WorldWideScience

Sample records for test site site

  1. Open-field test site

    Science.gov (United States)

    Gyoda, Koichi; Shinozuka, Takashi

    1995-06-01

    An open-field test site with measurement equipment, a turn table, antenna positioners, and measurement auxiliary equipment was remodelled at the CRL north-site. This paper introduces the configuration, specifications and characteristics of this new open-field test site. Measured 3-m and 10-m site attenuations are in good agreement with theoretical values, and this means that this site is suitable for using 3-m and 10-m method EMI/EMC measurements. The site is expected to be effective for antenna measurement, antenna calibration, and studies on EMI/EMC measurement methods.

  2. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report

  3. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  4. Double tracks test site characterization report

    International Nuclear Information System (INIS)

    1996-05-01

    This report presents the results of site characterization activities performed at the Double Tracks Test Site, located on Range 71 North, of the Nellis Air Force Range (NAFR) in southern Nevada. Site characterization activities included reviewing historical data from the Double Tracks experiment, previous site investigation efforts, and recent site characterization data. The most recent site characterization activities were conducted in support of an interim corrective action to remediate the Double Tracks Test Site to an acceptable risk to human health and the environment. Site characterization was performed using a phased approach. First, previously collected data and historical records sere compiled and reviewed. Generalized scopes of work were then prepared to fill known data gaps. Field activities were conducted and the collected data were then reviewed to determine whether data gaps were filled and whether other areas needed to be investigated. Additional field efforts were then conducted, as required, to adequately characterize the site. Characterization of the Double Tracks Test Site was conducted in accordance with the US Department of Energy's (DOE) Streamlined Approach for Environmental Restoration (SAFER)

  5. Nevada Test Site Environmental Report 2007 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    This appendix expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2007 (U.S. Department of Energy [DOE], 2008). Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  6. Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2007-10-01

    The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders.

  7. Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)

    International Nuclear Information System (INIS)

    Cathy Wills

    2007-01-01

    The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders

  8. Nevada Test Site annual site environmental report, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Wruble, D T; McDowell, E M [eds.

    1990-11-01

    Prior to 1989 annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the offsite radiological surveillance program conducted by the US Environmental Protection Agency (EPA), Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, were reported separately by that Agency. Beginning with this 1989 annual Site environmental report for the NTS, these two documents are being combined into a single report to provide a more comprehensive annual documentation of the environmental protection program conducted for the nuclear testing program and other nuclear and non-nuclear activities at the Site. The two agencies have coordinated preparation of this combined onsite and offsite report through sharing of information on environmental releases and meteorological, hydrological, and other supporting data used in dose-estimate calculations. 57 refs., 52 figs., 65 tabs.

  9. Nevada Test Site Environmental Report 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders

  10. Nevada Test Site Environmental Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-10-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders.

  11. Nevada Test Site Environmental Report 2009, Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2009. Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  12. Site Release Report for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits

    International Nuclear Information System (INIS)

    K.E. Rasmuson

    2002-01-01

    The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope and aspect were chosen for comparison to

  13. Site Release Reports for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits

    Energy Technology Data Exchange (ETDEWEB)

    K.E. Rasmuson

    2002-04-02

    The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope

  14. Nevada Test Site Environmental Report 2008 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  15. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-01-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal

  16. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site

  17. Environmental assessment for double tracks test site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1996-04-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), with appropriate approvals from the U.S. Air Force (USAF), proposes to conduct environmental restoration operations at the Double Tracks test site located on the Nellis Air Force Range (NAFR) in Nye County, Nevada. This environmental assessment (EA) evaluates the potential environmental consequences of four alternative actions for conducting the restoration operation and of the no action alternative. The EA also identifies mitigation measures, where appropriate, designed to protect natural and cultural resources and reduce impacts to human health and safety. The environmental restoration operation at the Double Tracks test site would serve two primary objectives. First, the proposed work would evaluate the effectiveness of future restoration operations involving contamination over larger areas. The project would implement remediation technology options and evaluate how these technologies could be applied to the larger areas of contaminated soils on the Nevada Test Site (NTS), the Tonopah Test Range (TTR), and the NAFR. Second, the remediation would provide for the removal of plutonium contamination down to or below a predetermined level which would require cleanup of 1 hectare (ha) (2.5 acres), for the most likely case, or up to 3.0 ha (7.4 acres) of contaminated soil, for the upper bounding case

  18. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  19. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  20. Nevada Test Site Environmental Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2004-10-01

    The Nevada Test Site Environmental Report 2003 was prepared by Bechtel Nevada to meet the requirements and guidelines of the U.S. Department of Energy and the information needs of the public. This report is meant to be useful to members of the public, public officials, regulators, and Nevada Test Site contractors. The Executive Summary strives to present in a concise format the purpose of the document, the NTS mission and major programs, a summary of radiological releases and doses to the public resulting from site operations, a summary of non-radiological releases, and an overview of the Nevada Test Site Environmental Management System. The Executive Summary, combined with the following Compliance Summary, are written to meet all the objectives of the report and to be stand-alone sections for those who choose not to read the entire document.

  1. Computer-Based Testing: Test Site Security.

    Science.gov (United States)

    Rosen, Gerald A.

    Computer-based testing places great burdens on all involved parties to ensure test security. A task analysis of test site security might identify the areas of protecting the test, protecting the data, and protecting the environment as essential issues in test security. Protecting the test involves transmission of the examinations, identifying the…

  2. Assessment of the Nevada Test Site as a Site for Distributed Resource Testing and Project Plan: March 2002

    Energy Technology Data Exchange (ETDEWEB)

    Horgan, S.; Iannucci, J.; Whitaker, C.; Cibulka, L.; Erdman, W.

    2002-05-01

    The objective of this project was to evaluate the Nevada Test Site (NTS) as a location for performing dedicated, in-depth testing of distributed resources (DR) integrated with the electric distribution system. In this large scale testing, it is desired to operate multiple DRs and loads in an actual operating environment, in a series of controlled tests to concentrate on issues of interest to the DR community. This report includes an inventory of existing facilities at NTS, an assessment of site attributes in relation to DR testing requirements, and an evaluation of the feasibility and cost of upgrades to the site that would make it a fully qualified DR testing facility.

  3. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  4. Underground Nuclear Testing Program, Nevada Test Site

    International Nuclear Information System (INIS)

    1975-09-01

    The Energy Research and Development Administration (ERDA) continues to conduct an underground nuclear testing program which includes tests for nuclear weapons development and other tests for development of nuclear explosives and methods for their application for peaceful uses. ERDA also continues to provide nuclear explosive and test site support for nuclear effects tests sponsored by the Department of Defense. This Supplement extends the Environmental Statement (WASH-1526) to cover all underground nuclear tests and preparations for tests of one megaton (1 MT) or less at the Nevada Test Site (NTS) during Fiscal Year 1976. The test activities covered include numerous continuing programs, both nuclear and non-nuclear, which can best be conducted in a remote area. However, if nuclear excavation tests or tests of yields above 1 MT or tests away from NTS should be planned, these will be covered by separate environmental statements

  5. LLNL Experimental Test Site (Site 300) Potable Water System Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, R. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bellah, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-14

    The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well water is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.

  6. Nevada Test Site Environmental Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The Nevada Test Site Environmental Report 2009 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ Nevada Test Site Environmental Reports (NTSERs) are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx. This NTSER was prepared to satisfy DOE Order DOE O 231.1A, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NTSER summarizes data and compliance status for calendar year 2009 at the Nevada Test Site (NTS) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory (RSL)-Nellis. It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

  7. Colloid research for the Nevada Test Site

    International Nuclear Information System (INIS)

    Bryant, E.A.

    1992-05-01

    Research is needed to understand the role of particulates in the migration of radionuclides away from the sites of nuclear tests at the Nevada Test Site. The process of testing itself may produce a reservoir of particles to serve as vectors for the transport of long-lived radionuclides in groundwater. Exploratory experiments indicate the presence of numerous particulates in the vicinity of the Cambric test but a much lower loading in a nearby well that has been pumped continuously for 15 years. Recent groundwater colloid research is briefly reviewed to identify sampling and characterization methods that may be applicable at the Nevada Test Site

  8. Hanford Site Emergency Alerting System siren testing report

    International Nuclear Information System (INIS)

    Weidner, L.B.

    1997-01-01

    The purpose of the test was to determine the effective coverage of the proposed upgrades to the existing Hanford Site Emergency Alerting System (HSEAS). The upgrades are to enhance the existing HSEAS along the Columbia River from the Vernita Bridge to the White Bluffs Boat Launch as well as install a new alerting system in the 400 Area on the Hanford Site. Five siren sites along the Columbia River and two sites in the 400 Area were tested to determine the site locations that will provide the desired coverage

  9. On-site cell field test support program

    Science.gov (United States)

    Staniunas, J. W.; Merten, G. P.

    1982-09-01

    Utility sites for data monitoring were reviewed and selected. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation shows that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

  10. Nevada Test Site Environmental Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  11. Database on radioecological situation in Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Turkebaev, T.Eh.; Kislitsin, S.B.; Lopuga, A.D.; Kuketaev, A.T.; Kikkarin, S.M.

    1999-01-01

    One of the main objectives of the National Nuclear Center of the Republic of Kazakstan is to define radioecological situation in details, conduct a continuous monitoring and eliminate consequences of nuclear explosions at Semipalatinsk nuclear test site. Investigations of Semipalatinsk nuclear test site area contamination by radioactive substances and vindication activity are the reasons for development of computer database on radioecological situation of the test site area, which will allow arranging and processing the available and entering information about the radioecological situation, assessing the effect of different testing factors on the environment and health of the Semipalatinsk nuclear test site area population.The described conception of database on radioecological situation of the Semipalatinsk nuclear test site area cannot be considered as the final one. As new information arrives, structure and content of the database is updated and optimized. New capabilities and structural elements may be provided if new aspects in Semipalatinsk nuclear test site area contamination study (air environment study, radionuclides migration) arise

  12. Nevada Test Site Environmental Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report.

  13. Nevada Test Site Environmental Report 2007

    International Nuclear Information System (INIS)

    Cathy Wills

    2008-01-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report

  14. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field- investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans

  15. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    International Nuclear Information System (INIS)

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan

  16. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

  17. Grid site testing for ATLAS with HammerCloud

    International Nuclear Information System (INIS)

    Elmsheuser, J; Hönig, F; Legger, F; LLamas, R Medrano; Sciacca, F G; Ster, D van der

    2014-01-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2012, distributed computing has become the established way to analyze collider data. The ATLAS grid infrastructure includes more than 130 sites worldwide, ranging from large national computing centers to smaller university clusters. HammerCloud was previously introduced with the goals of enabling virtual organisations (VO) and site-administrators to run validation tests of the site and software infrastructure in an automated or on-demand manner. The HammerCloud infrastructure has been constantly improved to support the addition of new test workflows. These new workflows comprise e.g. tests of the ATLAS nightly build system, ATLAS Monte Carlo production system, XRootD federation (FAX) and new site stress test workflows. We report on the development, optimization and results of the various components in the HammerCloud framework.

  18. Grid Site Testing for ATLAS with HammerCloud

    CERN Document Server

    Elmsheuser, J; The ATLAS collaboration; Legger, F; Medrano LLamas, R; Sciacca, G; van der Ster, D

    2014-01-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2012, distributed computing has become the established way to analyze collider data. The ATLAS grid infrastructure includes more than 130 sites worldwide, ranging from large national computing centers to smaller university clusters. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run validation tests of the site and software infrastructure in an automated or on-demand manner. The HammerCloud infrastructure has been constantly improved to support the addition of new test work-flows. These new work-flows comprise e.g. tests of the ATLAS nightly build system, ATLAS MC production system, XRootD federation FAX and new site stress test work-flows. We report on the development, optimization and results of the various components in the HammerCloud framework.

  19. Grid Site Testing for ATLAS with HammerCloud

    CERN Document Server

    Elmsheuser, J; The ATLAS collaboration; Legger, F; Medrano LLamas, R; Sciacca, G; van der Ster, D

    2013-01-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2012, distributed computing has become the established way to analyze collider data. The ATLAS grid infrastructure includes more than 130 sites worldwide, ranging from large national computing centers to smaller university clusters. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run validation tests of the site and software infrastructure in an automated or on-demand manner. The HammerCloud infrastructure has been constantly improved to support the addition of new test work-flows. These new work-flows comprise e.g. tests of the ATLAS nightly build system, ATLAS MC production system, XRootD federation FAX and new site stress test work-flows. We report on the development, optimization and results of the various components in the HammerCloud framework.

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 370: T-4 Atmospheric Test Site, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2009-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 370, T-4 Atmospheric Test Site, located in Area 4 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 370 is comprised of Corrective Action Site (CAS) 04-23-01, Atmospheric Test Site T-4. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 370 due to the implementation of the corrective action of closure in place with administrative controls. To achieve this, corrective action investigation (CAI) activities were performed from June 25, 2008, through April 2, 2009, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 370: T-4 Atmospheric Test Site and Record of Technical Change No. 1.

  1. Conversion of Semipalatinsk test site

    International Nuclear Information System (INIS)

    Cherepnin, Yu. S.

    1997-01-01

    The conversion of the former defense enterprises of STS (Semipalatinsk Test Sate) started under very difficult conditions, when not only research and production activity, but all social life of Kurchatov city were conversed which was caused by a fast curtailment and restationing of Russian military units from the test site. A real risk of a complete destruction of the whole research and production structure of the city existed. From this point of view, the decision of the Republic of Kazakhstan Government to create the National Nuclear Center on the base of the test site research enterprises was actual and timely. During 1993, three research institutes of NNC RK - Institute of Atomic Energy, Institute of Geophysics Research and Institute of Radiation Safety and Environment were established. This decision, under conditions of the Ussr disintegration and liquidation of the test site military divisions, allowed to preserve the qualified personnel, to provide and follow-up the operation of nuclear dangerous facilities, to develop and start the realization of the full scale conversion program.At present time, directions and structure of basic research work in NNC RK are as follows: - liquidation of nuclear explosions consequences; - liquidation of technological infrastructure used for preparation and conduction of nuclear weapon testing; - creation of technology, equipment and places for acceptance and storage of radioactive wastes; - working out of atomic energy development conception in Kazakhstan; - study of reactor core melt behavior under severe accidents in NPP; - development of methods and means of nuclear testing detection, continuous monitoring of nuclear explosions; - experimental work on a study of structure materials behavior of ITER thermonuclear reactor; - creation of industries requiring a lage implementation of science

  2. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  3. Nevada Test Site Waste Acceptance Criteria, December 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal

  4. BIOMETRICAL CHARACTERIZATION OF TEST SITES FOR MAIZE BREEDING

    Directory of Open Access Journals (Sweden)

    Domagoj Šimić

    2003-12-01

    Full Text Available Yield stability of genotypes and analysis of genotype×environment interaction (GEI as important objects in analyses of multienvironment trials are well documented in Croatia. However, little is known about suitability and biometrical characters of the sites where genotypes should be tested. Objectives of this study were in combined analysis of balanced maize trials i to compare test sites in joint linear regression analysis and ii to compare several stability models by clustering test sites in order to assess biometrical suitability of particular test sites. Partitioning of GEI sum of squares according to the symmetrical joint linear regression analysis revealed highly significant Tukey's test, heterogeneity of environmental regressions and residual deviations. Mean grain yields, within-macroenvironment error mean squares, and stability parameters varied considerably among 16 macroenvironments. The highest grain yields were recorded in Osijek in both years and in Varaždin in 1996, with more than 11 t ha-1 . It seems that Feričanci would be optimum test site with relatively high and consistent yield and high values of entry mean squares indicating satisfactory differentiation among cultivars. However, four clustering methods generally did not correspond. According to three out of four clustering methods, two macroenvironments of Feričanci provide similar results. Employing other methods such as shifted multiplicative models, which effectively eliminate significant rank-change interaction, appears to be more reasonable.

  5. [Study on Tritium Content in Soil at Sites of Nuclear Explosions on the Territory of Semipalatinsk Test Site].

    Science.gov (United States)

    Timonova, L V; Lyakhova, O N; Lukashenko, S N; Aidarkhanov, A O

    2015-01-01

    As a result of investigations carried out on the territory of Semipalatinsk Test Site, tritium was found in different environmental objects--surface and ground waters, vegetation, air environment, and snow cover. The analysis of the data obtained has shown that contamination of environmental objects at the Semipalatinsk Test Site with tritium is associated with the places where underground nuclear tests were performed. Since tritium can originate from an activation reaction and be trapped by pock particles during a test, it was decided to examine the soil in the sites where surface and excavation tests took place. It was found that the concentration of tritium in soil correlates with the concentration of europium. Probably, the concentration of tritium in the soil depends on the character and yield of the tests performed. Findings of the study have revealed that tritium can be found in soil in significant amounts not only in sites where underground nuclear tests took place but also in sites where surface and excavation nuclear tests were carried out.

  6. Closure report for CAU No. 450: Historical UST release sites, Nevada Test Site. Volume 1

    International Nuclear Information System (INIS)

    1997-09-01

    This report addresses the closure of 11 historical underground storage tank (UST) release sites within various areas of the Nevada Test Site (NTS). The closure of each hydrocarbon release has not been documented, therefore, this report addresses the remedial activities completed for each release site. The hydrocarbon release associated with each tank site within CAU 450 was remediated by excavating the impacted soil. Clean closure of the release was verified through soil sample analysis by an off-site laboratory. All release closure activities were completed following standard environmental and regulatory guidelines. Based upon site observations during the remedial activities and the soil sample analytical results, which indicated that soil concentrations were below the Nevada Administrative code (NAC) Action Level of 100 mg/kg, it is anticipated that each of the release CASs be closed without further action

  7. Nevada Test Site Environmental Report 2008 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  8. Methods of Usability Testing in Libraries Web Sites

    Directory of Open Access Journals (Sweden)

    Eman Fawzy

    2006-03-01

    Full Text Available A Study about libraries' web sites evaluation, that is the Usability, the study talking about methods of usability testing and define it, and its important in web sites evaluation, then details the methods of usability: questionnaire, core groups, testing experimental model, cards arrangement, and composed evaluation.

  9. Semipalatinsk nuclear test site: History of building and function

    International Nuclear Information System (INIS)

    Sergazina, G.M.; Balmukhanov, S.B.

    1999-01-01

    A vast materials on history of Semipalatinsk nuclear test site creation and it building and function are presented. Authors with big reliability report one page of Kazakhstan's history. In steppe on naked place thousands of soldiers and officers, construct and military specialists have built the nuclear site on which during 40 years were conducting nuclear tests . Prolonged chronic radiation on population living near by site results to tragedy which is confessed by General Assembly of United Nations. In the book aspects of test site conversion and rehabilitation of injured population are considered. The book consists of introduction, three chapters and conclusion. The book is intended to wide circle of readers. (author)

  10. Wave Resource Characterization at US Wave Energy Converter (WEC) Test Sites

    Science.gov (United States)

    Dallman, A.; Neary, V. S.

    2016-02-01

    The US Department of Energy's (DOE) Marine and Hydrokinetic energy (MHK) Program is supporting a diverse research and development portfolio intended to accelerate commercialization of the marine renewable industry by improving technology performance, reducing market barriers, and lowering the cost of energy. Wave resource characterization at potential and existing wave energy converter (WEC) test sites and deployment locations contributes to this DOE goal by providing a catalogue of wave energy resource characteristics, met-ocean data, and site infrastructure information, developed utilizing a consistent methodology. The purpose of the catalogue is to enable the comparison of resource characteristics among sites to facilitate the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and operations and maintenance. The first edition included three sites: the Pacific Marine Energy Center (PMEC) North Energy Test Site (NETS) offshore of Newport, Oregon, the Kaneohe Bay Naval Wave Energy Test Site (WETS) offshore of Oahu, HI, and a potential site offshore of Humboldt Bay, CA (Eureka, CA). The second edition was recently finished, which includes five additional sites: the Jennette's Pier Wave Energy Converter Test Site in North Carolina, the US Army Corps of Engineers (USACE) Field Research Facility (FRF), the PMEC Lake Washington site, the proposed PMEC South Energy Test Site (SETS), and the proposed CalWave Central Coast WEC Test Site. The operational sea states are included according to the IEC Technical Specification on wave energy resource assessment and characterization, with additional information on extreme sea states, weather windows, and representative spectra. The methodology and a summary of results will be discussed.

  11. Nevada Test Site Environmental Report 2007 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2007 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  12. Radiation consequences of the nuclear tests on the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Logachev, V.A.; Logacheva, L.A.

    2001-01-01

    In the paper the results of retrospective evaluation for radiation situation and radiation doses of population in the zones of the Semipalatinsk test site activity influence are presented. For the measurements the data obtained during analysis, study and summarizing of the archival materials including information on nuclear tests on this site and results of radiation surveys, those were carried out after each test were used. The information testifying most substantial environment contamination taking place after four surface explosions (29.08.1949, 24.09.1951, 12.08.1953, 24.08.1956) is presented as well. After these dose-forming explosions the irradiation doses of the population inhabiting out the regime zone have been exceeded the maximum permissible levels. Results of analysis of archival materials were used for assessment of doses of internal and external irradiation of residents of inhabited points situated on the both the territory of the Republic of Kazakhstan - mainly close to the test site - and the territories of a number of regions of the Russian Federation are locating on the little distance from the tests site

  13. Penetration Testing Model for Web sites Hosted in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohamad Safuan Sulaiman; Siti Nurbahyah Hamdan; Saaidi Ismail; Mohd Fauzi Haris; Norzalina Nasiruddin; Raja Murzaferi Mokhtar

    2012-01-01

    Nuclear Malaysia web sites has been very crucial in providing important and useful information and services to the clients as well as the users worldwide. Furthermore, a web site is important as it reflects the organisation image. To ensure the integrity of the content of web site, a study has been made and a penetration testing model has been implemented to test the security of several web sites hosted at Nuclear Malaysia for malicious attempts. This study will explain how the security was tested in the detailed condition and measured. The result determined the security level and the vulnerability of several web sites. This result is important for improving and hardening the security of web sites in Nuclear Malaysia. (author)

  14. Radiation doses to local populations near nuclear weapons test sites worldwide.

    Science.gov (United States)

    Simon, Steven L; Bouville, André

    2002-05-01

    Nuclear weapons testing was conducted in the atmosphere at numerous sites worldwide between 1946 and 1980, which resulted in exposures to local populations as a consequence of fallout of radioactive debris. The nuclear tests were conducted by five nations (United States, Soviet Union, United Kingdom, France, and China) primarily at 16 sites. The 16 testing sites, located in nine different countries on five continents (plus Oceania) contributed nearly all of the radioactive materials released to the environment by atmospheric testing; only small amounts were released at a fewother minor testing sites. The 16 sites discussed here are Nevada Test Site, USA (North American continent), Bikini and Enewetak, Marshall Islands (Oceania); Johnston Island, USA (Oceania), Christmas and Malden Island, Kiribati (Oceania); Emu Field, Maralinga, and Monte Bello Islands, Australia (Australian continent); Mururoa and Fangataufa, French Polynesia (Oceania), Reggane, Algeria (Africa), Novaya Zemlya and Kapustin Yar, Russia (Europe), Semipalatinsk, Kazakhstan (Asia), and Lop Nor, China (Asia). There were large differences in the numbers of tests conducted at each location and in the total explosive yields. Those factors, as well as differences in population density, lifestyle, environment, and climate at each site, led to large differences in the doses received by local populations. In general, the tests conducted earliest led to the highest individual and population exposures, although the amount of information available for a few of these sites is insufficient to provide any detailed evaluation of radiation exposures. The most comprehensive information for any site is for the Nevada Test Site. The disparities in available information add difficulty to determining the radiation exposures of local populations at each site. It is the goal of this paper to summarize the available information on external and internal doses received by the public living in the regions near each of the

  15. Intra-site Secure Transport Vehicle test and evaluation

    International Nuclear Information System (INIS)

    Scott, S.

    1995-01-01

    In the past many DOE and DoD facilities involved in handling nuclear material realized a need to enhance the safely and security for movement of sensitive materials within their facility, or ''intra-site''. There have been prior efforts to improve on-site transportation; however, there remains a requirement for enhanced on-site transportation at a number of facilities. The requirements for on-site transportation are driven by security, safety, and operational concerns. The Intra-site Secure Transport Vehicle (ISTV) was designed to address these concerns specifically for DOE site applications with a standardized vehicle design. This paper briefly reviews the ISTV design features providing significant enhancement of onsite transportation safety and security, and also describes the test and evaluation activities either complete of underway to validate the vehicle design and operation

  16. Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Potable Water System Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, Ruben P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bellah, Wendy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-04

    The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well water is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.

  17. Nevada Test Site closure program

    International Nuclear Information System (INIS)

    Shenk, D.P.

    1994-08-01

    This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use

  18. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  19. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 (as amended February 2008)). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose

  20. Nevada Test Site annual site environmental report for calendar year 1998

    International Nuclear Information System (INIS)

    Black, S.C.; Townsend, Y.E.

    1999-01-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring Programs conducted by the US Environmental Protection Agency's (EPA) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this tenth combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations

  1. Site selection report basalt waste isolation program near-surface test facility

    International Nuclear Information System (INIS)

    Sharpe, S.D.

    1978-01-01

    A site selection committee was established to review the information gathered on potential sites and to select a site for the Near-Surface Test Facility Phase I. A decision was made to use a site on the north face of Gable Mountain located on the Hanford Site. This site provided convenient access to the Pomona Basalt Flow. This flow was selected for use at this site because it exhibited the characteristics established in the primary criteria. These criteria were: the flows thickness; its dryness; its nearness to the surface; and, its similarities to basalt units which are candidates for the repository. After the selection of the Near-Surface Test Facility Phase I Site, the need arose for an additional facility to demonstrate safe handling, storage techniques, and the physical effects of radioactive materials on an in situ basalt formation. The committee reviewed the sites selected for Phase I and chose the same site for locating Phase II of the Near-Surface Test Facility

  2. Plutonium Particle Migration in the Shallow Vadose Zone: The Nevada Test Site as an Analog Site

    Science.gov (United States)

    Hunt, J. R.; Smith, D. K.

    2004-12-01

    The upper meter of the vadose zone in desert environments is the horizon where wastes have been released and human exposure is determined through dermal, inhalation, and food uptake pathways. This region is also characterized by numerous coupled processes that determine contaminant transport, including precipitation infiltration, evapotranspiration, daily and annual temperature cycling, dust resuspension, animal burrowing, and geochemical weathering reactions. While there is considerable interest in colloidal transport of minerals, pathogenic organisms, and contaminants in the vadose zone, there are limited field sites where the actual occurrence of contaminant migration can be quantified over the appropriate spatial and temporal scales of interest. At the US Department of Energy Nevada Test Site, there have been numerous releases of radionuclides since the 1950's that have become field-scale tracer tests. One series of tests was the four safety shots conducted in an alluvial valley of Area 11 in the 1950's. These experiments tested the ability of nuclear materials to survive chemical explosions without initiating fission reactions. Four above-ground tests were conducted and they released plutonium and uranium on the desert valley floor with only one of the tests undergoing some fission. Shortly after the tests, the sites were surveyed for radionuclide distribution on the land surface using aerial surveys and with depth. Additional studies were conducted in the 1970's to better understand the fate of plutonium in the desert that included studies of depth distribution and dust resuspension. More recently, plutonium particle distribution in the soil profile was detected using autoradiography. The results to date demonstrate the vertical migration of plutonium particles to depths in excess of 30 cm in this arid vadose zone. While plutonium migration at the Nevada Test Site has been and continues to be a concern, these field experiments have become analog sites for the

  3. Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-03-01

    This paper presents an overview of the strategy for closure of part of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada (Figure 1). The Area 5 RWMS is in the northern part of Frenchman Flat, approximately 14 miles north of Mercury. The Area 5 RWMS encompasses 732 acres subdivided into quadrants, and is bounded by a 1,000-foot (ft)-wide buffer zone. The northwest and southwest quadrants have not been developed. The northeast and southeast quadrants have been used for disposal of unclassified low-level radioactive waste (LLW) and indefinite storage of classified materials. This paper focuses on closure of the 38 waste disposal and classified material storage units within the southeast quadrant of the Area 5 RWMS, called the ''92-Acre Area''. The U.S Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently planning to close the 92-Acre Area by 2011. Closure planning for this site must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. For ease of discussion, the 92-Acre Area has been subdivided into six closure units defined by waste type, location, and similarity in regulatory requirements. Each of the closure units contains one or more waste disposal units; waste disposal units are also called waste disposal cells. The paper provides a brief background of the Area 5 RWMS, identifies key closure issues for the 92-Acre Area, recommends actions to address the issues, and provides the National Security Technologies, LLC (NSTec), schedule for closure.

  4. Hanford tank initiative test facility site selection study

    International Nuclear Information System (INIS)

    Staehr, T.W.

    1997-01-01

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank

  5. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  6. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  7. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (1996 (as amended February 2008)). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (sm b ullet) CAS 01-23-02, Atmospheric Test Site - High Alt(sm b ullet) CAS 02-23-02, Contaminated Areas (2)(sm b ullet) CAS 02-23-03, Contaminated Berm(sm b ullet) CAS 02-23-10, Gourd-Amber Contamination Area(sm b ullet) CAS 02-23-11, Sappho Contamination Area(sm b ullet) CAS 02-23-12, Scuttle Contamination Area(sm b ullet) CAS 03-23-24, Seaweed B Contamination Area(sm b ullet) CAS 03-23-27, Adze Contamination Area(sm b ullet) CAS 03-23-28, Manzanas Contamination Area(sm b ullet) CAS 03-23-29, Truchas-Chamisal Contamination Area(sm b ullet) CAS 04-23-02, Atmospheric Test Site T4-a(sm b ullet) CAS 05-23-06, Atmospheric Test Site(sm b ullet) CAS 09-23-06, Mound of Contaminated Soil(sm b ullet) CAS 10-23-04, Atmospheric Test Site M-10(sm b ullet) CAS 18-23-02, U-18d Crater (Sulky) Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107.

  8. Field testing a soil site field guide for Allegheny hardwoods

    Science.gov (United States)

    S.B. Jones

    1991-01-01

    A site quality evaluation decision model, developed for Allegheny hardwoods on the non-glaciated Allegheny Plateau of Pennsylvania and New York, was field tested by International Paper (IP) foresters and the author, on sites within the region of derivation and on glaciated sites north and west of the Wisconsin drift line. Results from the field testing are presented...

  9. Fruit and vegetable radioactivity survey, Nevada Test Site environs

    International Nuclear Information System (INIS)

    Andrews, V.E.; Vandervort, J.C.

    1978-04-01

    During the 1974 growing season, the Environmental Monitoring and Support Laboratory-Las Vegas, of the U.S. Environmental Protection Agency, collected samples of fruits and vegetables grown in the off-site area surrounding the Nevada Test Site. The objective was to estimate the potential radiological dose to off-site residents from consumption of locally grown foodstuffs. Irrigation water and soil were collected from the gardens and orchards sampled. Soil concentrations of cesium-137 and plutonium-239 reflected the effects of close-in fallout from nuclear testing at the Nevada Test Site. The only radionuclide measured in fruit and vegetable samples which might be related to such fallout was strontium-90, for which the first year estimated dose to bone marrow of an adult with an assumed rate of consumption of the food would be 0.14 millirad

  10. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  11. Improving ATLAS grid site reliability with functional tests using HammerCloud

    Science.gov (United States)

    Elmsheuser, Johannes; Legger, Federica; Medrano Llamas, Ramon; Sciacca, Gianfranco; van der Ster, Dan

    2012-12-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2011, and more coming in 2012, distributed computing has become the established way to analyse collider data. The ATLAS grid infrastructure includes almost 100 sites worldwide, ranging from large national computing centers to smaller university clusters. These facilities are used for data reconstruction and simulation, which are centrally managed by the ATLAS production system, and for distributed user analysis. To ensure the smooth operation of such a complex system, regular tests of all sites are necessary to validate the site capability of successfully executing user and production jobs. We report on the development, optimization and results of an automated functional testing suite using the HammerCloud framework. Functional tests are short lightweight applications covering typical user analysis and production schemes, which are periodically submitted to all ATLAS grid sites. Results from those tests are collected and used to evaluate site performances. Sites that fail or are unable to run the tests are automatically excluded from the PanDA brokerage system, therefore avoiding user or production jobs to be sent to problematic sites.

  12. Streamlined Approach for Environmental Restoration Work Plan for Corrective Action Unit 461: Joint Test Assembly Sites and Corrective Action Unit 495: Unconfirmed Joint Test Assembly Sites Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Smith

    1998-08-01

    This Streamlined Approach for Environmental Restoration plan addresses the action necessary for the clean closure of Corrective Action Unit 461 (Test Area Joint Test Assembly Sites) and Corrective Action Unit 495 (Unconfirmed Joint Test Assembly Sites). The Corrective Action Units are located at the Tonopah Test Range in south central Nevada. Closure for these sites will be completed by excavating and evaluating the condition of each artillery round (if found); detonating the rounds (if necessary); excavating the impacted soil and debris; collecting verification samples; backfilling the excavations; disposing of the impacted soil and debris at an approved low-level waste repository at the Nevada Test Site

  13. Nevada Test Site Annual Site Environmental Report for Calendar Year - 1999

    International Nuclear Information System (INIS)

    Townsend, Y.E.; Grossman, R.F.

    2000-01-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the U.S. Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring programs conducted by the U.S. Environmental Protection Agency's (EPA's) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this eleventh combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations

  14. Nevada Test Site Annual Site Environmental Report for Calendar Year - 1999

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Y.E.; Grossman, R.F.

    2000-10-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the U.S. Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring programs conducted by the U.S. Environmental Protection Agency's (EPA's) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this eleventh combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

  15. Nevada Test Site annual site environmental report for calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Townsend, Y.E.

    1999-10-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring Programs conducted by the US Environmental Protection Agency's (EPA) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this tenth combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

  16. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  17. HIV/AIDS testing sites and locator services

    Data.gov (United States)

    U.S. Department of Health & Human Services — The HIV Testing Sites & Care Services Locator is a first-of-its-kind, location-based search tool that allows you to search for testing services, housing...

  18. History of creation of Semipalatinsk test nuclear site. Chapter 1

    International Nuclear Information System (INIS)

    1999-01-01

    In 1949 August USSR's Government adopted decision about creation of nuclear site with conditional name Uchebnyj polygon 2. For its building was chosen territory in 140 km from Semipalatinsk city. Semipalatinsk test site consists of the land of three regions: Semipalatinsk, Pavlodar, Karaganda and it occupies 18,500 km 2 of fertile land, rich with minerals. Now this territory was alienated from national using. Polygon was complex object and it incorporated three main zones: Opytnoe Pole, zone of radiation safety, site Sh. Opytnoe Pole was equipped by special constructions ensuring nuclear test conducting, its observing and registration of physical measurements and occupied 2,300 km 2 . Around of the Opytnoe Pole is situated zone of radiation safety with area 45 thousand ha. Site Sh was situated in 14 km from center of Opytnoe Pole and it was intended for distribution of individual protection devices, dosimeters and for conducting of dis-activation and sanitary works. History of the site creation is connected with building of Kurchatov city. In dozen and hundred of kilometers from Kurchatov city there were top secret objects: site Balapan with total area 100,000 ha intended for conducting of nuclear tests in wells with threshold capacity 100-200 kt. Here simultaneously with main problems on the site the military-applied works were conducted on mechanics, physics of combustion, simulation of Earthquakes and determination of seismic stability of buildings and constructions. Research site Degelen with total area 33,100 ha which has been used for underground testing of nuclear charges with small capacity. Site 10 one of large research technical complex on which two reactor units were installed. Main tasks of the complex were as follows: high-temperature fuel materials testing, conducting of fundamental researches in field of physics of fissile products, thermal physics and gas hydrodynamics. On site M a laboratory base for radiochemical, radiological and chemical

  19. Nuclear Materials Management for the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Jesse C. Schreiber

    2007-01-01

    The Nevada Test Site (NTS) has transitioned from its historical role of weapons testing to a broader role that is focused on being a solution to multiple National Nuclear Security Administration (NNSA) challenges and opportunities with nuclear materials for the nation. NTS is supporting other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to make the production complex smaller, more consolidated, and more modern. With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through dispositioning and consolidating nuclear material. This includes moving material from other sites to NTS. State-of-the-art nuclear material management and control practices at NTS are essential for NTS to ensure that these new activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS is aggressively addressing this challenge

  20. Soil Characterization Database for the Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Remortel, R. D. Van; Lee, Y. J.; Snyder, K. E.

    2005-01-01

    Soils were characterized in an investigation at the Area 3 Radioactive Waste Management Site at the U.S. Department of Energy Nevada Test Site in Nye County, Nevada. Data from the investigation are presented in four parameter groups: sample and site characteristics, U.S. Department of Agriculture (USDA) particle size fractions, chemical parameters, and American Society for Testing Materials-Unified Soil Classification System (ASTM-USCS) particle size fractions. Spread-sheet workbooks based on these parameter groups are presented to evaluate data quality, conduct database updates, and set data structures and formats for later extraction and analysis. This document does not include analysis or interpretation of presented data

  1. Soil Characterization Database for the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Lee, Y. J.; Remortel, R. D. Van; Snyder, K. E.

    2005-01-01

    Soils were characterized in an investigation at the Area 5 Radioactive Waste Management Site at the U.S. Department of Energy Nevada Test Site in Nye County, Nevada. Data from the investigation are presented in four parameter groups: sample and site characteristics, U.S. Department of Agriculture (USDA) particle size fractions, chemical parameters, and American Society for Testing Materials-Unified Soil Classification System (ASTM-USCS) particle size fractions. Spread-sheet workbooks based on these parameter groups are presented to evaluate data quality, conduct database updates,and set data structures and formats for later extraction and analysis. This document does not include analysis or interpretation of presented data

  2. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  3. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  4. Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2011-08-01

    CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16, Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison

  5. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2012-10-01

    CAU 104 comprises the following corrective action sites (CASs): • 07-23-03, Atmospheric Test Site T-7C • 07-23-04, Atmospheric Test Site T7-1 • 07-23-05, Atmospheric Test Site • 07-23-06, Atmospheric Test Site T7-5a • 07-23-07, Atmospheric Test Site - Dog (T-S) • 07-23-08, Atmospheric Test Site - Baker (T-S) • 07-23-09, Atmospheric Test Site - Charlie (T-S) • 07-23-10, Atmospheric Test Site - Dixie • 07-23-11, Atmospheric Test Site - Dixie • 07-23-12, Atmospheric Test Site - Charlie (Bus) • 07-23-13, Atmospheric Test Site - Baker (Buster) • 07-23-14, Atmospheric Test Site - Ruth • 07-23-15, Atmospheric Test Site T7-4 • 07-23-16, Atmospheric Test Site B7-b • 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.

  6. Interdisciplinary hydrogeologic site characterization at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Wagoner, J.L.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices. Hydrogeologic investigations began in earnest with the US Geological Survey mapping much of the area from 1960 to 1965. Since 1963, all nuclear detonations have been underground. Most tests are conducted in vertical shafts, but a small percentage are conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks, but sometimes in alluvium. Hydrogeologic investigations began in earnest with the US Geological Survey's mapping of much of the NTS region from 1960 to 1965. Following the BANEBERRY test in December 1970, which produced an accidental release of radioactivity to the atmosphere, the US Department of Energy (then the Atomic Energy Commission) established the Containment Evaluation Panel (CEP). Results of interdisciplinary hydrogeologic investigations for each test location are included in a Containment Prospectus which is thoroughly reviewed by the CEP

  7. Nevada Test Site Environmental Report 2005

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts

  8. Nevada Test Site Environmental Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts.

  9. Tritium activities in selected wells on the Nevada Test Site

    International Nuclear Information System (INIS)

    Lyles, B.F.

    1993-05-01

    Literature and data were reviewed related to radionuclides in groundwater on and near the Nevada Test Site. No elevated tritium activities have been reported outside of the major testing regions of the Nevada Test Site. Three wells were identified as having water with above-background (>50 pCi/l) tritium activities: UE-15d Water Well; USGS Water Well A; and USGS Test Well B Ex. Although none of these wells have tritium activities greater than the Nevada State Drinking Water standard (20,000 pCi/l), their time-series tritium trends may be indicative to potential on-site radionuclide migration

  10. Status of the flora and fauna on the Nevada Test Site, 1992

    International Nuclear Information System (INIS)

    Hunter, R.B.

    1994-03-01

    This report documents changes in the populations of plants and animals on the Nevada Test Site (NTS) for calendar year 1992. It is part of a Department of Energy (DOE) program (Basic Environmental Compliance and Monitoring Program -- BECAMP) that also includes monitoring DOE compliance with the Endangered Species Act, the Historic Preservation Act, and the American Indian Freedom of Religion Act. Ecological studies were to comply with the National Environmental Policy Act and DOE Order 5400.1, ''General Environmental Protection Program.'' These studies focused on the following: status of ephemeral plants on the Nevada Test Site, 1992; status of reptile and amphibian populations on the Nevada Test Site, 1992; trends in small mammal populations on the Nevada Test Site, 1992; status of large mammals and birds at Nevada Test Site, 1992; and status of perennial plants on the Nevada Test Site, 1992

  11. Nevada Test Site Environmental Report Summary 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). NNSA/NSO prepares the Nevada Test Site Environmental Report (NTSER) to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the NTS to protect the public and the environment from radiation hazards and from nonradiological impacts. The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. This summary provides an abbreviated and more readable version of the NTSER. It does not contain detailed descriptions or presentations of monitoring designs, data collection methods, data tables, the NTS environment, or all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  12. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  13. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  14. Potential sites for a spent unreprocessed fuel facility (SURFF), southwesten part of the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoover, D.L.; Eckel, E.B.; Ohl, J.P.

    1978-01-01

    In the absence of specific criteria, the topography, geomorphology, and geology of Jackass Flats and vicinity in the southwestern part of the Nevada Test Site are evaluated by arbitrary guidelines for a Spent Unreprocessed Fuel Facility. The guidelines include requirements for surface slopes of less than 5%, 61 m of alluvium beneath the site, an area free of active erosion or deposition, lack of faults, a minimum area of 5 km 2 , no potential for flooding, and as many logistical support facilities as possible. The geology of the Jackass Flats area is similar to the rest of the Nevada Test Site in topographic relief (305-1,200 m), stratigraphy (complexly folded and faulted Paleozoic sediments overlain by Tertiary ash-flow tuffs and lavas overlain in turn by younger alluvium), and structure (Paleozoic thrust faults and folds, strike-slip faults, proximity to volcanic centers, and Basin and Range normal faults). Of the stratigraphic units at the potential Spent Unreprocessed Fuel Facility site in Jackass Flats, only the thickness and stability of the alluvium are of immediate importance. Basin and Range faults and a possible extension of the Mine Mountain fault need further investigation. The combination of a slope map and a simplified geologic and physiographic map into one map shows several potential sites for a Spent Unreprocessed Fuel Facility in Jackass Flats. The potential areas have slopes of less than 5% and contain only desert pavement or segmented pavement--the two physiographic categories having the greatest geomorphic and hydraulic stability. Before further work can be done, specific criteria for a Spent Unreprocessed Fuel Facility site must be defined. Following criteria definition, potential sites will require detailed topographic and geologic studies, subsurface investigations (including geophysical methods, trenching, and perhaps shallow drilling for faults in alluvium), detailed surface hydrologic studies, and possibly subsurface hydrologic studies

  15. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grant Evenson

    2006-01-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  16. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future

  17. Definitive design status of the SP-100 Ground Engineering System Test Site

    International Nuclear Information System (INIS)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper

  18. Definitive design status of the SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper.

  19. Semipalatinsk test site: 10 years after shutting down

    International Nuclear Information System (INIS)

    Tukhvatulin, Sh.T.

    2001-01-01

    The paper consists the historical materials and chronology of events on the Semipalatinsk test site before and after it shutdown. The main part of the paper is focused on the activity on the former nuclear site after it shutdown. The first of all activity is related with coming into being and development of the National Nuclear Center of the Republic of Kazakhstan

  20. Radioactive contamination of former Semipalatinsk test site area

    International Nuclear Information System (INIS)

    Artem'ev, O.I.; Akhmetov, M.A.; Ptitskaya, L.D.

    2001-01-01

    The nuclear weapon infrastructure elimination activities and related surveys of radioactive contamination are virtually accomplished at the Semipalatinsk test site (STS). The radioecological surveys accompanied closure of tunnels which were used for underground nuclear testing at Degelen technical field and elimination of intercontinental ballistic missile silo launchers at Balapan technical field. At the same time a ground-based route survey was carried out at the Experimental Field where aboveground tests were conducted and a ground-based area survey was performed in the south of the test site where there are permanent and temporary inhabited settlements. People dwelling these settlements are mainly farmers. The paper presents basic results of radiological work conducted in the course of elimination activities. (author)

  1. Preliminary site design for the SP-100 ground engineering test

    International Nuclear Information System (INIS)

    Cox, C.M.; Miller, W.C.; Mahaffey, M.K.

    1986-04-01

    In November, 1985, Hanford was selected by the Department of Energy (DOE) as the preferred site for a full-scale test of the integrated nuclear subsystem for SP-100. The Hanford Engineering Development Laboratory, operated by Westinghouse Hanford Company, was assigned as the lead contractor for the Test Site. The nuclear subsystem, which includes the reactor and its primary heat transport system, will be provided by the System Developer, another contractor to be selected by DOE in late FY-1986. In addition to reactor operations, test site responsibilities include preparation of the facility plus design, procurement and installation of a vacuum chamber to house the reactor, a secondary heat transport system to dispose of the reactor heat, a facility control system, and postirradiation examination. At the conclusion of the test program, waste disposal and facility decommissioning are required. The test site must also prepare appropriate environmental and safety evaluations. This paper summarizes the preliminary design requirements, the status of design, and plans to achieve full power operation of the test reactor in September, 1990

  2. Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure

  3. Closure report for CAU No. 450: Historical UST release sites, Nevada Test Site. Volume 2

    International Nuclear Information System (INIS)

    1997-09-01

    This report addresses the closure of 11 historical underground storage tank release sites within various areas of the Nevada Test Site. This report contains remedial verification of the soil sample analytical results for the following: Area 11 Tweezer facility; Area 12 boiler house; Area 12 service station; Area 23 bypass yard; Area 23 service station; Area 25 power house; Area 25 tech. services building; Area 25 tech. operations building; Area 26 power house; and Area 27 boiler house

  4. TC-13 Mod 0 and Mod 2 Steam Catapult Test Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located on 11,000 feet of test runway, the TC-13 Mod 0 and Mod 2 Steam Catapult Test Site has in-ground catapults identical to those aboard carriers. This test site...

  5. Interpreting Results from the Standardized UXO Test Sites

    National Research Council Canada - National Science Library

    May, Michael; Tuley, Michael

    2007-01-01

    ...) and the Environmental Security Technology Certification Program (ESCTP) to complete a detailed analysis of the results of testing carried out at the Standardized Unexploded Ordnance (UXO) Test Sites...

  6. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class-C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types. The paper discusses site selection; establishment of the Radioactive Waste Management Project; operations with respect to low-level radioactive wastes, transuranic waste storage, greater confinement disposal test, and mixed waste management facility; and related research activities such as tritium migration studies, revegetation studies, and in-situ monitoring of organics

  7. Springs on the Nevada Test Site and their use by wildlife

    International Nuclear Information System (INIS)

    Giles, K.R.

    1976-04-01

    During August 1972, natural springs located on the Nevada Test Site were surveyed to determine the use by wildlife and the effort required for improving flow. Each spring is described and its use by wildlife noted. Methods of improving spring flow are suggested. It is believed that minimal effort at most of the springs would result in a significant improvement of waterflow with resulting benefits to wildlife. The intention of the recommendations in this report is to encourage development of the Nevada Test Site springs and to maintain the wildlife now at the Site. There is no recommendation to bring in or support wildlife outside the Nevada Test Site area

  8. Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1994-02-01

    The Special Projects Section (SPS) of Reynolds Electrical ampersand Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities

  9. Meteorological data for four sites at surface-disruption features in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1985--1986

    International Nuclear Information System (INIS)

    Carman, R.L.

    1994-01-01

    Surface-disruption features, or craters, resulting from underground nuclear testing at the Nevada Test Site may increase the potential for ground-water recharge in an area that would normally produce little, if any, recharge. This report presents selected meteorological data resulting from a study of two surface-disruption features during May 1985 through June 1986. The data were collected at four adjacent sites in Yucca Flat, about 56 kilometers north of Mercury, Nevada. Three sites (one in each of two craters and one at an undisturbed site at the original land surface) were instrumented to collect meteorological data for calculating bare-soil evaporation. These data include (1) long-wave radiation, (2) short-wave radiation, (3) net radiation, (4) air temperature, and (5) soil surface temperature. Meteorological data also were collected at a weather station at an undisturbed site near the study craters. Data collected at this site include (1) air temperature, (2) relative humidity, (3) wind velocity, and (4) wind direction

  10. Probabilistic Description of a Clay Site using CPTU tests

    DEFF Research Database (Denmark)

    Andersen, Sarah; Lauridsen, Kristoffer; Nielsen, Benjaminn Nordahl

    2012-01-01

    A clay site at the harbour of Aarhus, where numerous cone penetration tests have been conducted, is assessed. The upper part of the soil deposit is disregarded, and only the clay sections are investigated. The thickness of the clay deposit varies from 5 to 6 meters, and is sliced into sections of...... a geotechnical assessment of a site, using both the method for classifying soil behaviour types and applying statistics, yield a new level of information, and certainty about the estimates of the strength parameters which are the important outcome of such a site description.......A clay site at the harbour of Aarhus, where numerous cone penetration tests have been conducted, is assessed. The upper part of the soil deposit is disregarded, and only the clay sections are investigated. The thickness of the clay deposit varies from 5 to 6 meters, and is sliced into sections of 1...... meter in thickness. For each slice, a map of the variation of the undrained shear strength is created through Kriging and the probability of finding weak zones in the deposit is calculated. This results in a description of the spatial variation of the undrained shear strength at the site. Making...

  11. Improving ATLAS grid site reliability with functional tests using HammerCloud

    CERN Document Server

    Legger, F; The ATLAS collaboration

    2012-01-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2011, and more coming in 2012, distributed computing has become the established way to analyse collider data. The ATLAS grid infrastructure includes almost 100 sites worldwide, ranging from large national computing centers to smaller university clusters. These facilities are used for data reconstruction and simulation, which are centrally managed by the ATLAS production system, and for distributed user analysis. To ensure the smooth operation of such a complex system, regular tests of all sites are necessary to validate the site capability of successfully executing user and production jobs. We report on the development, optimization and results of an automated functional testing suite using the HammerCloud framework. Functional tests are short light-weight applications covering typical user analysis and production schemes, which are periodically submitted to all ATLAS grid sites. Results from those tests are collected and used to evaluate site...

  12. Final environmental impact statement for the Nevada Test Site and off-site locations in the state of Nevada: Mitigation action plan

    International Nuclear Information System (INIS)

    1997-02-01

    The DOE Notice of Availability for this environmental impact statement was published in the Federal Register on Friday, October 18, 1996 (61 FR 54437). The final environmental impact statement identifies potential adverse effects resulting from the four use alternatives evaluated and discusses measures that DOE considered for the mitigation of these potential adverse effects. The Secretary of Energy signed the Record of Decision on the management and operation of the Nevada Test Site and other DOE sites in the state of Nevada on December 9, 1996. These decisions will result in the continuation of the multipurpose, multi-program use of the Nevada Test Site, under which DOE will pursue a further diversification of interagency, private industry, and public-education uses while meeting its Defense Program, Waste Management, and Environmental Restoration mission requirements at the Nevada Test Site and other Nevada sites, including the Tonopah Test Range, the Project Shoal Site, the Central Nevada Test Area, and on the Nellis Air Force Range Complex. The Record of Decision also identifies specific mitigation actions beyond the routine day-to-day physical and administrative controls needed for implementation of the decisions. These specific mitigation actions are focused on the transportation of waste and on groundwater availability. This Mitigation Action Plan elaborates on these mitigation commitments

  13. Regular monitoring, analysis and forecast of radioecological environment of Azgir test site

    International Nuclear Information System (INIS)

    Akhmetov, E.; Agymov, I.; Gilmanov, Zh.; Ermanov, A.; Zhetbaev, A.

    1996-01-01

    The objective of investigations: basing on the results of regular annual measurements of radiation conditions on the sites of underground nuclear cavities of the Azgir test site, specific concentrations of radionuclides and heavy metals in soil and underground aquifers on the test site and adjacent territories to obtain data on migration and transfer of radionuclides and heavy metals. This will give a real possibility to make probability predictions of ways and qualitative characteristics of spreading of radionuclides and heavy metals in the region of the northern Pricaspian lowland. The Essence of the Problem The Azgir test site is located in the arid zone of the Great Azgir salt cupola near the Azgir village of Kurmangazinskiy rayon, Atyrau region. This cupola is located in the western periphery of Pricaspian salt-bearing province situated to the north of the Caspian sea between the Volga and Emba rivers. Major Tasks: - Development of technical requirements for carrying out regular examination of radionuclide and heavy metal contamination of the Azgir test site. - Preparation of material and technical base for field works on the Azgir test site. - Radiometric measurements on the sites and around them. - Taking of soil, soil and ground waters samples both on the test site and on the adjacent territories. - Spectrometric and radiochemical investigations of soil, soil and ground water samples. - Analysis and generalization of the results creating premises for forecasting of the radioecological conditions. - Investigation of the possibility of radioactive waste disposal in underground cavities. Expected Results: - Detection and outlining of local areas of radioactive contamination on the site and adjacent territories. - Data on real structure of spreading and concentration of artificial and natural radionuclides and heavy metals in soil layer of the test site region. - Results of analytic investigations of water samples of underground sources of the site and adjacent

  14. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-05-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  15. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    International Nuclear Information System (INIS)

    2009-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  16. Preliminary siting characterization Salt Disposition Facility - Site B

    International Nuclear Information System (INIS)

    Wyatt, D.

    2000-01-01

    A siting and reconnaissance geotechnical program has been completed in S-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as ''Salt Disposition Facility (SDF), Site B'' located northeast of H-Area and within the S-Area. Data acquired from the Site B investigation includes both field exploration and laboratory test data

  17. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2000-01-01

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  18. Assessment of three cuban sites for testing resistance to sugarcane mosaic virus

    Directory of Open Access Journals (Sweden)

    Yaquelin Puchades

    2015-03-01

    Full Text Available Sugarcane mosaic disease is amongst the world’s most important diseases affecting sugarcane worldwide. The objective was to assess the environmental conditions of the sites where the test for SCMV resistance is done. Multi-environment trial Data were analyzed using a Principal Components Analysis Eighteen sugarcane genotypes s were evaluated from the main testing sites in Cuba (Jovellanos, Florida, Mayarí . The information of the climatic conditions was recorded at local weather stations. The assessment of the sites was done by analyzing the main components. Results showed that the testing sites were different from one another, and proved that the environment strongly influences on the mosaic symptom manifestation. PCA was an excellent procedure to assess the testing sites .for SCMV resistance.

  19. Waste generation and pollution prevention progress fact sheet: Nevada Test Site

    International Nuclear Information System (INIS)

    1994-01-01

    The Nevada Test Site is responsible for maintaining nuclear testing capability, supporting science-based Stockpile Stewardship experiments, maintaining nuclear agency response capability, applying environmental restoration techniques to areas affected by nuclear testing, managing low-level and mixed radioactive waste, investigating demilitarization technologies, investigating counter- proliferation technologies, supporting work-for-others programs and special Department of Defense activities, operating a hazardous materials spill test center, and providing for the commercial development of the site. This fact sheet provides information on routine waste generation and projected reduction by waste type. Also, materials recycled by the Nevada Test Site in 1994 are listed

  20. Site decontamination

    International Nuclear Information System (INIS)

    Bicker, A.E.

    1981-01-01

    Among the several DOE sites that have been radiologically decontaminated under the auspices of the Nevada Operations Office are three whose physical characteristics are unique. These are the Tatum Dome Test Site (TDTS) near Hattiesburg, Mississippi; a location of mountainous terrain (Pahute Mesa) on the Nevada Test Site; and the GNOME site near Carlsbad, New Mexico. In each case the contamination, the terrain, and the climate conditions were different. This presentation includes a brief description of each site, the methods used to perform radiological surveys, the logistics required to support the decontamination (including health physics and sample analysis), and the specific techniques used to reduce or remove the contamination

  1. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2013-09-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  2. Radiological Situation at the Bomb Test Sites

    International Nuclear Information System (INIS)

    Valkovic, V.

    1998-01-01

    An overview of radiological situation at the selected bomb test sites is presented. The report is based on the reports and measurements performed by IAEA while the author was a head of its Physics-Chemistry-Instrumentation Laboratory. Radiological conditions at Bikini Atoll (USA testing ground), Mururoa and Fangataufa Atolls (French testing ground) and Semipalatinsk (SSSR testing ground) have been discussed in some details. (author)

  3. The 'Guetsch' Alpine wind power test site; Alpine Test Site Guetsch. Handbuch und Fachtagung

    Energy Technology Data Exchange (ETDEWEB)

    Cattin, R.

    2008-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the influence of icing-up on the operation of wind turbines in mountainous areas. Within the Swiss research project 'Alpine Test Site Guetsch', extensive icing studies were carried out at the Guetsch site near Andermatt, Switzerland. This document deals with the following subjects: Information about ice formation on structures, in particular with respect to wind turbines, standards and international research activities, wind measurements under icing-up conditions, estimation of the frequency of icing-up conditions, effects of icing-up on wind turbines, ice detection, measures available for de-icing and anti-icing as well as ice throw. A list of factors to be taken into account by the planners and operators of wind turbines in alpine environments is presented.

  4. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    International Nuclear Information System (INIS)

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static

  5. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static.

  6. The Road Side Unit for the A270 Test Site

    NARCIS (Netherlands)

    Passchier, I.; Driessen, B.J.F.; Heijligers, B.M.R.; Netten, B.D.; Schackmann, P.P.M.

    2011-01-01

    The design and implementation of the Road Side Unit for the A270 Test Site is presented. It consists of a sensor platform and V2I communication platform with full coverage of the test site. A service platform enables applications to make use of these facilities. The RSU will be used both for the

  7. Usability Testing in a Library Web Site Redesign Project.

    Science.gov (United States)

    McMullen, Susan

    2001-01-01

    Discusses the need for an intuitive library information gateway to meet users' information needs and describes the process involved in redesigning a library Web site based on experiences at Roger Williams University. Explains usability testing methods that were used to discover how users were interacting with the Web site interface. (Author/LRW)

  8. Modified TCLP test for evaluating the leachability of site-specific wastes

    International Nuclear Information System (INIS)

    Pier, J.

    1996-01-01

    The Weldon Spring Site Remedial Action Project (WSSRAP) has developed a site-specific test to assess the leachability of wastes that will be placed in its on-site disposal cell. This test is modelled after the TCLP, but examines an expanded list of parameters and uses an extraction solution that is representative of conditions that are expected to exist in the disposal facility. Following the same logic that guided development of TCLP protocols, the WSSRAP developed concentration guidelines for non-TCLP parameters that were contaminants of concern in its wastes. Response actions, specific to the WSSRAP cell and wastes, were also developed to address constituents that failed to meet these guides. From 1955 to 1966, the US Atomic Energy Commission operated a uranium feed materials plant on this site. Nitroaromatic, and later, radiological wastes were disposed of in the quarry from 1945 until 1970. This paper describes testing to determine whether contaminant concentrations in leachates derived from the major waste-types that will be placed in its on-site disposal cell conform with the Department of Energy's (DOE) as low as reasonably achievable (ALARA) policy. Although the WSSRAP will continue to use the TCLP test to determine if any waste is classified RCRA-hazardous, the site-specific test described in this paper will be used to further assess whether leachate from any waste-type has the potential to adversely impact groundwater

  9. Interim report on flash floods, Area 5 - Nevada Test Site

    International Nuclear Information System (INIS)

    French, R.H.

    1980-09-01

    Examination of the presently available data indicates that consideration must be given to the possibility of flash floods when siting waste management facilities in Area 5 of the Nevada Test Site. 6 figures, 7 tables

  10. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2008-01-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells

  11. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  12. Hanford Site physical separations CERCLA treatability test plan

    International Nuclear Information System (INIS)

    1992-03-01

    This test plan describes specifications, responsibilities, and general procedures to be followed to conduct a physical separations soil treatability test in the North Process Pond of the 300-FF-1 Operable Unit at the Hanford Site, Washington. The objective of this test is to evaluate the use of physical separation systems as a means of concentrating chemical and radioactive contaminants into fine soil fractions and thereby minimizing waste volumes. If successful the technology could be applied to clean up millions of cubic meters of contaminated soils in waste sites at Hanford and other sites. It is not the intent of this test to remove contaminated materials from the fine soils. Physical separation is a simple and comparatively low cost technology to potentially achieve a significant reduction in the volume of contaminated soils. Organic contaminants are expected to be insignificant for the 300-FF-I Operable Unit test, and further removal of metals and radioactive contaminants from the fine fraction of soils will require secondary treatment such as chemical extraction, electromagnetic separation, or other technologies. Additional investigations/testing are recommended to assess the economic and technical feasibility of applying secondary treatment technologies, but are not within the scope of this test. This plan provides guidance and specifications for the treatability test to be conducted as a service contract. More detailed instructions and procedures will be provided as part of the vendors (sellers) proposal. The procedures will be approved by Westinghouse Hanford Company (Westinghouse Hanford) and finalized by the seller prior to initiating the test

  13. On-site tests on the nuclear power plants

    International Nuclear Information System (INIS)

    Morilhat, P.; Favennec, J.M.; Neau, P.; Preudhomme, E.

    1996-01-01

    On-site tests and experiments are performed by EDF Research and Development Division on the nuclear power plants to assess the behaviour of major components submitted to thermal and vibratory solicitations. On-going studies deal with the qualification of new nuclear power plant standard and with the feedback of plants under operation. The tests, particularly the investigation tests, correspond to large investments and entail an important data volume which must ensure the continuity over a long period of the order of magnitude of the in-service plant life (around 40 years). This paper addresses the on-site experimental activities, describes the means to be used, and gives an example: the qualification of SG of new 1450 MW nuclear power plants. (author)

  14. Testing the ecological site group concept

    Science.gov (United States)

    The 2016 “Ecological Sites for Landscape Management” special issue of Rangelands recommended an update to our thinking of Ecological Sites, suggesting that in our desire to make Ecological Sites more quantitative, we abandoned consideration of Ecological Sites’ spatial context. In response, Ecologic...

  15. Slope stability and bearing capacity of landfills and simple on-site test methods.

    Science.gov (United States)

    Yamawaki, Atsushi; Doi, Yoichi; Omine, Kiyoshi

    2017-07-01

    This study discusses strength characteristics (slope stability, bearing capacity, etc.) of waste landfills through on-site tests that were carried out at 29 locations in 19 sites in Japan and three other countries, and proposes simple methods to test and assess the mechanical strength of landfills on site. Also, the possibility of using a landfill site was investigated by a full-scale eccentric loading test. As a result of this, landfills containing more than about 10 cm long plastics or other fibrous materials were found to be resilient and hard to yield. An on-site full scale test proved that no differential settlement occurs. The repose angle test proposed as a simple on-site test method has been confirmed to be a good indicator for slope stability assessment. The repose angle test suggested that landfills which have high, near-saturation water content have considerably poorer slope stability. The results of our repose angle test and the impact acceleration test were related to the internal friction angle and the cohesion, respectively. In addition to this, it was found that the air pore volume ratio measured by an on-site air pore volume ratio test is likely to be related to various strength parameters.

  16. Buffer mass test - Site documentation

    International Nuclear Information System (INIS)

    Pusch, R.

    1983-10-01

    The purpose of this report is to compile test site data that are assumed to be of importance for the interpretation of the Buffer Mass Test. Since this test mainly concerns water uptake and migration processes in the integrated rock/backfill system and the development of temperature fields in this system, the work has been focused on the constitution and hydrology of the rock. The major constitutional rock feature of interest for the BMT is the frequency and distribution of joints and fractures. The development of models for water uptake into the highly compacted bentonite in the heater holes requires a very detailed fracture survey. The present investigation shows that two of the holes (no. 1 and 2) are located in richly fractured rock, while the others are located in fracture-poor to moderately fractured rock. The hydrological conditions of the rock in the BMT area are characterized by water pressures of as much as 100 m water head at a few meters distance from the test site. The average hydraulic conductivity of the rock that confines the BMT tunnel has been estimated at about 10 -10 m/s by Lawrence Laboratory. The actual distribution of the water that enters the tunnel has been estimated by observing the successive moistening after having switched off the ventilation, and this has offered basis of predicting the rate and uniformity of the water uptake in the tunnel backfill. As to the heater holes the detailed fracture patterns and various inflow measurements have yielded a similar basis. The report also gives major data on the rock temperature, gas conditions, mineralogy, rock mechanics, and groundwater chemistry for BMT purposes. (author)

  17. Political aspects of nuclear test effects at Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Sydykov, E.B.; Panin, M.S.

    2003-01-01

    The paper describes tense struggle of Kazakhstan people for closure of the Semipalatinsk Nuclear Test Site. It reveals major foreign policy aspects and nuclear test effects for both Kazakhstan and the world community. (author)

  18. Evaluative Testing of 5LA3421: A Multicomponent Prehistoric and Historic Site, Pinon Canyon Maneuver Site, Las Animas County, Colorado

    National Research Council Canada - National Science Library

    Charles, Mona; Baker, Thann; Markussen, Christine; Nathan, Randy; Duke, Philip

    2004-01-01

    In the summer of 2002, evaluative testing was undertaken at a large multicomponent site for the purpose of evaluating the potential of this site to yield significant information about the prehistory...

  19. Perspectives of investigation and development of Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Lukashenko, S.N.

    2008-01-01

    Full text: Since the Semipalatinsk Test Site has been stopped and up until now, National Nuclear Center of the Republic of Kazakhstan (NNC RK) in cooperation with other specialist from Kazakhstan and international scientific community have accumulated large scope of information about current radiological situation at Semipalatinsk Nuclear Test Site (SNTS) and adjacent territories. There were revealed all important spots of radioactive contamination, identified main pathways and mechanisms for present and potential proliferation of radioactive substances. Obtained data assure us that present-day SNTS provides no negative impact on population on adjacent to the Site territories excluding people in the water basin of the river Shagan. Compliance with regulatory requirements and special rules for SNTS territory assures radiation safety at commercial activities on the Site. At the same time, the radiological situation does not remain stable; there were revealed the processes of radionuclide migration what requires regular monitoring of radiological situation at SNTS. Taking into account the scale of the Site and the variety of tests performed there, the information available about SNTS can not be completely exhaustive but enables us to propose a scientifically grounded plan for further research and practical measures aimed at remediation and reclamation of lands. implementation of such measures should return up to 80% of the lands to commercial use. SNTS is one of the world largest nuclear test sites with decisive contribution to creation and development of nuclear weapon. To considerable extent, these were works at SNTS which established nuclear parity between the superpowers one of the crucial factors in the history of human civilization in the 20 century. Also taking into account the interest to SNTS paid by international organizations, it is reasonable to initiate a procedure and recognize SNTS as a landmark including it in the UNESCO List of Cultural and Nature

  20. Closure report for housekeeping category, Corrective Action Unit 348, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at twelve Corrective Action Sites within Corrective Action Unit 348 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  1. Closure report for housekeeping category, Corrective Action Unit 347, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 347 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  2. Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities

  3. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types

  4. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by

  5. Nevada Test Site Radiation Protection Program - Revision 1

    International Nuclear Information System (INIS)

    Nevada Test Site Radiological Control Managers' Council

    2008-01-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material

  6. Nevada Test Site Radiation Protection Program - Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  7. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area

  8. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-06-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

  9. Evaluation of the OnSite malaria rapid test performance in Miandrivazo, Madagascar.

    Science.gov (United States)

    Ravaoarisoa, E; Andriamiandranoro, T; Raherinjafy, R; Jahevitra, M; Razanatsiorimalala, S; Andrianaranjaka, V; Randrianarivelojosia, M

    2017-10-01

    The performance of the malaria rapid diagnostic test OnSite-for detecting pan specific pLDH and Plasmodium falciparum specific HRP2 - was assessed during the malaria transmission peak period in Miandrivazo, in the southwestern part of Madagascar from April 20 to May 6, 2010. At the laboratory, the quality control OnSite Malaria Rapid Test according to the WHO/TDR/FIND method demonstrated that the test had good sensitivity. Of the 218 OnSite tests performed at the Miandrivazo Primary Health Center on patients with fever or a recent history of fever, four (1.8%, 95% CI: 0.6-4.9%) were invalid. Ninety four (43,1%) cases of malaria were confirmed by microscopy, of which 90 were P. falciparum malaria and 4 Plasmodium vivax malaria. With a Cohen's kappa coefficient of 0.94, the agreement between microscopy and OnSite is excellent. Compared with the rapid test CareStart™ commonly used within the public health structures in Madagascar, the sensitivity and specificity of the OnSite test were 97.9% and 96.8%.

  10. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ``A through K`` evaluation was completed to support a request for an Administrative Closure of the site.

  11. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ''A through K'' evaluation was completed to support a request for an Administrative Closure of the site

  12. Improving ATLAS grid site reliability with functional tests using HammerCloud

    CERN Document Server

    Legger, F; The ATLAS collaboration; Medrano Llamas, R; Sciacca, G; Van der Ster, D C

    2012-01-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2011, and more coming in 2012, distributed computing has become the established way to analyse collider data. The ATLAS grid infrastructure includes more than 80 sites worldwide, ranging from large national computing centers to smaller university clusters. These facilities are used for data reconstruction and simulation, which are centrally managed by the ATLAS production system, and for distributed user analysis. To ensure the smooth operation of such a complex system, regular tests of all sites are necessary to validate the site capability of successfully executing user and production jobs. We report on the development, optimization and results of an automated functional testing suite using the HammerCloud framework. Functional tests are short light-weight applications covering typical user analysis and production schemes, which are periodically submitted to all ATLAS grid sites. Results from those tests are collected and used to evaluate si...

  13. ISC origin times for announced and presumed underground nuclear explosions at several test sites

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1979-01-01

    Announced data for US and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two US test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal US and Soviet test sites in Nevada and Eastern Kazakhstan. The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the US and French sites. These times indicate lower seismic velocities beneath the US and French sites, and higher velocities beneath the sites in the USSR 9 figures, 8 tables

  14. Hydrologic test plans for large-scale, multiple-well tests in support of site characterization at Hanford, Washington

    International Nuclear Information System (INIS)

    Rogers, P.M.; Stone, R.; Lu, A.H.

    1985-01-01

    The Basalt Waste Isolation Project is preparing plans for tests and has begun work on some tests that will provide the data necessary for the hydrogeologic characterization of a site located on a United States government reservation at Hanford, Washington. This site is being considered for the Nation's first geologic repository of high level nuclear waste. Hydrogeologic characterization of this site requires several lines of investigation which include: surface-based small-scale tests, testing performed at depth from an exploratory shaft, geochemistry investigations, regional studies, and site-specific investigations using large-scale, multiple-well hydraulic tests. The large-scale multiple-well tests are planned for several locations in and around the site. These tests are being designed to provide estimates of hydraulic parameter values of the geologic media, chemical properties of the groundwater, and hydrogeologic boundary conditions at a scale appropriate for evaluating repository performance with respect to potential radionuclide transport

  15. Usability Testing of an Academic Library Web Site: A Case Study.

    Science.gov (United States)

    Battleson, Brenda; Booth, Austin; Weintrop, Jane

    2001-01-01

    Discusses usability testing as a tool for evaluating the effectiveness and ease of use of academic library Web sites; considers human-computer interaction; reviews major usability principles; and explores the application of formal usability testing to an existing site at the University at Buffalo (NY) libraries. (Author/LRW)

  16. Housekeeping Closure Report for Corrective Action Unit 463: Areas 2, 3, 9, and 25 Housekeeping Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts of the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purposes of determining corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 13 CASs within CAU 463 on the NTS. The Housekeeping Closure Verification Form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Housekeeping activities at these sites included removal of debris (e.g., wooden pallets, metal, glass, and trash) and other material. In addition, these forms confirm prior removal of other contaminated materials such as metal drums or buckets, transformers, lead bricks, batteries, and gas cylinders. Based on these activities, no further action is required at these CASs

  17. Freshwater algae of the Nevada Test Site

    International Nuclear Information System (INIS)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs

  18. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Becker, B.D.; Gertz, C.P.; Clayton, W.A.; Crowe, B.M.

    1998-01-01

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites

  19. On-site inspection: A brief overview and bibliography of techniques pertinent to assessing suspected nuclear test sites

    International Nuclear Information System (INIS)

    Carrigan, C.R.

    1993-03-01

    The purpose of this report is to provide a brief overview and bibliography of those techniques that may have application for the evaluation of a site to determine if a high energy release event is nuclear in nature. This effort is motivated by recognition of the changing world political climate and the perception that low yield and non-proliferation issues will grow in importance as countries become increasingly involved as signators to treaties that are intended to limit the development and testing of nuclear weapons. Along with an increasing interest in such issues is the awareness of the need to implement improved capabilities for treaty monitoring programs that must deal with assessing suspicious occurrences of high energy release events. In preparing this report, it is recognized that monitoring can take two main forms. The first involves the resolution of unidentified events detected by seismic and satellite National Technical Means. Events of an indeterminate nature could occur world-wide and could induce tension in neighboring countries. If an on-site measurement capability were available, a monitoring team could be sent to the suspected site of an event to take measurements that could confirm or disprove the occurrence of a clandestine nuclear test. The second monitoring form is the confirmation that a clandestine event is not masked by a declared event. For example, a large mining explosion could mask a decoupled nuclear explosion. On-site measurements before and during the test could confirm that a clandestine event did not occur and could provide assurance that the party carrying out the explosion is not taking advantage of clandestine testing opportunities. 48 refs

  20. Microbiological analyses of samples from the H-Area injection well test site

    International Nuclear Information System (INIS)

    Wilde, E.W.; Franck, M.M.

    1997-01-01

    Microbial populations in well water from monitoring wells at the test site were one to three orders of magnitude higher than well water from the Cretaceous aquifer (used as dilution water for the tests) or from a control well adjacent to the test site facility. Coupons samples placed in monitoring and control wells demonstrated progressive adhesion by microbes to materials used in well construction. Samples of material scraped from test well components during abandonment of the test site project revealed the presence of a variety of attached microbes including iron bacteria. Although the injection wells at the actual remediation facility for the F- and H-Area seepage basins remediation project are expected to be subjected to somewhat different conditions (e.g. considerably lower iron concentrations) than was the case at the test site, the potential for microbiologically mediated clogging and fouling within the process should be considered. A sampling program that includes microbiological testing is highly recommended

  1. Revelation and registration of geological heritage on the test sites territories

    International Nuclear Information System (INIS)

    Kazakova, Yu.I.

    1999-01-01

    Studies of geotypes in Kazakhstan are carrying out from 1993. 'Geological heritage of Kazakhstan' data base incorporating more than 400 objects is developed. The geotypes classification by a diverse features was worked out. The showing up and accounting system of geotype objects diversity was demonstrated and approved on the international symposia on geological heritage protection (ProGeo-97 and ProGeo-98). But this work does not conducted on the test sites yet. At present these territories have been more available but data about geotypes within its boundaries are fragmentary yet. Among its there are locations of interesting dinosaur remains (Baikanur space site), ancient mine working, petroglyphic drawings, agate manifestations, picturesque landscapes (Semipalatinsk test site). Within test zones there are such interesting antropogenic noticeably object as places of nuclear explosions including the famous Atomic Lake. There are a lot interest object on the territories adjoint to test sites (stratigraphical open-casts of the universal importance, paleontological remains and others) gives basis for to suggest that on the closed earlier territories there are a lot of interesting geotypes. At present these sites are entering to rehabilitation stage. At that one of the important measure must be study of geotypes situated within its limits

  2. Supporting documents for LLL area 27 (410 area) safety analysis reports, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Odell, B. N. [comp.

    1977-02-01

    The following appendices are common to the LLL Safety Analysis Reports Nevada Test Site and are included here as supporting documents to those reports: Environmental Monitoring Report for the Nevada Test Site and Other Test Areas Used for Underground Nuclear Detonations, U. S. Environmental Protection Agency, Las Vegas, Rept. EMSL-LV-539-4 (1976); Selected Census Information Around the Nevada Test Site, U. S. Environmental Protection Agency, Las Vegas, Rept. NERC-LV-539-8 (1973); W. J. Hannon and H. L. McKague, An Examination of the Geology and Seismology Associated with Area 410 at the Nevada Test Site, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-51830 (1975); K. R. Peterson, Diffusion Climatology for Hypothetical Accidents in Area 410 of the Nevada Test Site, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-52074 (1976); J. R. McDonald, J. E. Minor, and K. C. Mehta, Development of a Design Basis Tornado and Structural Design Criteria for the Nevada Test Site, Nevada, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-13668 (1975); A. E. Stevenson, Impact Tests of Wind-Borne Wooden Missiles, Sandia Laboratories, Tonopah, Rept. SAND 76-0407 (1976); and Hydrology of the 410 Area (Area 27) at the Nevada Test Site.

  3. Nevada Test Site craters used for astronaut training

    Science.gov (United States)

    Moore, H. J.

    1977-01-01

    Craters produced by chemical and nuclear explosives at the Nevada Test Site were used to train astronauts before their lunar missions. The craters have characteristics suitable for reconnaissance-type field investigations. The Schooner test produced a crater about 300 m across and excavated more than 72 m of stratigraphic section deposited in a fairly regular fashion so that systematic observations yield systematic results. Other features common on the moon, such as secondary craters and glass-coated rocks, are present at Schooner crater. Smaller explosive tests on Buckboard Mesa excavated rocks from three horizontal alteration zones within basalt flows so that the original sequence of the zones could be determined. One crater illustrated the characteristics of craters formed across vertical boundaries between rock units. Although the exercises at the Nevada Test Site were only a small part of the training of the astronauts, voice transcripts of Apollo missions 14, 16, and 17 show that the exercises contributed to astronaut performance on the moon.

  4. Site selection

    International Nuclear Information System (INIS)

    Olsen, C.W.

    1983-07-01

    The conditions and criteria for selecting a site for a nuclear weapons test at the Nevada Test Site are summarized. Factors considered are: (1) scheduling of drill rigs, (2) scheduling of site preparation (dirt work, auger hole, surface casing, cementing), (3) schedule of event (when are drill hole data needed), (4) depth range of proposed W.P., (5) geologic structure (faults, Pz contact, etc.), (6) stratigraphy (alluvium, location of Grouse Canyon Tuff, etc.), (7) material properties (particularly montmorillonite and CO 2 content), (8) water table depth, (9) potential drilling problems (caving), (10) adjacent collapse craters and chimneys, (11) adjacent expended but uncollapsed sites, (12) adjacent post-shot or other small diameter holes, (13) adjacent stockpile emplacement holes, (14) adjacent planned events (including LANL), (15) projected needs of Test Program for various DOB's and operational separations, and (16) optimal use of NTS real estate

  5. Radionuclide migration studies at the Nevada Test Site

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1989-01-01

    The United States government routinely tests nuclear devices at the Nevada Test Site (NTS) in southern Nevada. A significant amount of radioactive material exists underground at the NTS with no containers or engineered barriers to inhibit its subsequent migration. The Department of Energy has sponsored for many years a research program on radionuclide movement in the geologic media at this location. Goals of this research program are to measure the extent of movement of radionuclides away from underground explosion sites and to determine the mechanisms by which such movement occurs. This program has acquired significance in another aspect of nuclear waste management because of the Yucca Mountain Project. Yucca Mountain at the NTS is being intensively studied as the possible site for a mined repository for high level nuclear waste. The NTS provides a unique setting for field studies concerning radionuclide migration; there is the potential for greatly increasing our knowledge of the behavior of radioactive materials in volcanogenic media. This review summarizes some of the significant findings made under this research program at the NTS and identifies reports in which the details of the research may be found. 36 refs., 4 figs

  6. Streamlined approach for environmental restoration closure report for Corrective Action Unit 452: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the site characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 25-3101-1, 25-3102-3, and 25-3152-1. The sites are located within the Nevada Test Site in Area 25 at Buildings 3101, 3102, and 3152. The characterization was completed to support administrative closure of the sites. Characterization was completed using drilling equipment to delineate the extent of hydrocarbon impact. Clean closure had been previously attempted at each of these sites using backhoe equipment without success due to adjacent structures, buried utilities, or depth restrictions associated with each site. Although the depth and extent of hydrocarbon impact was determined to be too extensive for clean closure, it was verified through drilling that the sites should be closed through an administrative closure. The Nevada Administrative Code ''A Through K'' evaluation completed for each site supports that there is no significant risk to human health or the environment from the impacted soils remaining at each site

  7. Nuclear test at Semipalatinsk test site and their environmental impacts

    International Nuclear Information System (INIS)

    Logachev, V.A.

    2000-01-01

    This paper present classification of nuclear tests conducted at the Semipalatinsk test site by tier radiation hazards. The Institute of Biophysics of the Russian Ministry of Health established a data base the archival data on radiation situation parameters and compiled an album of radioactive plum footprints. The paper states that external and internal exposure doses received by population lived in the test vicinity can sufficiently reliably assesses using archival data. (author)

  8. Preliminary investigation on determination of radionuclide distribution in field tracing test site

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki; Takebe, Shinichi; Guo Zede; Li Shushen; Kamiyama, Hideo.

    1993-12-01

    Field tracing tests for radionuclide migration have been conducted by using 3 H, 60 Co, 85 Sr and 134 Cs, in the natural unsaturated loess zone at field test site of China Institute for Radiation Protection. It is necessary to obtain confidable distribution data of the radionuclides in the test site, in order to evaluate exactly the migration behavior of the radionuclides in situ. An available method to determine the distribution was proposed on the basis of preliminary discussing results on sampling method of soils from the test site and analytical method of radioactivity in the soils. (author)

  9. HIV testing sites' communication about adolescent confidentiality: potential barriers and facilitators to testing.

    Science.gov (United States)

    Hyden, Christel; Allegrante, John P; Cohall, Alwyn T

    2014-03-01

    This study sought to evaluate HIV testing locations in New York City in terms of staff communication of confidentiality policies for adolescent clients. Using the New York State Directory of HIV Counseling and Testing Resources as a sampling frame, this study made telephone contact with 164 public HIV testing locations in New York City and used a semistructured interview to ask questions about confidentiality, parental permission, and parent access to test results. At 48% of locations, either HIV testing was not offered or we were unable to reach a staff member to ask questions about testing options and confidentiality. At the remaining sites, information provided regarding confidentiality, parental consent, and privacy of test results was correct only 69% to 85% of the time. Additionally, 23% of sites successfully contacted offered testing exclusively between 9:00 a.m. and 3:00 p.m. weekdays, when most adolescents are in school. Our findings point to a need for increased training and quality control at the clinical level to ensure that consumers in need of HIV testing are provided with accurate information and accessible services. Furthermore, these results highlight the need for more "patient-centric" sites with enhanced accessibility for potential clients, particularly youth.

  10. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  11. Rehabilitation of former nuclear test sites in Australia

    International Nuclear Information System (INIS)

    1990-01-01

    A range of options with indicative cost estimates and timescale has been defined for clean-up of the former British nuclear test sites at Maralinga and Emu in South Australia. The situation at the former test sites on the Monte Bello Islands has been reported separately. The predominant contributor to potential radiation dose at the test sites is residual plutonium contamination of soil which may be incorporated into the body through inhalation of resuspended dust. Acceptable levels of radioactive soil contamination based upon organ doses from incorporated plutonium and the associated health detriment are proposed by the Technical Assessment Group for a series of land-use options ranging from fully unrestricted habitation by Aboriginals including the case of high dependence on local plants and animals for food: to casual access by Aboriginals assuming retained or, if necessary, extended fences. The area of land affected and the quantity of soil and other material with more than the proposed limit of contamination as well as a range of remedial measures for reduction of the contamination to a level acceptable for each of the land-use options has been assessed and methods proposed for safe disposal of the contaminated materials. The associated costs of these remedial measures and disposal methods have also been estimated. 28 refs., 71 tabs., 45 figs

  12. DOUBLE TRACKS Test Site interim corrective action plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The DOUBLE TRACKS site is located on Range 71 north of the Nellis Air Force Range, northwest of the Nevada Test Site (NTS). DOUBLE TRACKS was the first of four experiments that constituted Operation ROLLER COASTER. On May 15, 1963, weapons-grade plutonium and depleted uranium were dispersed using 54 kilograms of trinitrotoluene (TNT) explosive. The explosion occurred in the open, 0.3 m above the steel plate. No fission yield was detected from the test, and the total amount of plutonium deposited on the ground surface was estimated to be between 980 and 1,600 grams. The test device was composed primarily of uranium-238 and plutonium-239. The mass ratio of uranium to plutonium was 4.35. The objective of the corrective action is to reduce the potential risk to human health and the environment and to demonstrate technically viable and cost-effective excavation, transportation, and disposal. To achieve these objectives, Bechtel Nevada (BN) will remove soil with a total transuranic activity greater then 200 pCI/g, containerize the soil in ``supersacks,`` transport the filled ``supersacks`` to the NTS, and dispose of them in the Area 3 Radioactive Waste Management Site. During this interim corrective action, BN will also conduct a limited demonstration of an alternative method for excavation of radioactive near-surface soil contamination.

  13. Environmental site assessments should include radon gas testing

    International Nuclear Information System (INIS)

    Nardi, M.A.

    1991-01-01

    There are two emerging influences that will require radon gas testing as part of many property transfers and most site assessments. These requirements come from lending regulators and state legislatures. Fannie Mae and others have developed environmental investigation guidelines for the purchase of environmentally contaminated real estate. These guidelines include radon gas testing for many properties. Several states have enacted laws that require environmental disclosure forms be prepared to ensure that the parties involved in certain real estate transactions are aware of the environmental liabilities that may come with the transfer of property. Indiana has recently enacted legislation that would require the disclosure of the presence of radon gas on many commercial real estate transactions. With more lenders and state governments likely to follow this trend, radon gas testing should be performed during all property transfers and site assessment to protect the parties involved from any legal liabilities

  14. Tonopah Test Range Environmental Restoration Corrective Action Sites

    International Nuclear Information System (INIS)

    Ronald B. Jackson

    2007-01-01

    Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Clean Closure/No Further Action, Closure in Place, or Closure in Progress

  15. Closure Report for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2003-07-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 330: Areas 6, 22, and 23 Tanks and Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO of 1996), and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site (NTS), Nevada (U.S. Department of Energy, National Nuclear Security Administration Nevada Operation Office [NNSA/NV], 2001). CAU 330 consists of the following four Corrective Action Sites (CASs): 06-02-04, 22-99-06, 23-01-02, and 23-25-05 (Figure 1).

  16. Test site experiments with a reconfigurable stepped frequency GPR

    Science.gov (United States)

    Persico, Raffaele; Matera, Loredana; Piro, Salvatore; Rizzo, Enzo; Capozzoli, Luigi

    2016-04-01

    In this contribution, some new possibilities offered by a reconfigurable stepped frequency GPR system are exposed. In particular, results achieved from a prototypal system achieved in two scientific test sites will be shown together with the results achieved in the same test sites with traditional systems. Moreover a novel technique for the rejection of undesired interferences is shown, with the use of interferences caused on purpose. Key words GPR, reconfigurable stepped frequency. Introduction A reconfigurable GPR system is meant as a GPR where some parameter can be changed vs. the frequency (if the system is stepped frequency) or vs. the time (if the system is pulsed) in a programmable way. The programming should then account for the conditions met in the scenario at hand [1]. Within the research project AITECH (http://www.aitechnet.com/ibam.html), the Institute for Archaeological and Monumental Heritage, together with the University of Florence and the IDS corporation have implemented a prototype, that has been used in sites of cultural interest in Italy [2], but also abroad in Norway and Malta. The system is a stepped frequency GPR working in the frequency range 50-1000 MHz, and its reconfigurability consists in three properties. The first one is the fact that the length of the antennas can be modulated by the aperture and closure of two electronic switches present along the arms of the antennas, so that the antennas can become electrically (and electronically) longer or shorter, so becoming more suitable to radiate some frequencies rather than some other. In particular, the system can radiate three different bands in the comprehensive range between 50-1000 MHz, so being suitable for different depth range of the buried targets, and the three bands are gathered in a unique "going through" because for each measurement point the system can sweep the entire frequency range trhee times, one for each configuration of the switchres on the arms. The second property is

  17. On the population dose around the Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Hill, P.; Dederichs, H.; Ostapczuk, P.; Hille, R.; Artemev, O.; Ptitskaya, L.; Akhmetov, M.; Pivovarov, S.

    2002-01-01

    Since 1949 the Semipalatinsk Nuclear Test Site (NTS) was extensively used by the former Soviet government as a testing range for atomic weapons. Atmospheric and underground tests were finally stopped in 1962 and 1989, respectively. The Ministry of the Russian Federation of Atomic Energy officially counts a total of 456 tests, including 116 atmospheric tests. The total yield of the nuclear explosions carried out was 6.3 Megatons equivalent with 6.7 PetaBq of 1 37C s and 3.7 PetaBq of 9 0S r being released into the athmosphere. Some of the athmospheric radioactive tests shielded plumes, which extended far beyond the outer borders of the NTS. Already the first Soviet atomic bomb test on August 29, 1949 due to unfavourable meteorological conditions affected the villages of Dolon and Moistik. Since 1995 joint investigations performed by the Research Centre Julich in cooperation with the Kazakh National Nuclear Centre in the region of the former nuclear test site near Semipalatinsk besides environmental measurents also involve the assessment of the current dose of the population at and around the test site in addition to the important retrospective determination of the dose of persons affected by the atmospheric tests

  18. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  19. Card-Sorting Usability Tests of the WMU Libraries' Web Site

    Science.gov (United States)

    Whang, Michael

    2008-01-01

    This article describes the card-sorting techniques used by several academic libraries, reports and discusses the results of card-sorting usability tests of the Western Michigan University Libraries' Web site, and reveals how the WMU libraries incorporated the findings into a new Web site redesign, setting the design direction early on. The article…

  20. Draft Underground Test Plan for site characterization and testing in an exploratory shaft facility in salt

    International Nuclear Information System (INIS)

    1987-05-01

    An exploratory shaft facility (ESF) at the Deaf Smith County, Texas is a potential candidate repository site in salt. This program of underground testing constitutes part of the effort to determine site suitability, provide data for repository design and performance assessment, and prepare licensing documentation. This program was developed by defining the information needs, as derived from the governing regulatory requirements and associated performance issues; evaluating the efficacy of available tests in satisfying the information needs; and selecting the suite of underground tests that are most cost-effective and timely, considering the other surface-based, surface borehole, and laboratory test programs. Tests are described conceptually, categorized in terms of geology, geomechanics, thermomechanics, geohydrology, or geochemistry, and range in scope from site characterization to site/engineered system interactions. The testing involves construction testing, conducted in the shafts during construction, and in situ testing at depth, conducted in the shafts and in the at-depth test facility at the repository horizon after shaft connection. 41 refs., 67 figs., 16 tabs

  1. Flood Assessment Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    A flood assessment was conducted at the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) in Nye County, Nevada (Figure 1-1). The study area encompasses the watershed of Yucca Flat, a closed basin approximately 780 square kilometers (km2) (300 square miles) in size. The focus of this effort was on a drainage area of approximately 94 km2 (36 mi2), determined from review of topographic maps and aerial photographs to be the only part of the Yucca Flat watershed that could directly impact the Area 3 RWMS. This smaller area encompasses portions of the Halfpint Range, including Paiute Ridge, Jangle Ridge, Carbonate Ridge, Slanted Buttes, Cockeyed Ridge, and Banded Mountain. The Area 3 RWMS is located on coalescing alluvial fans emanating from this drainage area

  2. Subsurface characterization and geohydrologic site evaluation West Chestnut Ridge site

    International Nuclear Information System (INIS)

    1984-01-01

    The West Chestnut Ridge Site at the Oak Ridge National Laboratory is being considered for use as a repository for low-level radioactive waste. The purposes of this study were to provide a geohydrological characterization of the site for use in pathways analysis, and to provide preliminary geotechnical recommendations that would be used for development of a site utilization plan. Subsurface conditions were investigated at twenty locations and observation wells were installed. Field testing at each location included the Standard Penetration Test and permeability tests in soil and rock. A well pumping test was ocmpleted at one site. Laboratory testing included permeability, deformability, strength and compaction tests, as well as index and physical property tests. The field investigations showed that the subsurface conditions include residual soil overlying a weathered zone of dolomite which grades into relatively unweathered dolomite at depth. The thickness of residual soil is typically 80 ft (24 m) on the ridges, but can be as little as 10 ft (3 m) in the valleys. Trench excavations to depths of 30 ft (9 m) should not present serious slope stability problems above the water table. On-site soils can be used for liners or trench backfill but these soils may require moisture conditioning to achieve required densities. 19 figures, 8 tables

  3. Hydrogeologic testing plan for Deep Hydronest Test Wells, Deaf Smith County site, Texas

    International Nuclear Information System (INIS)

    1987-12-01

    This report discusses methods of hydraulic testing which are recommended for use in the Deep Hydronest Test Wells at the proposed high level nuclear waste repository site in Deaf Smith County, Texas. The deep hydronest wells are intended to provide geologic, geophysical and hydrologic information on the interval from the Upper San Andres Formation to the base of the Pennsylvanian system at the site. Following the period of drilling and testing, the wells will be converted into permanent monitoring installations through which fluid pressures and water quality can be monitored at various depths in the section. 19 refs., 17 figs., 2 tabs

  4. Hydrogeologic data for existing excavations and the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1993-12-01

    The Special Projects Section of Reynolds Electrical ampersand Engineering Co., Inc. is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Office of Environmental Restoration and Waste Management Waste Management Division. Geologic description, in situ testing, and laboratory analyses of alluvium exposed in existing excavations are important subparts to the Area 5 Site Characterization Program designed to determine the suitability of the RWMS for disposal of low level waste mixed waste and transuranic waste. The primary purpose of the Existing Excavation Project is two-fold: first, to characterize important hydrologic properties of the near surface alluvium, thought to play an important role in the infiltration and redistribution of water and solutes through the upper unsaturated zone at the Area 5 RWMS; and second, to provide guidance for the design of future sampling and testing programs. The justification for this work comes from the state of Nevada review of the original DOE/NV Part B Permit application submitted in 1988 for disposal of mixed wastes at the RWMS. The state of Nevada determined that the permit was deficient in characterization data concerning the hydrogeology of the unsaturated zone. DOE/NV agreed with the state and proposed the study of alluvium exposed in existing excavations as one step toward satisfying these important site characterization data requirements. Other components of the site characterization process include the Science Trench Borehole and Pilot Well Projects

  5. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    International Nuclear Information System (INIS)

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site

  6. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  7. CTBTO tests its on-site inspection regime in Kazakhstan

    International Nuclear Information System (INIS)

    2003-07-01

    The former Soviet Union's nuclear test site at Semipalatinsk in the east of today's Kazakhstan was closed down after Kazakhstan became an independent State in 1991. This region in the Kazakh steppe is deserted and pockmarked by countless craters, remnants of over 450 nuclear explosions that were detonated there. In September 2008, the area will start brimming with activity. Scientists, diplomats and journalists will arrive from all over the world to witness an endeavour in the Kazakh steppe that is of great significance for the safety of our planet. The organization that monitors the comprehensive ban on nuclear testing will conduct a large scale exercise to test one of the key elements of its global alarm system - on-site inspections.

  8. Thorium-230 dating of natural waters at the Nevada Test Site

    International Nuclear Information System (INIS)

    Bakhtiar, S.N.

    1990-01-01

    Radiocarbon determinations have been used in the past to estimate the ages of groundwater from the Paleozoic aquifer underlying the Nevada Test Site and adjacent areas. We measured the concentrations of 230 Th, 232 Th, 234 U and 238 U in several water samples taken from the wells and spring at the Nevada Test Site and calculated the 230 Th ages. 2 refs

  9. Corrective Action Investigation Plan for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2012-08-01

    CAU 570 comprises the following six corrective action sites (CASs): • 02-23-07, Atmospheric Test Site - Tesla • 09-23-10, Atmospheric Test Site T-9 • 09-23-11, Atmospheric Test Site S-9G • 09-23-14, Atmospheric Test Site - Rushmore • 09-23-15, Eagle Contamination Area • 09-99-01, Atmospheric Test Site B-9A These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 570. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The presence and nature of contamination at CAU 570 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological

  10. Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Boehlecke, Robert F.

    2004-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to CAS 23-02-08. The scope of the corrective action investigation

  11. Lightning vulnerability of nuclear explosive test systems at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.

    1985-01-01

    A task force chartered to evaluate the effects of lightning on nuclear explosives at the Nevada Test Site has made several recommendations intended to provide lightning-invulnerable test device systems. When these recommendations have been implemented, the systems will be tested using full-threat-level simulated lightning

  12. Post-Closure Strategy for Use-Restricted Sites on the Nevada National Security Site, Nevada Test and Training Range, and Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    Silvas, A. J.

    2014-01-01

    The purpose of this Post-Closure Strategy is to provide a consistent methodology for continual evaluation of post-closure requirements for use-restricted areas on the Nevada National Security Site (NNSS), Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR) to consolidate, modify, or streamline the program. In addition, this document stipulates the creation of a single consolidated Post-Closure Plan that will detail the current post-closure requirements for all active use restrictions (URs) and outlines its implementation and subsequent revision. This strategy will ensure effective management and control of the post-closure sites. There are currently over 200 URs located on the NNSS, NTTR, and TTR. Post-closure requirements were initially established in the Closure Report for each site. In some cases, changes to the post-closure requirements have been implemented through addenda, errata sheets, records of technical change, or letters. Post-closure requirements have been collected from these multiple sources and consolidated into several formats, such as summaries and databases. This structure increases the possibility of inconsistencies and uncertainty. As more URs are established and the post-closure program is expanded, the need for a comprehensive approach for managing the program will increase. Not only should the current requirements be obtainable from a single source that supersedes all previous requirements, but the strategy for modifying the requirements should be standardized. This will enable more effective management of the program into the future. This strategy document and the subsequent comprehensive plan are to be implemented under the assumption that the NNSS and outlying sites will be under the purview of the U.S. Department of Energy, National Nuclear Security Administration for the foreseeable future. This strategy was also developed assuming that regulatory control of the sites remains static. The comprehensive plan is not

  13. Risk assessment of soil-based exposures to plutonium at experimental sites located on the Nevada Test Site and adjoining areas

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D.W.; Anspaugh, L.R.; Bogen, K.T.; Straume, T.

    1993-06-01

    In the late 1950s and early 1960s, a series of tests was conducted at or near the Nevada Test Site to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of {sup 239,240}Pu on the surficial soils at the test locations. Access to the sites is strictly controlled; therefore, it does not constitute a threat to human health at the present time. However, because the residual {sup 239} Pu decays slowly (half-life of 24,110 y), the sites could indeed represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, we defined three basic exposure scenarios that could bring individuals in contact with {sup 239,240}Pu at the sites: (1) a resident living in a subdivision located at a test site, (2) a resident farmer, and (3) a worker at a commercial facility. Our screening analyses indicated that doses to organs are dominated by the intemal deposition of Pu via the inhalation pathway, and thus our risk assessment focused on those factors that affect inhalation exposures and associated doses, including inhalation rates, activity patterns, tenure at a residence or occupation, indoor/outdoor air relationships, and resuspension outdoors. Cancer risks were calculated as a function of lifetime cumulative doses to the key target organs (i.e., bone surface, liver, and lungs) and risk factors for those organs. Uncertainties in the predicted cancer risks were analyzed using Monte-Carlo simulations of the probability distributions used to represent assessment parameters. The principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

  14. Risk assessment of soil-based exposures to plutonium at experimental sites located on the Nevada Test Site and adjoining areas

    International Nuclear Information System (INIS)

    Layton, D.W.; Anspaugh, L.R.; Bogen, K.T.; Straume, T.

    1993-06-01

    In the late 1950s and early 1960s, a series of tests was conducted at or near the Nevada Test Site to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of 239,240 Pu on the surficial soils at the test locations. Access to the sites is strictly controlled; therefore, it does not constitute a threat to human health at the present time. However, because the residual 239 Pu decays slowly (half-life of 24,110 y), the sites could indeed represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, we defined three basic exposure scenarios that could bring individuals in contact with 239,240 Pu at the sites: (1) a resident living in a subdivision located at a test site, (2) a resident farmer, and (3) a worker at a commercial facility. Our screening analyses indicated that doses to organs are dominated by the intemal deposition of Pu via the inhalation pathway, and thus our risk assessment focused on those factors that affect inhalation exposures and associated doses, including inhalation rates, activity patterns, tenure at a residence or occupation, indoor/outdoor air relationships, and resuspension outdoors. Cancer risks were calculated as a function of lifetime cumulative doses to the key target organs (i.e., bone surface, liver, and lungs) and risk factors for those organs. Uncertainties in the predicted cancer risks were analyzed using Monte-Carlo simulations of the probability distributions used to represent assessment parameters. The principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung

  15. Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2012-09-01

    Corrective Action Unit (CAU) 105 is located in Area 2 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 105 is a geographical grouping of sites where there has been a suspected release of contamination associated with atmospheric nuclear testing. This document describes the planned investigation of CAU 105, which comprises the following corrective action sites (CASs): • 02-23-04, Atmospheric Test Site - Whitney • 02-23-05, Atmospheric Test Site T-2A • 02-23-06, Atmospheric Test Site T-2B • 02-23-08, Atmospheric Test Site T-2 • 02-23-09, Atmospheric Test Site - Turk These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 105. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with all CAU 105 CASs are from atmospheric nuclear testing activities. The presence and nature of contamination at CAU

  16. Off-site monitoring for the Mighty Oak nuclear test

    International Nuclear Information System (INIS)

    Black, S.C.; Smith, A.E.; Costa, C.F.

    1986-07-01

    After a nuclear explosives test, code name Mighty Oak, the tunnel leading to the test point became contaminated with radioactive debris. To re-enter and recover valuable equipment and data, the DOE purged the tunnel air using particulate and charcoal filters to minimize discharge of radioactivity to the atmosphere. During this purging, the EPA established special air samples supplementing their routine air monitoring networks. Analysis of the collected samples for radioactive noble gases and for gamma-emitting radionuclides indicated that only low levels of xenon-133 were released in amounts detectable in populated areas near the Nevada Test Site. The maximum dose to an individual was calculated to be 0.36 microrem, assuming that person remained in the open field at the measurement site during the whole period of the purging

  17. Applicability of slug interference testing of hydraulic characterization of contaminated aquifer sites

    International Nuclear Information System (INIS)

    Spane, F.A.; Swanson, L.C.

    1993-10-01

    Aquifer test methods available for characterizing hazardous waste sites are sometimes restricted because of problems with disposal of contaminated groundwater. These problems, in part, have made slug tests a more desirable method of determining hydraulic properties at such sites. However, in higher permeability formations (i.e., transmissivities ≥ 1 x 10 -3 m 2 /s), slug test results often cannot be analyzed and give, at best, only a lower limit for transmissivity. A need clearly exists to develop test methods that can be used to characterize higher permeability aquifers without removing large amounts of contaminated groundwater. One hydrologic test method that appears to hold promise for characterizing such sites is the slug interference test. To assess the applicability of this test method for use in shallow alluvial aquifer systems, slug interference tests have been conducted, along with more traditional aquifer testing methods, at several Hanford multiple-well sites. Transmissivity values estimated from the slug interference tests were comparable (within a factor of 2 to 3) to values calculated using traditional testing methods, and made it possible to calculate the storativity or specific yield for the intervening test formation. The corroboration of test results indicates that slug interference testing is a viable hydraulic characterization method in transmissive alluvial aquifers, and may represent one of the few test methods that can be used in sensitive areas where groundwater is contaminated

  18. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada

    2005-01-01

    This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site. This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site (NTS). The Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) are managed and operated by Bechtel Nevada (BN) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Integrated Closure and Monitoring Plan (ICMP) for these sites is based on guidance for developing closure plans issued by the DOE (DOE, 1999a). The plan does not closely follow the format suggested by the DOE guidance to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. Further, much of the information that would be included in the individual plans is the same, and integration provides efficient presentation. A cross-walk between the contents of the ICMP and the DOE guidance is given in Appendix A. Closure and monitoring were integrated because monitoring measures the degree to which the operational and closed disposal facilities are meeting performance objectives specified in the manual to DOE Order O 435.1. Department of Energy Order 435.1 governs management of radioactive waste, and associated with it are Manual DOE M 435.1-1 and Guidance DOE G 435.1-1. The performance objectives are intended to ensure protection of workers, the public, and the environment from radiological exposure associated with the RWMSs now and in the future

  19. SEM-REV: A sea test site for Marine Energy Converter

    International Nuclear Information System (INIS)

    Berhault, Christian; Le Crom, Izan; Le Bihan, Gerard

    2015-01-01

    Thanks to a main funding of Region des Pays de la Loire, the sea test site SEM-REV has been developed by Ecole Centrale de Nantes since 2007 to test both Wave Energy Converters and Floating Wind Turbine in real sea conditions. The sea test site is equipped with a set of oceanographic sensors and with an electric cable of 8 MW, connected to the French grid. The project is located close to Le Croisic, Western coast of France. SEM-REV is one of the main test facilities operated by Ecole Centrale de Nantes to support MRE technologies development. After presenting the initial motivations of the SEM-REV development, the paper describes, in parts 1 and 2, the complete administrative and technical processes that were followed to reach SEM-REV commissioning in 2014. The third part is focused on the exploitation process, including technical and contractual specifications imposed to the MRE developers for installation, tests and decommissioning phases. Some words are given also on the R and D projects using the SEM-REV in-situ monitoring system: prediction of environmental conditions, bio-fooling, acoustic impact. Even if operational phase is not started, expected extensions of the tests site are listed. (authors)

  20. Test-retest and between-site reliability in a multicenter fMRI study.

    Science.gov (United States)

    Friedman, Lee; Stern, Hal; Brown, Gregory G; Mathalon, Daniel H; Turner, Jessica; Glover, Gary H; Gollub, Randy L; Lauriello, John; Lim, Kelvin O; Cannon, Tyrone; Greve, Douglas N; Bockholt, Henry Jeremy; Belger, Aysenil; Mueller, Bryon; Doty, Michael J; He, Jianchun; Wells, William; Smyth, Padhraic; Pieper, Steve; Kim, Seyoung; Kubicki, Marek; Vangel, Mark; Potkin, Steven G

    2008-08-01

    In the present report, estimates of test-retest and between-site reliability of fMRI assessments were produced in the context of a multicenter fMRI reliability study (FBIRN Phase 1, www.nbirn.net). Five subjects were scanned on 10 MRI scanners on two occasions. The fMRI task was a simple block design sensorimotor task. The impulse response functions to the stimulation block were derived using an FIR-deconvolution analysis with FMRISTAT. Six functionally-derived ROIs covering the visual, auditory and motor cortices, created from a prior analysis, were used. Two dependent variables were compared: percent signal change and contrast-to-noise-ratio. Reliability was assessed with intraclass correlation coefficients derived from a variance components analysis. Test-retest reliability was high, but initially, between-site reliability was low, indicating a strong contribution from site and site-by-subject variance. However, a number of factors that can markedly improve between-site reliability were uncovered, including increasing the size of the ROIs, adjusting for smoothness differences, and inclusion of additional runs. By employing multiple steps, between-site reliability for 3T scanners was increased by 123%. Dropping one site at a time and assessing reliability can be a useful method of assessing the sensitivity of the results to particular sites. These findings should provide guidance toothers on the best practices for future multicenter studies.

  1. Population dose near the Semipalatinsk test site.

    Science.gov (United States)

    Hille, R; Hill, P; Bouisset, P; Calmet, D; Kluson, J; Seisebaev, A; Smagulov, S

    1998-10-01

    To determine the consequences of atmospheric atomic bomb tests for the population in the surroundings of the former nuclear weapons test site near Semipalatinsk in Kazakhstan, a pilot study was performed by an international cooperation between Kazakh, French, Czech and German institutions at two villages, Mostik and Maisk. Together with Kazakh scientists, eight experts from Europe carried out a field mission in September 1995 to assess, within the framework of a NATO supported project, the radiological situation as far as external doses, environmental contamination and body burden of man were concerned. A summary of the results obtained is presented. The actual radiological situation near the test site is characterized by fallout contaminations. Cs was found in upper soil layers in concentrations similar to those of the global fallout. Also Sr, Am and Co were observed. The resulting present dose to the population is low. Mean external doses from soil contamination for Maisk and Mostik (0.60-0.63 mSv/year) presently correspond to mean external doses in normal environments. Mean values of the annual internal doses observed in these two villages are below 2 microSv/year for 90Sr. For other radionuclides the internal doses are also negligible.

  2. Population dose near the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Hille, R.; Hill, P.; Kluson, J.; Seisebaev, A.; Smagulov, S.

    1998-01-01

    To determine the consequences of atmospheric atomic bomb tests for the population in the surroundings of the former nuclear weapons test site near Semipalatinsk in Kazakhstan, a pilot study was performed by an international cooperation between Kazakh, French, Czech and German institutions at two villages, Mostik and Maisk. Together with Kazakh scientists, eight experts from Europe carried out a field mission in September 1995 to assess, within the framework of a NATO supported project, the radiological situation as far as external doses, environmental contamination and body burden of man were concerned. A summary of the results obtained is presented. The actual radiological situation near the test site is characterized by fallout contaminations. Cs was found in upper soil layers in concentrations similar to those of the global fallout. Also Sr, Am and Co were observed. The resulting present dose to the population is low. Mean external doses from soil contamination for Maisk and Mostik (0.60-0.63 mSv/ year) presently correspond to mean external doses in normal environments. Mean values of the annual internal doses observed in these two villages are below 2 μSv/year for 90 Sr. For other radionuclides the internal doses are also negligible. (orig.)

  3. The Pacific Marine Energy Center - South Energy Test Site (PMEC-SETS)

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States); Hellin, Dan [Oregon State Univ., Corvallis, OR (United States)

    2018-02-07

    The overall goal of this project was to build on existing progress to establish the Pacific Marine Energy Center South Energy Test Site (PMEC-SETS) as the nation's first fully permitted test site for wave energy converter arrays. Specifically, it plays an essential role in reducing levelized cost of energy for the wave energy industry by providing both the facility and resources to address the challenges of cost reduction.

  4. Cytogenetic Monitoring of Mammals of Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Zhapbasov, R.Zh.; Tusupbaev, V.I.; Karimbaeva, K.S.; Seisebaev, A.T.; Nurgalieva, K.G.; Chenal, C.

    1998-01-01

    The cytogenetic monitoring of the natural populations of mammals living under conditions of environment radioactive contamination is the simplest method to study the genetic consequences of nuclear tests. This work presents the preliminary results of the cytogenetic monitoring of the natural populations of rodents (Allactaga maior Kerr., Allactaga saltafor Eversm., Citellus erytrogenus Brandt) and domestic sheep (Ovis aries). The exposure of gonads is considered to be the most hazardous among the consequences of the chronic ionizing exposure since the exposure of gonads can cause not only somatic damages but also hereditary ones transferring to the farther generations, The genetic damage assessment of rodent reproductive cells was performed using the morphological test for abnormal form of the sperm head. It is generally accepted, that spermatogenesis disorders, which result in abnormal spermatozoa, are bound to the genetic disturbances during mitotic and meiotic division stages of male sex cells. The analysis of data obtained shows that the rodent males living on the radioactive contaminated sites (Balapan, Degelen) have the higher numbers of abnormal spermatozoa. So, the Allactaga maior taken from the sites with the gamma background of 250 μr/h showed the frequency of abnormal spermatozoa within 48.27 - 62.73 %. This value for the control animals from the gamma background of 11 - 16 μr/h did not exceed 5.8 %. The most objective and sensitive method for assessment of environmental contamination genetic consequences for the natural populations is to determine the damages of the cell genetic apparatus, e. g. the frequency of the visible changes in chromosome number and structure. The cytogenetic study of animals showed that the significant number of marrow cells of rodents and sheep living on the technical fields of the Test Site are the metaphase cells with polyploid (0.98 - 3.50 %) and aneuploidy (11.03 -19.72 %) chromosomal sets. There were also found the

  5. Non-Invasive Seismic Methods for Earthquake Site Classification Applied to Ontario Bridge Sites

    Science.gov (United States)

    Bilson Darko, A.; Molnar, S.; Sadrekarimi, A.

    2017-12-01

    How a site responds to earthquake shaking and its corresponding damage is largely influenced by the underlying ground conditions through which it propagates. The effects of site conditions on propagating seismic waves can be predicted from measurements of the shear wave velocity (Vs) of the soil layer(s) and the impedance ratio between bedrock and soil. Currently the seismic design of new buildings and bridges (2015 Canadian building and bridge codes) requires determination of the time-averaged shear-wave velocity of the upper 30 metres (Vs30) of a given site. In this study, two in situ Vs profiling methods; Multichannel Analysis of Surface Waves (MASW) and Ambient Vibration Array (AVA) methods are used to determine Vs30 at chosen bridge sites in Ontario, Canada. Both active-source (MASW) and passive-source (AVA) surface wave methods are used at each bridge site to obtain Rayleigh-wave phase velocities over a wide frequency bandwidth. The dispersion curve is jointly inverted with each site's amplification function (microtremor horizontal-to-vertical spectral ratio) to obtain shear-wave velocity profile(s). We apply our non-invasive testing at three major infrastructure projects, e.g., five bridge sites along the Rt. Hon. Herb Gray Parkway in Windsor, Ontario. Our non-invasive testing is co-located with previous invasive testing, including Standard Penetration Test (SPT), Cone Penetration Test and downhole Vs data. Correlations between SPT blowcount and Vs are developed for the different soil types sampled at our Ontario bridge sites. A robust earthquake site classification procedure (reliable Vs30 estimates) for bridge sites across Ontario is evaluated from available combinations of invasive and non-invasive site characterization methods.

  6. Methodological aspects of creating a radiological 'passport' of the former Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.; Smagulov, S.G.; Tukhvatulin, Sh.T.

    2002-01-01

    During its existence, 456 nuclear tests were carried out at the Semipalatinsk Test Site - 30 at the ground surface, 86 in the atmosphere and 340 underground. Radioactive fallout from ground surface tests is responsible for the present radiation conditions within the 'Test Field'. The radiation situation in the Degelen Mountains is caused by 209 underground tests carried out in local tunnels. Within the former Test Site there are three large and several small zones to which general access is prohibited for public health reasons: the 'Test Field', the Degelen Mountains, lake Shagan, the rim of the lake, and the adjacent land to the north. The information and characteristics, which have to be included in radiological passport of the former Semipalatinsk Test Site, are discussed along with general information about the Semipalatinsk site, its administrative status, the population distribution throughout the territory, all the economic activities taking place within the territory, the zones and structures representing a radiation hazard, and radiohydrogeological conditions of the test site and the adjacent regions, biogenic conditions (topography, soil, vegetation), wildlife, fauna monitoring, etc. (author)

  7. TECHNOLOGY EVALUATION REPORT, SITE PROGRAM DEMONSTRATION TEST: SHIRCO PILOT-SCALE INFRARED INCINERATION SYSTEM ROSE TOWNSHIP DEMODE ROAD SUPERFUND SITE - VOLUME II

    Science.gov (United States)

    The performance of the Shirco pilot-scale infrared thermal destruction system has been evaluated at the Rose Township, Demode Road Superfund Site and is presented in the report. The waste tested consisted of solvents, organics and heavy metals in an illegal dump site. Volume I gi...

  8. Geologic structure of Semipalatinsk test site territory

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Nikitina, O.I.; Sergeeva, L.V.

    2000-01-01

    This article gives a short description of the territory of Semipalatinsk test site. Poor knowledge of the region is noted, and it tells us about new data on stratigraphy and geology of Paleozoic layers, obtained after termination of underground nuclear explosions. The paper contains a list a questions on stratigraphy, structural, tectonic and geologic formation of the territory, that require additional study. (author)

  9. Cleanup Summary Report for the Defense Threat Reduction Agency Fiscal Year 2007, Task 6.7, U12u-Tunnel (Legacy Site), Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This letter serves as notice of completion for cleanup of the U12u-Tunnel (Legacy Site) as specified in the Defense Threat Reduction Agency (DTRA) Fiscal Year 2007 Statement of Work, Task 6.7. The U12u-Tunnel Legacy Site is located near the intersection of the U12u-Tunnel access road and the U12n-Tunnel access road in Area 12 of the Nevada Test Site (see Figure 1). The site encompasses 1.2 acres and was used to store miscellaneous mining equipment and materials that were used to support DTRA testing in Area 12. Field activities commenced February 11, 2008, and were completed February 20, 2008. Radiological surveys were performed on a drill jumbo and all material stored at the site. The drill jumbo was relocated to U12p-Tunnel portal and consolidated with other critical mining equipment for future use or storage. Ten truck loads of solid waste (53 tons) were shipped to the Nevada Test Site, Area 9 U10c Sanitary Landfill for disposal. No hazardous or radiological waste was generated at this site

  10. Rehabilitation of the former nuclear test sites at Maralinga

    International Nuclear Information System (INIS)

    Costello, J.M.; Davoren, P.J.

    1994-01-01

    The Department of Primary Industries and Energy, Canberra, has commenced tendering procedures for appointment of a Project Management Organisation for the Rehabilitation of the former British atomic weapon test sites at Maralinga and Emu in South Australia. This paper gives a historical background to the atomic tests, and reports scientific and engineering studies conducted by the Technical Assessment Group (TAG) to define practical and economic options for rehabilitation of the former test sites. The rehabilitation option preferred by the Australian Government will focus on removal and burial of soil and fragments highly contaminated with plutonium oxide, and erection of warning fences around areas where permanent residence will not be permitted. The application of in-situ vitrification is under investigation for stabilisation of twenty one disposal pits containing up to twenty kilograms of plutonium at Taranaki. 3 refs., 2 tabs., 3 figs

  11. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  12. Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): (sm b ullet) CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536 Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure

  13. Demographic survey centered around the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Richard-Haggard, K.

    1983-03-01

    Demographic data were gathered for several small population centers on and around the Nevada Test Site (NTS). Population projections were made for the three townships that include most of the major population centers in the study area, based on the share approach. These townships were Alamo Township (Lincoln County), Beatty and Pahrump townships (Nye County). It was estimated that the total population of these three townships, plus Clark County, would reach a maximum of 934,000 people by the year 2000. It was assumed that the on-site population of the NTS would continue to be a function of activity at the site, and that this would, if anything, aid in the attainment of site objectives

  14. Closure report for housekeeping category, Corrective Action Unit 349, Area 12, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 349 Area 12 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  15. Closure report for housekeeping category, Corrective Action Unit 349, Area 12, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 349 Area 12 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms.

  16. Site characterization in connection with the low level defense waste management site in Area 5 of the Nevada Test Site, Nye County, Nevada. Final report

    International Nuclear Information System (INIS)

    Case, C.; Davis, J.; French, R.; Raker, S.

    1984-09-01

    The Site Characterization Report for the Defense Low Level Waste Management Site (RWMS) in Area 5 of the Nevada Test Site deals with the FY80-FY84 DRI activities. The areas that have been studied include geology, hydrology, unsaturated flow, soil and soil water chemistry, flood hazard, and economics-demographics. During this time the site characterization effort focussed on the following items as requested by NVO: geological and hydrological limitations to greater depth disposal of radioactive waste; potential for tectonic, seismic or volcanic activity (extent and frequency which these processes significantly affect the ability of the disposal operation to meet performance objectives); the possibility of groundwater intrusion into the waste zone, and its significance; topography of the RWMS with significance to drainage and flood potential (100-year flood plain, coastal high-hazard area or wetland); upstream drainage which may require modification to avoid erosion; population growth and future development; and the presence or absence of economically significant natural resources which, if exploited, would result in failure to meet performance objectives. The items mentioned above are dealt with in the description of activities and results in the body of the report. Extensive references, 32 figures, 20 tables

  17. Nevada test site water-supply wells

    International Nuclear Information System (INIS)

    Gillespie, D.; Donithan, D.; Seaber, P.

    1996-05-01

    A total of 15 water-supply wells are currently being used at the Nevada Test Site (NTS). The purpose of this report is to bring together the information gleaned from investigations of these water-supply wells. This report should serve as a reference on well construction and completion, static water levels, lithologic and hydrologic characteristics of aquifers penetrated, and general water quality of water-supply wells at the NTS. Possible sources for contamination of the water-supply wells are also evaluated. Existing wells and underground nuclear tests conducted near (within 25 meters (m)) or below the water table within 2 kilometers (km) of a water-supply were located and their hydrogeologic relationship to the water-supply well determined

  18. Corrective Action Decision Document/Closure Report for Corrective Action Unit 190: Contaminated Waste Sites, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Alfred Wickline

    2008-01-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 190, Contaminated Waste Sites, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended January 2007). Corrective Action Unit 190 is comprised of the following four corrective action sites (CASs): (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; (4) 14-23-01, LTU-6 Test Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 190 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from March 21 through June 26, 2007. All CAI activities were conducted as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites, Nevada Test Site, Nevada (NNSA/NSO, 2006). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 190 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the data quality objective data needs

  19. An aerial radiological survey of the Nevada Test Site

    International Nuclear Information System (INIS)

    Hendricks, T.J.; Riedhauser, S.R.

    1999-01-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys

  20. Site study plan for Deep Hydronest Test Wells, Deaf Smith County Site, Texas: Preliminary draft

    International Nuclear Information System (INIS)

    1987-05-01

    Wells called Deep Hydronest Wells will be installed at six locations at the Deaf Smith County Site to characterize hydraulic parameters in the geologic column between the top of the San Andres Formation and the base of Pennsylvanian System. Three hydronests will be drilled during early stages of site characterization to provide data for performance assessment modeling. Four wells are proposed for each of these 3 nests. Results of drilling, testing, and preliminary modeling will direct drilling and testing activities at the last 3 nests. Two wells are proposed at each of the last 3 nests for a total of 18 wells. The Salt Repository Project (SRP) Networks specify the schedule under which this program will operate. Drilling and hydrologic testing of the first Deep Hydronest will begin early in the Surface Investigation Program. Drilling and testing of the first three Deep Hydronests will require about 18 months. After 12 months of evaluating and analyzing data from the first three hydronests, the remaining three hydronests will be drilled during a 12-month period. The Technical Field Services Contractor is responsible for conducting the field program. Samples and data will be handled and reported in accordance with established SRP procedures. A quality assurance program will be used to assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 36 refs., 20 figs., 6 tabs

  1. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Alfred Wickline

    2007-01-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval

  2. Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient

  3. Yield and Depth of Burial Hydrodynamic Calculations in Granodiorite: Implications for the North Korean Test Site

    Science.gov (United States)

    2011-09-01

    the existence of a test site body wave magnitude (mb) bias between U. S. and the former Soviet Union test sites in Nevada and Semipalatinsk . The use...YIELD AND DEPTH OF BURIAL HYDRODYNAMIC CALCULATIONS IN GRANODIORITE:IMPLICATIONS FOR THE NORTH KOREAN TEST SITE Esteban Rougier, Christopher R...Korean test site and the May 2009 test . When compared to the Denny and Johnson (1991) and to the Heard and Ackerman (1967) cavity radius scaling models

  4. Tonopah Test Range Environmental Restoration Corrective Action Sites

    International Nuclear Information System (INIS)

    2010-01-01

    This report describes the status (closed, closed in place, or closure in progress) of the Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range. CASs and CAUs where contaminants were either not detected or were cleaned up to within regulatory action levels are summarized

  5. Nevada Test Site Site Treatment Plan. Revision 2

    International Nuclear Information System (INIS)

    1996-03-01

    Treatment Plans (STPS) are required for facilities at which the US Department of Energy (DOE) or stores mixed waste, defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act and a radioactive material subject to the Atomic Energy Act. On April 6, 1993, DOE published a Federal Register notice (58 FR 17875) describing its proposed process for developing the STPs in three phases including a Conceptual, a Draft, and a Proposed Site Treatment Plan (PSTP). All of the DOE Nevada Operations Office STP iterations have been developed with the state of Nevada's input. The options and schedules reflect a ''bottoms-up'' approach and have been evaluated for impacts on other DOE sites, as well as impacts to the overall DOE program. Changes may have occurred in the preferred option and associated schedules between the PSTP, which was submitted to the state of Nevada and US Environmental Protection Agency April 1995, and the Final STP (hereafter referred to as the STP) as treatment evaluations progressed. The STP includes changes that have occurred since the submittal of the PSTP as a result of state-to-state and DOE-to-state discussions

  6. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada with ROTC-1

    International Nuclear Information System (INIS)

    Matthews, Patrick

    2009-01-01

    CAU 107, ''Low Impact Soil Sites'', consists of 15 CASs in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the NTS. The closure alternatives included No Further Action and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities. ROTC Justification: The FFACO UR as published in the Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada (NNSA/NSO, 2009) states that the UR for CAS 18-23-02, U-18d Crater (Sulky), was implemented for assumed radioactive contamination that could cause a dose greater that 25 millirems per year. This document further clarifies that this was based on particulate releases of radionuclides identified in Radiological Effluents Released from U.S. Continental Tests, 1961 through 1992 (DOE/NV, 1996). The radionuclides listed in this document are krypton (Kr)-85, Kr-85m, Kr-87, Kr-88, rubidium (Rb)-87, strontium (Sr)-89, Sr-91, yttrium (Y)-91, iodine (I)-131, I-132, I-133, I-134, I-135, xeon (Xe)-133, Xe-135, Xe-138, cesium (Cs)-135, Cs-138, barium (Ba)-139, and Ba-140.

  7. Biological/environmental relationships in desert ecosystems of the Nevada Test Site

    International Nuclear Information System (INIS)

    Beatley, J.C.

    1979-03-01

    Activities covered are: computer and related work (corrections and updating of card decks for Nevada Test Site data, and transfer of data and programs to tapes); publication of shrub (and tree) data for undisturbed Test Site vegetation in 1963 and 1975 (DOE/EV/2307-15); work performed in this contract period on the publications covering the vascular plants of central-southern Nevada (TID-26881); and work and publications in connection with the Endangered and Threatened species of central-southern Nevada

  8. Preoperational test report, cross-site transfer system integrated test (POTR-007)

    Energy Technology Data Exchange (ETDEWEB)

    Pacquet, E.A.

    1998-04-02

    This report documents the results obtained during the performance of Preoperational Test POTP-007, from December 12, 1997 to March 27, 1998. The main objectives were to demonstrate the operation of the following Cross-Site Transfer System components: Booster pumps P-3125A and P-3125B interlocks and controls, both local and remote; Booster pump P-3125A and P-3125B and associated variable speed drives VSD-1 and VSD-2 performance in both manual and automatic modes; and Water filling, circulation, venting and draining of the transfer headers (supernate and slurry line). As described in reference 1, the following components of the Cross-Site Transfer System that would normally be used during an actual waste transfer, are not used in this specific test: Water Flush System; Valving and instrumentation associated with the 241-SY-A valve pit jumpers; and Valving and instrumentation associated with the 244-A lift station.

  9. Preoperational test report, cross-site transfer system integrated test (POTR-007)

    International Nuclear Information System (INIS)

    Pacquet, E.A.

    1998-01-01

    This report documents the results obtained during the performance of Preoperational Test POTP-007, from December 12, 1997 to March 27, 1998. The main objectives were to demonstrate the operation of the following Cross-Site Transfer System components: Booster pumps P-3125A and P-3125B interlocks and controls, both local and remote; Booster pump P-3125A and P-3125B and associated variable speed drives VSD-1 and VSD-2 performance in both manual and automatic modes; and Water filling, circulation, venting and draining of the transfer headers (supernate and slurry line). As described in reference 1, the following components of the Cross-Site Transfer System that would normally be used during an actual waste transfer, are not used in this specific test: Water Flush System; Valving and instrumentation associated with the 241-SY-A valve pit jumpers; and Valving and instrumentation associated with the 244-A lift station

  10. Mixed waste disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dickman, P.T.; Kendall, E.W.

    1987-01-01

    In 1984, a law suit brought against DOE resulted in the requirement that DOE be subject to regulation by the state and US Environmental Protection Agency (EPA) for all hazardous wastes, including mixed wastes. Therefore, all DOE facilities generating, storing, treating, or disposing of mixed wastes will be regulated under the Resource Conservation and Recovery Act (RCTA). In FY 1985, DOE Headquarters requested DOE low-level waste (LLW) sites to apply for a RCRA Part B Permit to operate radioactive mixed waste facilities. An application for the Nevada Test Site (NTS) was prepared and submitted to the EPA, Region IX in November 1985 for review and approval. At that time, the state of Nevada had not yet received authorization for hazardous wastes nor had they applied for regulatory authority for mixed wastes. In October 1986, DOE Nevada Operations Office was informed by the Rocky Flats Plant that some past waste shipments to NTS contained trace quantities of hazardous substances. Under Colorado law, these wastes are defined as mixed. A DOE Headquarters task force was convened by the Under Secretary to investigate the situation. The task force concluded that DOE has a high priority need to develop a permitted mixed waste site and that DOE Nevada Operations Office should develop a fast track project to obtain this site and all necessary permits. The status and issues to be resolved on the permit for a mixed waste site are discussed

  11. Animal investigation program 1974 annual report: Nevada Test Site and vicinity

    International Nuclear Information System (INIS)

    Smith, D.D.; Giles, K.R.; Bernhardt, D.E.; Brown, K.R.

    1977-06-01

    Data are presented from the radioanalysis of tissues collected from cattle, deer, desert bighorn sheep, and other wildlife that resided on or near the Nevada Test Site during 1974. Routine activities and special investigations of the Animal Investigation Program are also discussed. Other than the naturally occurring potassium-40, gamma-emitting radionuclides were detected infrequently. For example, cesium-137 was found only in the muscle tissues from 3 of the 12 Nevada Test Site cattle sampled during 1974. Tritium concentrations in the tissues from most of the animals sampled are at background levels. Animals from the experimental farm tended to have slightly higher concentrations than those sampled at other locations on the Nevada Test Site. Strontium-90 levels in bones from deer, desert bighorn sheep, and cattle were slightly lower than those reported for the preceding year. A graph depicts the average levels found in the bones of the three species from 1956 through 1974

  12. Cone penetrometer testing at the Hanford Site: Final performance evaluation report

    International Nuclear Information System (INIS)

    Richterich, L.R.; Cassem, B.R.

    1994-08-01

    The Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) is one of several US Department of Energy (DOE) integrated demonstrations designed to support the testing of emerging environmental characterization and remediation technologies in support of the Environmental Restoration (ER) and Waste Management (WM) Programs. The primary objective of the VOC Arid ID at the Hanford Site is to characterize, remediate, and monitor arid and semi-arid sites containing volatile organic compounds with or without associated contamination. The main objective of the Arid Drilling Technology Technical Task Plan is to demonstrate promising subsurface access technologies; this includes using the cone penetrometer (CPT) system for source detection, characterization, monitoring, and remediation in support of environmental activities. The utility of the CPT for performing site characterization work has been the subject of much discussion and speculation at the Hanford Site and other arid sites because of the preponderance of thick units of coarse cobbles and gravel in the subsurface

  13. Geologic, geochemical, microbiologic, and hydrologic characterization at the In Situ Redox Manipulation Test Site

    International Nuclear Information System (INIS)

    Vermeul, V.R.; Teel, S.S.; Amonette, J.E.

    1995-07-01

    This report documents results from characterization activities at the In Situ Redox Manipulation (ISRM) Field Test Site which is located within the 100-HR-3 Operable Unit of the US Department of Energy's (DOE's) Hanford Site in Richland, Washington. Information obtained during hydrogeologic characterization of the site included sediment physical properties, geochemical properties, microbiologic population data, and aquifer hydraulic properties. The purpose of obtaining this information was to improve the conceptual understanding of the hydrogeology beneath the ISRM test site and provide detailed, site specific hydrogeologic parameter estimates. The resulting characterization data will be incorporated into a numerical model developed to simulate the physical and chemical processes associated with the field experiment and aid in experiment design and interpretation

  14. Testing contamination risk assessment methods for toxic elements from mine waste sites

    Science.gov (United States)

    Abdaal, A.; Jordan, G.; Szilassi, P.; Kiss, J.; Detzky, G.

    2012-04-01

    Major incidents involving mine waste facilities and poor environmental management practices have left a legacy of thousands of contaminated sites like in the historic mining areas in the Carpathian Basin. Associated environmental risks have triggered the development of new EU environmental legislation to prevent and minimize the effects of such incidents. The Mine Waste Directive requires the risk-based inventory of all mine waste sites in Europe by May 2012. In order to address the mining problems a standard risk-based Pre-selection protocol has been developed by the EU Commission. This paper discusses the heavy metal contamination in acid mine drainage (AMD) for risk assessment (RA) along the Source-Pathway-Receptor chain using decision support methods which are intended to aid national and regional organizations in the inventory and assessment of potentially contaminated mine waste sites. Several recognized methods such as the European Environmental Agency (EEA) standard PRAMS model for soil contamination, US EPA-based AIMSS and Irish HMS-IRC models for RA of abandoned sites are reviewed, compared and tested for the mining waste environment. In total 145 ore mine waste sites have been selected for scientific testing using the EU Pre-selection protocol as a case study from Hungary. The proportion of uncertain to certain responses for a site and for the total number of sites may give an insight of specific and overall uncertainty in the data we use. The Pre-selection questions are efficiently linked to a GIS system as database inquiries using digital spatial data to directly generate answers. Key parameters such as distance to the nearest surface and ground water bodies, to settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA models. According to our scientific research results, of the 145 sites 11 sites are the most risky having foundation slope >20o, 57 sites are within distance 66 (class VI

  15. Childhood cancer incidence in relation to distance from the former nuclear testing site in Semipalatinsk, Kazakhstan.

    Science.gov (United States)

    Zaridze, D G; Li, N; Men, T; Duffy, S W

    1994-11-15

    Rates of childhood cancer between 1981 and 1990 in the 4 administrative zones of Kazakhstan were studied to assess the relationship, if any, with distance from nuclear testing sites. Risk of various cancers among children aged 14 years or younger were estimated in relation to distance from (1) a site where testing in air was performed before 1963, (2) a site where underground testing took place thereafter, and (3) a reservoir, known as "Atom Lake," created by 4 nuclear explosions in 1965. Risk of acute leukaemia rose significantly with increasing proximity of residence to the testing areas, although the absolute value of the risk gradient was relatively small. The relative risk for those living less than 200 km from the air-testing site was 1.76 compared with those living 400 km or more away from the site. Similar relative risks were observed for the underground site and "Atom Lake." There was also some evidence of increased risk of brain tumours in association with proximity to the test sites. In 2 of the 4 zones studied, there was substantial regional variation in acute leukaemia rates which was not attributable to distance from the test site. The findings may be affected by potential confounders, notably urban/rural status and ethnic factors.

  16. Measured data from the Avery Island Site C heater test

    International Nuclear Information System (INIS)

    Waldman, H.; Stickney, R.G.

    1984-11-01

    Over the past six years, a comprehensive field testing program was conducted in the Avery Island salt mine. Three single canister heater tests were included in the testing program. Specifically, electric heaters, which simulate canisters of heat-generating nuclear waste, were placed in the floor of the Avery Island salt mine, and measurements were made of the response of the salt to heating. These tests were in operation by June 1978. One of the three heater tests, Site C, operated for a period of 1858 days and was decommissioned during July and August 1983. This data report presents the temperature and displacement data gathered during the operation and decommissioning of the Site C heater test. The purpose of this data report is to transmit the data to the scientific community. Rigorous analysis and interpretation of the data are considered beyond the scope of a data report. 6 references, 21 figures, 1 table

  17. In situ radiation measurements at the former Soviet Nuclear Test Site

    International Nuclear Information System (INIS)

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good

  18. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil

  19. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil.

  20. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    International Nuclear Information System (INIS)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs

  1. Surface-based test plan, Deaf Smith County, Texas Site: Draft

    International Nuclear Information System (INIS)

    1985-01-01

    The Surface-Based Test Plan (SBTP) is the plan which accounts for all surface-based site field work to be conducted at the Permian salt site selected for characterization. The SBTP relates data needs from program requirement documents and presents plans to satisfy the data needs. The SBTP excludes plans for construction of the Exploratory Shaft Facility (ESF) and plans for the in situ testing. The SBTP is a hierarchical plan stemming from the Technical Program Plan. The SBTP describes in detail the process by which surface-based study plans are defined, developed, and controlled. The plans hierarchy extends downward thru subordinate Site Study Plans (SSPs), which describe in detail elements of field work to be done, to detailed Procedures which document the exact methodologies to be employed in the conduct of field work. The plan is a QA level S document, although some of its elements are at lower QA levels. The plan is a controlled document, and any proposed amendments to the plan or subordinate documents can only be implemented through the specified change control procedure

  2. Nevada Test Site Radiological Control Manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-02-09

    This document supersedes DOE/NV/25946--801, “Nevada Test Site Radiological Control Manual,” Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

  3. OSI Passive Seismic Experiment at the Former Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, J J; Harben, P

    2010-11-11

    On-site inspection (OSI) is one of the four verification provisions of the Comprehensive Nuclear Test Ban Treaty (CTBT). Under the provisions of the CTBT, once the Treaty has entered into force, any signatory party can request an on-site inspection, which can then be carried out after approval (by majority voting) of the Executive Council. Once an OSI is approved, a team of 40 inspectors will be assembled to carry out an inspection to ''clarify whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of Article I''. One challenging aspect of carrying out an on-site inspection (OSI) in the case of a purported underground nuclear explosion is to detect and locate the underground effects of an explosion, which may include an explosion cavity, a zone of damaged rock, and/or a rubble zone associated with an underground collapsed cavity. The CTBT (Protocol, Section II part D, paragraph 69) prescribes several types of geophysical investigations that can be carried out for this purpose. One of the methods allowed by the CTBT for geophysical investigation is referred to in the Treaty Protocol as ''resonance seismometry''. This method, which was proposed and strongly promoted by Russia during the Treaty negotiations, is not described in the Treaty. Some clarification about the nature of the resonance method can be gained from OSI workshop presentations by Russian experts in the late 1990s. Our understanding is that resonance seismometry is a passive method that relies on seismic reverberations set up in an underground cavity by the passage of waves from regional and teleseismic sources. Only a few examples of the use of this method for detection of underground cavities have been presented, and those were done in cases where the existence and precise location of an underground cavity was known. As is the case with many of the geophysical methods allowed during an OSI under the Treaty, how

  4. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii

    International Nuclear Information System (INIS)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-01-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b)

  5. Siting and constructing very deep monitoring wells on the US Department of Energy's Nevada Test Site

    International Nuclear Information System (INIS)

    Cullen, J.J.; Jacobson, R.L.; Russell, C.E.

    1991-01-01

    Many aspects of the Nevada Test Site's (NTS) hydrogeologic setting restrict the use of traditional methods for the siting and construction of ground-water characterization and monitoring wells. The size of the NTS precludes establishing high-density networks of characterization wells, as are typically used at smaller sites. The geologic complexity and variability of the NTS requires that the wells be criticality situated. The hydrogeologic complexity requires that each well provide access to many aquifers. Depths to ground water on the NTS require the construction of wells averaging approximately 1000 meters in depth. Wells meeting these criteria are uncommon in the ground-water industry, therefore techniques used by petroleum engineers are being employed to solve certain siting-, design- and installation-related problems. To date, one focus has been on developing completion strings that facilitate routine and efficient ground-water sampling from multiple intervals in a single well. The method currently advocated employs a new design of sliding side door sleeve that is actuated by an electrically operated hydraulic shifting tool. Stemming of the wells is being accomplished with standard materials (cement based grouts and sands); however, new stemming methods are being developed, to accommodate the greater depths, to minimize pH-related problems caused by the use of cements, to enhance the integrity of the inter-zone seals, and to improve the representativeness of radionuclide analyses performed on ground-water samples. Bench-scale experiments have been used to investigate the properties of more than a dozen epoxy-aggregate grout mixtures -- materials that are commonly used in underwater sealing applications

  6. Surveys for desert tortoise on the proposed site of a high-level nuclear waste repository at the Nevada Test Site

    International Nuclear Information System (INIS)

    Collins, E.; Sauls, M.L.; O'Farrell, T.P.

    1983-01-01

    The National Waste Terminal Storage Program is a national search for suitable sites to isolate commercial spent nuclear fuel or high-level radioactive waste. The Nevada Nuclear Waste Storage Investigation (NNWSI) managed by the U.S. Department of Energy (DOE), Nevada Operations Office, was initiated to study the suitability of a portion of Yucca Mountain on the DOE's Nevada Test Site (NTS) as a location for such a repository. EG and G was contracted to provide information concerning the ecosystems encountered on the site. A comprehensive literature survey was conducted to evaluate the status and completeness of the existing biological information for the previously undisturbed area. Site specific studies were begun in 1981 when preliminary field surveys confirmed the presence of the desert tortoise (Gopherus agassizi) within the project area FY82 studies were designed to determine the overall distribution and abundance of the tortoise within the area likely to be impacted by NNWSI activities. The Yucca Mountain area of the Nevada Test Site is situated close to the northern range limit of the desert tortoise. Prior to the 1982 surveys, the desert tortoise was reported from only nine locations on NTS. A known population had been under study in Rock Valley about 25 miles southeast of the project area. However, the distribution and population densities of tortoise in the southwest portion of NTS were virtually unknown. Results of our surveys indicate that desert tortoise can be expected, albeit in small numbers, in a wide range of Mojavean and Transitional habitats

  7. Testing the methodology for site descriptive modelling. Application for the Laxemar area

    International Nuclear Information System (INIS)

    Andersson, Johan; Berglund, Johan; Follin, Sven; Hakami, Eva; Halvarson, Jan; Hermanson, Jan; Laaksoharju, Marcus; Rhen, Ingvar; Wahlgren, C.H.

    2002-08-01

    A special project has been conducted where the currently available data from the Laxemar area, which is part of the Simpevarp site, have been evaluated and interpreted into a Site Descriptive Model covering: geology, hydrogeology, hydrogeochemistry and rock mechanics. Description of the surface ecosystem has been omitted, since it was re-characterised in another, parallel, project. Furthermore, there has been no evaluation of transport properties. The project is primarily a methodology test. The lessons learnt will be implemented in the Site Descriptive Modelling during the coming site investigation. The intent of the project has been to explore whether available methodology for Site Descriptive Modelling based on surface and borehole data is adequate and to identify potential needs for development and improvement in the methodology. The project has developed, with limitations in scope, a Site Descriptive Model in local scale, corresponding to the situation after completion of the Initial Site Investigations for the Laxemar area (i.e. 'version 1.2' using the vocabulary of the general execution program for the site investigations). The Site Descriptive Model should be reasonable, but should not be regarded as a 'real' model. There are limitations both in input data and in the scope of the analysis. The measured (primary) data constitute a wide range of different measurement results including data from two deep core drilled boreholes. These data both need to be checked for consistency and to be interpreted into a format more amenable for three-dimensional modelling. Examples of such evaluations are estimation of surface geology, lineament interpretation, geological single hole interpretation, hydrogeological single hole interpretation and assessment of hydrogeochemical data. Furthermore, while cross discipline interpretation is encouraged there is also a need for transparency. This means that the evaluations first are made within each discipline and after this

  8. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  9. Ground-water data for the Nevada Test Site and selected other areas in South-Central Nevada, 1992--1993

    International Nuclear Information System (INIS)

    1995-01-01

    The US Geological Survey, in support of the US Department of Energy Environmental Restoration and Hydrologic Resources Management Programs, collects and compiles hydrogeologic data to aid in characterizing the regional and local ground-water flow systems underlying the Nevada Test Site and vicinity. This report presents selected ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site. Depth-to-water measurements were made during water year 1993 at 55 sites at the Nevada Test Site and 43 regional sites in the vicinity of the Nevada Test Site. Depth to water ranged from 87.7 to 674.6 meters below land surface at the Nevada Test Site and from 6.0 to 444.7 meters below land surface at sites in the vicinity of the Nevada Test Site. Depth-to-water measurements were obtained using the wire-line, electric-tape, air-line, and steel-tape devices. Total measured ground-water withdrawal from the Nevada Test Site during the 1993 calendar year was 1,888.04 million liters. Annual ground-water withdrawals from 14 wells ranged from 0.80 million to 417.20 million liters. Tritium concentrations from four samples at the Nevada Test Site and from three samples in the vicinity of the Nevada Test Site collected during water year 1993 ranged from near 0 to 27,676.0 becquerels per liter and from near 0 to 3.9 becquerels per liter, respectively

  10. Ecological-economical approach to assessment of environment state at the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Chugunova, N.S.; Balykbaeva, S.Y.

    2002-01-01

    The paper presents methods used for ecological-economical assessment of the environment condition at the former Semipalatinsk Test Site. It also presents methodology of calculating ecological and economical parameters for different options. Besides, the paper provides data describing assessment of ecological and economical damage caused by defense establishment activities at the Semipalatinsk Test Site. (author)

  11. Atomic test site (south Australia)

    International Nuclear Information System (INIS)

    Godman, N.A.; Cousins, Jim; Hamilton, Archie.

    1993-01-01

    The debate, which lasted about half an hour, is reported verbatin. It was prompted by the campaign by the Maralinga people of South Australia to have their traditional lands restored to them. Between 1953 and 1957 the United Kingdom government carried out of atomic tests and several hundred minor trials on the lands. A clean-up programme had taken place in 1967 but further decontamination was needed before the area is safe for traditional aboriginal life and culture. A small area will remain contaminated with plutonium for thousands of years. The cost and who would pay, the Australian or UK government was being negotiated. The UK government's position was that the site is remote, the health risk is slight and the clean-up operation of 1967 was acknowledged as satisfactory by the Australian government. (UK)

  12. Struggle for test site shut down. Chapter 3

    International Nuclear Information System (INIS)

    1999-01-01

    Main events related with nuclear test site shut down have been developed in end of 80s. In 1989, February 12 a release of radioactive gases on surface after next underground explosion took place. In two days after the explosion in settlement Chagan in 100 km from epicentre was fixed increase of radiation background up to 4,000 μR/h. This event was one of main jolt to formation of anti-nuclear movement in Republic. First mass anti-nuclear meeting was hold in 1989, February 28. Chairman of Kazakhstan Writer's Union, public figure, poet O. Sulemenov read at the meeting Appeal to all public, creative and religious organizations of country, Peace Committee of Soviet Union, to Green peace International Organization , to International Committee of Mankind Survive Fund, to supporters of movement for ban of nuclear tests in Nevada State (USA) and demand ban nuclear tests in Kazakhstan. The anti-nuclear movement had international character and it was called Nevada-Semipalatinsk and was headed by Mr. Luan B. Chairman of International organization of World Doctor for Nuclear War Prevention and Mr. Sulemenov O. The movement unites all regions of Kazakhstan and includes of thousands of supporters. In 1991, August 29 after crush of USSR due to democratic transformation and glasnost in sovereign Kazakhstan President of Kazakhstan signed Decree On shut down of Semipalatinsk test nuclear site

  13. Performance assessment of the Greater Confinement Disposal facility on the Nevada Test Site: Comparing the performance of two conceptual site models

    International Nuclear Information System (INIS)

    Baer, T.A.; Price, L.L.; Gallegos, D.P.

    1993-01-01

    A small amount of transuranic (TRU) waste has been disposed of at the Greater Confinement Disposal (GCD) site located on the Nevada Test Site's (NTS) Radioactive Waste Management Site (RWMS). The waste has been buried in several deep (37 m) boreholes dug into the floor of an alluvial basin. For the waste to remain in its current configuration, the DOE must demonstrate compliance of the site with the TRU disposal requirements, 40 CFR 191. Sandia's approach to process modelling in performance assessment is to use demonstrably conservative models of the site. Choosing the most conservative model, however, can be uncertain. As an example, diffusion of contaminants upward from the buried waste in the vadose zone water is the primary mechanism of release. This process can be modelled as straight upward planar diffusion or as spherical diffusion in all directions. The former has high fluxes but low release areas, the latter has lower fluxes but is spread over a greater area. We have developed analytic solutions to a simple test problem for both models and compared the total integrated discharges. The spherical diffusion conceptual model results in at least five times greater release to the accessible environment than the planar model at all diffusivities. Modifying the planar model to allow for a larger release, however, compensated for the smaller original planar discharge and resulted in a new planar model that was more conservative that the spherical model except at low diffusivities

  14. Population Health in Regions Adjacent to the Semipalatinsk Nuclear Test Site

    National Research Council Canada - National Science Library

    1998-01-01

    ...) of the Union of Soviet Socialist Republics (USSR). Inhabitants of several Kazakhstan regions were contaminated in different years by radioactive fallout from atmospheric nuclear tests at the Semipalatinsk test site...

  15. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  16. GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site

    Science.gov (United States)

    Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2009-04-01

    In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies

  17. Environmental Assessment and Finding of No Significant Impact: The Nevada Test Site Development Corporations's Desert Rock Sky Park at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-03-01

    The United States Department of Energy has prepared an Environmental Assessment (DOE/EA-1300) (EA) which analyzes the potential environmental effects of developing operating and maintaining a commercial/industrial park in Area 22 of the Nevada Test Site, between Mercury Camp and U.S. Highway 95 and east of Desert Rock Airport. The EA evaluates the potential impacts of infrastructure improvements necessary to support fill build out of the 512-acre Desert Rock Sky Park. Two alternative actions were evaluated: (1) Develop, operate and maintain a commercial/industrial park in Area 22 of the Nevada Test Site, and (2) taking no action. The purpose and need for the commercial industrial park are addressed in Section 1.0 of the EA. A detailed description of the proposed action and alternatives is in section 2.0. Section 3.0 describes the affected environment. Section 4.0 the environmental consequences of the proposed action and alternative. Cumulative effects are addressed in Section 5.0. Mitigation measures are addressed in Section 6.0. The Department of Energy determined that the proposed action of developing, operating and maintaining a commercial/industrial park in Area 22 of the Nevada Test Site would best meet the needs of the agency.

  18. Can interpreting sediment toxicity tests a mega sites benefit from novel approaches to normalization to address batching of tests?

    Science.gov (United States)

    Sediment toxicity tests are a key tool used in Ecological Risk Assessments for contaminated sediment sites. Interpreting test results and defining toxicity is often a challenge. This is particularly true at mega sites where the testing regime is large, and by necessity performed ...

  19. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs.

  20. Experience in Grid Site Testing for ATLAS, CMS and LHCb with HammerCloud

    International Nuclear Information System (INIS)

    Elmsheuser, Johannes; Legger, Federica; Llamas, Ramón Medrano; Sciabà, Andrea; García, Mario Úbeda; Ster, Daniel van der; Sciacca, Gianfranco

    2012-01-01

    Frequent validation and stress testing of the network, storage and CPU resources of a grid site is essential to achieve high performance and reliability. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run such tests in an automated or on-demand manner. The ATLAS, CMS and LHCb experiments have all developed VO plugins for the service and have successfully integrated it into their grid operations infrastructures. This work will present the experience in running HammerCloud at full scale for more than 3 years and present solutions to the scalability issues faced by the service. First, we will show the particular challenges faced when integrating with CMS and LHCb offline computing, including customized dashboards to show site validation reports for the VOs and a new API to tightly integrate with the LHCbDIRAC Resource Status System. Next, a study of the automatic site exclusion component used by ATLAS will be presented along with results for tuning the exclusion policies. A study of the historical test results for ATLAS, CMS and LHCb will be presented, including comparisons between the experiments’ grid availabilities and a search for site-based or temporal failure correlations. Finally, we will look to future plans that will allow users to gain new insights into the test results; these include developments to allow increased testing concurrency, increased scale in the number of metrics recorded per test job (up to hundreds), and increased scale in the historical job information (up to many millions of jobs per VO).

  1. Experience in Grid Site Testing for ATLAS, CMS and LHCb with HammerCloud

    Science.gov (United States)

    Elmsheuser, Johannes; Medrano Llamas, Ramón; Legger, Federica; Sciabà, Andrea; Sciacca, Gianfranco; Úbeda García, Mario; van der Ster, Daniel

    2012-12-01

    Frequent validation and stress testing of the network, storage and CPU resources of a grid site is essential to achieve high performance and reliability. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run such tests in an automated or on-demand manner. The ATLAS, CMS and LHCb experiments have all developed VO plugins for the service and have successfully integrated it into their grid operations infrastructures. This work will present the experience in running HammerCloud at full scale for more than 3 years and present solutions to the scalability issues faced by the service. First, we will show the particular challenges faced when integrating with CMS and LHCb offline computing, including customized dashboards to show site validation reports for the VOs and a new API to tightly integrate with the LHCbDIRAC Resource Status System. Next, a study of the automatic site exclusion component used by ATLAS will be presented along with results for tuning the exclusion policies. A study of the historical test results for ATLAS, CMS and LHCb will be presented, including comparisons between the experiments’ grid availabilities and a search for site-based or temporal failure correlations. Finally, we will look to future plans that will allow users to gain new insights into the test results; these include developments to allow increased testing concurrency, increased scale in the number of metrics recorded per test job (up to hundreds), and increased scale in the historical job information (up to many millions of jobs per VO).

  2. Land reclamation on the Nevada Test Site: A field tour

    International Nuclear Information System (INIS)

    Winkel, V.K.; Ostler, W.K.

    1993-01-01

    An all-day tour to observe and land reclamation on the Nevada Test Site was conducted in conjunction with the 8th Wildland Shrub and Arid Land Restoration Symposium. Tour participants were introduced to the US Department of Energy reclamation programs for Yucca Mountain Site Characterization Project and Treatability Studies for Soil Media (TSSM) Project. The tour consisted of several stops that covered a variety of topics and studies including revegetation by seeding, topsoil stockpile stabilization, erosion control, shrub transplanting, shrub herbivory, irrigation, mulching, water harvesting, and weather monitoring

  3. Ore levels in Paleozoic of Semipalatinsk test site

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Fomichev, V.I.

    1999-01-01

    The regularity of the deposition of main mineralization of industrial types within Semipalatinsk test site proves and here and there defines more exactly location of the ore levels in Eastern Kazakhstan. Two mega levels, namely: Cambrian-Ordovician (siliceous-basalt, island-arc) and Carboniferous (especially carbonaceous-tarragons) ones are the most perspective for localizing the leading gold mineralization in the region

  4. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles (mi)) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  5. Nevada test site waste acceptance criteria

    International Nuclear Information System (INIS)

    1996-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  6. Nevada test site waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  7. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  8. Common data about region of the former Semipalatinsk test site. Chapter 2

    International Nuclear Information System (INIS)

    1998-01-01

    Region of the Semipalatinsk test site is situated on left bank shore of the Irtysh river, on joining of three regions (East Kazakstan region, Pavlodar, Karaganda) and is extended from the river to south-western direction on 180 km. Total square of the site is amount 18.5 thousand sq.km. The territory is presented by flat landscape of dry steppe and semi-desert type passing in south-western direction into hill valley changing by small hill land. There are 5 test sites on territory of the region where places of nuclear explosions were carried out. For all territory is typically presence of river valleys and lake hollows (mainly salty). Today global background from cesium-137 and strontium-90 radionuclides near Semipalatinsk city amounts in average 0,11 Ci/sq.km. By the data of ground gamma-survey radiation background is oscillating within limits of 11-25 μR/h. In the same time on the site region there are local sections of radiation contamination with very high background, in particular, in epicenter of the 'Opytnoe Pole' area is up to 15000 μR/h, on disposal area of the Balapan lake is 11000 μR/h, near dam of the Shagan reservoir is up to 7000 μR/h, near portals of some galleries of the Degelen test site is up to 20000-250000 μR/h and others. Geobotanic status of the site territory is extremely heterogeneous and it is insufficiently studied because of inaccessibility of the region for researches during long time of its activity. The 302 types higher vascular plants were defined during last four seasons of field studies, as well as 800 descriptions of biocenoses are made, 1000 herbarium specimens are gathered

  9. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2018-06-01

    Full Text Available With the rapid development of nuclear power in China, the disposal of high-level radioactive waste (HLW has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories (URLs play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area, located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations, including borehole drilling, geological mapping, geophysical surveying, hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological, hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel (BET, which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone (EDZ, and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction. According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned. Keywords: Beishan, Xinchang site, Granite

  10. National HIV Testing Day at CDC-funded HIV counseling, testing, and referral sites--United States, 1994-1998.

    Science.gov (United States)

    2000-06-23

    CDC-funded human immunodeficiency virus (HIV) counseling, testing, and referral sites are an integral part of national HIV prevention efforts (1). Voluntary counseling, testing, and referral opportunities are offered to persons at risk for HIV infection at approximately 11,000 sites, including dedicated HIV counseling and testing sites, sexually transmitted disease (STD) clinics, drug-treatment centers, hospitals, and prisons. Services also are offered to women in family planning and prenatal/obstetric clinics to increase HIV prevention efforts among women and decrease the risk for perinatal HIV transmission. To increase use of HIV counseling, testing, and referral services by those at risk for HIV infection, in 1995, the National Association of People with AIDS designated June 27 each year as National HIV Testing Day. This report compares use of CDC-funded counseling, testing, and referral services the week before and the week of June 27 from 1994 through 1998 and documents the importance of a national public health campaign designed to increase knowledge of HIV serostatus.

  11. Sustainable land use planning at the Semipalatinsk Nuclear Test Site

    International Nuclear Information System (INIS)

    Coughtrey, P.J.; Ridgway, R.B.; Baumann, P.

    2001-01-01

    Full text: The UK Department for International Development (DFID) has recently agreed to support a project to develop a participatory sustainable land use plan for areas affected by nuclear weapons testing at Semipalatinsk. This three year project is expected to be initiated in April 2001 and will form one component of the United Nations Development Programme (UNDP) Semipalatinsk Rehabilitation Programme. The project will be undertaken by a combination of Kazakh organizations working with UK consultants and will meet its overall aim through the following main activities: Development of institutional capacity in data management and analysis; Provision of information and education on environmental contamination, hazards and risks; Development of a participatory land use planning process and piloting of the process in specific areas and communities around the test site; Integration of mineral resource extraction in the land planning process with a focus- on water resource and environmental protection and participatory approaches to resolving land use conflicts; Development of legislative tools to permit the implementation of environmental management of resource exploitation. The project will make use of both modern satellite-based imagery and more traditional methods to determine the potential for different land uses within the test site. The results obtained will be incorporated with additional information on land use. radiological and hydrological conditions at the test site through a geographical information system (GIS) provided by the project. The GIS will form the core component for collation and distribution of information on options available for use of different areas of the test site and its vicinity. A participatory rural appraisal, using tried and tested techniques, will identify local interest groups in land use planning and identify the details of their stake in the process. The groups will include owners-herders, employee-herders, and subsistence

  12. Development of remote controller for an EMI test receiver in site survey

    International Nuclear Information System (INIS)

    Cha, K. H.; Hwang, I. G.; Lee, D. Y.; Lee, K. Y.; Park, J. K.

    2000-01-01

    EMI assessment, which is based on the Site survey(the measurement of EMI noise) in an operating plant, can be considered for system design. Our Site survey is being planned to utilize the ESI7 model, to be manufactured as the EMI test receiver by Rodge-Schwaltz GmbH. But the ESI7 is often manipulated by manual if a Site survey is continued for some days in nuclear power plant. The problem can be resolved if a remote controller is implemented for the ESI7 and it controls the ESI7. The Remote Controller has its functions for supporting the ESI7 manual tasks, including storing mass SCAN data onto external PC memory (hard-disk), controlling ESI7, and analyzing the stored SCAN data. These functions have been implemented in 'G' programming of LabVIEW software under a notebook PC with PCMCIA-GPIB card. The Remote Controller prototype will be applied to store the real EMI measurements in the coming Site survey and analyze the data after integrated tests and their evaluation

  13. Integrated radiobioecological monitoring of Semipalatinsk test site: general approach

    International Nuclear Information System (INIS)

    Sejsebaev, A.T.; Shenal', K.; Bakhtin, M.M.; Kadyrova, N.Zh.

    2001-01-01

    This paper presents major research directions and general methodology for establishment of an integrated radio-bio-ecological monitoring system at the territory of the former Semipalatinsk nuclear test site. Also, it briefly provides the first results of monitoring the natural plant and animal populations at STS. (author)

  14. Site-to-site genetic correlations and their implications on breeding zone size and optimum number of progeny test sites for Coastal Douglas-fir.

    Science.gov (United States)

    G.R. Johnson

    1997-01-01

    Type B genetic correlations were used to examine the relation among geographic differences between sites and their site-to-site genetic (Type B) correlations. Examination of six local breeding zones in Oregon indicated that breeding zones were, for the most part, not too large because few environmental variables were correlated with Type B genetic correlations. The...

  15. Site Characterization Data from the U3ax/bl Exploratory Boreholes at the Nevada Test Site

    International Nuclear Information System (INIS)

    2005-01-01

    This report provides qualitative analyses and preliminary interpretations of hydrogeologic data obtained from two 45-degree, slanted exploratory boreholes drilled within the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site. Borehole UE-3bl-D1 was drilled beneath the U3ax/bl mixed waste disposal unit, and Borehole UE-3bl-U1 was drilled in undisturbed alluvium adjacent to the disposal unit. The U3ax/bl disposal unit is located within two conjoined subsidence craters, U3ax and U3bl, which were created by underground nuclear testing. Data from these boreholes were collected to support site characterization activities for the U3ax/bl disposal unit and the entire Area 3 RWMS. Site characterization at disposal units within the Area 3 RWMS must address the possibility that subsidence craters and associated disturbed alluvium of the chimneys beneath the craters might serve as pathways for contaminant migration. The two boreholes were drilled and sampled to compare hydrogeologic properties of alluvium below the waste disposal unit with those of adjacent undisturbed alluvium. Whether Borehole UE-3bl-D1 actually penetrated the chimney of the U3bl crater is uncertain. Analyses of core samples showed little difference in hydrogeologic properties between the two boreholes. Important findings of this study include the following: No hazardous or radioactive constituents of waste disposal concern were found in the samples obtained from either borehole. No significant differences in physical and hydrogeologic properties between boreholes is evident, and no evidence of significant trends with depth for any of these properties was observed. The values observed are typical of sandy materials. The alluvium is dry, with volumetric water content ranging from 5.6 to 16.2 percent. Both boreholes exhibit a slight increase in water content with depth, the only such trend observed. Water potential measurements on core samples from both boreholes show a large positive

  16. Site Characterization Data from the U3ax/bl Exploratory Boreholes at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-08-01

    This report provides qualitative analyses and preliminary interpretations of hydrogeologic data obtained from two 45-degree, slanted exploratory boreholes drilled within the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site. Borehole UE-3bl-D1 was drilled beneath the U3ax/bl mixed waste disposal unit, and Borehole UE-3bl-U1 was drilled in undisturbed alluvium adjacent to the disposal unit. The U3ax/bl disposal unit is located within two conjoined subsidence craters, U3ax and U3bl, which were created by underground nuclear testing. Data from these boreholes were collected to support site characterization activities for the U3ax/bl disposal unit and the entire Area 3 RWMS. Site characterization at disposal units within the Area 3 RWMS must address the possibility that subsidence craters and associated disturbed alluvium of the chimneys beneath the craters might serve as pathways for contaminant migration. The two boreholes were drilled and sampled to compare hydrogeologic properties of alluvium below the waste disposal unit with those of adjacent undisturbed alluvium. Whether Borehole UE-3bl-D1 actually penetrated the chimney of the U3bl crater is uncertain. Analyses of core samples showed little difference in hydrogeologic properties between the two boreholes. Important findings of this study include the following: No hazardous or radioactive constituents of waste disposal concern were found in the samples obtained from either borehole. No significant differences in physical and hydrogeologic properties between boreholes is evident, and no evidence of significant trends with depth for any of these properties was observed. The values observed are typical of sandy materials. The alluvium is dry, with volumetric water content ranging from 5.6 to 16.2 percent. Both boreholes exhibit a slight increase in water content with depth, the only such trend observed. Water potential measurements on core samples from both boreholes show a large positive

  17. Calcination/dissolution testing for Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Colby, S.A.; Delegard, C.H.; McLaughlin, D.F.; Danielson, M.J.

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack

  18. Characterization Report Operational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada Geotechnical Sciences

    2005-01-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report - Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations

  19. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  20. The New WindForS Wind Energy Test Site in Southern Germany

    Science.gov (United States)

    Clifton, A. J.

    2017-12-01

    Wind turbines are increasingly being installed in complex terrain where patchy landcover, forestry, steep slopes, and complex regional and local atmospheric conditions lead to major challenges for traditional numerical weather prediction methods. In this presentation, the new WindForS complex terrain test site will be introduced. WindForS is a southern Germany-based research consortium of more than 20 groups at higher education and research institutes, with strong links to regional government and industry. The new test site will be located in the hilly, forested terrain of the Swabian Alps between Stuttgart and Germany, and will consist of two wind turbines with four meteorological towers. The test site will be used for accompanying ecological research and will also have mobile eddy covariance measurement stations as well as bird and bat monitoring systems. Seismic and noise monitoring systems are also planned. The large number of auxiliary measurements at this facility are intended to allow the complete atmosphere-wind turbine-environment-people system to be characterized. This presentation will show some of the numerical weather prediction work and measurements done at the site so far, and inform the audience about WindForS' plans for the future. A major focus of the presentation will be on opportunities for collaboration through field campaigns or model validation.

  1. Testing the methodology for site descriptive modelling. Application for the Laxemar area

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden); Berglund, Johan [SwedPower AB, Stockholm (Sweden); Follin, Sven [SF Geologic AB, Stockholm (Sweden); Hakami, Eva [Itasca Geomekanik AB, Stockholm (Sweden); Halvarson, Jan [Swedish Nuclear Fuel and Waste Management Co, Stockholm (Sweden); Hermanson, Jan [Golder Associates AB, Stockholm (Sweden); Laaksoharju, Marcus [Geopoint (Sweden); Rhen, Ingvar [Sweco VBB/VIAK, Stockholm (Sweden); Wahlgren, C.H. [Sveriges Geologiska Undersoekning, Uppsala (Sweden)

    2002-08-01

    A special project has been conducted where the currently available data from the Laxemar area, which is part of the Simpevarp site, have been evaluated and interpreted into a Site Descriptive Model covering: geology, hydrogeology, hydrogeochemistry and rock mechanics. Description of the surface ecosystem has been omitted, since it was re-characterised in another, parallel, project. Furthermore, there has been no evaluation of transport properties. The project is primarily a methodology test. The lessons learnt will be implemented in the Site Descriptive Modelling during the coming site investigation. The intent of the project has been to explore whether available methodology for Site Descriptive Modelling based on surface and borehole data is adequate and to identify potential needs for development and improvement in the methodology. The project has developed, with limitations in scope, a Site Descriptive Model in local scale, corresponding to the situation after completion of the Initial Site Investigations for the Laxemar area (i.e. 'version 1.2' using the vocabulary of the general execution program for the site investigations). The Site Descriptive Model should be reasonable, but should not be regarded as a 'real' model. There are limitations both in input data and in the scope of the analysis. The measured (primary) data constitute a wide range of different measurement results including data from two deep core drilled boreholes. These data both need to be checked for consistency and to be interpreted into a format more amenable for three-dimensional modelling. Examples of such evaluations are estimation of surface geology, lineament interpretation, geological single hole interpretation, hydrogeological single hole interpretation and assessment of hydrogeochemical data. Furthermore, while cross discipline interpretation is encouraged there is also a need for transparency. This means that the evaluations first are made within each discipline

  2. ASME N510 test results for Savannah River Site AACS filter compartments

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.D.; Punch, T.M. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-02-01

    The K-Reactor at the Savannah River Site recently implemented design improvements for the Airborne Activity Confinement System (AACS) by procuring, installing, and testing new Air Cleaning Units, or filter compartments, to ASME AG-11, N509, and N510 requirements. Specifically, these new units provide documentable seismic resistance to a Design Basis Accident earthquake, provide 2 inch adsorber beds with 0.25 second residence time, and meet all AG-1, N509, and N510 requirements for testability and maintainability. This paper presents the results of the Site acceptance testing and discusses an issue associated with sample manifold qualification testing.

  3. Medical Effects and Dosimetric Data from Nuclear Tests at the Semipalatinsk Test Site

    National Research Council Canada - National Science Library

    Balmukhanov, S. B; Abdrakhmanov, J. N; Balmukhanov, T. S; Gusev, B. I; Kurakina, N. N; Raisov, T. G

    2006-01-01

    .... The Semipalatinsk Test Site (STS), or Polygon as it was called, was instituted in 1947. Data relating to the radiation levels were declassified in 1992 and are published in the first two tables of this report...

  4. Animal Investigation Program 1973 annual report: Nevada Test Site and vicinity

    International Nuclear Information System (INIS)

    Smith, D.D.; Giles, K.R.; Bernhardt, D.E.

    1977-05-01

    Data are presented from the radioanalysis of tissues collected from cattle, deer, desert bighorn sheep, and other wildlife that resided on or near the Nevada Test Site during 1973. Routine activities and special investigations are discussed. Iodine-131 was detected in the thyroid of a Nevada Test Site mule deer. The postulated source was worldwide fallout from a nuclear detonation conducted by the People's Republic of China. Other than the naturally occurring potassium-40, cesium-137 was the only gamma-emitting radionuclide detected with any consistency in soft tissues. Nine muscle samples from the Nevada Test Site beef herd contained levels of cesium-137 ranging from 14 to 50 pCi/kilogram. Muscle from two deer contained 20 and 30 pCi/kilogram. Rabbit muscle contained 200 pCi/kilogram and muscle from a feral horse contained 40 pCi/kilogram. Tritium levels in all animal tissues sampled were at background except for animals residing at the Area 15 farm and for a feral horse. Postulated sources of these exposures are discussed. The strontium content in bones continued the downward trend observed during recent years

  5. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Volume 1, Appendices A-F

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  6. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Volume 1, Chapters 1-9

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  7. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    International Nuclear Information System (INIS)

    2009-01-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the 'Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. No shipments were disposed of at Area 3 in fiscal year (FY) 2008. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during FY 2008. No transuranic (TRU) waste shipments were made from or to the NTS during FY 2008

  8. SITE-94. Discrete-feature modelling of the Aespoe site: 2. Development of the integrated site-scale model

    International Nuclear Information System (INIS)

    Geier, J.E.

    1996-12-01

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Hydrologic properties of the large-scale structures are initially estimated from cross-hole hydrologic test data, and automatically calibrated by numerical simulation of network flow, and comparison with undisturbed heads and observed drawdown in selected cross-hole tests. The calibrated model is combined with a separately derived fracture network model, to yield the integrated model. This model is partly validated by simulation of transient responses to a long-term pumping test and a convergent tracer test, based on the LPT2 experiment at Aespoe. The integrated model predicts that discharge from the SITE-94 repository is predominantly via fracture zones along the eastern shore of Aespoe. Similar discharge loci are produced by numerous model variants that explore uncertainty with regard to effective semi regional boundary conditions, hydrologic properties of the site-scale structures, and alternative structural/hydrological interpretations. 32 refs

  9. SITE-94. Discrete-feature modelling of the Aespoe site: 2. Development of the integrated site-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J.E. [Golder Associates AB, Uppsala (Sweden)

    1996-12-01

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Hydrologic properties of the large-scale structures are initially estimated from cross-hole hydrologic test data, and automatically calibrated by numerical simulation of network flow, and comparison with undisturbed heads and observed drawdown in selected cross-hole tests. The calibrated model is combined with a separately derived fracture network model, to yield the integrated model. This model is partly validated by simulation of transient responses to a long-term pumping test and a convergent tracer test, based on the LPT2 experiment at Aespoe. The integrated model predicts that discharge from the SITE-94 repository is predominantly via fracture zones along the eastern shore of Aespoe. Similar discharge loci are produced by numerous model variants that explore uncertainty with regard to effective semi regional boundary conditions, hydrologic properties of the site-scale structures, and alternative structural/hydrological interpretations. 32 refs.

  10. Calendar year 2007 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii,

    Energy Technology Data Exchange (ETDEWEB)

    Agogino, Karen [Department of Energy, Albuquerque, NM (United States). National Nuclear Security Administration (NNSA); Sanchez, Rebecca [Sandia Corp., Albuquerque, NM (United States)

    2008-09-30

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE)/National Nuclear Security Administration (NNSA), through the Sandia Site Offi ce (SSO), in Albuquerque, NM, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Washington Group International subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2007. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Site Offi ce (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting Manual (DOE 2007).

  11. Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2003-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

  12. 78 FR 12259 - Unmanned Aircraft System Test Site Program

    Science.gov (United States)

    2013-02-22

    ... addressing potential UAS privacy concerns, as set out herein, contact Gregory C. Carter, Office of the Chief... address privacy concerns relating to the operation of the test site program, the FAA intends to include in... among policymakers, privacy advocates, and the industry regarding broader questions concerning the use...

  13. Intermodal transportation of low-level radioactive waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    1998-09-01

    The Nevada Test Site (NTS) presently serves as a disposal site for low-level radioactive waste (LLW) generated by DOE-approved generators. The environmental impacts resulting from the disposal of LLW at the NTS are discussed in the Final Environmental Impact Statement (EIS) for the Nevada Test Site Off-Site Locations in the State of Nevada (NTS EIS). During the formal NTS EIS scoping period, it became clear that transportation of LLW was an issue that required attention. Therefore, the Nevada Transportation Protocol Working Group (TPWG) was formed in 1995 to identify, prioritize, and understand local issues and concerns associated with the transportation of LLW to the NTS. Currently, generators of LLW ship their waste to the NTS by legal-weight truck. In 1995, the TPWG suggested the DOE could reduce transportation costs and enhance public safety by using rail transportation. The DOE announced, in October 1996, that they would study the potential for intermodal transportation of LLW to the NTS, by transferring the LLW containers from rail cars to trucks for movements to the NTS. The TPWG and DOE/NV prepared the NTS Intermodal Transportation Facility Site and Routing Evaluation Study to present basic data and analyses on alternative rail-to-truck transfer sites and related truck routes for LLW shipments to the NTS. This Environmental Assessment (EA) identifies the potential environmental impacts and transportation risks of using new intermodal transfer sites and truck routes or continuing current operations to accomplish the objectives of minimizing radiological risk, enhancing safety, and reducing cost. DOE/NV will use the results of the assessment to decide whether or not to encourage the LLW generators and their transportation contractors to change their current operations to accomplish these objectives

  14. Geomechanics of the Climax mine-by, Nevada Test Site

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-03-01

    A generic test of retrievable geologic storage of spent fuel assemblies in an underground chamber is being conducted at the Nevada Test Site. The horizontal shrinkage of the pillars is not explainable, but the vertical pillar stresses are easily understood. A two-phase project was initiated to estimate the in-situ deformability of the Climax granite and to refine the in-situ stress field data, and to model the mine-by

  15. Session II-A. Site characterization

    International Nuclear Information System (INIS)

    McIntosh, W.

    1981-01-01

    Section II-A on Site Characterization consists of the following papers which describe the progress made during the past fiscal year toward identifying sites for high-level radioactive waste repositories in deep geologic formations: (1) progress in expanded studies for repository sites; (2) evaluation of geologic and hydrologic characteristics in the Basin and Range Province relative to high-level nuclear waste disposal; (3) siting progress: Permian region; (4) Paradox Basin site exploration: a progress report; (5) progress toward recommending a salt site for an exploratory shaft; (6) status of geologic investigations for nuclear waste disposal at the Nevada Test Site; (7) geohydrologic investigation of the Hanford Site, Washington: basalt waste isolation project. Highlights include: expanding studies in crystalline rocks, both in the Appalachian and Lake Superior regions; laying the ground work with the states in the Basin and Range Province to kick off a joint USGS-state province study; narrowing areas of the Permian and Paradox bedded salt regions to a few promising locations; issuing a Gulf Coast Salt Dome Evaluation report (ONWI-109) for public review and comment; narrowing the Nevada Test Site area and Hanford Site area to locations for detailed site investigations and exploratory shafts; progress in developing the subseabed and space disposals alternatives

  16. Site study plan for routine laboratory rock mechanics, Deaf Smith County Site, Texas: Revision 1

    International Nuclear Information System (INIS)

    1987-12-01

    This Site Study Plan for Routine Laboratory Rock Mechanics describes routine laboratory testing to be conducted on rock samples collected as part of the characterization of the Deaf Smith County site, Texas. This study plan describes the early laboratory testing. Additional testing may be required and the type and scope of testing will be dependent upon the results of the early testing. This study provides for measurements of index, hydrological, mechanical, and chemical properties with tests which are standardized and used widely in geotechnical investigations. Another Site Study Plan for Nonroutine Laboratory Rock Mechanics describes laboratory testing of samples from the site to determine mechanical, thermomechanical, and thermal properties by less widely used methods, many of which have been developed specifically for characterization of the site. Data from laboratory tests will be used for characterization of rock strata, design of shafts and underground facilities, and modeling of repository behavior in support of resolution of both preclosure and postclosure issues. A tentative testing schedule and milestone log are given. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that appropriate documentation is maintained. 18 refs., 8 figs., 3 tabs

  17. Ongoing research experiments at the former Soviet nuclear test site in eastern Kazakhstan

    Science.gov (United States)

    Leith, William S.; Kluchko, Luke J.; Konovalov, Vladimir; Vouille, Gerard

    2002-01-01

    Degelen mountain, located in EasternKazakhstan near the city of Semipalatinsk, was once the Soviets most active underground nuclear test site. Two hundred fifteen nuclear tests were conducted in 181 tunnels driven horizontally into its many ridges--almost twice the number of tests as at any other Soviet underground nuclear test site. It was also the site of the first Soviet underground nuclear test--a 1-kiloton device detonated on October 11, 1961. Until recently, the details of testing at Degelen were kept secret and have been the subject of considerable speculation. However, in 1991, the Semipalatinsk test site became part of the newly independent Republic of Kazakhstan; and in 1995, the Kazakhstani government concluded an agreement with the U.S. Department of Defense to eliminate the nuclear testing infrastructure in Kazakhstan. This agreement, which calls for the "demilitarization of the infrastructure directly associated with the nuclear weapons test tunnels," has been implemented as the "Degelen Mountain Tunnel Closure Program." The U.S. Defense Threat Reduction Agency, in partnership with the Department of Energy, has permitted the use of the tunnel closure project at the former nuclear test site as a foundation on which to support cost-effective, research-and-development-funded experiments. These experiments are principally designed to improve U.S. capabilities to monitor and verify the Comprehensive Test Ban Treaty (CTBT), but have provided a new source of information on the effects of nuclear and chemical explosions on hard, fractured rock environments. These new data extends and confirms the results of recent Russian publications on the rock environment at the site and the mechanical effects of large-scale chemical and nuclear testing. In 1998, a large-scale tunnel closure experiment, Omega-1, was conducted in Tunnel 214 at Degelen mountain. In this experiment, a 100-ton chemical explosive blast was used to test technologies for monitoring the

  18. [The assessment of radionuclide contamination and toxicity of soils sampled from "experimental field" site of Semipalatinsk nuclear test site].

    Science.gov (United States)

    Evseeva, T I; Maĭstrenko, T A; Belykh, E S; Geras'kin, S A; Kriazheva, E Iu

    2009-01-01

    Large-scale maps (1:25000) of soil contamination with radionuclides, lateral distribution of 137Cs, 90Sr, Fe and Mn water-soluble compounds and soil toxicity in "Experimental field" site of Semipalatinsk nuclear test site were charted. At present soils from studied site (4 km2) according to basic sanitary standards of radiation safety adopted in Russian Federation (OSPORB) do not attributed to radioactive wastes with respect to data on artificial radionuclide concentration, but they do in compliance with IAEA safety guide. The soils studied can not be released from regulatory control due to radioactive decay of 137Cs and 90Sr and accumulation-decay of 241Am up to 2106 year according to IAEA concept of exclusion, exemption and clearance. Data on bioassay "increase of Chlorella vulgaris Beijer biomass production in aqueous extract from soils" show that the largest part of soils from the studied site (74%) belongs to stimulating or insignificantly influencing on the algae reproduction due to water-soluble compounds effect. Toxic soils occupy 26% of the territory. The main factors effecting the algae reproduction in the aqueous extracts from soil are Fe concentration and 90Sr specific activity: 90Sr inhibits but Fe stimulates algae biomass production.

  19. Corrective Action Decision Document for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada, Revision 0 with Errata

    Energy Technology Data Exchange (ETDEWEB)

    Boehlecke, Robert

    2004-11-01

    This Corrective Action Decision Document (CADD) has been prepared for Corrective Action Unit (CAU) 536: Area 3 Release Site, Nevada Test Site (NTS), Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 536 is comprised of a single Corrective Action Site (CAS), 03-44-02, Steam Jenny Discharge, and is located in Area 3 of the NTS (Figure 1-2). The CAU was investigated in accordance with the Corrective Action Investigation Plan (CAIP) and Record of Technical Change (ROTC) No. 1 (NNSA/NV, 2003). The CADD provides or references the specific information necessary to support the recommended corrective action alternative selected to complete closure of the site. The CAU 536, Area 3 Release Site, includes the Steam Jenny Discharge (CAS 03-44-02) that was historically used for steam cleaning equipment in the Area 3 Camp. Concerns at this CAS include contaminants commonly associated with steam cleaning operations and Area 3 Camp activities that include total petroleum hydrocarbons (TPH), unspecified solvents, radionuclides, metals, and polychlorinated biphenyls (PCBs). The CAIP for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada (NNSA/NV, 2003), provides additional information relating to the history, planning, and scope of the investigation; therefore, it will not be repeated in this CADD. This CADD identifies potential corrective action alternatives and provides a rationale for the selection of a recommended corrective action alternative for the CAS within CAU 536. The evaluation of corrective action alternatives is based on process knowledge and the results of the investigative activities conducted in accordance with the CAIP (NNSA/NV, 2003) that was approved prior to the start of the

  20. Comparison of constant-rate pumping test and slug interference test results at the Hanford Site B pond multilevel test facility

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Thorne, P.D.

    1995-10-01

    Pacific Northwest Laboratory (PNL), as part of the Hanford Site Ground-Water Surveillance Project, is responsible for monitoring the movement and fate of contamination within the unconfined aquifer to ensure that public health and the environment are protected. To support the monitoring and assessment of contamination migration on the Hanford Site, a sitewide 3-dimensional groundwater flow model is being developed. Providing quantitative hydrologic property data is instrumental in development of the 3-dimensional model. Multilevel monitoring facilities have been installed to provide detailed, vertically distributed hydrologic characterization information for the Hanford Site unconfined aquifer. In previous reports, vertically distributed water-level and hydrochemical data obtained over time from these multi-level monitoring facilities have been evaluated and reported. This report describes the B pond facility in Section 2.0. It also provides analysis results for a constant-rate pumping test (Section 3.0) and slug interference test (Section 4.0) that were conducted at a multilevel test facility located near B Pond (see Figure 1. 1) in the central part of the Hanford Site. A hydraulic test summary (Section 5.0) that focuses on the comparison of hydraulic property estimates obtained using the two test methods is also presented. Reference materials are listed in Section 6.0

  1. Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, 90 Sr, and 137 Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test

  2. Nevada Test Site Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Nevada Test Site (NTS) Resource Management Plan (RMP) describes the NTS Stewardship Mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. The NTS Stewardship Mission is to manage the land and facilities at the NTS as a unique and valuable national resource. The RMP has defined goals for twelve resource areas based on the principles of ecosystem management. These goals were established using an interdisciplinary team of DOE/NV resource specialists with input from surrounding land managers, private parties, and representatives of Native American governments. The overall goal of the RMP is to facilitate improved NTS land use management decisions within the Great Basin and Mojave Desert ecoregions.

  3. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-08-05

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  4. The SKI SITE-94 project approach to analyzing confidence in site-specific data

    International Nuclear Information System (INIS)

    Dverstorp, B.; Andersson, J.

    1995-01-01

    The ongoing SKI SITE-94 project is a fully integrated performance assessment based on a hypothetical repository at 500 m depth in crystalline rock. One main objective of the project is to develop a methodology for incorporating data from a site characterization into the performance assessment. The hypothetical repository is located at SKB's Hard Rock Laboratory at Aspo in south-eastern Sweden. The site evaluation in SITE-94 uses data from the pre-excavation phase that comprised measurements performed on the ground and in boreholes, including cross-hole hydraulic and tracer experiments. Uncertainties related to measurement technique, equipment and methods for interpretation were evaluated through a critical review of geohydraulic measurement methods and a complete re-evaluation of the hydraulic packer tests using the generalised radial flow (GRF) theory. Groundwater chemistry samples were analyzed for representativeness and sampling errors. A wide range of site models within geology, hydrogeology, geochemistry and rock mechanics has been developed and tested with the site characterization data. (authors). 10 refs., 3 figs., 2 tabs

  5. Housekeeping Closure Report for Corrective Action Unit 119: Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, US Department of Energy, and US Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts to the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purpose of determining appropriate corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 19 CASs with in CAU 119 on the NTS. The form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Activities included verification of the prior removal of both aboveground and underground gas/oil storage tanks, gas sampling tanks, pressure fuel tanks, tank stands, trailers, debris, and other material. Based on these former activities, no further action is required at these CASs

  6. Site specific information in site selection

    International Nuclear Information System (INIS)

    Aeikaes, T.; Hautojaervi, A.

    1998-01-01

    The programme for the siting of a deep repository for final disposal of spent nuclear fuel was started already in 1983 and is carried out today by Posiva Oy which continues the work started by Teollisuuden Voima Oy. The programme aims at site selection by the end of the year 2000. The programme has progressed in successive interim stages with defined goals. After an early phase for site identification, five sites were selected in 1987 for preliminary site characterisation. Three of these were selected and judged to be best suited for the more detailed characterisation in 1992. An additional new site was included into the programme based on a separate feasibility study in the beginning of 1997. Since the year 1983 several safety assessments together with technical plans of the facility have been completed. When approaching the site selection the needs for more detailed consideration of the site specific properties in the safety assessment have been increased. The Finnish regulator STUK has published a proposal for general safety requirements for the final disposal of spent nuclear fuel in Finland. This set of requirements has been projected to be used in conjunction of the decision making by the end 2000. Based on the site evaluation all sites can provide a stable environment and there is evidence that the requirements for the longevity of the canister can be fulfilled at each site. In this manner the four candidate sites do not differ too much from each other. The main difference between the sites is in the salinity of the deep groundwater. The significance of differences in the salinity for the long-term safety cannot be defined yet. The differences may contribute to the discussion of the longevity of the bentonite buffer and also to the modelling of the groundwater flow and transport. The use of the geosphere as a transport barrier is basically culminated on the questions about sparse but fast flow routes and 'how bad channeling can be'. To answer these questions

  7. Experience in Grid Site Testing for ATLAS, CMS and LHCb with HammerCloud

    CERN Document Server

    Van der Ster , D; Medrano Llamas, R; Legger , F; Sciaba, A; Sciacca, G; Ubeda Garca , M

    2012-01-01

    Frequent validation and stress testing of the network, storage and CPU resources of a grid site is essential to achieve high performance and reliability. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run such tests in an automated or on-demand manner. The ATLAS, CMS and LHCb experiments have all developed VO plugins for the service and have successfully integrated it into their grid operations infrastructures. This work will present the experience in running HammerCloud at full scale for more than 3 years and present solutions to the scalability issues faced by the service. First, we will show the particular challenges faced when integrating with CMS and LHCb offline computing, including customized dashboards to show site validation reports for the VOs and a new API to tightly integrate with the LHCbDIRAC Resource Status System. Next, a study of the automatic site exclusion component used by ATLAS will be presented along with results for tuning the exclusion p...

  8. Supplemental Investigation Plan for FFACO Use Restrictions, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Kidman

    2008-02-01

    This document is part of an effort to re-evaluate all FFACO URs against the current RBCA criteria (referred to in this document as the Industrial Sites [IS] RBCA process) as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006a). After reviewing all of the existing FFACO URs, the 12 URs addressed in this Supplemental Investigation Plan (SIP) could not be evaluated against the current RBCA criteria as sufficient information about the contamination at each site was not available. This document presents the plan for conducting field investigations to obtain the needed information. This SIP includes URs from Corrective Action Units (CAUs) 326, 339, 358, 452, 454, 464, and 1010, located in Areas 2, 6, 12, 19, 25, and 29 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada; and CAU 403, located in Area 3 of the Tonopah Test Range, which is approximately 165 miles north of Las Vegas, Nevada.

  9. Experience in Grid Site Testing for ATLAS, CMS and LHCb with HammerCloud

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Frequent validation and stress testing of the network, storage and CPU resources of a grid site is essential to achieve high performance and reliability. HammerCloud was previously introduced with the goals of enabling VO- and site-administrators to run such tests in an automated or on-demand manner. The ATLAS, CMS and LHCb experiments have all developed VO plugins for the service and have successfully integrated it into their grid operations infrastructures. This work will present the experience in running HammerCloud at full scale for more than 3 years and present solutions to the scalability issues faced by the service. First, we will show the particular challenges faced when integrating with CMS and LHCb offline computing, including customized dashboards to show site validation reports for the VOs and a new API to tightly integrate with the LHCbDIRAC Resource Status System. Next, a study of the automatic site exclusion component used by ATLAS will be presented along with results for tuning the exclusion ...

  10. Data on loss of off-site electric power simulation tests of the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Nakagawa, Shigeaki; Fujimoto, Nozomu; Tachibana, Yukio; Iyoku, Tatsuo

    2002-07-01

    The high temperature engineering test reactor (HTTR), the first high temperature gas-cooled reactor (HTGR) in Japan, achieved the first full power of 30 MW on December 7 in 2001. In the rise-to-power test of the HTTR, simulation tests on loss of off-site electric power from 15 and 30 MW operations were carried out by manual shutdown of off-site electric power. Because helium circulators and water pumps coasted down immediately after the loss of off-site electric power, flow rates of helium and water decreased to the scram points. To shut down the reactor safely, the subcriticality should be kept by the insertion of control rods and the auxiliary cooling system should cool the core continuously avoiding excessive cold shock to core graphite components. About 50 s later from the loss of off-site electric power, the auxiliary cooling system started up by supplying electricity from emergency power feeders. Temperature of hot plenum block among core graphite structures decreased continuously after the startup of the auxiliary cooling system. This report describes sequences of dynamic components and transient behaviors of the reactor and its cooling system during the simulation tests from 15 and 30 MW operations. (author)

  11. Preoperational test report, cross-site transfer water flush system (POTP-001)

    International Nuclear Information System (INIS)

    Parsons, G.L.

    1998-01-01

    This report documents the results of the testing performed per POTP-001, for the Cross-Site Transfer Water Flush System. (HNF-1552, Rev. 0) The Flush System consists of a 47,000 gallon tank (302C), a 20 hp pump, two 498kW heaters, a caustic addition pump, various valves, instruments, and piping. The purpose of this system is to provide flush water at 140 F, 140gpm, and pH 11-12 for the Cross-Site Transfer System operation

  12. Evaluation and modelling of SWIW tests performed within the SKB site characterisation programme

    International Nuclear Information System (INIS)

    Nordqvist, Rune

    2008-08-01

    In this report, a comprehensive overview of SWIW (Single Well Injection-Withdrawal) tests carried out within the SKB site investigations at Oskarshamn and Forsmark is presented. The purpose of this study is to make a general review and a comparison of performed SWIW tests within the site investigation programmes at the two sites. The study summarises experimental conditions for each test and discusses factors that may influence the experimental results and evaluation of the tests. Further, an extended model evaluation is carried out using a one- dimensional radial flow and transport model with matrix diffusion and matrix sorption. The intended outcome is an improved understanding of various mechanisms that may influence the SWIW test results and also to improve interpretation of the tests. Six SWIW test at each site have been carried out, generally resulting in high-quality and well documented experimental data with high tracer recovery. The tests have been performed in surface boreholes at repository depth, ranging approximately between 300 to 700 m borehole lengths. In all of the tests, a non-sorbing tracer (Uranine) and one or two sorbing tracers (cesium and rubidium) have been used simultaneously. A general result is that all of the tests demonstrate a very clear and relatively large retardation effect for the sorbing tracers. Basic initial modelling of the SWIW tests data, using a one-dimensional radial flow model with advection and dispersion, generally resulted in relatively good agreement between model and experimental data. However, a consistent feature of the initial modelling was a discrepancy between model and experimental data in the later parts of the recovery tracer breakthrough curve. It was concluded that this likely was caused by processes occurring in the tested rock formation and therefore an extended model evaluation (presented in this report) including matrix diffusion was carried out on all of the performed tests. Evaluated retardation

  13. Evaluation and modelling of SWIW tests performed within the SKB site characterisation programme

    Energy Technology Data Exchange (ETDEWEB)

    Nordqvist, Rune (Geosigma AB, Uppsala (SE))

    2008-08-15

    In this report, a comprehensive overview of SWIW (Single Well Injection-Withdrawal) tests carried out within the SKB site investigations at Oskarshamn and Forsmark is presented. The purpose of this study is to make a general review and a comparison of performed SWIW tests within the site investigation programmes at the two sites. The study summarises experimental conditions for each test and discusses factors that may influence the experimental results and evaluation of the tests. Further, an extended model evaluation is carried out using a one- dimensional radial flow and transport model with matrix diffusion and matrix sorption. The intended outcome is an improved understanding of various mechanisms that may influence the SWIW test results and also to improve interpretation of the tests. Six SWIW test at each site have been carried out, generally resulting in high-quality and well documented experimental data with high tracer recovery. The tests have been performed in surface boreholes at repository depth, ranging approximately between 300 to 700 m borehole lengths. In all of the tests, a non-sorbing tracer (Uranine) and one or two sorbing tracers (cesium and rubidium) have been used simultaneously. A general result is that all of the tests demonstrate a very clear and relatively large retardation effect for the sorbing tracers. Basic initial modelling of the SWIW tests data, using a one-dimensional radial flow model with advection and dispersion, generally resulted in relatively good agreement between model and experimental data. However, a consistent feature of the initial modelling was a discrepancy between model and experimental data in the later parts of the recovery tracer breakthrough curve. It was concluded that this likely was caused by processes occurring in the tested rock formation and therefore an extended model evaluation (presented in this report) including matrix diffusion was carried out on all of the performed tests. Evaluated retardation

  14. Hydrologic investigations to evaluate a potential site for a nuclear-waste repository, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1985-01-01

    Yucca Mountain, Nevada Test Site, is being evaluated by the U.S. Department of Energy for its suitability as a site for a mined geologic respository for high-level nuclear wastes. The repository facility would be constructed in densely welded tuffs in the unsaturated zone. In support of the evaluation, the U.S. Geological Survey is conducting hydrologic investigations of both the saturated and unsaturated zones, as well as paleohydrologic studies. Investigation in saturated-zone hydrology will help define one component of ground-water flow paths and travel times to the accessible environment. A two-dimensional, steady-state, finite-element model was developed to describe the regional hydrogeologic framework. The unsaturated zone is 450 to 700 meters thick at Yucca Mountain; precipitation averages about 150 millimeters per year. A conceptual hydrologic model of the unsaturated zone incorporates the following features: minimal net infiltration, variable distribution of flux, lateral flow, potential for perched-water zones, fracture and matrix flow, and flow along faults. The conceptual model is being tested primarily by specialized test drilling; plans also are being developed for in-situ testing in a proposed exploratory shaft. Quaternary climatic and hydrologic conditions are being evaluated to develop estimates of the hydrologic effects of potential climatic changes during the next 10,000 years. Evaluation approaches include analysis of plant macrofossils in packrat middens, evaluation of lake and playa sediments, infiltration tests, and modeling effects of potential increased recharge on the potentiometric surface

  15. Spatial Layout of Multi-Environment Test Sites: A Case Study of Maize in Jilin Province

    Directory of Open Access Journals (Sweden)

    Zuliang Zhao

    2018-05-01

    Full Text Available Variety regional tests based on multiple environments play a critical role in understanding the high yield and adaptability of new crop varieties. However, the current approach mainly depends on experience from breeding experts and is difficulty to promote because of inconsistency between testing and actual situation. We propose a spatial layout method based on the existing systematic regional test network. First, the method of spatial clustering was used to cluster the planting environment. Then, we used spatial stratified sampling to determine the minimum number of test sites in each type of environment. Finally, combined with the factors such as the convenience of transportation and the planting area, we used spatial balance sampling to generate the layout of multi-environment test sites. We present a case study for maize in Jilin Province and show the utility of the method with an accuracy of about 94.5%. The experimental results showed that 66.7% of sites are located in the same county and the unbalanced layout of original sites is improved. Furthermore, we conclude that the set of operational technical ideas for carrying out the layout of multi-environment test sites based on crop varieties in this paper can be applied to future research.

  16. New data on the Paleozoic of the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Nikitin, I.F.; Polyanskij, N.V.; Sergeeva, L.V.; Sergieva, M.N.; Sal'menova, L.T.; Utegulov, M.T.; Tsaj, D.T.; Shuzhanov, V.M.

    1998-01-01

    The latest data on Paleozoic of the Semipalatinsk test site acquired as result of the stratigraphic and pale ontological investigation which have been conducted for the first time after 46-year interval in geological studies are presented. (author)

  17. Nevada Test Site-Directed Research and Development FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Howard Bender, comp.

    2011-04-04

    This annual report of the Site-Directed Research and Development (SDRD) program represents the highly significant R&D accomplishments conducted during fiscal year 2010. This year was noteworthy historically, as the Nevada Test Site was renamed to the Nevada National Security Site (NNSS). This change not only recognizes how the site's mission has evolved, but also heralds a future of new challenges and opportunities for the NNSS. In many ways, since its inception in 2002, the SDRD program has helped shape that evolving mission. As we approach 2012, SDRD will also mark a milestone, having completed its first full decade of innovative R&D in support of the site and national security. The program continues to fund advanced science and technology development across traditional Department of Energy (DOE) nuclear security areas such as stockpile stewardship and non-proliferation while also supporting Department of Homeland Security (DHS) needs, and specialized work for government agencies like the Department of Defense (DoD) and others. The NNSS will also contribute technologies in the areas of treaty verification and monitoring, two areas of increasing importance to national security. Keyed to the NNSS's broadened scope, the SDRD program will continue to anticipate and advance R&D projects that will help the NNSS meet forthcoming challenges.

  18. Benefits of Multiple Methods for Evaluating HIV Counseling and Testing Sites in Pennsylvania.

    Science.gov (United States)

    Encandela, John A.; Gehl, Mary Beth; Silvestre, Anthony; Schelzel, George

    1999-01-01

    Examines results from two methods used to evaluate publicly funded human immunodeficiency virus (HIV) counseling and testing in Pennsylvania. Results of written mail surveys of all sites and interviews from a random sample of 30 sites were similar in terms of questions posed and complementary in other ways. (SLD)

  19. Construction management at the SP-100 ground engineering system test site

    International Nuclear Information System (INIS)

    Burchell, G.P.; Wilson, L.R.

    1991-01-01

    Contractors under the U.S. Department of Energy management have implemented a comprehensive approach to the management of design and construction of the complex facility modifications at the SP-100 Ground Engineering System Test Site on the Hanford Reservation. The SP-100 Test Site employs a multi-organizational integrated management approach with clearly defined responsibilities to assure success. This approach allows for thorough planning and analysis before the project kick off, thus minimizing the number and magnitude of problems which arise during the course of the project. When combined with a comprehensive cost and schedule/project management reporting system the problems which do occur are recognized early enough to assure timely intervention and resolution

  20. O&M report for DanWEC Hanstholm test site

    DEFF Research Database (Denmark)

    Grant, Christian Nereus; Tetu, Amélie

    The report is prepared for the Danish Energy Agency under The Energy Technology Development and Demonstration Program (EUDP), project “Resource Assessment, Forecasts and WECs O&M strategies at DanWEC and beyond”. This report includes observation, planning and maintenance descriptions for the Dan......WEC test site (HTS) located west of the Port of Hanstholm....

  1. Site organization and site arrangement

    International Nuclear Information System (INIS)

    Boissonnet, B.; Macqueron, J.F.

    1976-01-01

    The present paper deals with criteria for the choice of a production unit or power plant site, the organization and development of a site in terms of its particular characteristics and takes into account personnel considerations in site organizations as well as the problem of integrating the architecture into the environment. (RW) [de

  2. Environmental survey of southern part of former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Zharikov, S.K.

    2000-01-01

    The present paper discusses results of the environmental survey performed in selected areas of Semipalatinsk test site southern part and gives calculations of possible annual radionuclide (Cs-37, Sr-90 and Pu-239/240) intake due to local husbandry products. (author)

  3. Testing Pearl Model In Three European Sites

    Science.gov (United States)

    Bouraoui, F.; Bidoglio, G.

    The Plant Protection Product Directive (91/414/EEC) stresses the need of validated models to calculate predicted environmental concentrations. The use of models has become an unavoidable step before pesticide registration. In this context, European Commission, and in particular DGVI, set up a FOrum for the Co-ordination of pes- ticide fate models and their USe (FOCUS). In a complementary effort, DG research supported the APECOP project, with one of its objective being the validation and im- provement of existing pesticide fate models. The main topic of research presented here is the validation of the PEARL model for different sites in Europe. The PEARL model, actually used in the Dutch pesticide registration procedure, was validated in three well- instrumented sites: Vredepeel (the Netherlands), Brimstone (UK), and Lanna (Swe- den). A step-wise procedure was used for the validation of the PEARL model. First the water transport module was calibrated, and then the solute transport module, using tracer measurements keeping unchanged the water transport parameters. The Vrede- peel site is characterised by a sandy soil. Fourteen months of measurements were used for the calibration. Two pesticides were applied on the site: bentazone and etho- prophos. PEARL predictions were very satisfactory for both soil moisture content, and pesticide concentration in the soil profile. The Brimstone site is characterised by a cracking clay soil. The calibration was conducted on a time series measurement of 7 years. The validation consisted in comparing predictions and measurement of soil moisture at different soil depths, and in comparing the predicted and measured con- centration of isoproturon in the drainage water. The results, even if in good agreement with the measuremens, highlighted the limitation of the model when the preferential flow becomes a dominant process. PEARL did not reproduce well soil moisture pro- file during summer months, and also under-predicted the arrival of

  4. Techniques to eliminate nuclear weapons testing infrastructure at former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Erofeev, I.E.; Kovalev, V.V.

    2003-01-01

    It was at the former Semipalatinsk Test Site where for the first time in the world the nuclear weapons testing infrastructure elimination was put into practice. Fundamentally new procedures for blasting operations have been developed by specialists of the Kazakh State Research and Production Center of Blasting Operations (KSCBO), National Nuclear Center of the Republic of Kazakhstan (NNC) and Degelen Enterprise to enhance reliability and provide safety during elimination of various objects and performance of large-scale experiments. (author)

  5. Nevada Test Site annual site environmental report for calendar year 1997

    International Nuclear Information System (INIS)

    Black, S.C.; Townsend, Y.E.

    1998-10-01

    Monitoring and surveillance, on and around the Nevada Test Site, (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1997, indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above existing background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency's (EPA's) Clean Air Package 1988 (CAP88)-PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.089 mrem. Hazardous wastes were shipped offsite to approved disposal facilities

  6. Nevada Test Site annual site environmental report for calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Townsend, Y.E. [eds.

    1998-10-01

    Monitoring and surveillance, on and around the Nevada Test Site, (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1997, indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above existing background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA`s) Clean Air Package 1988 (CAP88)-PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.089 mrem. Hazardous wastes were shipped offsite to approved disposal facilities.

  7. Options for clean-up of the Maralinga test site

    International Nuclear Information System (INIS)

    1985-06-01

    This report examines the limit of contamination of the soil and ground cover by 239 Pu, 235 U and 241 Am which may be considered as permitting the unrestricted land use of the former nuclear weapon test sites at Emu and Maralinga by Aboriginal groups. It reports on the options available to achieve this objective and their cost

  8. Radiological effluents released from nuclear rocket and ramjet engine tests at the Nevada Test Site 1959 through 1969: Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, H.N.

    1995-06-01

    Nuclear rocket and ramjet engine tests were conducted on the Nevada Test Site (NTS) in Area 25 and Area 26, about 80 miles northwest of Las Vegas, Nevada, from July 1959 through September 1969. This document presents a brief history of the nuclear rocket engine tests, information on the off-site radiological monitoring, and descriptions of the tests.

  9. Annual Report - FY 1998, Shipments to and from the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    1999-01-01

    This report summarizes waste shipments to the Nevada Test Site Radioactive Waste Management Sites at Area 3 and Area 5 during fiscal year 1998. In addition this report provides a summary evaluation of each shipping campaign by source (waste generator) which identifies observable incidents, if any, associated with the actual waste shipments

  10. Determination of antenna factors using a three-antenna method at open-field test site

    Science.gov (United States)

    Masuzawa, Hiroshi; Tejima, Teruo; Harima, Katsushige; Morikawa, Takao

    1992-09-01

    Recently NIST has used the three-antenna method for calibration of the antenna factor of an antenna used for EMI measurements. This method does not require the specially designed standard antennas which are necessary in the standard field method or the standard antenna method, and can be used at an open-field test site. This paper theoretically and experimentally examines the measurement errors of this method and evaluates the precision of the antenna-factor calibration. It is found that the main source of the error is the non-ideal propagation characteristics of the test site, which should therefore be measured before the calibration. The precision of the antenna-factor calibration at the test site used in these experiments, is estimated to be 0.5 dB.

  11. Ground-water data for the Nevada Test Site 1992, and for selected other areas in South-Central Nevada, 1952--1992

    International Nuclear Information System (INIS)

    1992-01-01

    Ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site have been compiled in a recently released report. These data were collected by the US Geological Survey, Department of the Interior, in support of the US Department of Energy, Environmental Restoration and Hydrologic Resources Management Programs. Depth-to-water measurements were made at 53 sites at the Nevada Test Site from October 1, 1991, to September 30, 1992, and at 60 sites in the vicinity of the Nevada Test Site from 1952 to September 30, 1992. For water year 1992, depth to water ranged from 288 to 2,213 feet below land surface at the Nevada Test Site and from 22 to 1,460 feet below land surface at sites in the vicinity of the Nevada Test Site. Total ground-water withdrawal data compiled for 12 wells at the Nevada Test Site during calendar year 1992 was more than 400 million gallons. Tritium concentrations in water samples collected from five test holes at the Nevada Test Site in water year 1992 did not exceed the US Environmental Protection Agency drinking, water limit

  12. CTBT calibration explosions at the Semipalatinsk test site (1997-2000)

    International Nuclear Information System (INIS)

    Leith, W.; Kluchko, L.J.; Knowles, C.P.; Linger, D.A.; Gabriel, L.; Belyashova, N.N.; Tukhvatulin, Sh.T.; Demin, V.N.; Konovalov, V.E.

    2000-01-01

    The article shows the results of experiments, conducted together by American and Kazakhstan researchers at the Semipalatinsk test site during 6 chemical calibration explosions and preparation of the seventh between 1997 and 2000. The main goal of the experiments is calibration of International Monitoring System for Comprehensive Test Ban Treaty and development of understanding of explosions as seismic sources. (author)

  13. Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J.I. [ed.; Anspaugh, L.R.; Bogen, K.T.; Daniels, J.I.; Layton, D.W.; Straume, T. [Lawrence Livermore National Lab., CA (United States); Andricevic, R.; Jacobson, R.L. [Nevada Univ., Las Vegas, NV (United States). Water Resources Center; Meinhold, A.F.; Holtzman, S.; Morris, S.C.; Hamilton, L.D. [Brookhaven National Lab., Upton, NY (United States)

    1993-06-01

    The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of {sup 239,24O}Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual {sup 239}Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with {sup 239,24O}Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10{sup {minus}6}, 6 x 10{sup {minus}5}, and 5 x 10{sup {minus}4}, respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

  14. Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J.I. (ed.)

    1993-06-01

    The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of [sup 239,24O]Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual [sup 239]Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with [sup 239,24O]Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10[sup [minus]6], 6 x 10[sup [minus]5], and 5 x 10[sup [minus]4], respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

  15. Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Daniels, J.I.; Andricevic, R.; Jacobson, R.L.

    1993-06-01

    The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of 239,24O Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual 239 Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with 239,24O Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10 -6 , 6 x 10 -5 , and 5 x 10 -4 , respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung

  16. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 204: STORAGE BUNKERS, NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    2006-01-01

    Corrective Action Unit (CAU) 330 consists of four Corrective Action Sites (CASs) located in Areas 6, 22, and 23 of the Nevada Test Site (NTS). The unit is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites. CAU 330 consists of the following CASs: CAS 06-02-04, Underground Storage Tank (UST) and Piping CAS 22-99-06, Fuel Spill CAS 23-01-02, Large Aboveground Storage Tank (AST) Farm CAS 23-25-05, Asphalt Oil Spill/Tar Release

  17. Rocketdyne Division annual site environmental report Santa Susana Field Laboratory and Desoto sites 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-30

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation (Rocketdyne). These are identified as the Santa Susana Field Laboratory (SSFL) and the DeSoto site. The sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The DeSoto site essentially comprises office space and light industry with no remaining radiological operations, and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warrants comprehensive monitoring to assure protection of the environment. SSFL consists of four administrative areas used for research, development, and test operations as well as a buffer zone. A portion of Area I and all of Area II are owned by the U.S. Government and assigned to the National Aeronautics and Space Administration (NASA). A portion of Area IV is under option for purchase by the Department of Energy (DOE).

  18. Rocketdyne Division annual site environmental report Santa Susana Field Laboratory and Desoto sites 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation (Rocketdyne). These are identified as the Santa Susana Field Laboratory (SSFL) and the DeSoto site. The sites have been used for manufacturing, R ampersand D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The DeSoto site essentially comprises office space and light industry with no remaining radiological operations, and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warrants comprehensive monitoring to assure protection of the environment. SSFL consists of four administrative areas used for research, development, and test operations as well as a buffer zone. A portion of Area I and all of Area II are owned by the U.S. Government and assigned to the National Aeronautics and Space Administration (NASA). A portion of Area IV is under option for purchase by the Department of Energy (DOE)

  19. Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado

    International Nuclear Information System (INIS)

    Chapman, J.; Earman, S.; Andricevic, R.

    1996-10-01

    DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab

  20. HIV misdiagnosis in sub-Saharan Africa: performance of diagnostic algorithms at six testing sites

    Science.gov (United States)

    Kosack, Cara S.; Shanks, Leslie; Beelaert, Greet; Benson, Tumwesigye; Savane, Aboubacar; Ng’ang’a, Anne; Andre, Bita; Zahinda, Jean-Paul BN; Fransen, Katrien; Page, Anne-Laure

    2017-01-01

    Abstract Introduction: We evaluated the diagnostic accuracy of HIV testing algorithms at six programmes in five sub-Saharan African countries. Methods: In this prospective multisite diagnostic evaluation study (Conakry, Guinea; Kitgum, Uganda; Arua, Uganda; Homa Bay, Kenya; Doula, Cameroun and Baraka, Democratic Republic of Congo), samples from clients (greater than equal to five years of age) testing for HIV were collected and compared to a state-of-the-art algorithm from the AIDS reference laboratory at the Institute of Tropical Medicine, Belgium. The reference algorithm consisted of an enzyme-linked immuno-sorbent assay, a line-immunoassay, a single antigen-enzyme immunoassay and a DNA polymerase chain reaction test. Results: Between August 2011 and January 2015, over 14,000 clients were tested for HIV at 6 HIV counselling and testing sites. Of those, 2786 (median age: 30; 38.1% males) were included in the study. Sensitivity of the testing algorithms ranged from 89.5% in Arua to 100% in Douala and Conakry, while specificity ranged from 98.3% in Doula to 100% in Conakry. Overall, 24 (0.9%) clients, and as many as 8 per site (1.7%), were misdiagnosed, with 16 false-positive and 8 false-negative results. Six false-negative specimens were retested with the on-site algorithm on the same sample and were found to be positive. Conversely, 13 false-positive specimens were retested: 8 remained false-positive with the on-site algorithm. Conclusions: The performance of algorithms at several sites failed to meet expectations and thresholds set by the World Health Organization, with unacceptably high rates of false results. Alongside the careful selection of rapid diagnostic tests and the validation of algorithms, strictly observing correct procedures can reduce the risk of false results. In the meantime, to identify false-positive diagnoses at initial testing, patients should be retested upon initiating antiretroviral therapy. PMID:28691437

  1. Evaluation of fall chinook salmon spawning adjacent to the In-Situ Redox Manipulation treatability test site, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Mueller, R.P.; Geist, D.R.

    1998-10-01

    The In Situ Redox Manipulation (ISRM) experiment is being evaluated as a potential method to remove contaminants from groundwater adjacent to the Columbia River near the 100-D Area. The ISRM experiment involves using sodium dithionate (Na 2 O 6 S 2 ) to precipitate chromate from the groundwater. The treatment will likely create anoxic conditions in the groundwater down-gradient of the ISRM treatability test site; however, the spatial extent of this anoxic plume is not exactly known. Surveys were conducted in November 1997, following the peak spawning of fall chinook salmon. Aerial surveys documented 210 redds (spawning nests) near the downstream island in locations consistent with previous surveys. Neither aerial nor underwater surveys documented fall chinook spawning in the vicinity of the ISRM treatability test site. Based on measurements of depth, velocity, and substrate, less than 1% of the study area contained suitable fall chinook salmon spawning habitat, indicating low potential for fall chinook salmon to spawn in the vicinity of the ISRM experiment

  2. Stereo Evaluation of CARTOSAT-1 Data on Test Site 5 - First DLR Results

    OpenAIRE

    Lehner, Manfred; Müller, Rupert; Reinartz, Peter

    2006-01-01

    DLR's Remote Sensing Technology Institute has more than 20 years of history in developing spaceborne stereo scanners (MEOSS, MOMS) and the corresponding stereo evaluation software systems. The institute takes part in CARTOSAT-1 Scientific Assessment Program (C-SAP) as a principal investigator for German (Southeast Bavaria, test site not yet included in the C-SAP list) and Spanish (Catalonia, TS10) test sites for which also PI evaluations for SPOT-5 HRS SAP had been done in 2003-4. As CARTO...

  3. Cleanup procedures at the Nevada Test Site and at other radioactively contaminated sites including representative costs of cleanup and treatment of contaminated areas

    International Nuclear Information System (INIS)

    Talmage, S.S.; Chilton, B.D.

    1987-09-01

    This review summarizes available information on cleanup procedures at the Nevada Test Site and at other radioactively contaminated sites. Radionuclide distribution and inventory, size of the contaminated areas, equipment, and cleanup procedures and results are included. Information about the cost of cleanup and treatment for contaminated land is presented. Selected measures that could be useful in estimating the costs of cleaning up radioactively contaminated areas are described. 76 refs., 16 tabs

  4. Ecosytem Services: A Rapid Assessment Method Tested at 35 Sites of the LTER-Europe Network

    Directory of Open Access Journals (Sweden)

    Dick Jan

    2014-08-01

    Full Text Available The identification of parameters to monitor the ecosystem services delivered at a site is fundamental to the concept’s adoption as a useful policy instrument at local, national and international scales. In this paper we (i describe the process of developing a rapid comprehensive ecosystem service assessment methodology and (ii test the applicability of the protocol at 35 long-term research (LTER sites across 14 countries in the LTER-Europe network (www.lter-europe.net including marine, urban, agricultural, forest, desert and conservation sites. An assessment of probability of occurrence with estimated confidence score using 83 ecosystem service parameters was tested. The parameters were either specific services like food production or proxies such as human activities which were considered surrogates for cultural diversity and economic activity. This initial test of the ecosystem service parameter list revealed that the parameters tested were relatively easy to score by site managers with a high level of certainty (92% scored as either occurring or not occurring at the site with certainty of over 90%. Based on this assessment, we concluded that (i this approach to operationalise the concept of ecosystem services is practical and applicable by many sectors of civil society as a first screen of the ecosystem services present at a site, (ii this study has direct relevance to land management and policy decision makers as a transparent vehicle to focus testing scenarios and target data gathering, but (iii further work beyond the scale investigated here is required to ensure global applicability.

  5. Radiostrontium contamination of soil and vegetation within the Semipalatinsk test site.

    Science.gov (United States)

    Howard, B J; Semioschkina, N; Voigt, G; Mukusheva, M; Clifford, J

    2004-12-01

    The Semipalatinsk nuclear test site (STS) in the Republic of Kazakhstan was an important site for testing atomic bombs and other civil and military nuclear devices of the former Soviet Union. Results are presented from investigations on the extent of radiostrontium contamination in soils and vegetation at the technical areas of the STS, where the tests were conducted and in pastures used by farmers for grazing animals or for hay production. Our data are compared with those reported largely in the recent Russian language literature that has been reviewed. The extent of (90)Sr contamination of soil is highly variable over the STS with the highest values associated with the technical areas, particularly the Degelen mountains. Recently measured values in both the present data and the Russian language literature confirm the relatively high current contamination of soil and vegetation in the vicinity of tunnels and associated watercourses in the Degelen area. The proportion of (90)Sr in soil which could not be extracted with 6 M HCl was only an average of 20%, which is low compared to other test site areas and possibly indicates a relatively high mobility in this area, because the (90)Sr is derived from leakage from explosion tunnels along watercourses rather than being associated with fused silicates. A comparison of relative activity concentrations in soil and vegetation suggests that the transfer of (90)Sr to vegetation on the STS is high compared to that of (137)Cs and plutonium.

  6. The site-characterization plan and its role in resolving siting and licensing issues

    International Nuclear Information System (INIS)

    Hanlon, C.L.

    1986-01-01

    As required by the Nuclear Waste Policy Act and the Nuclear Regulatory Commission (NRC) in 10 CFR Part 60, the Department of Energy is preparing plans for conducting site characterization at three candidate sites. Prepared according to a detailed annotated outline that is based on the NRC's Regulatory Guide 4.17, these plans will present the information collected to date about the geologic, hydrologic, geochemical, geoengineering, and climatic conditions of each site; describe the design of the repository and the waste package; and discuss the site-characterization program. The most important portions of the plan will be the strategy for resolving siting and licensing issues and the description of the testing and analysis program to be followed in resolving these issues. The issues-resolution strategy consists of identifying issues and the associated information needs; allocating performance goals for various components of the repository system; developing a testing plan to gather the necessary information; gathering and analyzing the information; and documenting the results for use in site selection and licensing. The issues-resolution strategy will allow the Department to define all of the issues that must be resolved in order to demonstrate compliance with applicable regulations and to specify the information needed to resolve these issues. It will provide a consistent framework and establish priorities for the Department's site-characterization effort for the next several years

  7. Preliminary interpretation of thermal data from the Nevada Test Site

    International Nuclear Information System (INIS)

    Sass, J.H.; Lachenbruch, A.H.

    1982-01-01

    Analysis of data from 60 wells in and around the Nevada Test Site, including 16 in the Yucca Mountain area, indicates a thermal regime characterized by large vertical and lateral gradients in heat flow. Estimates of heat flow indicate considerable variation on both regional and local scales. The variations are attributable primarily to hydrologic processes involving interbasin flow with a vertical component of (seepage) velocity (volume flux) of a few mm/yr. Apart from indicating a general downward movement of water at a few mm/yr, the reults from Yucca Mountain are as yet inconclusive. The purpose of the study was to determine the suitability of the area for proposed repository sites

  8. Preliminary Site Characterization Report, Rulsion Site, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

  9. New Standards for the Validation of EMC Test Sites particularly above 1 GHz

    Directory of Open Access Journals (Sweden)

    S. Battermann

    2005-01-01

    Full Text Available Standards for the validation of alternative test sites with conducting groundplane exist for the frequency range 30-1000 MHz since the end of the eighties. Recently the procedure for fully anechoic rooms (FAR has been included in CISPR 16 after more than 10 years intensive discussion in standards committees (CENELEC, 2002; CISPR, 2004. But there are no standards available for the validation of alternative test sites above 1 GHz. The responsible working group (WG1 in CISPR/A has drawn up the 7th common draft (CD. A CDV will be published in spring 2005. The German standards committee VDE AK 767.4.1 participates in the drafting of the standard. All suggested measurement procedures proposed in the last CDs have been investigated by measurements and theoretical analysis. This contribution describes the basic ideas and problems of the validation procedure of the test site. Furthermore measurement results and numerical calculations will be presented especially for the use of omni-directional antennas.

  10. Soil monitoring in Pavlodar region adjoining to Semipalatinsk test site

    International Nuclear Information System (INIS)

    Tuleubaev, B.A.; Ramazanov, Zh.R.; Askarov, E.V.

    2004-01-01

    A problem of territory study and rehabilitation contaminated with man-caused radionuclides is an important task and it has economic, social, and ecology aspects. The problem is crucial for Pavlodar region due to real proximity and to partial location of Semipalatinsk Test Site on its territory. (author)

  11. Salmon Site Remedial Investigation Report

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  12. Safety Assessment Document for the Spent Reactor Fuel Geologic Storage Test in the Climax Granite Stock at the Nevada Test site

    International Nuclear Information System (INIS)

    1980-01-01

    The objective of the Spent Fuel Geologic Storage Test in the Climax Granite Stock is to evaluate the response of a granitic rock mass to the underground storage of encapsulated spent reactor fuel in a geometry that simulates a module of a large-scale geologic repository. This document reports an assessment of the safety of conducting this test. Descriptions are provided of the geography, meteorology, hydrology, geology, and seismology of the Climax Site; the effects of postulated natural phenomena and other activities at the nevada Test Site on the safety of the test; and the design and operation of the test facility and associated equipment. Evaluations are made of both the radiological and nonradiological impacts of normal operations, abnormal operations, and postulated accidents. It is concluded that conduct of the spent fuel test at the Climax Site will not result in any undue risk to the public, property, environment, or site employees

  13. 2006 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Gregory J, Shott, Vefa Yucel

    2007-03-01

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2006) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, with the results submitted as an annual summary report to the U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 2000; 2002). The DOE, National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2006 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs results. This annual summary report presents data and conclusions from the FY 2006 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, and closure plans, as well as monitoring results and research and development (R&D) activities, were reviewed in FY 2006 for determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed for determination of the adequacy of the CAs.

  14. 2006 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Gregory J; Shott, Vefa Yucel

    2007-01-01

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2006) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, with the results submitted as an annual summary report to the U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 2000; 2002). The DOE, National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2006 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs results. This annual summary report presents data and conclusions from the FY 2006 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, and closure plans, as well as monitoring results and research and development (R and D) activities, were reviewed in FY 2006 for determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R and D activities were reviewed for determination of the adequacy of the CAs

  15. Expedited Site Characterization: A rapid, cost-effective process for preremedial site characterization

    International Nuclear Information System (INIS)

    Burton, J.C.; Walker, J.L.; Jennings, T.V.; Aggarwal, P.K.; Hastings, B.; Meyer, W.T.; Rose, C.M.; Rosignolo, C.L.

    1993-01-01

    Argonne National Laboratory has developed a unique, cost- and time-effective, technically innovative process for preremedial site characterization, referred to as Expedited Site Characterization (ESC). The cost of the ESC field sampling process ranges from 1/10 to 1/5 of the cost of traditional site characterization. The time required for this ESC field activity is approximately 1/30 of that for current methods. Argonne's preremedial site investigations based on this approach have been accepted by the appropriate regulatory agencies. The ESC process is flexible and neither site nor contaminant dependent. The process has been successfully tested and applied in site investigations of multiple contaminated landfills in New Mexico (for the US Department of the Interior's Bureau of Land Management [BLM]) and at former grain storage facilities in Nebraska and Kansas, contaminated with carbon tetrachloride (for the Department of Agriculture's Commodity Credit Corporation [CCC/USDA]). A working demonstration of this process was sponsored by the US Department of Energy (DOE) Office of Technology Development as a model of the methodology needed to accelerate site characterizations at DOE facilities. This report describes the application of the process in New Mexico, Nebraska and Kansas

  16. Maintenance Plan for the Performance Assessments and Composite Analyses of the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    International Nuclear Information System (INIS)

    Vefa Yucel

    2007-01-01

    U.S. Department of Energy (DOE) Manual M 435.1-1 requires that performance assessments (PAs) and composite analyses (CAs) for low-level waste (LLW) disposal facilities be maintained by the field offices. This plan describes the activities performed to maintain the PA and the CA for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). This plan supersedes the Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (DOE/NV/11718--491-REV 1, dated September 2002). The plan is based on U.S. Department of Energy (DOE) Order 435.1 (DOE, 1999a), DOE Manual M 435.1-1 (DOE, 1999b), the DOE M 435.1-1 Implementation Guide DOE G 435.1-1 (DOE, 1999c), and the Maintenance Guide for PAs and CAs (DOE, 1999d). The plan includes a current update on PA/CA documentation, a revised schedule, and a section on Quality Assurance

  17. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan

    Directory of Open Access Journals (Sweden)

    Bernd Grosche

    2015-05-01

    Full Text Available The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today’s radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.

  18. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan.

    Science.gov (United States)

    Grosche, Bernd; Zhunussova, Tamara; Apsalikov, Kazbek; Kesminiene, Ausrele

    2015-01-01

    The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today's radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.

  19. Draft site characterization analysis of the site characterization report for the Basalt Waste Isolation Project, Hanford, Washington site. Appendices E through W

    International Nuclear Information System (INIS)

    1983-03-01

    Volume 2 contains Appendices E through W: potential for large-scale pump tests in the Grande Ronde; review of hydrochemical characterization related to flow system interpretation in Hanford basalts; limitations of packer-testing for head evaluation in Hanford basalts; hydrogeologic data integration for conceptual groundwater flow models; drilling mud effects on hydrogeologic testing; site issue analyses related to the nature at the present groundwater system at the Hanford site, Washington; structural and stratigraphic characteristics related to groundwater flow at the Hanford site, Washington; seismic hazard and some examples of hazard studies at Hanford; earthquake swarms in the Columbia Plateau; seismic ground motion at depth; failure modes for the metallic waste package component; degradation mechanisms of borosilicate glass; transport and retardation of radionuclides in the waste package; determination and interpretation of redox conditions and changes in underground high-level repositories; determination and interpretation of sorption data applied to radionuclide migration in underground repositories; solubility of radionuclide compounds presented in the BWIP site characterization report; and release rate from engineered system

  20. Assessment of hydrologic transport of radionuclides from the Gasbuggy underground nuclear test site, New Mexico

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gasbuggy site in northwestern New Mexico was the location of an underground detonation of a 29-kiloton nuclear device in 1967. The test took place in the Lewis Shale, approximately 182 m below the Ojo Alamo Sandstone, which is the aquifer closest to the detonation horizon. The conservative assumption was made that tritium was injected from the blast-created cavity into the Ojo Alamo Sandstone by the force of the explosion, via fractures created by the shot. Model results suggest that if radionuclides produced by the shot entered the Ojo Alamo, they are most likely contained within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity, followed by the variance in hydraulic conductivity, the correlation scale of hydraulic conductivity, the transverse hydrodynamic dispersion coefficient, and uncertainty in the source size. This modeling was performed to investigate how the uncertainty in various physical parameters affects calculations of radionuclide transport at the Gasbuggy site, and to serve as a starting point for discussion regarding further investigation at the site; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values

  1. DOE site performance assessment activities

    International Nuclear Information System (INIS)

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions

  2. Rehabilitation of nuclear test site at Maralinga

    International Nuclear Information System (INIS)

    Grad, P.

    1997-01-01

    A program to rehabilitate contaminated areas at the Maralinga Nuclear Test Range in South Australia is being undertaken by the Australian Department of Primary Industries and Energy (DPIE). A major part of the program is directed at reducing the risk presented by the contaminated debris buried at Taranaki, Maralinga's most heavily contaminated site. The rehabilitation program is using the insitu vitrification technology developed for the US Department of Energy. The program is now in its third phase, involving the construction of the full-scale treatment plant. This will be completed later this year. The fourth and last phase will involve the treatment of the Taranaki pits. This will commence in 1998. Tests carried out so far indicated that the normalized leach rates for all oxides in the vitrified product were less than 0.1g/m 2 . ills

  3. GES [Ground Engineering System] test site preparation

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.; Schade, A.R.; Toyoda, K.G.

    1987-10-01

    Activities are under way at Hanford to convert the 309 containment building and its associated service wing to a nuclear test facility for the Ground Engineering System (GES) test. Conceptual design is about 80% complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system, a test article cell and handing system, control and data handling systems, and safety andl auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 25% complete. Cleanout of some 1000 m 3 of equipment from the earlier reactor test in the facility is 85% complete. An Environmental Assessment was prepared and revised to incorporate Department of Energy (DOE) comments. It is now in the DOE approval chain, where a Finding of No Significant Impact is expected. During the next year, definite design will be well advanced, long-lead procurements will be initiated, construction planning will be completed, an operator training plan will be prepared, and the site (preliminary) safety analysis report will be drafted

  4. Streamlined approach for environmental restoration closure report for Corrective Action Unit No. 456: Underground storage tank release site 23-111-1, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    The underground storage tank (UST) release site 23-111-1 is located in Mercury, Nevada. The site is in Area 23 of the Nevada Test Site, (NTS) located on the north side of Building 111. The tank associated with the release was closed in place using cement grout on September 6, 1990. The tank was not closed by removal due to numerous active underground utilities, a high-voltage transformer pad, and overhead power lines. Soil samples collected below the tank bottom at the time of tank closure activities exceeded the Nevada Administrative Code Action Level of 100 milligrams per kilogram (mg/kg) for petroleum hydrocarbons. Maximum concentrations detected were 119 mg/kg. Two passive venting wells were subsequently installed at the tank ends to monitor the progress of biodegradation at the site. Quarterly air sampling from the wells was completed for approximately one year, but was discontinued since data indicated that considerable biodegradation was not occurring at the site

  5. In situ radiological characterization to support a test excavation at a liquid waste disposal site

    International Nuclear Information System (INIS)

    Keele, B.D.; Bauer, R.G.; Blewett, G.R.; Troyer, G.L.

    1994-05-01

    An in situ radiological detection system was developed to support a small test excavation at a liquid waste disposal site at the Hanford Site in Richland, Washington. Instrumentation, calibration and comparisons to samples are discussed

  6. Nevada Test Site Wetlands Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  7. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2006-01-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present

  8. Long Term Wave Climate at the Danish Test Site DanWEC Based on 35 Years Hindcast Data

    DEFF Research Database (Denmark)

    Tetu, Amélie; Jensen, Palle Martin; Kramer, Morten Mejlhede

    2017-01-01

    This paper presents an analysis of the wave climate of the DanWEC test site based on the 35 years hindcast data. This includes monthly and annual variation of the wave climate at the site together with an analysis of extreme events. This work includees results from the project “Resource Assessment...... and reduce WEC’s costs. The work so far has been concentrated on establishing the base for gaining detailed information on the wave and current climate at DanWEC. In this paper an analysis of the wave climate at the DanWEC test site based on 35 years modelled data will be presented. Relevant characteristics...... of the test site, such as scatter tables in terms of wave height and energy period (Hm0, Te) and weather window characteristics will be given. Based on 35 years of data gathered so far, an analysis of extreme events at the DanWEC test site is also included in this work....

  9. Site Response Analysis Using DeepSoil: Case Study of Bangka Site, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Iswanto, Eko Rudi; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    Logging Test (Downhole Seismic Method) and Standard Penetration Test results. The soil profiles consist of a 34 m layer of silty clay, and granite thereafter. The shear wave velocity varies each layer. The groundwater is known at depth of about 4 m. The EQL and NL ground response method was modelled with DeepSoil using dynamic soil properties and Sukai2 input motion was subjected to WB site.

  10. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Rawlinson

    2001-09-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

  11. Spent fuel handling system for a geologic storage test at the Nevada Test Site

    International Nuclear Information System (INIS)

    Duncan, J.E.; House, P.A.; Wright, G.W.

    1980-01-01

    The Lawrence Livermore Laboratory is conducting a test of the geologic storage of encapsulated spent commercial reactor fuel assemblies in a granitic rock at the Nevada Test Site. The test, known as the Spent Fuel Test-Climax (SFT-C), is sponsored by the US Department of Energy, Nevada Operations Office. Eleven pressurized-water-reactor spent fuel assemblies are stored retrievably for three to five years in a linear array in the Climax stock at a depth of 420 m

  12. Early Site Permit Demonstration Program: Siting Guide, Site selection and evaluation criteria for an early site permit application

    International Nuclear Information System (INIS)

    1993-01-01

    In August 1991, the Joint Contractors came to agreement with Sandia National Laboratories (SNL) and the Department of Energy (DOE) on a workscope for the cost-shared Early Site Permit Demonstration Program. One task within the scope was the development of a guide for site selection criteria and procedures. A generic Siting Guide his been prepared that is a roadmap and tool for applicants to use developing detailed siting plans for their specific region of the country. The guide presents three fundamental principles that, if used, ensure a high degree of success for an ESP applicant. First, the site selection process should take into consideration environmentally diverse site locations within a given region of interest. Second, the process should contain appropriate opportunities for input from the public. Third, the process should be applied so that it is clearly reasonable to an impartial observer, based on appropriately selected criteria, including criteria which demonstrate that the site can host an advanced light water reactor (ALWR). The Siting Guide provides for a systematic, comprehensive site selection process in which three basic types of criteria (exclusionary, avoidance, and suitability) are presented via a four-step procedure. It provides a check list of the criteria for each one of these steps. Criteria are applied qualitatively, as well as presented numerically, within the guide. The applicant should use the generic guide as an exhaustive checklist, customizing the guide to his individual situation

  13. Classification of groundwater at the Nevada Test Site

    International Nuclear Information System (INIS)

    Chapman, J.B.

    1994-08-01

    Groundwater occurring at the Nevada Test Site (NTS) has been classified according to the ''Guidelines for Ground-Water Classification Under the US Environmental Protection Agency (EPA) Ground-Water Protection Strategy'' (June 1988). All of the groundwater units at the NTS are Class II, groundwater currently (IIA) or potentially (IIB) a source of drinking water. The Classification Review Area (CRA) for the NTS is defined as the standard two-mile distance from the facility boundary recommended by EPA. The possibility of expanding the CRA was evaluated, but the two-mile distance encompasses the area expected to be impacted by contaminant transport during a 10-year period (EPA,s suggested limit), should a release occur. The CRA is very large as a consequence of the large size of the NTS and the decision to classify the entire site, not individual areas of activity. Because most activities are located many miles hydraulically upgradient of the NTS boundary, the CRA generally provides much more than the usual two-mile buffer required by EPA. The CRA is considered sufficiently large to allow confident determination of the use and value of groundwater and identification of potentially affected users. The size and complex hydrogeology of the NTS are inconsistent with the EPA guideline assumption of a high degree of hydrologic interconnection throughout the review area. To more realistically depict the site hydrogeology, the CRA is subdivided into eight groundwater units. Two main aquifer systems are recognized: the lower carbonate aquifer system and the Cenozoic aquifer system (consisting of aquifers in Quaternary valley fill and Tertiary volcanics). These aquifer systems are further divided geographically based on the location of low permeability boundaries

  14. Integrated account of method, site selection and programme prior to the site investigation phase

    International Nuclear Information System (INIS)

    2000-12-01

    In order to dispose of the spent nuclear fuel in a safe manner, SKB plans to site a deep repository and an encapsulation plant with associated canister fabrication and transportation system. After an integrated evaluation of feasibility studies and other material, SKB will proceed with investigations of the rock and studies regarding establishment of the deep disposal system in the municipality of Oskarshamn or in Northern Uppland. The plans also include further study of the prospects for a deep repository in the municipality of Nykoeping. In the municipality of Oskarshamn, SKB plans further studies of a siting of the deep repository at Simpevarp. There SKB wants to initiate site investigations with test drilling. For the encapsulation plant, SKB wants to continue studying a siting at CLAB. In Northern Uppland, SKB plans to study two siting alternatives for the deep repository. One is Forsmark in the municipality of Oesthammar, where SKB wants to initiate a site investigation with test drilling. The other is Tierp north of Skutskaer, where SKB intends to start test drilling in an area north of Tierp. First, however, a suitable drilling area with possible transport solutions needs to be defined. This alternative requires the participation of the municipalities of both Tierp and Aelvkarleby. A siting of the encapsulation plant in Northern Uppland will also be studied. For the municipality of Nykoeping, SKB plans to conduct a new safety assessment for the Fjaellveden area, based on data from previous investigations as well as additional studies of how a deep repository could be arranged. SKB will thereby gather data from yet another geographic and geological region beyond those that are prioritized. No test drilling is planned in Nykoeping. The goal of the site investigation phase is to obtain all permits needed to build the planned facilities. It will take an estimated 7 - 8 years to assemble the requisite supporting material, carry out consultations, compile siting

  15. Nevada test site low-level and mixed waste repository design in the unsaturated zone

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Warren, D.M.

    1989-01-01

    The Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) is used for shallow land disposal of Low-Level Radioactive (LLW) and for retrievable disposal of Mixed Wastes (MW) from various Department of Energy (DOE) facilities. The site is situated in southern Nevada, one of the most arid regions of the United States. Design considerations include vadose zone monitoring in lieu of groundwater monitoring, stringent waste acceptance and packaging criteria, a waste examination and real-time radiography facility, and trench design. 4 refs

  16. 2004 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Vefa Yucel

    2005-01-01

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (Bechtel Nevada, 2000) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, and reports the results in an annual summary report to the U.S. Department of Energy Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (U.S. Department of Energy [DOE]). The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2004 by evaluating operational factors and research results that impact the continuing validity of the PA and CA results. This annual summary report presents data and conclusions from the FY 2004 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, closure plans, as well as monitoring results and research and development (R and D) activities were reviewed in FY 2004 for the determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R and D activities were reviewed for the determination of the adequacy of the CAs

  17. Chemical explosions during 1961-1988 at the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Khalturin, V.I.; Rautian, T.G.; Richards, P.G.

    2000-01-01

    The paper gives us a information about the time in the origin, coordinates, magnitudes and energy classes of the 29 chemical explosions, conducted at the Semipalatinsk test site during the soviet time between 1961 and 1988. The estimates of authors, data from Russian official publications, NORSAR and Hagfros observatories were used. (author)

  18. Site Closure Strategy Model for Creosote Site

    International Nuclear Information System (INIS)

    Coll, F.R.; Gray, D.R.

    2009-01-01

    In conjunction with RCRA site corrective action at an active wood preserving facility, a risk-based site closure strategy was developed and incorporated the performance of a dense non-aqueous phase liquid (DNAPL) source recovery remedy, a monitored natural attenuation (MNA) remedy for dissolved phase groundwater, and institutional controls. Innovative creosote DNAPL source recovery has been undertaken at the Site since 1998. Pooled creosote DNAPL is present 90 feet below ground within a transmissive sand and gravel aquifer with a saturated thickness of approximately 80 feet. The creosote DNAPL source is situated on the property boundary of the site and has generated a 1/2 mile off-site dissolved phase plume, creating significant NAPL management and remedial technology verification issues. To date, over 120,000 gallons of creosote DNAPL have been recovered from the subsurface utilizing a modified circulation well technology. A mass discharge flux protocol was developed to serve as a major performance metrics for the continuation of source removal efforts and to support the application of monitored natural attenuation as an associated remedial technology for groundwater. The mass removal success has supported the MNA remedy for dissolved phase groundwater and the associated development of institutional controls. The enacted site management strategy outlines the current and future risk management activities for the Site and represents an appropriate site closure strategy for the Site. (authors)

  19. Anonymous or confidential HIV counseling and voluntary testing in federally funded testing sites--United States, 1995-1997.

    Science.gov (United States)

    1999-06-25

    Human immunodeficiency virus (HIV) counseling and voluntary testing (CT) programs have been an important part of national HIV prevention efforts since the first HIV antibody tests became available in 1985. In 1995, these programs accounted for approximately 15% of annual HIV antibody testing in the United States, excluding testing for blood donation. CT opportunities are offered to persons at risk for HIV infection at approximately 11,000 sites, including dedicated HIV CT sites, sexually transmitted disease (STD) clinics, drug-treatment centers, hospitals, and prisons. In 39 states, testing can be obtained anonymously, where persons do not have to give their name to get tested. All states provide confidential testing (by name) and have confidentiality laws and regulations to protect this information. This report compares patterns of anonymous and confidential testing in all federally funded CT programs from 1995 through 1997 and documents the importance of both types of testing opportunities.

  20. Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    V. Yucel

    2001-09-01

    This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA).

  1. Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    V. Yucel

    2001-01-01

    This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA)

  2. Coda Spectral Peaking for Nevada Nuclear Test Site Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, K R; Mayeda, K; Walter, W R

    2007-09-10

    We have applied the regional S-wave coda calibration technique of Mayeda et al. (2003) to earthquake data in and around the Nevada Test Site (NTS) using 4 regional broadband stations from the LLNL seismic network. We applied the same path and site corrections to tamped nuclear explosion data and averaged the source spectra over the four stations. Narrowband coda amplitudes from the spectra were then regressed against inferred yield based on the regional m{sub b}(Pn) magnitude of Denny et al. (1987), along with the yield formulation of Vergino and Mensing (1990). We find the following: (1) The coda-derived spectra show a peak which is dependent upon emplacement depth, not event size; (2) Source size estimates are stable for the coda and show a dependence upon the near-source strength and gas porosity; (3) For explosions with the same m{sub b}(Pn) or inferred yield, those in weaker material have lower coda amplitudes at 1-3 Hz.

  3. Site study plan for intermediate hydrology clusters tests wells Deaf Smith County Site, Texas

    International Nuclear Information System (INIS)

    1988-01-01

    To characterize the geologic, geochemical, and hydrologic characteristics of intermediate-depth formations at the proposed Deaf Smith County, Texas, repository site, wells called Intermediate Hydrology clusters will test the Dewey Lake, Alibates, Salado, Yates, Upper and Lower Seven Rivers, and Queen Grayburg Formations. Sixteen wells will be installed at six locations. One location will have four wills, two locations will have three wells, and three locations will have two wells for a total of 16 wells. Testing of the formations is to proceed from the bottom up, with 2-day pumping tests at the less permeable formations. Tracer tests and tests for verticall hydraulic properties will be designed and performed after other hydrologic tests are completed. After testing, selected wells are to be completed as single or possibly dual monitoring wells to observe water-level trends. To develop a hydrogeologic testing plan, the response of each formation to potential testing procedures was evaluated using design values and an assumend range for hydraulic parameters. These evaluations indicate that hydraulic properties of a sandy zone of the Dockum, the lower Sever Rivers, and possibly the Alibates and Queen/Grayburg can be determined by pumping tests. Standard of shut-in slug tests must be conducted in the remaining formations. Tests of very long duration would be required to determine the verticla properties of less permeable formations. Tracer tests would also require weeks or months. 61 figs., 34 refs., 4 tabs

  4. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report.

  5. Tests of thermoluminescence dating of the Menez-Dregan site (Brittany, France)

    International Nuclear Information System (INIS)

    Sanzelle, S.; Montret, M.; Pilleyre, T.; Miallier, D.; Fain, J.

    1997-01-01

    This paper reports on tests of thermoluminescence datings of quartz samples of the Paleolithic site of Menez Dregan in Brittany (France). The archaeological site comprises 3 fossil beaches in rocky shelters. The layer under study is on the top of the most recent fossil beach and contains built fireplaces associated with a Colombanian industry. Samples have received a dose comprised between natural irradiation and 6.8 kGy to 10.5 kGy additional doses. Paleo-doses obtained with different methods (between 1 to 3.5 kGy) are not compatible with each others and do not allow the determination of a precise age. (J.S.)

  6. Final Environmental Impact Statement for the Nevada Test Site and off- site locations in the state of Nevada: Reader's guide

    International Nuclear Information System (INIS)

    1996-08-01

    This Reader's Guide is designed to help you find information in the US Departments of Energy's Nevada Test Site Environmental Impact Statement (NTS EIS). This Guide is divided into four sections: an introduction to the NTS EIS, specific topics, number conversions and scientific notations and public reading room locations

  7. The commissioning of CMS sites: Improving the site reliability

    International Nuclear Information System (INIS)

    Belforte, S; Fisk, I; Flix, J; Hernandez, J M; Klem, J; Letts, J; Magini, N; Saiz, P; Sciaba, A

    2010-01-01

    The computing system of the CMS experiment works using distributed resources from more than 60 computing centres worldwide. These centres, located in Europe, America and Asia are interconnected by the Worldwide LHC Computing Grid. The operation of the system requires a stable and reliable behaviour of the underlying infrastructure. CMS has established a procedure to extensively test all relevant aspects of a Grid site, such as the ability to efficiently use their network to transfer data, the functionality of all the site services relevant for CMS and the capability to sustain the various CMS computing workflows at the required scale. This contribution describes in detail the procedure to rate CMS sites depending on their performance, including the complete automation of the program, the description of monitoring tools, and its impact in improving the overall reliability of the Grid from the point of view of the CMS computing system.

  8. Hydrogeologic investigations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Trudeau, D.A.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices and, since 1963, all nuclear detonations there have been underground. Most tests are conducted in vertical shafts with a small percentage conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks or alluvium. In the testing areas the water table is 450--700 m below the surface. Pre- and post- event geologic investigations are conducted for each test location and long-term studies assess the impact of underground testing on a more regional scale. Studies in progress have not identified any impact on the regional ground water system from testing, but some local effects have been recognized. In some areas where several large tests have been conducted below the water table, water levels hundreds of meters above the regional water table have been measured and radioactivity has been discovered associated with fractures in a few holes. Flow-through and straddle packer testing has revealed unexpectedly high hydraulic pressures at depth. Recently, a multiple completion monitoring well installed to study three zones has confirmed the existence of a significant upward hydraulic gradient. These observations of local pressurization and fracture flow are being further explored to determine the influence of underground nuclear testing on the regional hydrogeologic system

  9. Analysis of the rock mechanics properties of volcanic tuff units from Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Price, R.H.

    1983-08-01

    Over two hundred fifty mechanical experiments have been run on samples of tuff from Yucca Mountain, Nevada Test Site. Cores from the Topopah Spring, Calico Hills, Bullfrog and Tram tuff units were deformed to collect data for an initial evaluation of mechanical (elastic and strength) properties of the potential horizons for emplacement of commercial nuclear wastes. The experimental conditions ranged in sample saturation from room dry to fully saturated, confining pressure from 0.1 to 20 MPa, pore pressure from 0.1 to 5 MPa, temperature from 23 to 200 0 C, and strain rate from 10 -7 to 10 -2 s -1 . These test data have been analyzed for variations in elastic and strength properties with changes in test conditions, and to study the effects of bulk-rock characteristics on mechanical properties. In addition to the site-specific data on Yucca Mountain tuff, mechanical test results on silicic tuff from Rainier Mesa, Nevada Test Site, are also discussed. These data both overlap and augment the Yucca Mountain tuff data, allowing more definitive conclusions to be reached, as well as providing data at some test conditions not covered by the site-specific tests

  10. Laboratory and On-Site Tests for Rapid Runway Repair

    Directory of Open Access Journals (Sweden)

    Federico Leonelli

    2017-11-01

    Full Text Available The attention to rapid pavement repair has grown fast in recent decades: this topic is strategic for the airport management process for civil purposes and peacekeeping missions. This work presents the results of laboratory and on-site tests for rapid runway repair, in order to analyse and compare technical and mechanical performances of 12 different materials currently used in airport. The study focuses on site repairs, a technique adopted most frequently than repairs with modular elements. After describing mechanical and physical properties of the examined materials (2 bituminous emulsions, 5 cement mortars, 4 cold bituminous mixtures and 1 expanding resin, the study presents the results of carried out mechanical tests. The results demonstrate that the best performing material is a one-component fast setting and hardening cement mortar with graded aggregates. This material allows the runway reopening 6 h after the work. A cold bituminous mixture (bicomponent premixed cold asphalt with water as catalyst and the ordinary cement concrete allow the reopening to traffic after 18 h, but both ensure a lower service life (1000 coverages than the cement mortar (10,000 coverages. The obtained results include important information both laboratory level and field, and they could be used by airport management bodies and road agencies when scheduling and evaluating pavement repairs.

  11. Central site monitoring: results from a test of accuracy in identifying trials and sites failing Food and Drug Administration inspection.

    Science.gov (United States)

    Lindblad, Anne S; Manukyan, Zorayr; Purohit-Sheth, Tejashri; Gensler, Gary; Okwesili, Paul; Meeker-O'Connell, Ann; Ball, Leslie; Marler, John R

    2014-04-01

    Site monitoring and source document verification account for 15%-30% of clinical trial costs. An alternative is to streamline site monitoring to focus on correcting trial-specific risks identified by central data monitoring. This risk-based approach could preserve or even improve the quality of clinical trial data and human subject protection compared to site monitoring focused primarily on source document verification. To determine whether a central review by statisticians using data submitted to the Food and Drug Administration (FDA) by clinical trial sponsors can identify problem sites and trials that failed FDA site inspections. An independent Analysis Center (AC) analyzed data from four anonymous new drug applications (NDAs) where FDA had performed site inspections overseen by FDA's Office of Scientific Investigations (OSI). FDA team members in the OSI chose the four NDAs from among all NDAs with data in Study Data Tabulation Model (SDTM) format. Two of the NDAs had data that OSI had deemed unreliable in support of the application after FDA site inspections identified serious data integrity problems. The other two NDAs had clinical data that OSI deemed reliable after site inspections. At the outset, the AC knew only that the experimental design specified two NDAs with significant problems. FDA gave the AC no information about which NDAs had problems, how many sites were inspected, or how many were found to have problems until after the AC analysis was complete. The AC evaluated randomization balance, enrollment patterns, study visit scheduling, variability of reported data, and last digit reference. The AC classified sites as 'High Concern', 'Moderate Concern', 'Mild Concern', or 'No Concern'. The AC correctly identified the two NDAs with data deemed unreliable by OSI. In addition, central data analysis correctly identified 5 of 6 (83%) sites for which FDA recommended rejection of data and 13 of 15 sites (87%) for which any regulatory deviations were

  12. Study of site layout in the Rokkasho site

    International Nuclear Information System (INIS)

    Sato, Kazuyoshi; Tamura, Kousaku; Yagenji, Akira; Sekiya, Shigeki; Takahashi, Hideo; Neyatani, Yuzuru; Uehara, Masaharu; Motohashi, Keiichi; Hashimoto, Masayoshi; Ogino, Shunji; Nagamatsu, Nobuhide

    2006-03-01

    The Final Design Report (FDR) of the International Thermonuclear Experimental Reactor (ITER) was published on July 2001 as a summary of the Engineering Design Activity (EDA). After the EDA, site dependent design has been investigated for the invitation of ITER toward Rokkasho Site (Iyasakadai area) in Aomori prefecture. This report describes the results of site layout of major buildings and structures of ITER in the Rokkasho-Site. The data of the ground near the site and the results of site dependent design in Japan were applied to this study. Through this study, the most appropriate site layout has been constructed with satisfaction of following conditions. (1) Bedrock level at the tokamak complex building is relatively high and it can be reduced the cost of excavation and foundation work. (2) Total amount of excavation soil for site preparation is minimized and the flexibility of the layout is ensured with flat ground level. (3) Accessibility of human and equipments, reduction of noise and vibration to the environment can be obtained. Total length of ducts and piping between buildings in site is minimized. (author)

  13. Pn seismic wave travel time at the Semipalatinsk Test Site - Borovoe seismic station trace

    International Nuclear Information System (INIS)

    An, V.A.; Kaazik, P.B.; Ovchinnikov, V.M.

    2001-01-01

    This paper preparation involved 160 explosions at the Degelen Site conducted in 1961-1989 and 89 explosions at the Balapan Site conducted in 1968-1989. Pn wave travel time was tied to the sea level in accordance with velocity characteristics of the explosion hypocenter medium; and to average epicentral distance for every site basing on their local travel time curves of Pn wave relative to Borovoe station. Maximum amplitude of mean-year travel times variations is 0.3-0.5 s as at the Nevada Test Site - Borovoe trace and Mirniy (Antarctica). However, the linear trend in contrast to previous traces has negative sign (0.08 s for Degelen and 0.1 s for Balapan). Thus, Pn wave velocity increases with calendar time. (author)

  14. Seismic hazard analysis for the NTS spent reactor fuel test site

    International Nuclear Information System (INIS)

    Campbell, K.W.

    1980-01-01

    An experiment is being directed at the Nevada Test Site to test the feasibility for storage of spent fuel from nuclear reactors in geologic media. As part of this project, an analysis of the earthquake hazard was prepared. This report presents the results of this seismic hazard assessment. Two distinct components of the seismic hazard were addressed: vibratory ground motion and surface displacement

  15. Final work plan: Expedited Site Characterization of the IES Industries, Inc., Site at Marshalltown, Iowa. Ames Expedited Site Characterization Project, Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-04

    The overall goal of the Ames Laboratory Expedited Site Characterization (ESC) project is to evaluate and promote both innovative and state-of-the-practice site characterization and/or monitoring technologies. This will be accomplished by fielding both types of technologies together in the context of an expedited site characterization. The first site will be at a former manufactured gas plant (FMGP) in Marshalltown, Iowa. The project will field three areas of technology: geophysical, analytical, and data fusion. Geophysical technologies are designed to understand the subsurface geology to help predict fate and transport of the target contaminants. Analytical technologies/methods are designed to detect and quantify the target contaminants. Data fusion technology consists of software systems designed to rapidly integrate or fuse all site information into a conceptual site model that then becomes the decision making tool for the site team to plan subsequent sampling activity. Not all of the contaminants present can be located at the action level. Polynuclear aromatic hydrocarbons (PAHs) are the signature organics associated with the coal tar activities that took place at the site. As a result, PAHs were selected as the target compounds. Screening analytical instruments and nonintrusive geophysical techniques will be fielded to qualitatively map the spatial contaminant distribution. Soil gas surveys, immunoassay testing (IMA), innovative optical techniques, and passive organic sorbent sensors will be deployed along with the geophysical methods. Gas chromatography/mass spectrometry (GC/MS) instruments and a cone penetrometer system equipped with a laser-induced fluorescence (LIF) probe will quantitatively map the action level edges of the PAH plume(s). Samples will be taken both by the cone penetrometer test system (CPT) and the Geoprobe {reg_sign} sampler system.

  16. Nevada test site radionuclide inventory and distribution: project operations plan

    International Nuclear Information System (INIS)

    Kordas, J.F.; Anspaugh, L.R.

    1982-01-01

    This document is the operational plan for conducting the Radionuclide Inventory and Distribution Program (RIDP) at the Nevada Test Site (NTS). The basic objective of this program is to inventory the significant radionuclides of NTS origin in NTS surface soil. The expected duration of the program is five years. This plan includes the program objectives, methods, organization, and schedules

  17. Operational radioactive waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1980-11-01

    The Operational Radioactive Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  18. Residual radioactivity in the soil of the Semipalatinsk Nuclear Test Site in the former USSR.

    Science.gov (United States)

    Yamamoto, M; Tsukatani, T; Katayama, Y

    1996-08-01

    This paper deals with our efforts to survey residual radioactivity in the soil sampled at the Semipalatinsk Nuclear Test Site and at off-site areas in Kazakhstan. The soil was sampled at the hypocenter where the first Soviet nuclear explosion was carried out on 29 August 1949, and at the bank of the crater called "Bolapan," which was formed by an underground nuclear detonation on 15 January 1965 along the Shagan River. As a comparison, other soil was also sampled in the cities of Kurchatov and Almaty. These data have allowed a preliminary evaluation of the contemporary radioactive contamination of the land in and around the test site. At the first nuclear explosion site and at Bolapan, higher than background levels of 239,240Pu with weapons-grade plutonium were detected together with fission and activation products such as 137Cs, 60Co, 152Eu, and 154Eu.

  19. Test plan for sonic drilling at the Hanford Site in FY 1993

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1993-01-01

    This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation's drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool)

  20. Ingestion of Nevada Test Site Fallout: Internal dose estimates

    International Nuclear Information System (INIS)

    Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1996-01-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. 131 I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided

  1. Theory for site-site pair distribution functions of molecular fluids. II. Approximations for the Percus--Yevick site-site direct correlation functions

    International Nuclear Information System (INIS)

    Johnson, E.

    1977-01-01

    A theory for site-site pair distribution functions of molecular fluids is derived from the Ornstein-Zernike equation. Atom-atom pair distribution functions of this theory which were obtained by using different approximations for the Percus-Yevick site-site direct correlation functions are compared

  2. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1992

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1993-12-14

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling environmental remediation, i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonradiological monitoring at SSFL.

  3. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Site, 1991

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1992-12-03

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2.668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling operations with nuclear fuel or nuclear reactors. i.e., the U.S. DOE and the California State Department of Health Services (DHS). Radiologic Health Branch (RHB). For that reason. information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonradiological monitoring at SSFL.

  4. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1993

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1994-10-21

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling environmental remediation, i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonoradiological monitoring at SSFL.

  5. Feasibility, cost and safety of some rehabilitation options for the Maralinga test site

    International Nuclear Information System (INIS)

    Vande Putte, D.; Tufton, E.P.S.; Myall, M.

    1992-01-01

    The need to rehabilitate the former nuclear test site at Maralinga has required the development of safe and cost-effective clean-up measures. Options have been investigated, which include fencing-off parts of the site, removing surface soil, mixing surface soil and stabilising the contents of debris pits. The results of the study can be used in selecting the most suitable options or combination of options necessary to achieve a given radiological end-point. (author)

  6. Development of corrective measures and site stabilization technologies for shallow land burial facilities at semiarid sites

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Abeele, W.V.

    1986-01-01

    The overall purpose of the corrective measures task performed for the National Low-Level Waste Management Program has been to develop and test methods that can be used to correct any actual or anticipated problems with new and existing shallow land burial (SLB) sites in a semiarid environment. These field tests have not only evaluated remedial actions, but have also investigated phenomena suspected of being a possible problem at semiarid SLB sites. The approach we have taken in developing remedial action and site closure technologies for low-level waste sites is to recognize that physical and biological processes affecting site integrity are interdependent, and therefore, cannot be treated as separate problems. The field experiments performed for this task were to identify, evaluate, and model erosion control technologies, field test second generation biointrusion barriers, determine by field experiments the extent of upward radionuclide migration due to moisture cycling, and measure the effects of subsidence on remedial action of other system components. Progress made in each of these research areas is described

  7. Biophysical detector for definition of anomalies in Semipalatinsk nuclear test site zone

    International Nuclear Information System (INIS)

    Sokolovskaya, E.V.; Inyushin, V.M.; Kalieva, Zh.A.

    2000-01-01

    With help of space aero-survey of thermodynamical anomaly (increase of land surface temperature) in Semipalatinsk test site zone is revealed. It was suggested that it is a result of recombination processes of Earth's plasma due to entropy increase in result of plasma fluctuations called by underground nuclear explosions. This hypothesis was checked by means of territory scanning around Semipalatinsk test site with help of biophysical detectors representing isolate fragments of bio-plasma of animal and vegetation origin. It was revealed that there are anomalies in Almaty-Semipalatinsk cities' beam of Ayaguz-Semipalatinsk zone and on Omsk-Semipalatinsk beam on Semenovka-Semipalatinsk section. During passing of areas in close proximity to the nuclear site an increase of micro-currents amplitude in 4-5 μA as well as irregular amplitude change are registered. Although anomalies make up 10 % from geo-plasma's micro-currents initial values, and this value can exert significant influence on human plasma homeostasis for persons living in anomalous regions. It is concluded that it is necessary research of non-radiation effects nature of underground nuclear explosions and its action on biological status of men, animals, plants and soils

  8. Low-level radioactive waste management at the Nevada Test Site - Current status

    International Nuclear Information System (INIS)

    Becker, B.D.; Crowe, B.M.; Gertz, C.P.; Clayton, W.A.

    1999-01-01

    The performance objectives of the Department of Energy's Low-Level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the US. Situated at the southern end of the Great Basin, 800 feet above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity wastes, classified materials, and high-specific-activity special case wastes. Twenty miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMS's since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations

  9. SitesIdentify: a protein functional site prediction tool

    Directory of Open Access Journals (Sweden)

    Doig Andrew J

    2009-11-01

    Full Text Available Abstract Background The rate of protein structures being deposited in the Protein Data Bank surpasses the capacity to experimentally characterise them and therefore computational methods to analyse these structures have become increasingly important. Identifying the region of the protein most likely to be involved in function is useful in order to gain information about its potential role. There are many available approaches to predict functional site, but many are not made available via a publicly-accessible application. Results Here we present a functional site prediction tool (SitesIdentify, based on combining sequence conservation information with geometry-based cleft identification, that is freely available via a web-server. We have shown that SitesIdentify compares favourably to other functional site prediction tools in a comparison of seven methods on a non-redundant set of 237 enzymes with annotated active sites. Conclusion SitesIdentify is able to produce comparable accuracy in predicting functional sites to its closest available counterpart, but in addition achieves improved accuracy for proteins with few characterised homologues. SitesIdentify is available via a webserver at http://www.manchester.ac.uk/bioinformatics/sitesidentify/

  10. [Prediction of 137Cs accumulation in animal products in the territory of Semipalatinsk test site].

    Science.gov (United States)

    Spiridonov, S I; Gontarenko, I A; Mukusheva, M K; Fesenko, S V; Semioshkina, N A

    2005-01-01

    The paper describes mathematical models for 137Cs behavior in the organism of horses and sheep pasturing on the bording area to the testing area "Ground Zero" of the Semipalatinsk Test Site. The models are parameterized on the base of the data from an experiment with the breeds of animals now commonly encountered within the Semipalatinsk Test Site. The predictive calculations with the models devised have shown that 137Cs concentrations in milk of horses and sheep pasturingon the testing area to "Ground Zero" can exceed the adopted standards during a long period of time.

  11. Integrated test plan for crosswell compressional and shear wave seismic tomography for site characterization at the VOC Arid Site

    International Nuclear Information System (INIS)

    Elbring, G.J.; Narbutovskih, S.M.

    1994-01-01

    This integrated test plan describes the demonstration of the crosswell acoustic tomography technique as part of the Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID). The purpose of this demonstration is to image the subsurface seismic velocity structure and to relate the resulting velocity model to lithology and saturation. In fiscal year (FY) 1994 an initial fielding will test three different downhole sources at two different sites at the Hanford US Department of Energy facility to identify which sources will provide the energy required to propagate between existing steel-cased wells at these two sites. Once this has been established, a second fielding will perform a full compressional and shear wave tomographic survey at the most favorable site. Data reduction, analysis, and interpretation of this full data set will be completed by the end of this fiscal year. Data collection for a second survey will be completed by the end of the fiscal year, and data reduction for this data set will be completed in FY 1995. The specific need is detailed subsurface characterization with minimum intrusion. This technique also has applications for long term vadose zone monitoring for both Resource Conservation and Recovery Act (RCRA) waste storage facilities and for remediation monitoring. Images produced are continuous between boreholes. This is a significant improvement over the single point data derived solely from core information. Saturation changes, either naturally occurring (e.g., perched water tables) or remediation induced (e.g., water table mounding from injection wells or during inwell air sparging) could be imaged. These crosswell data allow optimal borehole placement for groundwater remediation, associated monitoring wells and possibly evaluation of the effective influence of a particular remediation technique

  12. Nevada test site annual site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1995 indicated that operations on the NTS were conducted in compliance with applicable federal and DOE regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of effluents, or resuspension was not detectable offsite, and no measurable net exposure to members of the offsite population was detected through the offsite dosimetry program. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits.

  13. Tests for evaluating sites for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Lutton, R.J.; Butler, D.K.; Meade, R.B.; Patrick, D.M.; Strong, A.B.; Taylor, H.M. Jr.

    1982-12-01

    This report, the second of a series, identifies the tests and other means of evaluating or documenting the important characteristics of sites for disposal of low-level radioactive waste. The specific parameters were identified and explained in regard to their importance in characterizing disposal facilities in the previous report. More than half of the tests and procedures are standard methods recognized and used nationwide, most conspicuously the numerous chemical tests. Other tests are commonly used methods recognized widely as state of the art, e.g., geological and geophysical methods. The basis for choosing these state-of-the-art methods is discussed, and the concepts and procedures themselves are reviewed in the absence of standards for ready reference. Besides standards and state-of-the-art practices a third category of methods involves the use of existing data sources or recognized correlations in place of new testing or documentation. It is particularly important that mapping, logging, sampling, testing, interpretation, and analysis be conducted by technically qualified and professionally motivated personnel using appropriate equipment and facilities, and general guidance is provided in this direction. There will be cases where site-specific testing and measurement are indicated to be unnecessary on a technical basis. This report calls attention to the usual subordinate role of such parameters and their only infrequent need for testing

  14. Fixed-site physical protection system modeling

    International Nuclear Information System (INIS)

    Chapman, L.D.

    1975-01-01

    An evaluation of a fixed-site safeguard security system must consider the interrelationships of barriers, alarms, on-site and off-site guards, and their effectiveness against a forcible adversary attack whose intention is to create an act of sabotage or theft. A computer model has been developed at Sandia Laboratories for the evaluation of alternative fixed-site security systems. Trade-offs involving on-site and off-site response forces and response times, perimeter alarm systems, barrier configurations, and varying levels of threat can be analyzed. The computer model provides a framework for performing inexpensive experiments on fixed-site security systems for testing alternative decisions, and for determining the relative cost effectiveness associated with these decision policies

  15. Overview of software development at the parabolic dish test site

    Science.gov (United States)

    Miyazono, C. K.

    1985-01-01

    The development history of the data acquisition and data analysis software is discussed. The software development occurred between 1978 and 1984 in support of solar energy module testing at the Jet Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test Station. The development went through incremental stages, starting with a simple single-user BASIC set of programs, and progressing to the relative complex multi-user FORTRAN system that was used until the termination of the project. Additional software in support of testing is discussed including software in support of a meteorological subsystem and the Test Bed Concentrator Control Console interface. Conclusions and recommendations for further development are discussed.

  16. Assessment of ichthyo-fauna condition within zone of Semipalatinsk test site

    International Nuclear Information System (INIS)

    Mamilov, N.Sh.; Mitrofanov, I.V.; Matmuratov, S.A.

    2005-01-01

    The paper presents studies of biological factors and calculating morphological features for fish from the Uzunbulak and Shagan Rivers situated in the Semipalatinsk test site area. The conditions of fish habitat are characterized as favorable; however alteration of phenotypic features shows radiation water contamination. (author)

  17. UAS Integration in the NAS Project Test Site Kick-off Meeting

    Science.gov (United States)

    Kopardekar, Parimal; Witzberger, Kevin; Hackenberg, Davis L.; Murphy, Jim

    2015-01-01

    This briefing was presented during the Test Site Kick Off Meeting to discuss the contract awards for Task 1 and Task 2. This briefing covered a high level overview for contract deliverables, Task 1 - UAS Traffic Management and Task 2, Live Virtual Constructive Distributed Environment.

  18. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-09-01

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure

  19. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure

  20. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data, 2nd Edition

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Neary, Vincent S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies

    2015-09-01

    This report presents met-ocean data and wave energy characteristics at eight U.S. wave energy converter (WEC) test and potential deployment sites. Its purpose is to enable the comparison of wave resource characteristics among sites as well as the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment, and operations and maintenance. For each site, this report catalogues wave statistics recommended in the International Electrotechnical Commission Technical Speci cation (IEC 62600-101 TS) on Wave Energy Characterization, as well as the frequency of occurrence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services.

  1. Development testing of grouting and liner technology for humid sites

    International Nuclear Information System (INIS)

    Vaughan, N.D.

    1981-01-01

    Shallow land burial, although practiced for many years, has not always secured radionuclides from the biosphere in humid environments. To develop and demonstrate improved burial technology the Engineered Test Facility was implemented. An integral part of this experiment was site characterization, with geologic and hydrologic factors as major the components. Improved techniques for burial of low-level waste were developed and tested in the laboratory before being applied in the field. The two techniques studied were membrane trench liner and grouting void spaces

  2. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-02-01

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables

  3. Nevada Test Site Radiological Control Manual, Revision 1

    International Nuclear Information System (INIS)

    2010-01-01

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. The NTS is located in Nye County, Nevada. The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas. It is a remote facility that covers approximately 3,500 square kilometers (1,375 square miles) of land. The dimensions of the NTS vary from 46 to 56 kilometers (28 to 35 miles) in width (eastern to western border) and from 64 to 88 kilometers (40 to 55 miles) in length (northern to southern border). The NTS is surrounded to the west, north, and east by additional thousands of acres of land withdrawn from the public domain for use as a protected wildlife range and as a military gunnery range. These public exclusion areas comprise the Nellis Air Force Range complex, previously designated as the Nellis Air Force Base Bombing and Gunnery Range, and the Tonopah Test Range. These two areas provide a buffer zone between the test areas and public lands administered by the Federal Bureau of Land

  4. Integration and consistency testing of groundwater flow models with hydro-geochemistry in site investigations in Finland

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Loefman, J.; Korkealaakso, J.; Koskinen, L.; Ruotsalainen, P.; Hautojaervi, A.; Aeikaes, T.

    1999-01-01

    In the assessment of the suitability and safety of a geological repository for radioactive waste the understanding of the fluid flow at a site is essential. In order to build confidence in the assessment of the hydrogeological performance of a site in various conditions, integration of hydrological and hydrogeochemical methods and studies provides the primary method for investigating the evolution that has taken place in the past, and for predicting future conditions at the potential disposal site. A systematic geochemical sampling campaign was started since the beginning of 1990's in the Finnish site investigation programme. This enabled the initiating of integration and evaluation of site scale hydrogeochemical and groundwater flow models. Hydrogeochemical information has been used to screen relevant external processes and variables for definition of the initial and boundary conditions in hydrological simulations. The results obtained from interpretation and modelling hydrogeochemical evolution have been employed in testing the hydrogeochemical consistency of conceptual flow models. Integration and testing of flow models with hydrogeochemical information are considered to improve significantly the hydrogeological understanding of a site and increases confidence in conceptual hydrogeological models. (author)

  5. Residual radioactivity in the soil of the Semipalatinsk Nuclear Test Site in the former USSR

    International Nuclear Information System (INIS)

    Yamamoto, Masayoshi; Tsukatani, Tsuneo; Katayama, Yukio

    1996-01-01

    This paper deals with our efforts to survey residual readioactivity in the soil sampled at teh Semipalatinsk Nuclear Test Site and at off-site areas in Kazakhstan. The soil sampled at the hypocenter where the first Soviet nuclear explosion was carried out on 29 August 1949, and at the bank of the crater called open-quotes Bolapan,close quotes which was formed by an underground nuclear detonation on 15 January 1965 along the Shagan River. As a comparison, other soil was also sampled in the cities of Kurchatov and Almaty. These data have allowed a preliminary evaluation of the contemporary radioactive contamination of the land in and around the test site. At the first nuclear explosion site and at Bolapan, higher than background levels of 239,240 Pu with weapons-grade plutonium were detected together with fission and activation products such as 137 Cs, 60 Co, 152 Eu, and 154 Eu. 20 refs., 3 figs., 5 tabs

  6. Site investigations: Strategy for rock mechanics site descriptive model

    International Nuclear Information System (INIS)

    Andersson, Johan; Christiansson, Rolf; Hudson, John

    2002-05-01

    As a part of the planning work for the Site Investigations, SKB has developed a Rock Mechanics Site Descriptive Modelling Strategy. Similar strategies are being developed for other disciplines. The objective of the strategy is that it should guide the practical implementation of evaluating site specific data during the Site Investigations. It is also understood that further development may be needed. This methodology enables the crystalline rock mass to be characterised in terms of the quality at different sites, for considering rock engineering constructability, and for providing the input to numerical models and performance assessment calculations. The model describes the initial stresses and the distribution of deformation and strength properties of the intact rock, of fractures and fracture zones, and of the rock mass. The rock mass mechanical properties are estimated by empirical relations and by numerical simulations. The methodology is based on estimation of mechanical properties using both empirical and heroretical/numerical approaches; and estimation of in situ rock stress using judgement and numerical modelling, including the influence of fracture zones. These approaches are initially used separately, and then combined to produce the required characterisation estimates. The methodology was evaluated with a Test Case at the Aespoe Hard Rock Laboratory in Sweden. The quality control aspects are an important feature of the methodology: these include Protocols to ensure the structure and coherence of the procedures used, regular meetings to enhance communication, feedback from internal and external reviewing, plus the recording of an audit trail of the development steps and decisions made. The strategy will be reviewed and, if required, updated as appropriate

  7. Site investigations: Strategy for rock mechanics site descriptive model

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden); Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hudson, John [Rock Engineering Consultants, Welwyn Garden City (United Kingdom)

    2002-05-01

    As a part of the planning work for the Site Investigations, SKB has developed a Rock Mechanics Site Descriptive Modelling Strategy. Similar strategies are being developed for other disciplines. The objective of the strategy is that it should guide the practical implementation of evaluating site specific data during the Site Investigations. It is also understood that further development may be needed. This methodology enables the crystalline rock mass to be characterised in terms of the quality at different sites, for considering rock engineering constructability, and for providing the input to numerical models and performance assessment calculations. The model describes the initial stresses and the distribution of deformation and strength properties of the intact rock, of fractures and fracture zones, and of the rock mass. The rock mass mechanical properties are estimated by empirical relations and by numerical simulations. The methodology is based on estimation of mechanical properties using both empirical and heroretical/numerical approaches; and estimation of in situ rock stress using judgement and numerical modelling, including the influence of fracture zones. These approaches are initially used separately, and then combined to produce the required characterisation estimates. The methodology was evaluated with a Test Case at the Aespoe Hard Rock Laboratory in Sweden. The quality control aspects are an important feature of the methodology: these include Protocols to ensure the structure and coherence of the procedures used, regular meetings to enhance communication, feedback from internal and external reviewing, plus the recording of an audit trail of the development steps and decisions made. The strategy will be reviewed and, if required, updated as appropriate.

  8. Plan for the testing of radiation measurement instrumentation intended for use at an excavation site

    International Nuclear Information System (INIS)

    Gehrke, R.J.

    1994-11-01

    This plan describes performance tests to be made with ionizing radiation measurement instrumentation designed and built for in-field assay at an excavation site. One instrument measures gross gamma-ray and neutron fields and the other identifies gamma-ray emitting radionuclides and also is capable of assaying for selected hazardous materials. These instruments will be operationally tested to verify that original specifications have been met and performance tested to establish and verify that they have the potential to function as intended at an excavation site

  9. Evaluation of soil radioactivity data from the Nevada Test Site

    International Nuclear Information System (INIS)

    1995-03-01

    Since 1951, 933 nuclear tests have been conducted at the Nevada Test Site (NTS) and test areas on the adjacent Tonopah Test Range (TTR) and Nellis Air Force Range (NAFR). Until the early 1960s. the majority of tests were atmospheric, involving detonation of nuclear explosive devices on the ground or on a tower, suspended from a balloon or dropped from an airplane. Since the signing of the Limited Test Ban Treaty in 1963, most tests have been conducted underground, although several shallow subsurface tests took place between 1962 and 1968. As a result of the aboveground and near-surface nuclear explosions, as well as ventings of underground tests, destruction of nuclear devices with conventional explosives, and nuclear-rocket engine tests, the surface soil on portions of the NTS has been contaminated with radionuclides. Relatively little consideration was given to the environmental effects of nuclear testing during the first two decades of operations at the NTS. Since the early 1970s, however, increasingly strict environmental regulations have forced greater attention to be given to contamination problems at the site and how to remediate them. One key element in the current environmental restoration program at the NTS is determining the amount and extent of radioactivity in the surface soil. The general distribution of soil radioactivity on the NTS is already well known as a result of several programs carried out in the 1970s and 1980s. However, questions have been raised as to whether the data from those earlier studies are suitable for use in the current environmental assessments and risk analyses. The primary purpose of this preliminary data review is to determine to what extent the historical data collected at the NTS can be used in the characterization/remediation process

  10. Grimsel test site. Research on safe geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2010-07-01

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  11. Grimsel test site. Research on safe geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  12. Nevada Test Site 2001 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    Y. E. Townsend

    2002-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2001 was an average rainfall year: rainfall totaled 150 mm (5.9 in) at the Area 3 RWMS and 120 mm (4.7 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2001 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2001 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility performance assessments

  13. Laboratory testing of ozone oxidation of Hanford site waste

    International Nuclear Information System (INIS)

    Delegard, C.H.; Stubbs, A.M.; Bolling, S.D.; Colby, S.A.

    1994-01-01

    Organic constituents in radioactive waste stored in underground tanks at the U.S. Department of Energy's Hanford Site provoke safety concerns arising from their low-temperature reactions with nitrate and nitrite oxidants. Destruction of the organics would eliminate both safety problems. Oxone oxidation was investigated to destroy organic species present in simulated and genuine waste from Hanford Site Tank 241-SY-101. Bench-scale tests showed high-shear mixing apparatus achieved efficient gas-to-solution mass transfer and utilization of the ozone reagent. Oxidations of nitrite (to form nitrate) and organic species were observed. The organics formed carbonate and oxalate as well as nitrate and nitrogen gas from organic nitrogen. Formate, acetate and oxalate were present both in source waste and as reaction intermediates. Metal species oxidations also were observed directly or inferred by solubilities. Chemical precipitations of metal ions such as strontium and americium occurred as the organic species were destroyed by ozone. Reaction stoichiometries were consistent with the reduction of one oxygen atom per ozone molecule

  14. Early Site Permit Demonstration Program: Siting Guide, Site selection and evaluation criteria for an early site permit application. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-24

    In August 1991, the Joint Contractors came to agreement with Sandia National Laboratories (SNL) and the Department of Energy (DOE) on a workscope for the cost-shared Early Site Permit Demonstration Program. One task within the scope was the development of a guide for site selection criteria and procedures. A generic Siting Guide his been prepared that is a roadmap and tool for applicants to use developing detailed siting plans for their specific region of the country. The guide presents three fundamental principles that, if used, ensure a high degree of success for an ESP applicant. First, the site selection process should take into consideration environmentally diverse site locations within a given region of interest. Second, the process should contain appropriate opportunities for input from the public. Third, the process should be applied so that it is clearly reasonable to an impartial observer, based on appropriately selected criteria, including criteria which demonstrate that the site can host an advanced light water reactor (ALWR). The Siting Guide provides for a systematic, comprehensive site selection process in which three basic types of criteria (exclusionary, avoidance, and suitability) are presented via a four-step procedure. It provides a check list of the criteria for each one of these steps. Criteria are applied qualitatively, as well as presented numerically, within the guide. The applicant should use the generic guide as an exhaustive checklist, customizing the guide to his individual situation.

  15. ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

  16. Compilation of modal analyses of volcanic rocks from the Nevada Test Site area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Page, W.R.

    1990-01-01

    Volcanic rock samples collected from the Nevada Test Site, Nye County, Nevada, between 1960 and 1985 were analyzed by thin section to obtain petrographic mode data. In order to provide rapid accessibility to the entire database, all data from the cards were entered into a computerized database. This computer format will enable workers involved in stratigraphic studies in the Nevada Test Site area and other locations in southern Nevada to perform independent analyses of the data. The data were compiled from the mode cards into two separate computer files. The first file consists of data collected from core samples taken from drill holes in the Yucca Mountain area. The second group of samples were collected from measured sections and surface mapping traverses in the Nevada Test Site area. Each data file is composed of computer printouts of tables with mode data from thin section point counts, comments on additional data, and location data. Tremendous care was taken in transferring the data from the cards to computer, in order to preserve the original information and interpretations provided by the analyzer. In addition to the data files above, a file is included that consists of Nevada Test Site petrographic data published in other US Geological Survey and Los Alamos National Laboratory reports. These data are presented to supply the user with an essentially complete modal database of samples from the volcanic stratigraphic section in the Nevada Test Site area. 18 refs., 4 figs

  17. Minimally invasive three-dimensional site characterization system

    International Nuclear Information System (INIS)

    Steedman, D.; Seusy, F.E.; Gibbons, J.; Bratton, J.L.

    1993-09-01

    This paper presents an improved for hazardous site characterization. The major components of the systems are: (1) an enhanced cone penetrometer test, (2) surface geophysical surveys and (3) a field database and visualization code. The objective of the effort was to develop a method of combining geophysical data with cone penetrometer data in the field to produce a synergistic effect. Various aspects of the method were tested at three sites. The results from each site are discussed and the data compared. This method allows the data to be interpreted more fully with greater certainty, is faster, cheaper and leads to a more accurate site characterization. Utilizing the cone penetrometer test rather than the standard drilling, sampling and laboratory testing reduces the workers exposure to hazardous materials and minimizes the hazardous material disposal problems. The technologies employed in this effort are, for the most part, state-of-the-art procedures. The approach of using data from various measurement systems to develop a synergistic effect was a unique contribution to environmental site characterization. The use of the cone penetrometer for providing ''ground truth'' data and as a platform for subsurface sensors in environmental site characterization represents a significant advancement in environmental site characterization

  18. Site scientific mission plan for the Southern Great Plains CART Site, January--June 1999

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Sisterson, D.L.; Lamb, P.

    1999-03-10

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on January 1, 1999, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  19. Site scientific mission plan for the Southern Great Plains CART site: July--December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Lamb, P. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

    1998-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on July 1, 1998, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  20. 2013 Annual Site Environmental Report for Sandia National Laboratories Tonopah Test Range Nevada & Kauai Test Facility Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy Rene [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Li, Jun [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); White, Nancy [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Minitrez, Alexandra [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Avery, Penny [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Catechis, Christopher [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); duMond, Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Forston, William [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Herring, III, Allen [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Lantow, Tiffany [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Martinez, Reuben [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Miller, Amy [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Payne, Jennifer [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Peek, Dennis [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ricketson, Sherry [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities managed and operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Field Office (SFO), in Albuquerque, New Mexico, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Navarro Research and Engineering subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report summarizes data and the compliance status of the sustainability, environmental protection, and monitoring program at TTR and KTF through Calendar Year 2013. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, Environmental Restoration (ER) cleanup activities, and the National Environmental Policy Act. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Field Office retains responsibility for the cleanup and management of TTR ER sites. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  1. Automatic web site authoring with SiteGuide

    NARCIS (Netherlands)

    de Boer, V.; Hollink, V.; van Someren, M.W.; Kłopotek, M.A.; Przepiórkowski, A.; Wierzchoń, S.T.; Trojanowski, K.

    2009-01-01

    An important step in the design process for a web site is to determine which information is to be included and how the information should be organized on the web site’s pages. In this paper we describe ’SiteGuide’, a tool that automatically produces an information architecture for a web site that a

  2. Modeling of 137Cs and 90Sr behavior in the soil-plant system within the territory adjacent to 'Experimental field' technical site in the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Spiridonov, S.I.; Gontarenko, I.A.; Mukusheva, M.K.

    2005-01-01

    Modelling of 137 Cs and 90 Sr behavior in the soil-plant system is presented. Models have been parameterized for the area adjacent to the 'Experimental Field' Technical Site of the Semipalatinsk Test Site. The models describe the main processes responsible for changes of 137 Cs and 90 Sr content in the soil solution and, thereby, dynamics of radionuclides intake by vegetation. Results are presented from perspective and retrospective calculations, that reflect the dynamics of 137 and 90 Sr distribution by species in soil after nuclear explosions. The importance of factors governing radionuclide accumulation in plants within Semipalatinsk test site area is assessed. The analysis of sensitivity of model output variable to change in its parameters has revealed that the key soil properties significantly influence the results of prediction of radionuclide content in plants. (author)

  3. Evaluation of habitat restoration needs at Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Mitchell, D.L.

    1984-04-01

    Adverse environmental impacts due to site characterization and repository development activities at Yucca Mountain, Nevada Test Site (NTS), Nye County, Nevada, must be minimized and mitigated according to provisions of the Nuclear Waste Policy Act (NWPA) of 1982 and the National Environmental Policy Act (NEPA). The natural Transition Desert ecosystem in the 27.5-sq-mi Yucca Mountain project area is now and will continue to be impacted by removal of native vegetation and topsoil and the destruction and/or displacement of faunal communities. Although it is not known at this time exactly how much land will be affected, it is estimated that about 300 to 400 acres will be disturbed by construction of facility sites, mining spoils piles, roadways, and drilling pads. Planned habitat restoration at Yucca Mountain will mitigate the effects of plant and animal habitat loss over time by increasing the rate of plant succession on disturbed sites. Restoration program elements should combine the appropriate use of native annual and perennial species, irrigation and/or water-harvesting techniques, and salvage and reuse of topsoil. Although general techniques are well-known, specific program details (i.e., which species to use, methods of site preparation with available equipment, methods of saving and applying topsoil, etc.) must be worked out empirically on a site-specific basis over the period of site characterization and any subsequent repository development. Large-scale demonstration areas set up during site characterization will benefit both present abandonments and, if the project is scaled up to include repository development, larger facilities areas including spoils piles. Site-specific demonstration studies will also provide information on the costs per acre associated with alternative restoration strategies

  4. Hydraulic Testing of Silurian and Ordovician Strata at the Bruce Site

    Science.gov (United States)

    Beauheim, R. L.; Avis, J. D.; Chace, D. A.; Roberts, R. M.; Toll, N. J.

    2009-05-01

    Ontario Power Generation is proposing a Deep Geologic Repository (DGR) for the long-term management of its Low and Intermediate Level Radioactive Waste (L&ILW) within a Paleozoic-age sedimentary sequence beneath the Bruce Site near Tiverton, Ontario, Canada. The concept envisions that the DGR would be excavated at a depth of approximately 680 m within the Ordovician Cobourg Formation, a massive, dense, argillaceous limestone. A key attribute of the Bruce site is the extremely low permeabilities associated with the thick Ordovician carbonate and argillaceous bedrock formations that will host and enclose the DGR. Such rock mass permeabilities are thought sufficiently low to contribute toward or govern a diffusion-dominated transport regime. To support this concept, hydraulic testing was performed in 2008 and 2009 in two deep boreholes at the proposed repository site, DGR-3 and DGR-4. The hydraulic testing was performed using a straddle-packer tool with a 30.74-m test interval. Sequential tests were performed over the entire open lengths of the boreholes from the F Unit of the Silurian Salina Formation into the Ordovician Gull River Formation, a distance of approximately 635 m. The tests consisted primarily of pressure-pulse tests, with a few slug tests performed in several of the higher permeability Silurian units. The tests are analyzed using the nSIGHTS code, which allows the entire pressure history a test interval has experienced since it was penetrated by the drill bit to be included in the test simulation. nSIGHTS also allows the model fit to the test data to be optimized over an n-dimensional parameter space to ensure that the final solution represents a true global minimum rather than simply a local minimum. The test results show that the Ordovician-age strata above the Coboconk Formation (70+ m below the Cobourg) have average horizontal hydraulic conductivities of 1E-13 m/s or less. Coboconk and Gull River hydraulic conductivities are as high as 1E-11 m

  5. Lessons learned in the implementation of Integrated Safety Management at DOE Order Compliance Sites vs Necessary and Sufficient Sites

    International Nuclear Information System (INIS)

    Hill, R.L.

    2000-01-01

    This paper summarizes the development and implementation of Integrated Safety Management (ISM) at an Order Compliance Site (Savannah River Site) and a Necessary and Sufficient Site (Nevada Test Site). A discussion of each core safety function of ISM is followed by an example from an Order Compliance Site and a Necessary and Sufficient Site. The Savannah River Site was the first DOE site to have a DOE Headquarters-validated and approved ISM System. The NTS is beginning the process of verification and validation. This paper defines successful strategies for integrating Environment, Safety, and Health management into work under various scenarios

  6. Geologic investigations of drill hole sloughing problems, Nevada Test Site

    International Nuclear Information System (INIS)

    Drellack, S.L. Jr.; Davies, W.J.; Gonzales, J.L.; Hawkins, W.L.

    1983-01-01

    Severe sloughing zones encountered while drilling large diameter emplacement holes in Yucca Flat, Nevada Test Site, have been identified, correlated and predicted through detailed geologic investigations. In central and southeastern Area 7 and in northern Area 3, the unstable zones are a very fine-grained, well-sorted, unconsolidated sand deposit, probably eolian in origin, which will readily flow into large diameter drill holes. Other areas exhibit hole erosion related to poor induration or extensive zeolitization of the Tertiary tuff units which are very friable and porous. By examining drill hole samples, geophysical logs, caliper logs and drilling histories, these problem zones can be characterized, correlated and then projected into nearby sites. Maps have been generated to show the depth, thickness and areal extent of these strata. In some cases, they are local and have a lenticular geometry, while in others they are quite extensive. The ability to predict such features can enhance the quality of the hole construction and completion operations to avoid costly delays and the loss of valuable testing real estate. The control of hole enlargements will also eliminate related containment concerns, such as stemming uncertainties

  7. Array analysis of regional Pn and Pg wavefields from the Nevada Test Site

    International Nuclear Information System (INIS)

    Leonard, M.A.

    1991-06-01

    Small-aperture high-frequency seismic arrays with dimensions of a few kilometers or less, can improve our ability to seismically monitor compliance with a low-yield Threshold Test Ban Treaty. This work studies the characteristics and effectiveness of array processing of the regional Pn and Pg wavefields generated by underground nuclear explosions at the Nevada Test Site. Waveform data from the explosion HARDIN (m b = 5.5) is recorded at a temporary 12-element, 3-component, 1.5 km-aperture array sited in an area of northern Nevada. The explosions VILLE (m b = 4.4) and SALUT (m b = 5.5) are recorded at two arrays sited in the Mojave desert, one a 96-element vertical-component 7 km-aperture array and the other a 155-element vertical-component 4 km-aperture array. Among the mean spectra for the m b = 5.5 events there are significant differences in low-frequency spectral amplitudes between array sites. The spectra become nearly identical beyond about 6 Hz. Spectral ratios are used to examine seismic source properties and the partitioning of energy between Pn and Pg. Frequency-wavenumber analysis at the 12-element array is used to obtain estimates of signal gain, phase velocity, and source azimuth. This analysis reveals frequency-dependent biases in velocity and azimuth of the coherent Pn and Pg arrivals. Signal correlation, the principal factor governing array performance, is examined in terms of spatial coherence estimates. The coherence is found to vary between the three sites. In all cases the coherence of Pn is greater than that for Pg. 81 refs., 92 figs., 5 tabs

  8. Array analysis of regional Pn and Pg wavefields from the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, M.A. (California Univ., Berkeley, CA (United States). Dept. of Geology and Geophysics Lawrence Berkeley Lab., CA (United States))

    1991-06-01

    Small-aperture high-frequency seismic arrays with dimensions of a few kilometers or less, can improve our ability to seismically monitor compliance with a low-yield Threshold Test Ban Treaty. This work studies the characteristics and effectiveness of array processing of the regional Pn and Pg wavefields generated by underground nuclear explosions at the Nevada Test Site. Waveform data from the explosion HARDIN (m{sub b} = 5.5) is recorded at a temporary 12-element, 3-component, 1.5 km-aperture array sited in an area of northern Nevada. The explosions VILLE (m{sub b} = 4.4) and SALUT (m{sub b} = 5.5) are recorded at two arrays sited in the Mojave desert, one a 96-element vertical-component 7 km-aperture array and the other a 155-element vertical-component 4 km-aperture array. Among the mean spectra for the m{sub b} = 5.5 events there are significant differences in low-frequency spectral amplitudes between array sites. The spectra become nearly identical beyond about 6 Hz. Spectral ratios are used to examine seismic source properties and the partitioning of energy between Pn and Pg. Frequency-wavenumber analysis at the 12-element array is used to obtain estimates of signal gain, phase velocity, and source azimuth. This analysis reveals frequency-dependent biases in velocity and azimuth of the coherent Pn and Pg arrivals. Signal correlation, the principal factor governing array performance, is examined in terms of spatial coherence estimates. The coherence is found to vary between the three sites. In all cases the coherence of Pn is greater than that for Pg. 81 refs., 92 figs., 5 tabs.

  9. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2006

    International Nuclear Information System (INIS)

    2007-01-01

    In February 1997, the U.S. Department of Energy, Nevada Operations Office issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMS) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY) 2006

  10. Corrective Action Investigation Plan for Corrective Action Unit 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-05-01

    Corrective Action Unit (CAU) 573 is located in Area 5 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 573 is a grouping of sites where there has been a suspected release of contamination associated with non-nuclear experiments and nuclear testing. This document describes the planned investigation of CAU 573, which comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives.

  11. The use of mystery shopping for quality assurance evaluations of HIV/STI testing sites offering services to young gay and bisexual men.

    Science.gov (United States)

    Bauermeister, José A; Pingel, Emily S; Jadwin-Cakmak, Laura; Meanley, Steven; Alapati, Deepak; Moore, Michael; Lowther, Matthew; Wade, Ryan; Harper, Gary W

    2015-10-01

    Young men who have sex with men (YMSM) are at increased risk for HIV and STI infection. While encouraging HIV and STI testing among YMSM remains a public health priority, we know little about the cultural competency of providers offering HIV/STI tests to YMSM in public clinics. As part of a larger intervention study, we employed a mystery shopper methodology to evaluate the LGBT cultural competency and quality of services offered in HIV and STI testing sites in Southeast Michigan (n = 43).We trained and deployed mystery shoppers (n = 5) to evaluate the HIV and STI testing sites by undergoing routine HIV/STI testing. Two shoppers visited each site, recording their experiences using a checklist that assessed 13 domains, including the clinic's structural characteristics and interactions with testing providers. We used the site scores to examine the checklist's psychometric properties and tested whether site evaluations differed between sites only offering HIV testing (n = 14) versus those offering comprehensive HIV/STI testing (n = 29). On average, site scores were positive across domains. In bivariate comparisons by type of testing site, HIV testing sites were more likely than comprehensive HIV/STI testing clinics to ascertain experiences of intimate partner violence, offer action steps to achieve safer sex goals, and provide safer sex education. The developed checklist may be used as a quality assurance indicator to measure HIV/STI testing sites' performance when working with YMSM. Our findings also underscore the need to bolster providers' provision of safer sex education and behavioral counseling within comprehensive HIV/STI testing sites.

  12. Report of JLC site study group

    CERN Document Server

    Hasegawa, T; Yamashita, S

    2003-01-01

    This study group selected some good sites for construction of JLC (Electron-Positron Linear Collider) on the basis of investigation of data and field survey. The aims, activity, use of underground of private land, conditions of site, selection of site at present and future, summary and proposal are reported. 9 sites (Hidaka, Kitakami, Murayama, Abukuma, Kitaibaraki, Aichi and Gifu, Takamatsu, Hiroshima and Seburi range) are selected for the construction on the basis of firm ground and 4 sites (Okinawa, Harima, Tsukuba and Mutsuogawara) for development and researches. 9 sites area consists of plutonic rock or old strata of Paleozoic era. Many problems in each site are reported. There are three following proposals; 1) the self-governing communities of the sites have to understand JLC and start to construct it by information, 2) a site evaluation committee consists of specialist of civil engineering, building, social and natural environment and disaster prevention and 3) the vibration test should be carried out ...

  13. Investigation of the dynamics of radiation pollution at the former Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Belyashov, L.; Yushkov, A.; Grinshtein, Yu.; Makarenko, N.

    1996-01-01

    Main Tasks: - To perform aerial gamma-spectrometric shooting of the whole territory of the Semipalatinsk test site in a scale 1:200,000 with registration of the total spectrum; - The same in a scale 1:10,000 for the Balapan region; - To construct the physical-mathematical forecasting models of the dynamics of radionuclide contamination at the STS area. Scientific and Technical Means, Methods, Approaches - Aerial gamma-spectroscopy on a base of the crystals of Iodine Sodium, activated by Thallium, volume 25 I, with registration of the total spectrum; - A set of the software and computational means along with the data bases; - The aerial gamma-spectrometric standard testing site 'irtysh' - for Cesium-137 and the testing sites 'Kora' and 'Aidarly' - for natural radio-nuclides; - Software and computational means for development of physical-mathematical models; - Expedition equipment for ground testing in the points of the most prominent radiation anomalies. Expected Results - The second temporal point, with an interval of five years, on a state of radiation fields at the STS in two scales. Forecasting models for space-time evolution of radiation fields at the STS. - The results of comparison between the aerial and ground measurements

  14. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Y. E.Townsend

    2001-02-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  15. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    International Nuclear Information System (INIS)

    Y. E.Townsend

    2001-01-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure

  16. Site scientific mission plan for the southern Great Plains CART site, January--June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

    1998-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. The primary purpose of this site scientific mission plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team, Operations Team, and Instrument Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the Site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  17. Field-scale permeation testing of jet-grouted buried waste sites

    International Nuclear Information System (INIS)

    Loomis, G.G.; Zdinak, A.P.

    1996-01-01

    The Idaho National Engineering Laboratory (INEL) conducted field-scale hydraulic conductivity testing of simulated buried waste sites with improved confinement. The improved confinement was achieved by jet grouting the buried waste, thus creating solid monoliths. The hydraulic conductivity of the monoliths was determined using both the packer technique and the falling head method. The testing was performed on simulated buried waste sites utilizing a variety of encapsulating grouts, including high-sulfate-resistant Portland cement, TECT, (a proprietary iron oxide cement) and molten paraffin. By creating monoliths using in-situ jet grouting of encapsulating materials, the waste is simultaneously protected from subsidence and contained against further migration of contaminants. At the INEL alone there is 56,000 m 3 of buried transuranic waste commingled with 170,000--224,000 m 3 of soil in shallow land burial. One of the options for this buried waste is to improve the confinement and leave it in place for final disposal. Knowledge of the hydraulic conductivity for these monoliths is important for decision-makers. The packer tests involved coring the monolith, sealing off positions within the core with inflatable packers, applying pressurized water to the matrix behind the seal, and observing the water flow rate. The falling head tests were performed in full-scale 3-m-diameter, 3-m-high field-scale permeameters. In these permeameters, both water inflow and outflow were measured and equated to a hydraulic conductivity

  18. Waste Management at the Nevada Test Site Fiscal Year 2001 Current Status

    International Nuclear Information System (INIS)

    Becker, B.D.; Clayton, W.A.; Crowe, B.M.

    2002-01-01

    The performance objectives of the U. S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified radioactive material, and high-specific-activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1 968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations

  19. Superfund Technology Evaluation Report: SITE Program Demonstration Test Shirco Pilot-Scale Infrared Incineration System at the Rose Township Demode Road Superfund Site Volume I

    Science.gov (United States)

    The Shirco Pilot-Scale Infrared Incineration System was evaluated during a series of seventeen test runs under varied operating conditions at the Demode Road Superfund Site located in Rose Township, Michigan. The tests sought to demonstrate the effectiveness of the unit and the t...

  20. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  1. Site description of Forsmark at completion of the site investigation phase. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Co., SKB, has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the model is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model for geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site, presents an integrated understanding of the Forsmark area at the completion of the surface-based investigations, which were conducted at Forsmark during the period 2002 to 2007. It also provides a summary of the abundant underlying data and the discipline-specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details in data analyses and modelling in the different disciplines. The Forsmark area is located in northern Uppland within the municipality of Oesthammar, about 120 km north of Stockholm. The candidate area for site investigation is located along the shoreline of Oeregrundsgrepen, within the north-western part of a major tectonic lens that formed between 1.87 and 1.85 billion years ago during the Svecokarelian orogeny. The candidate area is approximately 6 km long and 2 km wide. The

  2. Site description of Laxemar at completion of the site investigation phase. SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    2009-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the SDM is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model of geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site Laxemar, presents an integrated understanding of the Laxemar-Simpevarp area (with special emphasis on the Laxemar subarea) at the completion of the surface-based investigations, which were conducted during the period 2002 to 2007. A summary is also provided of the abundant underlying data and the discipline specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details of the data analyses and modelling of the different disciplines. The Laxemar-Simpevarp area is located in the province of Smaaland within the municipality of Oskarshamn, about 230 km south of Stockholm. The candidate area for site investigation is located along the shoreline of the strait of Kalmarsund, within a 1.8 billion year old suite of well preserved bedrock belonging to the Transscandinavian Igneous Belt formed during

  3. Site description of Laxemar at completion of the site investigation phase. SDM-Site Laxemar

    International Nuclear Information System (INIS)

    2009-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the SDM is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model of geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site Laxemar, presents an integrated understanding of the Laxemar-Simpevarp area (with special emphasis on the Laxemar subarea) at the completion of the surface-based investigations, which were conducted during the period 2002 to 2007. A summary is also provided of the abundant underlying data and the discipline specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details of the data analyses and modelling of the different disciplines. The Laxemar-Simpevarp area is located in the province of Smaaland within the municipality of Oskarshamn, about 230 km south of Stockholm. The candidate area for site investigation is located along the shoreline of the strait of Kalmarsund, within a 1.8 billion year old suite of well preserved bedrock belonging to the Transscandinavian Igneous Belt formed during

  4. Site description of Forsmark at completion of the site investigation phase. SDM-Site Forsmark

    International Nuclear Information System (INIS)

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Co., SKB, has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the model is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model for geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site, presents an integrated understanding of the Forsmark area at the completion of the surface-based investigations, which were conducted at Forsmark during the period 2002 to 2007. It also provides a summary of the abundant underlying data and the discipline-specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details in data analyses and modelling in the different disciplines. The Forsmark area is located in northern Uppland within the municipality of Oesthammar, about 120 km north of Stockholm. The candidate area for site investigation is located along the shoreline of Oeregrundsgrepen, within the north-western part of a major tectonic lens that formed between 1.87 and 1.85 billion years ago during the Svecokarelian orogeny. The candidate area is approximately 6 km long and 2 km wide. The

  5. Verification test for three WindCube WLS7 LiDARs at the Høvsøre test site

    DEFF Research Database (Denmark)

    Gottschall, Julia; Courtney, Michael

    The report describes the procedure of testing ground-based WindCube lidars (manufactured by the French company Leosphere) at the Høvsøre test site in comparison to reference sensors mounted at a meteorological mast. Results are presented for three tested units – in detail for unit WLS7-0062, and ......-0062, and in a summary for units WLS7-0064 and WLS7-0066. The verification test covers the evaluation of measured mean wind speeds, wind directions and wind speed standard deviations. The data analysis is basically performed in terms of different kinds of regression analyses.......The report describes the procedure of testing ground-based WindCube lidars (manufactured by the French company Leosphere) at the Høvsøre test site in comparison to reference sensors mounted at a meteorological mast. Results are presented for three tested units – in detail for unit WLS7...

  6. SiteChar – Methodology for a Fit-for-Purpose Assessment of CO2 Storage Sites in Europe

    Directory of Open Access Journals (Sweden)

    Delprat-Jannaud F.

    2015-04-01

    Full Text Available The FP7-funded SiteChar project examined the entire CO2 geological storage site characterisation process, from the initial feasibility studies through to the final stage of application for a CO2 storage permit based on criteria defined by the relevant European legislation. The SiteChar workflow for CO2 geological storage site characterisation provides a description of all elements of a site characterisation study, as well as guidance to streamline the site characterisation process and make sure that the output covers the aspects mentioned in the European Community (EC Storage Directive. Five potential European storage sites, representative of prospective geological contexts, were considered as test sites for the research work: a North Sea multi-store site (hydrocarbon field and aquifer offshore Scotland; an onshore aquifer in Denmark; an onshore gas field in Poland; an aquifer offshore in Norway; and an aquifer in the Southern Adriatic Sea. This portfolio combines complementary sites that allowed to encompass the different steps of the characterisation workflow. A key innovation was the development of internal ‘dry-run’ permit applications at the Danish and Scottish sites and their review by relevant regulatory authorities. This process helped to refine the site characterisation workflow, and aimed to identify remaining gaps in site-specific characterisation, needed to secure storage permits under the EC Storage Directive as implemented in ‘host’ Member States. SiteChar considered the important aspect of the public awareness and public opinions of these new technologies, in parallel to technical issues, on the onshore Polish and offshore Scottish sites. A new format to assist public opinion-forming processes was tested involving a small sample of local communities. Generic as well as site-specific information was made available to the general and local public via the internet and at information meetings. These exercises provide insight

  7. Savannah River Site TEP-SET tests uncertainty report

    International Nuclear Information System (INIS)

    Taylor, D.J.N.

    1993-09-01

    This document presents a measurement uncertainty analysis for the instruments used for the Phase I, II and III of the Savannah River One-Fourth Linear Scale, One-Sixth Sector, Tank/Muff/Pump (TMP) Separate Effects Tests (SET) Experiment Series. The Idaho National Engineering Laboratory conducted the tests for the Savannah River Site (SRS). The tests represented a range of hydraulic conditions and geometries that bound anticipated Large Break Loss of Coolant Accidents in the SRS reactors. Important hydraulic phenomena were identified from experiments. In addition, code calculations will be benchmarked from these experiments. The experimental system includes the following measurement groups: coolant density; absolute and differential pressures; turbine flowmeters (liquid phase); thermal flowmeters (gas phase); ultrasonic liquid level meters; temperatures; pump torque; pump speed; moderator tank liquid inventory via a load cells measurement; and relative humidity meters. This document also analyzes data acquisition system including the presampling filters as it relates to these measurements

  8. Plutonium, americium, and uranium concentrations in Nevada Test Site soil profiles

    International Nuclear Information System (INIS)

    Essington, E.H.; Gilbert, R.O.; Eberhardt, L.L.; Fowler, E.B.

    1975-01-01

    Many soil profile samples were collected by the Nevada Applied Ecology Group from five nuclear safety test sites on the Nevada Test Site and Tonopah Test Range in Nevada, U.S.A. The profile samples were analyzed for 239 Pu, 240 Pu, 241 Am, and in some cases 235 U and 238 U, in order to estimate the depth of radionuclide penetration and level of contamination at specific sampling depths after an extended period of time since deposition on the surface. Nearly 70 individual profiles were examined. About one-half of the profiles exhibited a smooth leaching pattern with more than 95 percent of the plutonium in the top 5 cm. Other profile patterns are discussed relative to mechanical disturbance of the profile after the initial deposition, accumulation of plutonium in specific zones within the soil profile, and occurrence of large amounts of plutonium in the deepest parts of the soil profile. The implications of these observations are discussed with respect to redistribution of radioactivity by wind, water, and burrowing animals, ingestion by burrowing and grazing animals, uptake by vegetation, and cleanup operations. (auth)

  9. On-site and off-site activities

    International Nuclear Information System (INIS)

    Martin, H.D.

    1986-01-01

    Design principles for NPP training programs. Effects of NPP contracts. Effects of domestic industrial activities. The role of international bodies. Requirements for on-site training. Training abroad, technical, financial and social aspects. Training center on-site, an evaluation. (orig.)

  10. Multiple Site Damage in Flat Panel Testing

    National Research Council Canada - National Science Library

    Shrage, Daniel

    2000-01-01

    This report aimed to experimentally verify analytical models that predict the residual strength of representative aircraft structures, such as wide panels, that are subjected to Multiple Site Damage (MSD...

  11. Site scientific mission plan for the Southern Great Plains CART site: July--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

    1997-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  12. Region 9 NPL Sites (Superfund Sites 2013)

    Science.gov (United States)

    NPL site POINT locations for the US EPA Region 9. NPL (National Priorities List) sites are hazardous waste sites that are eligible for extensive long-term cleanup under the Superfund program. Eligibility is determined by a scoring method called Hazard Ranking System. Sites with high scores are listed on the NPL. The majority of the locations are derived from polygon centroids of digitized site boundaries. The remaining locations were generated from address geocoding and digitizing. Area covered by this data set include Arizona, California, Nevada, Hawaii, Guam, American Samoa, Northern Marianas and Trust Territories. Attributes include NPL status codes, NPL industry type codes and environmental indicators. Related table, NPL_Contaminants contains information about contaminated media types and chemicals. This is a one-to-many relate and can be related to the feature class using the relationship classes under the Feature Data Set ENVIRO_CONTAMINANT.

  13. About rehabilitation of vegetation of disturbed ecosystems of the Semipalatinsk test sites

    International Nuclear Information System (INIS)

    Plisak, R.P.; Plisak, S.V.

    2005-01-01

    Full text: Semipalatinsk Test Sites are the place where 470 nuclear tests were conducted in 1949-1989: 26 surface, 87 air, 357 underground. Total area of polluted territories within the test sites reaches 400 square kilometers and 32 squire kilometers at adjoining territory. Radioactive precipitation spread at the territory of 304 thousand square kilometers by traces of radioactive clouds. The precipitation promoted negative processes in environment and damaged public health. One of the most negative factors is products of nuclear decay after underground nuclear tests. They accumulate in soil. Vertical and horizontal migration of radionuclides occurs. The radionuclides accumulate in plants and reach human organism through food chain. Vegetation cover of former Semipalatinsk Test Sites was partly destroyed or damaged on the test sites mentioned above. Nuclear explosions, military and technical construction, building of roads and communication network were conducted out here. Present vegetation cover of breached areas is represented by plant aggregations and communities. They are attributed to different stages of the process of restoration of initial (steppe) vegetation. Rates of rehabilitation of breached ecosystems are conditioned by degree of moisture and properties of formed technogene substratum (soil texture, presence of detritus, and quantity of fine earth). The higher rates of rehabilitation of breached vegetation are typical for ecosystems of flood lands, depressions between hills and slopes of hills of northern exposition. Rehabilitation of zonal ecosystems (sagebrush-eather-grass communities on light chestnut soils) in conditions of arid climate and insignificant water content in substratum of technogene objects proceeds slowly. Rates of restoration of haloxerophyte communities are conditioned by additional moistening of surface washing down of moist ure into micro depressions occupied by sanotiazol. The process of vegetation rehabilitation of damaged

  14. Integrated test plan ResonantSonic drilling system technology demonstration-1995, at the Hanford Site: Revision 1

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1994-01-01

    This integrated test plan describes the demonstration test of the ResonantSonic drilling system. This demonstration is part of the Office of Technology Development's Volatile Organic Compound Arid Integrated Demonstration (VOC-Arid ID). Two main purposes of this demonstration are (1) to continue testing the ResonantSonic drilling system compatibility with the Hanford Site waste characterization programs, and (2) to transfer this method for use at the Hanford Site, other government sites, and the private sector. The ResonantSonic method is a dry drilling technique. Field testing of this method began in July 1993. During the next four months, nine holes were drilled, and continuous core samples were retrieved. Penetration rates were 2 to 3 times the baseline, and the operational downtime rate was less than 10%. Successfully demonstrated equipment refinements included a prototype 300 series ResonantSonic head, a new drill rod design for 18-centimeter diameter pipe, and an automated pipe handling system. Various configurations of sampling equipment and drill bits were tested, depending on geologic conditions. The principal objective of the VOC-Arid ID is to determine the viability of emerging technologies that can be used to characterize, remediate, and/or monitor arid or semiarid sites containing VOCs (e.g., carbon tetrachloride) with or without associated metal and radionuclide contamination

  15. Site characterization and construction of a controlled shallow test site in central Mexico for archaeological and engineering applications

    Science.gov (United States)

    Rosado-Fuentes, A.; Arango-Galvan, C.; Arciniega-Ceballos, A.; Hernández-Quintero, J. E.; Mendo-Perez, G.

    2017-12-01

    A controlled shallow test site (CSTS) has been constructed at the UNAM Geomagnetic Observatory in Teoloyucan, central Mexico. The objective of the CSTS is to have a controlled place to test new developments and arrays that can be used for archaeological and engineering exploration, as well as to calibrate instruments, train students and for future research. The CSTS was built far enough not to influence the geomagnetic sensors and not be affected by noise sources. Special attention was given to the distribution and geometry of buried materials as well as the instruments used. Before the CSTS was built, a combination of near-surface, non-invasive geophysical techniques was performed to characterize the area of 20 by 32 meters. The methods include magnetometry, electromagnetic induction, ground penetrating radar (GPR), electrical resistivity tomography (ERT) and seismic refraction tomography (SRT). The GPR, SRT and ERT results show relatively flat interfaces. In general, the vertical gradient of the total magnetic field and the electric conductivity have very small variations, showing only one strong magnetic dipole associated to a shallow anomaly. These results indicate that the area is ideal for the construction of the test site. The CSTS consists on buried structures made with different materials and geometries (cubes, cylinders and tubes) commonly used as construction materials in Mexico since Pre-Hispanic times. These materials include concrete, reinforced concrete, wood, brick, adobe, basalt, tezontle and also empty space for controlling responses. The CSTS is versatile enough to be reshaped considering new geometries or materials and to conduct further investigations.

  16. Nevada Test Site waste acceptance criteria [Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-08-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  17. Environmental plutonium levels near the Nevada Test Site

    International Nuclear Information System (INIS)

    Bliss, W.A.; Jakubowski, F.M.

    1977-01-01

    The Environmental Monitoring and Support Laboratory-Las Vegas is engaged in a study to define the distribution of plutonium in the environment surrounding the Nevada Test Site (NTS). Extensive soil sampling has been conducted around the NTS, both to define areal distribution and to investigate local concentrating effects by natural phenomena. Additionally, air filters used in the off-NTS air surveillance network as well as those collected in special studies have been analyzed for plutonium to better define ambient levels and to investigate the possibility of resuspension. Results of these, as well as other studies related to defining the ambient plutonium levels around the NTS, are given in this report

  18. Nevada Test Site waste acceptance criteria [Revision 1

    International Nuclear Information System (INIS)

    None

    1997-01-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  19. Site Scientific Mission Plan for the Southern Great Plains CART site: January--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.M.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

    1993-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1994, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  20. Report on expedited site characterization of the Central Nevada Test Area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Yuhr, L. [Technos Inc., Miami, FL (United States); Wonder, J.D.; Bevolo, A.J. [Ames Lab., IA (United States)

    1997-09-01

    This report documents data collection, results, and interpretation of the expedited site characterization (ESC) pilot project conducted from September 1996 to June 1997 at the Central Nevada Test Area (CNTA), Nye County, Nevada. Characterization activities were limited to surface sites associated with deep well drilling and ancillary operations at or near three emplacement well areas. Environmental issues related to the underground nuclear detonation (Project Faultless) and hydrologic monitoring wells were not addressed as a part of this project. The CNTA was divided into four functional areas for the purpose of this investigation and report. These areas include the vicinity of three emplacement wells (UC-1, UC-3, and UC-4) and one mud waste drilling mud collection location (Central Mud Pit; CMP). Each of these areas contain multiple, potentially contaminated features, identified either from historic information, on-site inspections, or existing data. These individual features are referred to hereafter as ``sites.`` The project scope of work involved site reconnaissance, establishment of local grid systems, site mapping and surveying, geophysical measurements, and collection and chemical analysis of soil and drilling mud samples. Section 2.0 through Section 4.0 of this report provide essential background information about the site, project, and details of how the ESC method was applied at CNTA. Detailed discussion of the scope of work is provided in Section 5.0, including procedures used and locations and quantities of measurements obtained. Results and interpretations for each of the four functional areas are discussed separately in Sections 6.0, 7.0, 8.0, and 9.0. These sections provide a chronological presentation of data collected and results obtained, followed by interpretation on a site-by-site basis. Key data is presented in the individual sections. The comprehensive set of data is contained in appendices.

  1. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  2. On-Site or Off-Site Renewable Energy Supply Options?

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    The concept of a Net Zero Energy Building (Net ZEB) encompasses two options of supplying renewable energy, which can offset energy use of a building, in particular on-site or off-site renewable energy supply. Currently, the on-site options are much more popular than the off-site; however, taking...... into consideration the limited area of roof and/or façade, primarily in the dense city areas, the Danish weather conditions, the growing interest and number of wind turbine co-ops, the off-site renewable energy supply options could become a meaningful solution for reaching ‘zero’ energy goal in the Danish context...... five technologies, i.e., two on-site options: (1) photovoltaic, (2) micro combined heat and power, and three off-site options: (1) off-site windmill, (2) share of a windmill farm and (3) purchase of green energy from the 100% renewable utility grid. The results indicate that in case of the on...

  3. Nevada Test Site 2000 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    Yvonne Townsend

    2001-01-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2000 was an average rainfall year: rainfall totaled 167 mm (6.6 in) at the Area 3 RWMS (annual average is 156 mm [6.5 in]) and 123 mm (4.8 in) at the Area 5 RWMS (annual average is 127 mm [5.0 in]). Vadose zone monitoring data indicate that 2000 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2000 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing well at isolating buried waste

  4. Site Maintenance Plan: Part 2, Site Maintenance Action Plan for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, E.L.

    1994-06-01

    This Fiscal Year (FY) 1994 Site Maintenance Action Plan (SMAP) is Part II of the Site Maintenance Plan, and has been written by Westinghouse Hanford Company (WHC) to outline the requirements stated in DOE Order 4330.4B, Maintenance Management Program, Chapter 1, Paragraph 3.3.1. The SMAP provides an annual status of maintenance initiatives completed and planned, a summary of performance indicators, a summary of maintenance backlog, a listing of real property and capital equipment maintenance cost estimates that were used to create the FY 1996 infrastructure and maintenance budget input, and a listing of proposed line item and general plant projects. Additionally, assumptions for various Site programs are listed to bring the Site Maintenance Plan into focus with overall Site activities. The primary mission at Hanford is to clean up the Site. In this cleanup process WHC will provide scientific and technological expertise to meet global needs, and partnership with stakeholders in the region to develop regional economic diversification. Other missions at the Hanford Site include energy research and development, and waste management and disposal activities. Their primary mission has a 30-year projected life span and will direct the shutting down and cleanup of defense production facilities and the Fast Flux Test Facility. This long-term mission requires continuous maintenance and in many instances, replacement of existing basic infrastructure, support facilities, and utilities. Without adequate maintenance and capital funding these infrastructure, support facilities, and utilities will continue to deteriorate causing an increase in backlogged work.

  5. Site Maintenance Plan: Part 2, Site Maintenance Action Plan for FY 1994

    International Nuclear Information System (INIS)

    Fisk, E.L.

    1994-06-01

    This Fiscal Year (FY) 1994 Site Maintenance Action Plan (SMAP) is Part II of the Site Maintenance Plan, and has been written by Westinghouse Hanford Company (WHC) to outline the requirements stated in DOE Order 4330.4B, Maintenance Management Program, Chapter 1, Paragraph 3.3.1. The SMAP provides an annual status of maintenance initiatives completed and planned, a summary of performance indicators, a summary of maintenance backlog, a listing of real property and capital equipment maintenance cost estimates that were used to create the FY 1996 infrastructure and maintenance budget input, and a listing of proposed line item and general plant projects. Additionally, assumptions for various Site programs are listed to bring the Site Maintenance Plan into focus with overall Site activities. The primary mission at Hanford is to clean up the Site. In this cleanup process WHC will provide scientific and technological expertise to meet global needs, and partnership with stakeholders in the region to develop regional economic diversification. Other missions at the Hanford Site include energy research and development, and waste management and disposal activities. Their primary mission has a 30-year projected life span and will direct the shutting down and cleanup of defense production facilities and the Fast Flux Test Facility. This long-term mission requires continuous maintenance and in many instances, replacement of existing basic infrastructure, support facilities, and utilities. Without adequate maintenance and capital funding these infrastructure, support facilities, and utilities will continue to deteriorate causing an increase in backlogged work

  6. Estimating the water table under the Radioactive Waste Management Site in Area 5 of the Nevada Test Site the Dupuit-Forcheimer approximation

    International Nuclear Information System (INIS)

    Lindstrom, T.F.; Barker, L.E.; Cawlfield, D.E.; Daffern, D.D.; Dozier, B.L.; Emer, D.F.; Strong, W.R.

    1992-01-01

    A two-dimensional steady-state water-flow equation for estimating the water table elevation under a thick, very dry vadose zone is developed and discussed. The Dupuit assumption is made. A prescribed downward vertical infiltration/evaporation condition is assumed at the atmosphere-soil interface. An approximation to the square of the elevation head, based upon multivariate cubic interpolation methods, is introduced. The approximation is forced to satisfy the governing elliptic (Poisson) partial differential equation over the domain of definition. The remaining coefficients are determined by interpolating the water table at eight ''boundary points.'' Several realistic scenarios approximating the water table under the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS) are discussed

  7. Application of Geophysical Techniques in Identifying UNE Signatures at Semipalatinsk Test Site (for OSI Purposes)

    Science.gov (United States)

    Belyashov, A.; Shaitorov, V.; Yefremov, M.

    2014-03-01

    This article describes geological and geophysical studies of an underground nuclear explosion area in one of the boreholes at the Semipalatinsk test site in Kazakhstan. During these studies, the typical elements of mechanical impact of the underground explosion on the host medium—fracturing of rock, spall zones, faults, cracks, etc., were observed. This information supplements to the database of underground nuclear explosion phenomenology and can be applied in fulfilling on-site inspection tasks under the Comprehensive Nuclear-Test-Ban Treaty.

  8. Addendum to environmental monitoring plan Nevada Test Site and support facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-11-01

    This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  9. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities

    International Nuclear Information System (INIS)

    1993-11-01

    This 1993 Addendum to the ''Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,'' Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy's (DOE's) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards

  10. Fiber optic utilization at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lyons, P.B.; Golob, J.E.; Looney, L.D.; Robichaud, R.E.; Nelson, M.A.; Davies, T.J.

    1978-11-01

    Optical fiber cables have been successfully used for 100-MHz analog data transmission during an underground nuclear test at the Nevada Test Site. Two 700-m Corning Corguide cables were used to provide thirteen single fiber data channels from the vicinity of the underground detonation, 350 meters below ground level, to recording instrumentation, 350 meters from the downhole shaft. No fiber performance degradation was observed during the extensive procedures used to seal the shaft. These procedures included backfilling the shaft with layers of sand and gravel, as well as poured epoxy plugs. Techniques were developed for internal sealing of the Corguide cable to prevent any possible radioactive gas flow through voids within the cable. The effects on optical fibers of intense, pulsed neutron and gamma irradiation were studied. Specialized tools, including a system for location of faults or breaks in the optical fibers, were developed. The success of this first test will allow consideration of fiber optic cables for future nuclear tests as well as for other applications involving extremely rough handling in field environments

  11. Usability Evaluation of Public Web Mapping Sites

    Science.gov (United States)

    Wang, C.

    2014-04-01

    Web mapping sites are interactive maps that are accessed via Webpages. With the rapid development of Internet and Geographic Information System (GIS) field, public web mapping sites are not foreign to people. Nowadays, people use these web mapping sites for various reasons, in that increasing maps and related map services of web mapping sites are freely available for end users. Thus, increased users of web mapping sites led to more usability studies. Usability Engineering (UE), for instance, is an approach for analyzing and improving the usability of websites through examining and evaluating an interface. In this research, UE method was employed to explore usability problems of four public web mapping sites, analyze the problems quantitatively and provide guidelines for future design based on the test results. Firstly, the development progress for usability studies were described, and simultaneously several usability evaluation methods such as Usability Engineering (UE), User-Centered Design (UCD) and Human-Computer Interaction (HCI) were generally introduced. Then the method and procedure of experiments for the usability test were presented in detail. In this usability evaluation experiment, four public web mapping sites (Google Maps, Bing maps, Mapquest, Yahoo Maps) were chosen as the testing websites. And 42 people, who having different GIS skills (test users or experts), gender (male or female), age and nationality, participated in this test to complete the several test tasks in different teams. The test comprised three parts: a pretest background information questionnaire, several test tasks for quantitative statistics and progress analysis, and a posttest questionnaire. The pretest and posttest questionnaires focused on gaining the verbal explanation of their actions qualitatively. And the design for test tasks targeted at gathering quantitative data for the errors and problems of the websites. Then, the results mainly from the test part were analyzed. The

  12. Site scientific mission plan for the southern Great Plain CART site July-December 1997.

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, P.J.; Peppler, R.A.; Sisterson, D.L.

    1997-08-28

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  13. Final environmental impact statement for the Nevada test site and off-site locations in the State of Nevada. Public comment and response document, Volume 3, Part B responses

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  14. Character and levels of radioactive contamination of underground waters at Semipalatinsk test site

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, S.; Lukashenko, S.; Turchenko, Y. [Institute of radiation safety and ecology (Kazakhstan)

    2014-07-01

    According to the data of RK government commission, 470 explosions have been set off at the Semipalatinsk Test Site (STS), inclusive of 26 surface, 90 in the air and 354 underground nuclear explosions (UNE), 103 of those have been conducted in tunnels and 251 - in boreholes. Underground nuclear explosions have been conducted at STS in horizontal mines, called - 'tunnels' ('Degelen' test site) and vertical mines called 'boreholes' ('Balapan' and 'Sary-Uzen' test sites). Gopher cavities of boreholes and tunnels are in different geotechnical conditions, that eventually specify migration of radioactive products with underground waters. Central cavities of UNE in holes are located significantly below the level of distribution of underground water. High temperature remains for a long time due to presence of overlying rock mass. High temperatures contribute to formation of thermal convection. When reaching the cavity, the water heat up, dissolve chemical elements and radionuclides and return with them to the water bearing formation. In the major part of 'Balapan' site for underground water of regional basin is characterized by low concentrations of radionuclides. High concentrations of {sup 137}Cs in underground water have been found only in immediate vicinity to 'warfare' boreholes. Formation of radiation situation in the 'Balapan' test site area is also affected by local area of underground water discharge. It is located in the valley of Shagan creek, where the concentration of {sup 3}H reaches 700 kBq/l. Enter of underground water contaminated with tritium into surface water well continue. In this case it is expected that tritium concentration in discharge zone can significantly change, because this migration process depends on hydro geological factors and the amount of atmospheric precipitation. Central cavities of nuclear explosions, made in tunnels, are above the level of underground

  15. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

  16. Nevada Test Site, site treatment plan 1999 annual update

    International Nuclear Information System (INIS)

    1999-03-01

    A Site Treatment Plan (STP) is required for facilities at which the US Department of Energy Nevada Operations Office (DOE/NV) generates or stores mixed waste (MW), defined by the Federal Facility Compliance Act (FFC Act) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act (RCRA) and a radioactive material subject to the Atomic Energy Act. This STP was written to identify specific treatment facilities for treating DOE/NV generated MW and provides proposed implementation schedules. This STP was approved by the Nevada Division of Environmental Protection (NDEP) and provided the basis for the negotiation and issuance of the FFC Act Consent Order (CO) dated March 6, 1996, and revised June 15, 1998. The FFC Act CO sets forth stringent regulatory requirements to comply with the implementation of the STP

  17. Site Study Plan for laboratory soil mechanics, Deaf Smith County site, Texas: Revision 1

    International Nuclear Information System (INIS)

    1987-12-01

    This Site Study Plan for laboratory soil mechanics describes the laboratory testing to be conducted on soil samples collected as part of the characterization of the Deaf Smith County site, Texas. This study provides for measurements of index, mechanical, thermal, hydrologic, chemical, and mineral properties of soils from boring throughout the site. Samples will be taken from Playa Borings/Trenching, Transportation/Utilities Foundation Borings, Repository Surface Facilities Design Foundation Borings, and Exploratory Shaft Facilities Design Foundation Borings. Data from the laboratory tests will be used for soil strata characterization, design of foundations for surface structures, design of transportation facilities and utility structures, design of impoundments, design of shaft lining, design of the shaft freeze wall, shaft permitting, performance assessment calculations, and other program requirements. A tentative testing schedule and milestone log are given. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that appropriate documentation is maintained. 18 refs., 6 figs., 3 tabs

  18. Boise Hydrogeophysical Research Site: Control Volume/Test Cell and Community Research Asset

    Science.gov (United States)

    Barrash, W.; Bradford, J.; Malama, B.

    2008-12-01

    The Boise Hydrogeophysical Research Site (BHRS) is a research wellfield or field-scale test facility developed in a shallow, coarse, fluvial aquifer with the objectives of supporting: (a) development of cost- effective, non- or minimally-invasive quantitative characterization and imaging methods in heterogeneous aquifers using hydrologic and geophysical techniques; (b) examination of fundamental relationships and processes at multiple scales; (c) testing theories and models for groundwater flow and solute transport; and (d) educating and training of students in multidisciplinary subsurface science and engineering. The design of the wells and the wellfield support modular use and reoccupation of wells for a wide range of single-well, cross-hole, multiwell and multilevel hydrologic, geophysical, and combined hydrologic-geophysical experiments. Efforts to date by Boise State researchers and collaborators have been largely focused on: (a) establishing the 3D distributions of geologic, hydrologic, and geophysical parameters which can then be used as the basis for jointly inverting hard and soft data to return the 3D K distribution and (b) developing subsurface measurement and imaging methods including tomographic characterization and imaging methods. At this point the hydrostratigraphic framework of the BHRS is known to be a hierarchical multi-scale system which includes layers and lenses that are recognized with geologic, hydrologic, radar, seismic, and EM methods; details are now emerging which may allow 3D deterministic characterization of zones and/or material variations at the meter scale in the central wellfield. Also the site design and subsurface framework have supported a variety of testing configurations for joint hydrologic and geophysical experiments. Going forward we recognize the opportunity to increase the R&D returns from use of the BHRS with additional infrastructure (especially for monitoring the vadose zone and surface water-groundwater interactions

  19. Multi-site testing and evaluation of remote sensing instruments for wind energy applications

    DEFF Research Database (Denmark)

    Sanz Rodrigo, J.; Borbon Guillen, F.; Gomez Arranz, P.

    2013-01-01

    A procedure for testing and evaluation of remote sensing instruments that makes use of two test sites in flat and complex terrain is presented. To illustrate the method, a system intercomparison experiment is presented involving one sodar and two lidars (pulsed and continuous-wave). The wind...

  20. The disposal of Canada's nuclear fuel waste: site screening and site evaluation technology

    International Nuclear Information System (INIS)

    Davison, C.C.; Brown, A.; Everitt, R.A.; Gascoyne, M.; Kozak, E.T.; Lodha, G.S.; Martin, C.D.; Soonawala, N.M.; Stevenson, D.R.; Thorne, G.A.; Whitaker, S.H.

    1994-06-01

    carefully characterized to understand the groundwater flow conditions in the rock. This understanding would be used to situate the disposal vault in the rock so as to allow the flow and chemical characteristics of the groundwater to enhance the safety of the disposal system. The geoscience methods for characterizing the conditions within plutonic rocks of the Canadian Shield have been developed and tested by AECL at geologic research areas on the Shield. This report presents examples of the site characterization methods which are drawn from the studies at these research areas. The geoscience work performed at the Whiteshell Research Area (WRA) on the Shield in southeastern Manitoba comes closest to illustrating the spatial coverage of characterization that would be required for siting an actual nuclear fuel waste disposal vault in a candidate area of the Shield. The characterization work done at the site of the Underground Research Laboratory (URL) in the WRA demonstrates how to evaluate the geoscience conditions of the rock at a candidate disposal site, and illustrates how that information would be used to confirm the suitability of the site for disposal. This report presents evidence from case studies at the URL and the geologic research areas that the surface-based, borehole and underground site characterization methods developed by AECL are now sufficiently developed that they can be used to obtain the geoscience information needed for siting a disposal vault in plutonic rock of the Canadian Shield. We expect that these site characterization methods will continue to be improved and that new methods will be developed during the long time period required for implementation of the disposal project. Improvements and new developments are continuing through ongoing research at the site of the URL and at the other geologic research areas on the Shield. However the methods that are currently available are sufficiently well developed to allow siting to commence. (author)