Music. Overall note-naming scores were very high, with high scores correlating positively with early onset of musical training. Students who had begun training at age ≤5 yr scored 83% correct not allowing for semitone errors and 90% correct allowing for semitone errors. Performance levels were higher for white key pitches than for black key pitches. This effect was greater for orchestral performers than for pianists, indicating that it cannot be attributed to early training on the piano. Rather, accuracy in identifying notes of different names (C, C#, D, etc.) correlated with their frequency of occurrence in a large sample of music taken from the Western tonal repertoire. There was also an effect of pitch range, so that performance on tones in the two-octave range beginning on Middle C was higher than on tones in the octave below Middle C. In addition, semitone errors tended to be on the sharp side. The evidence also ran counter to the hypothesis, previously advanced by others, that the note A plays a special role in pitch identification judgments.

  3. Large superconducting conductors and joints for fusion magnets: From conceptual design to test at full size scale

    International Nuclear Information System (INIS)

    Ciazynski, D.; Duchateau, J.L.; Decool, P.; Libeyre, P.; Turck, B.

    2001-01-01

    A new kind of superconducting conductor, using the so-called cable-in-conduit concept, is emerging mainly involving fusion activity. It is to be noted that at present time no large Nb 3 Sn magnet in the world is operating using this concept. The difficulty of this technology which has now been studied for 20 years, is that it has to integrate major progresses in multiple interconnected new fields such as: large number (1000) of superconducting strands, high current conductors (50 kA), forced flow cryogenics, Nb 3 Sn technology, low loss conductors in pulsed operation, high current connections, high voltage insulation (10 kV), economical and industrial feasibility. CEA was very involved during these last 10 years in this development which took place in the frame of the NET and ITER technological programs. One major milestone was reached in 1998-1999 with the successful tests by our Association of three full size conductor and connection samples in the Sultan facility (Villigen, Switzerland). (author)

  4. Performance assessment of mass flow rate measurement capability in a large scale transient two-phase flow test system

    International Nuclear Information System (INIS)

    Nalezny, C.L.; Chapman, R.L.; Martinell, J.S.; Riordon, R.P.; Solbrig, C.W.

    1979-01-01

    Mass flow is an important measured variable in the Loss-of-Fluid Test (LOFT) Program. Large uncertainties in mass flow measurements in the LOFT piping during LOFT coolant experiments requires instrument testing in a transient two-phase flow loop that simulates the geometry of the LOFT piping. To satisfy this need, a transient two-phase flow loop has been designed and built. The load cell weighing system, which provides reference mass flow measurements, has been analyzed to assess its capability to provide the measurements. The analysis consisted of first performing a thermal-hydraulic analysis using RELAP4 to compute mass inventory and pressure fluctuations in the system and mass flow rate at the instrument location. RELAP4 output was used as input to a structural analysis code SAPIV which is used to determine load cell response. The computed load cell response was then smoothed and differentiated to compute mass flow rate from the system. Comparison between computed mass flow rate at the instrument location and mass flow rate from the system computed from the load cell output was used to evaluate mass flow measurement capability of the load cell weighing system. Results of the analysis indicate that the load cell weighing system will provide reference mass flows more accurately than the instruments now in LOFT

  5. The performance of laboratory tests in the management of a large outbreak of orally transmitted Chagas disease.

    Science.gov (United States)

    Noya, Belkisyolé Alarcón de; Díaz-Bello, Zoraida; Colmenares, Cecilia; Zavala-Jaspe, Reinaldo; Abate, Teresa; Contreras, Rosa; Losada, Sandra; Artigas, Domingo; Mauriello, Luciano; Ruiz-Guevara, Raiza; Noya, Oscar

    2012-11-01

    Orally transmitted Chagas disease (ChD), which is a well-known entity in the Brazilian Amazon Region, was first documented in Venezuela in December 2007, when 103 people attending an urban public school in Caracas became infected by ingesting juice that was contaminated with Trypanosoma cruzi. The infection occurred 45-50 days prior to the initiation of the sampling performed in the current study. Parasitological methods were used to diagnose the first nine symptomatic patients; T. cruzi was found in all of them. However, because this outbreak was managed as a sudden emergency during Christmas time, we needed to rapidly evaluate 1,000 people at risk, so we decided to use conventional serology to detect specific IgM and IgG antibodies via ELISA as well as indirect haemagglutination, which produced positive test results for 9.1%, 11.9% and 9.9% of the individuals tested, respectively. In other more restricted patient groups, polymerase chain reaction (PCR) provided more sensitive results (80.4%) than blood cultures (16.2%) and animal inoculations (11.6%). Although the classical diagnosis of acute ChD is mainly based on parasitological findings, highly sensitive and specific serological techniques can provide rapid results during large and severe outbreaks, as described herein. The use of these serological techniques allows prompt treatment of all individuals suspected of being infected, resulting in reduced rates of morbidity and mortality.

  6. The performance of laboratory tests in the management of a large outbreak of orally transmitted Chagas disease

    Directory of Open Access Journals (Sweden)

    Belkisyolé Alarcón de Noya

    2012-11-01

    Full Text Available Orally transmitted Chagas disease (ChD, which is a well-known entity in the Brazilian Amazon Region, was first documented in Venezuela in December 2007, when 103 people attending an urban public school in Caracas became infected by ingesting juice that was contaminated with Trypanosoma cruzi. The infection occurred 45-50 days prior to the initiation of the sampling performed in the current study. Parasitological methods were used to diagnose the first nine symptomatic patients; T. cruzi was found in all of them. However, because this outbreak was managed as a sudden emergency during Christmas time, we needed to rapidly evaluate 1,000 people at risk, so we decided to use conventional serology to detect specific IgM and IgG antibodies via ELISA as well as indirect haemagglutination, which produced positive test results for 9.1%, 11.9% and 9.9% of the individuals tested, respectively. In other more restricted patient groups, polymerase chain reaction (PCR provided more sensitive results (80.4% than blood cultures (16.2% and animal inoculations (11.6%. Although the classical diagnosis of acute ChD is mainly based on parasitological findings, highly sensitive and specific serological techniques can provide rapid results during large and severe outbreaks, as described herein. The use of these serological techniques allows prompt treatment of all individuals suspected of being infected, resulting in reduced rates of morbidity and mortality.

  7. Development and tests of an anode readout TPC with high track separability for large solid angle relativistic ion experiments

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Foley, K.J.; Eiseman, S.E.

    1988-01-01

    We have developed, constructed and tested an anode readout TPC with high track separability which is suitable for large solid angle relativistic ion experiments. The readout via rows of short anode wires parallel to the beam has been found in tests to allow two-track separability of ∼2-3 mm. The efficiency of track reconstruction for events from a target, detected inside the MPS 5 KG magnet, is estimated to be >90% for events made by incident protons and pions. 15 GeV/c x A Si ion beams at a rate of ∼25 K per AGS pulse were permitted to course through the chamber and did not lead to any problems. When the gain was reduced to simulate the total output of a minimum ionizing particle, many Si ion tracks were also detected simultaneously with high efficiency. The resolution along the drift direction (parallel to the MPS magnetic field and perpendicular to the beam direction) was <1 mm and the resolution along the other direction /perpendicular/ to the beam direction was <1 mm also. 3 refs., 5 figs

  8. Ductile fracture evaluation of ductile cast iron and forged steel by nonlinear-fracture-mechanics. Pt. 1. Tensile test by large scaled test pieces with surface crack

    International Nuclear Information System (INIS)

    Kosaki, Akio; Ajima, Tatsuro; Inohara, Yasuto

    1999-01-01

    The ductile fracture tests of Ductile Cast Iron and Forged Steel under a tensile stress condition were conducted using large-scaled flat test specimens with a surface crack and were evaluated by the J-integral values, in order to propose an evaluation method of initiation of ductile fracture of a cask body with crack by nonlinear-fracture-mechanics. Following results were obtained. 1) 1 -strain relations of Ductile Cast Iron and Forged Steel under the tensile stress condition were obtained, which is necessary for the development of J-integral design curves for evaluating the initiation of ductile fracture of the cask body. 2) In case of Ductile Cast Iron, the experimental J-integral values obtained from strain-gauges showed a good agreement with the linear-elastic-theory by Raju and Newman at room temperature, in both elastic and plastic regions. But, at 70degC in plastic region, the experimental i-integral values showed middle values between those predicted by the linear-elastic-theory and by the non- linear-elastic- theory (based on the fully plastic solution by Yagawa et al.). 3) In case of Forged Steel at both -25degC and room temperature, the experimental i-integral values obtained from strain-gauges showed a good agreement with those predicted by the linear-elastic-theory by Raju and Newman, in the elastic region. In the plastic region, however, the experimental i-integral values fell apart from the curve predicted by the linear-elastic-theory by Raju and Newman, and also approached to those by the non-linear-elastic-theory with increasing strain.(author)

  9. Design and Validation Testing of TruckScan to Assay Large Sacks of Fukushima Radioactive Debris on a Truck

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuo [Canberra-Japan (Japan); Bronson, Frazier [Canberra Industries Inc. (United States)

    2015-07-01

    As a result of the March 2011 earthquake and resulting tsunami in Japan, there was a serious accident at the Fukushima Dai-ichi Nuclear Power Plant. This accident has contaminated soil and vegetation in a wide area around the plant. Decontamination projects over the last 4 years have resulted in large numbers of 1 cubic meter canvas bags of debris, commonly called Super Sacks [SS]. These are currently stored nearby where they were generated, but starting in 2015, they will be moved to various Interim Storage Facilities [ISF]. Trucks will typically carry 8-20 of these SSs. When the trucks arrive at the ISF they need to be rapidly sorted into groups according to radioactivity level, for efficient subsequent processing. Canberra Industries, Inc. [CI] has designed a new truck monitoring system 'TruckScan' for use at these ISFs. The TruckScan system must measure the entire truck loaded with multiple closely packed SSs, and generate a nuclide specific assay report showing the radioactivity in each individual SS. The Canberra-Japan office, along with Obayashi Corporation have performed validation testing to demonstrate to the regulatory authorities that the proposed technique was sufficiently accurate. These validation tests were conducted at a temporary storage area in Fukushima prefecture. Decontaminated waste of various representative types and of various levels of radioactivity was gathered and mixed to create homogeneous volumes. These volumes were sampled multiple times and assayed with laboratory HPGe detectors to determine the reference concentration of each pile. Multiple SSs were loaded from each pile. Some of the SSs were filled 50% full, others 75% full, and others 100% full, to represent the typical loading configuration of the existing SSs in the field. The content of the SSs are either sand, soil, or vegetation with densities ranging from 0.3 g/cc - 1.6 g/cc. These SSs with known concentrations of Cs-134 and Cs-137 were then loaded onto trucks in

  10. Design and Validation Testing of TruckScan to Assay Large Sacks of Fukushima Radioactive Debris on a Truck

    International Nuclear Information System (INIS)

    Suzuki, Atsuo; Bronson, Frazier

    2015-01-01

    As a result of the March 2011 earthquake and resulting tsunami in Japan, there was a serious accident at the Fukushima Dai-ichi Nuclear Power Plant. This accident has contaminated soil and vegetation in a wide area around the plant. Decontamination projects over the last 4 years have resulted in large numbers of 1 cubic meter canvas bags of debris, commonly called Super Sacks [SS]. These are currently stored nearby where they were generated, but starting in 2015, they will be moved to various Interim Storage Facilities [ISF]. Trucks will typically carry 8-20 of these SSs. When the trucks arrive at the ISF they need to be rapidly sorted into groups according to radioactivity level, for efficient subsequent processing. Canberra Industries, Inc. [CI] has designed a new truck monitoring system 'TruckScan' for use at these ISFs. The TruckScan system must measure the entire truck loaded with multiple closely packed SSs, and generate a nuclide specific assay report showing the radioactivity in each individual SS. The Canberra-Japan office, along with Obayashi Corporation have performed validation testing to demonstrate to the regulatory authorities that the proposed technique was sufficiently accurate. These validation tests were conducted at a temporary storage area in Fukushima prefecture. Decontaminated waste of various representative types and of various levels of radioactivity was gathered and mixed to create homogeneous volumes. These volumes were sampled multiple times and assayed with laboratory HPGe detectors to determine the reference concentration of each pile. Multiple SSs were loaded from each pile. Some of the SSs were filled 50% full, others 75% full, and others 100% full, to represent the typical loading configuration of the existing SSs in the field. The content of the SSs are either sand, soil, or vegetation with densities ranging from 0.3 g/cc - 1.6 g/cc. These SSs with known concentrations of Cs-134 and Cs-137 were then loaded onto trucks in

  11. Use of special oedometer tests for the remediation of large uranium mill tailings impoundments at Wismut, Germany

    International Nuclear Information System (INIS)

    Barnekow, U.; Paul, M.

    2002-01-01

    The paper presents the use of recently developed special oedometer tests for designing the remediation of large uranium tailings ponds at WISMUT, Germany. Uranium ore mining and milling in eastern Germany by the former Soviet-German WISMUT company lasted from 1946 to 1990. Wastes from the hydrometallurgical uranium extraction processes were discharged into large tailings impoundments covering a total area of 5.5 km 2 and containing about 150 x 10 6 m 3 of uranium mill tailings. Tailings pond remediation is ongoing by in-place decommissioning with dewatering by technical means. Geotechnical properties and the most suitable so-called non-linear finite strain consolidation behaviour of fine uranium mill tailings are described. Decommissioning techniques comprise, among others, interim covering of under consolidated fine tailings, contouring of tailings surfaces and final covering. Contouring, in particular, has a huge potential for optimization in terms of cost reduction. For contouring total settlement portions, the spatial distribution of differential settlement portions and the time-dependent settlement rates, especially of the cohesive fine uranium mill tailings are of critical importance. A new special oedometer KD 314 S has been developed to generate all the input data needed to derive the fundamental geotechnical relationships of void ratio vs. effective stress and of permeability coefficient vs. void ratio for consolidation calculations. Since December 1999 the new special oedometer KD 314 S has been working successfully on fine uranium mill tailings from both acid and from soda alkaline milling. Results coincide with non-linear finite strain consolidation theory. The geotechnical functions derived were used as input parameters for consolidation modelling. An example of the consolidation modelling on Helmsdorf tailings pond is presented. (author)

  12. An initiative to improve the management of clinically significant test results in a large health care network.

    Science.gov (United States)

    Roy, Christopher L; Rothschild, Jeffrey M; Dighe, Anand S; Schiff, Gordon D; Graydon-Baker, Erin; Lenoci-Edwards, Jennifer; Dwyer, Cheryl; Khorasani, Ramin; Gandhi, Tejal K

    2013-11-01

    The failure of providers to communicate and follow up clinically significant test results (CSTR) is an important threat to patient safety. The Massachusetts Coalition for the Prevention of Medical Errors has endorsed the creation of systems to ensure that results can be received and acknowledged. In 2008 a task force was convened that represented clinicians, laboratories, radiology, patient safety, risk management, and information systems in a large health care network with the goals of providing recommendations and a road map for improvement in the management of CSTR and of implementing this improvement plan during the sub-force sequent five years. In drafting its charter, the task broadened the scope from "critical" results to "clinically significant" ones; clinically significant was defined as any result that requires further clinical action to avoid morbidity or mortality, regardless of the urgency of that action. The task force recommended four key areas for improvement--(1) standardization of policies and definitions, (2) robust identification of the patient's care team, (3) enhanced results management/tracking systems, and (4) centralized quality reporting and metrics. The task force faced many challenges in implementing these recommendations, including disagreements on definitions of CSTR and on who should have responsibility for CSTR, changes to established work flows, limitations of resources and of existing information systems, and definition of metrics. This large-scale effort to improve the communication and follow-up of CSTR in a health care network continues with ongoing work to address implementation challenges, refine policies, prepare for a new clinical information system platform, and identify new ways to measure the extent of this important safety problem.

  13. DEVELOPMENT AND ADAPTATION OF VORTEX REALIZABLE MEASUREMENT SYSTEM FOR BENCHMARK TEST WITH LARGE SCALE MODEL OF NUCLEAR REACTOR

    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev

    2017-01-01

    Full Text Available The last decades development of applied calculation methods of nuclear reactor thermal and hydraulic processes are marked by the rapid growth of the High Performance Computing (HPC, which contribute to the active introduction of Computational Fluid Dynamics (CFD. The use of such programs to justify technical and economic parameters and especially the safety of nuclear reactors requires comprehensive verification of mathematical models and CFD programs. The aim of the work was the development and adaptation of a measuring system having the characteristics necessary for its application in the verification test (experimental facility. It’s main objective is to study the processes of coolant flow mixing with different physical properties (for example, the concentration of dissolved impurities inside a large-scale reactor model. The basic method used for registration of the spatial concentration field in the mixing area is the method of spatial conductometry. In the course of the work, a measurement complex, including spatial conductometric sensors, a system of secondary converters and software, was created. Methods of calibration and normalization of measurement results are developed. Averaged concentration fields, nonstationary realizations of the measured local conductivity were obtained during the first experimental series, spectral and statistical analysis of the realizations were carried out.The acquired data are compared with pretest CFD-calculations performed in the ANSYS CFX program. A joint analysis of the obtained results made it possible to identify the main regularities of the process under study, and to demonstrate the capabilities of the designed measuring system to receive the experimental data of the «CFD-quality» required for verification.The carried out adaptation of spatial sensors allows to conduct a more extensive program of experimental tests, on the basis of which a databank and necessary generalizations will be created

  14. Large-scale laboratory testing of bedload-monitoring technologies: overview of the StreamLab06 Experiments

    Science.gov (United States)

    Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.

  15. SAFT and TOFD evaluation for ultrasonic testing of longitudinal welds in large-diameter pipes; SAFT- und TOFD-Auswertung fuer die Ultraschall-Schweissnahtpruefung von laengsnahtgeschweissten Grossrohren

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, Hans; Dillhoefer, Alexander; Spies, Martin [Fraunhofer-Institut fuer Techno- und Wirtschaftsmathematik ITWM, Kaiserslautern (Germany); Graff, Alfred; Orth, Thomas [Salzgitter Mannesmann Forschung GmbH, Duisburg (Germany); Kersting, Thomas [Europipe GmbH, Muelheim an der Ruhr (Germany). Werk Muelheim

    2010-07-01

    The authors present a mobile multichannel system for testing of longitudinal welds in large-diameter tubes. The prototype was designed for in situ inspection of longitudinal welds using transversal and longitudinal waves impacting at an angle from both sides in combined SE and IE operation. The reconstruction and imaging software enables SAFT calculations for all surface curves and superposition of the SAFT reconstructions from both sides into a general image of the weld. This includes superposition of the TOFD test data with a suitable evaluation and assessment concept. Details are presented, as are test results on test pieces for validation and on longitudinal welds in large-diameter tubes. (orig.)

  16. Testing the Large-scale Environments of Cool-core and Non-cool-core Clusters with Clustering Bias

    Energy Technology Data Exchange (ETDEWEB)

    Medezinski, Elinor; Battaglia, Nicholas; Cen, Renyue; Gaspari, Massimo; Strauss, Michael A.; Spergel, David N. [Department of Astrophysical Sciences, 4 Ivy Lane, Princeton, NJ 08544 (United States); Coupon, Jean, E-mail: elinorm@astro.princeton.edu [Department of Astronomy, University of Geneva, ch. dEcogia 16, CH-1290 Versoix (Switzerland)

    2017-02-10

    There are well-observed differences between cool-core (CC) and non-cool-core (NCC) clusters, but the origin of this distinction is still largely unknown. Competing theories can be divided into internal (inside-out), in which internal physical processes transform or maintain the NCC phase, and external (outside-in), in which the cluster type is determined by its initial conditions, which in turn leads to different formation histories (i.e., assembly bias). We propose a new method that uses the relative assembly bias of CC to NCC clusters, as determined via the two-point cluster-galaxy cross-correlation function (CCF), to test whether formation history plays a role in determining their nature. We apply our method to 48 ACCEPT clusters, which have well resolved central entropies, and cross-correlate with the SDSS-III/BOSS LOWZ galaxy catalog. We find that the relative bias of NCC over CC clusters is b = 1.42 ± 0.35 (1.6 σ different from unity). Our measurement is limited by the small number of clusters with core entropy information within the BOSS footprint, 14 CC and 34 NCC clusters. Future compilations of X-ray cluster samples, combined with deep all-sky redshift surveys, will be able to better constrain the relative assembly bias of CC and NCC clusters and determine the origin of the bimodality.

  17. Performance test and analysis to the prototype of fiber-based portable large area surface contamination monitor

    International Nuclear Information System (INIS)

    Qu Yantao; Liu Yang; Wang Wei; Wang Ying; Hou Jie

    2013-01-01

    The feasibility was studied of using large area plastic scintillation (sensitive area up to 1200 cm 2 ) and wavelength-shifting fiber (WLS) to measure β surface contamination that led to a tentative adoption of direct coupling method of wavelength-shifting fiber array and plastic scintillator. Based on above, a calculation program was established, by which the optical transmission was simulated enabling optimizations to the design of the system such as the size of the plastic scintillator, the quantity of the wavelength-shifting fiber and the configuration mode of the wavelength-shifting fiber. As a result, a special experimental prototype was developed and tested. Results prove that the sensitive detection area is up to 1200 cm 2 , the detection efficiency is about 15.4%, the inconsistency of the different sensitive area is about 9.7%, and the minimum detectable limit is about 0.05 Bq/cm 2 , all of which indicate that the experimental prototype could satisfy requirements of surface pollution monitoring for both