WorldWideScience

Sample records for tested four-bladed polycrystalline

  1. Four-Point Bending Strength Testing of Pultruded Fiberglass Composite Wind Turbine Blade Sections

    International Nuclear Information System (INIS)

    Musial, W.; Bourne, B; Hughes, S; Zuteck, M. D.

    2001-01-01

    The ultimate strength of the PS Enterprises pultruded blade section was experimentally determined under four-point bending at the National Renewable Energy Laboratory. Thirteen 8-foot long full-scale blade segments were individually tested to determine their maximum moment carrying capability. Three airfoil-bending configurations were tested: high- and low-pressure skin buckling, and low pressure skin buckling with foam interior reinforcement. Maximum strain was recorded for each sample on the compressive and tensile surfaces of each test blade. Test data are compared to the results of three analytical buckling prediction methods. Based on deviations from the linear strain versus load curve, data indicate a post-buckling region. High-pressure side buckling occurred sooner than low-pressure side buckling. The buckling analyses were conservative for both configurations, but high-pressure side buckling in particular was substantially under-predicted. Both high- and low-pressure buckling configurations had very similar failure loads. These results suggests that a redundant load path may be providing strength to the section in the post-buckling region, making the onset of panel buckling a poor predictor of ultimate strength for the PS Enterprises pultrusion

  2. Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hughes, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paquette, J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-08

    Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation of model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).

  3. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  4. Numerical simulation of turbulent flows past the RoBin helicopter with a four-bladed rotor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.; Mamou, M.; Khalid, M. [National Research Council, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Hongyi.Xu@nrc.ca

    2003-07-01

    The current paper presents a turbulent flow simulation study past a generic helicopter RoBin with a four-bladed rotor using the Chimera moving grid approach. The aerodynamic performance of the rotor blades and their interactions with the RoBin fuselage are investigated using the k - {omega} SST turbulence model contained in the WIND code. The rotor is configured as a Chimera moving grid in a quasisteady flow field. The rotor blades are rectangular, untapered, linearly twisted and are made from NACA 0012 airfoil profile. The blade motion (rotation and cyclic pitching) schedule is specified in the NASA wind tunnel testing of a generic helicopter RoBin. The aerodynamic radial load distributions in the rotor plane are generated by integrating the pressure on each blade surfaces along the blade chordwise direction. The rotor flow interacts strongly with the flow coming off from the fuselage and thus has a significant impact on helicopter aerodynamic performance. (author)

  5. Accelerated fatigue testing of LM 19.1 blades

    DEFF Research Database (Denmark)

    Kristensen, Ole Jesper Dahl; Jørgensen, E.

    2003-01-01

    A series of 19.1 metre wind turbine blades manufactured by LM Glasfiber A/S of Lunderskov, Denmark were subjected to a series of flapwise fatigue tests. The object of these fatigue tests is to evaluate the impact of an increased load on the blade in afatigue test and to give information...... if it is possible to increase the load in fatigue test to shorten test time. The tests were carried out as a part of a project financed by the Danish Energy Agency. During the fatigue tests the blades have beensurveyed with thermal imaging equipment to determine how an increase in fatigue load affects the blade...... material. In addition to the thermal imaging surveillance the blades were instrumented with strain gauges. This report presents the temperature duringtest, calibration test results, moment range measurements, strain statistics, thermal imaging registrations and a determination of the size and cause...

  6. Wind turbine blade testing system using base excitation

    Science.gov (United States)

    Cotrell, Jason; Thresher, Robert; Lambert, Scott; Hughes, Scott; Johnson, Jay

    2014-03-25

    An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).

  7. 3X-100 blade field test.

    Energy Technology Data Exchange (ETDEWEB)

    Zayas, Jose R.; Johnson, Wesley D.

    2008-03-01

    In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.

  8. WhalePower tubercle blade power performance test report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-15

    Toronto-based WhalePower Corporation has developed turbine blades that are modeled after humpback whale flippers. The blades, which incorporate tubercles along the leading edge of the blade, have been fitted to a Wenvor 25 kW turbine installed in North Cape, Prince Edward Island at a test site for the Wind Energy Institute of Canada (WEICan). A test was conducted to characterize the power performance of the prototype wind turbine. This report described the wind turbine configuration with particular reference to turbine information, power rating, blade information, tower information, control systems and grid connections. The test site was also described along with test equipment and measurement procedures. Information regarding power output as a function of wind speed was included along with power curves, power coefficient and annual energy production. The results for the power curve and annual energy production contain a level of uncertainty. While measurements for this test were collected and analyzed in accordance with International Electrotechnical Commission (IEC) standards for performance measurements of electricity producing wind turbines (IEC 61400-12-1), the comparative performance data between the prototype WhalePower wind turbine blade and the Wenvor standard blade was not gathered to IEC data standards. Deviations from IEC-61400-12-1 procedures were listed. 6 tabs., 16 figs., 3 appendices.

  9. Guidelines to Interpret Results of Mechanical Blade Test

    International Nuclear Information System (INIS)

    Arias Vega, F.; Sanz Martin, J. C.

    1999-01-01

    This report shows the interpretation of full scale rotor blade test results and describes the engineering testing models and coefficients for any feasible rotor blade design, in order to accept and to certify any final manufactured blade as an allowable product, fit for use and working with a completely security during all the wind turbines lifetime. This work was carried out at the Wind Energy Division of the CIEMAT.DER and it is based on the authors technical experience in this field, after many years working on testing blades. Also, this paper contains results of the European wind turbine Standards II relevant to the European Project: JOULE III R.D. where the Wind Energy Division took part as participant too. (Author)

  10. Guidelines to Interpret Results of Mechanical Blade Test

    Energy Technology Data Exchange (ETDEWEB)

    Arias Vega, F.; Sanz Martin, J. C. [Ciemat, Madrid (Spain)

    2000-07-01

    This report shows the interpretation of full scale rotor blade test results and describes the engineering testing models and coefficients for any feasible rotor blade design, in order to accept and to certify any final manufactured blades as an allowable product, fit for use and working with a completely security during all the windturbine's lifetime. This work was carried out at the Wind Energy Division of the CIEMAT.DER and it is based on the author's technical experience in this field, after many years working on testing blades. Also, this paper contains results of the European wind turbine Standards II relevant to the European Project: JOULE III R.D. where the Wind Energy Division took part as participant too. (Author)

  11. Numerical investigation of turbulent flow past a four-bladed helicopter rotor using k - ω SST model

    International Nuclear Information System (INIS)

    Xu, H.; Khalid, M.

    2002-01-01

    In a previous study of the laminar flow over a four-bladed helicopter rotor, abnormal Cp distributions were observed on the upper surfaces of the blades. To address this problem, the aerodynamic performance of the same rotor is investigated using the k - ω SST turbulence model, as contained in the WIND code. The rotor is configured as a Chimera moving grid in a quasi-steady flow field. The rotor rotation schedule and the blade twisting are implemented as specified in the wind tunnel testing of a RoBin generic helicopter. More realistic Cp distributions on the blade surfaces are thus obtained. The aerodynamic load distributions in the radial direction of the rotor plane are generated by integrating the pressure on each blade surfaces along the blade chordwise direction. The analyses of these load distributions in the azmuthal direction provide a critical insight into the rotor model, which is based on the actuator-disc assumption. Also, some preliminary results for the flow past a full helicopter configuration, including the rotor and the RoBin fuselage, are presented. The current paper demonstrates the Chimera grid topologies and the Chimera grid generation technique for both blade and fuselage configuration. This would provide a powerful tool to simulate flow past an entire helicopter and to study the rotor-fuselage flow interaction. (author)

  12. Structural fatigue test results for large wind turbine blade sections

    Science.gov (United States)

    Faddoul, J. R.; Sullivan, T. L.

    1982-01-01

    In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).

  13. Active Blade Vibration Control Being Developed and Tested

    Science.gov (United States)

    Johnson, Dexter

    2003-01-01

    Gas turbine engines are currently being designed to have increased performance, lower weight and manufacturing costs, and higher reliability. Consequently, turbomachinery components, such as turbine and compressor blades, have designs that are susceptible to new vibration problems and eventual in-service failure due to high-cycle fatigue. To address this problem, researchers at the NASA Glenn Research Center are developing and testing innovative active blade vibration control concepts. Preliminary results of using an active blade vibration control system, involving a rotor supported by an active magnetic bearing in Glenn's Dynamic Spin Rig, indicate promising results (see the photograph). Active blade vibration control was achieved using feedback of blade strain gauge signals within the magnetic bearing control loop. The vibration amplitude was reduced substantially (see the graphs). Also, vibration amplitude amplification was demonstrated; this could be used to enhance structural mode identification, if desired. These results were for a nonrotating two-bladed disk. Tests for rotating blades are planned. Current and future active blade vibration control research is planned to use a fully magnetically suspended rotor and smart materials. For the fully magnetically suspended rotor work, three magnetic bearings (two radial and one axial) will be used as actuators instead of one magnetic bearing. This will allow additional degrees of freedom to be used for control. For the smart materials work, control effectors located on and off the blade will be considered. Piezoelectric materials will be considered for on-the-blade actuation, and actuator placement on a stator vane, or other nearby structure, will be investigated for off-the-blade actuation. Initial work will focus on determining the feasibility of these methods by performing basic analysis and simple experiments involving feedback control.

  14. Dual-axis resonance testing of wind turbine blades

    Science.gov (United States)

    Hughes, Scott; Musial, Walter; White, Darris

    2014-01-07

    An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.

  15. Mach number scaling of helicopter rotor blade/vortex interaction noise

    Science.gov (United States)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  16. A multi-frequency fatigue testing method for wind turbine rotor blades

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Belloni, Federico; Tesauro, Angelo

    2017-01-01

    Rotor blades are among the most delicate components of modern wind turbines. Reliability is a crucial aspect, since blades shall ideally remain free of failure under ultra-high cycle loading conditions throughout their designated lifetime of 20–25 years. Full-scale blade tests are the most accurate...... means to experimentally simulate damage evolution under operating conditions, and are therefore used to demonstrate that a blade type fulfils the reliability requirements to an acceptable degree of confidence. The state-of-the-art testing method for rotor blades in industry is based on resonance...... higher modes contribute more significantly due to their higher cycle count. A numerical feasibility study based on a publicly available large utility rotor blade is used to demonstrate the ability of the proposed approach to outperform the state-of-the-art testing method without compromising fatigue test...

  17. A multi-frequency fatigue testing method for wind turbine rotor blades

    Science.gov (United States)

    Eder, M. A.; Belloni, F.; Tesauro, A.; Hanis, T.

    2017-02-01

    Rotor blades are among the most delicate components of modern wind turbines. Reliability is a crucial aspect, since blades shall ideally remain free of failure under ultra-high cycle loading conditions throughout their designated lifetime of 20-25 years. Full-scale blade tests are the most accurate means to experimentally simulate damage evolution under operating conditions, and are therefore used to demonstrate that a blade type fulfils the reliability requirements to an acceptable degree of confidence. The state-of-the-art testing method for rotor blades in industry is based on resonance excitation where typically a rotating mass excites the blade close to its first natural frequency. During operation the blade response due to external forcing is governed by a weighted combination of its eigenmodes. Current test methodologies which only utilise the lowest eigenfrequency induce a fictitious damage where additional tuning masses are required to recover the desired damage distribution. Even with the commonly adopted amplitude upscaling technique fatigue tests remain a time-consuming and costly endeavour. The application of tuning masses increases the complexity of the problem by lowering the natural frequency of the blade and therefore increasing the testing time. The novel method presented in this paper aims at shortening the duration of the state-of-the-art fatigue testing method by simultaneously exciting the blade with a combination of two or more eigenfrequencies. Taking advantage of the different shapes of the excited eigenmodes, the actual spatial damage distribution can be more realistically simulated in the tests by tuning the excitation force amplitudes rather than adding tuning masses. This implies that in portions of the blade the lowest mode is governing the damage whereas in others higher modes contribute more significantly due to their higher cycle count. A numerical feasibility study based on a publicly available large utility rotor blade is used to

  18. CX-100 and TX-100 blade field tests.

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

    2005-12-01

    In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

  19. Full scale test SSP 34m blade, combined load. Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Nielsen, Magda; Jensen, Find M. (and others)

    2010-11-15

    This report is part of the research project where a 34m wind turbine blade from SSP-Technology A/S was tested in combined flap and edgewise load. The applied load is 55% of an imaginary extreme event based on the certification load of the blade. This report describes the reason for choosing the loads and the load direction and the method of applying the loads to the blade. A novel load introduction allows the blade to deform in a more realistic manner, allowing the observation of e.g. transverse shear distortion. The global and local deformation of the blade as well as the blades' respond to repeated tests has been studied and the result from these investigations are presented, including the measurements performed. (Author)

  20. IEC-TC88WG8 testing of rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Delft, D R.V. van [Delft Univ. of Technology, STEVIN Lab., Delft (Netherlands)

    1996-09-01

    In 1994 the TC88 of IEC installed a working group (WG8) to draft a guideline on blade testing. This paper gives a description of the task of the working group. Furthermore it gives a report of the progress of the work and summarizes the possible contents of the working group document on blade testing. (au)

  1. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance

    Directory of Open Access Journals (Sweden)

    Othman Al-Khudairi

    2017-10-01

    Full Text Available In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i as received blade (ii when a crack of 200 mm was introduced between the web and the spar cap and (iii when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  2. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance.

    Science.gov (United States)

    Al-Khudairi, Othman; Hadavinia, Homayoun; Little, Christian; Gillmore, Gavin; Greaves, Peter; Dyer, Kirsten

    2017-10-03

    In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  3. Large-area photogrammetry based testing of wind turbine blades

    Science.gov (United States)

    Poozesh, Peyman; Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter; Harvey, Eric; Yarala, Rahul

    2017-03-01

    An optically based sensing system that can measure the displacement and strain over essentially the entire area of a utility-scale blade leads to a measurement system that can significantly reduce the time and cost associated with traditional instrumentation. This paper evaluates the performance of conventional three dimensional digital image correlation (3D DIC) and three dimensional point tracking (3DPT) approaches over the surface of wind turbine blades and proposes a multi-camera measurement system using dynamic spatial data stitching. The potential advantages for the proposed approach include: (1) full-field measurement distributed over a very large area, (2) the elimination of time-consuming wiring and expensive sensors, and (3) the need for large-channel data acquisition systems. There are several challenges associated with extending the capability of a standard 3D DIC system to measure entire surface of utility scale blades to extract distributed strain, deflection, and modal parameters. This paper only tries to address some of the difficulties including: (1) assessing the accuracy of the 3D DIC system to measure full-field distributed strain and displacement over the large area, (2) understanding the geometrical constraints associated with a wind turbine testing facility (e.g. lighting, working distance, and speckle pattern size), (3) evaluating the performance of the dynamic stitching method to combine two different fields of view by extracting modal parameters from aligned point clouds, and (4) determining the feasibility of employing an output-only system identification to estimate modal parameters of a utility scale wind turbine blade from optically measured data. Within the current work, the results of an optical measurement (one stereo-vision system) performed on a large area over a 50-m utility-scale blade subjected to quasi-static and cyclic loading are presented. The blade certification and testing is typically performed using International

  4. Study on Determination Method of Fatigue Testing Load for Wind Turbine Blade

    Science.gov (United States)

    Liao, Gaohua; Wu, Jianzhong

    2017-07-01

    In this paper, the load calculation method of the fatigue test was studied for the wind turbine blade under uniaxial loading. The characteristics of wind load and blade equivalent load were analyzed. The fatigue property and damage theory of blade material were studied. The fatigue load for 2MW blade was calculated by Bladed, and the stress calculated by ANSYS. Goodman modified exponential function S-N curve and linear cumulative damage rule were used to calculate the fatigue load of wind turbine blades. It lays the foundation for the design and experiment of wind turbine blade fatigue loading system.

  5. Materials of large wind turbine blades: Recent results in testing and modeling

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl; Nijssen, Rogier

    2012-01-01

    The reliability of rotor blades is the pre-condition for the development and wide use of large wind turbines. In order to accurately predict and improve the wind turbine blade behavior, three main aspects of the reliability and strength of rotor blades were considered: (i) development of methods...... of the effect of the microstructure of wind turbine blade composites on their strength and ways of microstructural optimization of the materials. By testing reference coupons, the effect of testing parameters (temperature and frequency) on the lifetime of blade composites was investigated, and the input data...... clustering, misalignments, interface properties and other factors on the strength and lifetime of the wind turbine blade materials were investigated in the micromechanical finite element simulations. The results described in this paper stem from the Rotor Structure and Materials task of the UPWIND project...

  6. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Post, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  7. In vitro study of color stability of polycrystalline and monocrystalline ceramic brackets

    OpenAIRE

    de Oliveira, Cibele Braga; Maia, Luiz Guilherme Martins; Santos-Pinto, Ary; Gandini J?nior, Luiz Gonzaga

    2014-01-01

    OBJECTIVE: The aim of this in vitro study was to analyze color stability of monocrystalline and polycrystalline ceramic brackets after immersion in dye solutions. METHODS: Seven ceramic brackets of four commercial brands were tested: Two monocrystalline and two polycrystalline. The brackets were immersed in four dye solutions (coffee, red wine, Coke and black tea) and in artificial saliva for the following times: 24 hours, 7, 14 and 21 days, respectively. Color changes were measured by a...

  8. NedWind 25 Blade Testing at NREL for the European Standards Measurement and Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Larwood, S.; Musial, W.; Freebury, G.; Beattie, A.G.

    2001-04-19

    In the mid-90s the European community initiated the Standards, Measurements, and Testing (SMT) program to harmonize testing and measurement procedures in several industries. Within the program, a project was carried out called the European Wind Turbine Testing Procedure Development. The second part of that project, called Blade Test Methods and Techniques, included the United States and was devised to help blade-testing laboratories harmonize their testing methods. This report provides the results of those tests conducted by the National Renewable Energy Laboratory.

  9. Base excitation testing system using spring elements to pivotally mount wind turbine blades

    Science.gov (United States)

    Cotrell, Jason; Hughes, Scott; Butterfield, Sandy; Lambert, Scott

    2013-12-10

    A system (1100) for fatigue testing wind turbine blades (1102) through forced or resonant excitation of the base (1104) of a blade (1102). The system (1100) includes a test stand (1112) and a restoring spring assembly (1120) mounted on the test stand (1112). The restoring spring assembly (1120) includes a primary spring element (1124) that extends outward from the test stand (1112) to a blade mounting plate (1130) configured to receive a base (1104) of blade (1102). During fatigue testing, a supported base (1104) of a blad (1102) may be pivotally mounted to the test stand (1112) via the restoring spring assembly (1120). The system (1100) may include an excitation input assembly (1140) that is interconnected with the blade mouting plate (1130) to selectively apply flapwise, edgewise, and/or pitch excitation forces. The restoring spring assemply (1120) may include at least one tuning spring member (1127) positioned adjacent to the primary spring element (1124) used to tune the spring constant or stiffness of the primary spring element (1124) in one of the excitation directions.

  10. Performance Data from a Wind-Tunnel Test of Two Main-rotor Blade Designs for a Utility-Class Helicopter

    Science.gov (United States)

    Singleton, Jeffrey D.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1990-01-01

    An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to evaluate an advanced main rotor designed for use on a utility class helicopter, specifically the U.S. Army UH-60A Blackhawk. This rotor design incorporated advanced twist, airfoil cross sections, and geometric planform. For evaluation purposes, the current UH-60A main rotor was also tested and is referred to as the baseline blade set. A total of four blade sets were tested. One set of both the baseline and the advanced rotors were dynamically scaled to represent a full scale helicopter rotor blade design. The remaining advanced and baseline blade sets were not dynamically scaled so as to isolate the effects of structural elasticity. The investigation was conducted in hover and at rotor advance ratios ranging from 0.15 to 0.4 at a range of nominal test medium densities from 0.00238 to 0.009 slugs/cu ft. This range of densities, coupled with varying rotor lift and propulsive force, allowed for the simulation of several vehicle gross weight and density altitude combinations. Performance data are presented for all blade sets without analysis; however, cross referencing of data with flight condition may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating advanced design parameters.

  11. Stochastic models for strength of wind turbine blades using tests

    DEFF Research Database (Denmark)

    Toft, H.S.; Sørensen, John Dalsgaard

    2008-01-01

    The structural cost of wind turbine blades is dependent on the values of the partial safety factors which reflect the uncertainties in the design values, including statistical uncertainty from a limited number of tests. This paper presents a probabilistic model for ultimate and fatigue strength...... of wind turbine blades especially considering the influence of prior knowledge and test results and how partial safety factors can be updated when additional full-scale tests are performed. This updating is performed by adopting a probabilistic design basis based on Bayesian statistical methods....

  12. Towing Tank and Flume Testing of Passively Adaptive Composite Tidal Turbine Blades: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ordonez-Sanchez, Stephanie [University of Strathclyde; Porter, Kate E. [University of Strathclyde; Johnstone, Cameron M. [University of Strathclyde; Doman, Darrel A. [Dalhousie University; Pegg, Michael J. [Dalhousie University

    2017-09-28

    Composite tidal turbine blades with bend-twist (BT) coupled layups allow the blade to self-adapt to local site conditions by passively twisting. Passive feathering has the potential to increase annual energy production and shed thrust loads and power under extreme tidal flows. Decreased hydrodynamic thrust and power during extreme conditions meann that the turbine support structure, generator, and other components can be sized more appropriately, resulting in a higher utilization factor and increased cost effectiveness. This paper presents new experimental data for a small-scale turbine with BT composite blades. The research team tested the turbine in the Kelvin Hydrodynamics Laboratory towing tank at the University of Strathclyde in Glasgow, United Kingdom, and in the recirculating current flume at the l Institut Francais de Recherche pour l Exploitation de la Mer Centre in Boulogne-sur-Mer, France. Tests were also performed on rigid aluminum blades with identical geometry, which yielded baseline test sets for comparison. The results from both facilities agreed closely, supporting the hypothesis that increased blade flexibility can induce load reductions. Under the most extreme conditions tested the turbine with BT blades had up to 11 percent lower peak thrust loads and a 15 percent reduction in peak power compared to the turbine with rigid blades. The load reductions varied as a function of turbine rotational velocity and ambient flow velocity.

  13. Hover Testing of the NASA/Army/MIT Active Twist Rotor Prototype Blade

    Science.gov (United States)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Wilkie, W. Keats; Cesnik, Carlos E. S.; Shin, Sangloon

    2000-01-01

    Helicopter rotor individual blade control promises to provide a mechanism for increased rotor performance and reduced rotorcraft vibrations and noise. Active material methods, such as piezoelectrically actuated trailing-edge flaps and strain-induced rotor blade twisting, provide a means of accomplishing individual blade control without the need for hydraulic power in the rotating system. Recent studies have indicated that controlled strain induced blade twisting can be attained using piezoelectric active fiber composite technology. In order to validate these findings experimentally, a cooperative effort between NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration an aeroelastically-scaled active-twist model rotor blade has been designed and fabricated for testing in the heavy gas environment of the Langley Transonic Dynamics Tunnel (TDT). The results of hover tests of the active-twist prototype blade are presented in this paper. Comparisons with applicable analytical predictions of active-twist frequency response in hovering flight are also presented.

  14. Design of Linear Control System for Wind Turbine Blade Fatigue Testing

    DEFF Research Database (Denmark)

    Toft, Anders; Roe-Poulsen, Bjarke Nørskov; Christiansen, Rasmus

    2016-01-01

    This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based...... difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based...... on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods.\\\\ The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model...

  15. Methodology for testing subcomponents; background and motivation for subcomponent testing of wind turbine rotor blades

    DEFF Research Database (Denmark)

    Antoniou, Alexandros; Branner, Kim; Lekou, D.J.

    2016-01-01

    This report aims to provide an overview of the design methodology followed by wind turbine blade structural designers, along with the testing procedure on full scale blades which are followed by testing laboratories for blade manufacturers as required by the relevant standards and certification...... bodies’ recommendations for design and manufacturing verification. The objective of the report is not to criticize the design methodology or testing procedure and the standards thereof followed in the wind energy community, but to identify those items offered by state of the art structural design tools...... investigations performed are based on the INNWIND.EU reference 10MW horizontal axis wind turbine [1]. The structural properties and material and layout definition used within IRPWIND are defined in the INNWIND.EU report [2]. The layout of the report includes a review of the structural analysis models used...

  16. A durability test rig and methodology for erosion-resistant blade coatings in turbomachinery

    Science.gov (United States)

    Leithead, Sean Gregory

    A durability test rig for erosion-resistant gas turbine engine compressor blade coatings was designed, completed and commissioned. Bare and coated 17-4PH steel V103-profile blades were rotated at up to 11500 rpm and impacted with Garnet sand for 5 hours at an average concentration of 2.51 gm3of air , at a blade leading edge Mach number of 0.50. The rig was determined to be an acceptable first stage axial compressor representation. Two types of 16 microm-thick coatings were tested: Titanium Nitride (TiN) and Chromium-Aluminum-Titanium Nitride (CrAlTiN), both applied using an Arc Physical Vapour Deposition technique at the National Research Council in Ottawa, Canada. A Leithead-Allan-Zhao (LAZ) score was created to compare the durability performance of uncoated and coated blades based on mass-loss and blade dimension changes. The bare blades' LAZ score was set as a benchmark of 1.00. The TiN-coated and CrAlTiN-coated blades obtained LAZ scores of 0.69 and 0.41, respectively. A lower score meant a more erosion-resistant coating. Major modes of blade wear included: trailing edge, leading edge and the rear suction surface. Trailing edge thickness was reduced, the leading edge became blunt, and the rear suction surface was scrubbed by overtip and recirculation zone vortices. It was found that the erosion effects of vortex flow were significant. Erosion damage due to reflected particles was not present due to the low blade solidity of 0.7. The rig is best suited for studying the performance of erosion-resistant coatings after they are proven effective in ASTM standardized testing. Keywords: erosion, compressor, coatings, turbomachinery, erosion rate, blade, experimental, gas turbine engine

  17. Eddy current testing for blade edge micro cracks of aircraft engine

    Science.gov (United States)

    Zhang, Wei-min; Xu, Min-dong; Gao, Xuan-yi; Jin, Xin; Qin, Feng

    2017-10-01

    Based on the problems of low detection efficiency in the micro cracks detection of aircraft engine blades, a differential excitation eddy current testing system was designed and developed. The function and the working principle of the system were described, the problems which contained the manufacture method of simulated cracks, signal generating, signal processing and the signal display method were described. The detection test was carried out by taking a certain model aircraft engine blade with simulated cracks as a tested specimen. The test data was processed by digital low-pass filter in the computer and the crack signals of time domain display and Lissajous figure display were acquired. By comparing the test results, it is verified that Lissajous figure display shows better performance compared to time domain display when the crack angle is small. The test results show that the eddy current testing system designed in this paper is feasible to detect the micro cracks on the aeroengine blade and can effectively improve the detection efficiency of micro cracks in the practical detection work.

  18. Design and test of box girder for a large wind turbine blade

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Tesauro, Angelo; Bitsche, Robert

    This report is covering the structural design and full scale test of a box girder as a part of the project “Demonstration of new blade design using manufacturing process simulations” supported by the EUDP program. A box girder with a predetermined outer geometry was designed using new inventions...... that the manufacturing process could include the new inventions. Subsequently the box girder was transported to the blade test facility at DTU Wind Energy. A series of test was performed with the blade to investigate the behaviour during loading, and finally the girder was loaded to ultimate failure. The report includes...... the description of the test setup, the test and an overview over the results from the test performed on the box girder. During the final test the box girder failed at 58 % of the expected ultimate load. Unfortunately, no definite conclusion could be made concerning the failure mechanism....

  19. Methods for testing of geometrical down-scaled rotor blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter

    further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. Those methods are presented in [1]. Current experimental test performed on full...

  20. Materials, Manufacturing, and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    Science.gov (United States)

    Miller, Sandi G.; Handschuh, Katherine; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Martin, Richard E.; Ruggeri, Charles R.; Pereira, J. Michael

    2015-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  1. Design, fabrication, and test of a composite material wind turbine rotor blade

    Science.gov (United States)

    Griffee, D. G., Jr.; Gustafson, R. E.; More, E. R.

    1977-01-01

    The aerodynamic design, structural design, fabrication, and structural testing is described for a 60 foot long filament wound, fiberglass/epoxy resin matrix wind turbine rotor blade for a 125 foot diameter, 100 kW wind energy conversion system. One blade was fabricated which met all aerodynamic shape requirements and was structurally capable of operating under all specified design conditions. The feasibility of filament winding large rotor blades was demonstrated.

  2. Mechanical Design, Analysis, and Testing of a Two-Bladed Wind Turbine Hub

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J.

    2002-06-01

    Researchers at the National Wind Technology Center (NWTC) in Golden, Colorado, began performing the Unsteady Aerodynamics Experiment in 1993 to better understand the unsteady aerodynamics and structural responses of horizontal-axis wind turbines. The experiment consists of an extensively instrumented, downwind, three-bladed, 20-kilowatt wind turbine. In May 1995, I received a request from the NWTC to design a two-bladed hub for the experiment. For my thesis, I present the results of the mechanical design, analysis, and testing of the hub. The hub I designed is unique because it runs in rigid, teetering, or independent blade-flapping modes. In addition, the design is unusual because it uses two servomotors to pitch the blades independently. These features are used to investigate new load reduction, noise reduction, blade pitch optimization, and yaw control techniques for two-bladed turbines. I used a methodology by G. Phal and W. Bietz to design the hub. The hub meets all the performance specifications except that it achieves only 90% of the specified teeter range. In my thesis, I focus on the analysis and testing of the hub body. I performed solid-mechanics calculations, ran a finite-element analysis simulation, and experimentally investigated the structural integrity of the hub body.

  3. Fatigue testing of a carbon fibre composite wind turbine blade with associated material characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, G A; Richardson, D J [Univ. of the West of England, Faculty of Engineering, Bristol (United Kingdom)

    1996-09-01

    Within the EC project JOULE 2, the University of the West of England (UWE) tested a carbon fibre reinforced epoxy (CFRE) full scale wind turbine blade together with an associated material test coupon programme. All the work was closely linked with the manufacturer Polymarine BV of the Netherlands, who designed and manufactured the blade and provided test specimens, the UWE carried out the research into the validation of the design calculations together with a check of the strength and fatigue life of the blade. (au)

  4. Effects of setting angle and chord length on performance of four blades bionic wind turbine

    Science.gov (United States)

    Yang, Z. X.; Li, G. S.; Song, L.; Bai, Y. F.

    2017-11-01

    With the energy crisis and the increasing environmental pollution, more and more efforts have been made about wind power development. In this paper, a four blades bionic wind turbine was proposed, and the outline of wind turbine was constructed by the fitted curve. This paper attempted to research the effects of setting angle and chord length on performance of four blades bionic wind turbine by computational fluid dynamics (CFD) simulation. The results showed that the setting angle and chord length of the bionic wind turbine has some significant effects on the efficiency of the wind turbine, and within the range of wind speed from 7 m/s to 15 m/s, the wind turbine achieved maximum efficiency when the setting angle is 31 degree and the chord length is 125 mm. The conclusion will work as a guideline for the improvement of wind turbine design

  5. Rotor blade full-scale fatigue testing technology and research

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Berring, Peter; Pavese, Christian

    was started in the beginning of the 1980´s and has been further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. These methods...

  6. Full Scale Test SSP 34m blade, Combined load. Data report

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Nielsen, Magda; Jensen, Find Mølholt

    This report is part of the research project entitled “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last” where a 34m wind turbine blade from SSP-Technology A/S was tested in combined flap and edgewise load. The applied load is 55...... of e.g. transverse shear distortion. The global and local deformation of the blade as well as the blades’ respond to repeated tests has been studied and the result from these investigations are presented, including the measurements performed....

  7. Structural degradation of a large composite wind turbine blade in a full-scale fatigue test

    DEFF Research Database (Denmark)

    Chen, Xiao

    carried out at a coupon level to characterize fatigue degradation of composite materials, there is no much study focusing on fatigue degradation of rotor blades at a fullscale structural level. Do structural properties of composite blades degrade in a similar manner to what has been observed in material...... tests at a coupon level? What might be the concerns one should take into account when predicting residual structural properties of rotor blades? To answer, at least to a partial extent, these questions, this study conducts a full-scale fatigue test on a 47m composite rotor blade according to IEC 61400......Wind turbine blades are expected to sustain a high number of loading cycles typically up to a magnitude of 1,000 million during their targeted service lifetime of 20-25 years. Structural properties of composite blades degrade with the time. Although substantial studies, such as [1,2], have been...

  8. Design, fabrication, test, and evaluation of a prototype 150-foot long composite wind turbine blade

    Science.gov (United States)

    Gewehr, H. W.

    1979-01-01

    The design, fabrication, testing, and evaluation of a prototype 150 foot long composite wind turbine blade is described. The design approach and material selection, compatible with low cost fabrication methods and objectives, are highlighted. The operating characteristics of the blade during rotating and nonrotating conditions are presented. The tensile, compression, and shear properties of the blade are reported. The blade fabrication, tooling, and quality assurance are discussed.

  9. Design and testing of a deformable wind turbine blade control surface

    International Nuclear Information System (INIS)

    Daynes, S; Weaver, P M

    2012-01-01

    Wind tunnel tests were conducted on a 1.3 m chord NACA 63–418 blade section fitted with an adaptive trailing edge flap. The 20% chord flap had an aramid honeycomb core covered with a silicone skin and was actuated using servo motors. The honeycomb core had a high stiffness in the thickness direction but was compliant in chordwise bending. These anisotropic properties offer a potential solution for the conflicting design requirements found in morphing trailing edge structures. Static and dynamic tests were performed up to a Reynolds number of 5.4 × 10 6 . The tests showed that deflecting the flap from − 10° to + 10° changes the blade section lift coefficient by 1.0 in non-stalled conditions. Dynamic tests showed the flap to be capable of operating up to 9° s −1 using a 15 V power supply. A two-dimensional static aeroelastic model of the morphing flap was developed to analyse strains, predict actuator requirements and study fluid–structure interaction effects. The model was used to conduct parametric studies to further improve the flap design. Potential applications include wind turbine blade load alleviation and increased wind energy capture. (paper)

  10. High Sensitive Methods for Health Monitoring of Compressor Blades and Fatigue Detection

    Science.gov (United States)

    Witoś, Mirosław

    2013-01-01

    The diagnostic and research aspects of compressor blade fatigue detection have been elaborated in the paper. The real maintenance and overhaul problems and characteristic of different modes of metal blade fatigue (LCF, HCF, and VHCF) have been presented. The polycrystalline defects and impurities influencing the fatigue, along with their related surface finish techniques, are taken into account. The three experimental methods of structural health assessment are considered. The metal magnetic memory (MMM), experimental modal analysis (EMA) and tip timing (TTM) methods provide information on the damage of diagnosed objects, for example, compressor blades. Early damage symptoms, that is, magnetic and modal properties of material strengthening and weakening phases (change of local dislocation density and grain diameter, increase of structural and magnetic anisotropy), have been described. It has been proven that the shape of resonance characteristic gives abilities to determine if fatigue or a blade crack is concerned. The capabilities of the methods for steel and titanium alloy blades have been illustrated in examples from active and passive experiments. In the conclusion, the MMM, EMA, and TTM have been verified, and the potential for reliable diagnosis of the compressor blades using this method has been confirmed. PMID:24191135

  11. High Sensitive Methods for Health Monitoring of Compressor Blades and Fatigue Detection

    Directory of Open Access Journals (Sweden)

    Mirosław Witoś

    2013-01-01

    Full Text Available The diagnostic and research aspects of compressor blade fatigue detection have been elaborated in the paper. The real maintenance and overhaul problems and characteristic of different modes of metal blade fatigue (LCF, HCF, and VHCF have been presented. The polycrystalline defects and impurities influencing the fatigue, along with their related surface finish techniques, are taken into account. The three experimental methods of structural health assessment are considered. The metal magnetic memory (MMM, experimental modal analysis (EMA and tip timing (TTM methods provide information on the damage of diagnosed objects, for example, compressor blades. Early damage symptoms, that is, magnetic and modal properties of material strengthening and weakening phases (change of local dislocation density and grain diameter, increase of structural and magnetic anisotropy, have been described. It has been proven that the shape of resonance characteristic gives abilities to determine if fatigue or a blade crack is concerned. The capabilities of the methods for steel and titanium alloy blades have been illustrated in examples from active and passive experiments. In the conclusion, the MMM, EMA, and TTM have been verified, and the potential for reliable diagnosis of the compressor blades using this method has been confirmed.

  12. Noise from propellers with symmetrical sections at zero blade angle, II

    Science.gov (United States)

    Deming, A F

    1938-01-01

    In a previous paper (Technical Note No. 605), a theory was developed that required an empirical relation to calculate sound pressures for the higher harmonics. Further investigation indicated that the modified theory agrees with experiment and that the empirical relation was due to an interference phenomenon peculiar to the test arrangement used. Comparison is made between the test results for a two-blade arrangement and the theory. The comparison is made for sound pressures in the plane of the revolving blades for varying values of tip velocity. Comparison is also made at constant tip velocity for all values of azimuth angle B. A further check is made between the theory and the experimental results for the fundamental of a four-blade arrangement with blades of the same dimensions as those used in the two-blade arrangement.

  13. Reliability of wind turbine blades: An overview of materials testing

    DEFF Research Database (Denmark)

    Holmes, John W.; Sørensen, Bent F.; Brøndsted, Povl

    2007-01-01

    an understanding of how damage develops in composite structures, composite materials and adhesives. Designing reliable wind turbine blades also requires the further development of laboratory scale and full scale test methods to evaluate the structural response and durability of new materials under various loading......The structural reliability of wind turbine components can have a profound impact on both the profitability and reputation of a wind turbine manufacturer or supplier of wind turbine components. The issue of reliability is of critical concern when large wind farm co-operatives are considered......, and when wind turbines are located in remote regions where the cost of inspections and repairs can be very high. From a structural viewpoint, wind turbine blades are subjected to very complex loading histories with coupled deformation modes. The long-term reliability of wind turbine blades requires...

  14. Bladed disc crack diagnostics using blade passage signals

    Science.gov (United States)

    Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Koul, Ashok; Liang, Ming; Alavi, Elham

    2012-12-01

    One of the major potential faults in a turbo fan engine is the crack initiation and propagation in bladed discs under cyclic loads that could result in the breakdown of the engines if not detected at an early stage. Reliable fault detection techniques are therefore in demand to reduce maintenance cost and prevent catastrophic failures. Although a number of approaches have been reported in the literature, it remains very challenging to develop a reliable technique to accurately estimate the health condition of a rotating bladed disc. Correspondingly, this paper presents a novel technique for bladed disc crack detection through two sequential signal processing stages: (1) signal preprocessing that aims to eliminate the noises in the blade passage signals; (2) signal postprocessing that intends to identify the crack location. In the first stage, physics-based modeling and interpretation are established to help characterize the noises. The crack initiation can be determined based on the calculated health monitoring index derived from the sinusoidal effects. In the second stage, the crack is located through advanced detrended fluctuation analysis of the preprocessed data. The proposed technique is validated using a set of spin rig test data (i.e. tip clearance and time of arrival) that was acquired during a test conducted on a bladed military engine fan disc. The test results have demonstrated that the developed technique is an effective approach for identifying and locating the incipient crack that occurs at the root of a bladed disc.

  15. Design and test of box girder for a large wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Tesauro, A.; Bitsche, R. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2012-09-15

    This report is covering the structural design and full scale test of a box girder as a part of the project ''Demonstration of new blade design using manufacturing process simulations'' supported by the EUDP program. A box girder with a predetermined outer geometry was designed using new inventions, which create an inner structure in the box girder. With a combination of advanced FEM analysis and the inventions it was possible to reduce the material thickness of the cap by up to 40%. The new design of the box girder was manufactured at SSP Technology A/S, where it was demonstrated that the manufacturing process could include the new inventions. Subsequently the box girder was transported to the blade test facility at DTU Wind Energy. A series of test was performed with the blade to investigate the behaviour during loading, and finally the girder was loaded to ultimate failure. The report includes the description of the test setup, the test and an overview over the results from the test performed on the box girder. During the final test the box girder failed at 58 % of the expected ultimate load. Unfortunately, no definite conclusion could be made concerning the failure mechanism. (Author)

  16. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    International Nuclear Information System (INIS)

    Muñoz-Andrade, Juan D.

    2013-01-01

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes

  17. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Andrade, Juan D., E-mail: jdma@correo.azc.uam.mx [Departamento de Materiales, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Unidad Azcapotzalco, Av. San Pablo No. 180, Colonia Reynosa Tamaulipas, C.P. 02200, México Distrito Federal (Mexico)

    2013-12-16

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  18. Standard Specification for Steel Blades Used with the Photovoltaic Module Surface Cut Test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This specification specifies the recommended physical characteristics of the steel blades required for the surface cut test described in ANSI/UL 1703 (Section 24) and IEC 61730-2 (Paragraph 10.3). 1.2 ANSI/UL 1703 and IEC 61730-2 are standards for photovoltaic module safety testing. 1.3 This standard provides additional fabrication details for the surface cut test blades that are not provided in ANSI/UL 1703 or IEC 61730-2. Surface cut test blades that have out-of-tolerance corner radii or burrs are known to cause erroneous test results, either passes or failures. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection

    Science.gov (United States)

    Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.

    2016-01-01

    The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. LS-DYNA® was used to predict the thickness of the composite shield required to prevent blade penetration. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test LS-DYNA predictions. This paper documents the analysis conducted to predict the required thickness of a composite shield, the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.

  20. Design and initial testing of a one-bladed 30-meter-diameter rotor on the NASA/DOE mod-O wind turbine

    Science.gov (United States)

    Corrigan, R. D.; Ensworth, C. B. F.

    1986-01-01

    The concept of a one-bladed horizontal-axis wind turbine has been of interest to wind turbine designers for many years. Many designs and economic analyses of one-bladed wind turbines have been undertaken by both United States and European wind energy groups. The analyses indicate significant economic advantages but at the same time, significant dynamic response concerns. In an effort to develop a broad data base on wind turbine design and operations, the NASA Wind Energy Project Office has tested a one-bladed rotor at the NASA/DOE Mod-O Wind Turbine Facility. This is the only known test on an intermediate-sized one-bladed rotor in the United States. The 15.2-meter-radius rotor consists of a tip-controlled blade and a counterweight assembly. A rigorous test series was conducted in the Fall of 1985 to collect data on rotor performance, drive train/generator dynamics, structural dynamics, and structural loads. This report includes background information on one-bladed rotor concepts, and Mod-O one-bladed rotor test configuration, supporting design analysis, the Mod-O one-blade rotor test plan, and preliminary test results.

  1. New Method for Dual-Axis Fatigue Testing of Large Wind Turbine Blades Using Resonance Excitation and Spectral Loading

    Energy Technology Data Exchange (ETDEWEB)

    White, D.

    2004-04-01

    The blades of a wind turbine are generally considered to be the most critical component of the wind turbine system. The fundamental purpose of performing fatigue tests on wind turbine blades is to demonstrate that a blade, when manufactured to a certain set of specifications, has the prescribed reliability and service life. The purpose of the research conducted for this project is the advancement of knowledge and capabilities in the area of wind turbine blade fatigue testing.

  2. Flapping inertia for selected rotor blades

    Science.gov (United States)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  3. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex E. Full-scale test of wind turbine blade, using sensors and NDT

    DEFF Research Database (Denmark)

    Kristensen, O.J.D.; McGugan, Malcolm; Sendrup, P.

    2002-01-01

    A 19.1 metre wind turbine blade was subjected to static tests. The purpose of the test series was to verify the abilities of different types of sensors to detect damage in wind turbine blades. Prior to each of the static test-series an artificial damagewas made on the blade. The damage made...... for each test-series was surveyed during each series by acoustic emission, fiber optic micro bend displacement transducers and strain gauges. The propagation of the damage was determined by use of ultra sonic andX-ray surveillance during stops in the test-series. By use of acoustic emission it was possible...... to measure damage propagation before the propagation was of visible size. By use of fiber optic micro bend displacement transducers and strain gauges it waspossible to measure minor damage propagation. By use of both ultra sonic, and X-ray NDT-equipment it were possible to determine the size of propagated...

  4. Full Scale Test of SSP 34m blade, edgewise loading LTT

    DEFF Research Database (Denmark)

    Nielsen, Magda; Jensen, Find Mølholt; Nielsen, Per Hørlyk

    This report is a part of the research project “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last” where a 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The applied load is 60......% of an unrealistic extreme event, corresponding to 75% of a certificated extreme load. This report describes the background, the test set up, the tests and the results. For this project, a new solution has been used for the load application and the solution for the load application is described in this report...... as well. The blade has been submitted to thorough examination. More areas have been examined with DIC, both global and local deflections have been measured, and also 378 strain gauge measurements have been performed. Furthermore Acoustic Emission has been used in order to detect damage while testing new...

  5. Structural experiment of wind turbine blades; Fushayo blade no zairyo rikigakuteki jikken kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Seki, K; Shimizu, Y; Kuroyanagi, H [Tokai University, Tokyo (Japan)

    1997-11-25

    Aluminum, GFRP and composite of aluminum coated with carbon as structural materials for wind turbine blades were bending-tested, to improve blade bending stiffness, understand stress conditions at each position, and clarify structural dynamic strength by the bending-failure test. It is possible to estimate stress conditions at each position from the test results of displacement and strain at each load. The test results with GFRP are well explained qualitatively by the boundary theory, known as a theory for composite materials. The test gives reasonable material strength data, useful for designing wind turbines of high functions and safety. The results of the blade bending-failure test are in good agreement with the calculated structural blade strength. It is also found that GFRP is a good material of high structural strength for wind turbines. 8 refs., 6 tabs.

  6. Full scale wind turbine test of vortex generators mounted on the entire blade

    DEFF Research Database (Denmark)

    Bak, Christian; Skrzypinski, Witold Robert; Gaunaa, Mac

    2016-01-01

    Measurements on a heavily instrumented pitch regulated variable speed Vestas V52 850 kW wind turbine situated at the DTU Risø Campus are carried out, where the effect of vortex generators mounted on almost the entire blade is tested with and without leading edge roughness. The measurements...... are compared to the predictions carried out by a developed design tool, where the effect of vortex generators and leading edge roughness is simulated using engineering models. The measurements showed that if vortex generators are mounted there is an increase in flapwise blade moments if the blades are clean...

  7. Design, Test, and Evaluation of a Transonic Axial Compressor Rotor with Splitter Blades

    Science.gov (United States)

    2013-09-01

    INTRODUCTION A. MOTIVATION Over the course of turbomachinery history splitter vanes have been used extensively in centrifugal compressors . Axial...TEST, AND EVALUATION OF A TRANSONIC AXIAL COMPRESSOR ROTOR WITH SPLITTER BLADES by Scott Drayton September 2013 Dissertation Co...AXIAL COMPRESSOR ROTOR WITH SPLITTER BLADES 5. FUNDING NUMBERS 6. AUTHOR(S) Scott Drayton 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  8. Digital radiographic technology; non-destructive testing of tubine blades

    NARCIS (Netherlands)

    Penumadu, P.S.

    2014-01-01

    Inspection of turbine blades has always been a big challenge. Any irregularities in the blade have a huge impact on the gas turbine, so these blades have to be manufactured and inspected in the most sophisticated way possible. The evolution of digital radiographic technology took a leap forward to

  9. Fundamentals for remote structural health monitoring of wind turbine blades - a pre-project. Annex D - Full-scale test of wind turbine blade, using sensors and NDT

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, O.J.D.; McGugan, M.; Sendrup, P.; Rheinlaender, J.; Rusborg, J.; Hansen, A.M.; Debel, C.P.; Soerensen, B.F.

    2002-05-01

    A 19.1 metre wind turbine blade was subjected to static tests. The purpose of the test series was to verify the abilities of different types of sensors to detect damage in wind turbine blades. Prior to each of the static test-series an artificial damage was made on the blade. The damage made for each test-series was surveyed during each series by acoustic emission, fiber optic micro bend displacement transducers and strain gauges. The propagation of the damage was determined by use of ultra sonic and X-ray surveillance during stops in the test series. By use of acoustic emission it was possible to measure damage propagation before the propagation was of visible size. By use of fiber optic micro bend displacement transducers and strain gauges it was possible to measure minor damage propagation. By use of both ultra sonic, and X-ray NDT-equipment it were possible to determine the size of propagated damage. (au)

  10. Joint excitation synchronization characteristics of fatigue test for offshore wind turbine blade

    Science.gov (United States)

    Zhang, Lei-an; Yu, Xiang-yong; Wei, Xiu-ting; Liu, Wei-sheng

    2018-02-01

    In the case of the stiffness of offshore wind turbine blade is relatively large, the joint excitation device solves the problem of low accuracy of bending moment distribution, insufficient driving ability and long fatigue test period in single-point loading. In order to study the synchronous characteristics of joint excitation system, avoid blade vibration disturbance. First, on the base of a Lagrange equation, a mathematical model of combined excitation is formulated, and a numerical analysis of vibration synchronization is performed. Then, the model is constructed via MATLAB/Simulink, and the effect of the phase difference on the vibration synchronization characteristics is obtained visually. Finally, a set of joint excitation platform for the fatigue test of offshore wind turbine blades are built. The parameter measurement scheme is given and the correctness of the joint excitation synchronization in the simulation model is verified. The results show that when the rotational speed difference is 2 r/min, 30 r/min, the phase difference is 0, π/20, π/8 and π/4, as the rotational speed difference and the phase difference increase, the time required for the blade to reach a steady state is longer. When the phase difference is too large, the electromechanical coupling can no longer make the joint excitation device appear self-synchronizing phenomenon, so that the value of the phase difference develops toward a fixed value (not equal to 0), and the blade vibration disorder is serious, at this time, the effect of electromechanical coupling must be eliminated. The research results provide theoretical basis for the subsequent decoupling control algorithm and synchronization control strategy, and have good application value.

  11. Joint excitation synchronization characteristics of fatigue test for offshore wind turbine blade

    Directory of Open Access Journals (Sweden)

    Lei-an Zhang

    2018-02-01

    Full Text Available In the case of the stiffness of offshore wind turbine blade is relatively large, the joint excitation device solves the problem of low accuracy of bending moment distribution, insufficient driving ability and long fatigue test period in single-point loading. In order to study the synchronous characteristics of joint excitation system, avoid blade vibration disturbance. First, on the base of a Lagrange equation, a mathematical model of combined excitation is formulated, and a numerical analysis of vibration synchronization is performed. Then, the model is constructed via MATLAB/Simulink, and the effect of the phase difference on the vibration synchronization characteristics is obtained visually. Finally, a set of joint excitation platform for the fatigue test of offshore wind turbine blades are built. The parameter measurement scheme is given and the correctness of the joint excitation synchronization in the simulation model is verified. The results show that when the rotational speed difference is 2 r/min, 30 r/min, the phase difference is 0, π/20, π/8 and π/4, as the rotational speed difference and the phase difference increase, the time required for the blade to reach a steady state is longer. When the phase difference is too large, the electromechanical coupling can no longer make the joint excitation device appear self-synchronizing phenomenon, so that the value of the phase difference develops toward a fixed value (not equal to 0, and the blade vibration disorder is serious, at this time, the effect of electromechanical coupling must be eliminated. The research results provide theoretical basis for the subsequent decoupling control algorithm and synchronization control strategy, and have good application value.

  12. Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts

    Science.gov (United States)

    Lattime, Scott B.; Steinetz, Bruce M.; Robbie, Malcolm G.

    2003-01-01

    Improved blade tip sealing in the high pressure compressor and high pressure turbine can provide dramatic improvements in specific fuel consumption, time-on-wing, compressor stall margin and engine efficiency as well as increased payload and mission range capabilities of both military and commercial gas turbine engines. The preliminary design of a mechanically actuated active clearance control (ACC) system for turbine blade tip clearance management is presented along with the design of a bench top test rig in which the system is to be evaluated. The ACC system utilizes mechanically actuated seal carrier segments and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. The purpose of this active clearance control system is to improve upon current case cooling methods. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, re-burst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). The active turbine blade tip clearance control system design presented herein will be evaluated to ensure that proper response and positional accuracy is achievable under simulated high-pressure turbine conditions. The test rig will simulate proper seal carrier pressure and temperature loading as well as the magnitudes and rates of blade tip clearance changes of an actual gas turbine engine. The results of these evaluations will be presented in future works.

  13. Performance of Savonius Blade Waterwheel with Variation of Blade Number

    Science.gov (United States)

    Sule, L.; Rompas, P. T. D.

    2018-02-01

    The utilization of water energy source is mainly used as a provider of electrical energy through hydroelectric power. The potential utilization of water flow energy is relatively small. The objective of this study is to know the best blade of Savonius waterwheel with various variables such as water discharge, blade number, and loading. The data used the efficiency of waterwheel, variation of blade number, variable water discharge, and loading in the shaft. The test results have shown that the performances of a top-water mill with the semicircular curve where the variation in the number of blades are 4, 6, and 8 at discharge and loading of 0.01587 m3/s and 1000 grams respectively were 9.945%, 13.929%, and 17.056% respectively. The blades number of 8 obtained the greatest performance. The more number of blades the greater the efficiency of the waterwheel Savonius.

  14. A new reference tip-timing test bench and simulator for blade synchronous and asynchronous vibrations

    Science.gov (United States)

    Hajnayeb, Ali; Nikpour, Masood; Moradi, Shapour; Rossi, Gianluca

    2018-02-01

    The blade tip-timing (BTT) measurement technique is at present the most promising technique for monitoring the blades of axial turbines and aircraft engines in operating conditions. It is generally used as an alternative to strain gauges in turbine testing. By conducting a comparison with the standard methods such as those based on strain gauges, one determines that the technique is not intrusive and does not require a complicated installation process. Despite its superiority to other methods, the experimental performance analysis of a new BTT method needs a test stand that includes a reference measurement system (e.g. strain gauges equipped with telemetry or other complex optical measurement systems, like rotating laser Doppler vibrometers). In this article, a new reliable, low-cost BTT test setup is proposed for simulating and analyzing blade vibrations based on kinematic inversion. In the proposed test bench, instead of the blades vibrating, it is the BTT sensor that vibrates. The vibration of the sensor is generated by a shaker and can therefore be easily controlled in terms of frequency, amplitude and waveform shape. The amplitude of vibration excitation is measured by a simple accelerometer. After introducing the components of the simulator, the proposed test bench is used in practice to simulate both synchronous and asynchronous vibration scenarios. Then two BTT methods are used to evaluate the quality of the acquired data. The results demonstrate that the proposed setup is able to generate simulated pulse sequences which are almost the same as those generated by the conventional BTT systems installed around a bladed disk. Moreover, the test setup enables its users to evaluate BTT methods by using a limited number of sensors. This significantly reduces the total costs of the experiments.

  15. Blade-type X-ray beam position monitors for SPring-8 undulator beamlines

    CERN Document Server

    Aoyagi, H; Kitamura, H

    2001-01-01

    The X-ray beam position monitors had been designed and installed for SPring-8 insertion device beamlines. These monitors are being utilized for photon beam diagnostics. The beam from the standard undulator in SPring-8 has the total power of 11 kW and the power density of 470 kW/mrad sup 2 , typically. Each monitor has four CVD diamond blades coated with metal for detector heads. We have already introduced three styles of monitors to match various insertion devices in SPring-8. A standard style, or a fixed-blade style, is used mainly for a standard in-vacuum undulator beamlines. A horizontal-blade-drive style and a four-blade-drive style are used for beamlines of a wiggler and a twin helical undulator that have wide power distributions, and for figure-8 undulators that have asymmetric power distributions, respectively. This report describes the design and the structure of these monitors and the beam-tests for the photon beam diagnostics in detail.

  16. Advanced topics on rotor blade full-scale structural fatigue testing and requirements

    DEFF Research Database (Denmark)

    Berring, Peter; Fedorov, Vladimir; Belloni, Federico

    further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. Those methods are presented in [1]. This report deals with more advanced topics...

  17. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    Science.gov (United States)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  18. Impact force identification for composite helicopter blades using minimal sensing

    Science.gov (United States)

    Budde, Carson N.

    In this research a method for online impact identification using minimal sensors is developed for rotor hubs with composite blades. Modal impact data and the corresponding responses are recorded at several locations to develop a frequency response function model for each composite blade on the rotor hub. The frequency response model for each blade is used to develop an impact identification algorithm which can be used to identify the location and magnitude of impacts. Impacts are applied in two experimental setups, including a four-blade spin test rig and a cantilevered full-sized composite blade. The impacts are estimated to have been applied at the correct location 92.3% of the time for static fiberglass blades, 97.4% of the time for static carbon fiber blades and 99.2% of the time for a full sized-static blade. The estimated location is assessed further and determined to have been estimated in the correct chord position 96.1% of the time for static fiberglass, 100% of the time for carbon fiber blades and 99.2% of the time for the full-sized blades. Projectile impacts are also applied statically and during rotation to the carbon fiber blades on the spin test rig at 57 and 83 RPM. The applied impacts can be located to the correct position 63.9%, 41.7% and 33.3% for the 0, 57 and 83 RPM speeds, respectively, while the correct chord location is estimated 100% of the time. The impact identification algorithm also estimates the force of an impact with an average percent difference of 4.64, 2.61 and 1.00 for static fiberglass, full sized, and carbon fiber blades, respectively. Using a load cell and work equations, the force of impact for a projectile fired from a dynamic firing setup is estimated at about 400 N. The average force measured for applied projectile impacts to the carbon fiber blades, rotating at 0, 57 and 83 RPM, is 368.8, 373.7 and 432.4 N, respectively.

  19. Results of Investigative Tests of Gas Turbine Engine Compressor Blades Obtained by Electrochemical Machining

    Science.gov (United States)

    Kozhina, T. D.; Kurochkin, A. V.

    2016-04-01

    The paper highlights results of the investigative tests of GTE compressor Ti-alloy blades obtained by the method of electrochemical machining with oscillating tool-electrodes, carried out in order to define the optimal parameters of the ECM process providing attainment of specified blade quality parameters given in the design documentation, while providing maximal performance. The new technological methods suggested based on the results of the tests; in particular application of vibrating tool-electrodes and employment of locating elements made of high-strength materials, significantly extend the capabilities of this method.

  20. Full Scale Test of SSP 34m blade, edgewise loading LTT. Data Report 1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Magda; Jensen, Find M.; Nielsen, Per H. (and others)

    2010-01-15

    This report is a part of a research project where a 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The applied load is 60% of an unrealistic extreme event, corresponding to 75% of a certificated extreme load. This report describes the background, the test set up, the tests and the results. For this project, a new solution has been used for the load application and the solution for the load application is described in this report as well. The blade has been submitted to thorough examination. More areas have been examined with DIC, both global and local deflections have been measured, and also 378 strain gauge measurements have been performed. Furthermore Acoustic Emission has been used in order to detect damage while testing new load areas. The global deflection is compared with results from a previous test and results from FEM analyses in order to validate the solution as to how the gravity load on the blade was handled. Furthermore, the DIC measurement and the displacement sensors measurements are compared in order to validate the results from the DIC measurements. The report includes the results from the test and a description of the measurement equipment and the data acquisition. (author)

  1. Performance Comparison of Four SolarWorld Module Technologies at the US DOE Regional Test Center in New Mexico: November 2016 - March 2017.

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, Laurie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lave, Matthew Samuel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    This report provides a preliminary (three month) analysis for the SolarWorld system installed at the New Mexico Regional Test Center (RTC.) The 8.7kW, four-string system consists of four module types): bifacial, mono-crystalline, mono-crystalline glass-glass and polycrystalline. Overall, the SolarWorld system has performed well to date: most strings closely match their specification-sheet module temperature coefficients and Sandia 's f lash tests show that Pmax values are well within expectations. Although the polycrystalline modules underperformed, the results may be a function of light exposure, as well as mismatch within the string, and not a production flaw. The instantaneous bifacial gains for SolarWorld 's Bisun modules were modest but it should be noted that the RTC racking is not optimized for bifacial modules, nor is albedo optimized at the site. Additional analysis, not only of the SolarWorld installation in New Mexico but of the SolarWorld installations at the Vermont and Florida RTCs will be provide much more information regarding the comparative performance of the four module types.

  2. Fast polycrystalline CdTe detectors for bunch-by-bunch luminosity monitoring in the LHC

    CERN Document Server

    Brambilla, A; Jolliot, M; Bravin, E

    2008-01-01

    The luminosity at the four interaction points of the Large Hadron Collider (LHC) must be continuously monitored in order to provide an adequate tool for the control and optimisation of beam parameters. Polycrystalline cadmium telluride (CdTe) detectors have previously been tested, showing their high potential to fulfil the requirements of luminosity measurement in the severe environment of the LHC interaction regions. Further, the large signal yield and the fast response time should allow bunch-by-bunch measurement of the luminosity at 40 MHz with high accuracy. Four luminosity monitors with two rows of five polycrystalline CdTe detectors each have been fabricated and will be installed at both sides of the low-luminosity interaction points ALICE and LHC-b. A detector housing was specially designed to meet the mechanical constraints in the LHC. A series of elementary CdTe detectors were fabricated and tested, of which 40 were selected for the luminosity monitors. A sensitivity of 104 electrons per minimum ioni...

  3. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  4. In vitro study of color stability of polycrystalline and monocrystalline ceramic brackets.

    Science.gov (United States)

    de Oliveira, Cibele Braga; Maia, Luiz Guilherme Martins; Santos-Pinto, Ary; Gandini Junior, Luiz Gonzaga

    2014-01-01

    The aim of this in vitro study was to analyze color stability of monocrystalline and polycrystalline ceramic brackets after immersion in dye solutions. Seven ceramic brackets of four commercial brands were tested: Two monocrystalline and two polycrystalline. The brackets were immersed in four dye solutions (coffee, red wine, Coke and black tea) and in artificial saliva for the following times: 24 hours, 7, 14 and 21 days, respectively. Color changes were measured by a spectrophotometer. Data were assessed by Multivariate Profile Analysis, Analysis of Variance (ANOVA) and Multiple Comparison Tests of means. There was a perceptible change of color in all ceramic brackets immersed in coffee (ΔE* Allure = 7.61, Inspire Ice = 6.09, Radiance = 6.69, Transcend = 7.44), black tea (ΔE* Allure = 6.24, Inspire Ice = 5.21, Radiance = 6.51, Transcend = 6.14) and red wine (ΔE* Allure = 6.49, Inspire Ice = 4.76, Radiance = 5.19, Transcend = 5.64), but no change was noticed in Coke and artificial saliva (ΔE brackets undergo color change when exposed to solutions of coffee, black tea and red wine. However, the same crystalline structure, either monocrystalline or polycrystalline, do not follow the same or a similar pattern in color change, varying according to the bracket fabrication, which shows a lack of standardization in the manufacturing process. Coffee dye produced the most marked color changes after 21 days of immersion for most ceramic brackets evaluated.

  5. Modal characteristics and fatigue strength of compressor blades

    International Nuclear Information System (INIS)

    Kim, Kyung Kook; Lee, Young Shin

    2014-01-01

    High-cycle fatigue (HCF) has been identified as one of the primary causes of gas turbine engine failure. The modal characteristics and endurance strength of a 5 MW gas turbine engine blade developed by Doosan Heavy Industries and Construction Co., Ltd. in HCF fracture were verified through analysis and tests to determine the reliability of the compressor blade. A compressor blade design procedure that considers HCF life was performed in the following order: airfoil and blade profile design, modal analysis, stress distribution test, stress endurance limit test, and fatigue life verification. This study analyzed the Campbell diagram and estimated resonance risk on the basis of the natural frequency analysis and modal test of the compressor blade to guarantee safe and operational reliability. In addition, the maximum stress point of the compressor blade was determined through stress distribution analysis and test. The bonding point of the strain gage was determined by using fatigue test. Stress endurance limit test was performed based on the results of these tests. This research compared and verified the modal characteristics and endurance strengths of the compressor blades to prevent HCF fracture, which is among the major causes of gas turbine engine damage. A fatigue life design procedure of compressor blades was established. The 5 MW class gas turbine compressor blade is well designed in terms of resonance stability and fatigue endurance limit.

  6. Modal characteristics and fatigue strength of compressor blades

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Kook [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of); Lee, Young Shin [Chungnam National University, Daejeon (Korea, Republic of)

    2014-04-15

    High-cycle fatigue (HCF) has been identified as one of the primary causes of gas turbine engine failure. The modal characteristics and endurance strength of a 5 MW gas turbine engine blade developed by Doosan Heavy Industries and Construction Co., Ltd. in HCF fracture were verified through analysis and tests to determine the reliability of the compressor blade. A compressor blade design procedure that considers HCF life was performed in the following order: airfoil and blade profile design, modal analysis, stress distribution test, stress endurance limit test, and fatigue life verification. This study analyzed the Campbell diagram and estimated resonance risk on the basis of the natural frequency analysis and modal test of the compressor blade to guarantee safe and operational reliability. In addition, the maximum stress point of the compressor blade was determined through stress distribution analysis and test. The bonding point of the strain gage was determined by using fatigue test. Stress endurance limit test was performed based on the results of these tests. This research compared and verified the modal characteristics and endurance strengths of the compressor blades to prevent HCF fracture, which is among the major causes of gas turbine engine damage. A fatigue life design procedure of compressor blades was established. The 5 MW class gas turbine compressor blade is well designed in terms of resonance stability and fatigue endurance limit.

  7. Ultimate strength of a large wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Moelholt Jensen, Find

    2008-05-15

    The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural behaviour of wind turbine blades. Four failure mechanisms observed during the fullscale tests and the corresponding FE-analysis are presented. Elastic mechanisms associated with failure, such as buckling, localized bending and the Brazier effect, are studied. Six different types of structural reinforcements helping to prevent undesired structural elastic mechanisms are presented. The functionality of two of the suggested structural reinforcements was demonstrated in full-scale tests and the rest trough FE-studies. The blade design under investigation consisted of an aerodynamic airfoil and a load carrying box girder. In total, five full-scale tests have been performed involving one complete blade and two shortened box girders. The second box girder was submitted to three independent tests covering different structural reinforcement alternatives. The advantages and disadvantages of testing a shortened load carrying box girder vs. an entire blade are discussed. Changes in the boundary conditions, loads and additional reinforcements, which were introduced in the box girder tests in order to avoid undesired structural elastic mechanisms, are presented. New and advanced measuring equipment was used in the fullscale tests to detect the critical failure mechanisms and to get an understanding of the complex structural behaviour. Traditionally, displacement sensors and strain gauges in blade tests are arranged based on an assumption of a Bernoulli-Euler beam structural response. In the present study it is shown that when following this procedure important information about distortions of the cross sections is lost. In the tests presented here, one of the aims was to measure distortion

  8. Study of Pumping Capacity of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2002-01-01

    Full Text Available A study was made of the pumping capacity of pitched blade impellers in a cylindrical pilot plant vessel with four standard radial baffles at the wall under a turbulent regime of flow. The pumping capacity was calculated from the radial profile of the axial flow, under the assumption of axial symmetry of the discharge flow. The mean velocity was measured using laser Doppler anemometry in a transparent vessel of diameter T = 400 mm, provided with a standard dished bottom. Three and six blade pitched blade impellers (the pitch angle varied within the interval a Îá24°; 45°ń of impeller/vessel diameter ratio D/T = 0.36, as well as a three blade pitched blade impeller with folded blades of the same diameter, were tested. The calculated results were compared with the results of experiments mentioned in the literature, above all in cylindrical vessels with a flat bottom. Both arrangements of the agitated system were described by the impeller energetic efficiency, i.e, a criterion including in dimensionless form both the impeller energy consumption (impeller power input and the impeller pumping effect (impeller pumping capacity. It follows from the results obtained with various geometrical configurations that the energetic efficiency of pitched blade impellers is significantly lower for configurations suitable for mixing solid-liquid suspensions (low impeller off bottom clearances than for blending miscible liquids in mixing (higher impeller off bottom clearances.

  9. Full-Scale Field Test of a Blade-Integrated Dual-Telescope Wind Lidar

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Sjöholm, Mikael; Angelou, Nikolas

    . Simultaneously, data regarding wind speed, rotational speed, and pitch angle recorded by the turbine was logged as well as data from a nearby met mast. The encouraging results of this first campaign include wind speed measurements at 20 Hz data rate along the rotor plane, acquired during the co...... in the top and bottom of the rotor plane. Conclusion We present here what we believe is the first successful wind speed measurements from a dual-telescope lidar installed on the blade of an operating wind turbine. The full-scale field test performed in the summer of 2012 has clearly demonstrated...... the possibility of integrating lidar telescopes into turbine blades as well as the capability of the lidar to measure the required wind speeds and to operate in the challenging environment of a rotating spinner and vibrating blade. The use of two separate telescopes allows a direct measurement of the blade’s AOA...

  10. Experimental tests of the effect of rotor diameter ratio and blade number to the cross-flow wind turbine performance

    Science.gov (United States)

    Susanto, Sandi; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    Cross-flow wind turbine is one of the alternative energy harvester for low wind speeds area. Several factors that influence the power coefficient of cross-flow wind turbine are the diameter ratio of blades and the number of blades. The aim of this study is to find out the influence of the number of blades and the diameter ratio on the performance of cross-flow wind turbine and to find out the best configuration between number of blades and diameter ratio of the turbine. The experimental test were conducted under several variation including diameter ratio between outer and inner diameter of the turbine and number of blades. The variation of turbine diameter ratio between inner and outer diameter consisted of 0.58, 0.63, 0.68 and 0.73 while the variations of the number of blades used was 16, 20 and 24. The experimental test were conducted under certain wind speed which are 3m/s until 4 m/s. The result showed that the configurations between 0.68 diameter ratio and 20 blade numbers is the best configurations that has power coefficient of 0.049 and moment coefficient of 0.185.

  11. Testing and evaluation of a rototiller with new ridged blades

    Directory of Open Access Journals (Sweden)

    H Gholami

    2017-05-01

    Full Text Available Introduction Recently, employment of rotary tillers has been expanded in gardens and small farms, especially in the northern of Iran. However using the L-shaped blades in the conventional rotary tillers have some problems such as severe vibration problems, weeds stucking around the blades, forming the plow pan and lower performance due to the less powers of such small rototillers. Therefore in order to overcome the above mentioned problems, a rototiller with new ridged blades was designed, fabricated and tested in this research. Materials and Methods Experiments were carried out in one of the citrus orchards in Mazandaran, Sari. The experimental design was split plots based on randomized complete block design with three replications. The soil moisture as main plot varied in two levels of 13.5-21.9 and 21.9-30.3 percent based on dry weight and the rotational speed of blades as subplots varied in three levels of 140-170, 170-200 and 200-230 rpm. The measured parameters consist of soil particle mean weight diameter, soil bulk density, soil crumbling percentage, specific fuel consumption and machine efficiency. The diameter of soil particles was measured using a set of standard sieves with diameter ranging from 0.5 to 8 mm. Then a laboratory shaker was used to sift the samples. Each sample was shaken in 30 sec. The fuel consumption during the experiments was determined by the filled fuel tank method. Analysis of variance (ANOVA and mean comparisons and interaction between the parameters were performed using the SPSS 16 software. Results and Discussion The results indicated that the soil particle mean weight diameter reduced by increasing blades rotational speed in both examined soil moisture contents. Results indicated that the soil crumbling percent increases with increasing the rotational speed. The main reason for this effect could be due to the more energy transferring to the soil at higher rotational speeds, which result in further crumbling of

  12. Nanopores creation in boron and nitrogen doped polycrystalline graphene: A molecular dynamics study

    Science.gov (United States)

    Izadifar, Mohammadreza; Abadi, Rouzbeh; Nezhad Shirazi, Ali Hossein; Alajlan, Naif; Rabczuk, Timon

    2018-05-01

    In the present paper, molecular dynamic simulations have been conducted to investigate the nanopores creation on 10% of boron and nitrogen doped polycrystalline graphene by silicon and diamond nanoclusters. Two types of nanoclusters based on silicon and diamond are used to investigate their effect for the fabrication of nanopores. Therefore, three different diameter sizes of the clusters with five kinetic energies of 10, 50, 100, 300 and 500 eV/atom at four different locations in boron or nitrogen doped polycrystalline graphene nanosheets have been perused. We also study the effect of 3% and 6% of boron doped polycrystalline graphene with the best outcome from 10% of doping. Our results reveal that the diamond cluster with diameter of 2 and 2.5 nm fabricates the largest nanopore areas on boron and nitrogen doped polycrystalline graphene, respectively. Furthermore, the kinetic energies of 10 and 50 eV/atom can not fabricate nanopores in some cases for silicon and diamond clusters on boron doped polycrystalline graphene nanosheets. On the other hand, silicon and diamond clusters fabricate nanopores for all locations and all tested energies on nitrogen doped polycrystalline graphene. The area sizes of nanopores fabricated by silicon and diamond clusters with diameter of 2 and 2.5 nm are close to the actual area size of the related clusters for the kinetic energy of 300 eV/atom in all locations on boron doped polycrystalline graphene. The maximum area and the average maximum area of nanopores are fabricated by the kinetic energy of 500 eV/atom inside the grain boundary at the center of the nanosheet and in the corner of nanosheet with diameters of 2 and 3 nm for silicon and diamond clusters on boron and nitrogen doped polycrystalline graphene.

  13. The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT Blade Shapes Using Experimental and Numerical Methods

    Directory of Open Access Journals (Sweden)

    Wen-Tong Chong

    2013-06-01

    Full Text Available Three different horizontal axis wind turbine (HAWT blade geometries with the same diameter of 0.72 m using the same NACA4418 airfoil profile have been investigated both experimentally and numerically. The first is an optimum (OPT blade shape, obtained using improved blade element momentum (BEM theory. A detailed description of the blade geometry is also given. The second is an untapered and optimum twist (UOT blade with the same twist distributions as the OPT blade. The third blade is untapered and untwisted (UUT. Wind tunnel experiments were used to measure the power coefficients of these blades, and the results indicate that both the OPT and UOT blades perform with the same maximum power coefficient, Cp = 0.428, but it is located at different tip speed ratio, λ = 4.92 for the OPT blade and λ = 4.32 for the UOT blade. The UUT blade has a maximum power coefficient of Cp = 0.210 at λ = 3.86. After the tests, numerical simulations were performed using a full three-dimensional computational fluid dynamics (CFD method using the k-ω SST turbulence model. It has been found that CFD predictions reproduce the most accurate model power coefficients. The good agreement between the measured and computed power coefficients of the three models strongly suggest that accurate predictions of HAWT blade performance at full-scale conditions are also possible using the CFD method.

  14. Design, fabrication, and test of a steel spar wind turbine blade

    Science.gov (United States)

    Sullivan, T. L.; Sirocky, P. J., Jr.; Viterna, L. A.

    1979-01-01

    The design and fabrication of wind turbine blades based on 60 foot steel spars are discussed. Performance and blade load information is given and compared to analytical prediction. In addition, performance is compared to that of the original MOD-O aluminum blades. Costs for building the two blades are given, and a projection is made for the cost in mass production. Design improvements to reduce weight and improve fatigue life are suggested.

  15. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  16. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Laboratory, Golden, Colorado (United States)

    1997-08-01

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. (au)

  17. Experimental Evaluation of Cermet Turbine Stator Blades for Use at Elevated Gas Temperatures

    Science.gov (United States)

    Chiarito, Patrick T.; Johnston, James R.

    1959-01-01

    The suitability of cermets for turbine stator blades of a modified turbojet engine was determined at an average turbine-inlet-gas temperature of 2000 F. Such an increase in temperature would yield a premium in thrust from a service engine. Because the cermet blades require no cooling, all the available compressor bleed air could be used to cool a turbine made from conventional ductile alloys. Cermet blades were first run in 100-hour endurance tests at normal gas temperatures in order to evaluate two methods for mounting them. The elevated gas-temperature test was then run using the method of support considered best for high-temperature operation. After 52 hours at 2000 F, one of the group of four cermet blades fractured probably because of end loads resulting from thermal distortion of the spacer band of the nozzle diaphragm. Improved design of a service engine would preclude this cause of premature failure.

  18. Sweep-twist adaptive rotor blade : final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  19. Advanced Blade Manufacturing Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  20. Turbine blade wear and damage. An overview of advanced characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Schlobohm, Jochen; Li, Yinan; Kaestner, Markus; Poesch, Andreas; Reithmeier, Eduard [Hannover Univ. (Germany). Inst. fuer Mess- und Regelungstechnik; Bruchwald, Oliver; Frackowiak, Wojciech; Reimche, Wilfried; Maier, Hans Juergen [Hannover Univ. (Germany). Inst. fuer Werkstoffkunde

    2016-07-01

    This paper gives an overview of four measurement techniques that allow to extensively characterize the status of a worn turbine blade. In addition to the measurement of geometry and surface properties, the condition of the two protective coatings needs to be monitored. Fringe projection was used to detect and quantify geometric variances. The technique was improved using newly developed algorithms like inverse fringe projection. A Michelson interferometer was employed to further analyze areas with geometric defects and characterize the surface morphology of the blade. Pulsed high frequency induction thermography enabled the scanning of the blade for small cracks at or close to the surface. High frequency eddy current testing was used to determine the protective layers status and their thickness.

  1. The oil pressure test of the hydraulic impeller blade

    Science.gov (United States)

    Ye, Wen-bo; Jia, Li-tao

    2017-12-01

    This article introduced the structure of the Kaplan runner in hydropower station and the operating process of the oil pressure test has been described. What’s more, the whole process, including filling oil to the runner hub, the movement of the runner blade, the oil circuit, have been presented in detail.Since the manipulation of the oil circuit which controlled by three Valve groups consisting of six valves was complicated, the author is planning to replace them with 3-position 3-way electromagnetic valves, so we can simplify the operation procedure.The author hopes this article can provide technical reference for the oil pressure test.

  2. blades

    Directory of Open Access Journals (Sweden)

    Shashishekara S. Talya

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  3. Fundamental investigation on the impact strength of hollow fan blades

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T; Miyachi, T; Sofue, Y

    1985-01-01

    Models of hollow fan blades were made and tested to prove that their strength is sufficient for use in real engines. The hollow blades were fabricated by diffusion bonding of two titanium alloy (6Al-4V-Ti) plates, one of which had three spanwise stiffners and the other being flat plate. The model as a nontwisted tapered blade. Impact tests were carried out on the hollow fan blade models in which the ingestion of a 1.5 pounds bird was simulated. Solid blades with the same external form were also tested by similar methods for comparison. The results of these tests show that properly designed hollow blades have sufficient stiffness and strength for use as fan blades in the turbo-fan engine.

  4. Full scale test SSP 34m blade, edgewise loading LTT. Extreme load and PoC{sub I}nvE Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Magda; Roczek-Sieradzan, A.; Jensen, Find M. (and others)

    2010-09-15

    This report is the second report covering the research and demonstration project 'Experimental blade research: Structural mechanisms in current and future large blades under combined loading', supported by the EUDP program. A 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The blade has been submitted to thorough examination by means of strain gauges, displacement transducers and a 3D optical measuring system. This data report presents results obtained during full scale testing of the blade up to 80% Risoe load, where 80% Risoe load corresponds to 100% certification load. These pulls at 80% Risoe load were repeated and the results from these pulls were compared. The blade was reinforced according to a Risoe DTU invention, where the trailing edge panels are coupled. The coupling is implemented to prevent the out of plane deformations and to reduce peeling stresses in the adhesive joints. Test results from measurements with the reinforcement have been compared to results without the coupling. The report presents only the relevant results for the 80% Risoe load and the results applicable for the investigation of the influence of the invention on the profile deformation. (Author)

  5. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    Science.gov (United States)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  6. Accelerated rain erosion of wind turbine blade coatings

    DEFF Research Database (Denmark)

    Zhang, Shizhong

    . There are four chapters in the thesis. In chapter 1, a literature survey provides background information to the field. Topics discussed are the global wind energy development, possible wind turbine constructions, blade structures and materials, blade coatings, and liquid erosion mechanisms. In chapter 2......During operation, the fast-moving blades of wind turbines are exposed to continuous impacts with rain droplets, hail, insects, or solid particles. This can lead to erosion of the blades, whereby the electrical efficiency is compromised and expensive repairs may be required. One possible solution...

  7. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    Science.gov (United States)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration

  8. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Shun-Peng Zhu

    2017-06-01

    Full Text Available Combined high and low cycle fatigue (CCF generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF resulting from high frequency vibrations and low cycle fatigue (LCF from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  9. Blade dynamic stress analysis of rotating bladed disks

    Directory of Open Access Journals (Sweden)

    Kellner J.

    2007-10-01

    Full Text Available The paper deals with mathematical modelling of steady forced bladed disk vibrations and with dynamic stress calculation of the blades. The blades are considered as 1D kontinuum elastic coupled with three-dimensional elastic disk centrally clamped into rotor rotating with constant angular speed. The steady forced vibrations are generated by the aerodynamic forces acting along the blade length. By using modal synthesis method the mathematical model of the rotating bladed disk is condensed to calculate steady vibrations. Dynamic stress analysis of the blades is based on calculation of the time dependent reduced stress in blade cross-sections by using Hubert-Misses-Hencky stress hypothesis. The presented method is applied to real turbomachinery rotor with blades connected on the top with shroud.

  10. Korean experience with steam turbine blade inspection

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Park, D.Y.; Park, Hyung Jin; Chung, Min Hwa

    1990-01-01

    Several turbine blade accidents in Korea have emphasized the importance of their adequate periodic inspection. As a typical example, a broken blade was found in the Low Pressure (LP) turbine at the 950 MWe KORI unit 3 during the 1986 overhaul after one year commercial operation. Since then the Manufacturer and the Utility company (KEPCO) have been concerned about the need of blade root inspection. The ultrasonic testing was applied to detect cracks in the blade roots without removing the blades from rotor. Due to the complex geometry of the roots, the test results could not be evaluated easily. We feel that the currently applied UT technique seems to be less reliable and more effective method of inspection must be developed in the near future. This paper describes the following items: The causes and analysis of blade damage The inspection techniques and results The remedial action to be taken (Repair and Replacement) The future plan

  11. Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory

    International Nuclear Information System (INIS)

    Wang, Lin; Liu, Xiongwei; Renevier, Nathalie; Stables, Matthew; Hall, George M.

    2014-01-01

    Due to the increasing size and flexibility of large wind turbine blades, accurate and reliable aeroelastic modelling is playing an important role for the design of large wind turbines. Most existing aeroelastic models are linear models based on assumption of small blade deflections. This assumption is not valid anymore for very flexible blade design because such blades often experience large deflections. In this paper, a novel nonlinear aeroelastic model for large wind turbine blades has been developed by combining BEM (blade element momentum) theory and mixed-form formulation of GEBT (geometrically exact beam theory). The nonlinear aeroelastic model takes account of large blade deflections and thus greatly improves the accuracy of aeroelastic analysis of wind turbine blades. The nonlinear aeroelastic model is implemented in COMSOL Multiphysics and validated with a series of benchmark calculation tests. The results show that good agreement is achieved when compared with experimental data, and its capability of handling large deflections is demonstrated. Finally the nonlinear aeroelastic model is applied to aeroelastic modelling of the parked WindPACT 1.5 MW baseline wind turbine, and reduced flapwise deflection from the nonlinear aeroelastic model is observed compared to the linear aeroelastic code FAST (Fatigue, Aerodynamics, Structures, and Turbulence). - Highlights: • A novel nonlinear aeroelastic model for wind turbine blades is developed. • The model takes account of large blade deflections and geometric nonlinearities. • The model is reliable and efficient for aeroelastic modelling of wind turbine blades. • The accuracy of the model is verified by a series of benchmark calculation tests. • The model provides more realistic aeroelastic modelling than FAST (Fatigue, Aerodynamics, Structures, and Turbulence)

  12. Analysis of impact resistance of composite fan blade. Fukugozai fan blade no taishogekisei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Miyachi, T; Okumura, H; Otake, K; Sofue, Y [Japan Society for Aeronautical and Space Sciences, Tokyo (Japan)

    1992-01-05

    Numerical analysis of impact response was carried out when a bird strike was simulated to study the applicability of fiber reinforced composite material to fan blades for turbo-fan engines. The validity of the numerical analysis was verified by comparing the analyzed results with impact tested results of a fan-blade model of Ti-alloy. The impact resistance was studied by applying this method to fan blades of composite materials such as carbon fiber, epoxy resin and carbon-silicate fiber reinforced Ti-alloy. The finite element method was used for the analysis by dividing the model into triangular flat elements. The relation between the impact load, the deformation of blade and the strain, the natural frequency characteristics, the elastic modulus and hetrogeneity of blade were considered to analyze the impact response. The impact load by the strike of 1.5 lbs bird is very severe to the fan blades for turbo-fan engines having the thrust of 5 ton class. 23 refs., 23 figs., 3 tabs.

  13. Design, development and performance of a disk plow combined with rotary blades

    International Nuclear Information System (INIS)

    Hashemi, A; Ahmad, D; Othman, J; Sulaiman, S

    2012-01-01

    Disk plow combined with rotary blades, defined as comboplow, is used for soil preparation for planting. The comboplow includes four units: Chassis, concave disk, transmission system and rotary blades. A multiple tillage operation is reduced in a single pass resulting in a potential reduction of soil compaction, labor, fuel cost and saving in time. The comboplow was tested at University Putra Malaysia Research Park, Serdang, Selangor, Malaysia, on three different plots of 675 m 2 in the year 2010/2011. The treatments were three types of blade [(straight (S),curved (c) and L-shaped)] and three rotary speeds (130,147and 165 rpm). The parameters were Mean Weight Diameter Dry Basis (MWD d ), Mean weight Diameter Wet Basis (MWD W ), Aggregate Stability Index (SI) and Instability Index (II).

  14. Noise from Propellers with Symmetrical Sections at Zero Blade Angle

    Science.gov (United States)

    Deming, A F

    1937-01-01

    A theory has been deduced for the "rotation noise" from a propeller with blades of symmetrical section about the chord line and set at zero blade angle. Owing to the limitation of the theory, the equations give without appreciable error only the sound pressure for cases where the wave lengths are large compared with the blade lengths. With the aid of experimental data obtained from a two-blade arrangement, an empirical relation was introduced that permitted calculation of higher harmonics. The generality of the final relation given is indicated by the fundamental and second harmonic of a four-blade arrangement.

  15. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  16. Development of tooling suitable for stall regulated blades

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, M.

    2001-07-01

    The objectives of the project were to make significant improvements in the production of stall regulated blades in the areas of (a) the tip box, its housing, its mechanism and small GRP parts; (b) mould technology; (c) resins and glues and (d) root tooling. Although wood composite had been identified as a competitive technology for blades, compared with GRP blades, production volumes had been lower; reasons are given. The way in which the four areas identified for investigation were tackled are discussed. The study showed that the mould cycle time can be reduced to two days for a stall regulated blade and the blade quality can be improved by using the composite tip box and new resins. The time required for replication of moulds can be reduced by 40%.

  17. Enhancing wind turbines efficiency with passive reconfiguration of flexible blades

    Science.gov (United States)

    Cognet, Vincent P. A.; Thiria, Benjamin; Courrech Du Pont, Sylvain; MSC Team; PMMH Team

    2015-11-01

    Nature provides excellent examples where flexible materials are advantageous in a fluid stream. By folding, leaves decrease the drag caused by air stream; and birds' flapping is much more efficient with flexible wings. Motivated by this, we investigate the effect of flexible blades on the performance of a wind turbine. The effect of chordwise flexible blades is studied both experimentally and theoretically on a small wind turbine in steady state. Four parameters are varied: the wind velocity, the resisting torque, the pitch angle, and the blade's bending modulus. We find an optimum efficiency with respect to the bending modulus. By tuning our four parameters, the wind turbine with flexible blades has a high-efficiency range significantly larger than rigid blades', and, furthermore enhances the operating range. These results are all the more important as one of the current issues concerning wind turbines is the enlargement of their operating range. To explain these results, we propose a simple two-dimensional model by discretising the blade along the radius. We take into account the variation of drag and lift coefficients with the bending ability. This model matches experimental observations and demonstrates the contribution of the reconfiguration of the blade. Matiere et Systemes Complexes.

  18. Full Scale Test SSP 34m blade, edgewise loading LTT. Extreme load and PoC_InvE Data report

    DEFF Research Database (Denmark)

    Nielsen, Magda; Roczek-Sieradzan, Agnieszka; Jensen, Find Mølholt

    This report is the second report covering the research and demonstration project “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last”, supported by the EUDP program. A 34m wind turbine blade from SSP-Technology A/S has been tested...... in edgewise direction (LTT). The blade has been submitted to thorough examination by means of strain gauges, displacement transducers and a 3D optical measuring system. This data report presents results obtained during full scale testing of the blade up to 80% Risø load, where 80% Risø load corresponds to 100...... stresses in the adhesive joints. Test results from measurements with the reinforcement have been compared to results without the coupling. The report presents only the relevant results for the 80% Risø load and the results applicable for the investigation of the influence of the invention on the profile...

  19. Development of 52 inches last stage blade for steam turbines

    International Nuclear Information System (INIS)

    Suzuki, Atsuhide; Hisa, Shoichi; Nagao, Shinichiro; Ogata, Hisao

    1986-01-01

    The last stage blades of steam turbines are the important component controlling the power output and performance of plants. In order to realize a unit of large capacity and high efficiency, the proper exhaust area and the last stage blades having good performance are indispensable. Toshiba Corp. has completed the development of the 52 inch last stage blades for 1500 and 1800 rpm steam turbines. The 52 inch last stage blades are the longest in the world, which have the annular exhaust area nearly 1.5 times as much as that of 41 inch blades used for 1100 MW, 1500 rpm turbines in nuclear power stations. By adopting these 52 inch blades, the large capacity nuclear power plants up to 1800 MW can be economically constructed, the rate of heat consumption of 1350 MW plants is improved by 3 ∼ 4 % as compared with 41 inch blades, and in the plants up to 1100 MW, LP turbines can be reduced from three sets to two. The features of 52 inch blades, the flow pattern and blade form design, the structural strength analysis and the erosion withstanding property, and the verification by the rotation test of the actual blades, the performance test using a test turbine, the vibration analysis of the actually loaded blades and the analysis of wet steam behavior are reported. (Kako, I.)

  20. Effect of the number of blades and solidity on the performance of a vertical axis wind turbine

    Science.gov (United States)

    Delafin, PL; Nishino, T.; Wang, L.; Kolios, A.

    2016-09-01

    Two, three and four bladed ϕ-shape Vertical Axis Wind Turbines are simulated using a free-wake vortex model. Two versions of the three and four bladed turbines are considered, one having the same chord length as the two-bladed turbine and the other having the same solidity as the two-bladed turbine. Results of the two-bladed turbine are validated against published experimental data of power coefficient and instantaneous torque. The effect of solidity on the power coefficient is presented and the instantaneous torque, thrust and lateral force of the two-, three- and four-bladed turbines are compared for the same solidity. It is found that increasing the number of blades from two to three significantly reduces the torque, thrust and lateral force ripples. Adding a fourth blade further reduces the ripples except for the torque at low tip speed ratio. This work aims to help choosing the number of blades during the design phase of a vertical axis wind turbine.

  1. Compressor blade setting angle accuracy study, volume 1

    Science.gov (United States)

    Holman, F. F.; Kidwell, J. R.

    1976-01-01

    The aerodynamic test of a small, single stage, highly loaded, axial flow transonic compressor is covered. The stage was modified by fabricating a 24 blade rotor with mis-set blades in a repeating pattern - two degrees closed from nominal, two degrees open from nominal and nominal. The unit was instrumented to determine overall performance and average blade element data. High-response, dynamic pressure probes were installed to record pressure patterns at selected points in the flowpath. Testing was conducted at speeds from 70 to 94% of design equivalent speed with a conventional casing and also with circumferential grooves over the rotor tip. Testing indicated severe performance penalties were incurred as a result of the mis-set blading. Lower flow, pressure ratio, and efficiency were observed for the stage with or without casing treatment. Periodic pressure variations were detected at every location where high response pressure sensors were located and were directly related to blading geometry.

  2. Parametric Blade Study Test Report Rotor Configuration. Number 4

    Science.gov (United States)

    1988-11-01

    Figure 2. The rotor shaft is mounted on an oil-damped roller bearing at the forward location and a ball bearing at the aft location; radial runout does...thermodynamic properties. 22 d. Corrections were made to measured compressor temperatures and pressures, facility flowrate, and rotor wheel speed to...1152 .Z660 .1024 STRM- BLADE BLADE WHEEL LINE SECT. LEAN SPEED NUMBER ANGLE ANGLE 1 -55.15 7.32 1497.9 2 -53.85 8.09 1434.7 3 -52.96 7.11 1372.1 4

  3. Parametric Blade Study Test Report Rotor Configuration. Number 1

    Science.gov (United States)

    1988-11-01

    location and a ball bearing at the aft location; radial runout does not exceed 0.001 inch. Forward and aft buffer controlled gap carbon seals were used...made to measured compressor temperatures and pressures, facility flowrate, and rotor wheel speed to correspond to standard inlet conditions of...0662 .1034 STRM- BLADE BLADE WHEEL LINE SECT. LEAN SPEED NUMBER ANGLE ANGLE I -53.96 7.35 1497.5 2 -52.68 8.11 1434.6 3 -51.88 7.15 1372.5 4 -50.49

  4. Structural health monitoring of wind turbine blades

    Science.gov (United States)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  5. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Kang, Woo-Ram; Jeong, Min-Soo; Lee, In; Kwon, Il-Bum

    2013-01-01

    Estimating the deflection of flexible composite wind turbine blades is very important to prevent the blades from hitting the tower. Several researchers have used fiber Bragg grating (FBG) sensors—a type of optical fiber sensor (OFS)—to monitor the structural behavior of the blades. They can be installed on the surface and/or embedded in the interior of composites. However, the typical installation positions of OFSs present several problems, including delamination of sensing probes and a higher risk of fiber breakage during installation. In this study, we proposed using the bonding line between the shear web and spar cap as a new installation position of embedded OFSs for estimating the deflection of the blades. Laboratory coupon tests were undertaken preliminarily to confirm the strain measuring capability of embedded FBG sensors in adhesive layers, and the obtained values were verified by comparison with results obtained by electrical strain gauges and finite element analysis. We performed static loading tests on a 100 kW composite wind turbine blade to evaluate its deflections using embedded FBG sensors positioned in the bonding line. The deflections were estimated by classical beam theory considering a rigid body rotation near the tip of the blade. The evaluated tip deflections closely matched those measured by a linear variable differential transformer. Therefore, we verified the capability of embedded FBG sensors for evaluating the deflections of wind turbine blades. In addition, we confirmed that the bonding line between the shear web and spar cap is a practical location to embed the FBG sensors. (paper)

  6. Modeling of uncertainties for wind turbine blade design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, Henrik Stensgaard

    2014-01-01

    Wind turbine blades are designed by a combination of tests and numerical calculations using finite element models of the blade. The blades are typically composite structures with laminates of glass-fiber and/or carbon-fibers glued together by a matrix material. This paper presents a framework...

  7. Aerodynamic Analysis of Morphing Blades

    Science.gov (United States)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  8. Polycrystalline diamond detectors with three-dimensional electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S., E-mail: lagomarsino@fi.infn.it [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bellini, M. [INO-CNR Firenze, Largo E. Fermi 6, 50125 Firenze (Italy); Brianzi, M. [INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Carzino, R. [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia, Genova, Via Morego 30, 16163 Genova (Italy); Cindro, V. [Joseph Stefan Institute, Jamova Cesta 39, 1000 Ljubljana (Slovenia); Corsi, C. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); LENS Firenze, Via N. Carrara 1, 50019 Sesto Fiorentino (Italy); Morozzi, A.; Passeri, D. [INFN Perugia, Perugia (Italy); Università degli Studi di Perugia, Dipartimento di Ingegneria, via G. Duranti 93, 06125 Perugia (Italy); Sciortino, S. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Servoli, L. [INFN Perugia, Perugia (Italy)

    2015-10-01

    The three-dimensional concept in diamond detectors has been applied, so far, to high quality single-crystal material, in order to test this technology in the best available conditions. However, its application to polycrystalline chemical vapor deposited diamond could be desirable for two reasons: first, the short inter-electrode distance of three-dimensional detectors should improve the intrinsically lower collection efficiency of polycrystalline diamond, and second, at high levels of radiation damage the performances of the poly-crystal material are not expected to be much lower than those of the single crystal one. We report on the fabrication and test of three-dimensional polycrystalline diamond detectors with several inter-electrode distances, and we demonstrate that their collection efficiency is equal or higher than that obtained with conventional planar detectors fabricated with the same material. - Highlights: • Pulsed laser fabrication of polycristalline diamond detectors with 3D electrodes. • Measurement of the charge collection efficiency (CCE) under beta irradiation. • Comparation between the CCE of 3D and conventional planar diamond sensors. • A rationale for the behavior of three-dimensional and planar sensors is given.

  9. Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    J.L. Rovey

    2012-09-21

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit

  10. Individual blade pitch for yaw control

    International Nuclear Information System (INIS)

    Navalkar, S T; Van Wingerden, J W; Van Kuik, G A M

    2014-01-01

    Individual pitch control (IPC) for reducing blade loads has been investigated and proven successful in recent literature. For IPC, the multi-blade co-ordinate (MBC) transformation is used to process the blade load signals from the rotating to a stationary frame of reference. In the stationary frame of reference, the yaw error of a turbine can be appended to generate IPC actions that are able to achieve turbine yaw control for a turbine in free yaw. In this paper, IPC for yaw control is tested on a high-fidelity numerical model of a commercially produced wind turbine in free yaw. The tests show that yaw control using IPC has the distinct advantage that the yaw system loads and support structure loading are substantially reduced. However, IPC for yaw control also shows a reduction in IPC blade load reduction potential and causes a slight increase in pitch activity. Thus, the key contribution of this paper is the concept demonstration of IPC for yaw control. Further, using IPC for yaw as a tuning parameter, it is shown how the best trade-off between blade loading, pitch activity and support structure loading can be achieved for wind turbine design

  11. Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing

    Science.gov (United States)

    Tweedt, Daniel L.

    2012-01-01

    Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan

  12. Performance Testing Of A Modified Centrifugal Fan With Serrated Blade Impeller

    Directory of Open Access Journals (Sweden)

    Zaimar

    2017-10-01

    Full Text Available Changes of shape dimension and component part of impeller might change of characteristic fluid flow so that pressure static in the fan housing changed. Changing some geometric characteristics of the centrifugal fan has more efficiency taking with energy crises into consideration. Several factors that can affect fan performance namely design and type size rotation speed air condition or gas through a fan operating point on the nature of the relationship between a volume of air flow and pressure. The purpose of this research was to test of fan performance of the modified centrifugal fan with the serrated blade impeller. The addition of a percentage of closing the inlet causes the air volumetric rate the airflow energy BHP and total efficiency except for the fan total and static pressure. The experimental test results there are static pressure data and the resulting total pressure is different or distorted 10-17 of deviation from calculation data based on the fan laws. This is possible because of changes in the shape of the blade with serrated on the inside of the impeller. Based on the performance curve shows that the selection of impeller speeds of 800 RPM produces a relatively high air volumetric rate is proportional to the total pressure of the fan and the flow energy so that it is more efficient than other impeller speeds.

  13. Inhomogeneity of the grain size of aircraft engine turbine polycrystalline blades

    Directory of Open Access Journals (Sweden)

    J. Chmiela

    2011-10-01

    Full Text Available The determination of the behaviour of inhomogeneous materials with a complex microstructure requires taking into account the inhomogeneity of the grain size, as it is the basis for the process of designing and modelling effective behaviours. Therefore, the functional description of the inhomogeneity is becoming an important issue. The paper presents an analytical approach to the grain size inhomogeneity, based on the derivative of a logarithmic-logistic function. The solution applied enabled an effective evaluation of the inhomogeneity of two macrostructures of aircraft engine turbine blades, characterized by a high degree of diversity in the grain size. For the investigated single-modal and bimodal grain size distributions on a perpendicular projection and for grains with a non-planar surface, we identified the parameters that describe the degree of inhomogeneity of the constituents of weight distributions and we also derived a formula describing the overall degree of inhomogeneity of bimodal distributions. The solution presented in the paper is of a general nature and it can be used to describe the degree of inhomogeneity of multi-modal distributions. All the calculations were performed using the Mathematica® package.

  14. Measurement of Rotorcraft Blade Deformation Using Projection Moiré Interferometry

    Directory of Open Access Journals (Sweden)

    Gary A. Fleming

    2000-01-01

    Full Text Available Projection Moiré Interferometry (PMI has been used to obtain near instantaneous, quantitative blade deformation measurements of a generic rotorcraft model at several test conditions. These laser-based measurements provide quantitative, whole field, dynamic blade deformation profiles conditionally sampled as a function of rotor azimuth. The instantaneous nature of the measurements permits computation of the mean and unsteady blade deformation, blade bending, and twist. The PMI method is presented, and the image processing steps required to obtain quantitative deformation profiles from PMI interferograms are described. Experimental results are provided which show blade bending, twist, and unsteady motion. This initial proof-of-concept test has demonstrated the capability of PMI to acquire accurate, full field rotorcraft blade deformation data.

  15. A Long-Period Grating Sensor for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars

    This PhD project concerns the applied research for providing a novel sensor for measurements on wind turbine blades, based on Long-Period Gratings. The idea is based on the utilization of a special asymmetrical optical fibre with Long-Period Gratings for directional sensitive bend sensing...... blade material, where a suitable process and recoating material were investigated. The sensor was implemented and tested on a full scale wind turbine blade placed on a test rig. This first prototype has demonstrated the capability of the sensor for wind turbine blade monitoring, particular...... the possibility to distinguish between the flap- and edge-wise bend directions on the wind turbine blade, providing a selective sensor. The sensor has proven to be very robust and suitable for this application....

  16. Aerodynamic investigation of winglets on wind turbine blades using CFD

    OpenAIRE

    Johansen, Jeppe; Sørensen, Niels N.

    2006-01-01

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of themwere pointing towards the pressure side (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets...

  17. Blade runner. Blade server and virtualization technology can help hospitals save money--but they are far from silver bullets.

    Science.gov (United States)

    Lawrence, Daphne

    2009-03-01

    Blade servers and virtualization can reduce infrastructure, maintenance, heating, electric, cooling and equipment costs. Blade server technology is evolving and some elements may become obsolete. There is very little interoperability between blades. Hospitals can virtualize 40 to 60 percent of their servers, and old servers can be reused for testing. Not all applications lend themselves to virtualization--especially those with high memory requirements. CIOs should engage their vendors in virtualization discussions.

  18. Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine

    International Nuclear Information System (INIS)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Furukawa, Kazuma; Yamamoto, Masayuki

    2015-01-01

    Small wind turbine performance and safety standard for straight-bladed Vertical Axis Wind Turbine (VAWT) have not been developed in the world because of the lack of fundament experimental data. This paper focuses on the evaluation of aerodynamic forces depending on several numbers of blades in wind tunnel experiment. In the present study, the test airfoil of blade is symmetry airfoil of NACA 0021 and the number of blades is from two to five. Pressure acting on the surface of rotor blade is measured during rotation by multiport pressure devices and transmitted to a stationary system through wireless LAN. And then, the aerodynamic forces (tangential force, normal force et al.) are discussed as a function of azimuth angle, achieving a quantitative analysis of the effect of numbers of blades. Finally, the loads are compared with the experimental data of six-component balance. As a result, it is clarified that the power coefficient decreases with the increase of numbers of blades. Furthermore, the power which is absorbed from wind by wind turbine mainly depends on upstream region of azimuth angle of θ = 0°∼180°. In this way, these results are very important for developing the simple design equations and applications for straight-bladed VAWT. - Highlights: • Aerodynamic forces are measured by not only torque meter but also six-component balance. • The pressure distribution on the surface of rotor blade is directly measured by multiport pressure devices. • The power coefficient decreases with the increase of numbers of blades. • The fluctuation amplitudes from six-component balance show larger value than the results of pressure distribution.

  19. Helicopter blades running elevation measurement using omnidirectional vision

    Directory of Open Access Journals (Sweden)

    Chengtao CAI

    2017-12-01

    Full Text Available Omnidirectional dynamic space parameters of high-speed rotating helicopter blades are precise 3D vector description of the blades. In particular, the elevation difference is directly related to the aerodynamic performance and maneuverability of the helicopter. The state of the art detection techniques based on optics and common vision have several drawbacks, such as high demands on devices but poor extensibility, limited measurement range and fixed measurement position. In this paper, a novel approach of helicopter blades running elevation measurement is proposed based on omnidirectional vision. With the advantages of panoramic visual imaging integration, 360° field of view and rotation in-variance, high-resolution images of all rotating blades positions are obtained at one time. By studying the non-linear calibration and calculation model of omnidirectional vision system, aiming at solving the problem of inaccurate visual space mapping model, the omnidirectional and full-scale measurement of the elevation difference are finalized. Experiments are carried out on our multifunctional simulation blades test system and the practical blades test tower, respectively. The experimental results demonstrate the effectiveness of the proposed method and show that the proposed method can considerably reduce the complexity of measurement. Keywords: Full-scale measurement, Helicopter blades elevation, Non-linear calibration, Omnidirectional vision, Unified sphere model

  20. Experimental calibration of the mathematical model of Air Torque Position dampers with non-cascading blades

    Directory of Open Access Journals (Sweden)

    Bikić Siniša M.

    2016-01-01

    Full Text Available This paper is focused on the mathematical model of the Air Torque Position dampers. The mathematical model establishes a link between the velocity of air in front of the damper, position of the damper blade and the moment acting on the blade caused by the air flow. This research aims to experimentally verify the mathematical model for the damper type with non-cascading blades. Four different types of dampers with non-cascading blades were considered: single blade dampers, dampers with two cross-blades, dampers with two parallel blades and dampers with two blades of which one is a fixed blade in the horizontal position. The case of a damper with a straight pipeline positioned in front of and behind the damper was taken in consideration. Calibration and verification of the mathematical model was conducted experimentally. The experiment was conducted on the laboratory facility for testing dampers used for regulation of the air flow rate in heating, ventilation and air conditioning systems. The design and setup of the laboratory facility, as well as construction, adjustment and calibration of the laboratory damper are presented in this paper. The mathematical model was calibrated by using one set of data, while the verification of the mathematical model was conducted by using the second set of data. The mathematical model was successfully validated and it can be used for accurate measurement of the air velocity on dampers with non-cascading blades under different operating conditions. [Projekat Ministarstva nauke Republike Srbije, br. TR31058

  1. Numerical analysis of turbine blade tip treatments

    Science.gov (United States)

    Gopalaswamy, Nath S.; Whitaker, Kevin W.

    1992-01-01

    Three-dimensional solutions of the Navier-Stokes equations for a turbine blade with a turning angle of 180 degrees have been computed, including blade tip treatments involving cavities. The geometry approximates a preliminary design for the GGOT (Generic Gas Oxidizer Turbine). The data presented here will be compared with experimental data to be obtained from a linear cascade using original GGOT blades. Results have been computed for a blade with 1 percent clearance, based on chord, and three different cavity sizes. All tests were conducted at a Reynolds number of 4 x 10 exp 7. The grid contains 39,440 points with 10 spanwise planes in the tip clearance region of 5.008E-04 m. Streamline plots and velocity vectors together with velocity divergence plots reveal the general flow behavior in the clearance region. Blade tip temperature calculations suggest placement of a cavity close to the upstream side of the blade tip for reduction of overall blade tip temperature. The solutions do not account for the relative motion between the endwall and the turbine blade. The solutions obtained are generally consistent with previous work done in this area,

  2. Remote inspection of steam turbine blades

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    During the past five years Reinhart and Associates, Inc. has been involved in remote examination of L-0 and L-1 steam turbine blade rows of in-place LP turbines using visual and eddy current techniques. These tests have concentrated on the trailing edge and blade-to-rotor attachment (Christmas tree) areas. These remote nondestructive examinations were performed through hand access ports of the inner shell. Since the remote scanning system was in a prototype configuration, the inspection was highly operator-dependent. Refinement of the scanning equipment would considerably improve the efficiency of the test; however, the feasibility of remote in-place inspection of turbine blades was established. To further improve this technology, and to provide for remote inspection of other areas of the blade and additional turbine designs, EPRI is funding a one-year project with Reinhart and Associates, Inc. This project will develop a new system that employs state-of-the-art multifrequency eddy current techniques, a miniature charged coupled device (CCD) television camera, and remote positioning equipment. Project results from the first six months are presented

  3. Damage detection in wind turbine blades using acoustic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Juengert, A., E-mail: anne.juengert@mpa.uni-stuttgart.de [Univ. of Stuttgart, Materialpruefungsanstalt Stuttgart, Stuttgart (Germany)

    2013-05-15

    Facing climate change, the use of renewable energy gains importance. The wind energy sector grows very fast. Bigger and more powerful wind turbines will be built in the coming decades and the safety and reliability of the turbines will become more important. Wind turbine blades have to be inspected at regular intervals, because they are highly stressed during operation and a blade breakdown can cause big economic damages. The turbine blades consist of fiber reinforced plastics (GFRP/CFRP) and sandwich areas containing wood or plastic foam. The blades are manufactured as two halves and glued together afterwards. Typical damages are delaminations within the GFRP or the sandwich and missing adhesive or deficient bond at the bonding surfaces. The regular inspections of wind turbine blades are performed manually by experts and are limited to visual appraisals and simple tapping tests. To improve the inspections of wind turbine blades non-destructive testing techniques using acoustic waves are being developed. To detect delaminations within the laminates of the turbine blade, a local resonance spectroscopy was used. To detect missing bond areas from the outside of the blade the impulse-echo-technique was applied. This paper is an updated reprint of an article published on ndt.net in 2008. (author)

  4. Damage detection in wind turbine blades using acoustic techniques

    International Nuclear Information System (INIS)

    Juengert, A.

    2013-01-01

    Facing climate change, the use of renewable energy gains importance. The wind energy sector grows very fast. Bigger and more powerful wind turbines will be built in the coming decades and the safety and reliability of the turbines will become more important. Wind turbine blades have to be inspected at regular intervals, because they are highly stressed during operation and a blade breakdown can cause big economic damages. The turbine blades consist of fiber reinforced plastics (GFRP/CFRP) and sandwich areas containing wood or plastic foam. The blades are manufactured as two halves and glued together afterwards. Typical damages are delaminations within the GFRP or the sandwich and missing adhesive or deficient bond at the bonding surfaces. The regular inspections of wind turbine blades are performed manually by experts and are limited to visual appraisals and simple tapping tests. To improve the inspections of wind turbine blades non-destructive testing techniques using acoustic waves are being developed. To detect delaminations within the laminates of the turbine blade, a local resonance spectroscopy was used. To detect missing bond areas from the outside of the blade the impulse-echo-technique was applied. This paper is an updated reprint of an article published on ndt.net in 2008. (author)

  5. Laser Displacement Measurements of Fan Blades in Resonance and Flutter During the Boundary Layer Ingesting Inlet and Distortion-Tolerant Fan Test

    Science.gov (United States)

    Duffy, Kirsten P.; Provenza, Andrew J.; Bakhle, Milind A.; Min, James B.; Abdul-Aziz, Ali

    2018-01-01

    NASA's Advanced Air Transport Technology Project is investigating boundary layer ingesting propulsors for future subsonic commercial aircraft to improve aircraft efficiency, thereby reducing fuel burn. To that end, a boundary layer ingesting inlet and distortion-tolerant fan stage was designed, fabricated, and tested within the 8' x 6' Supersonic Wind Tunnel at NASA Glenn Research Center. Because of the distortion in the air flow over the fan, the blades were designed to withstand a much higher aerodynamic forcing than for a typical clean flow. The blade response for several resonance modes were measured during start-up and shutdown, as well as at near 85% design speed. Flutter in the first bending mode was also observed in the fan at the design speed, at an off-design condition, although instabilities were difficult to instigate with this fan in general. Blade vibrations were monitored through twelve laser displacement probes that were placed around the inner circumference of the casing, at the blade leading and trailing edges. These probes captured the movement of all the blades during the entire test. Results are presented for various resonance mode amplitudes, frequencies and damping, as well as flutter amplitudes and frequency. Benefits and disadvantages of laser displacement probe measurements versus strain gage measurements are discussed.

  6. Determination of Remaining Useful Life of Gas Turbine Blade

    Directory of Open Access Journals (Sweden)

    Meor Said Mior Azman

    2016-01-01

    Full Text Available The aim of this research is to determine the remaining useful life of gas turbine blade, using service-exposed turbine blades. This task is performed using Stress Rupture Test (SRT under accelerated test conditions where the applied stresses to the specimen is between 400 MPa to 600 MPa and the test temperature is 850°C. The study will focus on the creep behaviour of the 52000 hours service-exposed blades, complemented with creep-rupture modelling using JMatPro software and microstructure examination using optical microscope. The test specimens, made up of Ni-based superalloy of the first stage turbine blades, are machined based on International Standard (ISO 24. The results from the SRT will be analyzed using these two main equations – Larson-Miller Parameter and Life Fraction Rule. Based on the results of the remaining useful life analysis, the 52000h service-exposed blade has the condition to operate in the range of another 4751 hr to 18362 hr. The microstructure examinations shows traces of carbide precipitation that deteriorate the grain boundaries that occurs during creep process. Creep-rupture life modelling using JMatPro software has shown good agreement with the accelerated creep rupture test with minimal error.

  7. Friction and dynamically dissipated energy dependence on temperature in polycrystalline silicon MEMS devices

    NARCIS (Netherlands)

    Gkouzou, A.; Kokorian, J.; Janssen, G.C.A.M.; van Spengen, W.M.

    2017-01-01

    In this paper, we report on the influence of capillary condensation on the sliding friction of sidewall surfaces in polycrystalline silicon micro-electromechanical
    systems (MEMS). We developed a polycrystalline silicon MEMS tribometer, which is a microscale test device with two components

  8. Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

    Science.gov (United States)

    Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Min, James B.; Kray, Nicholas

    2012-01-01

    As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.

  9. KNOW-BLADE, task-3.2 report, tip shape study

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N.N.; Johansen, J.; Conway, S.; Voutsinas, S.; Hansen, M.O.L.; Stuermer, A.

    2005-01-01

    For modern rotor blades with their very large aspect ratio, the blade tip is a very limited part of the overall rotor, and as such of limited importance for the overall aerodynamics of the rotor. Even though they may not be very important for the overall power production, the tip noise can be very important for the acoustics of the rotor [15], and the blade tips can as well be important for the aerodynamic damping properties of the rotor blades [13]. Unfortunately, not many options exists for predicting the aerodynamic behavior of blade tips using computational methods. Experimentally it is dicult to perform detailed measurements in the form of pressure and velocity measurements in natural wind conditions on modern large scale turbines due to the inherent unsteadiness in the natural wind. The present study describes the application of four different Navier-Stokes solvers to tip shape studies, and shows that these codes are well suited to study the flow around different tip shape geometries, and can predict the pressure distributions at the blade tip quite accurately. (au)

  10. Ultimate strength of a large wind turbine blade

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt

    2009-01-01

    reinforcements helping to prevent undesired structural elastic mechanisms are presented. The functionality of two of the suggested structural reinforcements was demonstrated in full-scale tests and the rest trough FE-studies. The blade design under investigation consisted of an aerodynamic airfoil and a load...... carrying box girder. In total, five full-scale tests have been performed involving one complete blade and two shortened box girders. The second box girder was submitted to three independent tests covering different structural reinforcement alternatives. The advantages and disadvantages of testing......The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural...

  11. Crack of a first stage blade in a steam turbine

    Directory of Open Access Journals (Sweden)

    M. Nurbanasari

    2014-10-01

    Full Text Available The failure of the first stage blade in a steam turbine of 55 MW was investigated. The blade was made of 17-4 PH stainless steel and has been used for 12 years before failure. The current work aims to find out the main cause of the first stage blade failure. The methods for investigation were metallurgical analysis, chemical composition test, and hardness measurement. The result showed that there was no evidence the blade failure was due to material. The damage found on the blade namely crack on the blade root. Two locations of the crack observed at the blade root, which was at the tang and the fillet, with different failure modes. In general, the damage of the blade was started by the corrosion occurred on the blade root. The crack at the blade root tang was due to corrosion fatigue and the crack occurred at the blade root fillet owing to stress corrosion cracking.

  12. Applied modal analysis of wind turbine blades

    DEFF Research Database (Denmark)

    Pedersen, H.B.; Kristensen, O.J.D.

    2003-01-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Differentequipment for mounting the accelerometers...... is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use ofaccelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded...... and unloaded wind turbine blade. During this campaign the modal analysis are performed on ablade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Øyes blade_EV1...

  13. Flutter of Darrieus wind turbine blades

    Science.gov (United States)

    Ham, N. D.

    1978-01-01

    The testing of Darrieus wind turbines has indicated that under certain conditions, serious vibrations of the blades can occur, involving flatwise bending, torsion, and chordwise bending. A theoretical method of predicting the aeroelastic stability of the coupled bending and torsional motion of such blades with a view to determining the cause of these vibrations, and a means of suppressing them was developed.

  14. Non-invasive dynamic measurement of helicopter blades

    Science.gov (United States)

    Serafini, J.; Bernardini, G.; Mattioni, L.; Vezzari, V.; Ficuciello, C.

    2017-08-01

    This paper presents the development and the application on helicopter blades of a measurement system based on FBG strain gauges. Here, the main goal is the structural characterization of the main rotor blades, with the aim of showing the potentialities of such a system in blades quality check applications, as well as in the development of structural health monitoring and rotor state feedback devices. The device has been used in both non-rotating and rotating tests, and does not require the presence of slip rings or optical joint since it is completely allocated in the rotating system. It has been successfully applied to characterize the frequency response of blades lead-lag, flap and torsion deformations, up to 250 Hz.

  15. Gas Turbine Blade Damper Optimization Methodology

    Directory of Open Access Journals (Sweden)

    R. K. Giridhar

    2012-01-01

    Full Text Available The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while minimizing resonant stresses for sixth and ninth engine order excitation of first flexure mode. This paper presents a methodology that combines three essential phases of friction damping optimization in turbo-machinery. The first phase is to develop an analytical model of blade damper system. The second phase is experimentation and model tuning necessary for response studies while the third phase is evaluating damper performance. The reduced model of blade is developed corresponding to the mode under investigation incorporating the friction damper then the simulations were carried out to arrive at an optimum design point of the damper. Bench tests were carried out in two phases. Phase-1 deals with characterization of the blade dynamically and the phase-2 deals with finding optimal normal load at which the blade resonating response is minimal for a given excitation. The test results are discussed, and are corroborated with simulated results, are in good agreement.

  16. The prediction of rotor rotational noise using measured fluctuating blade loads

    Science.gov (United States)

    Hosier, R. N.; Pegg, R. J.; Ramakrishnan, R.

    1974-01-01

    In tests conducted at the NASA Langley Research Center Helicopter Rotor Test Facility, simultaneous measurements of the high-frequency fluctuating aerodynamic blade loads and far-field radiated noise were made on a full-scale, nontranslating rotor system. After their characteristics were determined, the measured blade loads were used in an existing theory to predict the far-field rotational noise. A comparison of the calculated and measured rotational noise is presented with specific attention given to the effect of blade loading coefficients, chordwise loading distributions, blade loading phases, and observer azimuthal position on the predictions.

  17. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    Science.gov (United States)

    Howard, Samuel A.; Hammer, Jeremiah T.; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990 to 2007 in the US alone (Ref. 1). As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a nonrotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various non-rotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the prestress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in

  18. Repair welding of cracked steam turbine blades

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    1999-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER316L austenitic stainless steel filler wire and ER410 martensitic stainless steel filler wire. The repair welding procedure with austenitic filler wire was developed to avoid preheating of the blade as also hydrogen induced cold cracking, and involved evaluation of three different austenitic filler wires, viz. ER309L, ER316L and ERNiCr-3. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microstructural examination. After various trials using different procedures, the procedure of local PWHT using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld, was found to give the most satisfactory results. A similar procedure was used for preheating while using ER410 filler metal. Mechanical testing of weldments before and after PWHT involved tensile tests at room temperature, face and root bend tests, and microhardness measurements across the fusion line and heat affected zone. During procedure qualification, mock-ups and actual repair welding, dye penetrant testing was used at different stages and where ever possible radiography was carried out. These procedures were developed for repair welding of cracked blades in the low-pressure (LP) steam turbines of Indian nuclear power plants. The procedure with ER316 L filler wire has so far been applied for repair welding of 2 cracked blades (made of AISI 410 SS) of LP steam turbines, while the procedure

  19. Measurements of blade aerodynamics on a rotor in the field

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J.M.R. [Imperical College, Dept. of Aeronautics, London (United Kingdom)

    1997-12-31

    This contribution describes the field test measurements undertaken on an instrumented rotor at the Rutherford Appleton Laboratory, Oxfordshire, UK, during the period 1994 - 97. The programme was directed at improving the prediction of the steady and unsteady rotor blade loading, particularly the loads arising from the stalling of the blade. The measured data consisted of blade surface pressure distributions sampled at 50Hz at 6 sections along the span of one blade of the 17m diameter, 3 bladed, fixed pitch, upwind H.A.W.T., together with measurements of the incident velocity. (au)

  20. Development of 1800 rpm, 43in. blade for large steam turbine

    International Nuclear Information System (INIS)

    Kuroda, Michio; Yamazaki, Yoshiaki; Namura, Kiyoshi; Taki, Takamitsu; Ninomiya, Satoshi.

    1978-01-01

    In the turbines for nuclear power generation, the inlet conditions of steam is low pressure and low temperature as compared with the turbines for thermal power generation, therefore generally the required steam flow rate is much more. It is the main problem to cope with this steam of large flow rate effectively with long final stage blades and to make a turbine compact. This newly developed blade aims at the turbines from 1100 to 1300 MW class for nuclear power generation and those of 1000 MW class for thermal power generation, and it is the first low revolution, long blade in Japan used for large capacity machines of 60 Hz. Hereinafter, the outline of various examinations carried out at the time of the tests on this blade and the features of this blade are described. There is large margin in the exhaust area with this blade, therefore the turbines with large power output and good performance can be produced. The loss of exhaust energy at turbine exit can be reduced, and thermal efficiency can be raised. Large capacity machines from 1100 to 1300 MW class can be manufactured with six-flow exhaust, tandem compound turbines. In order to confirm the reliability, the vibration characteristics of the blade were investigated in the test of this time, and also the overspeed test and endurance test were carried out. (Kako, I.)

  1. Wind turbine blade waste in 2050.

    Science.gov (United States)

    Liu, Pu; Barlow, Claire Y

    2017-04-01

    Wind energy has developed rapidly over the last two decades to become one of the most promising and economically viable sources of renewable energy. Although wind energy is claimed to provide clean renewable energy without any emissions during operation, but it is only one side of the coin. The blades, one of the most important components in the wind turbines, made with composite, are currently regarded as unrecyclable. With the first wave of early commercial wind turbine installations now approaching their end of life, the problem of blade disposal is just beginning to emerge as a significant factor for the future. This paper is aimed at discovering the magnitude of the wind turbine blade waste problem, looking not only at disposal but at all stages of a blade's lifecycle. The first stage of the research, the subject of this paper, is to accurately estimate present and future wind turbine blade waste inventory using the most recent and most accurate data available. The result will provide a solid reference point to help the industry and policy makers to understand the size of potential environmental problem and to help to manage it better. This study starts by estimating the annual blade material usage with wind energy installed capacity and average blade weight. The effect of other waste contributing factors in the full lifecycle of wind turbine blades is then included, using industrial data from the manufacturing, testing and in-service stages. The research indicates that there will be 43 million tonnes of blade waste worldwide by 2050 with China possessing 40% of the waste, Europe 25%, the United States 16% and the rest of the world 19%. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  2. Aeroelastic Analysis of Helicopter Rotor Blades Incorporating Anisotropic Piezoelectric Twist Actuation

    Science.gov (United States)

    Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  3. On the performance analysis of Savonius rotor with twisted blades

    Energy Technology Data Exchange (ETDEWEB)

    Saha, U.K.; Rajkumar, M. Jaya [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781 039 (India)

    2006-09-15

    The present investigation is aimed at exploring the feasibility of twisted bladed Savonius rotor for power generation. The twisted blade in a three-bladed rotor system has been tested in a low speed wind tunnel, and its performance has been compared with conventional semicircular blades (with twist angle of 0{sup o}). Performance analysis has been made on the basis of starting characteristics, static torque and rotational speed. Experimental evidence shows the potential of the twisted bladed rotor in terms of smooth running, higher efficiency and self-starting capability as compared to that of the conventional bladed rotor. Further experiments have been conducted in the same setup to optimize the twist angle. (author)

  4. Design and fabrication of composite blades for the Mod-1 wind turbine generator

    Science.gov (United States)

    Batesole, W. R.; Gunsallus, C. T.

    1981-01-01

    The design, tooling, fabrication, quality control, and testing phases carried out to date, as well as testing still planned are described. Differences from the 150 foot blade which were introduced for cost and manufacturing improvement purposes are discussed as well as the lightning protection system installed in the blades. Actual costs and manhours expended for Blade No. 2 are provided as a base, along with a projection of costs for the blade in production.

  5. Applied modal analysis of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Broen Pedersen, H.; Dahl Kristensen, O.J.

    2003-02-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Different equipment for mounting the accelerometers are investigated and the most suitable are chosen. Different excitation techniques are tried during experimental campaigns. After a discussion the pendulum hammer were chosen, and a new improved hammer was manufactured. Some measurement errors are investigated. The ability to repeat the measured results is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use of accelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded and unloaded wind turbine blade. During this campaign the modal analysis are performed on a blade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Oeyes blade{sub E}V1 program. (au)

  6. Design and evaluation of low-cost laminated wood composite blades for intermediate size wind turbines: Blade design, fabrication concept, and cost analysis

    Science.gov (United States)

    Lieblein, S.; Gaugeon, M.; Thomas, G.; Zueck, M.

    1982-01-01

    As part of a program to reduce wind turbine costs, an evaluation was conducted of a laminated wood composite blade for the Mod-OA 200 kW wind turbine. The effort included the design and fabrication concept for the blade, together with cost and load analyses. The blade structure is composed of laminated Douglas fir veneers for the primary spar and nose sections, and honeycomb cored plywood panels for the trailing edges sections. The attachment of the wood blade to the rotor hub was through load takeoff studs bonded into the blade root. Tests were conducted on specimens of the key structural components to verify the feasibility of the concept. It is concluded that the proposed wood composite blade design and fabrication concept is suitable for Mod-OA size turbines (125-ft diameter rotor) at a cost that is very competitive with other methods of manufacture.

  7. Application of polycrystalline diffusion barriers

    International Nuclear Information System (INIS)

    Tsymbal, V.A.; Kolupaev, I.N.

    2010-01-01

    Degradation of contacts of the electronic equipment at the raised temperatures is connected with active diffusion redistribution of components contact - metalized systems (CMS) and phase production on interphase borders. One of systems diffusion barriers (DB) are polycrystalline silicide a film, in particular silicides of the titan. Reception disilicide the titan (TiSi 2 ) which on the parameters is demanded for conditions of microelectronics from known silicides of system Ti-Si, is possible as a result of direct reaction of a film of the titan and a substrate of silicon, and at sedimentation of layer Ti-Si demanded stoichiometric structure. Simultaneously there is specific problem polycrystalline diffusion a barrier (PDB): the polycrystalline provides structural balance and metastability film disilicide, but leaves in it borders of grains - easy local ways of diffusion. In clause the analysis diffusion permeability polycrystalline and polyphase DB is made and recommendations for practical methods of increase of blocking properties PDB are made.

  8. Performance characterization of active fiber-composite actuators for helicopter rotor blade applications

    Science.gov (United States)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2002-07-01

    The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.

  9. Aerodynamic investigation of winglets on wind turbine blades using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Jeppe; Soerensen, Niels N.

    2006-02-15

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of them were pointing towards the pressure side (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets. Results show that adding a winglet to the existing blade increase the force distribution on the outer approx 14 % of the blade leading to increased produced power of around 0.6% to 1.4% for wind speeds larger than 6 m/s. This has to be compared to the increase in thrust of around 1.0% to 1.6%. Pointing the winglet downstream increases the power production even further. The effect of sweep and cant angles is not accounted for in the present investigation and could improve the winglets even more. (au)

  10. Investigation of Structural Behavior due to Bend-Twist Couplings in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimirov; Berggreen, Christian

    2010-01-01

    for predicting the torsional response of the wind turbine blades with built-in bend-twist couplings. Additionally, a number of improved full-scale tests using an advanced bi-axial servo-hydraulic load control have been performed on a wind turbine blade section provided by Vestas Wind Systems A/S. In the present......One of the problematic issues concerning the design of future large composite wind turbine blades is the prediction of bend-twist couplings and torsion behaviour. The current work is a continuation of a previous work [1,2], and it examines different finite element modelling approaches...... of the blade cross section as the defining surface, off-setting the location of the shell elements according to the specified thickness. The experimental full-scale tests were carried out on an 8 m section of a 23 m wind turbine blade with specially implemented bend-twist coupling. The blade was tested under...

  11. Fiberglass Composite Blades for the 4 MW - WTS-4 Wind Turbine

    Science.gov (United States)

    Bussolari, R. J.

    1982-01-01

    The design and fabrication of composite blades for the WTS-4, a four-megawatt horizontal-axis wind turbine, is discussed. The blade consists of a two-cell, monolithic structure of filament-wound, fiberglass/epoxy composite. Filament winding is a low-cost process which can produce a blade with an aerodynamically efficient airfoil and planform with nonlinear twist to achieve high performance in terms of energy capture. Its retention provides a redundant attachment for long, durable life and safety. Advanced tooling concepts and as sophisticated computer control is used to achieve the unique filament-wound shape.

  12. Verification of Thermal Models of Internally Cooled Gas Turbine Blades

    Directory of Open Access Journals (Sweden)

    Igor Shevchenko

    2018-01-01

    Full Text Available Numerical simulation of temperature field of cooled turbine blades is a required element of gas turbine engine design process. The verification is usually performed on the basis of results of test of full-size blade prototype on a gas-dynamic test bench. A method of calorimetric measurement in a molten metal thermostat for verification of a thermal model of cooled blade is proposed in this paper. The method allows obtaining local values of heat flux in each point of blade surface within a single experiment. The error of determination of local heat transfer coefficients using this method does not exceed 8% for blades with radial channels. An important feature of the method is that the heat load remains unchanged during the experiment and the blade outer surface temperature equals zinc melting point. The verification of thermal-hydraulic model of high-pressure turbine blade with cooling allowing asymmetrical heat removal from pressure and suction sides was carried out using the developed method. An analysis of heat transfer coefficients confirmed the high level of heat transfer in the leading edge, whose value is comparable with jet impingement heat transfer. The maximum of the heat transfer coefficients is shifted from the critical point of the leading edge to the pressure side.

  13. Analysis of time domain active sensing data from CX-100 wind turbine blade fatigue tests for damage assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mi Jin [Dept. of Aerospace Engineering and LANL-CBNU Engineering Institute, Chunbuk National University, Jeonju (Korea, Republic of); Jung, Hwee Kwon; Park, Gyu Hae [School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Taylor, Stuart G.; Farinholt, Kevin M. [The Engineering Institute, Los Alamos National Laboratory, Los Alamos (United States)

    2016-04-15

    This paper presents the results obtained using time-series-based methods for structural damage assessment. The methods are applied to a wind turbine blade structure subjected to fatigue loads. A 9 m CX-100 (carbon experimental 100 kW) blade is harmonically excited at its first natural frequency to introduce a failure mode. Consequently, a through-thickness fatigue crack is visually identified at 8.5 million cycles. The time domain data from the piezoelectric active-sensing techniques are measured during the fatigue loadings and used to detect incipient damage. The damage-sensitive features, such as the first four moments and a normality indicator, are extracted from the time domain data. Time series autoregressive models with exogenous inputs are also implemented. These features could efficiently detect a fatigue crack and are less sensitive to operational variations than the other methods.

  14. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  15. An innovative medium speed wind turbine rotor blade design for low wind regime (electrical power generation)

    International Nuclear Information System (INIS)

    Abas Abd Wahab; Chong Wen Tong

    2001-01-01

    This paper describes the preliminary study of a small-scale wind turbine rotor blade (a low wind speed region turbine). A new wind turbine rotor blade (AE2 blade) for stand alone system has been conceptualized, designed, constructed and tested. The system is a reduced size prototype (half-scaled) to develop an efficient (adapted to Malaysian wind conditions)and cost effective wind energy conversion system (WECS) with local design and production technique. The blades were constructed from aluminium sheet with metal blending technique. The layout and design of rotor blade, its innovative features and test results are presented. Results from indoor test showed that the advantages of AE2 blade in low speed, with the potential of further improvements. The best rotor efficiency, C P attained with simple AE2 blades rotor (number of blade = 3) was 37.3% (Betz efficiency = 63%) at tip speed ratio (TSR) = 3.6. From the fabrication works and indoor testing, the AE2 blade rotor has demonstrated its structural integrity (ease of assembly and transportation), simplicity, acceptable performance and low noise level. (Author)

  16. Methodology for wind turbine blade geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Perfiliev, D.

    2013-11-01

    Nowadays, the upwind three bladed horizontal axis wind turbine is the leading player on the market. It has been found to be the best industrial compromise in the range of different turbine constructions. The current wind industry innovation is conducted in the development of individual turbine components. The blade constitutes 20-25% of the overall turbine budget. Its optimal operation in particular local economic and wind conditions is worth investigating. The blade geometry, namely the chord, twist and airfoil type distributions along the span, responds to the output measures of the blade performance. Therefore, the optimal wind blade geometry can improve the overall turbine performance. The objectives of the dissertation are focused on the development of a methodology and specific tool for the investigation of possible existing wind blade geometry adjustments. The novelty of the methodology presented in the thesis is the multiobjective perspective on wind blade geometry optimization, particularly taking simultaneously into account the local wind conditions and the issue of aerodynamic noise emissions. The presented optimization objective approach has not been investigated previously for the implementation in wind blade design. The possibilities to use different theories for the analysis and search procedures are investigated and sufficient arguments derived for the usage of proposed theories. The tool is used for the test optimization of a particular wind turbine blade. The sensitivity analysis shows the dependence of the outputs on the provided inputs, as well as its relative and absolute divergences and instabilities. The pros and cons of the proposed technique are seen from the practical implementation, which is documented in the results, analysis and conclusion sections. (orig.)

  17. Intubation of prehospital patients with curved laryngoscope blade is more successful than with straight blade.

    Science.gov (United States)

    Alter, Scott M; Haim, Eithan D; Sullivan, Alex H; Clayton, Lisa M

    2018-02-17

    Direct laryngoscopy can be performed using curved or straight blades, and providers usually choose the blade they are most comfortable with. However, curved blades are anecdotally thought of as easier to use than straight blades. We seek to compare intubation success rates of paramedics using curved versus straight blades. Design: retrospective chart review. hospital-based suburban ALS service with 20,000 annual calls. prehospital patients with any direct laryngoscopy intubation attempt over almost 9years. First attempt and overall success rates were calculated for attempts with curved and straight blades. Differences between the groups were calculated. 2299 patients were intubated by direct laryngoscopy. 1865 had attempts with a curved blade, 367 had attempts with a straight blade, and 67 had attempts with both. Baseline characteristics were similar between groups. First attempt success was 86% with a curved blade and 73% with a straight blade: a difference of 13% (95% CI: 9-17). Overall success was 96% with a curved blade and 81% with a straight blade: a difference of 15% (95% CI: 12-18). There was an average of 1.11 intubation attempts per patient with a curved blade and 1.13 attempts per patient with a straight blade (2% difference, 95% CI: -3-7). Our study found a significant difference in intubation success rates between laryngoscope blade types. Curved blades had higher first attempt and overall success rates when compared to straight blades. Paramedics should consider selecting a curved blade as their tool of choice to potentially improve intubation success. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Blade Vibration Measurement System for Unducted Fans

    Science.gov (United States)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  19. Environmental aging in polycrystalline-Si photovoltaic modules: comparison of chamber-based accelerated degradation studies with field-test data

    Science.gov (United States)

    Lai, T.; Biggie, R.; Brooks, A.; Potter, B. G.; Simmons-Potter, K.

    2015-09-01

    Lifecycle degradation testing of photovoltaic (PV) modules in accelerated-degradation chambers can enable the prediction both of PV performance lifetimes and of return-on-investment for installations of PV systems. With degradation results strongly dependent on chamber test parameters, the validity of such studies relative to fielded, installed PV systems must be determined. In the present work, accelerated aging of a 250 W polycrystalline silicon module is compared to real-time performance degradation in a similar polycrystalline-silicon, fielded, PV technology that has been operating since October 2013. Investigation of environmental aging effects are performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability providing illumination uniformity of 98% over a 2 x 1.6 m area. Time-dependent, photovoltaic performance (J-V) is evaluated over a recurring, compressed night-day cycle providing representative local daily solar insolation for the southwestern United States, followed by dark (night) cycling. This cycle is synchronized with thermal and humidity environmental variations that are designed to mimic, as closely as possible, test-yard conditions specific to a 12 month weather profile for a fielded system in Tucson, AZ. Results confirm the impact of environmental conditions on the module long-term performance. While the effects of temperature de-rating can be clearly seen in the data, removal of these effects enables the clear interpretation of module efficiency degradation with time and environmental exposure. With the temperature-dependent effect removed, the normalized efficiency is computed and compared to performance results from another panel of similar technology that has previously experienced identical climate changes in the test yard. Analysis of relative PV module efficiency degradation for the chamber-tested system shows good comparison to the field-tested system with ~2.5% degradation following

  20. Turbomachine blade reinforcement

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  1. A CLINICAL ASSESSMENT OF MACINTOSH BLADE, MILLER BLADE AND KING VISIONTM VIDEOLARYNGOSCOPE FOR LARYNGEAL EXPOSURE AND DIFFICULTY IN ENDOTRACHEAL INTUBATION

    Directory of Open Access Journals (Sweden)

    Apoorva Mahendera

    2016-03-01

    Full Text Available CONTEXT Previous studies suggest glottic view is better achieved with straight blades while tracheal intubation is easier with curved blades and videolaryngoscope is better than conventional laryngoscope. AIMS Comparison of conventional laryngoscope (Macintosh blade and Miller blade with channelled videolaryngoscope (King Vision TM with respect to laryngeal visualisation and difficulty in endotracheal intubation. SETTINGS AND DESIGN This prospective randomised comparative study was conducted at a tertiary care hospital (in ASA I and ASA II patients after approval from the Institutional Ethics Committee. METHODS We compared Macintosh, Miller, and the King VisionTM videolaryngoscope for glottic visualisation and ease of tracheal intubation. Patients undergoing elective surgeries under general anaesthesia requiring endotracheal intubation were randomly divided into three groups (N=180. After induction of anaesthesia, laryngoscopy was performed and trachea intubated. We recorded visualisation of glottis (Cormack-Lehane grade-CL, ease of intubation, number of attempts, need to change blade, and need for external laryngeal manipulation. STATISTICAL ANALYSIS Demographic data, Mandibular length, Mallampati classification were compared using ANOVA, Chi-square test, Kruskal-Wallis Test, where P value <0.005 is statically significant. RESULTS CL grade 1 was most often observed in King Vision -TM VL group (90% which is followed by Miller (28.33%, and Macintosh group (15%. We found intubation was to be easier (grade 1 with King Vision -TM VL group (73.33%, followed by Macintosh (38.33%, and Miller group (1.67%. External manipulation (BURP was needed more frequently in patients in Miller group (71.67%, followed by Macintosh (28.33% and in King Vision -TM VL group (6.67%. All (100% patients were intubated in the 1 st attempt with King Vision -TM VL group, followed by Macintosh group (90% and Miller group (58.33%. CONCLUSIONS In patients with normal airway

  2. Super titanium blades for advanced steam turbines

    International Nuclear Information System (INIS)

    Coulon, P.A.

    1990-01-01

    In 1986, the Alsthom Steam Turbines Department launched the manufacture of large titanium alloy blades: airfoil length of 1360 mm and overall length of 1520 mm. These blades are designed for the last-stage low pressure blading of advanced steam turbines operating at full speed (3000 rpm) and rating between 300 and 800 MW. Using titanium alloys for steam turbine exhaust stages as substitutes for chrome steels, due to their high strength/density ratio and their almost complete resistance to corrosion, makes it possible to increase the length of blades significantly and correspondingly that steam passage section (by up to 50%) with a still conservative stresses level in the rotor. Alsthom relies on 8 years of experience in the field of titanium, since as early as 1979 large titanium blades (airfoil length of 1240 mm, overall length of 1430 mm) were erected for experimental purposes on the last stage of a 900 MW unit of the Dampierre-sur-Loire power plant and now totals 45,000 operating hours without problems. The paper summarizes the main properties (chemical, mechanical and structural) recorded on very large blades and is based in particular on numerous fatigue corrosion test results to justify the use of the Ti 6 Al 4 V alloy in a specific context of micrographic structure

  3. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    Science.gov (United States)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-07-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  4. Resonant Vibrations Resulting from the Re-Engineering of a Constant-Speed 2-Bladed Turbine to a Variable-Speed 3-Bladed Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, P.; Wright, A. D.; Finersh, L. J.

    2010-12-01

    The CART3 (Controls Advanced Research Turbine, 3-bladed) at the National Wind Technology Center has recently been converted from a 2-bladed constant speed machine to a 3-bladed variable speed machine designed specically for controls research. The purpose of this conversion was to develop an advanced controls field-testing platform which has the more typical 3-bladed configuration. A result of this conversion was the emergence of several resonant vibrations, some of which initially prevented operation of the turbine until they could be explained and resolved. In this paper, the investigations into these vibrations are presented as 'lessons-learned'. Additionally, a frequency-domain technique called waterfall plotting is discussed and its usefulness in this research is illustrated.

  5. Rotor blade boundary layer measurement hardware feasibility demonstration

    Science.gov (United States)

    Clark, D. R.; Lawton, T. D.

    1972-01-01

    A traverse mechanism which allows the measurement of the three dimensional boundary layers on a helicopter rotor blade has been built and tested on a full scale rotor to full scale conditions producing centrifugal accelerations in excess of 400 g and Mach numbers of 0.6 and above. Boundary layer velocity profiles have been measured over a range of rotor speeds and blade collective pitch angles. A pressure scanning switch and transducer were also tested on the full scale rotor and found to be insensitive to centrifugal effects within the normal main rotor operating range. The demonstration of the capability to measure boundary layer behavior on helicopter rotor blades represents the first step toward obtaining, in the rotating system, data of a quality comparable to that already existing for flows in the fixed system.

  6. On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems

    Science.gov (United States)

    Tomassini, R.; Rossi, G.; Brouckaert, J.-F.

    2016-10-01

    A simultaneous blade tip timing (BTT) and blade tip clearance (BTC) measurement system enables the determination of turbomachinery blade vibrations and ensures the monitoring of the existing running gaps between the blade tip and the casing. This contactless instrumentation presents several advantages compared to the well-known telemetry system with strain gauges, at the cost of a more complex data processing procedure. The probes used can be optical, capacitive, eddy current as well as microwaves, everyone with its dedicated electronics and many existing different signal processing algorithms. Every company working in this field has developed its own processing method and sensor technology. Hence, repeating the same test with different instrumentations, the answer is often different. Moreover, rarely it is possible to achieve reliability for in-service measurements. Developments are focused on innovative instrumentations and a common standard. This paper focuses on the results achieved using a novel magnetoresistive sensor for simultaneous tip timing and tip clearance measurements. The sensor measurement principle is described. The sensitivity to gap variation is investigated. In terms of measurement of vibrations, experimental investigations were performed at the Air Force Institute of Technology (ITWL, Warsaw, Poland) in a real aeroengine and in the von Karman Institute (VKI) R2 compressor rig. The advantages and limitations of the magnetoresistive probe for turbomachinery testing are highlighted.

  7. Turbomachine blade assembly

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-11-01

    Embodiments of the present disclosure include a system comprising a turbomachine blade assembly having a blade portion, a shank portion, and a mounting portion, wherein the blade portion, the shank portion, and the mounting portion comprise a first plurality of plies extending from a tip of the airfoil to a base of the dovetail.

  8. Development of 52 inch last stage blade for steam turbine

    International Nuclear Information System (INIS)

    Kadoya, Yoshiki; Harada, Masakatsu; Watanabe, Eiichiro

    1985-01-01

    Mitsubishi Heavy Industries, Ltd. has developed the last stage blades with 1320 mm length for a 1800 rpm LP turbine, and the verification by rotating vibration test using actual blades was finished, thus the blades were completed. In a nuclear power plant with an A-PWR of 3800 MW thermal output, the 1350 MW steam turbine has one HP turbine and three LP turbines coupled in tandem, and the optimum last stage blades for the LP turbines became the 1320 mm blades. The completion of these blades largely contributes to the improvement of thermal efficiency and the increase of generator output in large nuclear power plants, and has the possibility to decrease three LP turbines to two in 900 MW plants, which reduces the construction cost. The velocity energy of steam coming out of last stage blades is abandoned as exhaust loss in a condenser, which is the largest loss in a turbine. The increase of exhaust area using long blades reduces this loss. The economy of the 1320 mm blades, the features of the 1320 mm blades, the aerodynamic design and its verification, the prevention of the erosion of the 1320 mm blades due to wet steam, the strength design, the anti-vibration design and its verification, and the CAD/CAM system are reported. (Kako, I.)

  9. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  10. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Leonard C. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Ishida, Takanobu [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between -0.24 and +1.25 VSCE while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-ρ-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  11. Metallurgy of gas turbine blades with integral shroud and its influence on blades performance

    International Nuclear Information System (INIS)

    Mazur, Z.; Marino, C.; Kubiak, J.

    1999-01-01

    The influence of the microstructure of the gas turbine blades with integral shroud on the blades performance is presented. The analysis of the solidification process of the gas turbine blades during conventionally casting process (equiaxed grains) with all elements which has influence on the mode of its solidification and variation of the microstructure is carried out. Also, the evaluation of the failure of the gas turbine blade is present. A detailed analysis of the blade tip shroud microstructure (presence of the equiaxed and columnar grains) and its influence on the failure initiation and propagation is carried out. Finally, conclusions and some necessary improvements of the blades casting process to prevent blades failures are presented. (Author) 2 refs

  12. Core compressor exit stage study. Volume 3: Data and performance report for screening test configurations

    Science.gov (United States)

    Wisler, D. C.

    1980-01-01

    Rear stage blading designs that have lower losses in their endwall boundary layer regions were developed. Test data and performance results for rotor B, stator B, and stator C - blading designs that offer promise of reducing endwall losses relative to the baseline are given. A low speed research compressor was the principal investigative tool. The tests were conducted using four identical stages of blading so that the test data would be obtained in a true multistage environment.

  13. BWR control blade replacement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kennard, M W [Stoller Nuclear Fuel, NAC International, Pleasantville, NY (United States); Harbottle, J E [Stoller Nuclear Fuel, NAC International, Thornbury, Bristol (United Kingdom)

    2000-02-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B{sub 4}C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  14. BWR control blade replacement strategies

    International Nuclear Information System (INIS)

    Kennard, M.W.; Harbottle, J.E.

    2000-01-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B 4 C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  15. Peripheral mowing blade. Final report ending 08/24/00

    Energy Technology Data Exchange (ETDEWEB)

    Darden, John A.

    2000-08-24

    The first prototype built for the peripheral mower blade was the nineteen foot batwing mower. It features twelve-inch blades, three-sixteenth thick. The configuration of the mower is three individual rotor gangs housed in separate housing all mounted to a centrally located housing. Each outer gang is driven by power being diverted through the center rotor. The power is supplied to each wing through means of a disconnect mechanism which allows the outer gangs to stop in the event that particular housing is raised by hydraulic power. This unit has given us unlimited information in the drive and power applications needed to drive the peripheral blade gangs. The nineteen foot unit has not changed much from the beginning, but information received from its performance has been applied to the building of a preproduction unit that is now in progress. Another prototype unit we have work with is the seven foot mounted mower. This unit consisted of a standard ASAE category I three-point hitch. The hitch was made by using an "A" frame which formed the attaching points for the mower and two back straps that gives support to the hitch assembly. The deck allowed for one-inch blade clearance at the top and featured a slanted deck extension at both the front and rear. The extension were formed by means of two breaks that run parallel to the blade gang and angled down at one hundred thirty degrees at the front and one hundred fifteen degrees at the rear. A roller is mounted across the back of the deck. This roller offers support to the deck while on the ground and is adjustable for height of cut control. This unit was made with a small roller, and too lighter hitch. After only a few hours of test proved that both items would have to be beefed up. The rear roller was increased to a four-inch diameter. The hitch was changed to a two-sided solid metal hitch three-eighths of an inch thick on the next machines.

  16. Demonstration of an elastically coupled twist control concept for tilt rotor blade application

    Science.gov (United States)

    Lake, R. C.; Nixon, M. W.; Wilbur, M. L.; Singleton, J. D.; Mirick, P. H.

    1994-01-01

    The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.

  17. Adhesive Joints in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn

    to be determined in several different ways. The accuracy of different ways of measuring residual stresses in the adhesive was tested by applying five different methods on a single sandwich test specimen (laminate/adhesive/laminate) that was instrumented with strain gauges and fiber Bragg gratings. Quasi...... of the project is to develop new- and to improve the existing design rules for adhesive joints in wind turbine blades. The first scientific studies of adhesive joints were based on stress analysis, which requires that the bond-line is free of defects, but this is rarely the case for a wind turbine blade. Instead...... curing and test temperatures) on the formation of transverse cracks in the adhesive were tested experimentally. It was assumed that the transverse cracks evolved due to a combination of mechanical- and residual stresses in the adhesive. A new approach was developed that allows the residual stress...

  18. Dynamic response characteristics of dual flow-path integrally bladed rotors

    Science.gov (United States)

    Beck, Joseph A.; Brown, Jeffrey M.; Scott-Emuakpor, Onome E.; Cross, Charles J.; Slater, Joseph C.

    2015-02-01

    New turbine engine designs requiring secondary flow compression often look to dual flow-path integrally bladed rotors (DFIBRs) since these stages have the ability to perform work on the secondary, or bypassed, flow-field. While analogous to traditional integrally bladed rotor stages, DFIBR designs have many differences that result in unique dynamic response characteristics that must be understood to avoid fatigue. This work investigates these characteristics using reduced-order models (ROMs) that incorporate mistuning through perturbations to blade frequencies. This work provides an alternative to computationally intensive geometric-mistuning approaches for DFIBRs by utilizing tuned blade mode reductions and substructure coupling in cyclic coordinates. Free and forced response results are compared to full finite element model (FEM) solutions to determine if any errors are related to the reduced-order model formulation reduction methods. It is shown that DFIBRs have many more frequency veering regions than their single flow-path integrally blade rotor (IBR) counterparts. Modal families are shown to transition between system, inner-blade, and outer-blade motion. Furthermore, findings illustrate that while mode localization of traditional IBRs is limited to a single or small subset of blades, DFIBRs can have modal energy localized to either an inner- or outer-blade set resulting in many blades responding above tuned levels. Lastly, ROM forced response predictions compare well to full FEM predictions for the two test cases shown.

  19. An aeroelastic analysis of helicopter rotor blades incorporating piezoelectric fiber composite twist actuation

    Science.gov (United States)

    Wilkie, W. Keats; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  20. Experimental Study of under-platform Damper Kinematics in Presence of Blade Dynamics

    Science.gov (United States)

    Botto, D.; Gastaldi, C.; Gola, M. M.; Umer, M.

    2018-01-01

    Among the different devices used in the aerospace industries under-platform dampers are widely used in turbo engines to mitigate the blade vibration. Nevertheless, the damper behaviour is not easy to simulate and engineers have been working in order to improve the accuracy with which theoretical contact models predict the damper behaviour. Majority of the experimental setups collect experimental data in terms of blade amplitude reduction which do not increase the knowledge about the damper dynamics and therefore the uncertainty on the damper behaviour remains a big issue. In this paper, a novel test rig has been purposely designed to accommodate a single blade and two under-platform dampers to deeply investigate the damper-blade interactions. In this test bench, a contact force measuring system was designed to extensively measure the damper contact forces. Damper kinematics is rebuilt by using the relative displacement measured between damper and blade. This paper describes the concept behind the new approach, shows the details of new test rig and discusses experimental results by comparing with previously measured results on an old experimental setup.

  1. Application of additive laser technologies in the gas turbine blades design process

    Science.gov (United States)

    Shevchenko, I. V.; Rogalev, A. N.; Osipov, S. K.; Bychkov, N. M.; Komarov, I. I.

    2017-11-01

    An emergence of modern innovative technologies requires delivering new and modernization existing design and production processes. It is especially relevant for designing the high-temperature turbines of gas turbine engines, development of which is characterized by a transition to higher parameters of working medium in order to improve their efficient performance. A design technique for gas turbine blades based on predictive verification of thermal and hydraulic models of their cooling systems by testing of a blade prototype fabricated using the selective laser melting technology was presented in this article. Technique was proven at the time of development of the first stage blade cooling system for the high-pressure turbine. An experimental procedure for verification of a thermal model of the blades with convective cooling systems based on the comparison of heat-flux density obtained from the numerical simulation data and results of tests in a liquid-metal thermostat was developed. The techniques makes it possible to obtain an experimentally tested blade version and to exclude its experimental adjustment after the start of mass production.

  2. Application of bamboo laminates in large-scale wind turbine blade design?

    Institute of Scientific and Technical Information of China (English)

    Long WANG; Hui LI; Tongguang WANG

    2016-01-01

    From the viewpoint of material and structure in the design of bamboo blades of large-scale wind turbine, a series of mechanical property tests of bamboo laminates as the major enhancement materials for blades are presented. The basic mechanical characteristics needed in the design of bamboo blades are brie?y introduced. Based on these data, the aerodynamic-structural integrated design of a 1.5 MW wind turbine bamboo blade relying on a conventional platform of upwind, variable speed, variable pitch, and doubly-fed generator is carried out. The process of the structural layer design of bamboo blades is documented in detail. The structural strength and fatigue life of the designed wind turbine blades are certified. The technical issues raised from the design are discussed. Key problems and direction of the future study are also summarized.

  3. An Experimental Analysis of the Effect of Icing on Wind Turbine Rotor Blades

    DEFF Research Database (Denmark)

    Raja, Muhammad Imran; Hussain, Dil muhammed Akbar; Soltani, Mohsen

    2016-01-01

    Wind Turbine is highly nonlinear plant whose dynamics changes with change in aerodynamics of the rotor blade. Power extracted from the wind turbine is a function of coefficient of power (Cp). Wind turbine installed in the cold climate areas has an icing on its rotor blade which might change its...... aerodynamics. This paper is an experimental investigation of the aerodynamic changes occur due to effect of ice accumulated on the rotor blades of wind turbine. We have tested three small scale model of the NREL's 5MW rotor blade with same profile but simulated different icing effect on them. These models...... are printed with 3D printer and tested one by one in a Wind Tunnel. Lift, drag and moment coefficients are calculated from the measured experimental data and program WT-Perf based on blade-element momentum (BEM) theory is used to predict the performance of wind turbine. Cp curves generated from the test...

  4. New Tools Being Developed for Engine- Airframe Blade-Out Structural Simulations

    Science.gov (United States)

    Lawrence, Charles

    2003-01-01

    One of the primary concerns of aircraft structure designers is the accurate simulation of the blade-out event. This is required for the aircraft to pass Federal Aviation Administration (FAA) certification and to ensure that the aircraft is safe for operation. Typically, the most severe blade-out occurs when a first-stage fan blade in a high-bypass gas turbine engine is released. Structural loading results from both the impact of the blade onto the containment ring and the subsequent instantaneous unbalance of the rotating components. Reliable simulations of blade-out are required to ensure structural integrity during flight as well as to guarantee successful blade-out certification testing. The loads generated by these analyses are critical to the design teams for several components of the airplane structures including the engine, nacelle, strut, and wing, as well as the aircraft fuselage. Currently, a collection of simulation tools is used for aircraft structural design. Detailed high-fidelity simulation tools are used to capture the structural loads resulting from blade loss, and then these loads are used as input into an overall system model that includes complete structural models of both the engines and the airframe. The detailed simulation (shown in the figure) includes the time-dependent trajectory of the lost blade and its interactions with the containment structure, and the system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes are typically used, and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine s turbomachinery. To develop and validate these new tools with test data, the NASA Glenn Research Center has teamed with GE Aircraft Engines, Pratt & Whitney, Boeing Commercial Aircraft, Rolls-Royce, and MSC.Software.

  5. Design, evaluation, and fabrication of low-cost composite blades for intermediate-size wind turbines

    Science.gov (United States)

    Weingart, O.

    1981-01-01

    Low cost approaches for production of 60 ft long glass fiber/resin composite rotor blades for the MOD-OA wind turbine were identified and evaluated. The most cost-effective configuration was selected for detailed design. Subelement and subscale specimens were fabricated for testing to confirm physical and mechanical properties of the composite blade materials, to develop and evaluate blade fabrication techniques and processes, and to confirm the structural adequacy of the root end joint. Full-scale blade tooling was constructed and a partial blade for tool and process tryout was built. Then two full scale blades were fabricated and delivered to NASA-LeRC for installation on a MOD-OA wind turbine at Clayton, New Mexico for operational testing. Each blade was 60 ft. long with 4.5 ft. chord at root end and 2575 lbs weight including metal hub adapter. The selected blade configuration was a three cell design constructed using a resin impregnated glass fiber tape winding process that allows rapid wrapping of primarily axially oriented fibers onto a tapered mandrel, with tapered wall thickness. The ring winder/transverse filament tape process combination was used for the first time on this program to produce entire rotor blade structures. This approach permitted the complete blade to be wound on stationary mandrels, an improvement which alleviated some of the tooling and process problems encountered on previous composite blade programs.

  6. Pumping Capacity of Pitched Blade Impellers in a Tall Vessel with a Draught Tube

    Directory of Open Access Journals (Sweden)

    J. Brož

    2004-01-01

    Full Text Available A study was made of the pumping capacity of pitched blade impellers (two, three, four, five and six blade pitched blade impellers with pitch angles α = 35° and 45° coaxially located in a cylindrical pilot plant vessel with cylindrical draught tube provided with a standard dished bottom. The draught tube was equipped with four equally spaced radial baffles above the impeller pumping liquid upwards towards the liquid surface. In all investigated cases the liquid aspect ratio H/T = 1.2 - 1.5, the draught tube / vessel diameter ratios DT /T = 0.2 and 0.4 and the impeller / draught tube diameter ratio D/DT = 0.875. The pumping capacity of the impeller was calculated from the radial profile of the axial component of the mean velocity in the draught tube below the impeller at such an axial distance from the impeller that the rotor does not affect the vorticity of the flow. The mean velocity was measured using a laser Doppler anemometer with forward scatter mode in a transparent draught tube and a transparent vessel of diameter T = 400 mm. Two series of experiments were performed, both of them under a turbulent regime of flow of the agitated liquid. First, the optimum height of the dished bottom was sought, and then the dependences of the dimensionless flow rate criterion and the impeller power number on the number of impeller blades were determined for both pitch angles tested under conditions of optimum ratio HT /DT. It follows from the results of the experiments that the optimum ratio HT /DT = 0.25 when the cross sectional areas of the horizontal flow around the bottom and the vertical inflow to the draught tube are the same. For all the tested pitched blade impellers the impeller power number when α = 45° exceeds the value of this quantity when pitch angle α  =   35°, while the flow rate number when α = 35° exceeds this quantity when α = 45°. On the other hand, the absolute values of the impeller power number when the draught tube was

  7. Blade attachment assembly

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  8. The impact of inertial forces on morphing wind turbine blade in vertical axis configuration

    International Nuclear Information System (INIS)

    Butbul, Jonathan; MacPhee, David; Beyene, Asfaw

    2015-01-01

    Highlights: • A novel flexible VAWT has been experimentally tested alongside numerically simulations. • Using FEA and CFD, direction of blade bending was predicted from inertial and aerodynamic forces. • High-speed camera footage has been used to validate the model. • The flexible VAWT was found to self-start in the majority of tests, while the rigid one did not. • It is suggested that flexible VAWTs can have improved performance in part-load applications. - Abstract: A novel flexible blade concept with the ability to morph and geometrically adapt to changing flow conditions has been proposed to improve part-load performance of horizontal-axis wind turbines. The extension of these benefits to a vertical axis wind turbine would make wind technology a more competitive player in the energy market. Both flexible and rigid wind turbine rotor blades for vertical axis application were modeled, designed, manufactured and tested. Their performances were tested in a low speed wind tunnel. The predicted magnitude and direction of blade morph was validated using a high speed camera as well as finite element analysis. The comparative results of straight rigid and straight morphing blades show that the coefficient of performance greatly depends on the tip speed ratio. Overall, the morphing blade has better performance at low RPMs, but the rigid blade performed better at high RPMs. It was observed that the flexible blade self-started in the majority of the experiments. At high RPM, the centrifugal force overwhelmed the lift force, bending the flexible blade out of phase in an undesired direction increasing drag and therefore reducing the coefficient of performance

  9. Eddy current inspection of stationary blade rings

    International Nuclear Information System (INIS)

    Krzywosz, K.J.; Hastings, S.N.

    1994-01-01

    Stationary turbine blade rings in a US power plant have experienced chloride-induced cracking. Failure analysis determined two types of cracking mechanisms: corrosion fatigue cracking confined to the leading edge of the outer shroud; and stress corrosion cracking present all over the blade surface. Fluorescent dye penetrant is typically used to detect and size cracks. However, it requires cleaning the blade rings by sandblasting to obtain reliable inspection results. Sand blasting in turn requires sealing the lower half of the turbine housing to prevent sand from contaminating the rest of the power plant components. Furthermore, both the penetrant examination and the removal of the sand are time consuming and costly. An alternative NDE technique is desirable which requires no pre-cleaning of the blade and a quick go/no-go inspection with the capability of estimating the crack length. This paper presents an innovative eddy current technique which meets the desired objectives by incorporating the use of specially designed contoured scanners equipped with an array of pancake coils. A set of eddy current pancake coils housed in three different scanners is used to manually scan and inspect the convex side of the stationary blade rings. The pancake coils are operated in a transmit/receive mode using two separate eddy current instruments. This paper presents the inspection concept, including scanner and probe designs, and test results from the various stages of multiple blade rings

  10. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  11. Improvement in ductility of high strength polycrystalline Ni-rich Ni{sub 3}Al alloy produced by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.Y.; Pei, Y.L.; Li, S.S.; Zhang, H.; Gong, S.K., E-mail: gongsk@buaa.edu.cn

    2014-11-25

    Highlights: • High strength and high ductility of polycrystalline Ni-rich Ni{sub 3}Al alloy sheets were produced. • The elongation could be enhanced from ∼0.5% to ∼14.6% by microstructural control. • The fracture strength (∼820 MPa) was enhanced by the precipitation strengthening. • This work provides a general processing for repairing the worn single crystal blades. - Abstract: A 300 μm Ni-rich Ni{sub 3}Al sheet was produced by electron beam physical vapor deposition (EB-PVD) and followed by different heat treatments to obtain fine γ′/γ two-phase structures with large elongation. Tensile testing was performed at room-temperature, and the corresponding mechanisms were investigated in detail. Results indicated that the as-deposited Ni{sub 3}Al alloy exhibited non-equilibrium directional columnar crystal, and transited to equiaxed crystal with uniformly distributed tough γ phase after heat treatment. Meanwhile, the fracture mechanism transited from brittleness to a mixture of ductility and brittleness modes. With an appropriate heat treatment, high strength (ultimate tensile strength obtained 828 MPa) and high ductility (elongation obtained 14.6%) Ni{sub 3}Al alloy has been achieved, which was due to the mesh network microstructure. A series of transmission electron microscope (TEM) characterizations confirmed that the increasing flow stress of Ni{sub 3}Al alloy was attributed to the cubical secondary γ′ phase precipitates (25–50 nm) within the γ phase. This work provides a potential strategy for repairing the worn tip of single crystal engine blades using Ni-rich Ni{sub 3}Al alloy by EB-PVD.

  12. Small wind turbines with timber blades for developing countries: Materials choice, development, installation and experiences

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Freere, Peter; Sinha, Rakesh

    2011-01-01

    The low cost wind turbines with timber blades represent a good solution for the decentralized energy production in off-grid regions of developing countries. This paper summarizes the results of investigations on the mechanical testing and choice of timber for wind blades, testing of different...... of the blades and turbines. It was further demonstrated that the low cost wind turbines with timber blades represent a promising and viable option for the decentralized energy production in developing countries, which also opens new areas for businesses....

  13. A novel folding blade of wind turbine rotor for effective power control

    International Nuclear Information System (INIS)

    Xie, Wei; Zeng, Pan; Lei, Liping

    2015-01-01

    Highlights: • A novel folding blade for wind turbine power control is proposed. • Wind tunnel experiments were conducted to analyze folding blade validity. • Folding blade is valid to control wind turbine power output. • Compared to pitch control, thrust was reduced by fold control in power regulation. • Optimum fold angles were found for wind turbine start up and aerodynamic brake. - Abstract: A concept of novel folding blade of horizontal axis wind turbine is proposed in current study. The folding blade comprises a stall regulated root blade section and a folding tip blade section with the fold axis inclined relative to blade span. By folding blade, lift force generated on the tip blade section changes and the moment arm also shortens, which leads to variations of power output. The blade folding actuation mechanism with servo motor and worm-gear reducer was designed. Wind turbine rotor control scheme and servo system with double feedback loops for blade fold angle control were proposed. In this study, a small folding blade model was tested in a wind tunnel to analyze its performance. The blade model performance was estimated in terms of rotation torque coefficient and thrust coefficient. Wind tunnel experiments were also conducted for pitch control using the same blade model in order to make a direct comparison. The power control, start up and aerodynamic brake performance of the folding blade were analyzed. According to the wind tunnel experiment results, fold angle magnitude significantly affected blade aerodynamic performance and the thrust characteristic together with the rotation torque characteristic of folding blade were revealed. The experiment results demonstrated that the folding blade was valid to control power output and had advantages in reducing thrust with maximum reduction of 51.1% compared to pitch control. Optimum fold angles of 55° and 90° were also found for start up and aerodynamic brake, respectively

  14. Design, Fabrication, and Performance Test of a 100-W Helical-Blade Vertical-Axis Wind Turbine at Low Tip-Speed Ratio

    Directory of Open Access Journals (Sweden)

    Dowon Han

    2018-06-01

    Full Text Available A 100-W helical-blade vertical-axis wind turbine was designed, manufactured, and tested in a wind tunnel. A relatively low tip-speed ratio of 1.1 was targeted for usage in an urban environment at a rated wind speed of 9 m/s and a rotational speed of 170 rpm. The basic dimensions were determined through a momentum-based design method according to the IEC 61400-2 protocol. The power output was estimated by a mathematical model that takes into account the aerodynamic performance of the NACA0018 blade shape. The lift and drag of the blade with respect to the angle of attack during rotation were calculated using 2D computational fluid dynamics (CFD simulation to take into account stall region. The average power output calculated by the model was 108.34 W, which satisfies the target output of 100 W. The manufactured wind turbine was tested in a large closed-circuit wind tunnel, and the power outputs were measured for given wind speeds. At the design condition, the measured power output was 114.7 W, which is 5.9% higher than that of the mathematical model. This result validates the proposed design method and power estimation by the mathematical model.

  15. The SNL100-03 Blade: Design Studies with Flatback Airfoils for the Sandia 100-meter Blade.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel; Richards, Phillip William

    2014-09-01

    A series of design studies were performed to inv estigate the effects of flatback airfoils on blade performance and weight for large blades using the Sandi a 100-meter blade designs as a starting point. As part of the study, the effects of varying the blade slenderness on blade structural performance was investigated. The advantages and disadvantages of blad e slenderness with respect to tip deflection, flap- wise & edge-wise fatigue resistance, panel buckling capacity, flutter speed, manufacturing labor content, blade total weight, and aerodynamic design load magn itude are quantified. Following these design studies, a final blade design (SNL100-03) was prod uced, which was based on a highly slender design using flatback airfoils. The SNL100-03 design with flatback airfoils has weight of 49 tons, which is about 16% decrease from its SNL100-02 predecessor that used conventional sharp trailing edge airfoils. Although not systematically optimized, the SNL100 -03 design study provides an assessment of and insight into the benefits of flatback airfoils for la rge blades as well as insights into the limits or negative consequences of high blade slenderness resulting from a highly slender SNL100-03 planform as was chosen in the final design definition. This docum ent also provides a description of the final SNL100-03 design definition and is intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-03, which are made publicly available. A summary of the major findings of the Sandia 100-meter blade development program, from the initial SNL100-00 baseline blade through the fourth SNL100-03 blade study, is provided. This summary includes the major findings and outcomes of blade d esign studies, pathways to mitigate the identified large blade design drivers, and tool development that were produced over the course of this five-year research program. A summary of large blade tec hnology needs and research opportunities is also presented.

  16. Force Measurements on a VAWT Blade in Parked Conditions

    Directory of Open Access Journals (Sweden)

    Anders Goude

    2017-11-01

    Full Text Available The forces on a turbine at extreme wind conditions when the turbine is parked is one of the most important design cases for the survivability of a turbine. In this work, the forces on a blade and its support arms have been measured on a 12 kW straight-bladed vertical axis wind turbine at an open site. Two cases are tested: one during electrical braking of the turbine, which allows it to rotate slowly, and one with the turbine mechanically fixed with the leading edge of the blade facing the main wind direction. The force variations with respect to wind direction are investigated, and it is seen that significant variations in forces depend on the wind direction. The measurements show that for the fixed case, when subjected to the same wind speed, the forces are lower when the blade faces the wind direction. The results also show that due to the lower forces at this particular wind direction, the average forces for the fixed blade are notably lower. Hence, it is possible to reduce the forces on a turbine blade, simply by taking the dominating wind direction into account when the turbine is parked. The measurements also show that a positive torque is generated from the blade for most wind directions, which causes the turbine to rotate in the electrically-braked case. These rotations will cause increased fatigue loads on the turbine blade.

  17. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    Science.gov (United States)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  18. A comparison of theory and flight test of the BO 105/BMR in hover and forward flight

    Science.gov (United States)

    Mirick, Paul H.

    1988-01-01

    Four cases were selected for comparison with theoretical predictions using stability data obtained during the flight test of the Bearingless Main Rotor (BMR) on a Messerschmidt-Boelkow-Blohm BO 105 helicopter. The four cases selected form the flight test included two ground resonance cases and two air resonance cases. The BMR used four modified BO 105 blades attached to a bearingless hub. The hub consisted of dual fiberglass C-channel beams attached to the hub center at 0.0238R and attached to the blade root at 0.25R with blade pitch control provided by a torque tube. Analyses from Bell Helicopter Textron, Boeing Vertol, and Sikorsky Aircraft were compared with the data and the correlation ranged from very poor-to-poor to poor-to-fair.

  19. Inelastic x-ray scattering from polycrystalline materials

    International Nuclear Information System (INIS)

    Fischer, I.

    2008-09-01

    Inelastic X-ray scattering (IXS) is a tool to determine the phonon dispersion along high symmetry directions in single crystals. However, novel materials and crystals under extreme conditions are often only available in form of polycrystalline samples. Thus the investigation is limited to orientation-averaged properties. To overcome these limitations, a methodology to extract the single crystal phonon dispersion from polycrystalline materials was developed. The approach consists of recording IXS spectra over a large momentum transfer region and confront them with a Born - von Karman model calculation. A least-square refinement of the model IXS spectra then provides the single crystal dispersion scheme. In this work the method is developed on the test case Be. Further studies were performed on more and more complex systems, in order to explore the limitations. This novel application of IXS promises to be a valuable tool in cases where single crystalline materials are not available. (author)

  20. LAM-1 and FAT Genes Control Development of the Leaf Blade in Nicotiana sylvestris.

    Science.gov (United States)

    McHale, NA

    1993-01-01

    Leaf primordia of the lam-1 mutant of Nicotiana sylvestris grow normally in length but remain bladeless throughout development. The blade initiation site is established at the normal time and position in lam-1 primordia. Anticlinal divisions proceed normally in the outer L1 and L2 layers, but the inner L3 cells fail to establish the periclinal divisions that normally generate the middle mesophyll core. The lam-1 mutation also blocks formation of blade mesophyll from distal L2 cells. This suggests that LAM-1 controls a common step in initiation of blade tissue from the L2 and L3 lineage of the primordium. Another recessive mutation (fat) was isolated in N. sylvestris that induces abnormal periclinal divisions in the mesophyll during blade initiation and expansion. This generates a blade approximately twice its normal thickness by doubling the number of mesophyll cell layers from four to approximately eight. Presumably, the fat mutation defines a negative regulator involved in repression of periclinal divisions in the blade. The lam-1 fat double mutant shows radial proliferation of mesophyll cells at the blade initiation site. This produces a highly disorganized, club-shaped blade that appears to represent an additive effect of the lam-1 and fat mutations on blade founder cells. PMID:12271096

  1. Neutron radiography and other NDE tests of main rotor helicopter blades

    International Nuclear Information System (INIS)

    Beer, F.C. de; Coetzer, M.; Fendeis, D.; Silva, A. da Costa E

    2004-01-01

    A few nondestructive examination (NDE) techniques are extensively being used worldwide to investigate aircraft structures for all types of defects. The detection of corrosion and delaminations, which are believed to be the major initiators of defects leading to aircraft structural failures, are addressed by various NDE techniques. In a combined investigation by means of visual inspection, X-ray radiography and shearography on helicopter main rotor blades, neutron radiography (NRad) at SAFARI-1 research reactor operated by Necsa, was performed to introduce this form of NDE testing to the South African aviation industry to be evaluated for applicability. The results of the shearography, visual inspection and NRad techniques are compared in this paper. The main features and advantages of neutron radiography, within the framework of these investigations, will be highlighted

  2. Bionic Design of Wind Turbine Blade Based on Long-Eared Owl's Airfoil.

    Science.gov (United States)

    Tian, Weijun; Yang, Zhen; Zhang, Qi; Wang, Jiyue; Li, Ming; Ma, Yi; Cong, Qian

    2017-01-01

    The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl's wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl's wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.

  3. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    in a previous publication. Further, it is well know that the variation of the blade pitch angle during the rotation improves the power efficiency. A blade pitch variation is implemented by active blade pitch control, which operates as per wind speed and position of the blade with respect to the rotor. A double...

  4. Formation of photovoltaic modules based on polycrystalline solar cells

    OpenAIRE

    L. A. Dobrzański; A. Drygała; A. Januszka

    2009-01-01

    Purpose: The main aim of the paper is formation of photovoltaic modules and analysis of their main electric parameters.Design/methodology/approach: Photovoltaic modules were produced from four polycrystalline silicon solar cells, that were cut and next joined in series. Soft soldering technique and copper-tin strip were used for joining cells.Findings: In order to provide useful power for any application, the individual solar cells must be connected together to give the appropriate current an...

  5. Integrated approach for stress based lifing of aero gas turbine blades

    Science.gov (United States)

    Abu, Abdullahi Obonyegba

    side was the critical location. Furthermore, a parametric and sensitivity study of the Neu/Sehitoglu model parameters suggests that in addition to four previously reported parameters, the sensitivity of the phasing to oxidation damage would be critical to overall blade life..

  6. Model predictive control of trailing edge flaps on a wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Castaignet, D.B.

    2011-11-15

    Trailing edge flaps on wind turbine blades have been investigated for several years. Aero-servoelastic simulations carried out with different simulation tools, trailing edge flaps configurations and controller designs proved that trailing edge flaps are a suitable solution for reducing some of the wind turbine fatigue and extreme loads. This potential was confirmed with wind tunnel tests made on blade sections with trailing edge flaps and on a scaled two-bladed wind turbine in a wind tunnel. The work presented in this thesis includes a full-scale test run on a Vestas V27 wind turbine equipped with three trailing edge flaps on one blade, located on DTU's Risoe Campus in Roskilde, Denmark. This thesis is divided into three parts: the controller design, results from simulations, and results from the experiments. The trailing edge flaps controller designed for this project is based on a frequency-weighted model predictive control, tuned in order to target only the flapwise blade root loads at the frequencies contributing the most to blade root fatigue damage (the 1P, 2P and 3P frequencies), and to avoid unnecessary wear and tear of the actuators at high frequencies. A disturbance model consisting in periodic disturbances at the rotor speed harmonic frequencies and a quasi-steady input disturbance is aggregated to an analytical model of a spinning blade with trailing edge flaps. Simulations on a multi-megawatt wind turbine show the potential of the trailing edge flaps to reduce the flapwise blade root fatigue loads by 23%, but also the main shaft and the tower fatigue loads by up to 32%. Extreme loads during normal production also benefit from the trailing edge flaps. At last, the same controller was run on the Vestas V27 wind turbine located at the Risoe Campus of the Technical University of Denmark, in Roskilde, Denmark. One blade of the turbine was equipped with three independent trailing edge flaps. In spite of the failure of several sensors and actuators, the

  7. Numerical Simulation of Wind Turbine Blade-Tower Interaction

    Institute of Scientific and Technical Information of China (English)

    Qiang Wang; Hu Zhou; Decheng Wan

    2012-01-01

    Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface (AMI) method were presented.The governing equations were the unsteady Reynolds-averaged Navier-Stokes (PANS) which were solved by the pimpleDyMFoam solver,and the AMI method was employed to handle mesh movements.The National Renewable Energy Laboratory (NREL) phase Ⅵ wind turbine in upwind configuration was selected for numerical tests with different incoming wind speeds (5,10,15,and 25 m/s) at a fixed blade pitch and constant rotational speed.Detailed numerical results of vortex structure,time histories of thrust,and pressure distribution on the blade and tower were presented.The findings show that the wind turbine tower has little effect on the whole aerodynamic performance of an upwind wind turbine,while the rotating rotor will induce an obvious cyclic drop in the front pressure of the tower.Also,strong interaction of blade tip vortices with separation from the tower was observed.

  8. Demonstration of partial pitch 2-bladed wind turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong; Zahle, Frederik; Troldborg, Niels

    -sections on the blade as well as fully resolved rotor simulations, and finally simulations coupling HAWC2 with EllipSys3D, investigating the behaviors of the rotor at standstill, has been performed. For the WP3, the state-of-the art aeroelastic analysis tool, HAWC2, has been updated in order to consider the partial......This is the final report for the EUDP project performed from January 2012 to December 2015. The main objective for the project was to demonstrate the potential of the partial pitch two-bladed (PP-2B) technology. DTU Wind Energy took a responsibility for three workpackages (WPs) among 6 WPs which...... were aerodynamic evaluation of partial pitch technology (WP2), aeroelastic analysis of two-bladed turbine (WP3) and On-site testing (WP4). For the WP2, a comprehensive set of 3D CFD simulations including the gap between inner and outer part of the blade and vortex generators (VGs) of both cross...

  9. Band Saw Blade Crack before and after Comparison and Analysis of Experiments (2

    Directory of Open Access Journals (Sweden)

    Gao Jin-gui

    2016-01-01

    Full Text Available Based on MJ3310 woodworking band saw machine as the research object, under the no-load and load of Vib system vibration signal acquisition, processing and analysis software of band saw blade transverse vibration test and the signal acquisition and analysis of the collected signals obtained: to determine the transverse vibration displacement 5.66μm ~ 7.86μm and the main vibration frequency between 624 Hz ~ 792 Hz, then saw blade crack at least 3 mm, need timely saw blade, cutting high hardness of wood band saw blade transverse vibration displacement and frequency will increase sharply. Can be generated according to the band saw blade crack before and after the changing rule of the horizontal vibration displacement and frequency of transverse vibration and scope, judgment and replacement time of saw blade saw blade defect types, which can fully rational utilization of saw blade work effectively.

  10. A Power Case Study for Monocrystalline and Polycrystalline Solar Panels in Bursa City, Turkey

    Directory of Open Access Journals (Sweden)

    Ayşegül Taşçıoğlu

    2016-01-01

    Full Text Available It was intended to reveal the time dependent power generation under different loads for two different solar panels under the conditions of Bursa province in between August 19 and 25, 2014. The testing sets include solar panels, inverter, multimeter, accumulator, regulator, pyranometer, pyrheliometer, temperature sensor, and datalogger. The efficiency of monocrystalline and polycrystalline solar panels was calculated depending on the climatic data’s measurements. As the result of the study, the average performances of monocrystalline and polycrystalline panels are 42.06 and 39.80 Wh, respectively. It was seen that 87.14 W instantaneous power could be obtained from monocrystalline solar panel and that 80.17 W instantaneous power could be obtained from polycrystalline solar panel under maximum total radiation (1001.13 W/m2. Within this frame, it was determined that monocrystalline solar panel is able to operate more efficiently under the conditions of Bursa compared to polycrystalline solar panel. When the multivariate correlations coefficients were examined statistically, a significant relationship in positive direction was detected between total and direct radiation and ambient temperature on energy generation from monocrystalline and polycrystalline panel.

  11. A study for soundness of turbine blade root using ultrasonic and phased array

    International Nuclear Information System (INIS)

    Gil, Doo Song; Park, Sang Ki; Cho, Yong Sang; Lee, Sang Gug; Huh, Kuang Bum

    2003-01-01

    Power plant is consisted of many component parts for the generation of the electricity, and occasionally, turbine equipment may be caused in break-down because of the damage of the blade root. Phased array ultrasonic testing system has become available for practical application in complicated geometry such as turbine blade root, tenon, disc in power industry. This research describes the characteristics of phased array ultrasonic testing signal for various type of blade roots in thermal Power Plant turbines. This application of Phased array ultrasonic testing system has been promoted mainly to save inspection time and labor cost of turbine inspection. The characteristic of phased array ultrasonic testing signal for power plant component in very simple to understand but to difficult for perform the inspection. This paper is focused on the safety of the turbine equipment by the ultrasonic measurement and phased array analysis. As a result of the test through ultrasonic and phased array method, we have concluded that the main damage in these turbine blade root parts could be generated by the concentrated stress and centrifugal force.

  12. A review of damage detection methods for wind turbine blades

    International Nuclear Information System (INIS)

    Li, Dongsheng; Song, Gangbing; Ren, Liang; Li, Hongnan; Ho, Siu-Chun M

    2015-01-01

    Wind energy is one of the most important renewable energy sources and many countries are predicted to increase wind energy portion of their whole national energy supply to about twenty percent in the next decade. One potential obstacle in the use of wind turbines to harvest wind energy is the maintenance of the wind turbine blades. The blades are a crucial and costly part of a wind turbine and over their service life can suffer from factors such as material degradation and fatigue, which can limit their effectiveness and safety. Thus, the ability to detect damage in wind turbine blades is of great significance for planning maintenance and continued operation of the wind turbine. This paper presents a review of recent research and development in the field of damage detection for wind turbine blades. Specifically, this paper reviews frequently employed sensors including fiber optic and piezoelectric sensors, and four promising damage detection methods, namely, transmittance function, wave propagation, impedance and vibration based methods. As a note towards the future development trend for wind turbine sensing systems, the necessity for wireless sensing and energy harvesting is briefly presented. Finally, existing problems and promising research efforts for online damage detection of turbine blades are discussed. (topical review)

  13. Study on visual detection method for wind turbine blade failure

    Science.gov (United States)

    Chen, Jianping; Shen, Zhenteng

    2018-02-01

    Start your abstract here…At present, the non-destructive testing methods of the wind turbine blades has fiber bragg grating, sound emission and vibration detection, but there are all kinds of defects, and the engineering application is difficult. In this regard, three-point slope deviation method, which is a kind of visual inspection method, is proposed for monitoring the running status of wind turbine blade based on the image processing technology. A better blade image can be got through calibration, image splicing, pretreatment and threshold segmentation algorithm. Design of the early warning system to monitor wind turbine blade running condition, recognition rate, stability and impact factors of the method were statistically analysed. The experimental results shown showed that it has highly accurate and good monitoring effect.

  14. Aerodynamic calculational methods for curved-blade Darrieus VAWT WECS

    Science.gov (United States)

    Templin, R. J.

    1985-03-01

    Calculation of aerodynamic performance and load distributions for curved-blade wind turbines is discussed. Double multiple stream tube theory, and the uncertainties that remain in further developing adequate methods are considered. The lack of relevant airfoil data at high Reynolds numbers and high angles of attack, and doubts concerning the accuracy of models of dynamic stall are underlined. Wind tunnel tests of blade airbrake configurations are summarized.

  15. KNOW-BLADE task-3.3 report: Rotor blade computations with 3D vortex generators

    DEFF Research Database (Denmark)

    Johansen, J.; Sørensen, Niels N.; Reck, M.

    2005-01-01

    The present report describes the work done in work package WP3.3: Aerodynamic Accessories in 3D in the EC project KNOW-BLADE. Vortex generators (VGs) are modelled in 3D Navier-Stokes solvers and applied on the flow around an airfoil and a wind turbineblade. Three test cases have been investigated...

  16. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    Science.gov (United States)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-12-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  17. Evaluation of urethane for feasibility of use in wind turbine blade design

    Science.gov (United States)

    Lieblein, S.; Ross, R. S.; Fertis, D. G.

    1979-01-01

    A preliminary evaluation was conducted of the use of cast urethane as a possible material for low-cost blades for wind turbines. Specimen test data are presented for ultimate tensile strength, elastic modulus, flexural strain, creep, and fatigue properties of a number of urethane formulations. Data are also included for a large-scale urethane blade section composed of cast symmetrical half-profiles tested as a cantilever beam. Based on these results, an analysis was conducted of a full-scale blade design of cast urethane that meets the design specifications of the rotor blades for the NASA/DOE experimental 100-kW MOD-0 wind turbine. Because of the low value of elastic modulus for urethane (around 457 000 psi), the design loads would have to be carried by metal reinforcement. Considerations for further evaluation are noted.

  18. Wind turbine blades for harnessing energy from Malaysian low speed wind - manufacturing technique

    International Nuclear Information System (INIS)

    Abas Abd Wahab; Azmin Shakrine

    2000-01-01

    Blades for wind turbine to harness energy in the Malaysia low speed winds have been designed. During wind tunnel testing, wind turbine model using this type of blades has cut in speed of 1.5 m/s and turned at 450 rpm at 4 m/s wind. The blades, due to their critical dimensions of 1.2 m length, 5 cm thickness, tapered and 15 degree twist, were difficult to produce especially in large number. Several production methods have been studied but for economical mass production, fibreglass blades using CNC cutting mould were chosen. The blade and mould designs and the manufacturing processes are briefly outlined in this paper. (Author)

  19. Blade Surface Pressure Distributions in a Rocket Engine Turbine: Experimental Work With On-Blade Pressure Transducers

    Science.gov (United States)

    Hudson, Susan T.; Zoladz, Thomas F.; Griffin, Lisa W.; Turner, James E. (Technical Monitor)

    2000-01-01

    Understanding the unsteady aspects of turbine rotor flowfields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with surface-mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in three respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, two independent unsteady data acquisition systems and fundamental signal processing approaches were used. Finally, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools will contribute to future turbine programs such as those for reusable launch vehicles.

  20. [The morphological characteristic of the skin lesions inflicted by plastic knives with four cutting edges].

    Science.gov (United States)

    Leonov, S V; Finkel'shtein, V T

    2015-01-01

    The objective of the present work was to study the morphological features of the skin lesions inflicted by the blades of the Fgx Boot Blade I knives having four cutting edges. The study revealed the signs that can be used to distinguish between morphological characteristics of the stab and lacerated wounds having the primary and secondary incisions made by the four-edge blade.

  1. Experimental and numerical study of the British Experimental Rotor Programme blade

    Science.gov (United States)

    Brocklehurst, Alan; Duque, Earl P. N.

    1990-01-01

    Wind-tunnel tests on the British Experimental Rotor Programme (BERP) tip are described, and the results are compared with computational fluid dynamics (CFD) results. The test model was molded using the Lynx-BERP blade tooling to provide a semispan, cantilever wing comprising the outboard 30 percent of the rotor blade. The tests included both surface-pressure measurements and flow visualization to obtain detailed information of the flow over the BERP tip for a range of angles of attack. It was observed that, outboard of the notch, favorable pressure gradients exist which ensure attached flow, and that the tip vortex also remains stable to large angles of attack. On the rotor, these features yield a very gradual break in control loads when the retreating-blade limit is eventually reached. Computational and experimental results were generally found to be in good agreement.

  2. The SNL100-01 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-02-01

    A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides a description of the final carbon blade design, which is termed as SNL100-01. This report includes a summary of the design modifications applied to the baseline all-glass 100-meter design and a description of the NuMAD model files that are made publicly available. This document is intended primarily to be a companion document to the distribution of the NuMAD blade model files for SNL100-01.

  3. Tiltrotor research aircraft composite blade repairs: Lessons learned

    Science.gov (United States)

    Espinosa, Paul S.; Groepler, David R.

    1991-01-01

    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  4. Tiltrotor Research Aircraft composite blade repairs - Lessons learned

    Science.gov (United States)

    Espinosa, Paul S.; Groepler, David R.

    1992-01-01

    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  5. Neutron radiography and other NDE tests of main rotor helicopter blades

    CSIR Research Space (South Africa)

    De Beer, FC

    2004-10-01

    Full Text Available leading to aircraft structural failures, are addressed by various NDE techniques. In a combined investigation by means of visual inspection, X-ray radiography and shearography on helicopter main rotor blades, neutron radiography (NRad) at SAFARI-1 research...

  6. Investigation of Blade Angle of an Open Cross-Flow Runner

    Science.gov (United States)

    Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi

    2015-04-01

    The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.

  7. Active load reduction by means of trailing edge flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Couchman, Ian; Castaignet, Damien; Poulsen, Niels Kjølstad

    2014-01-01

    This paper presents the blade fatigue load reduction achieved with a trailing edge flap during a full scale test on a Vestas V27 wind turbine. A frequency-weighted linear model predictive control (MPC) is tuned to decrease flapwise blade root fatigue loads at the frequencies where most of the blade...... damage occurs, i.e. the 1P and 2P frequencies (respectively 1 and 2 events per revolution). Frequency-weighted MPC is chosen for its ability to handle constraints on the trailing edge flap deflection and to optimise its actuation in order to decrease wear and tear of the actuator. The controller...... was first tested in aero-servo-elastic simulations, before being implemented on a Vestas V27 wind turbine. Consistent load reduction is achieved during the full-scale test. An average of 14% flapwise blade root fatigue load reduction is measured....

  8. Mechanical characterization of composite repairs for fiberglass wind turbine blades

    Science.gov (United States)

    Chawla, Tanveer Singh

    While in service, wind turbine blades experience various modes of loading. An example is impact loading in the form of hail or bird strikes, which might lead to localized damage or formation of cracks a few plies deep on the blade surface. One of the methods to conduct repairs on wind turbine blades that are damaged while in service is hand lay-up of the repair part after grinding out the damaged portion and some of its surrounding area. The resin used for such repairs usually differs from the parent plate resin in composition and properties such as gel time, viscosity, etc. As a result the properties of the repaired parts are not the same as that of the undamaged blades. Subsequent repetitive loading can be detrimental to weak repairs to such an extent so as to cause delamination at the parent-repair bondline causing the repairs to eventually fall off the blade. Thus the strength and toughness of the repair are of critical importance. Initial part of this work consists of an effort to increase repair strength by identifying an optimum hand layup repair resin for fiberglass wind turbine blades currently being manufactured by a global company. As delamination of the repair from the parent blade is a major concern and unidirectional glass fibers along with a polymer resin are used to manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) was followed to determine propagation fracture toughness values of the prospective vinyl ester repair resin candidates. These values were compared to those for a base polyester repair resin used by the company. Experimental procedure and results obtained from the above mentioned testing using double cantilever beam (DCB) specimens are detailed. Three new repair resins were shortlisted through mode I testing. It was also found that variation in the depth of the ground top ply of the parent part

  9. New morphing blade section designs and structural solutions for smart blades

    DEFF Research Database (Denmark)

    Karakalas, Anargyros A.; Machairas, Theodore; Solomou, Alexandros

    2015-01-01

    Within INNWIND.EU new concepts are investigated having the ultimate goal to reduce the cost per kilowatt-hour of the produced energy. With increasing size of wind turbines, new approaches to load control are required to reduce the stresses in blades. Experimental and numerical studies in the fields...... of helicopter and wind turbine blade research have shown the potential of shape morphing in reducing blade loads. Morphing technologies, along with other control concepts, are investigated under Task 2.3 of WP “Lightweight Rotor”, against aerodynamic compliance and requirements of the complete wind turbine...... the efforts performed within Task 2.2 “Lightweight structural design” of INNWIND.Eu work-package WP2 “Lightweight Rotor” regarding the structural solutions necessary to accommodate the requirements of smart blades developed within work-package WP2 Task 2.3 “Active and passive loads control and alleviation...

  10. Ceramic blade attachment system

    Science.gov (United States)

    Frey, G.A.; Jimenez, O.D.

    1996-12-03

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed between them. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. A pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade. 4 figs.

  11. Performance and internal flow condition of mini centrifugal pump with splitter blades

    International Nuclear Information System (INIS)

    Shigemitsu, T; Fukutomi, J; Kaji, K; Wada, T

    2012-01-01

    Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-CFX) to investigate the internal flow condition in detail. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. The blade-to-blade low velocity regions are suppressed in the case with the splitter blades and the total pressure loss regions are decreased. The effects of the splitter blades on the performance and the internal flow condition are discussed in this paper.

  12. Wind tunnel study of helical and straight-bladed vertical-axis wind turbine wakes

    Science.gov (United States)

    Bagheri, Maryam; Araya, Daniel

    2017-11-01

    It is hypothesized that blade curvature can serve as a passive means to control fluid entrainment and wake recovery in vertical-axis wind turbine (VAWT) arrays. We test this experimentally in a wind tunnel using two different VAWT configurations, one with straight blades and another with helical blades, keeping all other experimental parameters fixed. A small-scale, commercially available VAWT (15W max power) is used as the baseline wind tunnel model in each case. The commercial VAWT blades are replaced with either straight or helical blades that are 3D-printed extrusions of the same airfoil cross-section. Results from smoke flow visualization, three-component wake velocity measurements, and turbine power data are presented. These results give insight into the potential use of VAWTs with curved blades in utility-scale wind farms.

  13. Anisotropic beam model for analysis and design of passive controlled wind turbine blades

    DEFF Research Database (Denmark)

    Branner, Kim; Blasques, José Pedro Albergaria Amaral; Kim, Taeseong

    . The developed fully coupled beam element and cross section analysis tool has been validated against both numerical calculations and experimental measurements. Numerical validation has been performed against beam type calculations including Variational Asymptotical Beam Section Analysis (VABS) and detailed shell...... and solid finite element analyses. Experimental validation included specially designed beams with built-in couplings, a full-scale blade section originally without couplings, which subsequently was modified with extra composite layers in order to obtain measurable couplings. Both static testing and dynamic...... modal analysis tests have been performed. The results from the project now make it possible to use structural couplings in an intelligent manner for the design of future wind turbine blades. The developed beam element is especially developed for wind turbine blades and can be used for modeling blades...

  14. Construction of the 18-meter wooden blade at Nibe-Molle B

    Science.gov (United States)

    Nielsen, P. C.

    1982-11-01

    The construction of an 18 m cantilevered wooden rotor blade for wind turbine-B at Nibe, Denmark is reported. The project is described and conclusions are made based on calculations and tests on the rotor blade. Details are given on choice of material, construction, attachments and fittings, stress problems and loads.

  15. Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi; Mr. Aleks Plavsic

    2010-10-30

    IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5 kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.

  16. Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation

    Energy Technology Data Exchange (ETDEWEB)

    Claytor, Thomas N [Los Alamos National Laboratory; Ammerman, Curtt N [Los Alamos National Laboratory; Park, Gyu Hae [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Atterbury, Marie K [Los Alamos National Laboratory

    2010-01-01

    This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

  17. Modeling the Elastic and Damping Properties of the Multilayered Torsion Bar-Blade Structure of Rotors of Light Helicopters of the New Generation 2. Finite-Element Approximation of Blades and a Model of Coupling of the Torsion Bar with the Blades

    Science.gov (United States)

    Paimushin, V. N.; Shishkin, V. M.

    2016-01-01

    A rod-shape finite element with twelve degrees of freedom is proposed for modeling the elastic and damping properties of rotor blades with regard to their geometric stiffness caused by rotation of the rotor. A model of coupling of the torsion bar with blades is developed based on the hypothesis of linear deplanation of the connecting section of the torsion bar and a special transition element to ensure the compatibility of displacements of the torsion bar and blades upon their vibrations in the flapping and rotation planes. Numerical experiments were carried out to test and assess the validity of the model developed. Suggestions are made for ensuring unconditional stability of the iteration method in a subspace in determining the specified number of modes and frequencies of free vibrations of the torsion bar-blade structure.

  18. Structural dynamic analysis of turbine blade

    Science.gov (United States)

    Antony, A. Daniel; Gopalsamy, M.; Viswanadh, Chaparala B. V.; Krishnaraj, R.

    2017-10-01

    In any gas turbine design cycle, blade design is a crucial element which needs maximum attention to meet the aerodynamic performance, structural safety margins, manufacturing feasibility, material availability etc. In present day gas turbine engines, most of the failures occur during engine development test and in-service, in rotor and stator blades due to fatigue and resonance failures. To address this issue, an extensive structural dynamic analysis is carried out to predict the natural frequencies and mode shapes using FE methods. Using the dynamics characteristics, the Campbell diagram is constructed to study the possibility of resonance at various operating speeds. In this work, the feasibility of using composite material in place of titanium alloy from the structural dynamics point of view. This is being attempted in a Low-pressure compressor where the temperatures are relatively low and fixed with the casings. The analysis will be carried out using FE method for different composite material with different lamina orientations chosen through the survey. This study will focus on the sensitivity of blade mode shapes to different laminae orientations, which will be used to alter the natural frequency and tailor the mode shapes. Campbell diagrams of existing titanium alloy are compared with the composite materials with different laminae at all critical operating conditions. The existing manufacturing methods and the proven techniques for blade profiles will also be discussed in this report.

  19. Study on Blade Fatigue Life of Rotating Power Machinery

    Directory of Open Access Journals (Sweden)

    Fu Xi

    2016-01-01

    Full Text Available The linear damage model (LDM is widely applied in engineering calculation, but it does not consider the relationship between damage variable and load parameters. Therefore, the life prediction based on LDM is not satisfied for the aero-engine blades. Besides, it easily brings about error in predicting fatigue life by common nonlinear damage model which neglect the influence of torsional stress. Hence, a modified nonlinear continuum damage model (CDM is put forward based on Chaboche nonlinear damage model in this research. And to determine the damage and fatigue life of TC4 material used in aero-engine blades, axial tension and compression fatigue test is conducted. Compared with LDM results, the fatigue life prediction results of the modified CDM in this work show a good agreement with the tests data. So the correctness of the modified model is verified. Finally, the fatigue life of a certain aero-engine high pressure compressor blade is predicted by the modified nonlinear continuum damage model.

  20. New blades shape up for dozers

    Energy Technology Data Exchange (ETDEWEB)

    Chironis, N.P.

    1985-05-01

    This article discusses the design of blades used on dozers for the reclamation work following surface mining. Two blades are described which have led to a 50% reduction in reclamation costs and a 20% reduction in fuel requirements over conventional equipment. These results are from work carried out at the Kayenta mine in Arizona, USA. Design considerations in the development of the blades are described. Descriptions of both the centre flow blades and the universal blades are given.

  1. Damage Detection in an Operating Vestas V27 Wind Turbine Blade by use of Outlier Analysis

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Tcherniak, Dmitri; Damkilde, Lars

    2015-01-01

    The present paper explores the application of a well-established vibration-based damage detection method to an operating Vestas V27 wind turbine blade. The blade is analyzed in a total of four states, namely, a healthy one plus three damaged ones in which trailing edge openings of increasing sizes...

  2. Wind Turbine Blade Design System - Aerodynamic and Structural Analysis

    Science.gov (United States)

    Dey, Soumitr

    2011-12-01

    The ever increasing need for energy and the depletion of non-renewable energy resources has led to more advancement in the "Green Energy" field, including wind energy. An improvement in performance of a Wind Turbine will enhance its economic viability, which can be achieved by better aerodynamic designs. In the present study, a design system that has been under development for gas turbine turbomachinery has been modified for designing wind turbine blades. This is a very different approach for wind turbine blade design, but will allow it to benefit from the features inherent in the geometry flexibility and broad design space of the presented system. It starts with key overall design parameters and a low-fidelity model that is used to create the initial geometry parameters. The low-fidelity system includes the axisymmetric solver with loss models, T-Axi (Turbomachinery-AXIsymmetric), MISES blade-to-blade solver and 2D wing analysis code XFLR5. The geometry parameters are used to define sections along the span of the blade and connected to the CAD model of the wind turbine blade through CAPRI (Computational Analysis PRogramming Interface), a CAD neutral API that facilitates the use of parametric geometry definition with CAD. Either the sections or the CAD geometry is then available for CFD and Finite Element Analysis. The GE 1.5sle MW wind turbine and NERL NASA Phase VI wind turbine have been used as test cases. Details of the design system application are described, and the resulting wind turbine geometry and conditions are compared to the published results of the GE and NREL wind turbines. A 2D wing analysis code XFLR5, is used for to compare results from 2D analysis to blade-to-blade analysis and the 3D CFD analysis. This kind of comparison concludes that, from hub to 25% of the span blade to blade effects or the cascade effect has to be considered, from 25% to 75%, the blade acts as a 2d wing and from 75% to the tip 3D and tip effects have to be taken into account

  3. Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grids

    Science.gov (United States)

    Ahmad, Jasim; Duque, Earl P. N.

    1996-01-01

    An overset grid thin-layer Navier-Stokes code has been extended to include dynamic motion of helicopter rotor blades through relative grid motion. The unsteady flowfield and airloads on an AH-IG rotor in forward flight were computed to verify the methodology and to demonstrate the method's potential usefulness towards comprehensive helicopter codes. In addition, the method uses the blade's first harmonics measured in the flight test to prescribe the blade motion. The solution was impulsively started and became periodic in less than three rotor revolutions. Detailed unsteady numerical flow visualization techniques were applied to the entire unsteady data set of five rotor revolutions and exhibited flowfield features such as blade vortex interaction and wake roll-up. The unsteady blade loads and surface pressures compare well against those from flight measurements. Details of the method, a discussion of the resulting predicted flowfield, and requirements for future work are presented. Overall, given the proper blade dynamics, this method can compute the unsteady flowfield of a general helicopter rotor in forward flight.

  4. A blade deflection monitoring system

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  5. Design Procedure of 4-Bladed Propeller

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-09-01

    Sep 1, 2013 ... West African Journal of Industrial and Academic Research Vol.8 No.1 September 2013 ..... Number of blades. 5. Taylor's wake friction (w). The speed of ship (Vs), the number of propeller revolution (n), the blade number (Z) and the blade area ratio.... .... moment of inertia of a blade, the approximate.

  6. Bionic Design of Wind Turbine Blade Based on Long-Eared Owl’s Airfoil

    Directory of Open Access Journals (Sweden)

    Weijun Tian

    2017-01-01

    Full Text Available The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl’s wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl’s wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44% compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.

  7. Damage Identification of Wind Turbine Blades Using Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Seong-Won Choi

    2014-01-01

    Full Text Available This paper presents the experimental results of active-sensing structural health monitoring (SHM techniques, which utilize piezoelectric transducers as sensors and actuators, for determining the structural integrity of wind turbine blades. Specifically, Lamb wave propagations and frequency response functions at high frequency ranges are used to estimate the condition of wind turbine blades. For experiments, a 1 m section of a CX-100 blade is used. The goal of this study is to assess and compare the performance of each method in identifying incipient damage with a consideration given to field deployability. Overall, these methods yielded a sufficient damage detection capability to warrant further investigation. This paper also summarizes the SHM results of a full-scale fatigue test of a 9 m CX-100 blade using piezoelectric active sensors. This paper outlines considerations needed to design such SHM systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.

  8. Determination of the angle of attack on rotor blades

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Hansen, Martin Otto Laver; Sørensen, Jens Nørkær

    2009-01-01

    Two simple methods for determining the angle of attack (AOA) on a section of a rotor blade are proposed. Both techniques consist of employing the Biot-Savart integral to determine the influence of the bound vorticity on the velocity field. In the first technique, the force distribution along...... the blade and the velocity at a monitor point in the vicinity of the blade are assumed to be known from experiments or CFD computations. The AOA is determined by subtracting the velocity induced by the bound circulation, determined from the loading, from the velocity at the monitor point. In the second...... to be located closer to the blade, and thus to determine the AOA with higher accuracy. Data from CFD computations for flows past the Tellus 95 kW wind turbine at different wind speeds are used to test both techniques. Comparisons show that the proposed methods are in good agreement with existing techniques...

  9. Process Research on Polycrystalline Silicon Material (PROPSM)

    Science.gov (United States)

    Culik, J. S.; Wrigley, C. Y.

    1985-01-01

    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells.

  10. Performance evaluation of extractor cutting blade configuration in Inulin extraction process from Dahlia sp. L tuber

    Science.gov (United States)

    Sundari, E.; Praputri, E.; Marthiana, W.; Jaya, M.

    2018-03-01

    Inulin, a polysaccharide plant-based nutrient, can be isolated from dahlia flower tubers by liquid-solid extraction processes and is generally carried out in an extractor tank equipped with an agitator. To accelerate the diffusion rate of solute from the solid phase (bulk phase) to the external surface (boundary layer) in order to increase yield of inulin, the size reduction of material is required. The purpose of this research was to design the cutting blade needed for dahlia tuber size reduction and investigate the effect of blade types, agitator speed (350, 700, 1050, and 1400 rpm), and configuration of cutting blade to material fineness at 90 minutes of contacting time. The results showed that higher cutting blade speed results in higher cut material fineness rate. The best conditions was achieved by the configuration of two four-blade turbine combined with one three-blade turbine with fineness rate more than 90% in 30 minutes of contacting time at every variation of agitator speed. The cutting blade designed in this study can be used for size reduction purpose of tubers other than dahlia tubers.

  11. Investigation of the Hydrodynamics of Sweep Blade in Hi-Speed Axial Fuel Pump Impeller

    Directory of Open Access Journals (Sweden)

    Ran Tao

    2013-01-01

    Full Text Available Fuel pump is a crucial component in aircraft engine ignition system. For the hi-speed axial fuel pumps, rotating stall triggers vortex and affects the operation stability and security. Sweep blade is widely used to solve the stability problems in aerodynamics field. Investigation on the hydrodynamics was conducted in this study. Based on the typical straight blade pump, positive and negative sweep blade pumps were modeled. With the large eddy simulation method, CFD simulations were conducted to calculate and analyze the flow characteristics in the pump models. To verify the simulation, experiments were also launched on the hydraulic test rig. Results show that the vortex occurs at the suction surface of blade and gathers near the blade tip region. Positive sweep blade is effective to reduce the hydraulic losses by driving the stalled fluid into the mid-part of blade. By applying the positive sweep blade on the axial fuel pump, the instability operating region will be diminished. Adopting sweep blade provides an effective means for stability and security of axial fuel pumps.

  12. Arsenic implantation into polycrystalline silicon and diffusion to silicon substrate

    International Nuclear Information System (INIS)

    Tsukamoto, K.; Akasaka, Y.; Horie, K.

    1977-01-01

    Arsenic implantation into polycrystalline silicon and drive-in diffusion to silicon substrate have been investigated by MeV He + backscattering analysis and also by electrical measurements. The range distributions of arsenic implanted into polycrystalline silicon are well fitted to Gaussian distributions over the energy range 60--350 keV. The measured values of R/sub P/ and ΔR/sub P/ are about 10 and 20% larger than the theoretical predictions, respectively. The effective diffusion coefficient of arsenic implanted into polycrystalline silicon is expressed as D=0.63 exp[(-3.22 eV/kT)] and is independent of the arsenic concentration. The drive-in diffusion of arsenic from the implanted polycrystalline silicon layer into the silicon substrate is significantly affected by the diffusion atmosphere. In the N 2 atmosphere, a considerable amount of arsenic atoms diffuses outward to the ambient. The outdiffusion can be suppressed by encapsulation with Si 3 N 4 . In the oxidizing atmosphere, arsenic atoms are driven inward by growing SiO 2 due to the segregation between SiO 2 and polycrystalline silicon, and consequently the drive-in diffusion of arsenic is enhanced. At the interface between the polycrystalline silicon layer and the silicon substrate, arsenic atoms are likely to segregate at the polycrystalline silicon side

  13. The SNL100-02 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-11-01

    A series of design studies are performed to investigate the effects of advanced core materials and a new core material strategy on blade weight and performance for large blades using the Sandia 100-meter blade designs as a starting point. The initial core material design studies were based on the SNL100-01 100- meter carbon spar design. Advanced core material with improved performance to weight was investigated with the goal to reduce core material content in the design and reduce blade weight. A secondary element of the core study was to evaluate the suitability of core materials from natural, regrowable sources such as balsa and recyclable foam materials. The new core strategy for the SNL100-02 design resulted in a design mass of 59 tons, which is a 20% reduction from the most recent SNL100-01 carbon spar design and over 48% reduction from the initial SNL100-00 all-glass baseline blade. This document provides a description of the final SNL100-02 design, includes a description of the major design modifications, and summarizes the pertinent blade design information. This document is also intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-02 that are made publicly available.

  14. Design of an Advanced Wood Composite Rotor and Development of Wood Composite Blade Technology

    Science.gov (United States)

    Stroebel, Thomas; Dechow, Curtis; Zuteck, Michael

    1984-01-01

    In support of a program to advance wood composite wind turbine blade technology, a design was completed for a prototype, 90-foot diameter, two-bladed, one-piece rotor, with all wood/epoxy composite structure. The rotor was sized for compatibility with a generator having a maximum power rating of 4000 kilowatts. Innovative features of the rotor include: a teetering hub to minimize the effects of gust loads, untwisted blades to promote rotor power control through stall, joining of blades to the hub structure via an adhesive bonded structural joint, and a blade structural design which was simplified relative to earlier efforts. The prototype rotor was designed to allow flexibility for configuring the rotor upwind or downwind of the tower, for evaluating various types of teeter dampers and/or elastomeric stops, and with variable delta-three angle settings of the teeter shaft axis. The prototype rotor was also designed with provisions for installing pressure tap and angle of attack instrumentation in one blade. A production version rotor cost analysis was conducted. Included in the program were efforts directed at developing advanced load take-off stud designs for subsequent evaluation testing by NASA, development of aerodynamic tip brake concepts, exploratory testing of a wood/epoxy/graphite concept, and compression testing of wood/epoxy laminate, with scarf-jointed plies.

  15. In-plane inertial coupling in tuned and severely mistuned bladed disks

    Science.gov (United States)

    Crawley, E. F.

    1982-01-01

    A model has been developed and verified for blade-disk-shaft coupling in rotors due to the in-plane rigid body modes of the disk. An analytic model has been developed which couples the in-plane rigid body modes of the disk on an elastic shaft with the blade bending modes. Bench resonance test were carried out on the M.I.T. Compressor Rotor, typical of research rotors with flexible blades and a thick rigid disk. When the rotor was carefully tuned, the structural coupling of the blades by the disks was confined to zero and one nodal diameter modes, whose modal frequencies were greater than the blade cantilever frequency. In the case of the tuned rotor, and in two cases where severe mistuning was intentionally introduced, agreement between the predicted and observed natural frequencies is excellent. The analytic model was then extended to include the effects of constant angular rotation of the disk.

  16. Distribution of defects in wind turbine blades and reliability assessment of blades containing defects

    DEFF Research Database (Denmark)

    Stensgaard Toft, Henrik; Branner, Kim; Berring, Peter

    2009-01-01

    on the assumption that one error in the production process tends to trigger several defects. For both models additional information about number, type and size of the defects is included as stochastic variables. The probability of failure for a wind turbine blade will not only depend on variations in the material......In the present paper two stochastic models for the distribution of defects in wind turbine blades are proposed. The first model assumes that the individual defects are completely randomly distributed in the blade. The second model assumes that the defects occur in clusters of different size based...... properties and the load but also on potential defects in the blades. As a numerical example the probability of failure is calculated for the main spar both with and without defects in terms of delaminations. The delaminations increase the probability of failure compared to a perfect blade, but by applying...

  17. Aerodynamic investigation of winglets on wind turbine blades using CFD

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Sørensen, Niels N.

    2006-01-01

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of them were pointing towards the pressure side...

  18. Effect of blade flutter and electrical loading on small wind turbine noise

    Science.gov (United States)

    The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...

  19. Design and construction of a simple blade pitch measurement system for small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Whale, Jonathan [Research Institute of Sustainable Energy, Murdoch University, Perth, WA 6150 (Australia)

    2009-02-15

    For small wind turbines to be reliable they must have in place good mechanisms to protect themselves against very high winds or sudden removal of load. One common protection method in small wind turbines is that of blade feathering. It is important that the blade feathering mechanism of a small wind turbine is tested before the turbine is installed in the field. This paper presents a simple system for monitoring the blade feathering of a turbine with an overall component cost that small wind turbine manufacturers can afford. The Blade Pitch Measurement System (BPMS) has been designed and constructed by the Research Institute of Sustainable Energy (RISE) and aids small wind turbine manufacturers in testing and optimising the settings of the blade feathering mechanisms on their machines. The results show that the BPMS was successful in recording the behaviour of the blade feathering mechanism in field trials with a 20 kW and a 30 kW wind turbine. The BPMS displays significant potential as an effective, inexpensive system for small wind turbine manufacturers to ensure the reliability of their pitch regulating over-speed protection mechanisms. (author)

  20. Investigation of the structural behavior of the blades of a darrieus wind turbine†

    Science.gov (United States)

    Rosen, A.; Abramovich, H.

    1985-06-01

    A theoretical model in which account is taken of the non-linear, non-planar structural behavior of the curved blades of a Darrieus wind turbine is described. This model is simpler and needs less computational effort than some other models, but is still accurate enough for most engineering purposes. By using the present method, it is possible to treat any blade geometry, any structural, mass and aerodynamic blade properties distribution and any combination of boundary conditions. The model is used in order to calculate the blade behavior under the influence of concentrated loads, gravity loads and centrifugal loads. In order to verify the theoretical model, predictions are compared with experimental results which are obtained from tests with small models of curved blades. Usually the agreement between the theoretical and experimental results is very good. The influence of different parameters on blade behavior is presented and discussed.

  1. Temperature dependency of tensile properties of GFRP composite for wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Yong Hak; Kim, Jong Il; Kim, Dong Jin; Lee, Gun Chang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2012-09-15

    In this study, the temperature dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial (0 .deg.) and triaxial (0/{+-}45.deg) laminate composite plates were measured at four different testing temperatures-room temperature, -30 .deg. C, -50 .deg. C, and 60 .deg. C. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature.

  2. Temperature dependency of tensile properties of GFRP composite for wind turbine blades

    International Nuclear Information System (INIS)

    Huh, Yong Hak; Kim, Jong Il; Kim, Dong Jin; Lee, Gun Chang

    2012-01-01

    In this study, the temperature dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial (0 .deg.) and triaxial (0/±45.deg) laminate composite plates were measured at four different testing temperatures-room temperature, -30 .deg. C, -50 .deg. C, and 60 .deg. C. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature

  3. Numerical Investigation on Effect of Immersed Blade Depth on the Performance of Undershot Water Turbines

    Directory of Open Access Journals (Sweden)

    Yah Nor Fadilah

    2016-01-01

    Full Text Available Energy, especially electricity, plays a vital role in global social and economic development. High annual rain rate in Malaysia seems a good potential for electricity generation especially through small hydro powers. Undershot water turbines are one of the hydropower turbines used for many years. However, the effect of blade depth immersed in the flowing water is not fully investigated. Therefore, the purpose of this paper is to study the effect of immersed blade depth for straight blade undershot water turbine in power generation by using Computational Fluid Dynamics (CFD method. ANSYS CFX 15.0 was used to perform three dimensional analysis under steady state, incompressible, and non-isothermal conditions. The water wheel with number of blades of 6 and four different immersed depth was applied for each simulation. There are four different immersed depth was applied to each simulation, which are 20 mm, 40 mm, 60 mm and 80 mm. From the simulation result, it was found that the optimum immersed depth is 40 mm where the torque load and power generated were 0.264 N.m and 1.318 Watt respectively.

  4. Study of design and technology factors influencing gas turbine blade cooling

    Science.gov (United States)

    Shevchenko, I. V.; Garanin, I. V.; Rogalev, A. N.; Kindra, V. O.; Khudyakova, V. P.

    2017-11-01

    The knowledge of aerodynamic and thermal parameters of turbulators used in order to design an efficient blade cooling system. However, all experimental tests of the hydraulic and thermal characteristics of the turbulators were conducted on the rectangular shape channels with a strongly defined air flow direction. The actual blades have geometry of the channels that essentially differs from the rectangular shape. Specifically, the air flow in the back cavity of a blade with one and half-pass cooling channel changes its direction throughout the feather height. In most cases the ribs and pins are made with a tilt to the channel walls, which is determined by the moving element design of a mould for the ceramic rod element fabrication. All of the factors described above may result in the blade thermohydraulic model being developed failing to fully simulate the air flow and the heat exchange processes in some sections of the cooling path. Hence, the design temperature field will differ from the temperature field of an actual blade. This article studied the numerical data of design and technology factors influencing heat transfer in the cooling channels. The results obtained showed their substantial impact on the blade cooling efficiency.

  5. Integrated circuit cooled turbine blade

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  6. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Conditions Using Laser Scanning Vibrometry

    Directory of Open Access Journals (Sweden)

    Till Heinemann

    2017-08-01

    Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.

  7. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    Science.gov (United States)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  8. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    Schepers, J.G.

    1997-06-01

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  9. A study for soundness of turbine blade root using ultrasonic and phased array

    International Nuclear Information System (INIS)

    Gil, Doo Song; Park, Sang Ki; Cho, Yong Sang; Lee, Sang Gug; Huh, Kuang Bum

    2003-01-01

    Power plant is consisted of many component parts for the generation of the electricity and occasionally, turbine equipment may be caused in break-down because of the damage of the blade root. Phased array ultrasonic testing system has become available for power industry. This research describes the characteristics of phased array ultrasonic testing signal for various type of blade roots in thermal power plant turbines. This application of Phased array ultrasonic testing system has been promoted mainly to save inspection time and labor cost of turbine inspection. The characteristic of phased array ultrasonic testing signal for power plant component in very simple to understand but to difficult for perform the inspection. This paper is focused on the safety of the turbine equipment by the ultrasonic measurement and phased array analysis. As a result of the test through ultrasonic and phased array method, we have concluded that the main damage in these turbine blade roots parts could be generated by the concentrated stress and centrifugal force.

  10. Study of the stall delay phenomenon and of wind turbine blade dynamics using numerical approaches and NREL's wind tunnel tests

    Energy Technology Data Exchange (ETDEWEB)

    Breton, Simon-Philippe

    2008-06-15

    The production of electricity from wind has experienced an enormous growth worldwide in the last 20 years. It is now widely seen as a serious alternative to more conventional energy production methods. Improvements are however still possible to make it more cost-effective. This can be done through a better understanding of the fundamental phenomena involved in the interaction of the wind with the wind turbine rotor. This growth in the production of energy from wind is expected to continue at a similar rate in the years to come, helped by the installation of wind turbines at sea, that is becoming a hot topic in the wind energy field today. The phenomenon of stall delay affecting rotating wind turbine blades is an example of an aerodynamic phenomenon that is not yet fully understood. Several models exist to correct for this effect. Five such models were first tested within a vortex wake simulation code based on the modelling of a prescribed wake behind the rotor of the turbine. Comparison was made with wind tunnel test data acquired in head-on flow on a two-bladed 10.1 diameter wind turbine at the National Renewable Energy Laboratories (NREL) in 2000. It revealed a general overprediction of the stall delay effects, at the same time as great disparity was obtained between the different models. Conclusions from this work served as a starting point for a much more thorough investigation on this subject, where several models were tested in terms of different quantities using the same simulation code, and where the application of some of the models was improved. Overprediction of the loads was once again obtained when comparison was made to the NREL results in head-on flow, and none of the models was found to correctly represent the flow physics involved. The premises on which each of the models relies were discussed as a means of better understanding and modelling this phenomenon. The important issue of tip loss was also covered, and guidelines were suggested to improve

  11. Primary stability and self-tapping blades: biomechanical assessment of dental implants in medium-density bone.

    Science.gov (United States)

    Kim, Yung-Soo; Lim, Young-Jun

    2011-10-01

    The aim of this biomechanical study was to assess the influence of self-tapping blades in terms of primary implant stability between implants with self-tapping blades and implants without self-tapping blades using five different analytic methods, especially in medium-density bone. Two different types of dental implants (4 × 10 mm) were tested: self-tapping and non-self-tapping. The fixture design including thread profiles was exactly the same between the two groups; the only difference was the presence of cutting blades on one half of the apical portion of the implant body. Solid rigid polyurethane blocks with corresponding densities were selected to simulate medium-density bone. Five mechanical assessments (insertion torque, resonance frequency analysis [RFA], reverse torque, pull-out and push in test) were performed for primary stability. Implants without self-tapping blades showed significantly higher values (P0.05). The outcomes of the present study indicate that the implant body design without self-tapping blades has a good primary stability compared with that with self-tapping blades in medium-density bone. Considering the RFA, a distinct layer of cortical bone on marginal bone will yield implant stability quotient values similar to those in medium-bone density when implants have the same diameter. © 2011 John Wiley & Sons A/S.

  12. Atomistic modeling of mechanical properties of polycrystalline graphene.

    Science.gov (United States)

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-05-30

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1-10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets.

  13. Stress Analysis and Model Test of Rock Breaking by Arc Blade Wedged Hob

    Directory of Open Access Journals (Sweden)

    Ying-chao Liu

    2016-07-01

    Full Text Available Based on rock compression-shear damage theory, the mechanical characteristics of an arc blade wedged hob were analyzed to study the rock fragmentation mechanism of hob during excavation, and rock fragmentation forecasting model of the arc blade wedged hob was improved. A spoke type cutter model which is similar to the tunnel boring machine (TBM cutter head was designed to study the rock fragmentation efficiency in different cutter spacing by adjusting the bearing sleeve size to obtain different distances between the hobs. The results show that the hob-breaking rock force mainly comes from three directions. The vertical force along the direction of the tunnel excavation, which is associated with uniaxial compressive strength of rock mass, plays a key role in the process of rock fragmentation. Field project data shows that the prediction model’s results of rock fragmentation in this paper are closer to the measured results than the results of the traditional linear cutting model. The optimal cutter spacing exists among different cutter spacings to get higher rock fragmentation rate and lower energy consumption during rock fragmentation. It is of great reference significance to design the arc blade wedged hob and enhance the efficiency of rock fragmentation in rock strata.

  14. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...

  15. Ceramic blade with tip seal

    Science.gov (United States)

    Glezer, B.; Bhardwaj, N.K.; Jones, R.B.

    1997-08-05

    The present gas turbine engine includes a disc assembly defining a disc having a plurality of blades attached thereto. The disc has a preestablished rate of thermal expansion and the plurality of blades have a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the disc. A shroud assembly is attached to the gas turbine engine and is spaced from the plurality of blades a preestablished distance forming an interface there between. Positioned in the interface is a seal having a preestablished rate of thermal expansion being generally equal to the rate of thermal expansion of the plurality of blades. 4 figs.

  16. Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades

    International Nuclear Information System (INIS)

    Wang, Ying; Sun, Xiaojing; Dong, Xiaohua; Zhu, Bing; Huang, Diangui; Zheng, Zhongquan

    2016-01-01

    Highlights: • A novel vertical axis wind turbine with deformed blades is designed. • The universal tendency of power characteristics for simulated turbine is found. • The whole flow field of different turbines from the aspect of vortex is analyzed. • The tracking analysis of vortex at different positions for a blade is conducted. • The aerodynamic performance of turbine with three deformed blades is analyzed. - Abstract: In this paper, a novel Darrieus vertical axis wind turbine was designed whose blade can be deformed automatically into a desired geometry and thus achieve a better aerodynamic performance. A series of numerical simulations were conducted by utilizing the United Computational Fluid Dynamics code. Firstly, analysis and comparison of the performance of undeformed and deformed blades for the rotors having different blades were conducted. Then, the power characteristics of each simulated turbine were summarized and a universal tendency was found. Secondly, investigation on the effect of blade number and solidity on the power performance of Darrieus vertical axis wind turbine with deformable and undeformable blades was carried out. The results indicated that compared to conventional turbines with same solidity, the maximum percentage increase in power coefficient that the low solidity turbine with three deformable blades can achieve is about 14.56%. When solidity is high and also turbine operates at low tip speed ratio of less than the optimum value, the maximum power coefficient increase for the turbines with two and four deformable blades are 7.51% and 8.07%, respectively. However, beyond the optimal tip speed ratio, the power improvement of the turbine using the deformable blades seems not significant and even slightly worse than the conventional turbines. The last section studied the transient behavior of vortex and turbulent flow structures around the deformable rotor blade to explore the physical mechanism of improving aerodynamic

  17. Ingestion of safety razor blade and delayed hanging in a complex suicide.

    Science.gov (United States)

    Chauhan, Mohit Singh; Behera, C; Naagar, Sunil; Sreenivas, M

    2016-12-01

    Ingestion of a foreign body is mostly accidental in children and intentional in prisoners to achieve hospitalization; however, use of this method of suicide is rare. We report a case where the victim first ingested a safety razor blade, but failed to die and then hanged himself, but failed again and finally succumbed to the complications on the sixth day. He had also attempted suicide by inflicting multiple incised wounds on his neck four days before the safety blade ingestion, but none were fatal. © The Author(s) 2016.

  18. Adaptor assembly for coupling turbine blades to rotor disks

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  19. Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector

    Energy Technology Data Exchange (ETDEWEB)

    Menasce, D.; et al.

    2013-06-01

    We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, ε = 0.99860±0.00006, and the position-resolution for shared hits was about 6 μm. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke$-$), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector.

  20. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  1. A Non-Uniformly Under-Sampled Blade Tip-Timing Signal Reconstruction Method for Blade Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes.

  2. Modelling of lightning streamer formation and propagation in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    of the air termination in enhancing the electric field and attracting the lightning discharge, thus shielding the blade surface and preventing electrical breakdown of the blade material. However, the number and location of the discrete receptors may be difficult to establish, since their performance....... The present paper presents a method to investigate the origin and propagation of streamers from different conductive elements of the blade when exposed to a high electric field. The calculations are performed using dynamic simulations with the finite element method, and the results have been correlated...... with high voltage tests in the laboratory. The algorithms developed are intended to be a new and improved tool for the design of the blade lightning protection system, in particular to assess the effectiveness of the air termination system and the effects of internal conductive materials. The simulation...

  3. Influence of lattice distortion on phase transition properties of polycrystalline VO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tiegui [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Langping, E-mail: aplpwang@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Xiaofeng; Zhang, Yufen [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Yu, Yonghao, E-mail: yhyu@hit.edu.cn [Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-30

    Highlights: • Polycrystalline VO{sub 2} thin films were fabricated by high power impulse magnetron sputtering. • The reported lowest phase transition temperature for undoped polycrystalline VO{sub 2} thin film was reduced to 32 °C by this research. • XRD patterns at varied temperatures revealed that the main structual change was a gradual shift in interplanar spacing with temperature. - Abstract: In this work, high power impulse magnetron sputtering was used to control the lattice distortion in polycrystalline VO{sub 2} thin film. SEM images revealed that all the VO{sub 2} thin films had crystallite sizes of below 20 nm, and similar configurations. UV–vis-near IR transmittance spectra measured at different temperatures showed that most of the as-deposited films had a typical metal–insulator transition. Four-point probe resistivity results showed that the transition temperature of the films varied from 54.5 to 32 °C. The X-ray diffraction (XRD) patterns of the as-deposited films revealed that most were polycrystalline monoclinic VO{sub 2}. The XRD results also confirmed that the lattice distortions in the as-deposited films were different, and the transition temperature decreased with the difference between the interplanar spacing of the as-deposited thin film and standard rutile VO{sub 2}. Furthermore, a room temperature rutile VO{sub 2} thin film was successfully synthesized when this difference was small enough. Additionally, XRD patterns measured at varied temperatures revealed that the phase transition process of the polycrystalline VO{sub 2} thin film was a coordinative deformation between grains with different orientations. The main structural change during the phase transition was a gradual shift in interplanar spacing with temperature.

  4. Vibration analysis of gas turbine blade using FEM

    International Nuclear Information System (INIS)

    Iqbal, M.J.; Chohan, G.Y.; Khusnood, S.; Khan, M.A.

    2003-01-01

    In a typical turbo-machine, there is a stator row of blades, which guide the gases onto a rotor row of blades, to extract the mechanical power from the machine. A typical rotor blade was sees upstream disturbance from the stator row and as it rotates, receive a corresponding number of increasing and decreasing lift and moment forces alternating periodically, depending on the number of stator blades/nozzles/guide vanes. Thus all the blades in a turbo-machine receiver their major periodic excitation at a frequency equal to nozzle passing frequency. Since these forces are periodic, one has to consider several number of these harmonics in determining whether resonance takes place, when one of these harmonics coincides with any of the natural frequencies of the blades. Turbine blades have a variety of natural modes of vibration, predominantly as blade alone but also in combination with flexing of the disc rim. These mode occur at characteristic frequencies, which are determined by the distribution of mass and stiffness (in bending or torsion), resulting from the variable thickness over the blade area. Since the advent of steam turbines and their application in various sectors of industry, it is a common experience that a blade failure is a major cause of breakdown in these machines. Blade failures due to fatigue are predominantly vibration related. The dynamic loads on the blading can arise from many sources, the predominant being the source of the operation principles on which the machine is designed. This work deals with vibration analysis of a gas turbine blade using a finite element package ANSYS. Determined the natural frequencies and mode shapes for a turbine blade and a rectangular blade. Results have been validated experimentally using a rectangular blade. ANSYS results have also been compared against published results. (author)

  5. Comparison of efficiency degradation in polycrystalline-Si and CdTe thin-film PV modules via accelerated lifecycle testing

    Science.gov (United States)

    Lai, T.; Potter, B. G.; Simmons-Potter, K.

    2017-08-01

    Thin-film solar cells normally have the shortest energy payback time due to their simpler mass-production process compared to polycrystalline-Si photovoltaic (PV) modules, despite the fact that crystalline-Si-based technology typically has a longer total lifetime and a higher initial power conversion efficiency. For both types of modules, significant aging occurs during the first two years of usage with slower long-term aging over the module lifetime. The PV lifetime and the return-on-investment for local PV system installations rely on long-term device performance. Understanding the efficiency degradation behavior under a given set of environmental conditions is, therefore, a primary goal for experimental research and economic analysis. In the present work, in-situ measurements of key electrical characteristics (J, V, Pmax, etc.) in polycrystalline-Si and CdTe thin-film PV modules have been analyzed. The modules were subjected to identical environmental conditions, representative of southern Arizona, in a full-scale, industrial-standard, environmental degradation chamber, equipped with a single-sun irradiance source, temperature, and humidity controls, and operating an accelerated lifecycle test (ALT) sequence. Initial results highlight differences in module performance with environmental conditions, including temperature de-rating effects, for the two technologies. Notably, the thin-film CdTe PV module was shown to be approximately 15% less sensitive to ambient temperature variation. After exposure to a seven-month equivalent compressed night-day weather cycling regimen the efficiency degradation rates of both PV technology types were obtained and will be discussed.

  6. Atomistic modeling of mechanical properties of polycrystalline graphene

    International Nuclear Information System (INIS)

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-01-01

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1–10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets. (papers)

  7. On the evolution of surface roughness during deformation of polycrystalline aluminum alloys

    NARCIS (Netherlands)

    Vellinga, WP; van Tijum, Redmer; de Hosson, JTM

    Surface roughening of polycrystalline Al-Mg alloys during tensile deformation is investigated using white light confocal microscopy. Materials are tested that differ only in grain size. A height-height correlation technique is used to analyze the data. The surface obeys self-affine scaling on length

  8. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Wind blade spar cap and method of making

    Science.gov (United States)

    Mohamed, Mansour H [Raleigh, NC

    2008-05-27

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  10. Composite ceramic blade for a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rossmann, A; Hoffmueller, W; Krueger, W

    1980-06-26

    The gas turbine blade consists of a supporting metal core which has at its lower end a modelled root and a profile blade made of ceramics enclosing it at some distance. The invention deals with a reliable connection between these two parts of the rotor blade: from the top end of the blade core a head protrudes supporting the thin-walled profile blade from below with a projection each pointing into the interior. The design of the projections and supporting surfaces is described and illustrated by drawings.

  11. Blade System Design Study. Part II, final project report (GEC).

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Dayton A. (DNV Global Energy Concepts Inc., Seattle, WA)

    2009-05-01

    As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC)1 has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories. The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004. The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance. Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its

  12. Research on Automatic Positioning System of Ultrasonic Testing of Wind Turbine Blade Flaws

    Science.gov (United States)

    Liu, Q. X.; Wang, Z. H.; Long, S. G.; Cai, M.; Cai, M.; Wang, X.; Chen, X. Y.; Bu, J. L.

    2017-11-01

    Ultrasonic testing technology has been used essentially in non-destructive testing of wind turbine blades. However, it is fact that the ultrasonic flaw detection method has inefficiently employed in recent years. This is because the testing result will illustrate a small deviation due to the artificial, environmental and technical factors. Therefore, it is an urgent technical demand for engineers to test the various flaws efficiently and quickly. An automatic positioning system has been designed in this paper to record the moving coordinates and the target distance in real time. Simultaneously, it could launch and acquire the sonic wave automatically. The ADNS-3080 optoelectronic chip is manufactured by Agilent Technologies Inc, which is also utilized in the system. With the combination of the chip, the power conversion module and the USB transmission module, the collected data can be transmitted from the upper monitor to the hardware that could process and control the data through software programming. An experiment has been designed to prove the reliability of automotive positioning system. The result has been validated by comparing the result collected form LABVIEW and actual plots on Perspex plane, it concludes that the system possesses high accuracy and magnificent meanings in practical engineering.

  13. Design of a 21 m blade with Risø-A1 airfoils for active stall controlled wind turbines

    DEFF Research Database (Denmark)

    Fuglsang, Peter; Sangill, O.; Hansen, P.

    2002-01-01

    This is the final report, from the project, "Design of a Rotor/Airfoil Family for Active Stall-regulated Wind Turbines by Use of Multi-point Optimization". It describes the full scale testing of a 21 m wind turbine blade specially designed for active stallregulation. Design objectives were...... increased ratio of produced energy to turbine loads and more stable power control characteristics. Both were taken directly into account during the design of the blade using numerical optimization. The blade used theRisø-A1 airfoil family, which was specially designed for operation on wind turbine blades....... The new blade was designed to replace the LM 21.0P blade. A measurement campaign was carried out simultaneously on two identical adjacent wind turbines where onehad the new blades and the other had LM 21.0P blades. Power and loads including blade section moments for the new blades were measured to assess...

  14. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    Science.gov (United States)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  15. Initiation of trailing edge failure in full-scale wind turbine blade test

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich; Branner, Kim

    2016-01-01

    non-linear buckling effect of the trailing edge under combined loading, and how it affects the ultimate strength of a blade in a trailing-edge failure dominated load direction were investigated. The study details the interaction between trailing edge buckling on damage onset and sandwich panel failure...

  16. Rocket Engine Turbine Blade Surface Pressure Distributions Experiment and Computations

    Science.gov (United States)

    Hudson, Susan T.; Zoladz, Thomas F.; Dorney, Daniel J.; Turner, James (Technical Monitor)

    2002-01-01

    Understanding the unsteady aspects of turbine rotor flow fields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with miniature surface mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in two respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. A three-dimensional unsteady Navier-Stokes analysis was also used to blindly predict the unsteady flow field in the turbine at the design operating conditions and at +15 degrees relative incidence to the first-stage rotor. The predicted time-averaged and unsteady pressure distributions show good agreement with the experimental data. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools are contributing significantly to current Space Launch Initiative turbine airflow test and blade surface pressure prediction efforts.

  17. Numerical Research on Effects of Splitter Blades to the Influence of Pump as Turbine

    Directory of Open Access Journals (Sweden)

    Yang Sun-Sheng

    2012-01-01

    Full Text Available Centrifugal pumps can be operated in reverse as small hydropower recovery turbines and are cheaper than bespoke turbines due to their ease of manufacture. Splitter blades technique is one of the techniques used in flow field optimization and performance enhancement of rotating machinery. To understand the effects of splitter blades to the steady and unsteady influence of PAT, numerical research was performed. 3D Navier-Stokes solver CFX was used in the performance prediction and analysis of PAT’s performance. Results show that splitter blades have a positive impact on PAT’s performance. With the increase of splitter blades, its required pressure head is dropped and its efficiency is increased. Unsteady pressure field analysis and comparison show that the unsteady pressure field within PAT is improved when splitter blades are added to impeller flow passage. To verify the accuracy of numerical prediction methods, an open PAT test rig was built at Jiangsu University. The PAT was manufactured and tested. Comparison between experimental and numerical results shows that the discrepancy between numerical and experimental results is acceptable. CFD can be used in the performance prediction and optimization of PAT.

  18. A Take Stock of Turbine Blades Failure Phenomenon

    Science.gov (United States)

    Roy, Abhijit

    2018-02-01

    Turbine Blade design and engineering is one of the most complicated and important aspects of turbine technology. Experiments with blades can be simple or very complicated, depending upon parameters of analysis. Turbine blades are subjected to vigorous environments, such as high temperatures, high stresses, and a potentially high vibration environment. All these factors can lead to blade failures, which can destroy the turbine, and engine, so careful design is the prime consideration to resist those conditions. A high cycle of fatigue of compressor and turbine blades due to high dynamic stress caused by blade vibration and resonance within the operating range of machinery is common failure mode for turbine machine. Continuous study and investigation on failure of turbine blades are going on since last five decades. Some review papers published during these days aiming to present a review on recent studies and investigations done on failures of turbine blades. All the detailed literature related with the turbine blades has not been described but emphasized to provide all the methodologies of failures adopted by various researches to investigate turbine blade. This paper illustrate on various factors of failure.

  19. Wind Turbine Blade with Angled Girders

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...

  20. Giant 1/f noise in two-dimensional polycrystalline media

    International Nuclear Information System (INIS)

    Snarskii, A.; Bezsudnov, I.

    2008-01-01

    The behaviour of excess (1/f noise) in two-dimensional polycrystalline media is investigated. On the base of current trap model, it is shown that there exists a certain anisotropy value of conductivity tensor for polycrystalline media when the amplitude of 1/f noise becomes giant

  1. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades......, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance...

  2. Shape design of internal cooling passages within a turbine blade

    Science.gov (United States)

    Nowak, Grzegorz; Nowak, Iwona

    2012-04-01

    The article concerns the optimization of the shape and location of non-circular passages cooling the blade of a gas turbine. To model the shape, four Bezier curves which form a closed profile of the passage were used. In order to match the shape of the passage to the blade profile, a technique was put forward to copy and scale the profile fragments into the component, and build the outline of the passage on the basis of them. For so-defined cooling passages, optimization calculations were carried out with a view to finding their optimal shape and location in terms of the assumed objectives. The task was solved as a multi-objective problem with the use of the Pareto method, for a cooling system composed of four and five passages. The tool employed for the optimization was the evolutionary algorithm. The article presents the impact of the population on the task convergence, and discusses the impact of different optimization objectives on the Pareto optimal solutions obtained. Due to the problem of different impacts of individual objectives on the position of the solution front which was noticed during the calculations, a two-step optimization procedure was introduced. Also, comparative optimization calculations for the scalar objective function were carried out and set up against the non-dominated solutions obtained in the Pareto approach. The optimization process resulted in a configuration of the cooling system that allows a significant reduction in the temperature of the blade and its thermal stress.

  3. Preliminary Investigation of Several Root Designs for Cermet Turbine Blades in Turbojet Engine III : Curved-root Design

    Science.gov (United States)

    Pinkel, Benjamin; Deutsch, George C; Morgan, William C

    1955-01-01

    Stresses om tje root fastenings of turbine blades were appreciably reduced by redesign of the root. The redesign consisted in curving the root to approximately conform to the camber of the airfoil and elimination of the blade platform. Full-scale jet-engine tests at rated speed using cermet blades of the design confirmed the improvement.

  4. Artificial neural network based modeling of performance characteristics of deep well pumps with splitter blade

    International Nuclear Information System (INIS)

    Goelcue, Mustafa

    2006-01-01

    Experimental studies were made to investigate the effects of splitter blade length (25%, 35%, 50%, 60% and 80% of the main blade length) on the pump characteristics of deep well pumps for different blade numbers (z=3, 4, 5, 6 and 7). In this study, an artificial neural network (ANN) was used for modeling the performance of deep well pumps with splitter blades. Two hundred and ten experimental results were used to train and test. Forty-two patterns have been randomly selected and used as the test data. The main parameters for the experiments are the blade number (z), non-dimensional splitter blade length (L-bar ), flow rate (Q, l/s), head (H m , m), efficiency (η, %) and power (P e , kW). z, L-bar and Q have been used as the input layer, and H m and η have also been used as the output layer. The best training algorithm and number of neurons were obtained. Training of the network was performed using the Levenberg-Marquardt (LM) algorithm. To determine the effect of the transfer function, different ANN models are trained, and the results of these ANN models are compared. Some statistical methods; fraction of variance (R 2 ) and root mean squared error (RMSE) values, have been used for comparison

  5. Wireless Inductive Power Device Suppresses Blade Vibrations

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  6. Anelasticity of polycrystalline indium

    Energy Technology Data Exchange (ETDEWEB)

    Sapozhnikov, K., E-mail: k.sapozhnikov@mail.ioffe.ru [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Golyandin, S. [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Kustov, S. [Dept. de Fisica, Universitat de les Illes Balears, Cra Valldemossa km 7.5, E 07122 Palma de Mallorca (Spain)

    2009-09-15

    Mechanisms of anelasticity of polycrystalline indium have been studied over wide ranges of temperature (7-320 K) and strain amplitude (2 x 10{sup -7}-3.5 x 10{sup -4}). Measurements of the internal friction and Young's modulus have been performed by means of the piezoelectric resonant composite oscillator technique using longitudinal oscillations at frequencies of about 100 kHz. The stages of the strain amplitude dependence of the internal friction and Young's modulus defect, which can be attributed to dislocation - point defect and dislocation - dislocation interactions, have been revealed. It has been shown that thermal cycling gives rise to microplastic straining of polycrystalline indium due to the anisotropy of thermal expansion and to appearance of a 'recrystallization' internal friction maximum in the temperature spectra of amplitude-dependent anelasticity. The temperature range characterized by formation of Cottrell's atmospheres of point defects around dislocations has been determined from the acoustic data.

  7. Investigation of structural behaviour due to bend-twist couplings in wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimiroy; Berggreen, Christian

    2009-01-01

    The structural behaviour of a composite wind turbine blade with implemented bend-twist coupling is examined in this paper. Several shell finite element models of the blade have been developed and validated against full-scale tests. All shell models performed well for flap-wise bending......, but performed poorly in torsion, when employing material off-sets....

  8. Research on Fatigue Damage of Compressor Blade Steel KMN-I Using Nonlinear Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2017-01-01

    Full Text Available The fatigue damage of compressor blade steel KMN-I was investigated using nonlinear ultrasonic testing and the relation curve between the material nonlinearity parameter β and the fatigue life was obtained. The results showed that the nonlinearity parameter increased first and then decreased with the increase of the fatigue cycles. The microstructures were observed by scanning electron microscopy (SEM. It was found that some small defects like holes and pits appeared in the material matrix with the increase of the fatigue cycles, and the nonlinearity parameter increased correspondingly. The nonlinearity parameter reached the peak value when the microcracks initiated, and the nonlinearity parameter began to decrease when the microcracks further propagated to macrocracks. Therefore, it is proved that the nonlinearity parameter can be used to characterize the initiation of microcracks at the early stage of fatigue, and a method of evaluating the fatigue life of materials by nonlinear ultrasonic testing is proposed.

  9. Contactless Diagnostics of Turbine Blade Vibration and Damage

    International Nuclear Information System (INIS)

    Prochazka, Pavel; Vanek, Frantisek

    2011-01-01

    The study deals with the contactless diagnostic method used for the identification of steam turbine blade strain, vibration and damage. The tip-timing method based on the evaluation of time differences of blade passages in different rotor revolutions has been modified and improved to provide more precise and reliable results. A new approach to the analysis of the amplitude and time differences of impulse signals generated by a blade passage has been applied. Amplitudes and frequencies of vibrations and static position of blades ascertained by the diagnostic process are used to establish the state of blade damage. A contactless diagnostic system VDS-UT based on magneto-resistive sensors was developed in the Institute of Thermomechanics Academy of Sciences of the Czech Republic. The system provides on-line monitoring of vibration amplitudes and frequencies of all blades and notification of possible blade damage. Evaluation of the axial and circumferential components of the deflections by measuring the amplitude of blade impulse signals results in an overall improvement of the method. Using magneto-resistive sensors, blade elongation and untwisting can be determined as well.

  10. Structural Reliability of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    turbine blades. The main purpose is to draw a clear picture of how reliability-based design of wind turbines can be done in practice. The objectives of the thesis are to create methodologies for efficient reliability assessment of composite materials and composite wind turbine blades, and to map...... the uncertainties in the processes, materials and external conditions that have an effect on the health of a composite structure. The study considers all stages in a reliability analysis, from defining models of structural components to obtaining the reliability index and calibration of partial safety factors...... by developing new models and standards or carrying out tests The following aspects are covered in detail: ⋅ The probabilistic aspects of ultimate strength of composite laminates are addressed. Laminated plates are considered as a general structural reliability system where each layer in a laminate is a separate...

  11. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  12. Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades

    Science.gov (United States)

    Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang

    2017-12-01

    This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.

  13. Design of horizontal-axis wind turbine using blade element momentum method

    Science.gov (United States)

    Bobonea, Andreea; Pricop, Mihai Victor

    2013-10-01

    The study of mathematical models applied to wind turbine design in recent years, principally in electrical energy generation, has become significant due to the increasing use of renewable energy sources with low environmental impact. Thus, this paper shows an alternative mathematical scheme for the wind turbine design, based on the Blade Element Momentum (BEM) Theory. The results from the BEM method are greatly dependent on the precision of the lift and drag coefficients. The basic of BEM method assumes the blade can be analyzed as a number of independent element in spanwise direction. The induced velocity at each element is determined by performing the momentum balance for a control volume containing the blade element. The aerodynamic forces on the element are calculated using the lift and drag coefficient from the empirical two-dimensional wind tunnel test data at the geometric angle of attack (AOA) of the blade element relative to the local flow velocity.

  14. Structural and mechanism design of an active trailing-edge flap blade

    DEFF Research Database (Denmark)

    Lee, Jae Hwan; Natarajan, Balakumaran; Eun, Won Jong

    2013-01-01

    , as the blade is able to withstand increased centrifugal force. The cross-section of the active blade is designed first. A stress/strain recovery analysis is then conducted to verify its structural integrity. A one-dimensional beam analysis is also carried out to assist with the construction of the fan diagram...... of the rotor through modification of unsteady aerodynamic loads. Piezoelectric actuators installed inside the blade manipulate the motion of the trailing edge flap. The proposed blade rotates at higher speed and additional structures are included to support the actuators and the flap. This improves the design....... To select the actuator and design the flap actuation region, the flap hinge moment is estimated via a CFD analysis. To obtain the desired flap deflection of ±4°, three actuators are required. The design of the flap actuation region is validated using a test bed with a skin hinge. However, because the skin...

  15. Evaluation of fatigue damage for wind turbine blades using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Hyun Sup; Ju, No Hoe [Korea Institute of Materials Science, Changwon (Korea, Republic of); So, Cheal Ho [Dongshin University, Naju (Korea, Republic of); Lee, Jong Kyu [Dept. of Physics, Pukyung National University, Busan (Korea, Republic of)

    2015-06-15

    In this study, the flap fatigue test of a 48 m long wind turbine blade was performed for 1 million cycles to evaluate the characteristics of acoustic emission signals generated from fatigue damage of the wind blades. As the number of hits and total energy continued to increase during the first 0.6 million cycles, blade damage was constant. The rise-time result showed that the major aspects of damage were initiation and propagation of matrix cracks. In addition, the signal analysis of each channel showed that the most seriously damaged sections were the joint between the skin and spar, 20 m from the connection, and the spot of actual damage was observable by visual inspection. It turned out that the event source location was related to the change in each channel{sup s} total energy. It is expected that these findings will be useful for the optimal design of wind turbine blades.

  16. Healing of osteotomy sites applying either piezosurgery or two conventional saw blades: a pilot study in rabbits.

    Science.gov (United States)

    Ma, Li; Stübinger, Stefan; Liu, Xi Ling; Schneider, Urs A; Lang, Niklaus P

    2013-08-01

    The purpose of this study was to compare bone healing of experimental osteotomies applying either piezosurgery or two different oscillating saw blades in a rabbit model. The 16 rabbits were randomly assigned into four groups to comply with observation periods of one, two, three and five weeks. In all animals, four osteotomy lines were performed on the left and right nasal bone using a conventional saw blade, a novel saw blade and piezosurgery. All three osteotomy techniques revealed an advanced gap healing starting after one week. The most pronounced new bone formation took place between two and three weeks, whereby piezoelectric surgery revealed a tendency to faster bone formation and remodelling. Yet, there were no significant differences between the three modalities. The use of a novel as well as the piezoelectric bone-cutting instrument revealed advanced bone healing with a favourable surgical performance compared to a traditional saw.

  17. Genetic fuzzy system for online structural health monitoring of composite helicopter rotor blades

    Science.gov (United States)

    Pawar, Prashant M.; Ganguli, Ranjan

    2007-07-01

    A structural health monitoring (SHM) methodology is developed for composite rotor blades. An aeroelastic analysis of composite rotor blades based on the finite element method in space and time and with implanted matrix cracking and debonding/delamination damage is used to obtain measurable system parameters such as blade response, loads and strains. A rotor blade with a two-cell airfoil section and [0/±45/90]s family of laminates is used for numerical simulations. The model based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems (GFS) are developed for global online damage detection using displacement and force-based measurement deviations between damaged and undamaged conditions and for local online damage detection using strains. It is observed that the success rate of the GFS depends on number of measurements, type of measurements and training and testing noise level. The GFS work quite well with noisy data and is recommended for online SHM of composite helicopter rotor blades.

  18. Innovation in Vertical Axis Hydrokinetic Turbine – Straight Blade Cascaded (VAHT-SBC) design and testing for low current speed power generation

    Science.gov (United States)

    Hantoro, R.; Utama, I. K. A. P.; Arief, I. S.; Ismail, A.; Manggala, S. W.

    2018-05-01

    This study examines an innovative turbine with the addition of the number and arrangement of straight blade cascaded (SBC). SBC is a combination of passive variable-pitch and fixed pitch of each turbine arm. This study was conducted in an open channel flow that has a current velocity (V-m/s) of 1.1, 1.2, and 1.3. RPM and torque ware measured for coefficient of performance (Cp) and tip speed ratio (TSR) calculation. Without changing the turbine dimension, the employment of cascaded blade (three blades in each arm) contributes to improve energy extraction significantly. A significant increase in Cp value is seen when 9 blades (3 cascaded blades per arm) are used with a Cp 0.42 value at TSR 2.19. This value has reached 93% of the maximum theoritical Cp value.

  19. Polycrystalline Diamond Schottky Diodes and Their Applications.

    Science.gov (United States)

    Zhao, Ganming

    In this work, four-hot-filament CVD techniques for in situ boron doped diamond synthesis on silicon substrates were extensively studied. A novel tungsten filament shape and arrangement used to obtain large-area, uniform, boron doped polycrystalline diamond thin films. Both the experimental results and radiative heat transfer analysis showed that this technique improved the uniformity of the substrate temperature. XRD, Raman and SEM studies indicate that large area, uniform, high quality polycrystalline diamond films were obtained. Schottky diodes were fabricated by either sputter deposition of silver or thermal evaporation of aluminum or gold, on boron doped diamond thin films. High forward current density and a high forward-to-reverse current ratio were exhibited by silver on diamond Schottky diodes. Schottky barrier heights and the majority carrier concentrations of both aluminum and gold contacted diodes were determined from the C-V measurements. Furthermore, a novel theoretical C-V-f analysis of deep level boron doped diamond Schottky diodes was performed. The analytical results agree well with the experimental results. Compressive stress was found to have a large effect on the forward biased I-V characteristics of the diamond Schottky diodes, whereas the effect on the reverse biased characteristics was relatively small. The stress effect on the forward biased diamond Schottky diode was attributed to piezojunction and piezoresistance effects. The measured force sensitivity of the diode was as high as 0.75 V/N at 1 mA forward bias. This result shows that CVD diamond device has potential for mechanical transducer applications. The quantitative photoresponse characteristics of the diodes were studied in the spectral range of 300 -1050 nm. Semi-transparent gold contacts were used for better photoresponse. Quantum efficiency as high as 50% was obtained at 500 nm, when a reverse bias of over 1 volt was applied. The Schottky barrier heights between either gold or

  20. Experimental development of a torsion arc blade type horizontal axis windmil; Nejire enko yokugata suihei jiku fusha no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, N. [Meiji Univ., Tokyo (Japan). Faculty of Scince and Technology

    1996-05-31

    To get more wind energy, longer rotating blades and higher towers of windmills are required. Therefore, the location of windmills is limited and the initial cost gets higher. In this study, a small size windmill which can generate electricity even in a city was developed and tested. A torsion arc blade type horizontal axis windmill was designed and the blade form, number and degree of distortion were investigated. Based on the results, a small windmill was made, rotation and generation tests were carried out and it was confirmed that the windmill could be used as a small scale wind power generation. The windmill is of simple construction having 6 arc blades and no high tower is required. This paper consists of 6 sections, i.e. Introduction, Windmill model, Tested windmill, Test facility and method, Test results and consideration, and Postscript. 2 refs., 18 figs., 1 tab.

  1. Manufacturing issues which affect coating erosion performance in wind turbine blades

    Science.gov (United States)

    Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.

    2017-10-01

    Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).

  2. The three-dimensional microstructure of polycrystalline materials unravelled by synchrotron light

    International Nuclear Information System (INIS)

    Ludwig, W.; Herbig, M.; Ludwig, W.; King, A; Reischig, P.; Marrow, J.; Babout, L.; Mejdal Lauridsen, E.; Proudhon, H.

    2011-01-01

    Synchrotron radiation X-ray imaging and diffraction techniques offer new possibilities for non-destructive bulk characterization of polycrystalline materials. Minute changes in electron density (different crystallographic phases, cracks, porosities) can be detected using 3D imaging modes exploiting Fresnel diffraction and the coherence properties of third generation synchrotron beams. X-ray diffraction contrast tomography, a technique based on Bragg diffraction imaging, provides access to the 3D shape, orientation and elastic strain state of the individual grains from polycrystalline sample volumes containing several hundred up to a few thousand grains. Combining both imaging modalities allows a comprehensive description of the microstructure of the material at the micrometer length scale. Repeated observations during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystal deformation and degradation mechanisms in materials, fulfilling some conditions on grain size and deformation state. (authors)

  3. Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade

    Science.gov (United States)

    Li, Y.; Zheng, Y. F.; Feng, F.; He, Q. B.; Wang, N. X.

    2016-08-01

    To improve the starting performance of the straight-bladed vertical axis wind turbine (SB-VAWT) at low wind speed, and the output characteristics at high wind speed, a flexible, scalable auxiliary vane mechanism was designed and installed into the rotor of SB-VAWT in this study. This new vertical axis wind turbine is a kind of lift-to-drag combination wind turbine. The flexible blade expanded, and the driving force of the wind turbines comes mainly from drag at low rotational speed. On the other hand, the flexible blade is retracted at higher speed, and the driving force is primarily from a lift. To research the effects of the flexible, scalable auxiliary module on the performance of SB-VAWT and to find its best parameters, the computational fluid dynamics (CFD) numerical calculation was carried out. The calculation result shows that the flexible, scalable blades can automatic expand and retract with the rotational speed. The moment coefficient at low tip speed ratio increased substantially. Meanwhile, the moment coefficient has also been improved at high tip speed ratios in certain ranges.

  4. Vibration and flutter of mistuned bladed-disk assemblies

    Science.gov (United States)

    Kaza, K. R. V.; Kielb, R. E.

    1984-01-01

    An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbofans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.

  5. Anisotropic beam model for analysis and design of passive controlled wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Branner, K; Blasques, J P; Kim, T; Fedorov, V A; Berring, P; Bitsche, R D; Berggreen, C

    2012-02-15

    The main objective of the project was, through theoretical and experimental research, to develop and validate a fully coupled, general beam element that can be used for advanced and rapid analysis of wind turbine blades. This is fully achieved in the project and the beam element has even been implemented in the aeroelastic code HAWC2. It has also been demonstrated through a parametric study in the project that a promising possibility with the tool is to reduce fatigue loads through structural couplings. More work is needed before these possibilities are fully explored and blades with structural couplings can be put into production. A cross section analysis tool BECAS (BEam Cross section Analysis Software) has been developed and validated in the project. BECAS is able to predict all geometrical and material induced couplings. This tool has obtained great interest from both industry and academia. The developed fully coupled beam element and cross section analysis tool has been validated against both numerical calculations and experimental measurements. Numerical validation has been performed against beam type calculations including Variational Asymptotical Beam Section Analysis (VABS) and detailed shell and solid finite element analyses. Experimental validation included specially designed beams with built-in couplings, a full-scale blade section originally without couplings, which subsequently was modified with extra composite layers in order to obtain measurable couplings. Both static testing and dynamic modal analysis tests have been performed. The results from the project now make it possible to use structural couplings in an intelligent manner for the design of future wind turbine blades. The developed beam element is especially developed for wind turbine blades and can be used for modeling blades with initial curvature (pre-bending), initial twist and taper. Finally, it have been studied what size of structural couplings can be obtained in current and future

  6. Investigation Of Failure Mechanisms In A Wind Turbine Blade Root Sub-Structure

    DEFF Research Database (Denmark)

    Bender, Jens Jakob; Hallett, S.R.; Lindgaard, Esben

    2017-01-01

    and realistic results at the fraction of the cost of a full-scale test. Therefore, this work focuses on testing of sub-structures from the root end of wind turbine blades at the transition from the thick root laminate to the thinner main laminate. Some wind turbine blade manufacturers include pre-cured tapered...... beams in the root to reduce the time required to place the large quantity of material in the mould and to decrease manufacturing defects in these elements. However, this entails the risk of introducing other manufacturing defects during the Vacuum Assisted Resin Transfer Moulding process such as resin...... pockets and fibre wrinkles. Through this work it is sought to determine the effect that these manufacturing defects can have on the strength properties of the sub-structure. The sub-structures used in this work are cut out from actual wind turbine blades, meaning that the manufacturing defects...

  7. Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

    Science.gov (United States)

    Chiu, Phillip

    In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under

  8. Analysis of twelve-month degradation in three polycrystalline photovoltaic modules

    Science.gov (United States)

    Lai, T.; Potter, B. G.; Simmons-Potter, K.

    2016-09-01

    Polycrystalline silicon photovoltaic (PV) modules have the advantage of lower manufacturing cost as compared to their monocrystalline counterparts, but generally exhibit both lower initial module efficiencies and more significant early-stage efficiency degradation than do similar monocrystalline PV modules. For both technologies, noticeable deterioration in power conversion efficiency typically occurs over the first two years of usage. Estimating PV lifetime by examining the performance degradation behavior under given environmental conditions is, therefore, one of continual goals for experimental research and economic analysis. In the present work, accelerated lifecycle testing (ALT) on three polycrystalline PV technologies was performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability, providing an illumination uniformity of 98% over a 2 x 1.6m area. In order to investigate environmental aging effects, timedependent PV performance (I-V characteristic) was evaluated over a recurring, compressed day-night cycle, which simulated local daily solar insolation for the southwestern United States, followed by dark (night) periods. During a total test time of just under 4 months that corresponded to a year equivalent exposure on a fielded module, the temperature and humidity varied in ranges from 3°C to 40°C and 5% to 85% based on annual weather profiles for Tucson, AZ. Removing the temperature de-rating effect that was clearly seen in the data enabled the computation of normalized efficiency degradation with time and environmental exposure. Results confirm the impact of environmental conditions on the module long-term performance. Overall, more than 2% efficiency degradation in the first year of usage was observed for all thee polycrystalline Si solar modules. The average 5-year degradation of each PV technology was estimated based on their determined degradation rates.

  9. Weak Defect Identification for Centrifugal Compressor Blade Crack Based on Pressure Sensors and Genetic Algorithm.

    Science.gov (United States)

    Li, Hongkun; He, Changbo; Malekian, Reza; Li, Zhixiong

    2018-04-19

    The Centrifugal compressor is a piece of key equipment for petrochemical factories. As the core component of a compressor, the blades suffer periodic vibration and flow induced excitation mechanism, which will lead to the occurrence of crack defect. Moreover, the induced blade defect usually has a serious impact on the normal operation of compressors and the safety of operators. Therefore, an effective blade crack identification method is particularly important for the reliable operation of compressors. Conventional non-destructive testing and evaluation (NDT&E) methods can detect the blade defect effectively, however, the compressors should shut down during the testing process which is time-consuming and costly. In addition, it can be known these methods are not suitable for the long-term on-line condition monitoring and cannot identify the blade defect in time. Therefore, the effective on-line condition monitoring and weak defect identification method should be further studied and proposed. Considering the blade vibration information is difficult to measure directly, pressure sensors mounted on the casing are used to sample airflow pressure pulsation signal on-line near the rotating impeller for the purpose of monitoring the blade condition indirectly in this paper. A big problem is that the blade abnormal vibration amplitude induced by the crack is always small and this feature information will be much weaker in the pressure signal. Therefore, it is usually difficult to identify blade defect characteristic frequency embedded in pressure pulsation signal by general signal processing methods due to the weakness of the feature information and the interference of strong noise. In this paper, continuous wavelet transform (CWT) is used to pre-process the sampled signal first. Then, the method of bistable stochastic resonance (SR) based on Woods-Saxon and Gaussian (WSG) potential is applied to enhance the weak characteristic frequency contained in the pressure

  10. Polycrystalline strengthening

    DEFF Research Database (Denmark)

    Hansen, Niels

    1985-01-01

    for the understanding of polycrystalline strengthening is obtained mainly from surface relief patterns and from bulk structures observed by transmission electron microscopy of thin foils. The results obtained by these methods are discussed and correlations are proposed. A number of features characterizing the deformed...... structure are summarized and the behavior of a number of metals and alloys is reviewed with emphasis on the structural changes in the interior of the grains and in the vicinity of the grain boundaries. The models for strain accommodation during deformation are discussed on the basis of the microstructures...

  11. Development of Standard Approach for Sickle Blade Manufacturing

    OpenAIRE

    Noordin, M. N. A; Hudzari, R. M; Azuan, H. N; Zainon, M. S; Mohamed, S. B; Wafi, S. A

    2016-01-01

    The sickle blade used in the motorised palm cutter known as “CANTAS” provides fast, easy and safe pruning and harvesting for those hard to reach applications. Jariz Technologies Company is experiencing problem in the consistency of sickle blade which was supplied by various blade manufacturers. Identifying the proper blade material with a certain hardness value would produce a consistent as well as long lasting sickle blade. A Standard Operating Procedure (SOP) in the manufacturing of the sic...

  12. Experimental verification of computational model for wind turbine blade geometry design

    Directory of Open Access Journals (Sweden)

    Štorch Vít

    2015-01-01

    Full Text Available A 3D potential flow solver with unsteady force free wake model intended for optimization of blade shape for wind power generation is applied on a test case scenario formed by a wind turbine with vertical axis of rotation. The calculation is sensitive to correct modelling of wake and its interaction with blades. The validity of the flow solver is verified by comparing experimentally obtained performance data of model rotor with numerical results.

  13. Pin and roller attachment system for ceramic blades

    Science.gov (United States)

    Shaffer, J.E.

    1995-07-25

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints. 3 figs.

  14. Comparison of the effects of 23-gauge and 25-gauge microincision vitrectomy blade designs on incision architecture

    Directory of Open Access Journals (Sweden)

    Inoue M

    2014-11-01

    Full Text Available Makoto Inoue,1 Dina Joy K Abulon,2 Akito Hirakata1 1Kyorin Eye Center, School of Medicine, Kyorin University, Tokyo, Japan; 2Alcon Research, Ltd., Irvine, CA, USA Purpose: To compare the effects of different 23- and 25-gauge microincision vitrectomy trocar cannula entry systems on incision architecture.Methods: We tested one ridged microvitreoretinal (MVR, one non-ridged MVR, one pointed beveled, and one round-tipped beveled blade (n=10 per blade design per incision type. Each blade’s straight and oblique incision architecture was assessed in a silicone disc simulating the sclera. Wound leakage under pressure and endoscopic observations were conducted on sclerotomy sites of isolated porcine eyes (n=4 per blade design after simulated vitrectomy.Results: Differences in blade design created distinct incision architecture. Incisions were linear with the ridged MVR blade, flattened “M-shaped” with the non-ridged MVR blade, asymmetrical chevron-shaped with the pointed beveled blade, and curved with the round-tipped beveled blade. With the exception of oblique entry incision thickness, both MVR blade designs created thinner incisions than the beveled blades at entry and exit sites. Only the ridged MVR blade created incisions with no leakage. Vitreous incarceration was observed with all trocar cannula systems.Conclusion: Wound closure in porcine eyes was similar with all blades despite differences in incision architecture. Wound leakage occurred at low to moderate infusion pressures with most blades; no wound leakage was observed with ridged MVR blades. Keywords: entry system, incision closure, leakage, pars plana incision, sclerotomy, trocar blade 

  15. Effect of control activity on blade fatigue damage rate for a small horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, A F; Freris, L L; Graham, J M.R. [Imperial College, London (United Kingdom)

    1996-09-01

    An experiment into the effect of control activity on blade fatigue damage rate for a 5 kW, two bladed, teetered HAWT has been performed. It has been shown that control activity influences the distribution of strain in the blade but that in a high rotor speed, high cycle fatigue regime this has little influence on damage rate. The experiment was conducted on a small test turbine by implementing variable speed stall, pitch and yaw control strategies and measuring blade flapwise strain response at root and midspan locations. A full description of the investigation is provided. (au)

  16. Mechanical property tests in hot gas environment for evaluation of life expectancy of aero-engine turbine blades and for assessment of procedures for prolonging service life. Mechanische Pruefung unter Heissgasatmosphaere zur Ermittlung der Lebenserwartung von Fluggasturbinenschaufeln und zur Bewertung von Verfahren zur Lebensdauerverlaengerung

    Energy Technology Data Exchange (ETDEWEB)

    Peichl, L

    1984-01-01

    The aim of this programme was the determination and optimization of mechanical testing procedures in order to enable a service life prediction for turbine blades as well as to measure the life consumption of blades which have already been in service. Under these testing conditions procedures were to be investigated which lead to a prolongation of the service life of the blades. The results have shown that the rig test at constant values of load and temperature, which are typical for service conditions, is sufficient for the laboratory simulation. The life consumption of blades run in the engine can be determined by measuring the residual creep life in the rig test. Using the resulting data the life consumption of a particular blade run in the engine can be estimated by the non-destructive measurement of its elongation. The precision of residual life prediction is raised by respecting the master heat and porosity of the blades. From the investigation of high-temperature corrosion resistant coatings it follows that IN 100 can be protected against the attack of sea salt over its whole creep life by coating with a precious metal modified aluminide or by LPPS- or EB-PVD-MCrAlY-coatings. By aluminising, the cooling channels of turbine blades can be protected against oxidation over more than 700 h in the temperature/load cycling test. However, the coating technique used is only applicable under laboratory conditions. In contrary, internal coating by pulse aluminising, which is compatible to production conditions, showed less oxidation resistance.

  17. Prepreg and infusion processes for modern wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Shennan, C. [Hexcel, Cambridge (United Kingdom)

    2013-09-01

    The different elements of wind turbine blades have been analyzed for their main function, performance requirements and drivers. Key drivers can be simplified to either performance or cost. The use of prepreg and infusion to make these blade elements has then been compared and shows, from a comparison of test laminates, that prepreg typically delivers higher mechanical performance on both glass and carbon. One of the main process differences, cure temperature, has been overcome with the introduction of M79 which cures at 70 deg. - 80 deg. C. M79 combines this low cure temperature with a much lower reaction enthalpy allowing shorter cure cycles. This means that prepregs can now be cured in the same molds, at the same temperatures and with the same foam as used in a conventional infusion process. Although prepreg and infusion are usually used separately for making blade elements, they may also be used in combination: co-infused and co-cured using prepregs for the hard to infuse unidirectional load-carrying elements and infusion for the other elements. This can thus simplify the production process. The conclusion is that unidirectional prepregs are ideally suited for the performance driven parts of the blade such as in load carrying elements. (Author)

  18. Deformation localization and cyclic strength in polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, O.T.; Rakshin, A.F.; Fenyuk, M.I.

    1983-06-01

    Conditions of deformation localization and its interrelation with cyclic strength in polycrystalline molybdenum were investigated. A fatigue failure of polycrystalline molybdenum after rolling and in an embrittled state reached by recrystallization annealing under cyclic bending at room temperature takes place under nonuniform distribution of microplastic strain resulting in a temperature rise in separate sections of more than 314 K. More intensive structural changes take place in molybdenum after rolling than in recrystallized state.

  19. Multidisciplinary design optimization of film-cooled gas turbine blades

    Directory of Open Access Journals (Sweden)

    Talya Shashishekara S.

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  20. Brine migration in hot-pressed polycrystalline sodium chloride

    International Nuclear Information System (INIS)

    Biggers, J.V.; Dayton, G.O.

    1982-12-01

    This report describes experiments designed to provide data on brine migration in polycrystalline salt. Polycrystalling samples of various grain sizes, density, and purity were prepared from several commercial-grade salts by hot-pressing. Three distinct experimental set-ups were used to place salt billets in an induced thermal gradient in contact with brine source. The test designs varied primarily in the way in which the thermal gradient was applied and monitored and the way in which brine migration was determined. All migration was in enclosed vessels which precluded visual observation of brine movement through the microstructure. Migration velocities were estimated either by the timed appearance of brine at the hot face of the sample, or by determination of the penetration distance of migration artifacts in the microstructure after tests of fixed duration. For various reasons both of these methods were subject to a large degree of error. Our results suggest, however, that the migration velocity in dense polycrystalline salt may be at least an order of magnitude greater than that suggested by single-crystal experiments. Microstructural analysis shows that brine prefers to migrate along paths of high crystalline activity such as grain and subgrain boundaries and is dispersed rather quickly in the microstructure. A series of tests were performed using various types of tracers in brine in order to flag migration paths and locate brine in the microstructure more decisively. These attempts failed and it appears that only the aqueous portion of the brine moves through the microstructure with the dissolved ions being lost and replaced rather quickly. This suggests the use of deuterium as a tracer in future work

  1. Online monitoring of dynamic tip clearance of turbine blades in high temperature environments

    Science.gov (United States)

    Han, Yu; Zhong, Chong; Zhu, Xiaoliang; Zhe, Jiang

    2018-04-01

    Minimized tip clearance reduces the gas leakage over turbine blade tips and improves the thrust and efficiency of turbomachinery. An accurate tip clearance sensor, measuring the dynamic clearances between blade tips and the turbine case, is a critical component for tip clearance control. This paper presents a robust inductive tip clearance sensor capable of monitoring dynamic tip clearances of turbine machines in high-temperature environments and at high rotational speeds. The sensor can also self-sense the temperature at a blade tip in situ such that temperature effect on tip clearance measurement can be estimated and compensated. To evaluate the sensor’s performance, the sensor was tested for measuring the tip clearances of turbine blades under various working temperatures ranging from 700 K to 1300 K and at turbine rotational speeds ranging from 3000 to 10 000 rpm. The blade tip clearance was varied from 50 to 2000 µm. The experiment results proved that the sensor can accurately measure the blade tip clearances with a temporal resolution of 10 µm. The capability of accurately measuring the tip clearances at high temperatures (~1300 K) and high turbine rotation speeds (~30 000 rpm), along with its compact size, makes it promising for online monitoring and active control of blade tip clearances of high-temperature turbomachinery.

  2. Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature

    International Nuclear Information System (INIS)

    Abouhnik, Abdelnasser; Albarbar, Alhussein

    2012-01-01

    Highlights: ► We used finite element method to model wind turbine induced vibration characteristics. ► We developed a technique for eliminating wind turbine’s vibration modulation problems. ► We use empirical mode decomposition to decompose the vibration into its fundamental elements. ► We show the area under shaft speed is a good indicator for assessing wind blades condition. ► We validate the technique under different wind turbine speeds and blade (cracks) conditions. - Abstract: Vibration based monitoring techniques are well understood and widely adopted for monitoring the condition of rotating machinery. However, in the case of wind turbines the measured vibration is complex due to the high number of vibration sources and modulation phenomenon. Therefore, extracting condition related information of a specific element e.g. blade condition is very difficult. In the work presented in this paper wind turbine vibration sources are outlined and then a three bladed wind turbine vibration was simulated by building its model in the ANSYS finite element program. Dynamic analysis was performed and the fundamental vibration characteristics were extracted under two healthy blades and one blade with one of four cracks introduced. The cracks were of length (10 mm, 20 mm, 30 mm and 40 mm), all had a consistent 3 mm width and 2 mm depth. The tests were carried out for three rotation speeds; 150, 250 and 360 r/min. The effects of the seeded faults were revealed by using a novel approach called empirically decomposed feature intensity level (EDFIL). The developed EDFIL algorithm is based on decomposing the measured vibration into its fundamental components and then determines the shaft rotational speed amplitude. A real model of the simulated wind turbine was constructed and the simulation outcomes were compared with real-time vibration measurements. The cracks were seeded sequentially in one of the blades and their presence and severity were determined by decomposing

  3. Lightning transient analysis in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...... waveforms. The aim of the PSCAD simulations is to study the voltages induced by the lightning current in the blade that may cause internal arcing. With this purpose, the phenomenon of current reflections in the lightning down conductor of the blade and the electromagnetic coupling between the down conductor...... and other internal conductive elements of the blade is studied. Finally, several methods to prevent internal arcing are discussed in order to improve the lightning protection of the blade....

  4. Model predictive control of trailing edge flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien Bruno

    of the wind turbine fatigue and extreme loads. This potential was confirmed with wind tunnel tests made on blade sections with trailing edge flaps and on a scaled two-bladed wind turbine in a wind tunnel. The work presented in this thesis includes a full-scale test run on a Vestas V27 wind turbine equipped...... fatigue loads by 23%, but also the main shaft and the tower fatigue loads by up to 32%. Extreme loads during normal production also benefit from the trailing edge flaps. At last, the same controller was run on the Vestas V27 wind turbine located at the Risø Campus of the Technical University of Denmark......Trailing edge flaps on wind turbine blades have been investigated for several years. Aero-servoelastic simulations carried out with different simulation tools, trailing edge flaps configurations and controller designs proved that trailing edge flaps are a suitable solution for reducing some...

  5. Structural investigation of composite wind turbine blade considering various load cases and fatigue life

    International Nuclear Information System (INIS)

    Kong, C.; Bang, J.; Sugiyama, Y.

    2005-01-01

    This study proposes a structural design for developing a medium scale composite wind turbine blade made of E-glass/epoxy for a 750 kW class horizontal axis wind turbine system. The design loads were determined from various load cases specified at the IEC61400-1 international specification and GL regulations for the wind energy conversion system. A specific composite structure configuration, which can effectively endure various loads such as aerodynamic loads and loads due to accumulation of ice, hygro-thermal and mechanical loads, was proposed. To evaluate the proposed composite wind turbine blade, structural analysis was performed by using the finite element method. Parametric studies were carried out to determine an acceptable blade structural design, and the most dominant design parameters were confirmed. In this study, the proposed blade structure was confirmed to be safe and stable under various load conditions, including the extreme load conditions. Moreover, the blade adapted a new blade root joint with insert bolts, and its safety was verified at design loads including fatigue loads. The fatigue life of a blade that has to endure for more than 20 years was estimated by using the well-known S-N linear damage theory, the service load spectrum, and the Spera's empirical equations. With the results obtained from all the structural design and analysis, prototype composite blades were manufactured. A specific construction process including the lay-up molding method was applied to manufacturing blades. Full-scale static structural test was performed with the simulated aerodynamic loads. From the experimental results, it was found that the designed blade had structural integrity. In addition, the measured results of deflections, strains, mass, and radial center of gravity agreed well with the analytical results. The prototype blade was successfully certified by an international certification institute, GL (Germanisher Lloyd) in Germany

  6. Numerical prediction for effects of guide vane blade numbers on hydraulic turbine performance

    International Nuclear Information System (INIS)

    Shi, F X; Yang, J H; Wang, X H; Li, C E

    2013-01-01

    Using unstructured hybrid grid technique and SIMPLEC algorithm,a general three-dimensional simulation based on Reynolds Navier- stocks in multiple reference frames and the RNG k-ε turbulence model, is presented for the reversal centrifugal pump (PAT) with a guide vane. Four different schemes are designed by a change of the number of guide vane blade of PAT. The inner flow field in every scheme is simulated, accordingly, the external characteristic and static pressure distribution in flow field in PAT is obtained. The results obtained show that the efficiency can be improved by adding a guide vane for the PAT, besides, the high efficiency area is wider than before. Guide blade numbers changed, external characteristics of turbine changed, and the external characteristic changed. The optimal value is existent for the guide vane blade number, which has a great impact on the distribution of pressure in runner inlet

  7. Predicting intragranular misorientation distributions in polycrystalline metals using the viscoplastic self-consistent formulation

    DEFF Research Database (Denmark)

    Zecevic, Miroslav; Pantleon, Wolfgang; Lebensohn, Ricardo A.

    2017-01-01

    In a recent paper, we reported the methodology to calculate intragranular fluctuations in the instantaneous lattice rotation rates in polycrystalline materials within the mean-field viscoplastic self-consistent (VPSC) model. This paper is concerned with the time integration and subsequent use......, we calculate intragranular misorientations in face-centered cubic polycrystals deformed in tension and plane-strain compression. These predictions are tested by comparison with corresponding experiments for polycrystalline copper and aluminum, respectively, and with full-field calculations....... It is observed that at sufficiently high strains some grains develop large misorientations that may lead to grain fragmentation and/or act as driving forces for recrystallization. The proposed VPSC-based prediction of intragranular misorientations enables modeling of grain fragmentation, as well as a more...

  8. Test results of NREL 10M, special-purpose family of thin airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Starcher, K.L.; Nelson, V.C.; Wei, Jun [West Texas A& M Univ., Canyon, TX (United States)

    1996-12-31

    Two 25 kW Carter Wind Systems were tested to determine performance differences between production blades and rotors with NREL Special Purpose Thin Airfoils. Blade design, mold preparation, blade production, and testing were conducted. Design tools were created for computer modeling of the blade. The blades had the same twist, taper, and length as production blades. Flap natural frequency was adjusted to be as similar as possible between rotors, as was blade mass, blade center of gravity and rotor moment of inertia. Data collected were; wind speed at hub height, blade root flap & edgewise loads, main shaft torque, azimuth position, teeter angle, yaw angle and electrical power. These data were collected at 128 Hertz for data sets of eight seconds. This data set was then written to hard disk and the cycle repeated resulting in a file containing five and one half minutes of data. A data run consisted of; preflight checkout/warm-up of equipment, preflight calibration/verification of all sensors on both turbines, collection of five files of data (about thirty minutes of data), post flight calibration/verification of sensors. During this high speed data collection period there were a total of twenty-four data runs collected. Data were collected for wind speeds in the range about 7, 10 and 13 m/s. A data matrix was filled for clean, medium and heavy surface roughness. Baseline power curves, parametric pitch variation runs to establish testing pitch settings, high speed data collection runs with and without applied surface roughness were completed and analyzed. Data were compared using simple arithmetic mean, Fast Fourier Transform (FFT) analysis, rainflow counting algorithms and wavelet analysis. The NREL airfoils showed much less sensitivity to surface roughness. There were minimal root bending load differences. Annual energy production during long term operation is being determined. 9 refs., 7 figs.

  9. Comparison of plastic single-use and metal reusable laryngoscope blades for orotracheal intubation during rapid sequence induction of anesthesia.

    Science.gov (United States)

    Amour, Julien; Marmion, Frédéric; Birenbaum, Aurélie; Nicolas-Robin, Armelle; Coriat, Pierre; Riou, Bruno; Langeron, Olivier

    2006-01-01

    Plastic single-use laryngoscope blades are inexpensive and carry a lower risk of infection compared with metal reusable blades, but their efficiency during rapid sequence induction remains a matter of debate. The authors therefore compared plastic and metal blades during rapid sequence induction in a prospective randomized trial. Two hundred eighty-four adult patients undergoing general anesthesia requiring rapid sequence induction were randomly assigned on a weekly basis to either plastic single-use or reusable metal blades (cluster randomization). After induction, a 60-s period was allowed to complete intubation. In the case of failed intubation, a second attempt was performed using metal blade. The primary endpoint of the study was the rate of failed intubations, and the secondary endpoint was the incidence of complications (oxygen desaturation, lung aspiration, and oropharynx trauma). Both groups were similar in their main characteristics, including risk factors for difficult intubation. On the first attempt, the rate of failed intubation was significantly increased in plastic blade group (17 vs. 3%; P < 0.01). In metal blade group, 50% of failed intubations were still difficult after the second attempt. In plastic blade group, all initial failed intubations were successfully intubated using metal blade, with an improvement in Cormack and Lehane grade. There was a significant increase in the complication rate in plastic group (15 vs. 6%; P < 0.05). In rapid sequence induction of anesthesia, the plastic laryngoscope blade is less efficient than a metal blade and thus should not be recommended for use in this clinical setting.

  10. KNOW-BLADE task-4 report: Navier-Stokes aeroelasticity

    DEFF Research Database (Denmark)

    Politis, E.S.; Nikolaou, I.G.; Chaviaropoulos, P.K.

    2004-01-01

    wind turbine blade have been combined with 2D and 3D unsteady Navier-Stokes solvers. The relative disadvantage of the quasi-3D approach (where the elastic solver is coupled with a 2D Navier-Stokes solver) isits inability to model induced flow. The lack of a validation test case did not allow...... the computations for the full blade, 2D computations for the so-called “typical section” have been carried out. The 2D aeroelastic tools resulted in similar aerodynamic damping values. Qualitative agreement was better for the lead-lagmode. The presence of roughness tapes has a small, rather negligible impact...... on aeroelastic stability as depicted by the results of both aeroelastic tools. On the other hand, in conformity to the inability of the adopted computational model to successfullypredict the corresponding test cases under work package 2 of the project, the aeroelastic tools are not capable to predict the correct...

  11. Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Birgit Wieland

    2017-10-01

    Full Text Available The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results.

  12. Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling.

    Science.gov (United States)

    Wieland, Birgit; Ropte, Sven

    2017-10-05

    The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results.

  13. Optimal Topology and Experimental Evaluation of Piezoelectric Materials for Actively Shunted General Electric Polymer Matrix Fiber Composite Blades

    Science.gov (United States)

    Choi, Benjamin B.; Duffy, Kirsten; Kauffman, Jeffrey L.; Kray, Nicholas

    2012-01-01

    NASA Glenn Research Center, in collaboration with GE Aviation, has begun the development of a smart adaptive structure system with piezoelectric (PE) transducers to improve composite fan blade damping at resonances. Traditional resonant damping approaches may not be realistic for rotating frame applications such as engine blades. The limited space in which the blades reside in the engine makes it impossible to accommodate the circuit size required to implement passive resonant damping. Thus, a novel digital shunt scheme has been developed to replace the conventional electric passive shunt circuits. The digital shunt dissipates strain energy through the load resistor on a power amplifier. General Electric (GE) designed and fabricated a variety of polymer matrix fiber composite (PMFC) test specimens. Investigating the optimal topology of PE sensors and actuators for each test specimen has revealed the best PE transducer location for each target mode. Also a variety of flexible patches, which can conform to the blade surface, have been tested to identify the best performing PE patch. The active damping control achieved significant performance at target modes. This work has been highlighted by successful spin testing up to 5000 rpm of subscale GEnx composite blades in Glenn s Dynamic Spin Rig.

  14. Application of high efficiency and reliable 3D-designed integral shrouded blades to nuclear turbines

    International Nuclear Information System (INIS)

    Watanabe, Eiichiro; Ohyama, Hiroharu; Tashiro, Hikaru; Sugitani, Toshiro; Kurosawa, Masaru

    1998-01-01

    Mitsubishi Heavy Industries, Ltd. has recently developed new blades for nuclear turbines, in order to achieve higher efficiency and higher reliability. The 3D aerodynamic design for 41 inch and 46 inch blades, their one piece structural design (integral-shrouded blades: ISB), and the verification test results using a model steam turbine are described in this paper. The predicted efficiency and lower vibratory stress have been verified. Based on these 60Hz ISB, 50Hz ISB series are under development using 'the law of similarity' without changing their thermodynamic performance and mechanical stress levels. Our 3D-designed reaction blades which are used for the high pressure and low pressure upstream stages, are also briefly mentioned. (author)

  15. Enhancing the damping of wind turbine rotor blades, the DAMPBLADE project

    DEFF Research Database (Denmark)

    Chaviaropoulos, P.K.; Politis, E.S.; Lekou, D.J.

    2006-01-01

    A research programme enabling the development of damped wind turbine blades, having the acronym DAMPBLADE, has been supported by the EC under its 5th Framework Programme. In DAMPBLADE the following unique composite damping mechanisms were exploited aiming to increase the structural damping......: tailoring of laminate damping anisotropy, damping layers and damped polymer matrices. Additional objectives of the project were the development of the missing critical analytical technologies enabling the explicit modelling of composite structural damping and a novel ‘composite blade design capacity......’ enabling the direct prediction of aeroelastic stability and fatigue life; the development and characterization of damped composite materials; and the evaluation of new technology via the design and fabrication of damped prototype blades and their full-scale laboratory testing. After 4 years of work a 19 m...

  16. Nucleation and growth of polycrystalline SiC

    DEFF Research Database (Denmark)

    Kaiser, M.; Schimmel, S.; Jokubavicius, V.

    2014-01-01

    The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and 15......R polytypes. It is found that pyrolytic graphite results in enhanced texturing of the nucleating gas species. Reducing the pressure leads to growth of the crystallites until a closed polycrystalline SiC layer containing voids with a rough surface is developed. Bulk growth was conducted at 35 mbar Ar...

  17. Investigation of the Anisotropic Thermoelectric Properties of Oriented Polycrystalline SnSe

    Directory of Open Access Journals (Sweden)

    Yulong Li

    2015-06-01

    Full Text Available Polycrystalline SnSe was synthesized by a melting-annealing-sintering process. X-ray diffraction reveals the sample possesses pure phase and strong orientation along [h00] direction. The degree of the orientations was estimated and the anisotropic thermoelectric properties are characterized. The polycrystalline sample shows a low electrical conductivity and a positive and large Seebeck coefficient. The low thermal conductivity is also observed in polycrystalline sample, but slightly higher than that of single crystal. The minimum value of thermal conductivity was measured as 0.3 W/m·K at 790 K. With the increase of the orientation factor, both electrical and thermal conductivities decrease, but the thermopowers are unchanged. As a consequence, the zT values remain unchanged in the polycrystalline samples despite the large variation in the degree of orientation.

  18. LP compressor blade vibration characteristics at starting conditions of a 100 MW heavy-duty gas turbine

    International Nuclear Information System (INIS)

    Lee, An Sung; Vedichtchev, Alexandre F.

    2004-01-01

    In this paper are presented the blade vibration characteristics at the starting conditions of the low pressure multistage axial compressor of heavy-duty 100 MW gas turbine. Vibration data have been collected through strain gauges during aerodynamic tests of the model compressor. The influences of operating modes at the starting conditions are investigated upon the compressor blade vibrations. The exciting mechanisms and features of blade vibrations are investigated at the surge, rotating stall, and buffeting flutter. The influences of operating modes upon blade dynamic stresses are investigated for the first and second stages. It is shown that a high dynamic stress peak of 120 MPa can occur in the first stage blades due to resonances with stall cell excitations or with inlet strut wake excitations at the stalled conditions

  19. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  20. Diffraction by disordered polycrystalline fibers

    International Nuclear Information System (INIS)

    Stroud, W.J.; Millane, R.P.

    1995-01-01

    X-ray diffraction patterns from some polycrystalline fibers show that the constituent microcrystallites are disordered. The relationship between the crystal structure and the diffracted intensities is then quite complicated and depends on the precise kind and degree of disorder present. The effects of disorder on diffracted intensities must be included in structure determinations using diffraction data from such specimens. Theory and algorithms are developed here that allow the full diffraction pattern to be calculated for a disordered polycrystalline fiber made up of helical molecules. The model accommodates various kinds of disorder and includes the effects of finite crystallite size and cylindrical averaging of the diffracted intensities from a fiber. Simulations using these methods show how different kinds, or components, of disorder produce particular diffraction effects. General properties of disordered arrays of helical molecules and their effects on diffraction patterns are described. Implications for structure determination are discussed. (orig.)

  1. Failure analysis of turbine blades

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1989-01-01

    Two 20 MW gas turbines suffered damage in blades belonging to the 2nd. stage of the turbine after 24,000 hours of duty. From research it arises that the fuel used is not quite adequate to guarantee the blade's operating life due to the excess of SO 3 , C and Na existing in combustion gases which cause pitting to the former. Later, the corrosion phenomenon is presented under tension produced by working stress enhanced by pitting where Pb is its main agent. A change of fuel is recommended thus considering the blades will reach the operational life they were designed for. (Author) [es

  2. Neutron beam testing of triblades

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  3. The three-dimensional microstructure of polycrystalline materials unravelled by synchrotron light

    DEFF Research Database (Denmark)

    Ludwig, W.; King, A.; Herbig, M.

    2011-01-01

    The three-dimensional microstructure of polycrystalline materials unravelled by synchrotron light Synchrotron radiation X-ray imaging and diffraction techniques offer new possibilities for non-destructive bulk characterization of polycrystalline materials. Minute changes in electron density (diff...

  4. Effective polycrystalline sensor of ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    S.Yu. Pavelets

    2017-10-01

    Full Text Available Deposition of special thin layers with high and low resistance in space charge region of surface barrier photoconverters based on the p-Cu1.8S/n-CdS structure leads to a sufficient increase in photosensitivity and decrease in dark tunneling-recombination current. Highly efficient and stable polycrystalline photoconverters of ultraviolet radiation based on polycrystalline CdS have been obtained. Electrical and photoelectric properties have been investigated, and the main operational parameters of ultraviolet sensors have been adduced. The reasons for high stability of the parameters inherent to the p-Cu1.8S/n-CdS sensors are as follows: the absence of impurity components additionally doped to the barrier structure and stability of the photocurrent photoemission component.

  5. Process Research On Polycrystalline Silicon Material (PROPSM). [flat plate solar array project

    Science.gov (United States)

    Culik, J. S.

    1983-01-01

    The performance-limiting mechanisms in large-grain (greater than 1 to 2 mm in diameter) polycrystalline silicon solar cells were investigated by fabricating a matrix of 4 sq cm solar cells of various thickness from 10 cm x 10 cm polycrystalline silicon wafers of several bulk resistivities. Analysis of the illuminated I-V characteristics of these cells suggests that bulk recombination is the dominant factor limiting the short-circuit current. The average open-circuit voltage of the polycrystalline solar cells is 30 to 70 mV lower than that of co-processed single-crystal cells; the fill-factor is comparable. Both open-circuit voltage and fill-factor of the polycrystalline cells have substantial scatter that is not related to either thickness or resistivity. This implies that these characteristics are sensitive to an additional mechanism that is probably spatial in nature. A damage-gettering heat-treatment improved the minority-carrier diffusion length in low lifetime polycrystalline silicon, however, extended high temperature heat-treatment degraded the lifetime.

  6. Integrity assessment of stationary blade ring for nuclear power plant

    International Nuclear Information System (INIS)

    Park, Jung Yong; Chung, Yong Keun; Park, Jong Jin; Kang, Yong Ho

    2004-01-01

    The inner side between HP stationary blades in no.1 turbine of nuclear power plant A is damaged by the FAC(Flow Assisted Corrosion) which is exposed to moisture. For many years the inner side is repaired by welding the damaged part, however, the FAC continues to deteriorate the original material of the welded blade ring. In this study, we have two stages to verify the integrity of stationary blade ring in nuclear power plant A. In the stage I, replication of blade ring is performed to survey the microstructure of blade ring. In the stage II, the stress analysis of blade ring is performed to verify the structural safety of blade ring. Throughout the two stages analysis of blade ring, the stationary blade ring had remained undamaged

  7. Achievement report for fiscal 1981 Sunshine Program on development of practical application technologies for photovoltaic power systems. Test production and verification of solar panels (Development of polycrystalline substrate process technologies); 1981 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyo denchi panel jikken seisaku kensho (takessho kiban kotei no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Studies are conducted to enlarge the diameter of polycrystalline Si castings and to develop a low-loss slicing method using silicon nitride powder as mold releasing agent. The apparatus for Czochralski's pulling process is improved and tested using SEG (selective epitaxial growth) Si, and now the casting of a 150mm-diameter ingot is feasible. Also, test production of a 94mm-square wafer as specified by NEDO (New Energy and Industrial Technology Development Organization) is successfully carried out. Difficulties in separating the mold releasing agent from the crucible are solved by changing the Si{sub 3}N{sub 4} power solution from PVA (polyvinyl alcohol) to ethyl silicate. The design, manufacture, and installation of the important parts of the system for the mass production of castings are now complete. The crucible is designed to be movable relative to the heater section, and the molten Si is allowed to cool and solidify from the bottom upward. In relation with the development of low-cost wafer manufacturing technologies, low-loss slicing methods are studied. It is concluded that under the current circumstances a multi-blade saw is more promising than the multi-wire saw in view of the damaged slice rate, processing speed, operating cost, and maintainability. (NEDO)

  8. Multidisciplinary design optimization of film-cooled gas turbine blades

    OpenAIRE

    Shashishekara S. Talya; J. N. Rajadas; A. Chattopadhyay

    1999-01-01

    Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with ...

  9. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  10. Computational method for the design of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7.5, CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    Zeus Disenador was developed to design low-power, horizontal-axis wind turbine blades, by means of an iterative algorithm. With this software, it is possible to obtain the optimum blade shape for a wind turbine to satisfy energy requirements of an electric system with optimum rotor efficiency. The number of blades, the airfoil curves and the average wind velocity can be specified by the user. The user can also request particular edge conditions for the width of the blades and for the pitch angle. Results are provided in different windows. Two- and three-dimensional graphics show the aspect of the resultant blade. Numerical results are displayed for blade length, blade surface, pitch angle variation along the blade span, rotor angular speed, rotor efficiency and rotor output power. Software verifications were made by comparing rotor power and rotor efficiency for different designs. Results were similar to those provided by commercial wind generator manufacturers. (author)

  11. Repairing methods of steam turbine blades using welding procedures

    International Nuclear Information System (INIS)

    Mazur, Z.; Cristalinas, V.; Kubiak, J.

    1995-01-01

    The steam turbine blades are subjected to the natural permanent wear or damage, which may be of mechanical or metallurgical origin. The typical damage occurring during the lifetime of turbine blading may be erosion, corrosion, foreign objects damage, rubbing and cracking caused by high cycle fatigue and creep crack growth. The nozzle and diaphragm vanes (stationary blades) of the steam turbine are elements whose damage is commonly occurring and they require special repair processes. The damage of the blade trailing edge of nozzle and diaphragm vanes, due to the former causes, may be refurbished by welding deposits or stainless steel inserts welded to the blades. Both repair methods of the stationary steam turbine blades are presented. The results of the blades refurbishment are an increase of the turbine availability, reliability and efficiency, and a decrease of the risk that failure will occur. Also, the repair cost versus the spare blades cost represent significant reduction of expenditure. 7 refs

  12. Partial Safety Factors for Fatigue Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2010-01-01

    In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage...... accumulation is determined from variable amplitude fatigue tests with the Wisper and Wisperx spectra. The statistical uncertainty for the assessment of the fatigue loads is also investigated. The partial safety factors are calibrated for design load case 1.2 in IEC 61400-1. The fatigue loads are determined...... from rainflow-counting of simulated time series for a 5MW reference wind turbine [1]. A possible influence of a complex stress state in the blade is not taken into account and only longitudinal stresses are considered....

  13. Determination of Turbine Blade Life from Engine Field Data

    Science.gov (United States)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2013-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  14. Experimental and Computational Investigation of Triple-rotating Blades in a Mower Deck

    Science.gov (United States)

    Chon, Woochong; Amano, Ryoichi S.

    Experimental and computational studies were performed on the 1.27m wide three-spindle lawn mower deck with side discharge arrangement. Laser Doppler Velocimetry was used to measure the air velocity at 12 different sections under the mower deck. The high-speed video camera test provided valuable visual evidence of airflow and grass discharge patterns. The strain gages were attached at several predetermined locations of the mower blades to measure the strain. In computational fluid dynamics work, computer based analytical studies were performed. During this phase of work, two different trials were attempted. First, two-dimensional blade shapes at several arbitrary radial sections were selected for flow computations around the blade model. Finally, a three-dimensional full deck model was developed and compared with the experimental results.

  15. Semantic modeling of plastic deformation of polycrystalline rock

    Science.gov (United States)

    Babaie, Hassan A.; Davarpanah, Armita

    2018-02-01

    We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.

  16. Application to nuclear turbines of high-efficiency and reliable 3D-designed integral shrouded blades

    International Nuclear Information System (INIS)

    Watanabe, Eiichiro; Ohyama, Hiroharu; Tashiro, Hikaru; Sugitani, Toshio; Kurosawa, Masaru

    1999-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has recently developed new blades for nuclear turbines, in order to achieve higher efficiency and higher reliability. The three-dimensional aerodynamic design for 41-inch and 46-inch blades, their one piece structural design (integral shrouded blades: ISB), and the verification test results using a model steam turbine are described in this paper. The predicted efficiency and lower vibratory stress have been verified. On the basis of these 60 Hz ISB, 50 Hz ISB series are under development using 'the law of similarity' without changing their thermodynamic performance and mechanical stress levels. Our 3D-designed reaction blades which are used for the high pressure and low pressure upstream stages, are also briefly mentioned. (author)

  17. Spacer grid with mixing blades for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Noailly, J.

    1986-01-01

    The spacer grid for nuclear fuel assembly has two sets of intersecting metal plates provided with blades and defining cells. The plates are fitted only with half-blades associated with a single grid opening. The half-blades of adjacent cells are arranged at 90deg C to each other and each plate has at most one half-blade at each corner of a cell. The invention concerns fuel assemblies of pressurized water reactors. The blades arranged on a single side of the plate provide a good hydraulic uniformity. The invention provides a uniform distribution of blades (and thus of absorbing material in each hydraulic cell) [fr

  18. Simple method for thick blade calculation. Part 2. Application to a thin blade; Kanbenna ichiatsuyoku keisanho (zokuho). Usui tsubasa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Maita, S; Ando, J; Nakatake, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-04-10

    A source and QCM (SQCM) method has been developed, by which the blade performance can be calculated in a short time with satisfying the Kutta`s condition without repeating calculations even for the three-dimensional blade. Performances were calculated for the two-dimensional and three-dimensional blades. The SQCM has provided appropriate results. However, it was found that there are some problems for thin blades. In this study, the SQCM has been applied to a thin blade. The conventional eddy model equation of SQCM is not a continuous distribution in the strict sense. In this study, this problem has been modified. When point eddies with constant strength are in line continuously within the interval, the induced velocity at an arbitrary position can be expressed by the integral equation using a position of marginal point of the interval. This equation can be analyzed by the integral of influence coefficient. The position of marginal point of the interval is a position of control point determined by the QCM theory. As a result of the modification, it was found that the SQCM in response to a thin blade has provided precise calculation results stably even for an ultra thin blade with the blade thickness ratio of 0.001. 1 ref., 8 figs.

  19. Compression fatigue of Wind Turbine Blade composites materials and damage mechanisms

    DEFF Research Database (Denmark)

    Fraisse, Anthony; Brøndsted, Povl

    According to the new IEC 61400-5-rev0 recommendation, which is under preparation it will be required to qualify wind turbine blade (WTB) composite materials in fatigue at R=0.1, R=-1, and R=10. As a minimum fatigue at R=-1 is required. This is a consequence of the ever-growing blades, where gravity...... driven edgewise bending introduces significant fully reversed cycling at the leading and trailing edges. Therefore, material manufacturer and WTB manufacturer demand test results of highest reliability and reproducibility. However, these equirements for compression-compression and tensioncompression...

  20. Blade profile optimization of kaplan turbine using cfd analysis

    International Nuclear Information System (INIS)

    Janjua, A.B.; Khalil, M.S.

    2013-01-01

    Utilization of hydro-power as renewable energy source is of prime importance in the world now. Hydropower energy is available in abundant in form of falls, canals rivers, dams etc. It means, there are various types of sites with different parameters like flow rate, heads, etc. Depending upon the sites, water turbines are designed and manufactured to avail hydro-power energy. Low head turbines on runof-river are widely used for the purpose. Low head turbines are classified as reaction turbines. For runof-river, depending upon the variety of site data, low head Kaplan turbines are selected, designed and manufactured. For any given site requirement, it becomes very essential to design the turbine runner blades through optimization of the CAD model of blades profile. This paper presents the optimization technique carried out on a complex geometry of blade profile through static and dynamic computational analysis. It is used through change of the blade profile geometry at five different angles in the 3D (Three Dimensional) CAD model. Blade complex geometry and design have been developed by using the coordinates point system on the blade in PRO-E /CREO software. Five different blade models are developed for analysis purpose. Based on the flow rate and heads, blade profiles are analyzed using ANSYS software to check and compare the output results for optimization of the blades for improved results which show that by changing blade profile angle and its geometry, different blade sizes and geometry can be optimized using the computational techniques with changes in CAD models. (author)

  1. Blade Profile Optimization of Kaplan Turbine Using CFD Analysis

    Directory of Open Access Journals (Sweden)

    Aijaz Bashir Janjua

    2013-10-01

    Full Text Available Utilization of hydro-power as renewable energy source is of prime importance in the world now. Hydropower energy is available in abundant in form of falls, canals rivers, dams etc. It means, there are various types of sites with different parameters like flow rate, heads, etc. Depending upon the sites, water turbines are designed and manufactured to avail hydro-power energy. Low head turbines on runof-river are widely used for the purpose. Low head turbines are classified as reaction turbines. For runof river, depending upon the variety of site data, low head Kaplan turbines are selected, designed and manufactured. For any given site requirement, it becomes very essential to design the turbine runner blades through optimization of the CAD model of blades profile. This paper presents the optimization technique carried out on a complex geometry of blade profile through static and dynamic computational analysis. It is used through change of the blade profile geometry at five different angles in the 3D (Three Dimensional CAD model. Blade complex geometry and design have been developed by using the coordinates point system on the blade in PRO-E /CREO software. Five different blade models are developed for analysis purpose. Based on the flow rate and heads, blade profiles are analyzed using ANSYS software to check and compare the output results for optimization of the blades for improved results which show that by changing blade profile angle and its geometry, different blade sizes and geometry can be optimized using the computational techniques with changes in CAD models.

  2. Piezoelectric actuation of helicopter rotor blades

    Science.gov (United States)

    Lieven, Nicholas A. J.

    2001-07-01

    The work presented in this paper is concerned with the application of embedded piezo-electric actuators in model helicopter rotor blades. The paper outlines techniques to define the optimal location of actuators to excite particular modes of vibration whilst the blade is rotating. Using composite blades the distribution of strain energy is defined using a Finite Element model with imposed rotor-dynamic and aerodynamics loads. The loads are specified through strip theory to determine the position of maximum bending moment and thus the optimal location of the embedded actuators. The effectiveness of the technique is demonstrated on a 1/4 scale fixed cyclic pitch rotor head. Measurement of the blade displacement is achieved by using strain gauges. In addition a redundant piezo-electric actuator is used to measure the blades' response characteristics. The addition of piezo-electric devices in this application has been shown to exhibit adverse aeroelastic effects, such as counter mass balancing and increased drag. Methods to minimise these effects are suggested. The outcome of the paper is a method for defining the location and orientation of piezo-electric devices in rotor-dynamic applications.

  3. Reduced artefacts and improved assessment of hyperintense brain lesions with BLADE MR imaging in patients with neurofibromatosis type 1

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, Thekla von; Fabig-Moritz, Claudia; Mueller-Abt, Peter; Zieger, Michael; Winkler, Peter [Department of Paediatric Radiology, Stuttgart (Germany); Blank, Bernd [Haematology and Immunology, Department of Paediatric Oncology, Stuttgart (Germany); Wohlfarth, Katrin [Siemens Healthcare Sector, Erlangen (Germany)

    2009-11-15

    Assessment of small brain lesions in children is often compromised by pulsation, flow or movement artefacts. MRI with a rotating blade-like k-space covering (BLADE, PROPELLER) can compensate for these artefacts. We compared T2-weighted FLAIR images that were acquired with different k-space trajectories (conventional Cartesian and BLADE) to evaluate the impact of BLADE technique on the delineation of small or low-contrast brain lesions. The subject group comprised 26 children with neurofibromatosis type 1 (NF 1), who had been routinely scanned at 1.5 T for optic pathway gliomas with both techniques and who had the typical hyperintense brain lesions seen in NF 1. Four experienced radiologists retrospectively compared unlabelled 4-mm axial images with respect to the presence of artefacts, visibility of lesions, quality of contour and contrast. Both techniques were comparable in depicting hyperintense lesions as small as 2 mm independent of contrast and edge definition. Pulsation and movement artefacts were significantly less common with BLADE k-space trajectory. In 7 of 26 patients (27%), lesions and artefacts were rated as indistinguishable in conventional FLAIR, but not in BLADE FLAIR images. BLADE imaging significantly improved the depiction of lesions in T2-W FLAIR images due to artefact reduction especially in the posterior fossa. (orig.)

  4. Reduced artefacts and improved assessment of hyperintense brain lesions with BLADE MR imaging in patients with neurofibromatosis type 1

    International Nuclear Information System (INIS)

    Kalle, Thekla von; Fabig-Moritz, Claudia; Mueller-Abt, Peter; Zieger, Michael; Winkler, Peter; Blank, Bernd; Wohlfarth, Katrin

    2009-01-01

    Assessment of small brain lesions in children is often compromised by pulsation, flow or movement artefacts. MRI with a rotating blade-like k-space covering (BLADE, PROPELLER) can compensate for these artefacts. We compared T2-weighted FLAIR images that were acquired with different k-space trajectories (conventional Cartesian and BLADE) to evaluate the impact of BLADE technique on the delineation of small or low-contrast brain lesions. The subject group comprised 26 children with neurofibromatosis type 1 (NF 1), who had been routinely scanned at 1.5 T for optic pathway gliomas with both techniques and who had the typical hyperintense brain lesions seen in NF 1. Four experienced radiologists retrospectively compared unlabelled 4-mm axial images with respect to the presence of artefacts, visibility of lesions, quality of contour and contrast. Both techniques were comparable in depicting hyperintense lesions as small as 2 mm independent of contrast and edge definition. Pulsation and movement artefacts were significantly less common with BLADE k-space trajectory. In 7 of 26 patients (27%), lesions and artefacts were rated as indistinguishable in conventional FLAIR, but not in BLADE FLAIR images. BLADE imaging significantly improved the depiction of lesions in T2-W FLAIR images due to artefact reduction especially in the posterior fossa. (orig.)

  5. Polycrystalline Materials as a Cold Neutron and Gamma Radiation Filter

    International Nuclear Information System (INIS)

    Habib, N.

    2009-01-01

    The total neutron cross-section of polycrystalline beryllium, graphite and iron has been calculated beyond their cut-off wavelength using a general formula. The computer Cold Filter code was developed in order to provide the required calculations. The code also permits the calculation of attenuation of reactor gamma radiation, The calculated neutron transmissions through polycrystalline Be graphite and iron at different temperatures were compared with the experimental data measured at the ETRR-1 reactor using two TOF spectrometers. An overall agreement is obtained between the formula fits and experimental data at different temperatures. A feasibility study is carried on using polycrystalline Be, graphite and iron an efficient filter for cold neutrons and gamma radiation.

  6. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  7. Study on torsion arc blade type horizontal axis wind turbine; Nejire enko yokugata suihei jiku fusha ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, N; Kishimura, K [Meiji University, Tokyo (Japan)

    1996-10-27

    Discussing the rotor blades of the torsion arc blade type (TABT) wind turbine, difference in windmilling characteristics was determined between elliptic blades and rectangular blades by theoretical analysis and model experiment. Experimental generation of power was carried out using a test wind turbine in the natural wind. First, elliptic blades were bent into arcs and fixed to shaft. The action force was determined calculating the blade area and the wind velocity vertical thereto. Furthermore, the force in the direction to turn the rotor was determined with the effect of the part behind the blade taken into account. The rotation-curbing air resistance in the flank direction that a rotor experiences was subtracted to determine the torque generated. A formula was derived for the elliptic blade. Second, a formula was derived in the same way for the case of rectangular blades. In conclusion, in the case of 6-blade wind turbine, the rate of responsibility for wind turbine rotation of the part behind the blade was approximately 50% of the part in front of the blade. Shape coefficients were introduced into the theory, which resulted in values agreeing well with values obtained from experiments. Elliptic blades yielded more power than rectangular blades at the same wind velocity. High in durability, the TABT wind turbine is expected to be put into practical use as a compact auxiliary power generating device. 2 refs., 14 figs.

  8. Rotor-blade wheel solves the sediment problems; Loepehjul loeser sedimentproblemer

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Marte

    2009-07-01

    Test period in Peru is over for the recently developed rotor-blade wheel from the Norwegian firm DynaVec. The result shows that the wear and tear problems caused by sediments in great extent is solved. (AG)

  9. Full scale test of a SSP 34m box girder 1. Data report; Reinforced glass fiber/expoxy used in wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Find M.; Branner, K.; Nielsen, Per H. (and others)

    2008-03-15

    This report presents the setup and result of a full-scale test of a reinforced glass fibre/epoxy box girder used in 34m wind turbine blade. The tests were performed at the Blaest test facility in August 2006. The test is an important part of a research project established in cooperation between Risoe DTU, the National Laboratory for Sustainable Energy at the Technical University of Denmark -, SSP-Technology A/S and Blaest (Blade test centre A/S) and it has been performed as a part of Find Moelholt Jensen's PhD study. This report contains the complete test data for the final test, in which the box girder was loaded until failure. A comprehensive description of the test setup is given. This report deals only with tests and results. There are no conclusions on the data in this report, but references are given to publications, where the data are used and compared with FEM etc. Various kinds of measuring equipment have been used during these tests: acoustic emission, 330 strain gauges, 24 mechanical displacement devices and two optical deformation measuring systems. The mechanical displacement devices measured both global (absolute) and local (relative) deflection and the optical systems measured surface deformation. A prediction was made on the location of the failure of the girder. At this location the majority of the measuring equipment was concentrated. The prediction was proved to be correct and valuable information of the behaviour of the box girder prior to failure was obtained. The experimental investigation consisted of the following load configurations: -Flapwise bending -Torsion Ultrasonic scanning of the box girder was performed before, during and after the test the box girder. This was done to investigate whether the girder was damaged by the load or imperfection (productions defects) growth. (au)

  10. Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-bladed Vertical Axis Wind Turbine Based on Experiments and Simulations

    Directory of Open Access Journals (Sweden)

    Yanzhao Yang

    2018-06-01

    Full Text Available The blade pitch angle has a significant influence on the aerodynamic characteristics of horizontal axis wind turbines. However, few research results have revealed its impact on the straight-bladed vertical axis wind turbine (Sb-VAWT. In this paper, wind tunnel experiments and CFD simulations were performed at the Sb-VAWT to investigate the effect of different blade pitch angles on the pressure distribution on the blade surface, the torque coefficient, and the power coefficient. In this study, the airfoil type was NACA0021 with two blades. The Sb-VAWT had a rotor radius of 1.0 m with a spanwise length of 1.2 m. The simulations were based on the k-ω Shear Stress Transport (SST turbulence model and the wind tunnel experiments were carried out using a high-speed multiport pressure device. As a result, it was found that the maximum pressure difference on the blade surface was obtained at the blade pitch angle of β = 6° in the upstream region. However, the maximum pressure coefficient was shown at the blade pitch angle of β = 8° in the downstream region. The torque coefficient acting on a single blade reached its maximum value at the blade pitch angle of β = 6°. As the tip speed ratio increased, the power coefficient became higher and reached the optimum level. Subsequently, further increase of the tip speed ratio only led to a quick reversion of the power coefficient. In addition, the results from CFD simulations had also a good agreement with the results from the wind tunnel experiments. As a result, the blade pitch angle did not have a significant influence on the aerodynamic characteristics of the Sb-VAWT.

  11. Research overview on vibration damping of mistuned bladed disk assemblies

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2016-04-01

    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  12. Methodology for Structural Integrity Analysis of Gas Turbine Blades

    Directory of Open Access Journals (Sweden)

    Tiago de Oliveira Vale

    2012-03-01

    Full Text Available One of the major sources of stress arising in turbomachinery blades are the centrifugal loads acting at any section of the airfoil. Accounting for this phenomenon stress evaluation of the blade attachment region in the disc has to be performed in order to avoid blade failure. Turbomachinery blades are generally twisted, and the cross section area varies from the root of the blade to the tip. The blade root shape at the attachment region is of great concern. Stress concentrations are predictable at this contact region. In this paper, a finite element model has been created for the purpose of assessing stress at the joint region connecting the blade to the disc slot. Particular attention was paid to the geometric modeling of the "fir-tree" fixing, which is now used in the majority of gas turbine engines. This study has been performed using the commercial software ANSYS 13.0. The disc and blade assembly are forced to move with a certain rotational velocity. Contact connections are predicted on the common faces of the blade and on the disc at the root. Solutions can be obtained to allow the evaluation of stresses. Results can be compared with the mechanical properties of the adopted material.

  13. The influence on energy conversion and induction from large blade deflections

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Madsen, H; Rasmussen, F [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Flexible blades or coning means that the swept area is no longer a plane disc as assumed in the blade element momentum (BEM) theory. How is the induced flow field of the rotor influenced by such changes and what does this mean for the loading and energy conversion? This has been investigated by studying the flow through four different rotor geometries on basis of a numerical, axis-symmetric actuator disc model. Volume forces perpendicular to the local blade surface were applied and the converted power is the work performed by these forces. To simplify the comparisons, only a constant load distribution was used. The numerical results show that the shape of the rotor disc has considerable influence on the induction or axial velocity. The axial velocities vary with radial position in the case of constant loading where BEM theory gives constant velocities. There is considerable variation of the local power coefficient C{sub p,loc} even for constant loading. Locally, C{sub p,loc} can exceed the Betz limit. However, integrating C{sub p,loc} over the rotor plane, the total power coefficient for the different rotors are exactly the same. (au)

  14. Spectral response of a polycrystalline silicon solar cell

    International Nuclear Information System (INIS)

    Ba, B.; Kane, M.

    1994-10-01

    A theoretical study of the spectral response of a polycrystalline silicon n-p junction solar cell is presented. The case of a fibrously oriented grain structure, involving grain boundary recombination velocity and grain size effects is discussed. The contribution of the base region on the internal quantum efficiency Q int is computed for different grain sizes and grain boundary recombination velocities in order to examine their influence. Suggestions are also made for the determination of base diffusion length in polycrystalline silicon solar cells using the spectral response method. (author). 15 refs, 4 figs

  15. Laser induced single-crystal transition in polycrystalline silicon

    International Nuclear Information System (INIS)

    Vitali, G.; Bertolotti, M.; Foti, G.; Rimini, E.

    1978-01-01

    Transition to single crystal of polycrystalline Si material underlying a Si crystal substrate of 100 orientation was obtained via laser irradiation. The changes in the structure were analyzed by reflection high energy electron diffraction and by channeling effect technique using 2.0 MeV He Rutherford scattering. The power density required to induce the transition in a 4500 A thick polycrystalline layer is about 70 MW/cm 2 (50ns). The corresponding amorphous to single transition has a threshold of about 45 MW/cm 2 . (orig.) 891 HPOE [de

  16. Experimental and Numerical Study on Performance of Ducted Hydrokinetic Turbines with Pre-Swirl Stator Blades.

    Science.gov (United States)

    Gish, Andrew

    2015-11-01

    Ducts (also called shrouds) have been shown to improve performance of hydrokinetic turbines in some situations, bringing the power coefficient (Cp) closer to the Betz limit. Here we investigate optimization of the duct design as well as the addition of stator blades upstream of the turbine rotor to introduce pre-swirl in the flow. A small scale three-bladed turbine was tested in a towing tank. Three cases (bare turbine, with duct, and with duct and stators) were tested over a range of flow speeds. Important parameters include duct cross-sectional shape, blade-duct gap, stator cross-sectional shape, and stator angle. For each test, Cp was evaluated as a function of tip speed ratio (TSR). Experimental results were compared with numerical simulations. Results indicate that ducts and stators can improve performance at slower flow speeds and lower the stall speed compared to a bare turbine, but may degrade performance at higher speeds. Ongoing efforts to optimize duct and stator configurations will be discussed.

  17. Blade size and weight effects in shovel design.

    Science.gov (United States)

    Freivalds, A; Kim, Y J

    1990-03-01

    The shovel is a basic tool that has undergone only nominal systematic design changes. Although previous studies found shovel-weight and blade-size effects of shovelling, the exact trade-off between the two has not been quantified. Energy expenditure, heart rate, ratings of perceived exertion and shovelling performance were measured on five subjects using five shovels with varying blade sizes and weights to move sand. Energy expenditure, normalised to subject weight and load handled, varied quadratically with the blade-size/shovel-weight (B/W) ratio. Minimum energy cost was at B/W = 0.0676 m2/kg, which for an average subject and average load would require an acceptable 5.16 kcal/min of energy expenditure. Subjects, through the ratings of perceived exertion, also strongly preferred the lighter shovels without regard to blade size. Too large a blade or too heavy a shovel increased energy expenditure beyond acceptable levels, while too small a blade reduced efficiency of the shovelling.

  18. Flow characteristics in nuclear steam turbine blade passage

    International Nuclear Information System (INIS)

    Ahn, H.J.; Yoon, W.H.; Kwon, S.B.

    1995-01-01

    The rapid expansion of condensable gas such as moist air or steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the nuclear steam turbine blade passage, the entropy of the flow increases, and the efficiency of the turbine decreases. In the present study, in order to investigate the flow characteristics of moist air in two-dimensional turbine blade passage which is made from the configuration of the last stage tip section of the actual nuclear steam turbine moving blade, the static pressures along both pressure and suction sides of blade are measured by static pressure taps and the distribution of Mach number on both sides of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a Schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in the two dimensional steam turbine blade passage are clearly identified

  19. Electromechanical Response of Polycrystalline Barium Titanate Resolved at the Grain Scale

    DEFF Research Database (Denmark)

    Majkut, Marta; Daniels, John E.; Wright, Jonathan P.

    2017-01-01

    critical for understanding bulk polycrystalline ferroic behavior. Here, three-dimensional X-ray diffraction is used to reconstruct a 3D grain map (grain orientations and neighborhoods) of a polycrystalline barium titanate sample and track the grain-scale non-180° ferroelectric domain switching strains...

  20. A comparative study of transport properties in polycrystalline and epitaxial chromium nitride films

    KAUST Repository

    Duan, X. F.

    2013-01-08

    Polycrystalline CrNx films on Si(100) and glass substrates and epitaxial CrNx films on MgO(100) substrates were fabricated by reactive sputtering with different nitrogen gas flow rates (fN2). With the increase of fN2, a lattice phase transformation from metallic Cr2N to semiconducting CrN appears in both polycrystalline and epitaxial CrNx films. At fN2= 100 sccm, the low-temperature conductance mechanism is dominated by both Mott and Efros-Shklovskii variable-range hopping in either polycrystalline or epitaxial CrN films. In all of the polycrystalline and epitaxial films, only the polycrystalline CrNx films fabricated at fN2 = 30 and 50 sccm exhibit a discontinuity in ρ(T) curves at 260-280 K, indicating that both the N-vacancy concentration and grain boundaries play important roles in the metal-insulator transition. © 2013 American Institute of Physics.

  1. A new computer-aided simulation model for polycrystalline silicon film resistors

    Science.gov (United States)

    Ching-Yuan Wu; Weng-Dah Ken

    1983-07-01

    A general transport theory for the I-V characteristics of a polycrystalline film resistor has been derived by including the effects of carrier degeneracy, majority-carrier thermionic-diffusion across the space charge regions produced by carrier trapping in the grain boundaries, and quantum mechanical tunneling through the grain boundaries. Based on the derived transport theory, a new conduction model for the electrical resistivity of polycrystalline film resitors has been developed by incorporating the effects of carrier trapping and dopant segregation in the grain boundaries. Moreover, an empirical formula for the coefficient of the dopant-segregation effects has been proposed, which enables us to predict the dependence of the electrical resistivity of phosphorus-and arsenic-doped polycrystalline silicon films on thermal annealing temperature. Phosphorus-doped polycrystalline silicon resistors have been fabricated by using ion-implantation with doses ranged from 1.6 × 10 11 to 5 × 10 15/cm 2. The dependence of the electrical resistivity on doping concentration and temperature have been measured and shown to be in good agreement with the results of computer simulations. In addition, computer simulations for boron-and arsenic-doped polycrystalline silicon resistors have also been performed and shown to be consistent with the experimental results published by previous authors.

  2. Structural and mechanism design of an active trailing-edge flap blade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hwan [Samsung Techwin R and D Center, Seongnam (Korea, Republic of); Natarajan, Balakumaran; Eun, Won Jong; Shin, Sang Joon [Seoul National University, Seoul (Korea, Republic of); R, Viswamurthy S. [National Aerospace Laboratories, Bangalore (India); Park, Jae Sang [Agency for Defense Development, Daejeon (Korea, Republic of); Kim, Tae Song [Technical University of Denmark, Risoe Campus, Roskilde (Denmark)

    2013-09-15

    A conventional rotor control system restricted at 1/rev frequency component is unable to vary the hub vibratory loads and the aero acoustic noise, which exist in high frequency components. Various active rotor control methodologies have been examined in the literature to alleviate the problem of excessive hub vibratory loads and noise. The active control device manipulates the blade pitch angle with arbitrary higher harmonic frequencies individually. In this paper, an active trailing-edge flap blade, which is one of the active control methods, is developed to reduce vibratory loads and noise of the rotor through modification of unsteady aerodynamic loads. Piezoelectric actuators installed inside the blade manipulate the motion of the trailing edge flap. The proposed blade rotates at higher speed and additional structures are included to support the actuators and the flap. This improves the design, as the blade is able to withstand increased centrifugal force. The cross-section of the active blade is designed first. A stress/strain recovery analysis is then conducted to verify its structural integrity. A one-dimensional beam analysis is also carried out to assist with the construction of the fan diagram. To select the actuator and design the flap actuation region, the flap hinge moment is estimated via a CFD analysis. To obtain the desired flap deflection of ±4 .deg. , three actuators are required. The design of the flap actuation region is validated using a test bed with a skin hinge. However, because the skin hinge induces additional flap hinge moment, it does not provide sufficient deflection angle. Therefore, the flap hinge is replaced by a pin-type hinge, and the results are evaluated.

  3. 49 CFR 236.707 - Blade, semaphore.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Blade, semaphore. 236.707 Section 236.707 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Blade, semaphore. The extended part of a semaphore arm which shows the position of the arm. ...

  4. A New Hoe Blade for Inter-Row Weeding

    DEFF Research Database (Denmark)

    Green, O.; Znova, L.; Melander, Bo

    2016-01-01

    and weeds are relatively small. The term ‘Ducksfoot’ covers a range of hoe blade configurations where all have some resemblance with the shape of a ducks foot. However, the ‘Ducksfoot’ blade is not an optimal solution for weed control in narrow inter-row spaces. Several disadvantages have been encountered...... and the draft forces needed to pull it were approx. half those measured for a ‘Ducksfoot’ blade. The weeding features of the new L-blade will be further studied under field conditions....

  5. Laser-based gluing of diamond-tipped saw blades

    Science.gov (United States)

    Hennigs, Christian; Lahdo, Rabi; Springer, André; Kaierle, Stefan; Hustedt, Michael; Brand, Helmut; Wloka, Richard; Zobel, Frank; Dültgen, Peter

    2016-03-01

    To process natural stone such as marble or granite, saw blades equipped with wear-resistant diamond grinding segments are used, typically joined to the blade by brazing. In case of damage or wear, they must be exchanged. Due to the large energy input during thermal loosening and subsequent brazing, the repair causes extended heat-affected zones with serious microstructure changes, resulting in shape distortions and disadvantageous stress distributions. Consequently, axial run-out deviations and cutting losses increase. In this work, a new near-infrared laser-based process chain is presented to overcome the deficits of conventional brazing-based repair of diamond-tipped steel saw blades. Thus, additional tensioning and straightening steps can be avoided. The process chain starts with thermal debonding of the worn grinding segments, using a continuous-wave laser to heat the segments gently and to exceed the adhesive's decomposition temperature. Afterwards, short-pulsed laser radiation removes remaining adhesive from the blade in order to achieve clean joining surfaces. The third step is roughening and activation of the joining surfaces, again using short-pulsed laser radiation. Finally, the grinding segments are glued onto the blade with a defined adhesive layer, using continuous-wave laser radiation. Here, the adhesive is heated to its curing temperature by irradiating the respective grinding segment, ensuring minimal thermal influence on the blade. For demonstration, a prototype unit was constructed to perform the different steps of the process chain on-site at the saw-blade user's facilities. This unit was used to re-equip a saw blade with a complete set of grinding segments. This saw blade was used successfully to cut different materials, amongst others granite.

  6. Turbine-blade tip clearance and tip timing measurements using an optical fiber bundle sensor

    Science.gov (United States)

    Garcia, Iker; Beloki, Josu; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon

    2013-04-01

    Traditional limitations of capacitive, inductive or discharging probe sensor for tip timing and tip clearance measurements are overcome by reflective intensity modulated optical fiber sensors. This paper presents the signals and results corresponding to a one stage turbine rig which rotor has 146 blades, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on turbine casing. It is composed of a central illuminating fiber that guides the light from a laser to the turbine blade, and two concentric rings of receiving fibers that collect the reflected light. Two photodetectors turn this reflected light signal from the receiving rings into voltage. The electrical signals are acquired and saved by a high-sample-rate oscilloscope. In tip clearance calculations the ratio of the signals provided by each ring of receiving fibers is evaluated and translated into distance. In the case of tip timing measurements, only one of the signals is considered to get the arrival time of the blade. The differences between the real and theoretical arrival times of the blades are used to obtain the deflections amplitude. The system provides the travelling wave spectrum, which presents the average vibration amplitude of the blades at a certain nodal diameter. The reliability of the results in the turbine rig testing facilities suggests the possibility of performing these measurements in real turbines under real working conditions.

  7. Effects of large bending deflections on blade flutter limits

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoee, Bjarne Skovmose; Hartvig Hansen, Morten

    2008-04-15

    The coupling of bending and torsion due to large blade bending are assumed to have some effects of the flutter limits of wind turbines. In the present report, the aeroelastic blade model suggested by Kallesoee, which is similar to a second order model, is used to investigate the aeroelastic stability limits of the RWT blade with and without the effects of the large blade deflection. The investigation shows no significant change of the flutter limit on the rotor speed due to the blade deflection,whereas the first edgewise bending mode becomes negatively damped due to the coupling with blade torsion which causes a change of the effective direction of blade vibration. These observations are confirmed by nonlinear aeroelastic simulations using HAWC2. This work is part of the UpWind project funded by the European Commission under the contract number SES6-CT-2005-019945 which is gratefully acknowledged. This report is the deliverable D2.3 of the UpWind project. (au)

  8. Materials for Wind Turbine Blades: An Overview

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard

    2017-01-01

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural...... composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed....

  9. Materials for Wind Turbine Blades: An Overview.

    Science.gov (United States)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard; Beauson, Justine; McGugan, Malcolm; Sørensen, Bent F

    2017-11-09

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed.

  10. BLADE acquisition method improves T2-weighted MR images of the female pelvis compared with a standard fast spin-echo sequence

    International Nuclear Information System (INIS)

    Fujimoto, Koji; Koyama, Takashi; Tamai, Ken; Morisawa, Nobuko; Okada, Tomohisa; Togashi, Kaori

    2011-01-01

    Purpose: To investigate feasibility of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER or BLADE) T2-weighted imaging (T2WI) of the female pelvis by comparing it with standard fast spin-echo T2WI (STD-T2WI). Materials and methods: Sagittal STD-T2WI and BLADE-T2WI of the female pelvis were performed with (36 patients) or without (15 patients) administration of butylscopolamine on a 1.5 T MR unit. Two radiologists independently rated depiction of the uterus, ovary, intestines, bladder, gynecological lesions, overall quality, and artifacts using a four-point scale. Results were compared between STD-T2WI vs. BLADE-T2WI either with (B+) or without (B−) administration of butylscopolamine, BLADE-T2WI (B−) vs. BLADE-T2WI (B+), and STD-T2WI (B+) vs. BLADE-T2WI (B−). Results: When butylscopolamine was administrated, depiction of the uterus, ovary, intestines, gynecological lesions, and overall image quality was rated higher and artifacts were rated fewer for BLADE-T2WI with significance compared with STD-T2WI. When the drug was not administrated, significant difference was observed in depiction of the lesion, overall quality, and artifacts. Depiction of the uterus, gynecological lesion, and overall quality was rated significantly higher and artifacts were fewer in BLADE-T2WI (B+) than in BLADE-T2WI (B−). Conclusion: BLADE method was feasible for female pelvic MRI, with best image quality in BLADE-T2WI (B+).

  11. Polycrystalline silicon availability for photovoltaic and semiconductor industries

    Science.gov (United States)

    Ferber, R. R.; Costogue, E. N.; Pellin, R.

    1982-01-01

    Markets, applications, and production techniques for Siemens process-produced polycrystalline silicon are surveyed. It is noted that as of 1982 a total of six Si materials suppliers were servicing a worldwide total of over 1000 manufacturers of Si-based devices. Besides solar cells, the Si wafers are employed for thyristors, rectifiers, bipolar power transistors, and discrete components for control systems. An estimated 3890 metric tons of semiconductor-grade polycrystalline Si will be used in 1982, and 6200 metric tons by 1985. Although the amount is expected to nearly triple between 1982-89, research is being carried out on the formation of thin films and ribbons for solar cells, thereby eliminating the waste produced in slicing Czolchralski-grown crystals. The free-world Si production in 1982 is estimated to be 3050 metric tons. Various new technologies for the formation of polycrystalline Si at lower costs and with less waste are considered. New entries into the industrial Si formation field are projected to produce a 2000 metric ton excess by 1988.

  12. Technique for measuring irradiation creep in polycrystalline SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Hamilton, M.L.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    A bend stress relaxation (BSR) test has been designed to examine irradiation enhanced creep in polycrystalline SiC fibers being considered for fiber reinforcement in SiC/SiC composite. Thermal creep results on Nicalon-CG and Hi-Nicalon were shown to be consistent with previously published data with Hi-Nicalon showing about a 100{degrees}C improvement in creep resistance. Preliminary data was also obtained on Nicalon-S that demonstrated that its creep resistance is greater than that of Hi-Nicalon.

  13. An aerodynamic study on flexed blades for VAWT applications

    Science.gov (United States)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-12-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.

  14. An aerodynamic study on flexed blades for VAWT applications

    International Nuclear Information System (INIS)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-01-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small

  15. Structural optimization procedure of a composite wind turbine blade for reducing both material cost and blade weight

    Science.gov (United States)

    Hu, Weifei; Park, Dohyun; Choi, DongHoon

    2013-12-01

    A composite blade structure for a 2 MW horizontal axis wind turbine is optimally designed. Design requirements are simultaneously minimizing material cost and blade weight while satisfying the constraints on stress ratio, tip deflection, fatigue life and laminate layup requirements. The stress ratio and tip deflection under extreme gust loads and the fatigue life under a stochastic normal wind load are evaluated. A blade element wind load model is proposed to explain the wind pressure difference due to blade height change during rotor rotation. For fatigue life evaluation, the stress result of an implicit nonlinear dynamic analysis under a time-varying fluctuating wind is converted to the histograms of mean and amplitude of maximum stress ratio using the rainflow counting algorithm Miner's rule is employed to predict the fatigue life. After integrating and automating the whole analysis procedure an evolutionary algorithm is used to solve the discrete optimization problem.

  16. Equilibrium shapes of polycrystalline silicon nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Korzec, M. D., E-mail: korzec@math.tu-berlin.de; Wagner, B., E-mail: bwagner@math.tu-berlin.de [Department of Mathematics, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin (Germany); Roczen, M., E-mail: maurizio.roczen@physik.hu-berlin.de [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schade, M., E-mail: martin.schade@physik.uni-halle.de [Zentrum für Innovationskompetenz SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120 Halle (Germany); Rech, B., E-mail: bernd.rech@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute for Silicon Photovoltaics, Kekuléstraße 5, 12489 Berlin (Germany)

    2014-02-21

    This study is concerned with the topography of nanostructures consisting of arrays of polycrystalline nanodots. Guided by transmission electron microscopy (TEM) measurements of crystalline Si (c-Si) nanodots that evolved from a “dewetting” process of an amorphous Si (a-Si) layer from a SiO{sub 2} coated substrate, we investigate appropriate formulations for the surface energy density and transitions of energy density states at grain boundaries. We introduce a new numerical minimization formulation that allows to account for adhesion energy from an underlying substrate. We demonstrate our approach first for the free standing case, where the solutions can be compared to well-known Wulff constructions, before we treat the general case for interfacial energy settings that support “partial wetting” and grain boundaries for the polycrystalline case. We then use our method to predict the morphologies of silicon nanodots.

  17. Non-Harmonic Fourier Analysis for bladed wheels damage detection

    Science.gov (United States)

    Neri, P.; Peeters, B.

    2015-11-01

    The interaction between bladed wheels and the fluid distributed by the stator vanes results in cyclic loading of the rotating components. Compressors and turbines wheels are subject to vibration and fatigue issues, especially when resonance conditions are excited. Even if resonance conditions can be often predicted and avoided, high cycle fatigue failures can occur, causing safety issues and economic loss. Rigorous maintenance programs are then needed, forcing the system to expensive shut-down. Blade crack detection methods are beneficial for condition-based maintenance. While contact measurement systems are not always usable in exercise conditions (e.g. high temperature), non-contact methods can be more suitable. One (or more) stator-fixed sensor can measure all the blades as they pass by, in order to detect the damaged ones. The main drawback in this situation is the short acquisition time available for each blade, which is shortened by the high rotational speed of the components. A traditional Discrete Fourier Transform (DFT) analysis would result in a poor frequency resolution. A Non-Harmonic Fourier Analysis (NHFA) can be executed with an arbitrary frequency resolution instead, allowing to obtain frequency information even with short-time data samples. This paper shows an analytical investigation of the NHFA method. A data processing algorithm is then proposed to obtain frequency shift information from short time samples. The performances of this algorithm are then studied by experimental and numerical tests.

  18. KNOW-BLADE task-3.2 report: Tip shape study

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Johansen, Jeppe; Conway, S.

    2005-01-01

    For modern rotor blades with their very large aspect ratio, the blade tip is a very limited part of the overall rotor, and as such of limited importance for the overall aerodynamics of the rotor. Even though they may not be very important for the overallpower production, the tip noise can be very...... important for the acoustics of the rotor [15], and the blade tips can as well be important for the aerodynamic damping properties of the rotor blades [13]. Unfortunately, not many options exists for predictingthe aerodynamic behavior of blade tips using computational methods. Experimentally it is di...

  19. New Design of Blade Untwisting Device of Cyclone Unit

    Directory of Open Access Journals (Sweden)

    D. I. Misiulia

    2010-01-01

    Full Text Available The paper presents a new design of a blade untwisting device where blades are considered as a main element of the device. A profile of the blades corresponds to a circular arch. An inlet angle of  the blades is determined by stream aerodynamics in an exhaust pipe, and an exit angle is determined by rectilinear gas motion. Optimum geometrical parameters of the untwisting device have been determined and its application allows to reduce a pressure drop in the ЦН-15 cyclones by 28–30 % while screw-blade untwisting device recovers only 19–20 % of energy.

  20. Family of airfoil shapes for rotating blades. [for increased power efficiency and blade stability

    Science.gov (United States)

    Noonan, K. W. (Inventor)

    1983-01-01

    An airfoil which has particular application to the blade or blades of rotor aircraft such as helicopters and aircraft propellers is described. The airfoil thickness distribution and camber are shaped to maintain a near zero pitching moment coefficient over a wide range of lift coefficients and provide a zero pitching moment coefficient at section Mach numbers near 0.80 and to increase the drag divergence Mach number resulting in superior aircraft performance.

  1. Blade Bearing Friction Estimation of Operating Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    Blade root bearing on a wind turbine (WTG) enables pitching of blades for power control and rotor braking and is a WTG critical component. As the size of modern WTGs is constantly increasing, this leads to relatively less rigid bearings, more sensitive to deformations, thus WTG operational...... reliability can be increased by continuous monitoring of blade bearing. High blade bearing friction is undesirable, as it may be associated with excessive heating of the surfaces, damage and/or inefficient operation. Thus, continuous observation of bearing friction level is crucial for blade bearing health...... monitoring systems. A novel algorithm for online monitoring of bearing friction level is developed combining physical knowledge about pitch system dynamics with state estimator, i.e. observer theory and signal processing assuming realistic sensor availability. Results show estimation of bearing friction...

  2. Examination of Successful Modal Analysis Techniques Used for Bladed-Disk Assemblies

    National Research Council Canada - National Science Library

    Orsagh, R

    2002-01-01

    Modal testing of bladed-disk assemblies in turbomachines is used to identify the critical natural frequencies and mode shape information used for avoiding the per-rev resonant conditions that cause high cycle fatigue (HCF...

  3. Influence of delayed excitation on vibrations of turbine blades couple

    Directory of Open Access Journals (Sweden)

    Půst L.

    2013-06-01

    Full Text Available In the presented paper, the computational model of the turbine blade couple is investigated with the main attention to the influence two harmonic excitation forces, having the same frequency and amplitude but with moderate delay in time. Time delay between the exciting harmonic forces depends on the revolutions of bladed disk, on the number of blades on a rotating disk and on the number of stator blades. The reduction of resonance vibrations realized by means of dry friction between the shroud blade-heads increases roughly proportional to the difference of stator and rotor blade-numbers and also to the magnitude of dry friction force. From the analysis of blade couple with direct contact it was proved that the increase of friction forces causes decrease of resonance peaks, but the influence of elastic micro-deformations in the contact surfaces (modeled e.g. by the modified Coulomb dry friction law is rather small. Analysis of a blade couple with a friction element shows that the lower number of stator blades has negligible influence on the amplitudes of both blades, but decreases amplitudes of the friction element oscillations. Similarly the increase of friction forces causes a decrease of resonance peaks, but an increase of friction element amplitudes.

  4. Acoustic measurements of a full-scale rotor with four tip shapes. Volume 1: Text, appendices A and B

    Science.gov (United States)

    Mosher, M.

    1984-01-01

    A full-scale helicopter with four different blade-tip geometries was tested in the 40- by 80-foot wind tunnel at Ames Research Center. Performance, loads, and noise were measured. The four tip shapes tested were rectangular, tapered, swept, and swept-tapered. Noise measurements from that test are presented in the form of tables and plots. The noise data include measurements of the sound pressure level in dB, dBA, and tone-corrected PNdB, for all of the conditions tested. Detailed measurements, 1/3-octave spectra and time-histories for some selected data are included as well as plots of dBA as function of test condition. Some performance measurements are given to aid interpretation of the noise data.

  5. Nonlinear 3D calculations of turbine blade impact on turbine cover

    International Nuclear Information System (INIS)

    Hatala, B.; Adamik, V.; Buchar, J.

    2000-01-01

    This paper present the approach used at the VUJE institute for the evaluation of a ruptured blade impact on the current protection cover of a SKODA 220 MW turbine. Firstly, it briefly describes experiments (Hopkinson-Davies split bar facility, Taylor tests) and numerical simulations used to obtain realistic material parameters needed for the Cowper- Symonds material model that is implemented in the code LS-DYNA3D. Then, numerical simulations, by using the code, of the ruptured blade impact on various protection barriers are presented. These simulations make it possible to find an optimal solution for a new turbine protection cover. (author)

  6. Unsteady potential flow past a propeller blade section

    Science.gov (United States)

    Takallu, M. A.

    1990-01-01

    An analytical study was conducted to predict the effect of an oscillating stream on the time dependent sectional pressure and lift coefficients of a model propeller blade. The assumption is that as the blade sections encounter a wake, the actual angles of attack vary in a sinusoidal manner through the wake, thus each blade is exposed to an unsteady stream oscillating about a mean value at a certain reduced frequency. On the other hand, an isolated propeller at some angle of attack can experience periodic changes in the value of the flow angle causing unsteady loads on the blades. Such a flow condition requires the inclusion of new expressions in the formulation of the unsteady potential flow around the blade sections. These expressions account for time variation of angle of attack and total shed vortices in the wake of each airfoil section. It was found that the final expressions for the unsteady pressure distribution on each blade section are periodic and that the unsteady circulation and lift coefficients exhibit a hysteresis loop.

  7. Extension-twist coupling of composite circular tubes with application to tilt rotor blade design

    Science.gov (United States)

    Nixon, Mark W.

    1987-01-01

    This investigation was conducted to determine if twist deformation required for the design of full-scale extension-twist-coupled tilt-rotor blades can be achieved within material design limit loads, and to demonstrate the accuracy of a coupled-beam analysis in predicting twist deformations. Two extension-twist-coupled tilt-rotor blade designs were developed based on theoretically optimum aerodynamic twist distributions. The designs indicated a twist rate requirement of between .216 and .333 deg/in. Agreement between axial tests and analytical predictions was within 10 percent at design limit loads. Agreement between the torsion tests and predictions was within 11 percent.

  8. The superconducting properties of co-doped polycrystalline MgB2

    International Nuclear Information System (INIS)

    Moore, J D; Perkins, G K; Branford, W; Yates, K A; Caplin, A D; Cohen, L F; Chen, Soo Kien; Rutter, N A; MacManus-Driscoll, Judith L

    2007-01-01

    In this study we compare the critical current density, the irreversibility line and the upper critical field of four MgB 2 polycrystalline samples, which are either undoped or have 5% carbon or 5% carbon plus either 1% aluminium or 2% zirconium. We discuss how care must be taken for the extraction of the irreversibility line in such samples. We also show how ac susceptibility and Hall probe imaging can be used to examine whether the samples remain fully connected to the highest available fields. Compared to simple 5% carbon doping we find that co-doping provides modest improvement in the pinning properties at intermediate fields in the carbon plus zirconium doped sample

  9. Variable Pitch Approach for Performance Improving of Straight-Bladed VAWT at Rated Tip Speed Ratio

    Directory of Open Access Journals (Sweden)

    Zhenzhou Zhao

    2018-06-01

    Full Text Available This paper presents a new variable pitch (VP approach to increase the peak power coefficient of the straight-bladed vertical-axis wind turbine (VAWT, by widening the azimuthal angle band of the blade with the highest aerodynamic torque, instead of increasing the highest torque. The new VP-approach provides a curve of pitch angle designed for the blade operating at the rated tip speed ratio (TSR corresponding to the peak power coefficient of the fixed pitch (FP-VAWT. The effects of the new approach are exploited by using the double multiple stream tubes (DMST model and Prandtl’s mathematics to evaluate the blade tip loss. The research describes the effects from six aspects, including the lift, drag, angle of attack (AoA, resultant velocity, torque, and power output, through a comparison between VP-VAWTs and FP-VAWTs working at four TSRs: 4, 4.5, 5, and 5.5. Compared with the FP-blade, the VP-blade has a wider azimuthal zone with the maximum AoA, lift, drag, and torque in the upwind half-cycle, and yields the two new larger maximum values in the downwind half-cycle. The power distribution in the swept area of the turbine changes from an arched shape of the FP-VAWT into the rectangular shape of the VP-VAWT. The new VP-approach markedly widens the highest-performance zone of the blade in a revolution, and ultimately achieves an 18.9% growth of the peak power coefficient of the VAWT at the optimum TSR. Besides achieving this growth, the new pitching method will enhance the performance at TSRs that are higher than current optimal values, and an increase of torque is also generated.

  10. Synthesis and nonlinear optical property of polycrystalline MnTeMoO_6

    International Nuclear Information System (INIS)

    Jin, Chengguo

    2017-01-01

    Polycrystalline MnTeMoO_6 powder has been synthesized by a new approach that MnO_2 is used as the manganese source. The transformation mechanism of manganese ions in the new approach has been discussed. The nonlinear optical property of polycrystalline MnTeMoO_6 has been investigated, and compared with single-crystalline samples. The transformation Mn"4"+ → Mn"2"+ may be formed directly without stable intermediates, and TeO_2 may serve as catalyst. The SHG response of polycrystalline MnTeMoO_6 powder is worse than that of single-crystalline powder in the same particle size distribution as its pseudo-size. The results indicate that it should pay special attention with the pseudo-size of polycrystalline powder when the potential nonlinear optical materials are screened by powder second harmonic generation measurements. (orig.)

  11. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    Science.gov (United States)

    Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.

    1984-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  12. Static Structural and Modal Analysis of Gas Turbine Blade

    Science.gov (United States)

    Ranjan Kumar, Ravi; Pandey, K. M., Prof.

    2017-08-01

    Gas turbine is one of the most versatile items of turbo machinery nowadays. It is used in different modes such as power generation, oil and gas, process plants, aviation, domestic and related small industries. This paper is based on the problems concerning blade profile selection, material selection and turbine rotor blade vibration that seriously impact the induced stress-deformation and structural functioning of developmental gas turbine engine. In this paper for generating specific power by rotating blade at specific RPM, blade profile and material has been decided by static structural analysis. Gas turbine rotating blade RPM is decided by Modal Analysis so that the natural frequency of blade should not match with the excitation frequency. For the above blade profile has been modeled in SOLIDWORKS and analysis has been done in ANSYS WORKBENCH 14. Existing NACA6409 profile has been selected as base model and then it is modified by bending it through 72.5° and 145°. Hence these three different blade profiles have been analyzed for three different materials viz. Super Alloy X, Nimonic 80A and Inconel 625 at three different speed viz. 20000, 40000 and 60000RPM. It is found that NACA6409 with 72.5° bent gives best result for all material at all speed. Among all the material Inconel 625 gives best result. Hence Blade of Inconel 625 having 72.5° bent profile is the best combination for all RPM.

  13. Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

    Directory of Open Access Journals (Sweden)

    Osama N. Alshroof

    2012-01-01

    Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.

  14. AERFORCE: Subroutine package for unsteady blade-element/momentum calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, Anders

    2000-05-01

    A subroutine package, called AERFORCE, for the calculation of aerodynamic forces of wind turbine rotors has been written. The subroutines are written in FORTRAN. AERFORCE requires the input of airfoil aerodynamic data via tables as function of angle of attack, the turbine blade and rotor geometry and wind and blade velocities as input. The method is intended for use in an aeroelastic code. Wind and blade velocities are given at a sequence of time steps and blade forces are returned. The aerodynamic method is basically a Blade-Element/Momentum method. The method is fast and coded to be used in time simulations. In order to obtain a steady state solution a time simulation to steady state conditions has to be carried out. The BEM-method in AERFORCE includes extensions for: Dynamic inflow: Unsteady modeling of the inflow for cases with unsteady blade loading or unsteady wind. Extensions to BEM-theory for inclined flow to the rotor disc (yaw model). Unsteady blade aerodynamics: The inclusion of 2D attached flow unsteady aerodynamics and a semi-empirical model for 2D dynamic stall.

  15. Multi-spectral temperature measurement method for gas turbine blade

    Science.gov (United States)

    Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong

    2016-02-01

    One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.

  16. Tunneling cracks in full scale wind turbine blade joints

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn; Sørensen, Bent F.; Kildegaard, C.

    2017-01-01

    A novel approach is presented and used in a generic tunneling crack tool for the prediction of crack growth rates for tunneling cracks propagating across a bond-line in a wind turbine blade under high cyclic loadings. In order to test and demonstrate the applicability of the tool, model predictions...

  17. Design and Evaluation of Glass/epoxy Composite Blade and Composite Tower Applied to Wind Turbine

    Science.gov (United States)

    Park, Hyunbum

    2018-02-01

    In the study, the analysis and manufacturing of small class wind turbine blade was performed. In the structural design, firstly the loading conditions are defined through the load case analysis. The proposed structural configuration of blade has a sandwich type composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. And also, this work proposes a design procedure and results of tower for the small scale wind turbine systems. Structural analysis of blade including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the finite element method, the load spectrum analysis and the Miner rule. Moreover, investigation on structural safety of tower was verified through structural analysis by FEM. The manufacturing of blade and tower was performed based on structural design. In order to investigate the designed structure, the structural tests were conducted and its results were compared with the calculated results. It is confirmed that the final proposed blade and tower meet the design requirements.

  18. Direct Embedding of Fiber-Optical Load Sensors into Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars; Buggy, Stephen; Olesen, Ib S.

    Long Period Gratings were embedded into the adhesive utilized in the matrix of a wind turbine blade. The LPGs were subsequently subjected to temperature-testing in order to assess their performance, which illustrates good embedding capabilities....

  19. Direct Numerical Simulations of a Full Stationary Wind-Turbine Blade

    Science.gov (United States)

    Qamar, Adnan; Zhang, Wei; Gao, Wei; Samtaney, Ravi

    2014-11-01

    Direct numerical simulation of flow past a full stationary wind-turbine blade is carried out at Reynolds number, Re = 10,000 placed at 0 and 5 (degree) angle of attack. The study is targeted to create a DNS database for verification of solvers and turbulent models that are utilized in wind-turbine modeling applications. The full blade comprises of a circular cylinder base that is attached to a spanwise varying airfoil cross-section profile (without twist). An overlapping composite grid technique is utilized to perform these DNS computations, which permits block structure in the mapped computational space. Different flow shedding regimes are observed along the blade length. Von-Karman shedding is observed in the cylinder shaft region of the turbine blade. Along the airfoil cross-section of the blade, near body shear layer breakdown is observed. A long tip vortex originates from the blade tip region, which exits the computational plane without being perturbed. Laminar to turbulent flow transition is observed along the blade length. The turbulent fluctuations amplitude decreases along the blade length and the flow remains laminar regime in the vicinity of the blade tip. The Strouhal number is found to decrease monotonously along the blade length. Average lift and drag coefficients are also reported for the cases investigated. Supported by funding under a KAUST OCRF-CRG grant.

  20. The effect of blade pitch in the rotor hydrodynamics of a cross-flow turbine

    Science.gov (United States)

    Somoano, Miguel; Huera-Huarte, Francisco

    2016-11-01

    In this work we will show how the hydrodynamics of the rotor of a straight-bladed Cross-Flow Turbine (CFT) are affected by the Tip Speed Ratio (TSR), and the blade pitch angle imposed to the rotor. The CFT model used in experiments consists of a three-bladed (NACA-0015) vertical axis turbine with a chord (c) to rotor diameter (D) ratio of 0.16. Planar Digital Particle Image Velocimetry (DPIV) was used, with the laser sheet aiming at the mid-span of the blades, illuminating the inner part of the rotor and the near wake of the turbine. Tests were made by forcing the rotation of the turbine with a DC motor, which provided precise control of the TSR, while being towed in a still-water tank at a constant Reynolds number of 61000. A range of TSRs from 0.7 to 2.3 were covered for different blade pitches, ranging from 8° toe-in to 16° toe-out. The interaction between the blades in the rotor will be discussed by examining dimensionless phase-averaged vorticity fields in the inner part of the rotor and mean velocity fields in the near wake of the turbine. Supported by the Spanish Ministry of Economy and Competitiveness, Grant BES-2013-065366 and project DPI2015-71645-P.

  1. Modal analysis of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, M.H.; Baumgart, A.; Carlen, I.

    2002-02-01

    The modal analysis technique has been used to identify essential dynamic properties of wind turbine blades like natural frequencies, damping characteristics and mode shapes. Different experimental procedures have been considered, and the most appropriate of these has been selected. Although the comparison is based on measurements on a LM 19 m blade, the recommendations given are believed to be valid for other wind turbine blades as well. The reliability of the selected experimental analysis has been quantified by estimating the unsystematic variations in the experimental findings. Satisfactory results have been obtained for natural frequencies, damping characteristics and for the dominating deflection direction of the investigated mode shapes. For the secondary deflection directions, the observed experimental uncertainty may be considerable - especially for the torsional deflection. The experimental analysis of the LM 19 m blade has been compared with results from a state-of-the-art FE-modeling of the same blade. For some of the higher modes substantial discrepancies between the natural frequencies originating from the FE-modeling and the modal analysis, respectively, are observed. In general the qualitative features of measured and computed modes shapes are in good agreement. However, for the secondary deflection directions, substantial deviations in the absolute values may occur (when normalizing with respect to the primary deflection direction). Finally, suggestions of potential future improvements of the experimental procedure are discussed. (au)

  2. A model-reduction approach to the micromechanical analysis of polycrystalline materials

    Science.gov (United States)

    Michel, Jean-Claude; Suquet, Pierre

    2016-03-01

    The present study is devoted to the extension to polycrystals of a model-reduction technique introduced by the authors, called the nonuniform transformation field analysis (NTFA). This new reduced model is obtained in two steps. First the local fields of internal variables are decomposed on a reduced basis of modes as in the NTFA. Second the dissipation potential of the phases is replaced by its tangent second-order (TSO) expansion. The reduced evolution equations of the model can be entirely expressed in terms of quantities which can be pre-computed once for all. Roughly speaking, these pre-computed quantities depend only on the average and fluctuations per phase of the modes and of the associated stress fields. The accuracy of the new NTFA-TSO model is assessed by comparison with full-field simulations on two specific applications, creep of polycrystalline ice and response of polycrystalline copper to a cyclic tension-compression test. The new reduced evolution equations is faster than the full-field computations by two orders of magnitude in the two examples.

  3. Observations of Fabric Development in Polycrystalline Ice at Basal Pressures: Methods and Initial Results

    Science.gov (United States)

    Breton, D. J.; Baker, I.; Cole, D. M.

    2012-12-01

    Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests on a 917 kg m-3 polycrystalline ice specimen at 20 MPa hydrostatic pressure, thus simulating ~2,000 m depth. Initial specimen grain orientations were random, typical grain diameters were 1.2 mm, and the applied creep stress was 0.3 MPa. Subsequent microstructural analyses on the deformed specimen and a similarly prepared, undeformed specimen allowed characterization of crystal fabric evolution under pressure. Our microstructural analysis technique simultaneously collected grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtained crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and full c- and a-axis grain orientation data. The combined creep and microstructural data demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice. We discuss possible mechanisms for the observed phenomena, and future directions for hydrostatic creep testing.

  4. On damage diagnosis for a wind turbine blade using pattern recognition

    Science.gov (United States)

    Dervilis, N.; Choi, M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Farrar, C. R.; Worden, K.

    2014-03-01

    With the increased interest in implementation of wind turbine power plants in remote areas, structural health monitoring (SHM) will be one of the key cards in the efficient establishment of wind turbines in the energy arena. Detection of blade damage at an early stage is a critical problem, as blade failure can lead to a catastrophic outcome for the entire wind turbine system. Experimental measurements from vibration analysis were extracted from a 9 m CX-100 blade by researchers at Los Alamos National Laboratory (LANL) throughout a full-scale fatigue test conducted at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC). The blade was harmonically excited at its first natural frequency using a Universal Resonant EXcitation (UREX) system. In the current study, machine learning algorithms based on Artificial Neural Networks (ANNs), including an Auto-Associative Neural Network (AANN) based on a standard ANN form and a novel approach to auto-association with Radial Basis Functions (RBFs) networks are used, which are optimised for fast and efficient runs. This paper introduces such pattern recognition methods into the wind energy field and attempts to address the effectiveness of such methods by combining vibration response data with novelty detection techniques.

  5. Advanced LP turbine blade design

    International Nuclear Information System (INIS)

    Jansen, M.; Pfeiffer, R.; Termuehlen, H.

    1990-01-01

    In the 1960's and early 1970's, the development of steam turbines for the utility industry was mainly influenced by the demand for increasing unit sizes. Nuclear plants in particular, required the design of LP turbines with large annulus areas for substantial mass and volumetric steam flows. Since then the development of more efficient LP turbines became an ongoing challenge. Extensive R and D work was performed in order to build efficient and reliable LP turbines often exposed to severe corrosion, erosion and dynamic excitation conditions. This task led to the introduction of an advanced disk-type rotor design for 1800 rpm LP turbines and the application of a more efficient, reaction-type blading for all steam turbine sections including the first stages of LP turbines. The most recent developments have resulted in an advanced design of large LP turbine blading, typically used in the last three stages of each LP turbine flow section. Development of such blading required detailed knowledge of the three dimensional, largely transonic, flow conditions of saturated steam. Also the precise assessment of blade stressing from dynamic conditions, such as speed and torsional resonance, as well as stochastic and aerodynamic excitation is of extreme importance

  6. Investigation of Dynamic Aerodynamics and Control of Wind Turbine Sections Under Relevant Inflow/Blade Attitude Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, Jonathan W. [University of Wyoming

    2014-08-05

    The growth of wind turbines has led to highly variable loading on the blades. Coupled with the relative reduced stiffness of longer blades, the need to control loading on the blades has become important. One method of controlling loads and maximizing energy extraction is local control of the flow on the wind turbine blades. The goal of the present work was to better understand the sources of the unsteady loading and then to control them. This is accomplished through an experimental effort to characterize the unsteadiness and the effect of a Gurney flap on the flow, as well as an analytical effort to develop control approaches. It was planned to combine these two efforts to demonstrate control of a wind tunnel test model, but that final piece still remains to be accomplished.

  7. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I. [General Physics Institute of Russian Academy of Sciences, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Polikarpov, M.; Ershov, P. [Immanuel Kant Baltic Federal University, Functional Nanomaterials, Kaliningrad (Russian Federation); Kuznetsov, S.; Yunkin, V. [Institute of Microelectronics Technology RAS, Chernogolovka, Moscow region (Russian Federation); Snigireva, I. [European Synchrotron Radiation Facility, Grenoble (France)

    2016-03-15

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  8. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    International Nuclear Information System (INIS)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I.; Polikarpov, M.; Ershov, P.; Kuznetsov, S.; Yunkin, V.; Snigireva, I.

    2016-01-01

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  9. Study of the CMS Phase 1 Pixel Pilot Blade Reconstruction

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system. It was replaced in March 2017 with an upgraded one, called the Phase 1 upgrade detector. During Long Shutdown 1, a third disk was inserted into the present forward pixel detector with eight prototype blades constructed using a new digital read-out chip architecture and a prototype readout chain. Testing the performance of these pilot modules enabled us to gain experience with the Phase 1 upgrade modules. In this document, the data reconstruction with the pilot system is presented. The hit finding efficiency and residual of these new modules is also shown, and how these observables were used to adjust the timing of the pilot blades.

  10. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...... to influence of other nonresonant modes. The efficiency of the method isdemonstrated byapplication to a rotor with 42 m blades, where the sensor/actuator system is implemented in the form of an axial extensible strut near the root of each blade. The load is provided by a simple but fully threedimensional...... correlated wind velocity field. It is shown by numerical simulations that the active damping system can provide a significant reduction in the response amplitude of the targeted modes, while applying control moments to the blades that are about 1 order of magnitude smaller than the moments from the external...

  11. Probabilistic Fatigue Design of Composite Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    In the present paper a probabilistic design approach to fatigue design of wind turbine blades is presented. The physical uncertainty on the fatigue strength for composite material is estimated using public available fatigue tests. Further, the model uncertainty on Miner rule for damage accumulation...

  12. Channel Control-Blade Interference Management at LaSalle 1 and 2 during 2007 and 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cantonwine, Paul; Crawford, Doug; Downs, Mike [Global Nuclear Fuels, PO Box 780, Wilmington, NC 28402 (United States); Joe, Bertrum [GE-Hitachi, 1989 Little Orchard St., San Jose, CA 95125-1030 (United States); Bahensky, Ted [GE-Hitachi, PO Box 780, Wilmington, NC 28402 (United States); Reimer, John [Exelon Nuclear, 2601 North 21st Road, Marseilles, Il 61341-9757 (United States); Hoz, Carlos del la; Petersen, Ken [Exelon Nuclear, 4300 Winfield Road, Warrenville, IL 60555 (United States); Reitmeyer, Mike [Exelon Nuclear, 200 Exelon Way, Kennett Square, PA 19348 (United States); Morris, Jeff; Zbib, Ali [AREVA NP, 2101 Horn Rapids Road, Richland, WA. 99354 (United States)

    2009-06-15

    This paper provides a summary of the operational experience at LaSalle 1 and LaSalle 2 regarding channel control-blade interference that occurred in 2007 and 2008. Channel distortion data from LaSalle 1 provides a characterization of distortion in all four bundles in cells that experienced channel interference and cells that did not. Also, this paper provides a new channel distortion management strategy implemented at LaSalle 2 that avoided a mid-cycle outage. LaSalle 1 and LaSalle 2 are GE designed Boiling Water Reactors (BWR/5 Type) that generate 1195 MW electric. During 2007 and 2008, each core had 1. and 3. Cycle AREVA ATTRIUM{sup TM} 10 fuel with 100 mil Zr-2 channels and 2. Cycle GNF GE14 fuel with 120/75 mil Zr-2 channels. As a result of the channel control-blade interference observed in 2007 and 2008, two peripheral cells in LaSalle 1 and two (1 peripheral and 1 interior) cells in LaSalle 2 were declared inoperable. The first observations of channel control-blade friction occurred in September 2007 in LaSalle 1 about 6 months prior to the end of a 2-year cycle. LaSalle 2 had started up approximately 6 months earlier and had 18 months left the cycle. The initial observations (eventually seven cells with no-settle conditions were observed in LaSalle) were limited to the peripheral cells where fluence gradient-induced bow was the dominant distortion mechanism. However, near the end of cycle in LaSalle 1 in January 2008, a number of interior cells were unexpectedly found to not settle. These were later determined to be a result of shadow corrosion-induced bow. Further testing to determine the extent of condition found a total of nine interior cells that failed the no-settle criterion. These unexpected observations instigated a significant response that resulted in an extensive expansion of the work scope for the upcoming outage that began on February 4, 2008. Specifically, a large channel measurement campaign and a large re-channeling campaign were added. The

  13. Study of a wave power generator system using an air turbine having improved J-shaped blades; Kairyo J gatayoku kuki turbine wo mochiita haryoku hatsuden sochi no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Honma, T; Omata, K; Kojima, N [Meiji University, Tokyo (Japan)

    1997-11-25

    An improved J-shaped blade, in which a J-shaped blade is combined with a small-size Savonius blade, has been developed, to further improve efficiency of an air turbine for wave power generator systems. A prototype model of stationary wave power generator has been developed using the improved blade, to confirm its power generation characteristics by tests in a water tank and small-scale ocean tests. The results are compared with the characteristics of the units with conventional blades. The air turbine unit with the improved blade shows an efficiency of 13 to 35%, which is higher by 10 to 20% than that of the turbine with a J-shaped blade and by 20 to 70% than that of the one with a Savonius blade, more noted at low speed of rotation. It is therefore considered that the turbine with the improved blade is suited for sea areas having a relatively low wave height. It is also considered that efficiency can be further enhanced, when one or more guide vanes are provided around the blade. 2 refs., 12 figs.

  14. Numerical study of aero-excitation of steam-turbine rotor blade self-oscillations

    Science.gov (United States)

    Galaev, S. A.; Makhnov, V. Yu.; Ris, V. V.; Smirnov, E. M.

    2018-05-01

    Blade aero-excitation increment is evaluated by numerical solution of the full 3D unsteady Reynolds-averaged Navier-Stokes equations governing wet steam flow in a powerful steam-turbine last stage. The equilibrium wet steam model was adopted. Blade surfaces oscillations are defined by eigen-modes of a row of blades bounded by a shroud. Grid dependency study was performed with a reduced model being a set of blades multiple an eigen-mode nodal diameter. All other computations were carried out for the entire blade row. Two cases are considered, with an original-blade row and with a row of modified (reinforced) blades. Influence of eigen-mode nodal diameter and blade reinforcing on aero-excitation increment is analyzed. It has been established, in particular, that maximum value of the aero-excitation increment for the reinforced-blade row is two times less as compared with the original-blade row. Generally, results of the study point definitely to less probability of occurrence of blade self-oscillations in case of the reinforced blade-row.

  15. Structural dynamics of shroudless, hollow fan blades with composite in-lays

    Science.gov (United States)

    Aiello, R. A.; Hirschbein, M. S.; Chamis, C. C.

    1982-01-01

    Structural and dynamic analyses are presented for a shroudless, hollow titanium fan blade proposed for future use in aircraft turbine engines. The blade was modeled and analyzed using the composite blade structural analysis computer program (COBSTRAN); an integrated program consisting of mesh generators, composite mechanics codes, NASTRAN, and pre- and post-processors. Vibration and impact analyses are presented. The vibration analysis was conducted with COBSTRAN. Results show the effect of the centrifugal force field on frequencies, twist, and blade camber. Bird impact analysis was performed with the multi-mode blade impact computer program. This program uses the geometric model and modal analysis from the COBSTRAN vibration analysis to determine the gross impact response of the fan blades to bird strikes. The structural performance of this blade is also compared to a blade of similar design but with composite in-lays on the outer surface. Results show that the composite in-lays can be selected (designed) to substantially modify the mechanical performance of the shroudless, hollow fan blade.

  16. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    Science.gov (United States)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  17. Numerical Investigation of the Tip Vortex of a Straight-Bladed Vertical Axis Wind Turbine with Double-Blades

    Directory of Open Access Journals (Sweden)

    Yanzhao Yang

    2017-10-01

    Full Text Available Wind velocity distribution and the vortex around the wind turbine present a significant challenge in the development of straight-bladed vertical axis wind turbines (VAWTs. This paper is intended to investigate influence of tip vortex on wind turbine wake by Computational Fluid Dynamics (CFD simulations. In this study, the number of blades is two and the airfoil is a NACA0021 with chord length of c = 0.265 m. To capture the tip vortex characteristics, the velocity fields are investigated by the Q-criterion iso-surface (Q = 100 with shear-stress transport (SST k-ω turbulence model at different tip speed ratios (TSRs. Then, mean velocity, velocity deficit and torque coefficient acting on the blade in the different spanwise positions are compared. The wind velocities obtained by CFD simulations are also compared with the experimental data from wind tunnel experiments. As a result, we can state that the wind velocity curves calculated by CFD simulations are consistent with Laser Doppler Velocity (LDV measurements. The distribution of the vortex structure along the spanwise direction is more complex at a lower TSR and the tip vortex has a longer dissipation distance at a high TSR. In addition, the mean wind velocity shows a large value near the blade tip and a small value near the blade due to the vortex effect.

  18. Moving blade for steam turbines with axial flow

    International Nuclear Information System (INIS)

    Raschke, K.; Wehle, G.

    1976-01-01

    The invention concerns the improvement of the production of moving blades for steam turbines with axial flow, especially of multi-blades produced by welding of the top plates. It is proposed to weld the top plates before the moving blades are fitted into the rotor. Welding is this made much easier and can be carried out under protective gas and with better results. (UWI) [de

  19. Investigating for failure of central ventilation fan blade

    International Nuclear Information System (INIS)

    Koo, Jae Raeyang; Ko Woo Sig; Kim, Yeon Hwan; Park, Kwang Ha

    2002-01-01

    During the operation, central ventilation fan stopped when switch 'on' condition. When central ventilation fan disassemble, ten blades of fan fractured. We have searched cause of failure. We had modeling one of the fan blades and analysis with computer programs. Thus we have find that fracture of central ventilation fan blades is alternative stress and vibration at hub. In this paper, we have described cause of failure

  20. Turbine blade having a constant thickness airfoil skin

    Science.gov (United States)

    Marra, John J

    2012-10-23

    A turbine blade is provided for a gas turbine comprising: a support structure comprising a base defining a root of the blade and a framework extending radially outwardly from the base, and an outer skin coupled to the support structure framework. The skin has a generally constant thickness along substantially the entire radial extent thereof. The framework and the skin define an airfoil of the blade.

  1. Optimization design of spar cap layup for wind turbine blade

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Based on the aerodynamic shape and structural form of the blade are fixed,a mathematical model of optimization design for wind turbine blade is established.The model is pursued with respect to minimum the blade mass to reduce the cost of wind turbine production.The material layup numbers of the spar cap are chosen as the design variables;while the demands of strength,stiffness and stability of the blade are employed as the constraint conditions.The optimization design for a 1.5 MW wind turbine blade is carried out by combing above objective and constraint conditions at the action of ultimate flapwise loads with the finite element software ANSYS.Compared with the original design,the optimization design result achieves a reduction of 7.2% of the blade mass,the stress and strain distribution of the blade is more reasonable,and there is no occurrence of resonance,therefore its effectiveness is verified.

  2. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    effective (or equivalent) isotropic radiated power (EIRP), an HG tip antenna inside a blade gives stronger direct pulse amplitudes and better pulse waveforms for accurate and reliable distance estimations than the LG. Moreover, the direct pulse with the HG antenna is also closer to the blade surface, which...... in free space have similar realized gain when allocated inside blades, so that the emission power for the HG and LG antennas in blades can be the same. The antenna gain impacts on time-domain pulse waveforms and power distributions around a blade are carefully investigated (with the tip antenna inside...... a blade). Higher antenna gain enlarges both direct pulse and multipath but in different levels. To verify the simulations, time-domain measurements are performed with a full 37-meter blade. Pulse waveforms and power delay profiles are measured. From all the studies, it follows that: with the similar...

  3. Evaluation of Hydraulic Loads on the Runner Blades of a Kaplan Turbine using CFD Simulation and Model Test

    Directory of Open Access Journals (Sweden)

    Zoltan-Iosif Korka

    2016-10-01

    Full Text Available CFD (Computational Fluid Dynamic is today a standard procedure for analyzing and simulating the flow through several hydraulic machines. In this process, the fluid flow domain is divided into small volumes where the governing equations are converted into algebraic ones, which are numerically solved. Computational results strongly depend on the applied mathematical model and on the numerical methods used for converting the governing equations into the algebraic ones. The goal of the paper is to evaluate, by numerical simulation, the hydraulic loads (forces and torques on the runner blades of an existent Kaplan turbine and to compare them with the experimental results obtained from model test.

  4. Research on the nonintrusive measurement of the turbine blade vibration

    Science.gov (United States)

    Zhang, Shi hai; Li, Lu-ping; Rao, Hong-de

    2008-11-01

    It's one of the important ways to monitor the change of dynamic characteristic of turbine blades for ensuring safety operation of turbine unit. Traditional measurement systems for monitoring blade vibration generally use strain gauges attached to the surface of turbine blades, each strain gauge gives out an analogue signal related to blade deformation, it's maximal defect is only a few blades could be monitored which are attached by strain gauge. But the noncontact vibration measurement will be discussed would solve this problem. This paper deals with noncontact vibration measurement on the rotor blades of turbine through experiments. In this paper, the noncontact vibration measurement - Tip Timing Measurement will be presented, and will be improved. The statistics and DFT will be used in the improved measurement. The main advantage of the improved measurement is that only two sensors over the top of blades and one synchronous sensor of the rotor are used to get the exact vibration characteristics of the each blade in a row. In our experiment, we adopt NI Company's DAQ equipment: SCXI1001 and PCI 6221, three optical sensors, base on the graphics program soft LabVIEW to develop the turbine blade monitor system. At the different rotational speed of the rotor (1000r/m and 1200r/m) we do several experiments on the bench of the Turbine characteristic. Its results indicated that the vibration of turbine blade could be real-time monitored and accurately measured by the improved Tip Timing Measurement.

  5. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...... of the rotor, icing and lightning. Research is done throughout the world in order to develop and improve such measurement systems. Commercial hardware and software available for the described purpose is presented in the report....

  6. Impact of graphene polycrystallinity on the performance of graphene field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, David; Chaves, Ferney [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, 08193-Bellaterra (Spain); Cummings, Aron W.; Van Tuan, Dinh [ICN2, Institut Català de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Kotakoski, Jani [Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien (Austria); Department of Physics, University of Helsinki, P.O. Box 43, 00014 University of Helsinki (Finland); Roche, Stephan [ICN2, Institut Català de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona (Spain)

    2014-01-27

    We have used a multi-scale physics-based model to predict how the grain size and different grain boundary morphologies of polycrystalline graphene will impact the performance metrics of graphene field-effect transistors. We show that polycrystallinity has a negative impact on the transconductance, which translates to a severe degradation of the maximum and cutoff frequencies. On the other hand, polycrystallinity has a positive impact on current saturation, and a negligible effect on the intrinsic gain. These results reveal the complex role played by graphene grain boundaries and can be used to guide the further development and optimization of graphene-based electronic devices.

  7. Impact of graphene polycrystallinity on the performance of graphene field-effect transistors

    International Nuclear Information System (INIS)

    Jiménez, David; Chaves, Ferney; Cummings, Aron W.; Van Tuan, Dinh; Kotakoski, Jani; Roche, Stephan

    2014-01-01

    We have used a multi-scale physics-based model to predict how the grain size and different grain boundary morphologies of polycrystalline graphene will impact the performance metrics of graphene field-effect transistors. We show that polycrystallinity has a negative impact on the transconductance, which translates to a severe degradation of the maximum and cutoff frequencies. On the other hand, polycrystallinity has a positive impact on current saturation, and a negligible effect on the intrinsic gain. These results reveal the complex role played by graphene grain boundaries and can be used to guide the further development and optimization of graphene-based electronic devices

  8. Ultrathin polycrystalline 6,13-Bis(triisopropylsilylethynyl)-pentacene films

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Min-Cherl; Zhang, Dongrong; Nikiforov, Gueorgui O.; Lee, Michael V.; Qi, Yabing, E-mail: Yabing.Qi@oist.jp [Energy Materials and Surface Sciences Unit (EMSS), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Joo Shin, Tae; Ahn, Docheon; Lee, Han-Koo; Baik, Jaeyoon; Shin, Hyun-Joon [Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of)

    2015-03-15

    Ultrathin (<6 nm) polycrystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-P) are deposited with a two-step spin-coating process. The influence of spin-coating conditions on morphology of the resulting film was examined by atomic force microscopy. Film thickness and RMS surface roughness were in the range of 4.0–6.1 and 0.6–1.1 nm, respectively, except for small holes. Polycrystalline structure was confirmed by grazing incidence x-ray diffraction measurements. Near-edge x-ray absorption fine structure measurements suggested that the plane through aromatic rings of TIPS-P molecules was perpendicular to the substrate surface.

  9. Numerical investigations on axial and radial blade rubs in turbo-machinery

    Science.gov (United States)

    Abdelrhman, Ahmed M.; Tang, Eric Sang Sung; Salman Leong, M.; Al-Qrimli, Haidar F.; Rajamohan, G.

    2017-07-01

    In the recent years, the clearance between the rotor blades and stator/casing had been getting smaller and smaller prior improving the aerodynamic efficiency of the turbomachines as demand in the engineering field. Due to the clearance reduction between the blade tip and the rotor casing and between rotor blades and stator blades, axial and radial blade rubbing could be occurred, especially at high speed resulting into complex nonlinear vibrations. The primary aim of this study is to address the blade axial rubbing phenomenon using numerical analysis of rotor system. A comparison between rubbing caused impacts of axial and radial blade rubbing and rubbing forces are also aims of this study. Tow rotor models (rotor-stator and rotor casing models) has been designed and sketched using SOILDSWORKS software. ANSYS software has been used for the simulation and the numerical analysis. The rubbing conditions were simulated at speed range of 1000rpm, 1500rpm and 2000rpm. Analysis results for axial blade rubbing showed the appearance of blade passing frequency and its multiple frequencies (lx, 2x 3x etc.) and these frequencies will more excited with increasing the rotational speed. Also, it has been observed that when the rotating speed increased, the rubbing force and the harmonics frequencies in x, y and z-direction become higher and severe. The comparison study showed that axial blade rub is more dangerous and would generate a higher vibration impacts and higher blade rubbing force than radial blade rub.

  10. A deflection monitoring system for a wind turbine blade

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  11. Channel flow analysis. [velocity distribution throughout blade flow field

    Science.gov (United States)

    Katsanis, T.

    1973-01-01

    The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.

  12. High vacuum tribology of polycrystalline diamond coatings

    Indian Academy of Sciences (India)

    Polycrystalline diamond coatings; hot filament CVD; high vacuum tribology. 1. Introduction .... is a characteristic of graphite. We mark the (diamond ... coefficient of friction due to changes in substrate temperature. The average coefficient of.

  13. Near net shape forging of titanium alloy turbine blade

    International Nuclear Information System (INIS)

    Morita, Akiyasu; Hattori, Shigeo; Tani, Kazuhito; Takemura, Atsushi; Ashida, Yoshio

    1991-01-01

    The isothermal forging process has been developed to produce turbine blades made of near β Ti-alloy Ti-10V-2Fe-3Al. It is important to set the preform at the optimum position of the die in order to get a high precision product. The deformation analysis by using FEM is effective to determine the optimum position. And also it is necessary to avoid buckling induced by the restriction of axial elongation of the material. As a result, Ti-10V-2Fe-3Al blades could be formed precisely by using only one stage of forging, and machining was needed only at the root. The thickness of the oxide layer induced on the surface of the forged blade was only 70μm. The mechanical properties of Ti-10V-2Fe-3Al blades after forging and annealing were superior to those of Ti-6Al-4V blades and were nearly uniform across the length of the blades. (author)

  14. The use of wood for wind turbine blade construction

    Science.gov (United States)

    Gougeon, M.; Zuteck, M.

    1979-01-01

    The interrelationships between moisture and wood, conditions for dry rot spore activity, the protection of wood fibers from moisture, wood resin composites, wood laminating, quality control, and the mechanical properties of wood are discussed. The laminated veneer and the bonded sawn stock fabrication techniques, used in the construction of a turbine blade with a monocoque 'D' section forming the leading edge and a built up trailing edge section, are described. A 20 foot root end sample complete with 24 bonded-in studs was successfully subjected to large onetime loads in both the flatwise and edgewise directions, and to fatigue tests. Results indicate that wood is both a viable and advantageous material for use in wind turbine blades. The basic material is reasonably priced, domestically available, ecologically sound, and easily fabricated with low energy consumption.

  15. An experimental assessment of resistance reduction and wake modification of a kvlcc model by using outer-layer vertical blades

    Directory of Open Access Journals (Sweden)

    An Nam Hyun

    2014-03-01

    Full Text Available In this study, an experimental investigation has been made of the applicability of outer-layer vertical blades to real ship model. After first devised by Hutchins and Choi (2003, the outer-layer vertical blades demonstrated its effectiveness in reducing total drag of flat plate (Park et al., 2011 with maximum drag reduction of 9.6%. With a view to assessing the effect in the flow around a ship, the arrays of outer-layer vertical blades have been installed onto the side bottom and flat bottom of a 300k KVLCC model. A series of towing tank test has been carried out to investigate resistance (CTM reduction efficiency and improvement of stern wake distribution with varying geometric parameters of the blades array. The installation of vertical blades led to the CTM reduction of 2.15~2.76% near the service speed. The nominal wake fraction was affected marginally by the blades array and the axial velocity distribution tended to be more uniform by the blades array.

  16. An experimental assessment of resistance reduction and wake modification of a KVLCC model by using outer-layer vertical blades

    Directory of Open Access Journals (Sweden)

    Nam Hyun An

    2014-03-01

    Full Text Available In this study, an experimental investigation has been made of the applicability of outer-layer vertical blades to real ship model. After first devised by Hutchins and Choi (2003, the outer-layer vertical blades demonstrated its effectiveness in reducing total drag of flat plate (Park et al., 2011 with maximum drag reduction of 9.6%. With a view to assessing the effect in the flow around a ship, the arrays of outer-layer vertical blades have been installed onto the side bottom and flat bottom of a 300k KVLCC model. A series of towing tank test has been carried out to investigate resistance (CTM reduction efficiency and improvement of stern wake distribution with varying geometric parameters of the blades array. The installation of vertical blades led to the CTM reduction of 2.15∼2.76% near the service speed. The nominal wake fraction was affected marginally by the blades array and the axial velocity distribution tended to be more uniform by the blades array.

  17. The Brazier effect in wind turbine blades and its influence on design

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt; Weaver, P.M.; Cecchini, L.S.

    2012-01-01

    Critical failure was observed in the shear web of a wind turbine blade during a full-scale testing. This failure occurred immediately before the ultimate failure and was partly caused by buckling and non-linear cross-sectional strain. Experimental values had been used to compare and validate both...... numerical and semi-analytical results in the analysis of the shear webs in the reinforced wind turbine blade. Only elastic material behaviour was analysed, and attention was primarily focused on the Brazier effect. The complex, geometrically non-linear and elastic stress–strain behaviour of the shear webs...... and the cap in compression were analysed using a balance of experimental, numerical and analytical approaches. It was noted that the non-linear distortion was caused by the crushing pressure derived from the Brazier effect. This Brazier pressure may have a significant impact on the design of new blades...

  18. Wind Turbine Blade Nondestructive Testing with a Transportable Radiography System

    Directory of Open Access Journals (Sweden)

    J. G. Fantidis

    2011-01-01

    Full Text Available Wind turbines are becoming widely used as they are an environmentally friendly way for energy production without emissions; however, they are exposed to a corrosive environment. In addition, as wind turbines typically are the tallest structures in the surrounding area of a wind farm, it is expected that they will attract direct lightning strikes several times during their operating life. The purpose of this paper is to show that the radiography with a transportable unit is a solution to find defects in the wind turbine blade and reduce the cost of inspection. A transportable neutron radiography system, incorporating an Sb–Be source, has been simulated using the MCNPX code. The simulated system has a wide range of radiography parameters.

  19. Composite hub/metal blade compressor rotor

    Science.gov (United States)

    Yao, S.

    1978-01-01

    A low cost compressor rotor was designed and fabricated for a small jet engine. The rotor hub and blade keepers were compression molded with graphite epoxy. Each pair of metallic blades was held in the hub by a keeper. All keepers were locked in the hub with circumferential windings. Feasibility of fabrication was demonstrated in this program.

  20. Analysis of Different Blade Architectures on small VAWT Performance

    Science.gov (United States)

    Battisti, L.; Brighenti, A.; Benini, E.; Raciti Castelli, M.

    2016-09-01

    The present paper aims at describing and comparing different small Vertical Axis Wind Turbine (VAWT) architectures, in terms of performance and loads. These characteristics can be highlighted by resorting to the Blade Element-Momentum (BE-M) model, commonly adopted for rotor pre-design and controller assessment. After validating the model with experimental data, the paper focuses on the analysis of VAWT loads depending on some relevant rotor features: blade number (2 and 3), airfoil camber line (comparing symmetrical and asymmetrical profiles) and blade inclination (straight versus helical blade). The effect of such characteristics on both power and thrusts (in the streamwise direction and in the crosswise one) as a function of both the blades azimuthal position and their Tip Speed Ratio (TSR) are presented and widely discussed.