WorldWideScience

Sample records for test site nts

  1. Nuclear Materials Management for the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Jesse C. Schreiber

    2007-01-01

    The Nevada Test Site (NTS) has transitioned from its historical role of weapons testing to a broader role that is focused on being a solution to multiple National Nuclear Security Administration (NNSA) challenges and opportunities with nuclear materials for the nation. NTS is supporting other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to make the production complex smaller, more consolidated, and more modern. With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through dispositioning and consolidating nuclear material. This includes moving material from other sites to NTS. State-of-the-art nuclear material management and control practices at NTS are essential for NTS to ensure that these new activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS is aggressively addressing this challenge

  2. Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Daniels, J.I.; Andricevic, R.; Jacobson, R.L.

    1993-06-01

    The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of 239,24O Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual 239 Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with 239,24O Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10 -6 , 6 x 10 -5 , and 5 x 10 -4 , respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung

  3. HECTR [Hydrogen Event: Containment Transient Response] analyses of the Nevada Test Site (NTS) premixed combustion experiments

    International Nuclear Information System (INIS)

    Wong, C.C.

    1988-11-01

    The HECTR (Hydrogen Event: Containment Transient Response) computer code has been developed at Sandia National Laboratories to predict the transient pressure and temperature responses within reactor containments for hypothetical accidents involving the transport and combustion of hydrogen. Although HECTR was designed primarily to investigate these phenomena in LWRs, it may also be used to analyze hydrogen transport and combustion experiments as well. It is in this manner that HECTR is assessed and empirical correlations, such as the combustion completeness and flame speed correlations for the hydrogen combustion model, if necessary, are upgraded. In this report, we present HECTR analyses of the large-scale premixed hydrogen combustion experiments at the Nevada Test Site (NTS) and comparison with the test results. The existing correlations in HECTR version 1.0, under certain conditions, have difficulty in predicting accurately the combustion completeness and burn time for the NTS experiments. By combining the combustion data obtained from the NTS experiments with other experimental data (FITS, VGES, ACUREX, and Whiteshell), a set of new and better combustion correlations was generated. HECTR prediction of the containment responses, using a single-compartment model and EPRI-provided combustion completeness and burn time, compares reasonably well against the test results. However, HECTR prediction of the containment responses using a multicompartment model does not compare well with the test results. This discrepancy shows the deficiency of the homogeneous burning model used in HECTR. To overcome this deficiency, a flame propagation model is highly recommended. 16 refs., 84 figs., 5 tabs

  4. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Becker, B.D.; Gertz, C.P.; Clayton, W.A.; Crowe, B.M.

    1998-01-01

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites

  5. Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J.I. [ed.; Anspaugh, L.R.; Bogen, K.T.; Daniels, J.I.; Layton, D.W.; Straume, T. [Lawrence Livermore National Lab., CA (United States); Andricevic, R.; Jacobson, R.L. [Nevada Univ., Las Vegas, NV (United States). Water Resources Center; Meinhold, A.F.; Holtzman, S.; Morris, S.C.; Hamilton, L.D. [Brookhaven National Lab., Upton, NY (United States)

    1993-06-01

    The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of {sup 239,24O}Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual {sup 239}Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with {sup 239,24O}Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10{sup {minus}6}, 6 x 10{sup {minus}5}, and 5 x 10{sup {minus}4}, respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

  6. Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J.I. (ed.)

    1993-06-01

    The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of [sup 239,24O]Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual [sup 239]Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with [sup 239,24O]Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10[sup [minus]6], 6 x 10[sup [minus]5], and 5 x 10[sup [minus]4], respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

  7. Release of Radioactive Scrap Metal/Scrap Metal (RSM/SM) at Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    1993-01-01

    Reynolds Electrical and Engineering Company, Inc. (REECo) is the prime contractor to the US Department of Energy (DOE) in providing service and support for NTS operations. Mercury Base Camp is the main control point for the many forward areas at NTS, which covers 1,350 square miles. The forward areas are where above-ground and underground nuclear tests have been performed over the last 41 years. No metal (or other material) is returned to Mercury without first being tested for radioactivity. No radioactive metals are allowed to reenter Mercury from the forward areas, other than testing equipment. RAMATROL is the monitor check point. They check material in various ways, including swipe tests, and have a large assortment of equipment for testing. Scrap metal is also checked to address Resource Conservation and Recovery Act concerns. After addressing these issues, the scrap metals are categorized. Federal Property Management Regulations (FPMR) are followed by REECo. The nonradioactive scrap material is sold through the GSA on a scheduled basis. Radioactive scrap metal are presently held in forward areas where they were used. REECo has gained approval of their Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements, NVO-325 application, which will allow disposal on site, when RSM is declared a waste. The guideline that REECo uses for release limits is DOE Order 5480.11, Radiation Protection for Occupational Works, Attachment 2, Surface Radioactivity Guides, of this order, give release limits for radioactive materials. However, the removal of radioactive materials from NTS require approval by DOE Nevada Operations Office (DOE/NV) on a case-by-case basis. Requirements to consider before removal are found in DOE Order 5820.2A, Radioactive Waste Management

  8. Risk-based screening analysis of ground water contaminated by radionuclides introduced at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Daniels, J.I.; Anspaugh, L.R.; Andricevic, R.; Jacobson, R.L.

    1993-06-01

    The Nevada Test Site (NTS) is located in the southwestern part of Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. Underground tests of nuclear weapons devices have been conducted at the NTS since late 1962 and ground water beneath the NTS has been contaminated with radionuclides produced by these tests. This concern prompted this examination of the potential health risk to these individuals from drinking the contaminated ground water either at a location on the NTS (assuming loss of institutional control after 100 y) or at one offsite (considering groundwater migration). For the purpose of this assessment, a representative mix of the radionuclides of importance and their concentrations in ground water beneath the NTS were identified from measurements of radionuclide concentrations in groundwater samples-of-opportunity collected at the NTS. Transport of radionuclide-contaminated ground water offsite was evaluated using a travel-time-transport approach. At both locations of interest, potential human-health risk was calculated for an individual ingesting radionuclide-contaminated ground water over the course of a 70-y lifetime. Uncertainties about human physiological attributes, as well as about estimates of physical detriment per unit of radioactive material, were quantified and incorporated into the estimates of risk. The maximum potential excess lifetime risk of cancer mortality estimated for an individual at the offsite location ranges from 7 x 10 -7 to 1 x 10 -5 , and at the onsite location ranges from 3 x 10 -3 to 2 x 10 -2 . Both the offsite and the onsite estimates of risk are dominated by the lifetime doses from tritium. For the assessment of radionuclides in ground water, the critical uncertainty is their concentration today under the entire NTS

  9. Closure Report for Corrective Action Unit 340: NTS Pesticide Release Sites Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Obi

    2000-05-01

    The purpose of this report is to provide documentation of the completed corrective action and to provide data confirming the corrective action. The corrective action was performed in accordance with the approved Corrective Action Plan (CAP) (U.S. Department of Energy [DOE], 1999) and consisted of clean closure by excavation and disposal. The Area 15 Quonset Hut 15-11 was formerly used for storage of farm supplies including pesticides, herbicides, and fertilizers. The Area 23 Quonset Hut 800 was formerly used to clean pesticide and herbicide equipment. Steam-cleaning rinsate and sink drainage occasionally overflowed a sump into adjoining drainage ditches. One ditch flows south and is referred to as the quonset hut ditch. The other ditch flows southeast and is referred to as the inner drainage ditch. The Area 23 Skid Huts were formerly used for storing and mixing pesticide and herbicide solutions. Excess solutions were released directly to the ground near the skid huts. The skid huts were moved to a nearby location prior to the site characterization performed in 1998 and reported in the Corrective Action Decision Document (CADD) (DOE, 1998). The vicinity and site plans of the Area 23 sites are shown in Figures 2 and 3, respectively.

  10. Annual Report - FY 1998, Shipments to and from the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    1999-01-01

    This report summarizes waste shipments to the Nevada Test Site Radioactive Waste Management Sites at Area 3 and Area 5 during fiscal year 1998. In addition this report provides a summary evaluation of each shipping campaign by source (waste generator) which identifies observable incidents, if any, associated with the actual waste shipments

  11. Seismic hazard analysis for the NTS spent reactor fuel test site

    International Nuclear Information System (INIS)

    Campbell, K.W.

    1980-01-01

    An experiment is being directed at the Nevada Test Site to test the feasibility for storage of spent fuel from nuclear reactors in geologic media. As part of this project, an analysis of the earthquake hazard was prepared. This report presents the results of this seismic hazard assessment. Two distinct components of the seismic hazard were addressed: vibratory ground motion and surface displacement

  12. Users Manual for Nevada Test Site Database (NTS-DB) Software

    National Research Council Canada - National Science Library

    White, Howard

    1997-01-01

    The U.S. Army Engineer Waterways Experiment Station was actively involved in the development, testing, and fielding of a wide variety of grout and concrete mixtures in support of underground nuclear test...

  13. Preparing, Loading and Shipping Irradiated Metals in Canisters Classified as Remote-Handled (RH) Low-Level Waste (LLW) From Oak Ridge National Laboratory (ORNL) to the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    McClelland, B.C.; Moore, T.D.

    2006-01-01

    Irradiated metals, classified as remote-handled low-level waste generated at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, were containerised in various sized canisters for long-term storage. The legacy waste canisters were placed in below-grade wells located at the 7827 Facility until a pathway for final disposal at the Nevada Test Site (NTS) could be identified and approved. Once the pathway was approved, WESKEM, LLC was selected by Bechtel Jacobs Company, LLC to prepare, load, and ship these canisters from ORNL to the NTS. This paper details some of the technical challenges encountered during the retrieval process and solutions implemented to ensure the waste was safely and efficiently over-packed and shipped for final disposal. The technical challenges detailed in this paper include: 1) how to best perform canister/lanyard pre-lift inspections since some canisters had not been moved in ∼10 years, so deterioration was a concern; 2) replacing or removing damaged canister lanyards; 3) correcting a mis-cut waste canister lanyard resulting in a shielded overpack lid not seating properly; 4) retrieving a stuck canister; and 5) developing a path forward after an overstrained lanyard failed causing a well shield plug to fall and come in contact with a waste canister. Several of these methods can serve as positive lessons learned for other projects encountering similar situations. (authors)

  14. Closure Report for Corrective Action Units 530, 531, 532, 533, 534, 535: NTS Mud Pits, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2006-07-01

    This Closure Report (CR) presents information supporting the recommendation of no further action for the following six Corrective Action Units (CAUs): (1) CAU 530 - LANL Preshot Mud Pits; (2) CAU 531 - LANL Postshot Mud Pits; (3) CAU 532 - LLNL Preshot Mud Pits; (4) CAU 533 - LLNL Postshot Mud Pits; (5) CAU 534 - Exploratory/Instrumentation Mud Pits; and (6) CAU 535 - Mud Pits/Disposal Areas. This CR complies with the requirements of the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. CAUs 530-535 are located in Areas 1-10, 14, 17, 19, and 20 of the Nevada Test Site and are comprised of 268 Corrective Action Sites (CASs) listed in Table 1-1. The purpose of this CR is to validate the risk-based closure strategy presented in the ''Mud Pit Risk-Based Closure Strategy Report'' (RBCSR) (NNSA/NSO, 2004) and the CAUs 530-535 SAFER Plan (NNSA/NSO, 2005b). This strategy uses 52 CASs as a statistical representation of CAUs 530-535 to confirm the proposed closure alternative, no further action, is sufficient to protect human health and the environment. This was accomplished with the following activities: A field investigation following a probabilistic sampling design to collect data that were used in a non-carcinogenic risk assessment for human receptors; Visual habitat surveys to confirm the lack of habitat for threatened and endangered species; Disposal of debris and waste generated during field activities; and Document Notice of Completion and closure of CAUs 530-535 issued by Nevada Division of Environmental Protection. The field investigation and site visits were conducted between August 31, 2005 and February 21, 2006. As stated in the RBCSR and Streamlined Approach for Environmental Restoration (SAFER) Plan, total petroleum hydrocarbons-diesel-range organics (TPH-DRO) was the only contaminant of potential

  15. Integration of Nevada Test Site (NTS) Work Control Programs and Incorporating Integrated Safety Management (ISM) into Activity Level Work Planning and Control

    International Nuclear Information System (INIS)

    Kinney, Mike; Breen, Kevin

    2008-01-01

    This session will examine a method developed by Federal and Contractor personnel at the Nevada Site Office (NSO) to improve the planning and execution of work activities utilizing an Activity Level Work Control process in response to Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2004-1, Oversight of Complex, High-Hazard Nuclear Operations. The process was initially developed during Fiscal Year (FY) 2007, and implementation is commencing during the fourth quarter of FY 2008. This process will significantly enhance the flexibility and the appropriate rigor in the performance of work activities

  16. Site Response in Las Vegas Valley, Nevada from NTS Explosions and Earthquake Data

    Science.gov (United States)

    Rodgers, Arthur; Tkalcic, Hrvoje; McCallen, David; Larsen, Shawn; Snelson, Catherine

    2006-01-01

    We report site response in Las Vegas Valley (LVV) from historical recordings of Nevada Test Site (NTS) nuclear explosions and earthquake recordings from permanent and temporary seismic stations. Our data set significantly improves the spatial coverage of LVV over previous studies, especially in the northern, deeper parts of the basin. Site response at stations in LVV was measured for frequencies in the range 0.2 5.0 Hz using Standard Spectral Ratios (SSR) and Horizontal-Vertical Spectral Ratios (HVR). For the SSR measurements we used a reference site (approximately NEHRP B ``rock'' classification) located on Frenchman Mountain outside the basin. Site response at sedimentary sites is variable in LVV with average amplifications approaching a factor of 10 at some frequencies. We observed peaks in the site response curves at frequencies clustered near 0.6, 1.2 and 2.0 Hz, with some sites showing additional lower amplitude peaks at higher frequencies. The spatial pattern of site response is strongly correlated with the reported depth to basement for frequencies between 0.2 and 3.0 Hz, although the frequency of peak amplification does not show a similar correlation. For a few sites where we have geotechnical shear velocities, the amplification shows a correlation with the average upper 30-meter shear velocities, V 30. We performed two-dimensional finite difference simulations and reproduced the observed peak site amplifications at 0.6 and 1.2 Hz with a low velocity near-surface layer with shear velocities 600 750 m/s and a thickness of 100 200 m. These modeling results indicate that the amplitude and frequencies of site response peaks in LVV are strongly controlled by shallow velocity structure.

  17. Technical concept for rock mechanics tests, Climax Granite, NTS

    International Nuclear Information System (INIS)

    Hearst, J.R.

    1979-02-01

    If we are to believe our predictions of the thermomechanical behavior of the material surrounding a nuclear waste repository in granite, we must test the computational methods used in making the predictions. If thermal loadings appropriate to a real repository are used, thermally induced displacements and strains are quite small, and available geotechnical instrumentation is only marginally able to measure these effects to the accuracy desired to make thorough tests of the predictions. We outline a three-step program to address these issues. (1) Conduct experiments in which the thermal loading is large compared to that induced by a real repository. This will permit us to make accurate measurements with available instrumentation. (2) Simultaneously, develop improved instrumentation that will enable us to make accurate measurements of motions induced by thermal loadings appropriate to a real repository. (3) Finally, conduct a second set of experiments, with the improved instrumentation and thermal loading similar to that of a real repository in granite. If we can predict the effects of this thermal loading to a few percent over distances of tens of meters for time periods of a few years, and demonstrate that these predictions are correct, we can have reasonable confidence that, using the same methods, we can predict the behavior over thousands of meters for hundreds of years to an order of magnitude. That accuracy should be satisfactory for those distances and times

  18. Prediction of ground motion from underground nuclear weapons tests as it relates to siting of a nuclear waste storage facility at NTS and compatibility with the weapons test program

    International Nuclear Information System (INIS)

    Vortman, L.J. IV.

    1980-04-01

    This report assumes reasonable criteria for NRC licensing of a nuclear waste storage facility at the Nevada Test Site where it would be exposed to ground motion from underground nuclear weapons tests. Prediction equations and their standard deviations have been determined from measurements on a number of nuclear weapons tests. The effect of various independent parameters on standard deviation is discussed. That the data sample is sufficiently large is shown by the fact that additional data have little effect on the standard deviation. It is also shown that coupling effects can be separated out of the other contributions to the standard deviation. An example, based on certain licensing assumptions, shows that it should be possible to have a nuclear waste storage facility in the vicinity of Timber Mountain which would be compatible with a 700 kt weapons test in the Buckboard Area if the facility were designed to withstand a peak vector acceleration of 0.75 g. The prediction equation is a log-log linear equation which predicts acceleration as a function of yield of an explosion and the distance from it

  19. NTS MC and A History

    International Nuclear Information System (INIS)

    Mary Alice Price; Kim Young

    2008-01-01

    Within the past three and a half years, the Nevada Test Site (NTS) has progressed from a Category IV to a Category I nuclear material facility. In accordance with direction from the U.S. Department of Energy (DOE) Secretary and National Nuclear Security Administration (NNSA) Administrator, NTS received shipments of large quantities of special nuclear material from Los Alamos National Laboratory (LANL) and other sites in the DOE complex. December 2004 was the first occurrence of Category I material at the NTS, with the exception of two weeks of sub-critical underground testing in 2001, since 1992. The Material Control and Accountability (MC and A) program was originally a jointlab effort by LANL, Lawrence Livermore National Laboratory, and Bechtel Nevada, but in March 2006 the NNSA Nevada Site Office appointed the NTS Management and Operations contractor with sole responsibility. This paper will discuss the process and steps taken to transition the NTS MC and A program from multiple organizations to a single entity and from a Category IV to a Category I program. This transition flourished as MC and A progressed from the 2004 Office of Assessment (OA) rating of 'Significant Weakness' to the 2007 OA assessment rating of 'Effective Performance'. The paper will provide timelines, funding and staffing issues, OA assessment findings and corrective actions, and future expectations. The process has been challenging, but MC and A's innovative responses to the challenges have been very successful

  20. Nevada test site radionuclide inventory and distribution: project operations plan

    International Nuclear Information System (INIS)

    Kordas, J.F.; Anspaugh, L.R.

    1982-01-01

    This document is the operational plan for conducting the Radionuclide Inventory and Distribution Program (RIDP) at the Nevada Test Site (NTS). The basic objective of this program is to inventory the significant radionuclides of NTS origin in NTS surface soil. The expected duration of the program is five years. This plan includes the program objectives, methods, organization, and schedules

  1. Application to transfer radioactive waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    1992-01-01

    All waste described in this application has been, and will be, generated by LANL in support of the nuclear weapons test program at the NTS. All waste originates on the NTS. DOE Order 5820.2A states that low-level radioactive waste shall be disposed of at the site where it is generated, when practical. Since the waste is produced at the NTS, it is cost effective for LANL to dispose of the waste at the NTS

  2. Cleanup of radioactive mud spill U20aa postshot drilling site NTS

    International Nuclear Information System (INIS)

    Straume, T.; Kellner, C.R.; Oswald, K.M.

    1977-03-01

    Radioactive decontamination of a large rugged terrain on the NTS (Area 20) was undertaken during the Summer of 1976. Several decontamination methods were used and their effectiveness, as measured by the fraction of radioactivity remaining (FR), ranged from 10 -1 to 10 -3 , depending upon the method used and type of terrain. Front end loading was most efficient in large relatively flat areas of fine grain, compact dirt with an FR of about 10 -2 . Shoveling and bagging achieved FRs of 10 -2 in locations of fine grain, compact dirt. However, if dirt was coarse grain or gravel-like, the contaminated mud/water had seeped to considerable depths, making shoveling impractical. Flushing with water was the method chosen for rocky surfaces and was the primary method of decontamination in Area 4. FRs down to 10 -3 were achieved on smooth surfaces and about 10 -1 in cracks. Vacuuming was very effective in flat areas with fine grain compact dirt achieving FRs down to 10 -3 , but was a very slow process compared to front end loading. Approximately 900 man days were expended on this cleanup, and 2584 yd 3 of contaminated dirt were removed. A similar amount of clean dirt was transported from about two miles away to cover the crater burial site, mud sump, and areas containing residual radiation above 1 mrem/h contact. Total quantity of residual radioactivity present 6 months following the spill and after decontamination was estimated as 900 millicuries of 106 Ru/Rh and 0.034 millicuries 103 Ru. No person was exposed to doses of radiation (external or internal) above the maximum allowable limits listed in ERDAM 0524. Estimates based upon hand dose measurements indicate that no individual should have received more than 584 mrem to hands

  3. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report

  4. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  5. Nevada Test Site Environmental Report 2007 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    This appendix expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2007 (U.S. Department of Energy [DOE], 2008). Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  6. Nevada Test Site Environmental Report 2008 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  7. Nevada Test Site Environmental Report 2009, Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2009. Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  8. Updated estimates of 239240Pu + 241Am inventory, spatial pattern, and soil tonnage for removal at Nuclear Site-201, NTS

    International Nuclear Information System (INIS)

    Simpson, J.C.; Gilbert, R.O.

    1982-04-01

    Updated estimates of 239 240 Pu + 241 Am inventory and spatial pattern in surface soil are given for Nuclear Site (NS)-201 in Area 18 of the Nevada Test Site (NTS). These new estimates are based on 712 241 Am soil concentrations including 185 data values not previously available. Estimates were obtained using essentially the same Kriging techniques and the estimated average 239 240 Pu to 241 Am ratio of 7.5 used by Simpson and Gilbert (1980) to obtain previous results. Estimated concentration contours, 68% confidence bands for the contours and estimated median concentrations for 50 x 50 ft blocks are given. The total Pu + Am inventory estimated to be in the top 5 cm of soil over the 109 hectare study (an area 5.2 hectares larger than used by Simpson and Gilbert, 1980) is approximately 16.3 curies. The approximate 68% confidence interval on this inventory estimate is about 6.7 to 45.6 curies. It is estimated that about 58 acres (approx. = 23 hectares) of land in the study are contaminated at levels greater than 40 pCi/g which includes about 40 acres (approx. = 16 hectares) at levels greater than 160 pCi/g. Approximately 28,000 tons of soil would need to be removed (to 15 cm depth) to clean up all areas with estimated concentrates greater than or equal to 160 pCi/g. About 41,000 tons would require removal at the 40 pCi/g level. These new estimates of inventory and spatial patterns are within the range of sampling error of previous estimates obtained by Simpson and Gilbert

  9. Nevada Test Site Wetlands Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  10. Nevada Test Site Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Nevada Test Site (NTS) Resource Management Plan (RMP) describes the NTS Stewardship Mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. The NTS Stewardship Mission is to manage the land and facilities at the NTS as a unique and valuable national resource. The RMP has defined goals for twelve resource areas based on the principles of ecosystem management. These goals were established using an interdisciplinary team of DOE/NV resource specialists with input from surrounding land managers, private parties, and representatives of Native American governments. The overall goal of the RMP is to facilitate improved NTS land use management decisions within the Great Basin and Mojave Desert ecoregions.

  11. Underground Nuclear Testing Program, Nevada Test Site

    International Nuclear Information System (INIS)

    1975-09-01

    The Energy Research and Development Administration (ERDA) continues to conduct an underground nuclear testing program which includes tests for nuclear weapons development and other tests for development of nuclear explosives and methods for their application for peaceful uses. ERDA also continues to provide nuclear explosive and test site support for nuclear effects tests sponsored by the Department of Defense. This Supplement extends the Environmental Statement (WASH-1526) to cover all underground nuclear tests and preparations for tests of one megaton (1 MT) or less at the Nevada Test Site (NTS) during Fiscal Year 1976. The test activities covered include numerous continuing programs, both nuclear and non-nuclear, which can best be conducted in a remote area. However, if nuclear excavation tests or tests of yields above 1 MT or tests away from NTS should be planned, these will be covered by separate environmental statements

  12. Nevada Test Site Environmental Report 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders

  13. Nevada test site defense waste acceptance criteria, certification, and transfer requirements

    International Nuclear Information System (INIS)

    1988-10-01

    The Nevada Test Site (NTS) Defense Waste Acceptance Criteria, Certification and Transfer Requirements establishes procedures and criteria for safe transfer, disposal, and storage of defense transuranic, low-level, and mixed waste at the NTS. Included are an overview of the NTS defense waste management program; the NTS waste acceptance criteria for transuranic, low-level, and mixed wastes; waste certification requirements and guidance; application to submit waste; and requirements for waste transfer and receipt. 5 figs., 16 tabs

  14. Environmental plutonium levels near the Nevada Test Site

    International Nuclear Information System (INIS)

    Bliss, W.A.; Jakubowski, F.M.

    1977-01-01

    The Environmental Monitoring and Support Laboratory-Las Vegas is engaged in a study to define the distribution of plutonium in the environment surrounding the Nevada Test Site (NTS). Extensive soil sampling has been conducted around the NTS, both to define areal distribution and to investigate local concentrating effects by natural phenomena. Additionally, air filters used in the off-NTS air surveillance network as well as those collected in special studies have been analyzed for plutonium to better define ambient levels and to investigate the possibility of resuspension. Results of these, as well as other studies related to defining the ambient plutonium levels around the NTS, are given in this report

  15. Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the NTS

    Energy Technology Data Exchange (ETDEWEB)

    Vefa Yucel

    2007-01-03

    U.S. Department of Energy (DOE) Manual M 435.1-1 requires that performance assessments (PAs) and composite analyses (CAs) for low-level waste (LLW) disposal facilities be maintained by the field offices. This plan describes the activities performed to maintain the PA and the CA for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). This plan supersedes the Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (DOE/NV/11718--491-REV 1, dated September 2002). The plan is based on U.S. Department of Energy (DOE) Order 435.1 (DOE, 1999a), DOE Manual M 435.1-1 (DOE, 1999b), the DOE M 435.1-1 Implementation Guide DOE G 435.1-1 (DOE, 1999c), and the Maintenance Guide for PAs and CAs (DOE, 1999d). The plan includes a current update on PA/CA documentation, a revised schedule, and a section on Quality Assurance.

  16. Nevada Test Site Environmental Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report.

  17. Nevada Test Site Environmental Report 2007

    International Nuclear Information System (INIS)

    Cathy Wills

    2008-01-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report

  18. Nevada Test Site Environmental Report 2007 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2007 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  19. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  20. Nevada Test Site annual site environmental report for calendar year 1997

    International Nuclear Information System (INIS)

    Black, S.C.; Townsend, Y.E.

    1998-10-01

    Monitoring and surveillance, on and around the Nevada Test Site, (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1997, indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above existing background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency's (EPA's) Clean Air Package 1988 (CAP88)-PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.089 mrem. Hazardous wastes were shipped offsite to approved disposal facilities

  1. Final Environmental Impact Statement for the Nevada Test Site and off- site locations in the state of Nevada: Reader's guide

    International Nuclear Information System (INIS)

    1996-08-01

    This Reader's Guide is designed to help you find information in the US Departments of Energy's Nevada Test Site Environmental Impact Statement (NTS EIS). This Guide is divided into four sections: an introduction to the NTS EIS, specific topics, number conversions and scientific notations and public reading room locations

  2. Assessment of the Nevada Test Site as a Site for Distributed Resource Testing and Project Plan: March 2002

    Energy Technology Data Exchange (ETDEWEB)

    Horgan, S.; Iannucci, J.; Whitaker, C.; Cibulka, L.; Erdman, W.

    2002-05-01

    The objective of this project was to evaluate the Nevada Test Site (NTS) as a location for performing dedicated, in-depth testing of distributed resources (DR) integrated with the electric distribution system. In this large scale testing, it is desired to operate multiple DRs and loads in an actual operating environment, in a series of controlled tests to concentrate on issues of interest to the DR community. This report includes an inventory of existing facilities at NTS, an assessment of site attributes in relation to DR testing requirements, and an evaluation of the feasibility and cost of upgrades to the site that would make it a fully qualified DR testing facility.

  3. Nevada Test Site Environmental Report Summary 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). NNSA/NSO prepares the Nevada Test Site Environmental Report (NTSER) to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the NTS to protect the public and the environment from radiation hazards and from nonradiological impacts. The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. This summary provides an abbreviated and more readable version of the NTSER. It does not contain detailed descriptions or presentations of monitoring designs, data collection methods, data tables, the NTS environment, or all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  4. Nevada Test Site Environmental Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-10-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders.

  5. Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2007-10-01

    The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders.

  6. Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)

    International Nuclear Information System (INIS)

    Cathy Wills

    2007-01-01

    The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders

  7. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2000-01-01

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  8. Intermodal transportation of low-level radioactive waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    1998-09-01

    The Nevada Test Site (NTS) presently serves as a disposal site for low-level radioactive waste (LLW) generated by DOE-approved generators. The environmental impacts resulting from the disposal of LLW at the NTS are discussed in the Final Environmental Impact Statement (EIS) for the Nevada Test Site Off-Site Locations in the State of Nevada (NTS EIS). During the formal NTS EIS scoping period, it became clear that transportation of LLW was an issue that required attention. Therefore, the Nevada Transportation Protocol Working Group (TPWG) was formed in 1995 to identify, prioritize, and understand local issues and concerns associated with the transportation of LLW to the NTS. Currently, generators of LLW ship their waste to the NTS by legal-weight truck. In 1995, the TPWG suggested the DOE could reduce transportation costs and enhance public safety by using rail transportation. The DOE announced, in October 1996, that they would study the potential for intermodal transportation of LLW to the NTS, by transferring the LLW containers from rail cars to trucks for movements to the NTS. The TPWG and DOE/NV prepared the NTS Intermodal Transportation Facility Site and Routing Evaluation Study to present basic data and analyses on alternative rail-to-truck transfer sites and related truck routes for LLW shipments to the NTS. This Environmental Assessment (EA) identifies the potential environmental impacts and transportation risks of using new intermodal transfer sites and truck routes or continuing current operations to accomplish the objectives of minimizing radiological risk, enhancing safety, and reducing cost. DOE/NV will use the results of the assessment to decide whether or not to encourage the LLW generators and their transportation contractors to change their current operations to accomplish these objectives

  9. NTS groundwater recharge study, FY 1992

    International Nuclear Information System (INIS)

    Lyles, B.F.; Mihevc, T.M.

    1992-10-01

    Groundwater recharge from precipitation is thought by many scientists to be extremely low in Southem Nevada; however, no direct measurements of recharge have been made to substantiate this hypothesis. Three geomorphic regions have been identified as potential areas of groundwater recharge at the Nevada Test Site (NTS): mesas, washes, and lowlands. Eight recharge monitoring stations have been installed to monitor each of these regions; four of the stations are on Pahute/Rainier Mesa, two stations are in Fortymile Wash, one station is in a transition area between the mesas and the lowlands (Whiterock Spring), and one station is located in Yucca Flat at the bottom of the U-3fd crater. An additional station is proposed for Frenchman Flat near the Area 5 mixed waste facility; however, the instrumentation of that site has been delayed due to the complex permitting process associated with instrument installation near the mixed waste facility. Digital data were collected from eight sites during FY 1992

  10. Nevada test site water-supply wells

    International Nuclear Information System (INIS)

    Gillespie, D.; Donithan, D.; Seaber, P.

    1996-05-01

    A total of 15 water-supply wells are currently being used at the Nevada Test Site (NTS). The purpose of this report is to bring together the information gleaned from investigations of these water-supply wells. This report should serve as a reference on well construction and completion, static water levels, lithologic and hydrologic characteristics of aquifers penetrated, and general water quality of water-supply wells at the NTS. Possible sources for contamination of the water-supply wells are also evaluated. Existing wells and underground nuclear tests conducted near (within 25 meters (m)) or below the water table within 2 kilometers (km) of a water-supply were located and their hydrogeologic relationship to the water-supply well determined

  11. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    International Nuclear Information System (INIS)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs

  12. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs.

  13. Radionuclide migration studies at the Nevada Test Site

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1989-01-01

    The United States government routinely tests nuclear devices at the Nevada Test Site (NTS) in southern Nevada. A significant amount of radioactive material exists underground at the NTS with no containers or engineered barriers to inhibit its subsequent migration. The Department of Energy has sponsored for many years a research program on radionuclide movement in the geologic media at this location. Goals of this research program are to measure the extent of movement of radionuclides away from underground explosion sites and to determine the mechanisms by which such movement occurs. This program has acquired significance in another aspect of nuclear waste management because of the Yucca Mountain Project. Yucca Mountain at the NTS is being intensively studied as the possible site for a mined repository for high level nuclear waste. The NTS provides a unique setting for field studies concerning radionuclide migration; there is the potential for greatly increasing our knowledge of the behavior of radioactive materials in volcanogenic media. This review summarizes some of the significant findings made under this research program at the NTS and identifies reports in which the details of the research may be found. 36 refs., 4 figs

  14. Evaluation of soil radioactivity data from the Nevada Test Site

    International Nuclear Information System (INIS)

    1995-03-01

    Since 1951, 933 nuclear tests have been conducted at the Nevada Test Site (NTS) and test areas on the adjacent Tonopah Test Range (TTR) and Nellis Air Force Range (NAFR). Until the early 1960s. the majority of tests were atmospheric, involving detonation of nuclear explosive devices on the ground or on a tower, suspended from a balloon or dropped from an airplane. Since the signing of the Limited Test Ban Treaty in 1963, most tests have been conducted underground, although several shallow subsurface tests took place between 1962 and 1968. As a result of the aboveground and near-surface nuclear explosions, as well as ventings of underground tests, destruction of nuclear devices with conventional explosives, and nuclear-rocket engine tests, the surface soil on portions of the NTS has been contaminated with radionuclides. Relatively little consideration was given to the environmental effects of nuclear testing during the first two decades of operations at the NTS. Since the early 1970s, however, increasingly strict environmental regulations have forced greater attention to be given to contamination problems at the site and how to remediate them. One key element in the current environmental restoration program at the NTS is determining the amount and extent of radioactivity in the surface soil. The general distribution of soil radioactivity on the NTS is already well known as a result of several programs carried out in the 1970s and 1980s. However, questions have been raised as to whether the data from those earlier studies are suitable for use in the current environmental assessments and risk analyses. The primary purpose of this preliminary data review is to determine to what extent the historical data collected at the NTS can be used in the characterization/remediation process

  15. Nevada test site waste acceptance criteria

    International Nuclear Information System (INIS)

    1996-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  16. Nevada test site waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  17. Observations on Faults and Associated Permeability Structures in Hydrogeologic Units at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, Lance B.; Drellack, Sigmund L.; Haugstad, Dawn N.; Huckins-Gang, Heather E.; Townsend, Margaret J.

    2009-03-30

    Observational data on Nevada Test Site (NTS) faults were gathered from a variety of sources, including surface and tunnel exposures, core samples, geophysical logs, and down-hole cameras. These data show that NTS fault characteristics and fault zone permeability structures are similar to those of faults studied in other regions. Faults at the NTS form complex and heterogeneous fault zones with flow properties that vary in both space and time. Flow property variability within fault zones can be broken down into four major components that allow for the development of a simplified, first approximation model of NTS fault zones. This conceptual model can be used as a general guide during development and evaluation of groundwater flow and contaminate transport models at the NTS.

  18. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    International Nuclear Information System (INIS)

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static

  19. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static.

  20. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  1. Operational radioactive waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1980-11-01

    The Operational Radioactive Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  2. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  3. Nevada Test Site Environmental Report 2005

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts

  4. Nevada Test Site Environmental Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts.

  5. Vadose zone drilling at the NTS

    International Nuclear Information System (INIS)

    Efurd, D.W.

    1994-01-01

    The Yucca Mountain Project has an opportunity to evaluate possible mobilization and transport of radioactive materials away from the storage horizon in the proposed repository. One scenario by which such transport could occur involves water leaving the storage area and carrying radioactive particulates of colloidal size. The colloids could move along the gas-liquid interface in partially filled fractures within the vadose zone. It should be possible to check the reality of this proposed scenario by examining ''anthropogenic analogs'' of the repository. These are sites of nuclear tests conducted in unsaturated tuff at the Nevada Test Site (NTS). We propose to drill under one or more such sites to determine if radionuclides have moved from their original confinement in the puddle- glass at the bottom of the cavity. This document examines the characteristics of an ideal test site for such a study, suggests several possible locations that have some of the desired characteristics, and recommends one of these sites for the proposed drilling

  6. Radiological effluents released from nuclear rocket and ramjet engine tests at the Nevada Test Site 1959 through 1969: Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, H.N.

    1995-06-01

    Nuclear rocket and ramjet engine tests were conducted on the Nevada Test Site (NTS) in Area 25 and Area 26, about 80 miles northwest of Las Vegas, Nevada, from July 1959 through September 1969. This document presents a brief history of the nuclear rocket engine tests, information on the off-site radiological monitoring, and descriptions of the tests.

  7. Relative abundance of desert tortoises on the Nevada Test Site

    International Nuclear Information System (INIS)

    Rautenstrauch, K.R.; O'Farrell, T.P.

    1993-01-01

    Seven hundred fifty-nine transects having a total length of 1,191 km were walked during 1981--1986 to determine the distribution and relative abundance of desert tortoises (Gopherus agassizii) on the Nevada Test Site (NTS). The abundance of tortoises on NTS was low to very low relative to other populations in the Mojave Desert. Sign of tortoises was found from 880 to 1,570 m elevation and was more abundant above 1,200 m than has been reported previously for Nevada. Tortoises were more abundant on NTS on the upper alluvial fans and slopes of mountains than in valley bottoms. They also were more common on or near limestone and dolomite mountains than on mountains of volcanic origin

  8. Biodiversity Analysis of Vegetation on the Nevada Test Site

    International Nuclear Information System (INIS)

    W. K. Ostler; D. J. Hansen

    2001-01-01

    The Nevada Test Site (NTS) located in south central Nevada encompasses approximately 3,561 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996-1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. These data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Species diversity maps (species richness vs. species abundance) have been produced. Differences in ecosystem diversity at the ecoregion, alliance, association, and ecological landform unit levels are presented. Spatial distribution maps of species presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors (elevation, soil, precipitation) and anthropogenic disturbance on biodiversity are assessed

  9. Biodiversity analysis of vegetation on the Nevada Test Site

    International Nuclear Information System (INIS)

    Ostler, W. K.; Hansen, D. J.

    2000-01-01

    The Nevada Test Site (NTS), located in south-central Nevada, encompasses approximately 3,500 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996 to 1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. The data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Biodiversity maps (species richness vs. species abundance) have been produced. Differences in biodiversity among ecoregions and vegetation alliances are presented. Spatial distribution maps of species' presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors, such as elevation, soil, and precipitation, on biodiversity are assessed

  10. Nevada Test Site annual site environmental report, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Wruble, D T; McDowell, E M [eds.

    1990-11-01

    Prior to 1989 annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the offsite radiological surveillance program conducted by the US Environmental Protection Agency (EPA), Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, were reported separately by that Agency. Beginning with this 1989 annual Site environmental report for the NTS, these two documents are being combined into a single report to provide a more comprehensive annual documentation of the environmental protection program conducted for the nuclear testing program and other nuclear and non-nuclear activities at the Site. The two agencies have coordinated preparation of this combined onsite and offsite report through sharing of information on environmental releases and meteorological, hydrological, and other supporting data used in dose-estimate calculations. 57 refs., 52 figs., 65 tabs.

  11. Classification of groundwater at the Nevada Test Site

    International Nuclear Information System (INIS)

    Chapman, J.B.

    1994-08-01

    Groundwater occurring at the Nevada Test Site (NTS) has been classified according to the ''Guidelines for Ground-Water Classification Under the US Environmental Protection Agency (EPA) Ground-Water Protection Strategy'' (June 1988). All of the groundwater units at the NTS are Class II, groundwater currently (IIA) or potentially (IIB) a source of drinking water. The Classification Review Area (CRA) for the NTS is defined as the standard two-mile distance from the facility boundary recommended by EPA. The possibility of expanding the CRA was evaluated, but the two-mile distance encompasses the area expected to be impacted by contaminant transport during a 10-year period (EPA,s suggested limit), should a release occur. The CRA is very large as a consequence of the large size of the NTS and the decision to classify the entire site, not individual areas of activity. Because most activities are located many miles hydraulically upgradient of the NTS boundary, the CRA generally provides much more than the usual two-mile buffer required by EPA. The CRA is considered sufficiently large to allow confident determination of the use and value of groundwater and identification of potentially affected users. The size and complex hydrogeology of the NTS are inconsistent with the EPA guideline assumption of a high degree of hydrologic interconnection throughout the review area. To more realistically depict the site hydrogeology, the CRA is subdivided into eight groundwater units. Two main aquifer systems are recognized: the lower carbonate aquifer system and the Cenozoic aquifer system (consisting of aquifers in Quaternary valley fill and Tertiary volcanics). These aquifer systems are further divided geographically based on the location of low permeability boundaries

  12. Nevada Test Site annual site environmental report for calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Townsend, Y.E. [eds.

    1998-10-01

    Monitoring and surveillance, on and around the Nevada Test Site, (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1997, indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above existing background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA`s) Clean Air Package 1988 (CAP88)-PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.089 mrem. Hazardous wastes were shipped offsite to approved disposal facilities.

  13. Nevada test site annual site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1995 indicated that operations on the NTS were conducted in compliance with applicable federal and DOE regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of effluents, or resuspension was not detectable offsite, and no measurable net exposure to members of the offsite population was detected through the offsite dosimetry program. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits.

  14. Nevada Test Site Environmental Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2004-10-01

    The Nevada Test Site Environmental Report 2003 was prepared by Bechtel Nevada to meet the requirements and guidelines of the U.S. Department of Energy and the information needs of the public. This report is meant to be useful to members of the public, public officials, regulators, and Nevada Test Site contractors. The Executive Summary strives to present in a concise format the purpose of the document, the NTS mission and major programs, a summary of radiological releases and doses to the public resulting from site operations, a summary of non-radiological releases, and an overview of the Nevada Test Site Environmental Management System. The Executive Summary, combined with the following Compliance Summary, are written to meet all the objectives of the report and to be stand-alone sections for those who choose not to read the entire document.

  15. Interdisciplinary hydrogeologic site characterization at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Wagoner, J.L.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices. Hydrogeologic investigations began in earnest with the US Geological Survey mapping much of the area from 1960 to 1965. Since 1963, all nuclear detonations have been underground. Most tests are conducted in vertical shafts, but a small percentage are conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks, but sometimes in alluvium. Hydrogeologic investigations began in earnest with the US Geological Survey's mapping of much of the NTS region from 1960 to 1965. Following the BANEBERRY test in December 1970, which produced an accidental release of radioactivity to the atmosphere, the US Department of Energy (then the Atomic Energy Commission) established the Containment Evaluation Panel (CEP). Results of interdisciplinary hydrogeologic investigations for each test location are included in a Containment Prospectus which is thoroughly reviewed by the CEP

  16. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Environmental Monitoring Plan applies to the US Department of Energy's (DOE's) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this Environmental Monitoring Plan brings together in one document a description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA). The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards

  17. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    International Nuclear Information System (INIS)

    DeAnn Long; Michael Murphy

    2008-01-01

    Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program

  18. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    International Nuclear Information System (INIS)

    2009-01-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the 'Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. No shipments were disposed of at Area 3 in fiscal year (FY) 2008. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during FY 2008. No transuranic (TRU) waste shipments were made from or to the NTS during FY 2008

  19. Nevada Test Site annual site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Townsend, Y.E. [eds.

    1997-10-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1996 indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA) Clean Air Package 1988 (CAP88)PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.11 mrem. This value is less than 2 percent of the federal dose limit prescribed for radionuclide air emissions. Any person receiving this dose would also have received 144 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations have complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits as mandated for each location.

  20. Nevada Test Site annual site environmental report for calendar year 1996

    International Nuclear Information System (INIS)

    Black, S.C.; Townsend, Y.E.

    1997-10-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1996 indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency's (EPA) Clean Air Package 1988 (CAP88)PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.11 mrem. This value is less than 2 percent of the federal dose limit prescribed for radionuclide air emissions. Any person receiving this dose would also have received 144 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations have complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits as mandated for each location

  1. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-05-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  2. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    International Nuclear Information System (INIS)

    2009-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  3. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    PM Daling; SB Ross; BM Biwer

    1999-01-01

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  4. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  5. Nevada Test Site Radiation Protection Program - Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  6. Nevada Test Site Radiation Protection Program - Revision 1

    International Nuclear Information System (INIS)

    Nevada Test Site Radiological Control Managers' Council

    2008-01-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material

  7. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Transportation study, Volume 1, Appendix I

    International Nuclear Information System (INIS)

    1996-08-01

    This report has been prepared to address local transportation issues concerning current and potential operations at the Nevada Test Site (NTS), to document the results of the NTS transportation risk analysis, and to provide information and supporting documentation for the Environmental Impact Statement (EIS) for the NTS and Off-Site Locations in the State of Nevada. Four alternatives are evaluated in the NTS EIS: Alternative 1, Continue Current Operations, (No Action); Alternative 2, Discontinue Operations; Alternative 3, Expanded Use; and Alternative 4, Alternate Use of Withdrawn Lands. The transportation risk analysis estimated the health risk from highway transportation of DOE-generated low-level waste, mixed waste, and defense-related nuclear materials for each of the four alternatives

  8. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Framework for the resource management plan, Volume 2

    International Nuclear Information System (INIS)

    1996-08-01

    The purpose of this document is to publicize how the U.S. Department of Energy Nevada Operations Office (DOE/NV) proposes to develop and use a Resource Management Plan for the Nevada Test Site (NTS) so the public could comment on and assist in the following activities: (1) Developing the methods for creating and using the plan; (2) Identifying the values people place on manmade and natural resources found on the NTS; (3) Developing the goals the DOE/NV will use to guide the conservation and use of those resources; (4) Identifying the management actions needed to meet constraints and resource management goals; and (5) Incorporating the principles of ecosystem management into land and resource management on the NTS. This framework for the Resource Management Plan was developed in conjunction with the Environmental Impact Statement for the Nevada Test Site and off-site locations in the state of Nevada (NTS EIS) to take advantage of the extensive data collection and public participation activities associated with the National Environmental Policy Act. After public input was received during the comment period for the Draft NTS EIS, DOE/NV revised this description of the Resource Management Plan and published it with the NTS Final EIS. This revision includes the goals DOE/NV has developed for managing resources and land-use constraints. It also includes the final plans for developing the Resource Management Plan. These plans will guide DOE/NV as it develops a Resource Management Plan in the coming years

  9. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  10. Summary of accidental releases of radioactivity detected off the Nevada Test Site, 1963--1986

    International Nuclear Information System (INIS)

    Patzer, R.G.; Phillips, W.G.; Grossman, R.F.; Black, S.C.; Costa, C.F.

    1988-08-01

    Of the more than 450 underground nuclear explosives tests conducted at the Nevada Test Site from August 1963 (signing of the Limited Test Ban Treaty) through the end of 1986, only 23 accidentally released radioactivity that was detectable beyond the boundary of the NTS. Of these 23, 4 were detectable off the NTS only by aircraft while the remainder were detectable by ground monitoring instruments. Since the Baneberry venting of December 1970, only two tests released radioactivity that was detectable off the NTS, and this was a seepage of radioactive noble gases. None of these releases from underground tests designed for complete containment caused exposure of the population living in the area that exceeded standards recommended by national and international radiation protection agencies. This report summarizes the releases from each of the tests, describes the monitoring that was conducted, and lists the location of the maximum exposure

  11. An aerial radiological survey of Areas 16 and 30, Nevada Test Site: Date of survey: June 1983

    International Nuclear Information System (INIS)

    Bluitt, C.M.

    1986-10-01

    An aerial radiological survey of the Nevada Test Site (NTS) was conducted for the US Department of Energy (DOE). The survey period was from 1 June to 16 June 1983, during which airborne measurements were obtained over Areas 16 and 30. The data were used to generate exposure rate, cobalt-60, and cesium-137 spatial distribution maps. The aerial survey results are expressed as exposure rate, cesium-137, and cobalt-60 isopleth contours, superimposed on NTS maps. 12 refs., 16 figs

  12. Barometric pressure transient testing applications at the Nevada Test Site: formation permeability analysis. Final report

    International Nuclear Information System (INIS)

    Hanson, J.M.

    1984-12-01

    The report evaluates previous investigations of the gas permeability of the rock surrounding emplacement holes at the Nevada Test Site. The discussion sets the framework from which the present uncertainty in gas permeability can be overcome. The usefulness of the barometric pressure testing method has been established. Flow models were used to evaluate barometric pressure transients taken at NTS holes U2fe, U19ac and U20ai. 31 refs., 103 figs., 18 tabs

  13. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types

  14. A comprehensive landscape approach for monitoring bats on the Nevada Test Site in south-central Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D.

    2000-01-01

    The Nevada Test Site (NTS) is located in south-central Nevada and encompasses approximately 3,497 square kilometers (1,350 square miles). It straddles both the Mojave and Great Basin Deserts and includes a distinct transition region between these two deserts. Because of its geographical location, a great level of vegetative and physiographic diversity exists on the NTS. Also, numerous mines and tunnels are found on the NTS which are potential roost sites for bats. Multiple technqiues are being used to inventory and monitor the bat fauna on the NTS. These techniques include mistnetting at water sources with concurrent use of the Anabat II bat detection system, conducting road surveys with the Anabat II system, and conducting exit surveys at mine and tunnel entrances using the Anabat II system. To date, a total of 13 species of bats has been documented on the NTS, of which six are considered species of concern by the US Fish and Wildlife Service. These include Townsend's big-eared bat (Corynorhinus townsendii), spotted bat (Euderma maculatum), small-footed myotis (Myotis ciliolabrum), long-eared myotis (M. evotis), fringed myotis (M. thysanodes), and long-legged myotis (M. volans). Results from mistnet and Anabat surveys reveal that all bat species of concern except for the long-legged myotis are found exclusively in the Great Basin Desert portion of the NTS. The long-legged myotis is found throughout the NTS. The Anabat II system has greatly facilitated the monitoring of bats on the NTS, and allowed biologists to cost effectively survey large areas for bat activity. Information obtained from bat monitoring will be used to develop and update guidelines for managing bats on the NTS.

  15. Siting and constructing very deep monitoring wells on the US Department of Energy's Nevada Test Site

    International Nuclear Information System (INIS)

    Cullen, J.J.; Jacobson, R.L.; Russell, C.E.

    1991-01-01

    Many aspects of the Nevada Test Site's (NTS) hydrogeologic setting restrict the use of traditional methods for the siting and construction of ground-water characterization and monitoring wells. The size of the NTS precludes establishing high-density networks of characterization wells, as are typically used at smaller sites. The geologic complexity and variability of the NTS requires that the wells be criticality situated. The hydrogeologic complexity requires that each well provide access to many aquifers. Depths to ground water on the NTS require the construction of wells averaging approximately 1000 meters in depth. Wells meeting these criteria are uncommon in the ground-water industry, therefore techniques used by petroleum engineers are being employed to solve certain siting-, design- and installation-related problems. To date, one focus has been on developing completion strings that facilitate routine and efficient ground-water sampling from multiple intervals in a single well. The method currently advocated employs a new design of sliding side door sleeve that is actuated by an electrically operated hydraulic shifting tool. Stemming of the wells is being accomplished with standard materials (cement based grouts and sands); however, new stemming methods are being developed, to accommodate the greater depths, to minimize pH-related problems caused by the use of cements, to enhance the integrity of the inter-zone seals, and to improve the representativeness of radionuclide analyses performed on ground-water samples. Bench-scale experiments have been used to investigate the properties of more than a dozen epoxy-aggregate grout mixtures -- materials that are commonly used in underwater sealing applications

  16. Evidence for a role of NTS2 receptors in the modulation of tonic pain sensitivity

    Directory of Open Access Journals (Sweden)

    Martinez Jean

    2009-07-01

    Full Text Available Abstract Background Central neurotensin (NT administration results in a naloxone-insensitive antinociceptive response in animal models of acute and persistent pain. Both NTS1 and NTS2 receptors were shown to be required for different aspects of NT-induced analgesia. We recently demonstrated that NTS2 receptors were extensively associated with ascending nociceptive pathways, both at the level of the dorsal root ganglia and of the spinal dorsal horn. Then, we found that spinally administered NTS2-selective agonists induced dose-dependent antinociceptive responses in the acute tail-flick test. In the present study, we therefore investigated whether activation of spinal NTS2 receptors suppressed the persistent inflammatory pain symptoms observed after intraplantar injection of formalin. Results We first demonstrated that spinally administered NT and NT69L agonists, which bind to both NTS1 and NTS2 receptors, significantly reduced pain-evoked responses during the inflammatory phase of the formalin test. Accordingly, pretreatment with the NTS2-selective analogs JMV-431 and levocabastine was effective in inhibiting the aversive behaviors induced by formalin. With resolution at the single-cell level, we also found that activation of spinal NTS2 receptors reduced formalin-induced c-fos expression in dorsal horn neurons. However, our results also suggest that NTS2-selective agonists and NTS1/NTS2 mixed compounds differently modulated the early (21–39 min and late (40–60 min tonic phase 2 and recruited endogenous pain inhibitory mechanisms integrated at different levels of the central nervous system. Indeed, while non-selective drugs suppressed pain-related behaviors activity in both part of phase 2, intrathecal injection of NTS2-selective agonists was only efficient in reducing pain during the late phase 2. Furthermore, assessment of the stereotypic pain behaviors of lifting, shaking, licking and biting to formalin also revealed that unlike non

  17. Nevada Test Site waste acceptance criteria [Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-08-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  18. Nevada Test Site waste acceptance criteria [Revision 1

    International Nuclear Information System (INIS)

    None

    1997-01-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  19. Correlation of alluvial deposits at the Nevada Test Site

    International Nuclear Information System (INIS)

    Grothaus, B.; Howard, N.

    1977-01-01

    Because characteristics of rock layers and problems in drilling must be studied before radioactive waste can be safely contained, an evaluation was made of methods for correlating alluvial deposits at Yucca Flat of the Nevada Test Site (NTS). Although correlation of Tertiary volcanic tuff beds at the NTS has been successfully achieved, correlation of stratigraphic zones in the overlying alluvium has posed technical difficulties. We have evaluated several methods for correlating alluvial deposits from drillholes, including electric resistivity logs (E logs), visual examination of sidewall samples and comparison of their carbonate (CO 2 ) content, downhole stereo photography for identifying debris flow deposits, caliche age-dating, and specific yield and permeability measurements of deposits. For predicting the thickness of zones having similar physical properties in the alluvium, E log measurements were found to be the most useful of these methods

  20. Mixed waste characterization and certification at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Dodge, R.L.; Fitzsimmons, P.K.

    1988-01-01

    The Radioactive Waste Management Project at the Nevada Test Site (NTS) was recently granted interim status by the state of Nevada to receive mixed waste. The RCRA Part B permit application has been revised and submitted to the state. Preliminary indications are that the permit will be granted. In conjunction with revision of the Part B permit application, pertinent DOE guidelines governing waste acceptance criteria and waste characterization were also revised. The guidelines balance the need for full characterization of hazardous constituents with ALARA precepts. Because it is not always feasible to obtain a full chemical analysis without undue or unnecessary radiological exposure of personnel, process knowledge is considered an acceptable method of waste characterization. A balance of administrative controls and verification procedures, as well as careful documentation and high standards of quality assurance, are essential to the characterization and certification program developed for the NTS

  1. Mixed waste characterization and certification at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Dodge, R.L.; Fitzsimmons, P.K.

    1988-01-01

    The Radioactive Waste Management Project (RWMP) at the Nevada Test Site (NTS) was recently granted interim status by the state of Nevada to receive mixed waste (MW). The RCRA Part B permit application has been revised and submitted to the state. Preliminary indications are that the permit will be granted. In conjunction with revision of the Part B Permit application, pertinent DOE guidelines governing waste acceptance criteria (WAC) and waste characterization were also revised. The guidelines balance the need for full characterization of hazardous constituents with as low as reasonably achievable (ALARA) precepts. Because it is not always feasible to obtain a full chemical analysis without undue or unnecessary radiological exposure of personnel, process knowledge is considered an acceptable method of waste characterization. A balance of administrative controls and verification procedures, as well as careful documentation and high standards of quality assurance, are essential to the characterization and certification program developed for the NTS

  2. Preliminary report on NTS spectral gamma logging and calibration models

    International Nuclear Information System (INIS)

    Mathews, M.A.; Warren, R.G.; Garcia, S.R.; Lavelle, M.J.

    1985-01-01

    Facilities are now available at the Nevada Test Site (NTS) in Building 2201 to calibrate spectral gamma logging equipment in environments of low radioactivity. Such environments are routinely encountered during logging of holes at the NTS. Four calibration models were delivered to Building 2201 in January 1985. Each model, or test pit, consists of a stone block with a 12-inch diameter cored borehole. Preliminary radioelement values from the core for the test pits range from 0.58 to 3.83% potassium (K), 0.48 to 29.11 ppm thorium (Th), and 0.62 to 40.42 ppm uranium (U). Two satellite holes, U19ab number2 and U19ab number3, were logged during the winter of 1984-1985. The response of these logs correlates with contents of the naturally radioactive elements K. Th. and U determined in samples from petrologic zones that occur within these holes. Based on these comparisons, the spectral gamma log aids in the recognition and mapping of subsurface stratigraphic units and alteration features associated with unusual concentration of these radioactive elements, such as clay-rich zones

  3. Nevada Test Site annual site environmental report for calendar year 1998

    International Nuclear Information System (INIS)

    Black, S.C.; Townsend, Y.E.

    1999-01-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring Programs conducted by the US Environmental Protection Agency's (EPA) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this tenth combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations

  4. Nevada Test Site Annual Site Environmental Report for Calendar Year - 1999

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Y.E.; Grossman, R.F.

    2000-10-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the U.S. Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring programs conducted by the U.S. Environmental Protection Agency's (EPA's) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this eleventh combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

  5. Nevada Test Site Annual Site Environmental Report for Calendar Year - 1999

    International Nuclear Information System (INIS)

    Townsend, Y.E.; Grossman, R.F.

    2000-01-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the U.S. Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring programs conducted by the U.S. Environmental Protection Agency's (EPA's) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this eleventh combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations

  6. Nevada Test Site annual site environmental report for calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Townsend, Y.E.

    1999-10-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring Programs conducted by the US Environmental Protection Agency's (EPA) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this tenth combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

  7. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

  8. Nevada Test Site National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2008

    International Nuclear Information System (INIS)

    Warren, Ronald; Grossman, Robert F.

    2009-01-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to under-ground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by winds) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the North Las Vegas Facility (NLVF), an NTS support complex in the city of North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations (CFR) Part 61 Subpart H) (CFR, 2008a) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from other man-made sources such as medical treatments. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo

  9. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by

  10. On the population dose around the Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Hill, P.; Dederichs, H.; Ostapczuk, P.; Hille, R.; Artemev, O.; Ptitskaya, L.; Akhmetov, M.; Pivovarov, S.

    2002-01-01

    Since 1949 the Semipalatinsk Nuclear Test Site (NTS) was extensively used by the former Soviet government as a testing range for atomic weapons. Atmospheric and underground tests were finally stopped in 1962 and 1989, respectively. The Ministry of the Russian Federation of Atomic Energy officially counts a total of 456 tests, including 116 atmospheric tests. The total yield of the nuclear explosions carried out was 6.3 Megatons equivalent with 6.7 PetaBq of 1 37C s and 3.7 PetaBq of 9 0S r being released into the athmosphere. Some of the athmospheric radioactive tests shielded plumes, which extended far beyond the outer borders of the NTS. Already the first Soviet atomic bomb test on August 29, 1949 due to unfavourable meteorological conditions affected the villages of Dolon and Moistik. Since 1995 joint investigations performed by the Research Centre Julich in cooperation with the Kazakh National Nuclear Centre in the region of the former nuclear test site near Semipalatinsk besides environmental measurents also involve the assessment of the current dose of the population at and around the test site in addition to the important retrospective determination of the dose of persons affected by the atmospheric tests

  11. Development of a mixed waste management facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dolenc, M.R.; Kendall, E.W.

    1989-01-01

    The US Department of Energy (DOE) produces some radioactive low-level wastes (LLW) which contain hazardous components. By definition, the management of those mixed wastes (MW) at the Nevada Test Site (NTS) requires compliance with US Environmental Protection Agency (EPA) and state of Nevada regulations for hazardous wastes, and DOE regulations for LLW. Preparations for operation of a separate Mixed Waste Management Unit (MWMU) in the 1990s are underway. The 167-acre MWMU will be a part of the 732-acre Area 5 Radioactive Waste Management Site (RWMS). The MWMU is being developed in response to a DOE Office of Defense Waste and Transporation Management need to provide enhanced capabilities and facilities for safe, secure, and efficient disposal of defense-related MW in accordance with DOE, EPA, and state of Nevada requirements. Planned activities relating to the development of the MWMU include completing National Environmental Policy Act (NEPA) requirements; responding to any notices of deficiencies (NODs) on the NTS Part B Permit application; conducting generator audits as part of the NTS MW certification program; optimizing the design and operation of the vadose zone monitoring system; developing protocols for the sampling and analysis of MW, and facility construction. This paper describes the permitting and regulatory environment, the specific application of the permit process to the NTS, and the phased development of an MWMU at the NTS

  12. Distribution of the Chuckwalla, Western Burrowing Owl, and Six Bat Species on the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Willis

    1997-05-01

    Field Surveys were conducted in 1996 to determine the current distribution of several animal species of concern on the Nevada Test Site (NTS). They included the chuckwall (Sauromalus obesus), western burrowing owl (Speotyto cunicularia), and six species of bats. Nineteen chuckwallas and 118 scat locations were found during the chuckwalla field study. Eighteen western burrowing owls were found at 12 sighting locations during the 1996 field study. Of the eleven bat species of concern which might occur on the NTS, five, and possibly six, were captured during this survey. The U.S. Department of Energy, Nevada Operations Office, takes certain management actions to protect and conserve the chuckwalla, western burrowing owl, and bats on the NTS. These actions are described and include: (1) conducting surveys at sites of proposed land-disturbing activities (2) altering projects whenever possible to avoid or minimize impacts to these species (3) maintaining a geospatial database of known habitat for species of concern (4) sharing sighting and trap location data gathered on the NTS with other local land and resource managers, and (5) conducting periodic field surveys to monitor these species distribution and relative abundance on the NTS.

  13. Operational radioactive defense waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1981-07-01

    The Operational Radioactive Defense Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  14. Land surface cleanup of plutonium at the Nevada Test Site

    International Nuclear Information System (INIS)

    Ebeling, L.L.; Evans, R.B.; Walsh, E.J.

    1991-01-01

    The Nevada Test Site (NTS) covers approximately 3300 km 2 of high desert and is located approximately 100 km northwest of Las Vegas, Nevada. Soil contaminated by plutonium exists on the NTS and surrounding areas from safety tests conducted in the 1950s and 1960s. About 150 curies of contamination have been measured over 1200 hectares of land surface. Most contamination is found in the top 5 cm of soil but may be found deep as 25 cm. The cost of conventional removal and disposal of the full soil volume has been estimated at over $500,000,000. This study is directed toward minimizing the volume of waste which must be further processed and disposed of by precisely controlling soil removal depth. The following soil removal machines were demonstrated at the NTS: (1) a CMI Corporation Model PR-500FL pavement profiler, (2) a CMI Corporation Model Tr-225B trimmer reclaimer, (3) a Caterpillar Model 623 elevating scraper equipped with laser depth control, (4) a Caterpillar Model 14G motor grader equipped with laser depth control, (5) a Caterpillar Model 637 auger scraper, and (6) a XCR Series Guzzler vacuum truck. 5 refs., 5 figs

  15. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field- investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans

  16. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  17. Status of the flora and fauna on the Nevada Test Site, 1988

    International Nuclear Information System (INIS)

    Hunter, R.B.

    1992-06-01

    In 1987 the US Department of Energy (DOE) initiated a program to monitor the health of the Nevada Test Site (NTS) plants and animals in support of the National Environmental Protection Act. The program, part of DOE's Basic Environmental Compliance and Monitoring Program (BECAMP), monitors perennial and ephemeral plants, the more common species of rodents and lizards, and the horses, deer, raptors and other large animals on the NTS. This is a report of data collected on these flora and fauna for the year 1988, the second year of monitoring

  18. Nevada Test Site Radiological Control Manual, Revision 1

    International Nuclear Information System (INIS)

    2010-01-01

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. The NTS is located in Nye County, Nevada. The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas. It is a remote facility that covers approximately 3,500 square kilometers (1,375 square miles) of land. The dimensions of the NTS vary from 46 to 56 kilometers (28 to 35 miles) in width (eastern to western border) and from 64 to 88 kilometers (40 to 55 miles) in length (northern to southern border). The NTS is surrounded to the west, north, and east by additional thousands of acres of land withdrawn from the public domain for use as a protected wildlife range and as a military gunnery range. These public exclusion areas comprise the Nellis Air Force Range complex, previously designated as the Nellis Air Force Base Bombing and Gunnery Range, and the Tonopah Test Range. These two areas provide a buffer zone between the test areas and public lands administered by the Federal Bureau of Land

  19. Nevada Test Site Environmental Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The Nevada Test Site Environmental Report 2009 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ Nevada Test Site Environmental Reports (NTSERs) are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx. This NTSER was prepared to satisfy DOE Order DOE O 231.1A, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NTSER summarizes data and compliance status for calendar year 2009 at the Nevada Test Site (NTS) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory (RSL)-Nellis. It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

  20. Regional seismic observations of the Non-Proliferation Experiment at the Livermore NTS Network

    Energy Technology Data Exchange (ETDEWEB)

    Walter, W.R.; Mayeda, K.; Patton, H.J. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-12-31

    The Non-Proliferation Experiment (NPE), a 1-kiloton chemical explosion in N-tunnel at Rainier Mesa on the Nevada Test Site (NTS), was recorded by the four station, regional seismic Livermore NTS Network, (LNN). In this study we compare the NPE`s seismic yield, frequency content, and discrimination performance with other NTS events recorded at LNN. Preliminary findings include: The NPE LNN average magnitudes are 4.16 for m{sub b}(P{sub n}) and 4.59 for m{sub b}(L{sub g}). Using published magnitude-yield relations gives nuclear equivalent yields of 2.3 and 2.2 kilotons respectively, implying enhanced coupling of chemical relative to nuclear explosions. A comparison of the NPE seismograms with those with similar magnitude N-tunnel nuclear explosions shows remarkable similarity over the frequency band 0.5 to 5.0 Hz. Outside this band the explosions show more variability, with the NPE having the least relative energy below 0.5 Hz and the most energy above 5 Hz when scaled by magnitude. Considering the variability within the N-tunnel nuclear explosions, these low- and high-frequency NPE-nuclear differences may not reflect chemical-nuclear source differences. The NPE was compared to a large number of NTS nuclear explosions and earthquakes as part of an ongoing short-period discrimination study of P{sub N}/L{sub g},P{sub g}/L{sub g}, and spectral ratios in the P{sub n}, P{sub g},L{sub g}, and coda phases. For these discriminants, the NPE looks very similar to N-tunnel nuclear explosions and other NTS nuclear explosions, implying seismic identification of contained, non-ripple-fired, chemical explosions as non-nuclear may not be possible. However, such blasts might serve as surrogate nuclear explosions when calibrating seismic discriminants in regions where nuclear testing has not occurred.

  1. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. American Indian Assessments. Volume 1, Appendix G

    International Nuclear Information System (INIS)

    1996-08-01

    The Native American Resource Document is a summary of opinions expressed by the Consolidated Group of Tribes and Organizations (CGTO) regarding the Environmental Impact Statement for the Nevada Test Site and Other Off-Site Locations within the State of Nevada (NTS EIS). The document contains (a) general concerns regarding long-term impacts of the U.S. Department of Energy's (DOE) operations on the NTS and (b) a synopsis of specific comments made by the American Indian Writers Subgroup (AIWS) for various chapters of the NTS EIS. The Native American Resource Document was produced in response to consultation required for the NTS EIS, in accordance with DOE Order 1230.2, American Indian Tribal Government Policy. The consultation focused specifically on four alternative management decisions concerning the future mission of the NTS and related off-site locations in Nevada. However, the present CGTO's response to this consultation is not limited to EIS alternatives, but also integrates relevant recommendations made by Indian people for previous DOE projects in which American Indians participated

  2. Addendum to environmental monitoring plan Nevada Test Site and support facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-11-01

    This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  3. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities; Addendum 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    This 1993 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  4. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities

    International Nuclear Information System (INIS)

    1993-11-01

    This 1993 Addendum to the ''Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,'' Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy's (DOE's) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards

  5. U.S. Department of Energy, Nevada Operations Office, environmental data report for the Nevada Test Site -- 1995

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Townsend, Y.E. [eds.; Kinnison, R.R.

    1997-10-01

    The US Department of Energy (DOE) Order 5400.1, ``General Environmental Protection Program,`` establishes environmental protection program requirements, authorities, and responsibilities for DOE operations. These mandates require compliance with applicable federal, state, and local environmental protection regulations. During calendar year (CY) 1995 environmental protection and monitoring programs were conducted at the Nevada Test Site (NTS) and other DOE Nevada Operations Office (DOE/NV) managed sites in Nevada and across the United States. A detailed discussion of these environmental protection and monitoring programs, and summary data and assessments for environmental monitoring results at these sites in CY 1995 are provided in the DOE/NV, Annual Site Environmental Report--1995, (ASER) DOE/NV/11718-037. A brief description of the scope of this environmental monitoring is provided below, categorized by ``on-NTS`` and ``off-NTS`` monitoring.

  6. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    International Nuclear Information System (INIS)

    1993-05-01

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all

  7. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all.

  8. Corrective Action Plan for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 151, Septic Systems and Discharge Area, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 151 consists of eight Corrective Action Sites (CASs) located in Areas 2, 12, and 18 of the Nevada Test Site (NTS), which is located approximately 65 miles northwest of Las Vegas, Nevada

  9. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  10. The Department of Energy Nevada Test Site Remote Area Monitoring System

    International Nuclear Information System (INIS)

    Sanders, L.D.; Hart, O.F.

    1993-01-01

    The Remote Area Monitoring System was developed by Los Alamos National Laboratory (LANL) for DOE test directors at the Nevada Test Site (NTS) to verify radiological conditions are safe after a nuclear test. In the unlikely event of a venting as a result of a nuclear test, this system provides radiological and meteorological data to Weather Service Nuclear Support Office (WSNSO) computers where mesoscale models are used to predict downwind exposure rates. The system uses a combination of hardwired radiation sensors and satellite based data acquisition units with their own radiation sensors to measure exposure rates in remote areas of the NTS. The satellite based data acquisition units are available as small, Portable Remote Area Monitors (RAMs) for rapid deployment, and larger, Semipermanent RAMs that can have meteorological towers. The satellite based stations measure exposure rates and transmit measurements to the GOES (Geostationary Operational Environmental Satellite) where they are relayed to Direct Readout Ground Stations (DRGS) at the NTS and Los Alamos. Computers process the data and display results in the NTS Operations Coordination Center. Los Alamos computers and NTS computers are linked together through a wide area network, providing remote redundant system capability. Recently, LANL, expanded the system to take radiological and meteorological measurements in communities in the western United States. The system was also expanded to acquire data from Remote Automatic Weather Stations (RAWS) that transmit through GOES. The addition of Portable and Semipermanent RAMs to the system has vastly expanded monitoring capabilities at NTS and can be used to take measurements anywhere in this hemisphere

  11. Closure report for CAU No. 450: Historical UST release sites, Nevada Test Site. Volume 1

    International Nuclear Information System (INIS)

    1997-09-01

    This report addresses the closure of 11 historical underground storage tank (UST) release sites within various areas of the Nevada Test Site (NTS). The closure of each hydrocarbon release has not been documented, therefore, this report addresses the remedial activities completed for each release site. The hydrocarbon release associated with each tank site within CAU 450 was remediated by excavating the impacted soil. Clean closure of the release was verified through soil sample analysis by an off-site laboratory. All release closure activities were completed following standard environmental and regulatory guidelines. Based upon site observations during the remedial activities and the soil sample analytical results, which indicated that soil concentrations were below the Nevada Administrative code (NAC) Action Level of 100 mg/kg, it is anticipated that each of the release CASs be closed without further action

  12. Mixed waste disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dickman, P.T.; Kendall, E.W.

    1987-01-01

    In 1984, a law suit brought against DOE resulted in the requirement that DOE be subject to regulation by the state and US Environmental Protection Agency (EPA) for all hazardous wastes, including mixed wastes. Therefore, all DOE facilities generating, storing, treating, or disposing of mixed wastes will be regulated under the Resource Conservation and Recovery Act (RCTA). In FY 1985, DOE Headquarters requested DOE low-level waste (LLW) sites to apply for a RCRA Part B Permit to operate radioactive mixed waste facilities. An application for the Nevada Test Site (NTS) was prepared and submitted to the EPA, Region IX in November 1985 for review and approval. At that time, the state of Nevada had not yet received authorization for hazardous wastes nor had they applied for regulatory authority for mixed wastes. In October 1986, DOE Nevada Operations Office was informed by the Rocky Flats Plant that some past waste shipments to NTS contained trace quantities of hazardous substances. Under Colorado law, these wastes are defined as mixed. A DOE Headquarters task force was convened by the Under Secretary to investigate the situation. The task force concluded that DOE has a high priority need to develop a permitted mixed waste site and that DOE Nevada Operations Office should develop a fast track project to obtain this site and all necessary permits. The status and issues to be resolved on the permit for a mixed waste site are discussed

  13. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class-C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types. The paper discusses site selection; establishment of the Radioactive Waste Management Project; operations with respect to low-level radioactive wastes, transuranic waste storage, greater confinement disposal test, and mixed waste management facility; and related research activities such as tritium migration studies, revegetation studies, and in-situ monitoring of organics

  14. DOUBLE TRACKS Test Site interim corrective action plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The DOUBLE TRACKS site is located on Range 71 north of the Nellis Air Force Range, northwest of the Nevada Test Site (NTS). DOUBLE TRACKS was the first of four experiments that constituted Operation ROLLER COASTER. On May 15, 1963, weapons-grade plutonium and depleted uranium were dispersed using 54 kilograms of trinitrotoluene (TNT) explosive. The explosion occurred in the open, 0.3 m above the steel plate. No fission yield was detected from the test, and the total amount of plutonium deposited on the ground surface was estimated to be between 980 and 1,600 grams. The test device was composed primarily of uranium-238 and plutonium-239. The mass ratio of uranium to plutonium was 4.35. The objective of the corrective action is to reduce the potential risk to human health and the environment and to demonstrate technically viable and cost-effective excavation, transportation, and disposal. To achieve these objectives, Bechtel Nevada (BN) will remove soil with a total transuranic activity greater then 200 pCI/g, containerize the soil in ``supersacks,`` transport the filled ``supersacks`` to the NTS, and dispose of them in the Area 3 Radioactive Waste Management Site. During this interim corrective action, BN will also conduct a limited demonstration of an alternative method for excavation of radioactive near-surface soil contamination.

  15. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2008-01-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells

  16. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  17. A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    Jackson, J. P.; Pastor, R. S.

    2002-01-01

    The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, which Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex

  18. Environmental assessment for double tracks test site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1996-04-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), with appropriate approvals from the U.S. Air Force (USAF), proposes to conduct environmental restoration operations at the Double Tracks test site located on the Nellis Air Force Range (NAFR) in Nye County, Nevada. This environmental assessment (EA) evaluates the potential environmental consequences of four alternative actions for conducting the restoration operation and of the no action alternative. The EA also identifies mitigation measures, where appropriate, designed to protect natural and cultural resources and reduce impacts to human health and safety. The environmental restoration operation at the Double Tracks test site would serve two primary objectives. First, the proposed work would evaluate the effectiveness of future restoration operations involving contamination over larger areas. The project would implement remediation technology options and evaluate how these technologies could be applied to the larger areas of contaminated soils on the Nevada Test Site (NTS), the Tonopah Test Range (TTR), and the NAFR. Second, the remediation would provide for the removal of plutonium contamination down to or below a predetermined level which would require cleanup of 1 hectare (ha) (2.5 acres), for the most likely case, or up to 3.0 ha (7.4 acres) of contaminated soil, for the upper bounding case

  19. Techniques Employed to Conduct Postshot Drilling at the former Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Dekin, W D

    2011-04-14

    Postshot drilling provided essential data on the results of the underground nuclear tests conducted at the Nevada Test Site (NTS), now identified as the Nevada National Security Site (NNSS). It was the means by which samples from the zone of interest were obtained for radiochemical analysis. This handbook describes how Lawrence Livermore National Laboratory (LLNL) conducted postshot drilling operations at the NTS, and it provides a general understanding of the process. Postshot drilling is a specialized application of rotary drilling. Accordingly, this handbook gives a brief description of rotary drilling in Section 2 to acquaint the reader with the general subject before proceeding to the specialized techniques used in postshot drilling. In Section 3, the handbook describes the typical postshot drilling situation at the former NTS and the drilling methods used. Section 4 describes the typical sequence of operations in postshot drilling at the former NTS. Detailed information on special equipment and techniques is given in a series of appendices (A through F) at the end of the handbook.

  20. Radiation-related monitoring and environmental research at the Nevada Test Site

    International Nuclear Information System (INIS)

    Anspaugh, L.R.; Patton, S.E.; Shinn, J.H.; Black, S.C.; Costa, C.F.; Elle, D.R.; Essington, E.H.; Gilbert, R.O.; Gonzalez, D.A.; Hunter, R.B.; Medica, P.A.; McArthur, R.D.; Thompson, C.B.; O'Farrell, T.P.; Romney, E.M.

    1990-01-01

    Beginning with the first nuclear-weapons-related tests at the Nevada Test Site (NTS) in 1951, a radiation-related monitoring program was established to determine the levels and distribution of radionuclides released. Primary methods involved survey-meter-equipped field-monitoring teams and placement of film badges and air-sampling devices at fixed locations. Beginning in the mid-1950s, more stringent standards, the results of this monitoring program, and the results of related research programs led to increased engineering efforts to reduce local fallout. With passage of the National Environmental Policy Act and increased concern about possible effects of radiation exposure, environmental activities related to the NTS increased. There is now an extensive monitoring program at the NTS to assess radiological conditions resulting from past tests and from continued testing of nuclear-weapons devices. In populated areas near NTS, there is also a monitoring effort that relies on assistance from local communities. Other efforts include reconstruction of radiation doses received by offsite residents during the 1950s and 1960s, determination of the current inventory and distribution of radionuclides in surface soil, and studies of the movement of radionuclides in the desert ecosystem

  1. Current distribution, habitat, and status of Category 2 candidate plant species on and near the U.S. Department of Energy's Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, Kevin W. [EG& G Energy Measurements, Gaithersburg, MD (United States); Lindemann, Tim A. [EG& G Energy Measurements, Gaithersburg, MD (United States); Lyon, Glen E. [EG& G Energy Measurements, Gaithersburg, MD (United States); Steen, Dan C. [EG& G Energy Measurements, Gaithersburg, MD (United States); Wills, Cathy A. [EG& G Energy Measurements, Gaithersburg, MD (United States); Flick, Sarah A. [EG& G Energy Measurements, Gaithersburg, MD (United States); Ostler, W. Kent [EG& G Energy Measurements, Gaithersburg, MD (United States)

    1995-12-31

    Results of surveys conducted between 1991 and 1995 were used to document the distribution and habitat of 11 Category 2 candidate plant species known to occur on or near the Nevada Test Site (NTS). Approximately 200 areas encompassing about 13,000 ha were surveyed. Distributions of all species except Frasera-pahutensis and Phaceliaparishii were increased, and the ranges of Camissonia megalantha, Galium hilendiae ssp. kingstonense, Penstemon albomarginatus, and Penstemon pahutensis were expanded. The status of each species was assessed based on current distribution population trends, and potential threats. Recommendations were made to reclassi& the following five species to Category 3C: Arctomecon merriamii, F. pahutensis, P. pahutensis, Phacelia beatleyae, and Phaceliaparishii. Two species, C. megalantha and Cymopterus ripIeyi var. saniculoides, were recommended for reclassification to Category 3B status. No recommendation was made to reclassify Astragalus funereus, G. hilendiae ssp. kingstonense, P. albomarginatus, or Penstemon fruticiformis var. amargosae from their current Category 2 status. Populations of these four species are not threatened on NTS, but the NTS populations represent only a.small portion of each species’ range and the potential threats of mining or grazing activities off NTS on these species was notassessed. Conservation measures recommended included the development of an NTS ecosystem conservation plan, continued conduct of preactivity and plant surveys on NTS, and protection of plant type localities on NTS.

  2. Demographic survey centered around the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Richard-Haggard, K.

    1983-03-01

    Demographic data were gathered for several small population centers on and around the Nevada Test Site (NTS). Population projections were made for the three townships that include most of the major population centers in the study area, based on the share approach. These townships were Alamo Township (Lincoln County), Beatty and Pahrump townships (Nye County). It was estimated that the total population of these three townships, plus Clark County, would reach a maximum of 934,000 people by the year 2000. It was assumed that the on-site population of the NTS would continue to be a function of activity at the site, and that this would, if anything, aid in the attainment of site objectives

  3. Land surface cleanup of plutonium at the Nevada Test Site

    International Nuclear Information System (INIS)

    Ebeling, L.L.; Evans, R.B.; Walsh, E.J.

    1991-01-01

    The Nevada Test Site (NTS) covers approximately 3300 km 2 of high desert and is located approximately 100 km northwest of Las Vegas, Nevada. Soil contaminated by plutonium exists on the NTS and surrounding areas from safety tests conducted in the 1950s and 1960s. About 150 curies of contamination have been measured over 1200 hectares of land surface. Most contamination is found in the top 5 cm of soil but may be found as deep as 25 cm. The cost of conventional removal and disposal of the full soil volume has been estimated at over $500,000,000. This study is directed toward minimizing the volume of waste which must be further processed and disposed of by precisely controlling soil removal depth. The following soil removal machines were demonstrated at the NTS: (1) a CMI Corporation Model PR-500FL pavement profiler, (2) a CMI Corporation Model TR-225B trimmer reclaimer, (3) a Caterpillar Model 623 elevating scraper equipped with laser depth control, (4) a Caterpillar Model 14G motor grader equipped with laser depth control, (5) a Caterpillar Model 637 auger scraper, and (6) a XCR Series Guzzler vacuum truck. The most effective removal technique tested was the pavement profiler, which provided for dust control and precisely removed thin layers of soil. Soil removal with the motor grader and paddle scraper generated unacceptable dust levels, even after the soil was extensively watered. The vacuum truck was ineffective because of its limited intake volume which is a function of its small intake size, its weak intake force, and the tendency of its filters to clog

  4. Safeguards First Principles Initiative at the Nevada Test Site

    International Nuclear Information System (INIS)

    Johnson, Geneva

    2007-01-01

    The Material Control and Accountability (MC and A) program at the Nevada Test Site (NTS) was selected as a test bed for the Safeguards First Principles Initiative (SFPI). The implementation of the SFPI is evaluated using the system effectiveness model and the program is managed under an approved MC and A Plan. The effectiveness model consists of an evaluation of the critical elements necessary to detect, deter, and/or prevent the theft or diversion of Special Nuclear Material (SNM). The modeled results indicate that the MC and A program established under this variance is still effective, without creating unacceptable risk. Extensive performance testing is conducted through the duration of the pilot to ensure the protection system is effective and no material is at an unacceptable risk. The pilot was conducted from January 1, 2007, through May 30, 2007. This paper will discuss the following activities in association with SFPI: (1) Development of Timeline; (2) Crosswalk of DOE Order and SFPI; (3) Peer Review; (4) Deviation; (5) MC and A Plan and Procedure changes; (6) Changes implemented at NTS; (7) Training; and (8) Performance Test

  5. Measurement of seismic moments at the RSTN station RSSD for NTS explosions

    International Nuclear Information System (INIS)

    Taylor, S.R.; Patton, H.J.

    1983-01-01

    We have estimated the seismic moment for two Nevada Test Site (NTS) explosions (Nebbiolo, 6/24/82; Atrisco, 8/5/82) at the Regional Seismic Test Network (RSTN) station in South Dakota (RSSD; distance from NTS approx. 1280 km). The moments are calculated from the vertical component mid-period channel for the Rayleigh waves and the merged mid- and short-period band for the P waves. The moment estimates from surface waves give values of 1.0 x 10 23 and 2.0 x 10 23 dyn-cm for Nebbiolo and Atrisco, respectively. The body-wave moments obtained at 0.5 Hz are approximately five times greater than those from surface waves and give values of 4.8 x 10 23 and 1.0 x 10 24 dyn-cm for Nebbiolo and Atrisco, respectively. The apparent discrepancy between the body and surface-wave moments can be resolved if there is overshoot (of 5:1) in the explosion source spectrum. As a check on the absolute value of the surface-wave moments, we compared them to moment values predicted from empirical moment-yield relationships for different emplacement media at NTS (Patton, 1983). We found that the agreement between observed and predicted values is satisfactory, within the measurement error on the moments at the one sigma level

  6. Quantitative determination of minerals in Nevada Test Site samples by x-ray diffraction

    International Nuclear Information System (INIS)

    Pawloski, G.A.

    1983-07-01

    The external standard intensity ratio technique has been developed into a routine procedure for quantitatively determining mineralogic compositions of Nevada Test Site (NTS) samples by x-ray diffraction. This technique used ratios of x-ray intensity peaks from the same run which eliminates many possible errors. Constants have been determined for each of thirteen minerals commonly found in NTS samples - quartz, montmorillonite, illite, clinoptilolite, cristobalite, feldspars, calcite, dolomite, hornblende, kaolinite, muscovite, biotite, and amorphous glass. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of quartz are used to calculate sample composition. The technique has been tested on samples with three to eleven components representative of geologic environments at NTS, and is accurate to 7.0 wt % of the total sample. The minimum amount of each of these minerals detectable by x-ray diffraction has also been determined. QUANTS is a computer code that calculates mineral contents and produces a report sheet. Constants for minerals in NTS samples other than those listed above can easily be determined, and added to QUANTS at any time

  7. Does the Walker Lane extend through the Nevada test site region?

    International Nuclear Information System (INIS)

    Fridrich, C.; O'Leary, D.

    1993-01-01

    The southeastern terminus of the Walker Lane is poorly defined and poorly understood. Recent work in and around the Nevada Test Site (NTS) suggests the presence of a structural zone that may be an extension of the Walker Lane, and that may be continuous with the Las Vegas valley shear zone farther to the southeast. Unlike the Walker Lane, large through-going strike-slip faults have not been found in the NTS zone. Instead, the strike-slip faults present are few, are relatively short, commonly consist of diffuse fault zones, are interconnected poorly if at all, and largely appear to represent zones of accommodation between domains in which extension occurred at different times and to different degrees. However, the majority of these right-slip and left-slip faults are northwest-trending and northeast-trending, respectively, suggesting that plate motions may have played a role in the creation of these accommodation zones. An obstacle to understanding the NTS zone is that major ignimbrite sheets and calderas of the southwestern Nevada volcanic field (SNVF) formed in this zone at the height of late Tertiary tectonic activity, possibly burying much of the structural evidence. The NTS zone could represent an intersection of the Walker Lane with another major structural feature, a significant bend in the Walker Lane, or a transtensional tear that localized accommodation structures as well as the prominent late Miocene calderas of the SNVF. Ongoing field work is aimed at determining which of these and competing interpretations is best

  8. Rooting Characteristics of Vegetation near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dennis J. Hansen and W. Kent Ostler

    2003-01-01

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, (3) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies

  9. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE's Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS

  10. Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Glanzman, V.M.

    1980-01-01

    This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography

  11. Nevada Test Site fallout in the area of Enterprise, Utah

    International Nuclear Information System (INIS)

    Krey, P.W.; Hardy, E.P.; Heit, M.

    1980-04-01

    The analysis of a sediment core from the Enterprise reservoir in southwestern Utah has provided a record of fallout in the area dating to 1945. Assming that all the 137 Cs fallout that occurred at Enterprise reservoir between 1951 and 1957 came exclusively from the Nevada tests, an upper limit of the integrated deposit from this source is 18 mCi/km 2 of 137 Cs decay corrected to 1979 out of a total of 101 measured in 1979. The maximum infinity dose from the external radiation caused by this Nevada Test Site fallout is estimated to be 1700 mrad. This maximum dose is only a factor of two higher than the cumulative estimated dose in Enterprise derived from the radiological surveys conducted after each test. This indicates that the region around Enterprise reservoir did not experience an intrusion of fallout from NTS greatly in excess of what had been deduced from the post-shot external radiation surveys

  12. Transuranic (TRU) Waste Repackaging at the Nevada Test Site

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Pyles, G.; Ciucci, J.; Arnold, P.

    2009-01-01

    This paper describes the activities required to modify a facility and the process of characterizing, repackaging, and preparing for shipment the Nevada Test Site's (NTS) legacy transuranic (TRU) waste in 58 oversize boxes (OSB). The waste, generated at other U.S. Department of Energy (DOE) sites and shipped to the NTS between 1974 and 1990, requires size-reduction for off-site shipment and disposal. The waste processing approach was tailored to reduce the volume of TRU waste by employing decontamination and non-destructive assay. As a result, the low-level waste (LLW) generated by this process was packaged, with minimal size reduction, in large sea-land containers for disposal at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The remaining TRU waste was repackaged and sent to the Idaho National Laboratory Consolidation Site for additional characterization in preparation for disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The DOE National Nuclear Security Administration Nevada Site Office and the NTS Management and Operating (M and O) contractor, NSTec, successfully partnered to modify and upgrade an existing facility, the Visual Examination and Repackaging Building (VERB). The VERB modifications, including a new ventilation system and modified containment structure, required an approved Preliminary Documented Safety Analysis prior to project procurement and construction. Upgrade of the VERB from a radiological facility to a Hazard Category 3 Nuclear Facility required new rigor in the design and construction areas and was executed on an aggressive schedule. The facility Documented Safety Analysis required that OSBs be vented prior to introduction into the VERB. Box venting was safely completed after developing and implementing two types of custom venting systems for the heavy gauge box construction. A remotely operated punching process was used on boxes with wall thickness of up to 3.05 mm (0.120 in) to insert aluminum

  13. Review of present groundwater monitoring programs at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hershey, R.L.; Gillespie, D.

    1993-09-01

    Groundwater monitoring at the Nevada Test Site (NTS) is conducted to detect the presence of radionuclides produced by underground nuclear testing and to verify the quality and safety of groundwater supplies as required by the State of Nevada and federal regulations, and by U.S. Department of Energy (DOE) Orders. Groundwater is monitored at water-supply wells and at other boreholes and wells not specifically designed or located for traditional groundwater monitoring objectives. Different groundwater monitoring programs at the NTS are conducted by several DOE Nevada Operations Office (DOE/NV) contractors. Presently, these individual groundwater monitoring programs have not been assessed or administered under a comprehensive planning approach. Redundancy exists among the programs in both the sampling locations and the constituents analyzed. Also, sampling for certain radionuclides is conducted more frequently than required. The purpose of this report is to review the existing NTS groundwater monitoring programs and make recommendations for modifying the programs so a coordinated, streamlined, and comprehensive monitoring effort may be achieved by DOE/NV. This review will be accomplished in several steps. These include: summarizing the present knowledge of the hydrogeology of the NTS and the potential radionuclide source areas for groundwater contamination; reviewing the existing groundwater monitoring programs at the NTS; examining the rationale for monitoring and the constituents analyzed; reviewing the analytical methods used to quantify tritium activity; discussing monitoring network design criteria; and synthesizing the information presented and making recommendations based on the synthesis. This scope of work was requested by the DOE/NV Hydrologic Resources Management Program (HRMP) and satisfies the 1993 (fiscal year) HRMP Groundwater Monitoring Program Review task

  14. Status of the flora and fauna on the Nevada Test Site, 1994: Results of continuing Basic Environmental Monitoring January through December 1994

    International Nuclear Information System (INIS)

    Hunter, R.B.

    1995-09-01

    This is the final progress report of a Department of Energy (DOE), Nevada operations Office (NV), program to monitor the ecology of the Nevada Test Site (NTS). The eight-year Basic Environmental Compliance and Monitoring Program (BECAMP) included meeting goals of understanding the spatial and temporal changes of plants and animals on the NTS, and determining the effects of DOE operations on those plants and animals. Determination of the changes was addressed through monitoring the most common plant and animal species at undisturbed (baseline) plots located in the major NTS valleys and mesas. One plot in Yucca Flat, the site of most nuclear weapons tests, was monitored annually, while other baseline plots were censused on a three- or four-year cycle. Effects of DOE operations were examined at sites of major disturbances, related to both DOE operations and natural disturbance mechanisms, censused on a three-year cycle. This report concentrates on work completed in 1994

  15. Status of the flora and fauna on the Nevada Test Site, 1994: Results of continuing Basic Environmental Monitoring January through December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.B. [comp.

    1995-09-01

    This is the final progress report of a Department of Energy (DOE), Nevada operations Office (NV), program to monitor the ecology of the Nevada Test Site (NTS). The eight-year Basic Environmental Compliance and Monitoring Program (BECAMP) included meeting goals of understanding the spatial and temporal changes of plants and animals on the NTS, and determining the effects of DOE operations on those plants and animals. Determination of the changes was addressed through monitoring the most common plant and animal species at undisturbed (baseline) plots located in the major NTS valleys and mesas. One plot in Yucca Flat, the site of most nuclear weapons tests, was monitored annually, while other baseline plots were censused on a three- or four-year cycle. Effects of DOE operations were examined at sites of major disturbances, related to both DOE operations and natural disturbance mechanisms, censused on a three-year cycle. This report concentrates on work completed in 1994.

  16. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Low-level radioactive waste (LLW) streams which have a clear, defined pathway to disposal are becoming less common as U.S. Department of Energy accelerated cleanup sites enters their closure phase. These commonly disposed LLW waste streams are rapidly being disposed and the LLW inventory awaiting disposal is dwindling. However, more complex waste streams that have no path for disposal are now requiring attention. The U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NSO) Environmental Management Program is charged with the responsibility of carrying out the disposal of onsite and off-site defense-generated and research-related LLW at the Nevada. Test Site (NTS). The NSO and its generator community are constantly pursuing new LLW disposal techniques while meeting the core mission of safe and cost-effective disposal that protects the worker, the public and the environment. From trenches to present-day super-cells, the NTS disposal techniques must change to meet the LLW generator's disposal needs. One of the many ways the NTS is addressing complex waste streams is by designing waste specific pits and trenches. This ensures unusual waste streams with high-activity or large packaging have a disposal path. Another option the NTS offers is disposal of classified low-level radioactive-contaminated material. In order to perform this function, the NTS has a safety plan in place as well as a secure facility. By doing this, the NTS can accept DOE generated classified low-level radioactive-contaminated material that would be equivalent to U.S. Nuclear Regulatory Commission Class B, C, and Greater than Class C waste. In fiscal year 2006, the NTS will be the only federal disposal facility that will be able to dispose mixed low-level radioactive waste (MLLW) streams. This is an activity that is highly anticipated by waste generators. In order for the NTS to accept MLLW, generators will have to meet the stringent requirements of the NTS

  17. Computer-Based Testing: Test Site Security.

    Science.gov (United States)

    Rosen, Gerald A.

    Computer-based testing places great burdens on all involved parties to ensure test security. A task analysis of test site security might identify the areas of protecting the test, protecting the data, and protecting the environment as essential issues in test security. Protecting the test involves transmission of the examinations, identifying the…

  18. Nevada Test Site-Directed Research, Development, and Demonstration

    International Nuclear Information System (INIS)

    Will Lewis, Compiler

    2006-01-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R and D projects, as presented in this report

  19. Flood Assessment Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    A flood assessment was conducted at the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) in Nye County, Nevada (Figure 1-1). The study area encompasses the watershed of Yucca Flat, a closed basin approximately 780 square kilometers (km2) (300 square miles) in size. The focus of this effort was on a drainage area of approximately 94 km2 (36 mi2), determined from review of topographic maps and aerial photographs to be the only part of the Yucca Flat watershed that could directly impact the Area 3 RWMS. This smaller area encompasses portions of the Halfpint Range, including Paiute Ridge, Jangle Ridge, Carbonate Ridge, Slanted Buttes, Cockeyed Ridge, and Banded Mountain. The Area 3 RWMS is located on coalescing alluvial fans emanating from this drainage area

  20. The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanford?s system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program

  1. Open-field test site

    Science.gov (United States)

    Gyoda, Koichi; Shinozuka, Takashi

    1995-06-01

    An open-field test site with measurement equipment, a turn table, antenna positioners, and measurement auxiliary equipment was remodelled at the CRL north-site. This paper introduces the configuration, specifications and characteristics of this new open-field test site. Measured 3-m and 10-m site attenuations are in good agreement with theoretical values, and this means that this site is suitable for using 3-m and 10-m method EMI/EMC measurements. The site is expected to be effective for antenna measurement, antenna calibration, and studies on EMI/EMC measurement methods.

  2. Geology of the Nevada Test Site and nearby areas, southern Nevada

    International Nuclear Information System (INIS)

    Sinnock, S.

    1982-10-01

    The Department of Energy's Nevada Test Site (NTS) lies in the southern part of the Great Basin Section of the Basin and Range Physiographic Province. This report addresses the geological setting of the NTS in the context of the current waste isolation policy. The intent is to provide a synthesis of geological conditions at the NTS and nearby areas so that a general background of information is available for assessing the possible role of geology in providing protections for humans from buried radioactive wastes. The NTS is characterized by alluvium-filled, topgraphically closed valleys surrounded by ranges composed of Paleozoic sedimentary rocks and Tertiary volcanic tuffs and lavas. The Paleozoic rocks are a miogeosynclinal sequence of about 13,000 ft of pre-Cambrian to Cambrian clastic deposits (predominantly quartzites) overlain by about 14,000 ft of Cambrian through Devonian carbonates, 8000 ft of Mississippian argillites and quartzites, and 3000 ft of Pennsylvanian to Permian limestones. Tertiary volcanic rocks are predominatly silicic composition and were extruded from numerous eruptive centers during Miocene and Pliocene epochs. Within eruptive caldera depressions, volcanic deposits accumulated to perhaps 10,000 ft in total thickness, thinning to extinction outward from the calderas. Extrusion of minor amounts of basalts accompanied Pliocene and Pleistocene filling of structural basins with detritus from the ranges. Regional compressional and extensional structures as well as local volcanic structures occur in the NTS region. Normal extensional faulting coincided with the outbreak of volcanism during the Miocene and was superimposed on existing Mesozoic structures. Continued extensional deformation may be occurring at the present time

  3. Hydrogeologic characterization of wells HTH-1, UE18r, UE6e, and HTH-3, Nevada Test Site

    International Nuclear Information System (INIS)

    Lyles, B.F.; McKay, W.A.; Chapman, J.B.; Tyler, S.W.

    1991-06-01

    Monitoring for the migration of contaminants in groundwater or for the proper design of nuclear test emplacement holes at the Nevada Test Site (NTS) requires proper placement and completion of monitoring wells. This is only possible if the hydrogeologic system is understood in a regional and local context, necessitating data from existing wells and boreholes. Though the NTS Groundwater Characterization Project will be drilling wells, their great expense limits the number of new wells. However, there are many existing boreholes and wells on the NTS which have not been completely evaluated hydrologically. Some of these are incorporated in the Long Term Hydrologic Monitoring Program (LTHMP) of the US Environmental Protection Agency (EPA), others are related to the testing programs. In all cases, additional site investigation in necessary to properly interpret the hydrogeologic data from these wells. Monitoring wells on the NTS are poorly characterized with regard to aquifers penetrated, vertical hydraulic gradients, and vertical variations in water quality. One of the goals of the well validation program was to gain a thorough understanding of the parameters needed to interpret the source and fate potential hazardous and radioactive substances that may be detected in these wells in the future. One of the most critical parameters for monitoring is the knowledge of what aquifer or geologic unit is being sampled when a water sample is collected. Pumped water samples are weighted most heavily to the water quality of the most productive (highest transmissivity) aquifer penetrated by the well

  4. Status of the flora and fauna on the Nevada Test Site, 1992

    International Nuclear Information System (INIS)

    Hunter, R.B.

    1994-03-01

    This report documents changes in the populations of plants and animals on the Nevada Test Site (NTS) for calendar year 1992. It is part of a Department of Energy (DOE) program (Basic Environmental Compliance and Monitoring Program -- BECAMP) that also includes monitoring DOE compliance with the Endangered Species Act, the Historic Preservation Act, and the American Indian Freedom of Religion Act. Ecological studies were to comply with the National Environmental Policy Act and DOE Order 5400.1, ''General Environmental Protection Program.'' These studies focused on the following: status of ephemeral plants on the Nevada Test Site, 1992; status of reptile and amphibian populations on the Nevada Test Site, 1992; trends in small mammal populations on the Nevada Test Site, 1992; status of large mammals and birds at Nevada Test Site, 1992; and status of perennial plants on the Nevada Test Site, 1992

  5. Status of the flora and fauna on the Nevada Test Site, 1989--1991

    International Nuclear Information System (INIS)

    Hunter, R.B.

    1994-03-01

    This volume includes six reports of monitoring work to determine the status of and trends in flora and fauna populations on the Nevada Test Site (NTS) from 1989 through 1991. The Nevada Operations Office of the US Department of Energy supported monitoring under its Basic Environmental Compliance and Monitoring Program (BECAMP) since 1987. Under this program several undisturbed baseline plots, and numerous plots in disturbed areas, are sampled on annual or three-year cycles. Perennial plant populations, ephemeral plants, small mammals, reptiles, birds, and large mammals were monitored. Monitoring results are reported for five baseline sites, one from each major landform on the NTS (Jackass Flats, Frenchman Flat, Yucca Flat, Pahute Mesa, and Rainier Mesa), and for areas cleared of vegetation by fires, atmospheric nuclear weapons tests, construction, and gophers. Roadside flora and fauna were studied at two locations, and several historical study plots around the NTS were recensused to determine vegetation changes over long time spans. Three subsidence craters resulting from below-ground nuclear weapons tests were also studied. A major influence on plants and animals during the report period was a severe drought during 1989 and 1990, followed by more moderate drought in 1991

  6. Status of the flora and fauna on the Nevada Test Site, 1989--1991

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.B. [comp.

    1994-03-01

    This volume includes six reports of monitoring work to determine the status of and trends in flora and fauna populations on the Nevada Test Site (NTS) from 1989 through 1991. The Nevada Operations Office of the US Department of Energy supported monitoring under its Basic Environmental Compliance and Monitoring Program (BECAMP) since 1987. Under this program several undisturbed baseline plots, and numerous plots in disturbed areas, are sampled on annual or three-year cycles. Perennial plant populations, ephemeral plants, small mammals, reptiles, birds, and large mammals were monitored. Monitoring results are reported for five baseline sites, one from each major landform on the NTS (Jackass Flats, Frenchman Flat, Yucca Flat, Pahute Mesa, and Rainier Mesa), and for areas cleared of vegetation by fires, atmospheric nuclear weapons tests, construction, and gophers. Roadside flora and fauna were studied at two locations, and several historical study plots around the NTS were recensused to determine vegetation changes over long time spans. Three subsidence craters resulting from below-ground nuclear weapons tests were also studied. A major influence on plants and animals during the report period was a severe drought during 1989 and 1990, followed by more moderate drought in 1991.

  7. SP-100 Test Site

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.

    1988-01-01

    Preparatory activities are well under way at Hanford to convert the 309 Containment Building and its associated service wing to a 2.5 MWt nuclear test facility for the SP-100 Ground Engineering System (GES) test. Preliminary design is complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system to enclose the high temperature reactor, a test assembly cell and handling system, control and data processing systems, and safety and auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 75% complete. The facility has been cleared of obstructing equipment from its earlier reactor test. Current activities are focusing on definitive design and preparation of the Preliminary Safety Analysis Report (PSAR) aimed at procurement and construction approvals and schedules to achieve reactor criticality by January 1992. 6 refs

  8. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2006

    International Nuclear Information System (INIS)

    2007-01-01

    In February 1997, the U.S. Department of Energy, Nevada Operations Office issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMS) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY) 2006

  9. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Volume 1, Appendices A-F

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  10. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Volume 1, Chapters 1-9

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  11. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles (mi)) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  12. The relative abundance of desert tortoises on the Nevada Test Site within ecological landform units

    International Nuclear Information System (INIS)

    Woodward, R.; Rautenstrauch, K.R.; Hall, D.B.; Ostler, W.K.

    1998-09-01

    Sign-survey transects were sampled in 1996 to better determine the relative abundance of desert tortoises on the Nevada Test Site (NTS). These transects were sampled within ecological land-form units (ELUs), which are small, ecologically homogeneous units of land. Two-hundred and six ELUs were sampled by walking 332 transects totaling 889 kilometers (km). These ELUs covered 528 km 2 . Two-hundred and eight-one sign were counted. An average of 0.32 sign was found per km walked. Seventy percent of the area sampled had a very low abundance of tortoises, 29% had a low abundance, and 1% had a moderate abundance. A revised map of the relative abundance of desert tortoise on the NTS is presented. Within the 1,330 km 2 of desert tortoise habitat on the NTS, 49% is classified as having no tortoises or a very low abundance, 18% has a low or moderate abundance, 12% is unclassified land being used by the Yucca Mountain Site Characterization Project, and the remaining 21% still has an unknown abundance of desert tortoises. Based on the results of this work, the amount of tortoise habitat previously classified as having an unknown or low-moderate abundance, and on which clearance surveys and on-site monitoring was required, has been reduced by 20%

  13. Surveys for desert tortoise on the proposed site of a high-level nuclear waste repository at the Nevada Test Site

    International Nuclear Information System (INIS)

    Collins, E.; Sauls, M.L.; O'Farrell, T.P.

    1983-01-01

    The National Waste Terminal Storage Program is a national search for suitable sites to isolate commercial spent nuclear fuel or high-level radioactive waste. The Nevada Nuclear Waste Storage Investigation (NNWSI) managed by the U.S. Department of Energy (DOE), Nevada Operations Office, was initiated to study the suitability of a portion of Yucca Mountain on the DOE's Nevada Test Site (NTS) as a location for such a repository. EG and G was contracted to provide information concerning the ecosystems encountered on the site. A comprehensive literature survey was conducted to evaluate the status and completeness of the existing biological information for the previously undisturbed area. Site specific studies were begun in 1981 when preliminary field surveys confirmed the presence of the desert tortoise (Gopherus agassizi) within the project area FY82 studies were designed to determine the overall distribution and abundance of the tortoise within the area likely to be impacted by NNWSI activities. The Yucca Mountain area of the Nevada Test Site is situated close to the northern range limit of the desert tortoise. Prior to the 1982 surveys, the desert tortoise was reported from only nine locations on NTS. A known population had been under study in Rock Valley about 25 miles southeast of the project area. However, the distribution and population densities of tortoise in the southwest portion of NTS were virtually unknown. Results of our surveys indicate that desert tortoise can be expected, albeit in small numbers, in a wide range of Mojavean and Transitional habitats

  14. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 204: STORAGE BUNKERS, NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    2006-01-01

    Corrective Action Unit (CAU) 330 consists of four Corrective Action Sites (CASs) located in Areas 6, 22, and 23 of the Nevada Test Site (NTS). The unit is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites. CAU 330 consists of the following CASs: CAS 06-02-04, Underground Storage Tank (UST) and Piping CAS 22-99-06, Fuel Spill CAS 23-01-02, Large Aboveground Storage Tank (AST) Farm CAS 23-25-05, Asphalt Oil Spill/Tar Release

  15. Nevada test site low-level and mixed waste repository design in the unsaturated zone

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Warren, D.M.

    1989-01-01

    The Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) is used for shallow land disposal of Low-Level Radioactive (LLW) and for retrievable disposal of Mixed Wastes (MW) from various Department of Energy (DOE) facilities. The site is situated in southern Nevada, one of the most arid regions of the United States. Design considerations include vadose zone monitoring in lieu of groundwater monitoring, stringent waste acceptance and packaging criteria, a waste examination and real-time radiography facility, and trench design. 4 refs

  16. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    International Nuclear Information System (INIS)

    Brown, Theresa J.; Wirth, Sharon

    1999-01-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here

  17. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model

  18. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Operational Area Monitoring Plan for environmental monitoring, is for EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) which operates several offsite facilities in support of activities at the Nevada Test Site (NTS). These facilities include: (1) Amador Valley Operations (AVO), Pleasanton, California; (2) Kirtland Operations (KO), Kirtland Air Force base, Albuquerque, New Mexico (KAFB); (3) Las Vegas Area Operations (LVAO), Remote Sensing Laboratory (RSL), and North Las Vegas (NLV) Complex at Nellis Air Force Base (NAFB), North Las Vegas, Nevada; (4) Los Alamos Operations (LAO), Los Alamos, New Mexico; (5) Santa Barbara Operations (SBO), Goleta, California; (6) Special Technologies Laboratory (STL), Santa Barbara, California; (7) Washington Aerial Measurements Department (WAMD), Andrews Air Force Base, Maryland; and, (8) Woburn Cathode Ray Tube Operations (WCO), Woburn, Massachusetts. Each of these facilities has an individual Operational Area Monitoring Plan, but they have been consolidated herein to reduce redundancy

  19. Draft Environmental Impact Statement for the Nevada Test Site and off-site locations in the State of Nevada. Volume 1, Appendix I: Transportation study

    International Nuclear Information System (INIS)

    1996-01-01

    This report has been prepared to address local issues concerning current and potential operations at the Nevada Test Site (NTS), to document the results of the NTS transportation risk analysis, and to provide information and supporting documentation for the NTS Environmental Impact Statement (EIS). Stakeholders have identified transportation, health, and safety issues as their paramount concern. In response to these concerns, the US Department of Energy, Nevada Operations Office (DOE/NV) solicited and received input from the public through public meetings and in meetings with federal, state, local, and tribal organizations; and commissioned a transportation risk analysis. The stakeholders and DOE went on to establish the Transportation Protocol Working Group and Big Group to further discuss transportation issues associated with NTS transportation activities. This study used two different models: ADROIT for Defense Program activities and a RADTRAN-like model for waste management activities. Because of national security concerns associated with special nuclear material, the DOE has developed ADROIT to assist in defining the potential risk associated with Defense Program transportation activities. RADTRAN is a computer model which analyzes data without exposing the steps taken to reach the end result. So the public could see every step in the process, a RADTRAN-like model was used. This model is composed of a combination of spreadsheet and FORTRAN codes, that can be used by the stakeholder on a personal computer. This model is available to the public upon request. A detailed discussion of the results of the model are contained in this Appendix

  20. Development of a mixed waste management facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dodge, R.L.; Brich, R.F.

    1988-01-01

    The U.S. Department of Energy (DOE) produces radioactive low-level wastes (LLW) which contain hazardous components as identified by 40 Code of Federal Regulations (CFR) 261. Management of those mixed wastes (MW) requires compliance with U.S.Environmental Protection Agency (EPA) regulations for hazardous wastes and DOE regulations for LLW. In 1988, DOE's Nevada Operations Office (NV) began disposing of MW at the Nevada Test Site (NTS) under interim status as authorized by the state of Nevada. MW disposal is limited to Pit 3 while operating under interim status. This paper discusses how preparations for operation of a separate mixed waste management facility (MWMF) are underway. Those preparations include revising the NTS Part B Permit application, developing a MW certification program, developing and operating a vadose zone monitoring system, preparing an Environmental Assessment (EA), developing protocols for analysis of MW, and facility design and construction

  1. Draft Environmental Impact Statement for the Nevada Test Site and off-site locations in the State of Nevada. Volume 1, Appendix G: American Indian comments for the Nevada Test Site Environmental Impact Statement

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of this report is to provide a record of activities of the American Indian Writers Subgroup (AIWS) so they can communicate better with the tribes and Indian organizations they represent. This is a living document, which may be modified as long as the AIWS is working on the Nevada Test Site Environmental Impact Statement (NTS EIS). This document has been submitted to the Consolidated Group of Tribes and Organizations for review and comment. The Consolidated Group of Tribes and Organizations comments will be incorporated into the final version which will be sent to all Indian tribes and organizations represented by the Consolidated Group of Tribes and Organizations. This document is composed of the following sections: Section G.1 -- AIWS and Meeting Summaries; Section G.2 -- Writing Tasks; Section G.3 -- American Indian Comments for the NTS EIS; and Section G.4 -- References

  2. Bibliography of reports on studies of the geology, hydrogeology and hydrology at the Nevada Test Site, Nye County, Nevada, from 1951--1996

    Energy Technology Data Exchange (ETDEWEB)

    Seaber, P.R.; Stowers, E.D.; Pearl, R.H.

    1997-04-01

    The Nevada Test Site (NTS) was established in 1951 as a proving ground for nuclear weapons. The site had formerly been part of an Air Force bombing and gunnery range during World War II. Sponsor-directed studies of the geology, hydrogeology, and hydrology of the NTS began about 1956 and were broad based in nature, but were related mainly to the effects of the detonation of nuclear weapons. These effects included recommending acceptable media and areas for underground tests, the possibility of off-site contamination of groundwater, air blast and surface contamination in the event of venting, ground-shock damage that could result from underground blasts, and studies in support of drilling and emplacement. The studies were both of a pure scientific nature and of a practical applied nature. The NTS was the site of 828 underground nuclear tests and 100 above-ground tests conducted between 1951 and 1992 (U.S. Department of Energy, 1994a). After July 1962, all nuclear tests conducted in the United States were underground, most of them at the NTS. The first contained underground nuclear explosion was detonated on September 19, 1957, following extensive study of the underground effect of chemical explosives. The tests were performed by U.S. Department of Energy (DOE) and its predecessors, the U.S. Atomic Energy Commission and the Energy Research and Development Administration. As part of a nationwide complex for nuclear weapons design, testing and manufacturing, the NTS was the location for continental testing of new and stockpiled nuclear devices. Other tests, including Project {open_quotes}Plowshare{close_quotes} experiments to test the peaceful application of nuclear explosives, were conducted on several parts of the site. In addition, the Defense Nuclear Agency tested the effect of nuclear detonations on military hardware.

  3. Final environmental impact statement for the Nevada test site and off-site locations in the State of Nevada. Public comment and response document, Volume 3, Part A comments

    International Nuclear Information System (INIS)

    1996-08-01

    On February 2, 1996, the U.S. Department of Energy (DOE) issued the Draft Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (NTS EIS) for review by the state of Nevada, Indian tribes, local governments, other federal agencies, groups and organizations, and the general public. The formal comment period lasted 90 days, ending May 3, 1996. As part of the comment process, the DOE held public hearings in St. George, Utah, and in Pahrump, Reno, and Las Vegas, Nevada. Community Workshops were held in Caliente, Tonopah, Boulder City, and North Las Vegas, Nevada, in conjunction with the University of Nevada Las Vegas to discuss the Draft NTS EIS. Volume 3 of the Final NTS EIS contains 3 chapters. Chapter 1 summarizes the major issues raised by the public. Chapter 2 contains the full text of the public comments on the Draft NTS EIS received by the DOE; it includes public hearing transcripts, written comments, and comments received via a toll-free comment open-quotes hot line.close quotes Chapter 3 contains the DOE's responses to the public comments and describes how the comments were considered in the Final NTS EIS

  4. Mud Pit Risk-Based Closure Strategy Report, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Brain Hoenes

    2004-08-01

    This report presents the findings of the human and ecological risk assessment for the NTS mud pits. The risk assessment utilizes data from 52 of the 270 NTS mud pits in conjunction with corroborative data from 87 other DOE mud pits associated with nuclear testing (at locations on the NTS, in the western United States, and Alaska) as well as relevant process knowledge. Based on the risk assessment findings, the report provides a strategy for further evaluation, characterization, and closure of all 270 NTS mud pit CASs using the Streamlined Approach for Environmental Restoration (SAFER).

  5. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  6. Ecological studies of small vertebrates in Pu-contaminated study areas of NTS and TTR

    International Nuclear Information System (INIS)

    Bradley, W.G.; Moor, K.S.

    1975-01-01

    Ecological studies of vertebrates in plutonium-contaminated areas of the Nevada Test Site (NTS) were initiated in March 1972, and have continued to date. In September 1973, standard census methods were also employed to derive a qualitative and quantitative inventory of vertebrate biota of four Nevada Applied Ecology Group (NAEG) study areas of the Tonopah Test Range (TTR). A checklist of vertebrates of NAEG study areas of NTS and TTR is presented. Data are presented on vertebrate composition, relative abundance, and seasonal status in the study areas. Concentrations of 239 Pu and 241 Am were determined in pelt or skin, GI tract, and carcass of 13 lizards and 16 mammals resident on Clean Slate 2, TTR, and Area 11, NTS. A total of 71 animals were collected for radioanalysis. However, the data were not available at the time this report was written. Pu tissue burdens were highest in lizards from Area 11 GZ. Maximum values obtained in nCi/g ash were 30.9, 42.2, and 0.43 for the pelt, GI tract, and carcass, respectively. Maximum 239 Pu values in tissues of small rodents from Area 11 (not from GZ) were 11.4, 6.49, and 0.20 nCi/g ash for pelt, GI tract, and carcass, respectively. Pu/Am ratios were relatively consistent in tissue samples of lizards and small mammals from Area 11 (approximately 6:1, Pu/Am). Pu/Am ratios were not consistent in vertebrates of Clean Slate 2, TTR, and appeared to be lower in carcass (28:1, Pu/Am in mammals) than GI tract (9:1, Pu/Am in mammals). Although this trend was more conspicuous in mammals, it was also evident in reptiles. (auth)

  7. Housekeeping Closure Report for Corrective Action Unit 119: Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, US Department of Energy, and US Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts to the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purpose of determining appropriate corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 19 CASs with in CAU 119 on the NTS. The form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Activities included verification of the prior removal of both aboveground and underground gas/oil storage tanks, gas sampling tanks, pressure fuel tanks, tank stands, trailers, debris, and other material. Based on these former activities, no further action is required at these CASs

  8. Animal investigation program, 1981 annual report: Nevada Test Site and vicinity

    International Nuclear Information System (INIS)

    Smith, D.D.; Giles, K.R.

    1982-01-01

    Data are presented from the radioanalysis of tissues, collected from animals that resided on or near the Nevada Test Site (NTS). Other than naturally occurring potassium-40, cesium-137 was the only gamma-emitting radionuclide frequently detected and was within a narrow range of activity. For example, 12 of 14 cattle muscle samples contained 15 to 65 pCi of cesium-137 per kilogram. Strontium-90 and plutonium-238 or -239 tissue concentrations were similar to those of recent years. Nanocurie levels of tritium were found in tissue from two deer that drank contaminated water draining from the tunnel test areas. Annual dose estimates to man were calculated based on the daily consumption of 0.5 kg of tissue with peak radionuclide levels. The highest postulated dose was 45 millirems to the whole body from ingestion of deer muscle that drank from the tritium contaminated waters. This dose is about 9% of the radiation protection guide. Movement of deer on the NTS is discussed. In general, deer from Pahute Mesa winter in the Timber Mt. area with some movement off the NTS, while deer from Rainier Mesa winter in the Shoshone Mt. area. The sudden death of an offsite goat kid was investigated and death was attributed to enterotoxemia. No gross or microscopic lesions in necropsied animals were found that could be attributed to the effect of ionizing radiation

  9. Defining modeling parameters for juniper trees assuming pleistocene-like conditions at the NTS

    International Nuclear Information System (INIS)

    Tarbox, S.R.; Cochran, J.R.

    1994-01-01

    This paper addresses part of Sandia National Laboratories' (SNL) efforts to assess the long-term performance of the Greater Confinement Disposal (GCD) facility located on the Nevada Test Site (NTS). Of issue is whether the GCD site complies with 40 CFR 191 standards set for transuranic (TRU) waste burial. SNL has developed a radionuclide transport model which can be used to assess TRU radionuclide movement away from the GCD facility. An earlier iteration of the model found that radionuclide uptake and release by plants is an important aspect of the system to consider. Currently, the shallow-rooted plants at the NTS do not pose a threat to the integrity of the GCD facility. However, the threat increases substantially it deeper-rooted woodland species migrate to the GCD facility, given a shift to a wetter climate. The model parameters discussed here will be included in the next model iteration which assumes a climate shift will provide for the growth of juniper trees at the GCD facility. Model parameters were developed using published data and wherever possible, data were taken from juniper and pinon-juniper studies that mirrored as many aspects of the GCD facility as possible

  10. Final environmental impact statement for the Nevada test site and off-site locations in the State of Nevada. Human health risks and safety impacts study, Volume 1, Appendix H

    International Nuclear Information System (INIS)

    1996-08-01

    Proposed changes in the Nevada Test Site (NTS) operations, as well as the US Department of Energy (DOE) policy of reviewing sitewide National Environmental Policy Act (NEPA) documents, have resulted in the need for the US Department of Energy, Nevada Operations Office (DOE/NV) Operations Office to prepare a new Environmental Impact Statement (EIS) for the NTS. This report has been prepared to assess the human health and safety impacts from operations expected to be carried out under each of the four alternatives defined in the NTS EIS. These alternatives are: Alternative 1, Continue Current Operations (No Action); Alternative 2, Discontinue Operations; Alternative 3, Expanded Use; and Alternative 4, Alternate Use of Withdrawn Lands

  11. Evaluation Of Groundwater Pathways And Travel Times From The Nevada Test Site To The Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    K.F. Pohlman; J. Zhu; M. Ye; J. Chapman; C. Russell; D.S. Shafer

    2006-01-01

    Yucca Mountain (YM), Nevada, has been recommended as a deep geological repository for the disposal of spent fuel and high-level radioactive waste. If YM is licensed as a repository by the Nuclear Regulatory Commission, it will be important to identify the potential for radionuclides to migrate from underground nuclear testing areas located on the Nevada Test Site (NTS) to the hydraulically downgradient repository area to ensure that monitoring does not incorrectly attribute repository failure to radionuclides originating from other sources. In this study, we use the Death Valley Regional Flow System (DVRFS) model developed by the U.S. Geological Survey to investigate potential groundwater migration pathways and associated travel times from the NTS to the proposed YM repository area. Using results from the calibrated DVRFS model and the particle tracking post-processing package MODPATH, we modeled three-dimensional groundwater advective pathways in the NTS and YM region. Our study focuses on evaluating the potential for groundwater pathways between the NTS and YM withdrawal area and whether travel times for advective flow along these pathways coincide with the prospective monitoring timeframe at the proposed repository. We include uncertainty in effective porosity, as this is a critical variable in the determination of time for radionuclides to travel from the NTS region to the YM withdrawal area. Uncertainty in porosity is quantified through evaluation of existing site data and expert judgment and is incorporated in the model through Monte Carlo simulation. Since porosity information is limited for this region, the uncertainty is quite large and this is reflected in the results as a large range in simulated groundwater travel times

  12. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    International Nuclear Information System (INIS)

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site

  13. Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Boehlecke, Robert F.

    2004-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the 'Federal Facility Agreement and Consent Order' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions

  14. Closure Report for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2003-07-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 330: Areas 6, 22, and 23 Tanks and Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO of 1996), and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site (NTS), Nevada (U.S. Department of Energy, National Nuclear Security Administration Nevada Operation Office [NNSA/NV], 2001). CAU 330 consists of the following four Corrective Action Sites (CASs): 06-02-04, 22-99-06, 23-01-02, and 23-25-05 (Figure 1).

  15. Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1994-02-01

    The Special Projects Section (SPS) of Reynolds Electrical ampersand Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities

  16. Analysis of the magnetic susceptibility well log in drill hole UE25a-5, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Daniels, J.J.; Scott, J.H.

    1980-01-01

    Magnetic susceptibility measurements have been shown to be dependent upon the magnetite content of rocks with variations in rock susceptibility arising from changes in the shape, size, composition, and quantity of the contained magnetite grains. The present study was undertaken to determine the factor(s) responsible for the variation in magnetic susceptibility measurements from borehole UE25a-5 on the Nevada Test Site (NTS). The well logs and sample analyses presented in this paper form part of a larger geophysical well-logging project studying the physical properties of welded tuffs at NTS. The ash-flow sheets at NTS appear to be the products of single compositionally zoned magmas that tend, within a cooling unit, to erupt hotter, more mafic, and more crystal-rich with time. These factors, however, have little effect on the degree to which the tuffs become welded. Furthermore, zones of crystallization and alteration are superimposed upon the welded units. X-ray data show poor correspondence between the relative abundance of magnetite in a sample and the borehole magnetic susceptibility measurement associated with it. Curie balance experiments demonstrate no change in the magnetic mineralogy that could account for the susceptibility variation. Thin-section observations corroborate the x-ray data, but indicate a proportional relationship between the borehole susceptibility measurements and the grain-size distribution of magnetite. The association of magnetic susceptibility anomalies with the crystal-rich zones of the welded tuffs will aid in the identification and correlation of the eruptive sequences at NTS

  17. Principal facts for about 16,000 gravity stations in the Nevada Test Site and vicinity

    International Nuclear Information System (INIS)

    Harris, R.N.; Ponce, D.A.; Oliver, H.W.; Healey, D.L.

    1989-01-01

    The Nevada Test Site (NTS) and vicinity includes portions of the Goldfield, Caliente, Death Valley, and Las Vegas. This report documents and consolidates previously published and recently compiled gravity data to establish a gravity data base of about 16,000 stations for the NTS and vicinity. While compiling data sets, redundant stations and stations having doubtful locations or gravity values were excluded. Details of compiling the gravity data sets are discussed in later sections. Where feasible, an accuracy code has been assigned to each station so that the accuracy or reliability of each station can be evaluated. This data base was used in preparing complete Bouguer and isostatic gravity maps of the NTS and vicinity. Since publication of the complete Bouguer gravity map, additional data were incorporated into the isostatic gravity map. Gravity data were compiled from five sources: 14,183 stations from the US Geological Survey (USGS), 326 stations from Exploration Data Consultants (EDCON) of Denver, Colorado, 906 stations from the Los Alamos National Laboratory (LANL), 212 stations from the University of Texas at Dallas (UTD), and 48 stations from the Defense Mapping Agency (DMA). This investigation is an effort to study several areas for potential storage of high-level radioactive waste. Gravity stations established under YMP are shown. The objective of this gravity survey was to explore for the presence of plutons. 33 refs., 24 figs., 9 tabs

  18. Principal facts for about 16,000 gravity stations in the Nevada Test Site and vicinity

    International Nuclear Information System (INIS)

    Harris, R.N.; Ponce, D.A.; Oliver, H.W.; Healey, D.L.

    1989-01-01

    The Nevada Test Site (NTS) and vicinity includes portions of the Goldfield, Caliente, Death Valley, and Las Vegas. This report documents and consolidates previously published and recently compiled gravity data to establish a gravity data base of about 16,000 stations for the NTS and vicinity. While compiling data sets, redundant stations and stations having doubtful locations or gravity values were excluded. Details of compiling the gravity data sets are discussed in later sections. Where feasible, an accuracy code has been assigned to each station so that the accuracy or reliability of each station can be evaluated. This data base was used in preparing complete Bouguer and isostatic gravity maps of the NTS and vicinity. Since publication of the complete Bouguer gravity map, additional data were incorporated into the isostatic gravity map. Gravity data were compiled from five sources: 14,183 stations from the US Geological Survey (USGS), 326 stations from Exploration Data Consultants (EDCON) of Denver, Colorado, 906 stations from the Los Alamos National Laboratory (LANL), 212 stations from the University of Texas at Dallas (UTD), and 48 stations from the Defense Mapping Agency (DMA). This investigation is an effort to study several areas for potential storage of high-level radioactive waste. Gravity stations established under YMP are shown. The objective of this gravity survey was to explore for the presence of plutons. This volume contains only compiled data

  19. Interaction of radionuclides with argillite from the Eleana Formation on the Nevada Test Site

    International Nuclear Information System (INIS)

    Dosch, R.G.; Lynch, A.W.

    1979-02-01

    Distribution coefficients have been determined for 137 Cs, 85 Sr, 144 Ce, 99 Tc, 152 Eu, 238 Pu, 244 Cm, and 243 Am between argillite from the Eleana Formation on the Nevada Test Site (NTS) and several aqueous phases. Radionuclide concentrations in the range of 1 to 0.001 μCi/ml were used with contact times of 14, 28, and 56 days. Reaction mechanism, concentration effects, exchange capacity, equilibration times, and particle size effects were addressed in a more comprehensive study of the interaction of argillite with Cs in deionized water. The experimental parameters used in the distribution coefficient measurements were based in part on this work. The aqueous phases included a simulated groundwater with composition based on the analysis of a NTS groundwater, the same simulant and deionized water which were pre-equilibrated with powdered argillite, and a groundwater simulant with approximately the same qualitative composition of the NTS simulant, but with a higher ionic strength. A system to provide continuous pH control by CO 2 addition during equilibration of the argillite-solution mixtures was designed and assembled. Initial experiments were done with Cs and Eu and the effects of pH on their distribution coefficients are discussed

  20. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    International Nuclear Information System (INIS)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-01-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation

  1. Nevada Test Site Perspective on Characterization and Loading of Legacy Transuranic Drums Utilizing the Central Characterization Project

    International Nuclear Information System (INIS)

    R.G. Lahoud; J. F. Norton; I. L. Siddoway; L. W. Griswold

    2006-01-01

    The Nevada Test Site (NTS) has successfully completed a multi-year effort to characterize and ship 1860 legacy transuranic (TRU) waste drums for disposal at the Waste Isolation Pilot Plant (WIPP), a permanent TRU disposal site. This has been a cooperative effort among the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), the U.S. Department of Energy, Carlsbad Field Office (DOE/CBFO), the NTS Management and Operations (M and O) contractor Bechtel Nevada (BN), and various contractors under the Central Characterization Project (CCP) umbrella. The success is due primarily to the diligence, perseverance, and hard work of each of the contractors, the DOE/CBFO, and NNSA/NSO, along with the support of the U.S. Department of Energy, Headquarters (DOE/HQ). This paper presents, from an NTS perspective, the challenges and successes of utilizing the CCP for obtaining a certified characterization program, sharing responsibilities for characterization, data validation, and loading of TRU waste with BN to achieve disposal at WIPP from a Small Quantity Site (SQS) such as the NTS. The challenges in this effort arose from two general sources. First, the arrangement of DOE/CBFO contractors under the CCP performing work and certifying waste at the NTS within a Hazard Category 2 (HazCat 2) non-reactor nuclear facility operated by BN, presented difficult challenges. The nuclear safety authorization basis, safety liability and responsibility, conduct of operations, allocation and scheduling of resources, and other issues were particularly demanding. The program-level and field coordination needed for the closely interrelated characterization tasks was extensive and required considerable effort by all parties. The second source of challenge was the legacy waste itself. None of the waste was generated at the NTS. The waste was generated at Lawrence Livermore National Laboratory (LLNL), Lawrence Berkeley Laboratory (LBL), Lynchburg, Rocky

  2. Economic potential of alternative land and natural resource uses at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Richard-Haggard, K.

    1983-03-01

    The economic potentials of several alternative land uses at the Nevada Test Site (NTS) are estimated. Alternatives considered include mining, agriculture, grazing, and hunting. There are two known tungsten ore bodies located in the Oak Spring mining district. The economic potential of the reserves is estimated to be $42,840. It is also possible that there are other economic mineral resources on the NTS whose values are yet unknown. There are an estimated 5000 ha of agricultural land on the Test Site; the cash value of alfalfa grown on this acreage is approximately $564,030. The economic potential of grazing at the Test Site lies somewhere in the range of $10,340 to $41,220. The assumed annual worth of mule deer to hunters is $90,440. The gross potential of hunting at the NTS is probably somewhat higher if trophy species, game birds and fur-bearing animals are also considered. It should be noted that the above values indicate gross worth; no costs are included in the estimates

  3. Nevada Test Site-Directed Research and Development, FY 2007 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2008-01-01

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R and D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory (NWL

  4. Nevada Test Site-Directed Research and Development, FY 2007 Report

    Energy Technology Data Exchange (ETDEWEB)

    Wil Lewis, editor

    2008-02-20

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R&D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory

  5. Nevada Test Site closure program

    International Nuclear Information System (INIS)

    Shenk, D.P.

    1994-08-01

    This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use

  6. Housekeeping Closure Report for Corrective Action Unit 463: Areas 2, 3, 9, and 25 Housekeeping Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts of the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purposes of determining corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 13 CASs within CAU 463 on the NTS. The Housekeeping Closure Verification Form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Housekeeping activities at these sites included removal of debris (e.g., wooden pallets, metal, glass, and trash) and other material. In addition, these forms confirm prior removal of other contaminated materials such as metal drums or buckets, transformers, lead bricks, batteries, and gas cylinders. Based on these activities, no further action is required at these CASs

  7. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen

    2003-09-30

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies.

  8. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    International Nuclear Information System (INIS)

    Hansen, D.J.

    2003-01-01

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies

  9. Documentation package for the RFID temperature monitoring system (Model 9977 packages at NTS)

    International Nuclear Information System (INIS)

    Chen, K.; Tsai, H.

    2009-01-01

    The technical basis for extending the Model 9977 shipping package periodic maintenance beyond the one-year interval to a maximum of five years is based on the performance of the O-ring seals and the environmental conditions. The DOE Packaging Certification Program (PCP) has tasked Argonne National Laboratory to develop a Radio-Frequency Identification (RFID) temperature monitoring system for use by the facility personnel at DAF/NTS. The RFID temperature monitoring system, depicted in the figure below, consists of the Mk-1 RFId tags, a reader, and a control computer mounted on a mobile platform that can operate as a stand-alone system, or it can be connected to the local IT network. As part of the Conditions of Approval of the CoC, the user must complete the prescribed training to become qualified and be certified for operation of the RFID temperature monitoring system. The training course will be administered by Argonne National Laboratory on behalf of the Headquarters Certifying Official. This is a complete documentation package for the RFID temperature monitoring system of the Model 9977 packagings at NTS. The documentation package will be used for training and certification. The table of contents are: Acceptance Testing Procedure of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Acceptance Testing Result of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Performance Test of the Single Bolt Seal Sensor for the Model 9977 Packaging; Calibration of Built-in Thermistors in RFID Tags for Nevada Test Site; Results of Calibration of Built-in Thermistors in RFID Tags; Results of Thermal Calibration of Second Batch of MK-I RFID Tags; Procedure for Installing and Removing MK-1 RFID Tag on Model 9977 Drum; User Guide for RFID Reader and Software for Temperature Monitoring of Model 9977 Drums at NTS; Software Quality Assurance Plan (SQAP) for the ARG-US System; Quality Category for the RFID Temperature Monitoring System; The

  10. Documentation pckage for the RFID temperature monitoring system (Of Model 9977 packages at NTS).

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.; Tsai, H.; Decision and Information Sciences

    2009-02-20

    The technical basis for extending the Model 9977 shipping package periodic maintenance beyond the one-year interval to a maximum of five years is based on the performance of the O-ring seals and the environmental conditions. The DOE Packaging Certification Program (PCP) has tasked Argonne National Laboratory to develop a Radio-Frequency Identification (RFID) temperature monitoring system for use by the facility personnel at DAF/NTS. The RFID temperature monitoring system, depicted in the figure below, consists of the Mk-1 RFId tags, a reader, and a control computer mounted on a mobile platform that can operate as a stand-alone system, or it can be connected to the local IT network. As part of the Conditions of Approval of the CoC, the user must complete the prescribed training to become qualified and be certified for operation of the RFID temperature monitoring system. The training course will be administered by Argonne National Laboratory on behalf of the Headquarters Certifying Official. This is a complete documentation package for the RFID temperature monitoring system of the Model 9977 packagings at NTS. The documentation package will be used for training and certification. The table of contents are: Acceptance Testing Procedure of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Acceptance Testing Result of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Performance Test of the Single Bolt Seal Sensor for the Model 9977 Packaging; Calibration of Built-in Thermistors in RFID Tags for Nevada Test Site; Results of Calibration of Built-in Thermistors in RFID Tags; Results of Thermal Calibration of Second Batch of MK-I RFID Tags; Procedure for Installing and Removing MK-1 RFID Tag on Model 9977 Drum; User Guide for RFID Reader and Software for Temperature Monitoring of Model 9977 Drums at NTS; Software Quality Assurance Plan (SQAP) for the ARG-US System; Quality Category for the RFID Temperature Monitoring System; The

  11. A preliminary guidebook for identifying stratigraphic contacts at the Nevada Test Site

    International Nuclear Information System (INIS)

    Pawloski, G.A.; McKague, H.L.; Wagoner, J.L.; McKinnis, W.B.

    1992-01-01

    Lithologic variation, regional depositional trends, and the lack of written guidelines have resulted in inconsistencies in the recognition of stratigraphic contacts in drill holes at the Nevada Test Site (NTS). Stratigraphic identification, based on mineralogy of discrete samples, can be augmented by geophysical logs and downhole movies to more accurately and consistently locate contacts between units. Criteria are established for locating the base of the Pahute Mesa ash-flow tuff, the top of the Ammonia Tanks ash-flow tuff, the top of the Ammonia Tanks bedded tuff, and the top and the base of the Rainier Mesa Tuff

  12. Environmental Assessment for the sewage lagoon system: Area 5, Nevada Test Site

    International Nuclear Information System (INIS)

    1995-02-01

    The DOE Nevada Operations Office prepared an environmental assessment (EA), (DOE/EA-1026), to evaluate the potential impacts of constructing a sanitary waste sewage lagoon system in Area 5 at the Nevada Test Site (NTS). The proposed system would replace an existing septic system. Based on the information and analyses in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (42 USC 4321 et seq.). Therefore, an environmental impact statement (EIS) is not required and DOE is issuing this FONSI

  13. Digital geologic map database of the Nevada Test Site area, Nevada

    Science.gov (United States)

    Wahl, R.R.; Sawyer, D.A.; Minor, S.A.; Carr, M.D.; Cole, J.C.; Swadley, W.C.; Laczniak, R.J.; Warren, R.G.; Green, K.S.; Engle, C.M.

    1997-01-01

    Forty years of geologic investigations at the Nevada Test Site (NTS) have been digitized. These data include all geologic information that: (1) has been collected, and (2) can be represented on a map within the map borders at the map scale is included in the map digital coverages. The following coverages are included with this dataset: Coverage Type Description geolpoly Polygon Geologic outcrops geolflts line Fault traces geolatts Point Bedding attitudes, etc. geolcald line Caldera boundaries geollins line Interpreted lineaments geolmeta line Metamorphic gradients The above coverages are attributed with numeric values and interpreted information. The entity files documented below show the data associated with each coverage.

  14. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  15. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  16. Conversion of Semipalatinsk test site

    International Nuclear Information System (INIS)

    Cherepnin, Yu. S.

    1997-01-01

    The conversion of the former defense enterprises of STS (Semipalatinsk Test Sate) started under very difficult conditions, when not only research and production activity, but all social life of Kurchatov city were conversed which was caused by a fast curtailment and restationing of Russian military units from the test site. A real risk of a complete destruction of the whole research and production structure of the city existed. From this point of view, the decision of the Republic of Kazakhstan Government to create the National Nuclear Center on the base of the test site research enterprises was actual and timely. During 1993, three research institutes of NNC RK - Institute of Atomic Energy, Institute of Geophysics Research and Institute of Radiation Safety and Environment were established. This decision, under conditions of the Ussr disintegration and liquidation of the test site military divisions, allowed to preserve the qualified personnel, to provide and follow-up the operation of nuclear dangerous facilities, to develop and start the realization of the full scale conversion program.At present time, directions and structure of basic research work in NNC RK are as follows: - liquidation of nuclear explosions consequences; - liquidation of technological infrastructure used for preparation and conduction of nuclear weapon testing; - creation of technology, equipment and places for acceptance and storage of radioactive wastes; - working out of atomic energy development conception in Kazakhstan; - study of reactor core melt behavior under severe accidents in NPP; - development of methods and means of nuclear testing detection, continuous monitoring of nuclear explosions; - experimental work on a study of structure materials behavior of ITER thermonuclear reactor; - creation of industries requiring a lage implementation of science

  17. ABSTRACT: CONTAMINANT TRAVEL TIMES FROM THE NEVADA TEST SITE TO YUCCA MOUNTAIN: SENSITIVITY TO POROSITY

    International Nuclear Information System (INIS)

    Karl F. Pohlmann; Jianting Zhu; Jenny B. Chapman; Charles E. Russell; Rosemary W. H. Carroll; David S. Shafer

    2008-01-01

    Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as a geologic repository for spent nuclear fuel and high-level radioactive waste. In this study, we investigate the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to the YM area by estimating the timeframe for advective travel and its uncertainty resulting from porosity value uncertainty for hydrogeologic units (HGUs) in the region. We perform sensitivity analysis to determine the most influential HGUs on advective radionuclide travel times from the NTS to the YM area. Groundwater pathways and advective travel times are obtained using the particle tracking package MODPATH and flow results from the Death Valley Regional Flow System (DVRFS) model by the U.S. Geological Survey. Values and uncertainties of HGU porosities are quantified through evaluation of existing site porosity data and expert professional judgment and are incorporated through Monte Carlo simulations to estimate mean travel times and uncertainties. We base our simulations on two steady state flow scenarios for the purpose of long term prediction and monitoring. The first represents pre-pumping conditions prior to groundwater development in the area in 1912 (the initial stress period of the DVRFS model). The second simulates 1998 pumping (assuming steady state conditions resulting from pumping in the last stress period of the DVRFS model). Considering underground tests in a clustered region around Pahute Mesa on the NTS as initial particle positions, we track these particles forward using MODPATH to identify hydraulically downgradient groundwater discharge zones and to determine which flowpaths will intercept the YM area. Out of the 71 tests in the saturated zone, flowpaths of 23 intercept the YM area under the pre-pumping scenario. For the 1998 pumping scenario, flowpaths from 55 of the 71 tests intercept the YM area. The results illustrate that mean

  18. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    International Nuclear Information System (INIS)

    2010-01-01

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  19. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  20. Underground radionuclide migration at the Nevada Test Site

    International Nuclear Information System (INIS)

    Nimz, G.J.; Thompson, J.L.

    1992-01-01

    This document reviews results from a number of studies concerning underground migration of radionuclides from nuclear test cavities at the Nevada Test Site (NTS). Discussed are all cases known to the Department of Energy's Hydrology and Radionuclide Migration Program where radionuclides have been detected outside of the immediate vicinity of nuclear test cavities that are identifiable as the-source of the nuclides, as well as cases where radionuclides might have been expected and were intentionally sought but not fixed. There are nine locations where source-identifiable radionuclide migration has been detected, one where migration was purposely induced by pumping, and three where migration might be expected but was not found. In five of the nine cases of non-induced migration, the inferred migration mechanism is prompt fracture injection during detonation. In the other four cases, the inferred migration mechanism is water movement. In only a few of the reviewed cases can the actual migration mechanism be stated with confidence, and the attempt has been made to indicate the level of confidence for each case. References are cited where more information may be obtained. As an aid to future study, this document concludes with a brief discussion of the aspects of radionuclide migration that, as the present review indicates, are not yet understood. A course of action is suggested that would produce a better understanding of the phenomenon of radionuclide migration

  1. Coda Spectral Peaking for Nevada Nuclear Test Site Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, K R; Mayeda, K; Walter, W R

    2007-09-10

    We have applied the regional S-wave coda calibration technique of Mayeda et al. (2003) to earthquake data in and around the Nevada Test Site (NTS) using 4 regional broadband stations from the LLNL seismic network. We applied the same path and site corrections to tamped nuclear explosion data and averaged the source spectra over the four stations. Narrowband coda amplitudes from the spectra were then regressed against inferred yield based on the regional m{sub b}(Pn) magnitude of Denny et al. (1987), along with the yield formulation of Vergino and Mensing (1990). We find the following: (1) The coda-derived spectra show a peak which is dependent upon emplacement depth, not event size; (2) Source size estimates are stable for the coda and show a dependence upon the near-source strength and gas porosity; (3) For explosions with the same m{sub b}(Pn) or inferred yield, those in weaker material have lower coda amplitudes at 1-3 Hz.

  2. Closure Report for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This Closure Report (CR) has been prepared for the Area 25 Contaminated Waste Dumps (CWD), Corrective Action Unit (CAU) 143 in accordance with the Federal Facility Agreement and Consent Order [FFACO] (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 143: Area 25, Contaminated Waste Dumps, Nevada Test Site, Nevada. CAU 143 consists of two Corrective Action Sites (CASs): 25-23-09 CWD No.1, and 25-23-03 CWD No.2. The Area 25 CWDs are historic disposal units within the Area 25 Reactor Maintenance, Assembly, and Disassembly (R-MAD), and Engine Maintenance, Assembly, and Disassembly (E-MAD) compounds located on the Nevada Test Site (NTS). The R-MAD and E-MAD facilities originally supported a portion of the Nuclear Rocket Development Station in Area 25 of the NTS. CWD No.1 CAS 25-23-09 received solid radioactive waste from the R-MAD Compound (East Trestle and West Trench Berms) and 25-23-03 CWD No.2 received solid radioactive waste from the E-MAD Compound (E-MAD Trench)

  3. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2002-01-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions identified in

  4. Buffer mass test - Site documentation

    International Nuclear Information System (INIS)

    Pusch, R.

    1983-10-01

    The purpose of this report is to compile test site data that are assumed to be of importance for the interpretation of the Buffer Mass Test. Since this test mainly concerns water uptake and migration processes in the integrated rock/backfill system and the development of temperature fields in this system, the work has been focused on the constitution and hydrology of the rock. The major constitutional rock feature of interest for the BMT is the frequency and distribution of joints and fractures. The development of models for water uptake into the highly compacted bentonite in the heater holes requires a very detailed fracture survey. The present investigation shows that two of the holes (no. 1 and 2) are located in richly fractured rock, while the others are located in fracture-poor to moderately fractured rock. The hydrological conditions of the rock in the BMT area are characterized by water pressures of as much as 100 m water head at a few meters distance from the test site. The average hydraulic conductivity of the rock that confines the BMT tunnel has been estimated at about 10 -10 m/s by Lawrence Laboratory. The actual distribution of the water that enters the tunnel has been estimated by observing the successive moistening after having switched off the ventilation, and this has offered basis of predicting the rate and uniformity of the water uptake in the tunnel backfill. As to the heater holes the detailed fracture patterns and various inflow measurements have yielded a similar basis. The report also gives major data on the rock temperature, gas conditions, mineralogy, rock mechanics, and groundwater chemistry for BMT purposes. (author)

  5. Final environmental impact statement for the Nevada test site and off-site locations in the State of Nevada. Public comment and response document, Volume 3, Part B responses

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  6. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-08-05

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  7. Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site

    International Nuclear Information System (INIS)

    Drellack, S.L. Jr.; Prothro, L.B.; Roberson, K.E.

    1997-09-01

    The Nevada Test Site (NTS), located in Nye County, southern Nevada, was the location of 828 announced underground nuclear tests, conducted between 1951 and 1992. Approximately one-third of these tests were detonated near or below the water table. An unavoidable consequence of these testing activities was introducing radionuclides into the subsurface environment, impacting groundwater. Groundwater flows beneath the NTS almost exclusively through interconnected natural fractures in carbonate and volcanic rocks. Information about these fractures is necessary to determine hydrologic parameters for future Corrective Action Unit (CAU)-specific flow and transport models which will be used to support risk assessment calculations for the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Underground Test Area (UGTA) remedial investigation. Fracture data are critical in reducing the uncertainty of the predictive capabilities of CAU-specific models because of their usefulness in generating hydraulic conductivity values and dispersion characteristics used in transport modeling. Specifically, fracture aperture and density (spacing) are needed to calculate the permeability anisotropy of the formations. Fracture mineralogy information is used qualitatively to evaluate diffusion and radionuclide retardation potential in transport modeling. All these data can best be collected through examination of core samples

  8. Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Drellack, S.L. Jr.; Prothro, L.B.; Roberson, K.E. [and others

    1997-09-01

    The Nevada Test Site (NTS), located in Nye County, southern Nevada, was the location of 828 announced underground nuclear tests, conducted between 1951 and 1992. Approximately one-third of these tests were detonated near or below the water table. An unavoidable consequence of these testing activities was introducing radionuclides into the subsurface environment, impacting groundwater. Groundwater flows beneath the NTS almost exclusively through interconnected natural fractures in carbonate and volcanic rocks. Information about these fractures is necessary to determine hydrologic parameters for future Corrective Action Unit (CAU)-specific flow and transport models which will be used to support risk assessment calculations for the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Underground Test Area (UGTA) remedial investigation. Fracture data are critical in reducing the uncertainty of the predictive capabilities of CAU-specific models because of their usefulness in generating hydraulic conductivity values and dispersion characteristics used in transport modeling. Specifically, fracture aperture and density (spacing) are needed to calculate the permeability anisotropy of the formations. Fracture mineralogy information is used qualitatively to evaluate diffusion and radionuclide retardation potential in transport modeling. All these data can best be collected through examination of core samples.

  9. Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-03-01

    This paper presents an overview of the strategy for closure of part of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada (Figure 1). The Area 5 RWMS is in the northern part of Frenchman Flat, approximately 14 miles north of Mercury. The Area 5 RWMS encompasses 732 acres subdivided into quadrants, and is bounded by a 1,000-foot (ft)-wide buffer zone. The northwest and southwest quadrants have not been developed. The northeast and southeast quadrants have been used for disposal of unclassified low-level radioactive waste (LLW) and indefinite storage of classified materials. This paper focuses on closure of the 38 waste disposal and classified material storage units within the southeast quadrant of the Area 5 RWMS, called the ''92-Acre Area''. The U.S Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently planning to close the 92-Acre Area by 2011. Closure planning for this site must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. For ease of discussion, the 92-Acre Area has been subdivided into six closure units defined by waste type, location, and similarity in regulatory requirements. Each of the closure units contains one or more waste disposal units; waste disposal units are also called waste disposal cells. The paper provides a brief background of the Area 5 RWMS, identifies key closure issues for the 92-Acre Area, recommends actions to address the issues, and provides the National Security Technologies, LLC (NSTec), schedule for closure.

  10. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs

  11. Recent drilling program to investigate radionuclide migration at the Nevada Test Site

    International Nuclear Information System (INIS)

    Smith, D.K.

    1997-01-01

    Recent drilling affords new opportunities to investigate the occurrence, distribution and transport of radionuclides in the unsaturated and saturated zone at the Nevada Test Site (NTS), Nye County, Nevada. This program is unique becmise of the elevated activities of radionuclides encountered during drilling (> 3.7E+6 Bq/L 3H), extreme completion depths (> 950 m), the expense of constructing new wells (> $IE+6/borehole), and collaboration of government, academic, and industrial partners in the planning and execution of the program. The recent chilling is significant because it substantively augments earlier field of radionuclide migration at NTS, most notably the 1974 CAMBRIC RNM experiment Sites of five nuclear tests fired below or adjacent to the saturated zone have been drilled. Three of the events were fired in Yucca Flat which is a hydrologically closed basin and two were fired in fractured volcanics of Pahute Mesa. Results from Yucca Flat indicate that volatile and refractory radionuclides, fractionated at zero time, we not highly mobile under sawmted conditions. In contrast, borcholes completed on Pahute Mesa indicate Wgh concentrations of tritium (> 3.7E+6 Bq/L 3H) and other radionuclides may be rted more than 300 m from event cavities as dissolved species or as colloids

  12. A reconnaissance assessment of probabilistic earthquake accelerations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Perkins, D.M.; Thenhaus, P.C.; Hanson, S.L.; Algermissen, S.T.

    1986-01-01

    We have made two interim assessments of the probabilistic ground-motion hazard for the potential nuclear-waste disposal facility at the Nevada Test Site (NTS). The first assessment used historical seismicity and generalized source zones and source faults in the immediate vicinity of the facility. This model produced relatively high probabilistic ground motions, comparable to the higher of two earlier estimates, which was obtained by averaging seismicity in a 400-km-radius circle around the site. The high ground-motion values appear to be caused in part by nuclear-explosion aftershocks remaining in the catalog even after the explosions themselves have been removed. The second assessment used particularized source zones and source faults in a region substantially larger than NTS to provide a broad context of probabilistic ground motion estimates at other locations of the study region. Source faults are mapped or inferred faults having lengths of 5 km or more. Source zones are defined by boundaries separating fault groups on the basis of direction and density. For this assessment, earthquake recurrence has been estimated primarily from historic seismicity prior to nuclear testing. Long-term recurrence for large-magnitude events is constrained by geological estimates of recurrence in a regime in which the large-magnitude earthquakes would occur with predominately normal mechanisms. 4 refs., 10 figs

  13. Final Environmental Assessment for solid waste disposal, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1995-08-01

    New solid waste regulations require that the existing Nevada Test Site (NTS) municipal landfills, which receive less than 20 tons of waste per day, be permitted or closed by October 9, 1995. In order to be permitted, the existing landfills must meet specific location, groundwater monitoring, design, operation, and closure requirements. The issuance of these regulations has resulted in the need of the Department of Energy (DOE) to provide a practical, cost-effective, environmentally sound means of solid waste disposal at the NTS that is in compliance with all applicable federal, state, and local regulations. The current landfills in Areas 9 and 23 on the Nevada Test Site do not meet design requirements specified in new state and federal regulations. The DOE Nevada Operations Office prepared an environmental assessment (EA) to evaluate the potential impacts of the proposal to modify the Area 23 landfill to comply with the new regulations and to close the Area 9 landfill and reopen it as Construction and Demolition debris landfill. Based on information and analyses presented in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act. Therefore, an environmental impact statement (EIS) is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  14. Recent drilling program to investigate radionuclide migration at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.K.

    1997-04-01

    Recent drilling affords new opportunities to investigate the occurrence, distribution and transport of radionuclides in the unsaturated and saturated zone at the Nevada Test Site (NTS), Nye County, Nevada. This program is unique becmise of the elevated activities of radionuclides encountered during drilling (> 3.7E+6 Bq/L 3H), extreme completion depths (> 950 m), the expense of constructing new wells (> $IE+6/borehole), and collaboration of government, academic, and industrial partners in the planning and execution of the program. The recent chilling is significant because it substantively augments earlier field of radionuclide migration at NTS, most notably the 1974 CAMBRIC RNM experiment Sites of five nuclear tests fired below or adjacent to the saturated zone have been drilled. Three of the events were fired in Yucca Flat which is a hydrologically closed basin and two were fired in fractured volcanics of Pahute Mesa. Results from Yucca Flat indicate that volatile and refractory radionuclides, fractionated at zero time, we not highly mobile under sawmted conditions. In contrast, borcholes completed on Pahute Mesa indicate Wgh concentrations of tritium (> 3.7E+6 Bq/L 3H) and other radionuclides may be rted more than 300 m from event cavities as dissolved species or as colloids.

  15. Exploitation of the IMS and Other Data for a Comprehensive, Advanced Analysis of the North Korean Nuclear Tests

    Science.gov (United States)

    2010-09-01

    frequency- dependent attenuation models appropriate to the Semipalatinsk Test Site (Semi) and the Nevada Test Site (NTS). Figure 6 shows that the yield...models, assuming a depth of 200m and attenuation models for the Semipalatinsk and NTS test sites . The Semipalatinsk model is much more consistent...of the foreign events were at the Soviet Semipalatinsk test site , and many of those events show evidence of compressive tectonic strain release

  16. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the U.S. Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts supported through the U.S. Department of Energy program will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Test-generated contaminants have been introduced over large areas and at variable depths above and below the water table throughout NTS. Evaluating the risks associated with these byproducts of underground testing presupposes a knowledge of the source, transport, and potential receptors of these contaminants. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. Any assessment of the risk must rely in part on the current understanding of ground-water flow, and the assessment will be only as good as the understanding

  17. Atomic test site (south Australia)

    International Nuclear Information System (INIS)

    Godman, N.A.; Cousins, Jim; Hamilton, Archie.

    1993-01-01

    The debate, which lasted about half an hour, is reported verbatin. It was prompted by the campaign by the Maralinga people of South Australia to have their traditional lands restored to them. Between 1953 and 1957 the United Kingdom government carried out of atomic tests and several hundred minor trials on the lands. A clean-up programme had taken place in 1967 but further decontamination was needed before the area is safe for traditional aboriginal life and culture. A small area will remain contaminated with plutonium for thousands of years. The cost and who would pay, the Australian or UK government was being negotiated. The UK government's position was that the site is remote, the health risk is slight and the clean-up operation of 1967 was acknowledged as satisfactory by the Australian government. (UK)

  18. Variations in radon-222 in soil and ground water at the Nevada Test Site

    International Nuclear Information System (INIS)

    Wollenberg, H.; Straume, T.; Smith, A.; King, C.Y.

    1977-01-01

    To help evaluate the applicability of variations of radon-222 in ground water and soil gas as a possible earthquake predictor, measurements were conducted in conjunction with underground explosions at the Nevada Test Site (NTS). Radon fluctuations in ground water have been observed during a sequence of aftershocks following the Oroville, California earthquake of 1 August 1975. The NTS measurements were designed to show if these fluctuations were in response to ground shaking; if not, they could be attributed to changes in earth strain prior to the aftershocks. Well waters were periodically sampled and soil-gas 222 Rn monitored prior to and following seven underground explosions of varying strength and distance from sampling and detector locations. Soil-gas 222 Rn contents were measured by the alpha-track method; well water 222 Rn by gamma-ray spectrometry. There was no clearly identifiable correlation between well-water radon fluctuations and individual underground tests. One prominent variation in soil-gas radon corresponded to ground shaking from a pair of underground tests in alluvium; otherwise, there was no apparent correlation between radon emanation and other explosions. Markedly lower soil-gas radon contents following the tests were probably caused by consolidation of alluvium in response to ground shaking

  19. Population distribution around the Nevada Test Site, 1984

    International Nuclear Information System (INIS)

    Smith, D.D.; Coogan, J.S.

    1984-08-01

    The Environmental Monitoring Systems Laboratory (EMSL-LV) conducts an offsite radiological safety program outside the boundaries of the Nevada Test Site. As part of this program, the EMSL-LV maintains a comprehensive and current listing of all rural offsite residents and dairy animals within the controllable sectors (areas where the EMSL-LV could implement protective or remedial actions that would assure public safety). This report was produced to give a brief overview of the population distribution and information on the activities within the controllable sectors. Obviously the numbers of people in a sector change dependent upon the season of the year, and such diverse information as the price of minerals which relates to the opening and closing of mining operations. Currently, the controllable sectors out to 200 kilometers from the Control Point on the NTS are considered to be the entire northeast, north-northeast, north, north-northwest, west-northwest sectors and portions of the east and east-northeast sectors. The west-southwest and south-southwest sections are considered controllable out to 40 to 80 kilometers. No major population centers or dairy farms lie within these sectors. 7 references, 5 figures, 2 tables

  20. Off-site environmental monitoring report: Radiation monitoring around United States Nuclear Test areas, Calendar year 1986

    International Nuclear Information System (INIS)

    Patzer, R.G.; Fontana, C.A.; Grossman, R.F.; Black, S.C.; Dye, R.E.; Smith, D.D.; Thome', D.J.; Mullen, A.A.

    1987-05-01

    The principal activity at the NTS is testing of nuclear devices, though other related projects are also conducted. The principal activities of the Off-Site Radiological Safety Program are routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests; and protective actions in support of the nuclear testing program. These are conducted to document compliance with standards, to identify trends, and to provide information to the public. 28 refs., 37 figs., 30 tabs

  1. Meteorological modeling of arrival and deposition of fallout at intermediate distances downwind of the Nevada Test Site

    International Nuclear Information System (INIS)

    Cederwall, R.T.; Peterson, K.R.

    1990-01-01

    A three-dimensional atmospheric transport and diffusion model is used to calculate the arrival and deposition of fallout from 13 selected nuclear tests at the Nevada Test Site (NTS) in the 1950s. Results are used to extend NTS fallout patterns to intermediate downwind distances (300 to 1200 km). The radioactive cloud is represented in the model by a population of Lagrangian marker particles, with concentrations calculated on an Eulerian grid. Use of marker particles, with fall velocities dependent on particle size, provides a realistic simulation of fallout as the debris cloud travels downwind. The three-dimensional wind field is derived from observed data, adjusted for mass consistency. Terrain is represented in the grid, which extends up to 1200 km downwind of NTS and has 32-km horizontal resolution and 1-km vertical resolution. Ground deposition is calculated by a deposition-velocity approach. Source terms and relationships between deposition and exposure rate are based on work by Hicks. Uncertainty in particle size and vertical distributions within the debris cloud (and stem) allow for some model tuning to better match measured ground-deposition values. Particle trajectories representing different sizes and starting heights above ground zero are used to guide source specification. An hourly time history of the modeled fallout pattern as the debris cloud moves downwind provides estimates of fallout arrival times. Results for event HARRY illustrate the methodology. The composite deposition pattern for all 13 tests is characterized by two lobes extending out to the north-northeast and east-northeast, respectively, at intermediate distances from NTS. Arrival estimates, along with modeled deposition values, augment measured deposition data in the development of data bases at the county level

  2. Characterization report for Area 23, Building 650 Leachfield, Corrective Action Unit Number 94, Nevada Test Site. Revision 1

    International Nuclear Information System (INIS)

    1998-01-01

    Corrective Action Unit (CAU) Number 94, Building 650 Leachfield, is an historic laboratory disposal unit located in Area 23 at the Nevada Test Site (NTS) in Nye County, Nevada. The objectives of this project were twofold: characterize subsurface conditions at the CAU with respect to the on-site disposal unit, and provide sufficient information to develop a closure strategy for the leachfield. To this end, subsurface sampling was conducted in the vicinity of the piping above the distribution box, under and around the distribution box, and within the leachfield

  3. Characterization report for Area 23, Building 650 Leachfield, Corrective Action Unit Number 94, Nevada Test Site. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-27

    Corrective Action Unit (CAU) Number 94, Building 650 Leachfield, is an historic laboratory disposal unit located in Area 23 at the Nevada Test Site (NTS) in Nye County, Nevada. The objectives of this project were twofold: characterize subsurface conditions at the CAU with respect to the on-site disposal unit, and provide sufficient information to develop a closure strategy for the leachfield. To this end, subsurface sampling was conducted in the vicinity of the piping above the distribution box, under and around the distribution box, and within the leachfield.

  4. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  5. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  6. Uncertainty and Sensitivity of Contaminant Travel Times from the Upgradient Nevada Test Site to the Yucca Mountain Area

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhu; K. Pohlmann; J. Chapman; C. Russell; R.W.H. Carroll; D. Shafer

    2009-09-10

    Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as the nation’s first permanent geologic repository for spent nuclear fuel and highlevel radioactive waste. In this study, the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to intercept the subsurface of the proposed land withdrawal area for the repository is investigated. The timeframe for advective travel and its uncertainty for possible radionuclide movement along these flow pathways is estimated as a result of effective-porosity value uncertainty for the hydrogeologic units (HGUs) along the flow paths. Furthermore, sensitivity analysis is conducted to determine the most influential HGUs on the advective radionuclide travel times from the NTS to the YM area. Groundwater pathways are obtained using the particle tracking package MODPATH and flow results from the Death Valley regional groundwater flow system (DVRFS) model developed by the U.S. Geological Survey (USGS). Effectiveporosity values for HGUs along these pathways are one of several parameters that determine possible radionuclide travel times between the NTS and proposed YM withdrawal areas. Values and uncertainties of HGU porosities are quantified through evaluation of existing site effective-porosity data and expert professional judgment and are incorporated in the model through Monte Carlo simulations to estimate mean travel times and uncertainties. The simulations are based on two steady-state flow scenarios, the pre-pumping (the initial stress period of the DVRFS model), and the 1998 pumping (assuming steady-state conditions resulting from pumping in the last stress period of the DVRFS model) scenarios for the purpose of long-term prediction and monitoring. The pumping scenario accounts for groundwater withdrawal activities in the Amargosa Desert and other areas downgradient of YM. Considering each detonation in a clustered region around Pahute Mesa (in

  7. Uncertainty and Sensitivity of Contaminant Travel Times from the Upgradient Nevada Test Site to the Yucca Mountain Area

    International Nuclear Information System (INIS)

    Zhu, J.; Pohlmann, K.; Chapman, J.; Russell, C.; Carroll, R.W.H.; Shafer, D.

    2009-01-01

    Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as the nation's first permanent geologic repository for spent nuclear fuel and high-level radioactive waste. In this study, the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to intercept the subsurface of the proposed land withdrawal area for the repository is investigated. The timeframe for advective travel and its uncertainty for possible radionuclide movement along these flow pathways is estimated as a result of effective-porosity value uncertainty for the hydrogeologic units (HGUs) along the flow paths. Furthermore, sensitivity analysis is conducted to determine the most influential HGUs on the advective radionuclide travel times from the NTS to the YM area. Groundwater pathways are obtained using the particle tracking package MODPATH and flow results from the Death Valley regional groundwater flow system (DVRFS) model developed by the U.S. Geological Survey (USGS). Effective porosity values for HGUs along these pathways are one of several parameters that determine possible radionuclide travel times between the NTS and proposed YM withdrawal areas. Values and uncertainties of HGU porosities are quantified through evaluation of existing site effective-porosity data and expert professional judgment and are incorporated in the model through Monte Carlo simulations to estimate mean travel times and uncertainties. The simulations are based on two steady-state flow scenarios, the pre-pumping (the initial stress period of the DVRFS model), and the 1998 pumping (assuming steady-state conditions resulting from pumping in the last stress period of the DVRFS model) scenarios for the purpose of long-term prediction and monitoring. The pumping scenario accounts for groundwater withdrawal activities in the Amargosa Desert and other areas downgradient of YM. Considering each detonation in a clustered region around Pahute Mesa (in

  8. Streamlined approach for environmental restoration closure report for Corrective Action Unit No. 456: Underground storage tank release site 23-111-1, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    The underground storage tank (UST) release site 23-111-1 is located in Mercury, Nevada. The site is in Area 23 of the Nevada Test Site, (NTS) located on the north side of Building 111. The tank associated with the release was closed in place using cement grout on September 6, 1990. The tank was not closed by removal due to numerous active underground utilities, a high-voltage transformer pad, and overhead power lines. Soil samples collected below the tank bottom at the time of tank closure activities exceeded the Nevada Administrative Code Action Level of 100 milligrams per kilogram (mg/kg) for petroleum hydrocarbons. Maximum concentrations detected were 119 mg/kg. Two passive venting wells were subsequently installed at the tank ends to monitor the progress of biodegradation at the site. Quarterly air sampling from the wells was completed for approximately one year, but was discontinued since data indicated that considerable biodegradation was not occurring at the site

  9. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site

  10. Characteristics of special-case wastes potentially destined for disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.L.; Duran, F.A.

    1994-09-01

    The U.S. Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. It may be possible to dispose of some of the DOE's special-case waste using greater confinement disposal techniques at the Nevada Test Site (NTS). The DOE asked Sandia National Laboratories to investigate this possibility by performing system configuration analyses. The first step in performing system configuration analyses is to estimate the characteristics of special-case waste that might be destined for disposal at the NTS. The objective of this report is to characterize this special-case waste based upon information available in the literature. No waste was sampled and analyzed specifically for this report. The waste compositions given are not highly detailed, consisting of grains and curies of specific radionuclides per cubic meter. However, such vague waste characterization is adequate for the purposes of the system configuration task. In some previous work done on this subject, Kudera et al. [1990] identified nine categories of special-case radioactive waste and estimated volumes and activities for these categories. It would have been difficult to develop waste compositions based on the categories proposed by Kudera et al. [1990], so we created five groups of waste on which to base the waste compositions. These groups are (1) transuranic waste, (2) fission product waste, (3) activation product waste, (4) mobile/volatile waste, and (5) sealed sources. The radionuclides within a given group share common characteristics (e.g., alpha-emitters, heat generators), and we believe that these groups adequately represent the DOE's special-case waste potentially destined for greater confinement disposal at the NTS

  11. Three-dimensional crust and upper mantle structure at the Nevada test site

    International Nuclear Information System (INIS)

    Taylor, S.R.

    1983-01-01

    The three-dimensional crust and upper mantle structure at the Nevada Test Site (NTS) is derived by combining teleseismic P wave travel time residuals with Pn source time terms. The NTS time terms and relative teleseismic residuals are calculated by treating the explosions as a network of 'receivers' which record 'shots' located at the surrounding stations. Utilization of the Pn time terms allows for better crustal resolution than is possible from teleseismic information alone. Average relative teleseismic P wave residuals show a consistent progression of positive (late arrivals) to negative residuals from east to west across the NTS. However, Pn time terms beneath Rainier Mesa are at least 0.3 and 0.5 s less than those beneath Pahute Mesa and Yucca Flat, respectively, indicating the presence of high-velocity crustal material or crustal thinning beneath Rainier Mesa. The time terms at Pahute Mesa are surprisingly uniform, and the largest time terms and residuals are observed in the northwest and southern parts of Yucca Flat. The Pn time terms show a slight correlation with the working-point velocity at the shot point for Pahute Mesa and Yucca Flat, indicating that part of the observed lateral variations are caused by shallow effects of the upper crust. Three-dimensional inversion of the travel time residuals suggests that Yucca Flat is characterized by low-velocity anomalies confined to the upper crust, Rainer Mesa by very high velocities in the upper and middle crust, and Pahute Mesa by a high-velocity anomaly extending through the crust and into the upper mantle. Relatively low velocities are observed in the lower crust beneath the Timber Mountain caldera south of Pahute Mesa with no expression in the upper mantle. These observed differences in velocity beneath the Tertiary Silent Canyon and Timber Mountain calderas may be related to their magma volume and mode of enrichment from a mantle-derived magma source

  12. Digital Geologic Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Slate, Janet L.; Berry, Margaret E.; Rowley, Peter D.; Fridrich, Christopher J.; Morgan, Karen S.; Workman, Jeremiah B.; Young, Owen D.; Dixon, Gary L.; Williams, Van S.; McKee, Edwin H.; Ponce, David A.; Hildenbrand, Thomas G.; Swadley, W.C.; Lundstrom, Scott C.; Ekren, E. Bartlett; Warren, Richard G.; Cole, James C.; Fleck, Robert J.; Lanphere, Marvin A.; Sawyer, David A.; Minor, Scott A.; Grunwald, Daniel J.; Laczniak, Randell J.; Menges, Christopher M.; Yount, James C.; Jayko, Angela S.

    1999-01-01

    This digital geologic map of the Nevada Test Site (NTS) and vicinity, as well as its accompanying digital geophysical maps, are compiled at 1:100,000 scale. The map compilation presents new polygon (geologic map unit contacts), line (fault, fold axis, metamorphic isograd, dike, and caldera wall) and point (structural attitude) vector data for the NTS and vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California. The map area covers two 30 x 60-minute quadrangles-the Pahute Mesa quadrangle to the north and the Beatty quadrangle to the south-plus a strip of 7.5-minute quadrangles on the east side-72 quadrangles in all. In addition to the NTS, the map area includes the rest of the southwest Nevada volcanic field, part of the Walker Lane, most of the Amargosa Desert, part of the Funeral and Grapevine Mountains, some of Death Valley, and the northern Spring Mountains. This geologic map improves on previous geologic mapping of the same area (Wahl and others, 1997) by providing new and updated Quaternary and bedrock geology, new geophysical interpretations of faults beneath the basins, and improved GIS coverages. Concurrent publications to this one include a new isostatic gravity map (Ponce and others, 1999) and a new aeromagnetic map (Ponce, 1999).

  13. Corrective action plan for corrective action Unit 342: Area 23 Mercury Fire Training Pit, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Nacht, S.

    1999-01-01

    The Mercury Fire Training Pit is a former fire training area located in Area 23 of the Nevada Test Site (NTS). The Mercury Fire Training Pit was used from approximately 1965 to the early 1990s to train fire-fighting personnel at the NTS, and encompasses an area approximately 107 meters (m) (350 feet [ft]) by 137 m (450 ft). The Mercury Fire Training Pit formerly included a bermed burn pit with four small burn tanks, four large above ground storage tanks an overturned bus, a telephone pole storage area, and areas for burning sheds, pallets, and cables. Closure activities will include excavation of the impacted soil in the aboveground storage tank and burn pit areas to a depth of 1.5 m (5 ft), and excavation of the impacted surface soil downgradient of the former ASTs and burnpit areas to a depth of 0.3 m (1 ft). Excavated soil will be disposed in the Area 6 Hydrocarbon Landfill at the NTS

  14. Annotated bibliography of literature relating to wind transport of plutonium-contaminated soils at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lancaster, N.; Bamford, R.

    1993-12-01

    During the period from 1954 through 1963, a number of tests were conducted on the Nevada Test Site (NTS) and Tonopah Test Range (TTR) to determine the safety of nuclear devices with respect to storage, handling, transport, and accidents. These tests were referred to as ''safety shots.'' ''Safety'' in this context meant ''safety against fission reaction.'' The safety tests were comprised of chemical high explosive detonations with components of nuclear devices. The conduct of these tests resulted in the dispersion of plutonium, and some americium over areas ranging from several tens to several hundreds of hectares. Of the various locations used for safety tests, the site referred to as ''Plutonium Valley'' was subject to a significant amount of plutonium contamination. Plutonium Valley is located in Area 11 on the eastern boundary of the NTS at an elevation of about 1036 m (3400 ft). Plutonium Valley was the location of four safety tests (A,B,C, and D) conducted during 1956. A major environmental, health, and safety concern is the potential for inhalation of Pu 239,240 by humans as a result of airborne dust containing Pu particles. Thus, the wind transport of Pu 239,240 particles has been the subject of considerable research. This annotated bibliography was created as a reference guide to assist in the better understanding of the environmental characteristics of Plutonium Valley, the safety tests performed there, the processes and variables involved with the wind transport of dust, and as an overview of proposed clean-up procedures

  15. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  16. A Cold War Battlefield: Frenchman Flat Historic District, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William Gray [DRI; Holz, Barbara A [DRI; Jones, Robert [DRI

    2000-08-01

    This report provides the U.S. Department of Energy, Nevada Operations Office with the documentation necessary to establish the Frenchman Flat Historic District on the Nevada Test Site (NTS). It includes a list of historic properties that contribute to the eligibility of the district for inclusion in the National Register of Historic Places (NRHP) and provides contextual information establishing its significance. The list focuses on buildings, structures and features associated with the period of atmospheric testing of nuclear weapons on the NTS between 1951 and 1962. A total of 157 locations of buildings and structures were recorded of which 115 are considered to be eligible for the NRHP. Of these, 28 have one or more associated features which include instrumentation supports, foundations, etc. The large majority of contributing structures are buildings built to study the blast effects of nuclear weaponry. This has resulted in a peculiar accumulation of deteriorated structures that, unlike most historic districts, is best represented by those that are the most damaged. Limitations by radiological control areas, surface exposure and a focus on the concentration of accessible properties on the dry lake bed indicate additional properties exist which could be added to the district on a case-by-case basis.

  17. Annotated bibliography: overview of energy and mineral resources for the Nevada nuclear-waste-storage investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Bell, E.J.; Larson, L.T.

    1982-09-01

    This Annotated Bibliography was prepared for the US Department of Energy as part of the Environmental Area Characterization for the Nevada Nuclear Waste Storage Investigations (NNWSI) at the Nevada Test Site (NTS). References were selected to specifically address energy resources including hydrocarbons, geothermal and radioactive fuel materials, mineral resources including base and precious metals and associated minerals, and industrial minerals and rock materials which occur in the vicinity of the NNWSI area

  18. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    International Nuclear Information System (INIS)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from seven holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain

  19. Laboratory and Field Studies Related to Radionuclide Migration at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    B. A. Martinez; D. L. Finnegan; Joseph L. Thompson; K. S. Kung

    1999-03-01

    In this report, we describe the work done in FY 1998 at Los Alamos National Laboratory as part of the Hydrologic Resources Management Program (HRMA) funded by the Nevada Operations Office of the US Department of Energy (DOE/NV). The major part of our research effort was to measure radionuclides present in water or soil samples collected from near nuclear tests. We report our measurements for materials collected in both saturated and unsaturated horizons adjacent to nuclear test cavities or collapse chimneys and from within several cavities. Soil samples collected from above the cavities formed by the Halfbeak, Jerboa, and Bobac tests contained no radioactivity, although a test similar to Bobac in the same area had been contaminated with {sup 137}Cs. Water samples from near the Shoal test contained no measurable radionuclides, whereas those from near Faultless and Aleman had concentrations similar to previous measurements. Water from the Tybo-Benham site was similar to earlier collections at that site; this year, we added {sup 241}Am to the list of radionuclides measured at this location. Two Bennett pumps in tandem were used to extract water from the piezometer tube in the cavity of the Dalhart event. This extraction is a significant achievement in that it opens the possibility of purging similar tubes at other locations on the NTS. The Cheshire post shot hole was reconfigured and pumped from two horizons for the first time since mid-1980. We are especially interested in examining water from the level of the working point to determine the hydrologic source term in a cavity filled with groundwater for over 20 years. We devoted much time this year to examining the colloid content of NTS groundwater. After developing protocols for collecting, handling, and storing groundwater samples without altering their colloid content, we analyzed water from the Tybo-Benham and from the Cheshire sites. Whereas the colloid concentration did not vary much with depth at Tybo

  20. Ship Systems Survivability Test Site

    Data.gov (United States)

    Federal Laboratory Consortium — Area for testing survivability of shipboard systems to include electrical, communications, and fire suppression. Multipurpose test range for supporting gun firing,...

  1. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report.

  2. US Department of Energy Environment, Safety and Health Progress Assessment of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    This report documents the result of the US Department of Energy (DOE) Environment, Safety, and Health (ES&H) Progress Assessment of the Nevada Test Site (NTS), Nye County, Nevada. The assessment, which was conducted from July 20 through August 4, 1992, included a selective review of the ES&H management systems and progress of the responsible DOE Headquarters Program Offices; the DOE Nevada Field Office (NV); and the site contractors. The ES&H Progress Assessments are part of the Secretary of Energy`s continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. This report presents a summary of issues and progress in the areas of environment, safety and health, and management.

  3. US Department of Energy Environment, Safety and Health Progress Assessment of the Nevada Test Site

    International Nuclear Information System (INIS)

    1992-08-01

    This report documents the result of the US Department of Energy (DOE) Environment, Safety, and Health (ES ampersand H) Progress Assessment of the Nevada Test Site (NTS), Nye County, Nevada. The assessment, which was conducted from July 20 through August 4, 1992, included a selective review of the ES ampersand H management systems and progress of the responsible DOE Headquarters Program Offices; the DOE Nevada Field Office (NV); and the site contractors. The ES ampersand H Progress Assessments are part of the Secretary of Energy's continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. This report presents a summary of issues and progress in the areas of environment, safety and health, and management

  4. Method for screening the Nevada Test Site and contiguous areas for nuclear waste repository locations

    International Nuclear Information System (INIS)

    Sinnock, S.; Fernandez, J.A.; Neal, J.T.; Stephens, H.P.; Hartway, B.L.; Los Alamos Technical Associates, Inc., NM)

    1982-01-01

    This paper outlines the general concepts of a technical method for systematic screening of the Nevada Test Site (NTS), Nye County, Nevada, for potentially suitable nuclear waste repository locations. After a general discussion of the organization and the purpose of the current screening activity, the paper addresses the steps of the screening method. These steps include: hierarchically organizing technical objectives for repository performance (an objectives tree); identifying and mapping pertinent physical characteristics of a site and its setting (physical attributes); relating the physical conditions to the objectives (favorability curves); identifying alternative locations and numerically evaluating their relative merits; investigating the effects of subjective judgments on the evaluations (sensitivity analyses); documenting the assumptions, logic, and results of the method. 19 references, 10 figures

  5. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI

  6. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

  7. Facility Closure Report for T-Tunnel (U12T), Area 12, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD

  8. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site

    International Nuclear Information System (INIS)

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report

  9. Streamlined approach for environmental restoration closure report for Corrective Action Unit 120: Areas 5 and 6 aboveground storage tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit (CAU) 120 of the Federal Facilities Agreement and Consent Order (FFACO). CAU 120 consists of two Corrective Action Sites (CASs) located in Areas 5 and 6 of the Nevada Test Site (NTS), which are approximately 130 kilometers (80 miles) northwest of Las Vegas, Nevada. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter (12,100-gallon) aboveground storage tanks (ASTs), piping, and debris associated with Well RNM-1. CAS 06-01-01 consists of two ASTs and two tanker trailers (all portable) that were originally located at the Area 6 Cp-50 Hot Park and which had been moved to the Area 6 Waste Handling Facility. All of the items in CAU 120 have been used to contain or convey radiologically contaminated fluid that was generated during post-nuclear event activities at the NTS.

  10. Streamlined approach for environmental restoration closure report for Corrective Action Unit 120: Areas 5 and 6 aboveground storage tanks Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit (CAU) 120 of the Federal Facilities Agreement and Consent Order (FFACO). CAU 120 consists of two Corrective Action Sites (CASs) located in Areas 5 and 6 of the Nevada Test Site (NTS), which are approximately 130 kilometers (80 miles) northwest of Las Vegas, Nevada. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter (12,100-gallon) aboveground storage tanks (ASTs), piping, and debris associated with Well RNM-1. CAS 06-01-01 consists of two ASTs and two tanker trailers (all portable) that were originally located at the Area 6 Cp-50 Hot Park and which had been moved to the Area 6 Waste Handling Facility. All of the items in CAU 120 have been used to contain or convey radiologically contaminated fluid that was generated during post-nuclear event activities at the NTS

  11. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  12. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  13. Individual external exposures from Nevada Test Site fallout for Utah leukemia cases and controls

    International Nuclear Information System (INIS)

    Lloyd, R.D.; Gren, D.C.; Simon, S.L.; Wrenn, M.E.; Hawthorne, H.A.; Lotz, T.M.; Stevens, W.; Till, J.E.

    1990-01-01

    External gamma-ray exposures from fallout originating at the Nevada Test Site (NTS) have been assigned to 6,507 individual subjects (1,177 leukemia cases and 5,330 control subjects) who died as Utah residents between 1952 and 1981. Leukemia cases were identified, confirmed, and classified by cell type from the Utah Cancer Registry, Utah State vital records, and medical records. Residential histories were obtained from the Deceased Membership File (DMF) of the Church of Jesus Christ of Latter-day Saints (LDS), supplemented by information from the LDS Church Census Records that were taken in 1950, 1955, and 1960-62. Control subjects were selected randomly within age strata from the DMF and were frequency-matched to the cases by age at death and for sex. Individual radiation exposures were assigned as a function of residence location and time interval for each residence during the fallout period (1951-1958) using geographic exposure data taken from the literature. Temporal distribution of exposure for subjects who resided in more than one locality or who were born or died during the fallout period was determined from data of other investigators. Calculated gamma-ray exposures for each place of residence were summed for each subject to yield the exposure to fallout from the NTS

  14. Cancer incidence in an area of radioactive fallout downwind from the Nevada Test Site.

    Science.gov (United States)

    Johnson, C J

    1984-01-13

    Exposures in southwestern Utah to radioactive fallout (1951 through 1962) from atmospheric nuclear detonations at the Nevada Test Site (NTS) were followed by smaller exposures (1962 through 1979) from venting of underground nuclear detonations. The cancer incidence in a 1951 cohort (4, 125) of Mormon families in southwestern Utah near the NTS was compared with that of all Utah Mormons (1967 through 1975). There were 109 more cases of cancer than expected (288[observed]/179[expected]). Leukemia was most prominent early (1958 through 1966), with 19 cases, five times more than expected (3.6). The excess of leukemia persisted into the later period (1972 through 1980), with 12 cases observed, 3.4 expected. There was an increase in lymphoma. Excess cases of thyroid cancer appeared early and a notable excess appeared later (14/1.7). An excess of breast cancer was noted later (27/14). There were more cancers of the gastrointestinal tract than expected. There was an excess of melanoma (12/4.5), bone cancer (8/0.7), and brain tumors (9/3.9). A subgroup with history of acute fallout effects had a higher cancer incidence. That these cases can be associated with radiation exposures is supported by a comparison between groups of the ratio of cancers of more radiosensitive organs with all other types of cancer.

  15. Natural responses to Quaternary climatic change in the Nevada Test Site region

    International Nuclear Information System (INIS)

    Gibson, J.D.

    1993-01-01

    Migration of hazardous contaminants within geologic settings depends on natural processes. Climatic fluctuations can affect the magnitudes and rates of many of these processes. In any long-term environmental evaluation of natural processes, responses to climatic change must be considered. Four generalized categories of natural responses to Quaternary climatic change are recognized for the Nevada Test Site (NTS) region of southwestern Nevada and adjacent California: (1) biologic, (2) geomorphic, (3) hydrologic (including surface and subsurface) and (4) pedologic/diagenetic. Specific examples that correspond to the four categories illustrate the broad range of complex natural processes the are affected by climatic change. These responses dictate the potential effects of climatic change on contaminant transport, effects that are being examined by existing and planned environmental-restoration and waste-management programs within the region. Regulatory requirements for many of these programs include long-term (>10,000-year) waste isolation because of radiologic components. The purpose here is not to be exhaustive in documenting all known natural responses to climatic change in the NTS region, but rather to give a flavor of the scope of interdisciplinary and interrelated fields of Quaternary science that must be considered in evaluating the possible effects of climatic change on long-term environmental programs

  16. Nevada Test Site-Directed Research, Development, and Demonstration. FY2005 report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Will [comp.

    2006-09-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R&D projects, as presented in this report.

  17. Corrective Action Investigation Plan for Corrective Action Unit 528: Polychlorinated Biphenyls Contamination, Nevada Test Site, Nevada, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-05-08

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 528, Polychlorinated Biphenyls Contamination (PCBs), Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in the southwestern portion of Area 25 on the NTS in Jackass Flats (adjacent to Test Cell C [TCC]), CAU 528 consists of Corrective Action Site 25-27-03, Polychlorinated Biphenyls Surface Contamination. Test Cell C was built to support the Nuclear Rocket Development Station (operational between 1959 and 1973) activities including conducting ground tests and static firings of nuclear engine reactors. Although CAU 528 was not considered as a direct potential source of PCBs and petroleum contamination, two potential sources of contamination have nevertheless been identified from an unknown source in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. This CAU's close proximity to TCC prompted Shaw to collect surface soil samples, which have indicated the presence of PCBs extending throughout the area to the north, east, south, and even to the edge of the western boundary. Based on this information, more extensive field investigation activities are being planned, the results of which are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  18. Potential Groundwater Recharge and the Effects of Soil Heterogeneity on Flow at Two Radioactive Waste Management Sites at the Nevada Test Site

    International Nuclear Information System (INIS)

    Yucel, V.; Levitt, D. G.

    2001-01-01

    Two low-level Radioactive Waste Management Sites (RWMSs), consisting of shallow land burial disposal units at the Nevada Test Site (NTS), are managed by Bechtel Nevada for the U.S. Department of Energy, National Nuclear Security Administration. The NTS has an arid climate with annual average precipitation of about 17 cm at the Area 3 RWMS and about 13 cm at the Area 5 RWMS. The vadose zone is about 490 m thick at the Area 3 RWMS, and about 235 m thick at the Area 5 RWMS. Numerous studies indicate that under current climatic conditions, there is generally no groundwater recharge at these sites. Groundwater recharge may occur at isolated locations surrounding the RWMSs, such as in large drainage washes. However, groundwater recharge scenarios (and radionuclide transport) at the RWMSs are modeled in support of Performance Assessment (PA) documents required for operation of each RWMS. Recharge scenarios include conditions of massive subsidence and flooding, and recharge resulting from deep infiltration through bare-soil waste covers. This paper summarizes the groundwater recharge scenarios and travel time estimates that have been conducted in support of the PAs, and examines the effects of soil hydraulic property heterogeneity on flow

  19. Framework for a Risk-Informed Groundwater Compliance Strategy for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, Sam

    2010-09-01

    Note: This document was prepared before the NTS was renamed the Nevada National Security Site (August 23, 2010); thus, all references to the site herein remain NTS. Corrective Action Unit (CAU) 98, Frenchman Flat, at the Nevada Test Site (NTS) was the location of ten underground nuclear tests between 1965 and 1971. As a result, radionuclides were released in the subsurface in the vicinity of the test cavities. Corrective Action Unit 98 and other CAUs at the NTS and offsite locations are being investigated. The Frenchman Flat CAU is one of five Underground Test Area (UGTA) CAUs at the NTS that are being evaluated as potential sources of local or regional impact to groundwater resources. For UGTA sites, including Frenchman Flat, contamination in and around the test cavities will not be remediated because it is technologically infeasible due to the depth of the test cavities (150 to 2,000 feet [ft] below ground surface) and the volume of contaminated groundwater at widely dispersed locations on the NTS. Instead, the compliance strategy for these sites is to model contaminant flow and transport, estimate the maximum spatial extent and volume of contaminated groundwater (over a period of 1,000 years), maintain institutional controls, and restrict access to potentially contaminated groundwater at areas where contaminants could migrate beyond the NTS boundaries.

  20. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada: Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-06

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach for collecting the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 552: Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Area 12 on the NTS, CAU 552 consists of two Corrective Action Sites (CASs): 12-06-04, Muckpile; 12-23-05, Ponds. Corrective Action Site 12-06-04 in Area 12 consists of the G-Tunnel muckpile, which is the result of tunneling activities. Corrective Action Site 12-23-05 consists of three dry ponds adjacent to the muckpile. The toe of the muckpile extends into one of the ponds creating an overlap of two CASs. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technic ally viable corrective actions. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  1. Nevada Test Site Area 25. Radiological survey and cleanup project, 1974-1983. Final report

    International Nuclear Information System (INIS)

    McKnight, R.K.; Rosenberry, C.E.; Orcutt, J.A.

    1984-01-01

    This report describes radiological survey, decontamination and decommissioning of the Nevada Test Site (NTS) Area 25 facilities and land areas incorporated in the Nuclear Rocket Development Station (NRDS). Buildings, facilities and support systems used after 1959 for nuclear reactor and engine testing were surveyed for the presence of radioactive contamination. The cleanup was part of the Surplus Facilities Management Program funded by the Department of Energy's Richland Operations Office. The radiological survey portion of the project encompassed portable instrument surveys and removable contamination surveys (swipe) for alpha and beta plus gamma radiation contamination of facilities, equipment and land areas. Soil sampling was also accomplished. The majority of Area 25 facilities and land areas have been returned to unrestricted use. Remaining radiologically contaminated areas are posted with warning signs and barricades. 12 figures

  2. Environmental surveillance and research at the Nevada Test Site: The beginning and the rationale

    International Nuclear Information System (INIS)

    Elle, D.R.; Church, B.W.; Bingham, F.E.

    1990-01-01

    Concurrently with the first nuclear-weapons tests at the Nevada Test Site (NTS) in 1951, an environmental surveillance and monitoring program was established offsite. Initial emphasis was on tracking fallout clouds and measuring external radiation exposure rates. An environmental research program was also initiated. Establishment of comprehensive programs has facilitated the ability to address issues such as the inventory and distribution of radionuclides in surface soils, reconstruction of offsite population doses, and recognition of areas requiring additional information. We have learned that a successful environmental monitoring program must be flexible and responsive to change; must address public as well as technical and regulatory concerns; and results must be continuously interpreted to ensure that all pathways are considered and the programs are proactive in their approach

  3. Corrective Action Decision Document for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada, Revision 0 with Errata

    Energy Technology Data Exchange (ETDEWEB)

    Boehlecke, Robert

    2004-11-01

    This Corrective Action Decision Document (CADD) has been prepared for Corrective Action Unit (CAU) 536: Area 3 Release Site, Nevada Test Site (NTS), Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 536 is comprised of a single Corrective Action Site (CAS), 03-44-02, Steam Jenny Discharge, and is located in Area 3 of the NTS (Figure 1-2). The CAU was investigated in accordance with the Corrective Action Investigation Plan (CAIP) and Record of Technical Change (ROTC) No. 1 (NNSA/NV, 2003). The CADD provides or references the specific information necessary to support the recommended corrective action alternative selected to complete closure of the site. The CAU 536, Area 3 Release Site, includes the Steam Jenny Discharge (CAS 03-44-02) that was historically used for steam cleaning equipment in the Area 3 Camp. Concerns at this CAS include contaminants commonly associated with steam cleaning operations and Area 3 Camp activities that include total petroleum hydrocarbons (TPH), unspecified solvents, radionuclides, metals, and polychlorinated biphenyls (PCBs). The CAIP for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada (NNSA/NV, 2003), provides additional information relating to the history, planning, and scope of the investigation; therefore, it will not be repeated in this CADD. This CADD identifies potential corrective action alternatives and provides a rationale for the selection of a recommended corrective action alternative for the CAS within CAU 536. The evaluation of corrective action alternatives is based on process knowledge and the results of the investigative activities conducted in accordance with the CAIP (NNSA/NV, 2003) that was approved prior to the start of the

  4. Aldosterone-Sensing Neurons in the NTS Exhibit State-Dependent Pacemaker Activity and Drive Sodium Appetite via Synergy with Angiotensin II Signaling.

    Science.gov (United States)

    Resch, Jon M; Fenselau, Henning; Madara, Joseph C; Wu, Chen; Campbell, John N; Lyubetskaya, Anna; Dawes, Brian A; Tsai, Linus T; Li, Monica M; Livneh, Yoav; Ke, Qingen; Kang, Peter M; Fejes-Tóth, Géza; Náray-Fejes-Tóth, Anikó; Geerling, Joel C; Lowell, Bradford B

    2017-09-27

    Sodium deficiency increases angiotensin II (ATII) and aldosterone, which synergistically stimulate sodium retention and consumption. Recently, ATII-responsive neurons in the subfornical organ (SFO) and aldosterone-sensitive neurons in the nucleus of the solitary tract (NTS HSD2 neurons) were shown to drive sodium appetite. Here we investigate the basis for NTS HSD2 neuron activation, identify the circuit by which NTS HSD2 neurons drive appetite, and uncover an interaction between the NTS HSD2 circuit and ATII signaling. NTS HSD2 neurons respond to sodium deficiency with spontaneous pacemaker-like activity-the consequence of "cardiac" HCN and Na v 1.5 channels. Remarkably, NTS HSD2 neurons are necessary for sodium appetite, and with concurrent ATII signaling their activity is sufficient to produce rapid consumption. Importantly, NTS HSD2 neurons stimulate appetite via projections to the vlBNST, which is also the effector site for ATII-responsive SFO neurons. The interaction between angiotensin signaling and NTS HSD2 neurons provides a neuronal context for the long-standing "synergy hypothesis" of sodium appetite regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gregg Ruskuaff

    2010-01-01

    This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the “Corrective Action Strategy” in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

  7. Grimsel Test Site: heat test, final report

    International Nuclear Information System (INIS)

    Schneefuss, J.; Glaess, F.; Gommlich, G.; Schmidt, M.

    1989-05-01

    The Swiss concept for the storage of radioactive waste consists in placing it in compact, dense rock formations. An experiment 'Heat Test' carried out by the 'Gesellschaft fuer Strahlen- und Umweltforschung' in Nagra's Grimsel rock laboratory simulated the heat production of stored radioactive waste. The aim was to evaluate processes for the demonstration of the suitability of a final repository for heat-producing radioactive waste in cristalline rock, to investigate the thermic, mechanic and hydraulic reactions to an artificial heat source, and to develop corresponding calculating models. The duration of the tests was about 3 years. In this report the measured thermic, mechanic and hydraulic reactions are documented and discussed in detail. A simple, rotation symmetrical FEM-model was used for the preparatory and experiment-accompanying modelling of the thermomechanical conditions in the heat test. The test showed that suitable measuring methods for the surveillance of the geomechanics of a final repository are available and that the reactions of the crystalline host rock to the heat source remain locally limited and can be modelled with relatively small effort. 29 refs., 33 figs., 10 tabs

  8. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  9. Status of the flora and fauna on the Nevada Test Site, 1992. Results of continuing basic environmental monitoring, January through December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.B. [comp.

    1994-03-01

    This report documents changes in the populations of plants and animals on the Nevada Test Site (NTS) for calendar year 1992. It is part of a Department of Energy (DOE) program (Basic Environmental Compliance and Monitoring Program -- BECAMP) that also includes monitoring DOE compliance with the Endangered Species Act, the Historic Preservation Act, and the American Indian Freedom of Religion Act. Ecological studies were to comply with the National Environmental Policy Act and DOE Order 5400.1, ``General Environmental Protection Program.`` These studies focused on the following: status of ephemeral plants on the Nevada Test Site, 1992; status of reptile and amphibian populations on the Nevada Test Site, 1992; trends in small mammal populations on the Nevada Test Site, 1992; status of large mammals and birds at Nevada Test Site, 1992; and status of perennial plants on the Nevada Test Site, 1992.

  10. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  11. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada with ROTC-1

    International Nuclear Information System (INIS)

    Matthews, Patrick

    2009-01-01

    CAU 107, ''Low Impact Soil Sites'', consists of 15 CASs in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the NTS. The closure alternatives included No Further Action and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities. ROTC Justification: The FFACO UR as published in the Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada (NNSA/NSO, 2009) states that the UR for CAS 18-23-02, U-18d Crater (Sulky), was implemented for assumed radioactive contamination that could cause a dose greater that 25 millirems per year. This document further clarifies that this was based on particulate releases of radionuclides identified in Radiological Effluents Released from U.S. Continental Tests, 1961 through 1992 (DOE/NV, 1996). The radionuclides listed in this document are krypton (Kr)-85, Kr-85m, Kr-87, Kr-88, rubidium (Rb)-87, strontium (Sr)-89, Sr-91, yttrium (Y)-91, iodine (I)-131, I-132, I-133, I-134, I-135, xeon (Xe)-133, Xe-135, Xe-138, cesium (Cs)-135, Cs-138, barium (Ba)-139, and Ba-140.

  12. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 165: AREA 25 AND 26 DRY WELL AND WASH DOWN AREAS, NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CAS 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls

  13. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT165: AREA 25 AND 26 DRY WELL AND WASH DOWN AREAS, NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-12-01

    This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CAS 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls.

  14. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada: Revision 0, Including Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-01

    This Corrective Action Decision Document identifies the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's corrective action alternative recommendation for each of the corrective action sites (CASs) within Corrective Action Unit (CAU) 204: Storage Bunkers, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. An evaluation of analytical data from the corrective action investigation, review of current and future operations at each CAS, and a detailed comparative analysis of potential corrective action alternatives were used to determine the appropriate corrective action for each CAS. There are six CASs in CAU 204, which are all located between Areas 1, 2, 3, and 5 on the NTS. The No Further Action alternative was recommended for CASs 01-34-01, 02-34-01, 03-34-01, and 05-99-02; and a Closure in Place with Administrative Controls recommendation was the preferred corrective action for CASs 05-18-02 and 05-33-01. These alternatives were judged to meet all requirements for the technical components evaluated as well as applicable state and federal regulations for closure of the sites and will eliminate potential future exposure pathways to the contaminated media at CAU 204.

  15. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach.

  16. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach

  17. Colloid research for the Nevada Test Site

    International Nuclear Information System (INIS)

    Bryant, E.A.

    1992-05-01

    Research is needed to understand the role of particulates in the migration of radionuclides away from the sites of nuclear tests at the Nevada Test Site. The process of testing itself may produce a reservoir of particles to serve as vectors for the transport of long-lived radionuclides in groundwater. Exploratory experiments indicate the presence of numerous particulates in the vicinity of the Cambric test but a much lower loading in a nearby well that has been pumped continuously for 15 years. Recent groundwater colloid research is briefly reviewed to identify sampling and characterization methods that may be applicable at the Nevada Test Site

  18. Studies of transuranic element ingestion by fistulated steers grazing Area 13 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Blincoe, C.; Bohman, V.R.; Smith, D.D.

    1985-01-01

    Area 13 is one of several areas of the Nevada Test Site (NTS) contaminated with transuranics. Cattle were grazed on the area to study the botanical and chemical composition of the forage, the digestibility of range plants as selected by range cattle, and the intake of plutonium and americium by grazing cattle. The digestibility of dry matter ranged from 34 to 44%. Cattle generally consumed over 2 kilograms per 100 kilograms body weight of dry matter daily, which resulted in a daily intake of 3600 to 11,100 pCi of plutonium-238, 85,000 to 400,000 pCi of plutonium-239, and 11,000 to 56,000 pCi of americium-241. The soil ingested by range cattle constituted the principal and possibly only source of ingested plutonium and americium. 21 references, 1 figure, 9 tables

  19. Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    V. Yucel

    2001-09-01

    This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA).

  20. Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    V. Yucel

    2001-01-01

    This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA)

  1. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  2. Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

  3. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-01-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal

  4. Hydrogeologic data for existing excavations and the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1993-12-01

    The Special Projects Section of Reynolds Electrical ampersand Engineering Co., Inc. is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Office of Environmental Restoration and Waste Management Waste Management Division. Geologic description, in situ testing, and laboratory analyses of alluvium exposed in existing excavations are important subparts to the Area 5 Site Characterization Program designed to determine the suitability of the RWMS for disposal of low level waste mixed waste and transuranic waste. The primary purpose of the Existing Excavation Project is two-fold: first, to characterize important hydrologic properties of the near surface alluvium, thought to play an important role in the infiltration and redistribution of water and solutes through the upper unsaturated zone at the Area 5 RWMS; and second, to provide guidance for the design of future sampling and testing programs. The justification for this work comes from the state of Nevada review of the original DOE/NV Part B Permit application submitted in 1988 for disposal of mixed wastes at the RWMS. The state of Nevada determined that the permit was deficient in characterization data concerning the hydrogeology of the unsaturated zone. DOE/NV agreed with the state and proposed the study of alluvium exposed in existing excavations as one step toward satisfying these important site characterization data requirements. Other components of the site characterization process include the Science Trench Borehole and Pilot Well Projects

  5. Closure Report for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Laura A. Pastor

    2005-04-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 357: Mud Pits and Waste Dump, Nevada Test Site (NTS), Nevada. The CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). Corrective Action Unit 357 is comprised of 14 Corrective Action Sites (CASs) located in Areas 1, 4, 7, 8, 10, and 25 of the NTS (Figure 1-1). The NTS is located approximately 65 miles (mi) northwest of Las Vegas, Nevada. Corrective Action Unit 357 consists of 11 CASs that are mud pits located in Areas 7, 8, and 10. The mud pits were associated with drilling activities conducted on the NTS in support of the underground nuclear weapons testing. The remaining three CASs are boxes and pipes associated with Building 1-31.2el, lead bricks, and a waste dump. These CAS are located in Areas 1, 4, and 25, respectively. The following CASs are shown on Figure 1-1: CAS 07-09-02, Mud Pit; CAS 07-09-03, Mud Pit; CAS 07-09-04, Mud Pit; CAS 07-09-05, Mud Pit; CAS 08-09-01, Mud Pit; CAS 08-09-02, Mud Pit; CAS 08-09-03, Mud Pit; CAS 10-09-02, Mud Pit; CAS 10-09-04, Mud Pit; CAS 10-09-05, Mud Pit; CAS 10-09-06, Mud Pit, Stains, Material; CAS 01-99-01, Boxes, Pipes; CAS 04-26-03, Lead Bricks; and CAS 25-15-01, Waste Dump. The purpose of the corrective action activities was to obtain analytical data that supports the closure of CAU 357. Environmental samples were collected during the investigation to determine whether contaminants exist and if detected, their extent. The investigation and sampling strategy was designed to target locations and media most likely to be contaminated (biased sampling). A general site conceptual model was developed for each CAS to support and guide the investigation as outlined in the Streamlined Approach for Environmental Restoration (SAFER) Plan (NNSA/NSO, 2003b). This CR

  6. Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2003-01-01

    This Closure Report (CR) documents the activities undertaken to close Corrective Action Unit (CAU) 262: Area 25 Septic Systems and Underground Discharge Point, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Site closure was performed in accordance with the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 262 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV, 2002a]). CAU 262 is located at the Nevada Test Site (NTS) approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada. CAU 262 consists of the following nine Corrective Action Sites (CASs) located in Area 25 of the NTS: CAS 25-02-06, Underground Storage tank CAS 25-04-06, Septic Systems A and B CAS 25-04-07, Septic System CAS 25-05-03, Leachfield CAS 25-05-05, Leachfield CAS 25-05-06, Leachfield CAS 25-05-08, Radioactive Leachfield CAS 25-05-12, Leachfield CAS 25-51-01, Dry Well

  7. Double tracks test site characterization report

    International Nuclear Information System (INIS)

    1996-05-01

    This report presents the results of site characterization activities performed at the Double Tracks Test Site, located on Range 71 North, of the Nellis Air Force Range (NAFR) in southern Nevada. Site characterization activities included reviewing historical data from the Double Tracks experiment, previous site investigation efforts, and recent site characterization data. The most recent site characterization activities were conducted in support of an interim corrective action to remediate the Double Tracks Test Site to an acceptable risk to human health and the environment. Site characterization was performed using a phased approach. First, previously collected data and historical records sere compiled and reviewed. Generalized scopes of work were then prepared to fill known data gaps. Field activities were conducted and the collected data were then reviewed to determine whether data gaps were filled and whether other areas needed to be investigated. Additional field efforts were then conducted, as required, to adequately characterize the site. Characterization of the Double Tracks Test Site was conducted in accordance with the US Department of Energy's (DOE) Streamlined Approach for Environmental Restoration (SAFER)

  8. Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles[mi]) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Fuel Storage Area (Figure 1-2) was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a)

  9. Theoretical and experimental determination of matrix diffusion and related solute transport properties of fractured tuffs from the Nevada Test Site

    International Nuclear Information System (INIS)

    Walter, G.R.

    1982-10-01

    Theoretical and experimental studies of the chemical and physical factors which affect molecular diffusion of dissolved substances from fractures into a tuffaceous rock matrix have been made on rocks from G-Tunnel and Yucca Mountain at the Nevada Test Site (NTS). A variety of groundwater tracers, which may be useful in field tests at the NTS, have also been developed and tested. Although a number of physical/chemical processes may cause nonconvective transport of dissolved species from fractures into the tuff matrix, molecular diffusion seems to be the most important process. Molecular diffusion in these rocks is controlled by the composition of the groundwater through multicomponent effects and several rock properties. The porosities of the samples studied ranged from about 0.1 to 0.4. The constrictivity-tortuosity parameter ranged from 0.1 and 0.3 and effective matrix-diffusion coefficients were measured to be between 2 to 17. x 10 -7 c, 2 /s for sodium halides and sodium pentafluorobenzoate. Total porosity was found to be the principle factor accounting for the variation in effective diffusion coefficients. The constrictivity-tortuosity factor was found to have a fair correlation (r = 0.75) with the median pore diameters measured by mercury intrusion. Measurements of bulk-rock electrical impedance changes with frequency indicate that the constrictivity factor has a maximum value of 0.8 to 1, but may be smaller. If the larger values are correct, then the diffusion paths in tuff are more tortuous than in granular media. Computation of the full diffusion-coefficient matrix for various tracers in J-13 well water from the NTS indicates coupling of the diffusion fluxes of all ionic species. These effects are being incorporated into a numerical model of multicomponent-matrix diffusion

  10. Three-dimensional modeling of the Nevada Test Site and vicinity from teleseismic p-wave residuals

    International Nuclear Information System (INIS)

    Monfort, M.E.; Evans, J.R.

    1982-01-01

    A teleseismic P-wave travel-time residual study is described which reveals the regional compressional-velocity structure of southern Nevada and neighboring parts of California to a depth of 280 km. During 1980, 98 teleseismic events were recorded at 53 sites. P-wave residuals were calculated relative to a network-wide average residual for each event and are displayed on maps of the stations for each of four event-azimuth quadrants. Fluctuations in these map-patterns of residuals with approach azimuth combined with results of linear, three-dimensional inversions of some 2887 residuals indicate the following characteristics of the velocity structure of the southern Nevada region: (1) a low-velocity body exists in the upper crust 50 km northeast of Beatty, Nevada, near the Miocene Timber Mountain-Silent Canyon caldera complex. Another highly localized low-velocity anomaly occurs near the southwest corner of the Nevada Test Site (NTS). These two anomalies seem to be part of a low-velocity trough extending from Death Valley, California, to about 50 km north of NTS; (2) there is a high-velocity body in the mantle between 81 and 131 km deep centered about 10 km north of the edge of the Timber Mountain caldera; (3) a broad low-velocity body is delineated between 81 and 131 km deep centered about 30 km north of Las Vegas; (4) there is a monotonic increase in travel-time delays from west to east across the region, probably indicating an eastward decrease in velocity, and lower than average velocities in southeastern Nevada below 31 km; and (5) considerable complexity in three-dimensional velocity structure exists in this part of the southern Great Basin. Inversions of teleseismic P-wave travel-time residuals were also performed on data from 12 seismometers in the immediate vicinity of the NTS to make good use of the closer station spacing in that area

  11. Estimating the water table under the Radioactive Waste Management Site in Area 5 of the Nevada Test Site the Dupuit-Forcheimer approximation

    International Nuclear Information System (INIS)

    Lindstrom, T.F.; Barker, L.E.; Cawlfield, D.E.; Daffern, D.D.; Dozier, B.L.; Emer, D.F.; Strong, W.R.

    1992-01-01

    A two-dimensional steady-state water-flow equation for estimating the water table elevation under a thick, very dry vadose zone is developed and discussed. The Dupuit assumption is made. A prescribed downward vertical infiltration/evaporation condition is assumed at the atmosphere-soil interface. An approximation to the square of the elevation head, based upon multivariate cubic interpolation methods, is introduced. The approximation is forced to satisfy the governing elliptic (Poisson) partial differential equation over the domain of definition. The remaining coefficients are determined by interpolating the water table at eight ''boundary points.'' Several realistic scenarios approximating the water table under the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS) are discussed

  12. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-11-12

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions

  13. Corrective Action Decision Document/Closure Report for Corrective Action Unit 529: Area 25 Contaminated Materials, Nevada Test Site, Nevada, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Boehlecke

    2004-11-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 529, Area 25 Contaminated Materials, Nevada Test Site (NTS), Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Site (CAS) 25-23-17, Contaminated Wash, is the only CAS in CAU 529 and is located in Area 25 of the NTS, in Nye County, Nevada (Figure 1-2). Corrective Action Site 25-23-17, Contaminated Wash, was divided into nine parcels because of the large area impacted by past operations and the complexity of the source areas. The CAS was subdivided into separate parcels based on separate and distinct releases as determined and approved in the Data Quality Objectives (DQO) process and Corrective Action Investigation Plan (CAIP). Table 1-1 summarizes the suspected sources for the nine parcels. Corrective Action Site 25-23-17 is comprised of the following nine parcels: (1) Parcel A, Kiwi Transient Nuclear Test (TNT) 16,000-foot (ft) Arc Area (Kiwi TNT); (2) Parcel B, Phoebus 1A Test 8,000-ft Arc Area (Phoebus); (3) Parcel C, Topopah Wash at Test Cell C (TCC); (4) Parcel D, Buried Contaminated Soil Area (BCSA) l; (5) Parcel E, BCSA 2; (6) Parcel F, Borrow Pit Burial Site (BPBS); (7) Parcel G, Drain/Outfall Discharges; (8) Parcel H, Contaminated Soil Storage Area (CSSA); and (9) Parcel J, Main Stream/Drainage Channels.

  14. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2001-08-01

    This Streamlined Approach for Environmental restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 330, Areas 6,22, and 23 Tanks and Spill Sites. The CAUs are currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO). This CAU is located at the Nevada Test Site (NTS) (Figure 1). CAU 330 consists of the following Corrective Action Sites (CASs): (1) CAS 06-02-04 - Consists of an underground tank and piping. This CAS is close to an area that was part of the Animal Investigation Program (AIP), conducted under the U.S. Public Health Service. Its purpose was to study and perform tests on the cattle and wild animals in and around the NTS that were exposed to radionuclides. It is unknown if this tank was part of these operations. (2) CAS 22-99-06 - Is a fuel spill that is believed to be a waste oil release which occurred when Camp Desert Rock was an active facility. This CAS was originally identified as being a small depression where liquids were poured onto the ground, located on the west side of Building T-1001. This building has been identified as housing a fire station, radio station, and radio net remote and telephone switchboard. (3) CAS 23-01-02 - Is a large aboveground storage tank (AST) farm that was constructed to provide gasoline and diesel storage in Area 23. The site consists of two ASTs, a concrete foundation, a surrounding earthen berm, associated piping, and unloading stations. (4) CAS 23-25-05 - Consists of an asphalt oil spill/tar release that contains a wash covered with asphalt oil/tar material, a half buried 208-liter (L) (55-gallon [gal]) drum, rebar, and concrete located in the vicinity.

  15. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    T. M. Fitzmaurice

    2001-01-01

    This Streamlined Approach for Environmental restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 330, Areas 6,22, and 23 Tanks and Spill Sites. The CAUs are currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO). This CAU is located at the Nevada Test Site (NTS) (Figure 1). CAU 330 consists of the following Corrective Action Sites (CASs): (1) CAS 06-02-04 - Consists of an underground tank and piping. This CAS is close to an area that was part of the Animal Investigation Program (AIP), conducted under the U.S. Public Health Service. Its purpose was to study and perform tests on the cattle and wild animals in and around the NTS that were exposed to radionuclides. It is unknown if this tank was part of these operations. (2) CAS 22-99-06 - Is a fuel spill that is believed to be a waste oil release which occurred when Camp Desert Rock was an active facility. This CAS was originally identified as being a small depression where liquids were poured onto the ground, located on the west side of Building T-1001. This building has been identified as housing a fire station, radio station, and radio net remote and telephone switchboard. (3) CAS 23-01-02 - Is a large aboveground storage tank (AST) farm that was constructed to provide gasoline and diesel storage in Area 23. The site consists of two ASTs, a concrete foundation, a surrounding earthen berm, associated piping, and unloading stations. (4) CAS 23-25-05 - Consists of an asphalt oil spill/tar release that contains a wash covered with asphalt oil/tar material, a half buried 208-liter (L) (55-gallon[gal]) drum, rebar, and concrete located in the vicinity

  16. Radiological Situation at the Bomb Test Sites

    International Nuclear Information System (INIS)

    Valkovic, V.

    1998-01-01

    An overview of radiological situation at the selected bomb test sites is presented. The report is based on the reports and measurements performed by IAEA while the author was a head of its Physics-Chemistry-Instrumentation Laboratory. Radiological conditions at Bikini Atoll (USA testing ground), Mururoa and Fangataufa Atolls (French testing ground) and Semipalatinsk (SSSR testing ground) have been discussed in some details. (author)

  17. An Aerial Radiological Survey of Selected Areas of Area 18 - Nevada Test Site

    International Nuclear Information System (INIS)

    Lyons, Craig

    2009-01-01

    As part of the proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory-Nellis (RSL-Nellis) conducted an aerial radiological survey of selected areas of Area 18 of the Nevada Test Site (NTS) for the purpose of mapping man-made radiation deposited as a result of the Johnnie Boy and Little Feller I tests. The survey area centered over the Johnnie Boy ground zero but also included the ground zero and deposition area of the Little Feller I test, approximately 7,000 feet (2133 meters) southeast of the Johnnie Boy site. The survey was conducted in one flight. The completed survey covered a total of 4.0 square miles. The flight lines (with the turns) over the surveyed areas are presented in Figure 1. One 2.5-hour-long flight was performed at an altitude of 100 ft above ground level (AGL) with 200 foot flight-line spacing. A test-line flight was conducted near the Desert Rock Airstrip to ensure quality control of the data. The test line is not shown in Figure 1. However, Figure 1 does include the flight lines for a ''perimeter'' flight. The path traced by the helicopter flying over distinct roads within the survey area can be used to overlay the survey data on a base map or image. The flight survey lines were flown in an east-west orientation perpendicular to the deposition patterns for both sites. This technique provides better spatial resolution when contouring the data. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Data, in the form of gamma energy spectra, were collected every second over the course of the survey and were geo-referenced using a differential Global Positioning System. Spectral data allows the system to distinguish between ordinary fluctuations in natural background radiation levels and the signature produced by man

  18. ASSESSING EXPOSURE TO THE PUBLIC FROM LOW LEVEL RADIOACTIVE WASTE (LLW) TRANSPORTATION TO THE NEVADA TEST SITE

    International Nuclear Information System (INIS)

    Miller, J.J.; Campbell, S.; Church, B.W.; Shafer, D. S.; Gillespie, D.; Sedano, S.; Cebe, J.J.

    2003-01-01

    The United States (U.S.) Department of Energy (DOE) Nevada Test Site (NTS) is one of two regional sites where low-level radioactive waste (LLW) from approved DOE and U.S. DOD generators across the United States is disposed. In federal fiscal year (FY) 2002, over 57,000 cubic meters of waste was transported to and disposed at the NTS. DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is perceived risk from members of the public about incremental exposure from LLW trucks, especially when ''Main Street'' and the LLW transportation route are the same. To better quantify the exposure to gamma radiation, a stationary monitoring array of four pressurized ion chambers (PICs) have been set up in a pullout just before LLW trucks reach the entrance to the NTS. The PICs are positioned at a distance of one meter from the sides of the truck trailer and at a height appropriate for the design of the trucks that will be used in FY2003 to haul LLW to the NTS. The use of four PICs (two on each side of the truck) is to minimize and to correct for non-uniformity where radiation levels from waste packages vary from side to side, and from front to back in the truck trailer. The PIC array is being calibrated by collecting readings from each PIC exposed to a known 137Cs source that was positioned at different locations on a flatbed stationed in the PIC array, along with taking secondary readings from other known sources. Continuous data collection using the PICs, with and without a truck in the array, is being used to develop background readings. In addition, acoustic sensors are positioned on each side of the PIC array to record when a large object (presumably a truck) enters the array. In FY2003, PIC surveys from as many incoming LLW trucks as possible will be made and survey data

  19. Interpretation of geophysical well-log measurements in drill hole UE25a-1, Nevada Test Site, Radioactive Waste Program

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Daniels, J.J.; Scott, J.H.

    1980-01-01

    An exploratory hole (UE25a-1) was drilled at Nevada Test Site (NTS) to determine the suitability of pyroclastic deposits as storage sites for radioactive waste. Studies have been conducted to investigate the stratigraphy, structure, mineralogy, petrology, and physical properties of the tuff units encountered in the drill hole. This report deals with the interpretation of physical properties for the tuff units from geophysical well-log measurements. The ash-flow and bedded tuff sequences at NTS comprise complex lithologies of variously welded tuffs with superimposed crystallization and altered zones. To characterize these units, resistivity, density, neutron, gamma-ray, induced polarization, and magnetic susceptibility geophysical well-log measurements were made. Although inherently subjective, a consistent interpretation of the well-log measurements was facilitated by a computer program designed to interpret well logs either individually or simultaneously. The broad features of the welded tuff units are readily distinguished by the geophysical well-log measurements. However, many details revealed by the logs indicate that more work is necessary to clarify the casual elements of well-log response in welded tuffs

  20. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen; Czerwinski, Ken; Russell, Charles E.; Zavarin, Mavrik

    2010-09-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  1. Characterization of microbial communities in subsurface nuclear blast cavities of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Duane P; Czerwinski, Ken; Russell, Charles E; Zavarin, Mavrik

    2010-07-13

    This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  2. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    International Nuclear Information System (INIS)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen; Czerwinski, Ken; Russell, Charles E.; Zavarin, Mavrik

    2010-01-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H 2 and SO 4 2- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  3. Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Gwin, Jeremy; Frenette, Douglas

    2010-01-01

    This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy (DOE) Order DOE O 5400.5, 'Radiation Protection of the Public and the Environment'). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the

  4. Characterization Report Operational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada Geotechnical Sciences

    2005-01-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report - Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations

  5. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV Operations Office

    1999-05-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense. The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and criteria for conducting site investigation activities at CAU 232, Area 25 Sewage Lagoons. Corrective Action Unit 232 consists of CAS 25-03-01, Sewage Lagoon, located in Area 25 of the Nevada Test Site (NTS). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Area 25 Sewage Lagoons (Figure 1-2) (IT, 1999b) are located approximately 0.3 mi south of the Test Cell 'C' (TCC) Facility and were used for the discharge of sanitary effluent from the TCC facility. For purposes of this discussion, this site will be referred to as either CAU 232 or the sewage lagoons.

  6. Information pertinent to the migration of radionuclides in ground water at the Nevada Test Site. Part 1. Review and analysis of existing information

    International Nuclear Information System (INIS)

    Borg, I.Y.; Stone, R.; Levy, H.B.; Ramspott, L.D.

    1976-01-01

    A history of NTS is given, the geologic and hydrologic setting is described, and the amount of radioactivity deposited within and near the main aquifers is estimated. The conclusions include: information currently available is insufficient to state categorically that radioactivity will never be carried off the Nevada Test Site by ground water movement; nonetheless, such a migration at levels above the maximum permissible concentration to existing wells and springs is considered unlikely; if offsite migration occurs, it will probably be from the southwestern margins of Pahute Mesa, where there is only a small chance of contaminating existing public water supplies; tritium is the most mobile radionuclide and may be the only long-lived isotope of concern. Highest priority is assigned to measurement of tritium and other radionuclides in large water samples taken from nuclear chimneys that water has re-entered after an explosion; expansion of the existing groundwater monitoring program at NTS to include wells with a higher probability of intersecting flow of contaminated water; measurement of groundwater flow velocities and other associated hydrologic parameters. High priority is assigned to production of an inventory of radionuclides deposited near NTS borders, especially beneath Pahute Mesa; determination of amounts of radioactivity deposited directly into the Lower Carbonate Aquifer; a sensitivity analysis of the many parameters that enter into transport calculations; a study of the many unplugged holes that penetrate the Tuff Aquitard; testing of the assumption that radionuclides deposited in the unsaturated zone are isolated from the saturated zone because of limited precipitation and downward movement of moisture; and determination of distribution coefficients for NTS alluvium, carbonate, and rhyolitic rocks, which are lacking or poorly represented in the literature. Twelve other recommendations of lesser priority are also given

  7. Estimating the water table under the Radioactive Waste Management Site in Area 5 of the Nevada Test Site: The Dupuit-Forcheimer approximation

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Barker, L.E.; Cawlfield, D.E.; Daffern, D.D.; Dozier, B.L.; Emer, D.F.; Strong, W.R.

    1992-01-01

    To adequately manage the low level nuclear waste (LLW) repository in Area 5 of the Nevada Test Site (NTS), a knowledge of the water table under the site is paramount. The estimated thickness of the arid intermountain basin alluvium is roughly 900 feet. Very little reliable water table data for Area 5 currently exists. The Special Projects Section of the Reynolds Electrical ampersand Engineering Co., Inc. Waste Management Department is currently formulating a long-range drilling and sampling plan in support of a Resource Conservation Recovery Act (RCRA) Part B permit waiver for groundwater monitoring and liner systems. An estimate of the water table under the LLW repository, called the Radioactive Waste Management Site (RWMS) in Area 5, is needed for the drilling and sampling plan. Very old water table elevation estimates at about a dozen widely scattered test drill holes, as well as water wells, are available from declassified US Geological Survey, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory drilling logs. A three-dimensional steady-state water-flow equation for estimating the water table elevation under a thick, very dry vadose zone is developed using the Dupuit assumption. A prescribed positive vertical downward infiltration/evaporation condition is assumed at the atmosphere/soil interface. An approximation to the square of the elevation head, based upon multivariate cubic interpolation methods, is introduced. The approximate is forced to satisfy the governing elliptic (Poisson) partial differential equation over the domain of definition. The remaining coefficients are determined by interpolating the water table at eight ''boundary point.'' Several realistic scenarios approximating the water table under the RWMS in Area 5 of the NTS are discussed

  8. Nevada test site neutron dosimetry-problems/solutions

    International Nuclear Information System (INIS)

    Sygitowicz, L.S.; Bastian, C.T.; Wells, I.J.; Koch, P.N.

    1991-01-01

    Historically, neutron dosimetry at the NTS was done using NTA film and albedo LiF TLD's. In 1987 the dosimeter type was changed from the albedo TLD based system to a CR-39 track etch based system modeled after the program developed by D. Hankins at LLNL. Routine issue and return is performed quarterly for selected personnel using bar-code readers at permanent locations. The capability exists for work site issue as-needed. Issue data are transmitted by telephone to a central computer where it is stored until the dosimeter is returned, processed and read, and the dose calculation is performed. Dose equivalent calculations are performed using LOTUS 123 and the results are printed as a hard copy record. The issue and dose information are hand-entered into the Dosimetry database. An application is currently being developed to automate this sequence

  9. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  10. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    International Nuclear Information System (INIS)

    2010-01-01

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  11. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-09-01

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure

  12. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure

  13. Nevada Test Site Environmental Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  14. Nevada Test Site Environmental Report 2008 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  15. Off-site environmental monitoring report: radiation monitoring around United States nuclear test areas, calendar year 1984

    International Nuclear Information System (INIS)

    Potter, G.D.; Black, S.C.; Grossman, R.F.; Patzer, R.G.; Smith, D.D.

    1985-04-01

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with standards, to identify trends in environmental radiation, and to provide such information to the public. It summarizes these activities for calendar year 1984. No radioactivity attributable to NTS activities was detectable offsite by the monitoring networks. Using recorded wind data and Pasquill stability categories, atmospheric dispersion calculations based on reported radionuclides releases yield an estimated dose of 1 x 10 -3 person-rem to the population within 80 km of the Nevada Test Site during 1983. World-wide fallout of Kr-85, Sr-90, Cs-137, and Pu-239 detected by the monitoring networks would cause maximum exposure to an individual of less than 0.6 mrem per year. Plutonium in air was still detectable along with krypton-85, which continued its gradual increase, as has been reported previously. Cesium and strontium in air were near their detection limits. An occasional net exposure to offsite residents has been detected by the TLD network. On investigation, the cause of such net exposures has been due to personal habits or occupational activities, not to NTS activities. 32 refs., 36 figs., 27 tabs

  16. Environmental assessment for liquid waste treatment at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1997-01-01

    This environmental assessment (EA) examines the potential impacts to the environment from treatment of low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the Nevada Test Site (NTS). The potential impacts of the proposed action and alternative actions are discussed herein in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended in Title 42 U.S.C. (4321), and the US Department of Energy (DOE) policies and procedures set forth in Title 10 Code of Federal Regulations (CFR) Part 1021 and DOE Order 451.1, ''NEPA Compliance Program.'' The potential environmental impacts of the proposed action, construction and operation of a centralized liquid waste treatment facility, were addressed in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. However, DOE is reevaluating the need for a centralized facility and is considering other alternative treatment options. This EA retains a centralized treatment facility as the proposed action but also considers other feasible alternatives

  17. Evaluation of habitat restoration needs at Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Mitchell, D.L.

    1984-04-01

    Adverse environmental impacts due to site characterization and repository development activities at Yucca Mountain, Nevada Test Site (NTS), Nye County, Nevada, must be minimized and mitigated according to provisions of the Nuclear Waste Policy Act (NWPA) of 1982 and the National Environmental Policy Act (NEPA). The natural Transition Desert ecosystem in the 27.5-sq-mi Yucca Mountain project area is now and will continue to be impacted by removal of native vegetation and topsoil and the destruction and/or displacement of faunal communities. Although it is not known at this time exactly how much land will be affected, it is estimated that about 300 to 400 acres will be disturbed by construction of facility sites, mining spoils piles, roadways, and drilling pads. Planned habitat restoration at Yucca Mountain will mitigate the effects of plant and animal habitat loss over time by increasing the rate of plant succession on disturbed sites. Restoration program elements should combine the appropriate use of native annual and perennial species, irrigation and/or water-harvesting techniques, and salvage and reuse of topsoil. Although general techniques are well-known, specific program details (i.e., which species to use, methods of site preparation with available equipment, methods of saving and applying topsoil, etc.) must be worked out empirically on a site-specific basis over the period of site characterization and any subsequent repository development. Large-scale demonstration areas set up during site characterization will benefit both present abandonments and, if the project is scaled up to include repository development, larger facilities areas including spoils piles. Site-specific demonstration studies will also provide information on the costs per acre associated with alternative restoration strategies

  18. Development of Phenomenological Models of Underground Nuclear Tests on Pahute Mesa, Nevada Test Site - BENHAM and TYBO

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G.A.

    1999-09-21

    Although it is well accepted that underground nuclear explosions modify the in situ geologic media around the explosion point, the details of these changes are neither well understood nor well documented. As part of the engineering and containment process before a nuclear test, the physical environment is characterized to some extent to predict how the explosion will interact with the in situ media. However, a more detailed characterization of the physical environment surrounding an expended site is needed to successfully model radionuclide transport in the groundwater away from the detonation point. It is important to understand how the media have been altered and where the radionuclides are deposited. Once understood, this information on modified geologic media can be incorporated into a phenomenological model that is suitable for input to computer simulations of groundwater flow and radionuclide transport. The primary goals of this study are to (1) identify the modification of the media at a pertinent scale, and (2) provide this information to researchers modeling radionuclide transport in groundwater for the US Department of Energy (DOE) Nevada Operations Office Underground Test Area (UGTA) Project. Results from this study are most applicable at near-field scale (a model domain of about 500 m) and intermediate-field scale (a model domain of about 5 km) for which detailed information can be maximized as it is incorporated in the modeling grids. UGTA collected data on radionuclides in groundwater during recent drilling at the ER-20-5 site, which is near BENHAM and TYBO on Pahute Mesa at the Nevada Test Site (NTS). Computer simulations are being performed to better understand radionuclide transport. The objectives of this modeling effort include: evaluating site-specific information from the BENHAM and TYBO tests on Pahute Mesa; augmenting the above data set with generalized containment data; and developing a phenomenological model suitable for input to

  19. Utilization of a Technical Peer Review to Support the Mission of the Nevada Test Site Community Advisory Board

    International Nuclear Information System (INIS)

    Dixon, Earle C.; Peterson, Kathleen

    2003-01-01

    The U. S. Department of Energy's (DOE) National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Environmental Management (EM) Underground Test Area (UGTA) project addresses the characterization and needs for long-term monitoring of the subsurface contamination resulting from 828 underground nuclear weapon tests at the Nevada Test Site (NTS). EM promotes, and is required, to include stakeholders in its program. However, UGTA is a very complex program not easily understood by members of the public. The NTS Community Advisory Board (CAB), a federally chartered Site Specific Advisory Board (SSAB), has studied the UGTA project since 1996, and has found it a challenge to completely comprehend and provide NNSA/NV meaningful citizen input. The CAB realized the benefit of a technical peer review and in 2000 recommended to NNSA/NV that a peer review of the UGTA strategy would provide valuable feedback to the program to address underground contamination at the NTS. N NSA agreed to the CAB's recommendation, and moved forward with a scope of work to have the American Society of Mechanical Engineers (ASME) perform the peer review of the UGTA strategy. The ASME began the peer review in June 2001, and their final report was published in November 2001. In January 2002, the CAB devoted their monthly meeting in Las Vegas, Nevada to reporting the results of the peer review of the UGTA strategy to the public. Two public workshops were later held in the community of Amargosa, Nevada during the month of January to help educate and build interest in the CAB February 2002 monthly meeting which was also held in Amargosa. The CAB recommendation to NNSA to utilize a technical peer review has provided valuable information to NNSA, the State of Nevada, and the CAB. At other DOE sites SSABs are challenged by a number of complex, technical programs requiring considerable time and resources for the board to comprehend. It is worth considering the utilization of an independent

  20. Annotated bibliography for biologic overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Collins, E.; O'Farrell, T.P.; Rhoads, W.A.

    1981-12-01

    This annotated bibliography was compiled to accompany the Biologic Overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada, EG and G, Santa Barbara Operations Report No. EGG 1183-2443, which documents and synthesizes important biotic information related to Nevada Nuclear Waste Storage Investigations (NNWSI). As such, it is an important part of the NNWSI screening process that was designed to include a systematic, traceable, defensible, and documented basis for a decision to proceed or not with site-specific phases on NTS. Included are all published, and available but unpublished, baseline information on life histories, habitat requirements, distributions, and ecological relationships of the flora and fauna of the region. Special effort was made to include information on endangered, threatened, or sensitive species. 131 references

  1. Interpretation of time-domain electromagnetic soundings in the Calico Hills area, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Kauahikaua, J.

    1981-01-01

    A controlled source, time-domain electromagnetic (TDEM) sounding survey was conducted in the Calico Hills area of the Nevada Test Site (NTS). The goal of this survey was the determination of the geoelectric structure as an aid in the evaluation of the site for possible future storage of spent nuclear fuel or high-level nuclear waste. The data were initially interpreted with a simple scheme that produces an apparent resistivity versus depth curve from the vertical magnetic field data. These curves can be qualitatively interpreted much like standard Schlumberger resistivity sounding curves. Final interpretation made use of a layered-earth Marquardt inversion computer program (Kauahikaua, 1980). The results combined with those from a set of Schlumberger soundings in the area show that there is a moderately resistive basement at a depth no greater than 800 meters. The basement resistivity is greater than 100 ohm-meters

  2. Interpretation of time-domain electromagnetic soundings in the Calico Hills area, Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Kauahikaua, J.

    A controlled source, time domain electromagnetic (TDEM) sounding survey was conducted in the Calico Hills area of the Nevada Test Site (NTS). The geoelectric structure was determined as an aid in the evaluation of the site for possible future storage of spent nuclear fuel or high level nuclear waste. The data were initially interpreted with a simple scheme that produces an apparent resistivity versus depth curve from the vertical magnetic field data. These curves are qualitatively interpreted much like standard Schlumberger resistivity sounding curves. Final interpretation made use of a layered earth Marquardt inversion computer program. The results combined with those from a set of Schlumberger soundings in the area show that there is a moderately resistive basement at a depth no greater than 800 meters. The basement resistivity is greater than 100 ohm meters.

  3. Value of information analysis for Corrective Action Unit Nos. 101 and 102: Central and western Pahute Mesa, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-09-01

    The purpose of this report is to describe the basis for and present the results of a value of information analysis (VOIA) for the Pahute Mesa underground test area of the Nevada Test Site (NTS), one of several areas of the Nevada Test Site used for underground nuclear testing in the past. The value of information analysis was used to evaluate and compare potential characterization options at the Pahute Mesa underground test area for site remediation purposes. Thirty six characterization options were evaluated, ranging from a single, inexpensive study using existing data and intended to address a single question or uncertainty, to a forty-million-dollar suite of activities designed to collect and analyze new information to address multiple uncertainties. The characterization options were compared and ranked based on how effective the experts though the information collection would be in reducing uncertainties, how this effected the distance to contaminant boundary, and the cost of the option

  4. Geologic structure of Semipalatinsk test site territory

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Nikitina, O.I.; Sergeeva, L.V.

    2000-01-01

    This article gives a short description of the territory of Semipalatinsk test site. Poor knowledge of the region is noted, and it tells us about new data on stratigraphy and geology of Paleozoic layers, obtained after termination of underground nuclear explosions. The paper contains a list a questions on stratigraphy, structural, tectonic and geologic formation of the territory, that require additional study. (author)

  5. Neptunium Transport Behavior in the Vicinity of Underground Nuclear Tests at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P; Tinnacher, R M; Zavarin, M; Williams, R W; Kersting, A B

    2010-12-03

    We used short lived {sup 239}Np as a yield tracer and state of the art magnetic sector ICP-MS to measure ultra low levels of {sup 237}Np in a number of 'hot wells' at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site (NTS). The results indicate that {sup 237}Np concentrations at the Almendro, Cambric, Dalhart, Cheshire and Chancellor sites, are in the range of 3 x 10{sup -5} to 7 x 10{sup -2} pCi/L and well below the MCL for alpha emitting radionuclides (15 pCi/L) (EPA, 2009). Thus, while Np transport is believed to occur at the NNSS, activities are expected to be well below the regulatory limits for alpha-emitting radionuclides. We also compared {sup 237}Np concentration data to other radionuclides, including tritium, {sup 14}C, {sup 36}Cl, {sup 99}Tc, {sup 129}I, and plutonium, to evaluate the relative {sup 237}Np transport behavior. Based on isotope ratios relative to published unclassified Radiologic Source Terms (Bowen et al., 1999) and taking into consideration radionuclide distribution between melt glass, rubble and groundwater (IAEA, 1998), {sup 237}Np appears to be substantially less mobile than tritium and other non-sorbing radionuclides, as expected. However, this analysis also suggests that {sup 237}Np mobility is surprisingly similar to that of plutonium. The similar transport behavior of Np and Pu can be explained by one of two possibilities: (1) Np(IV) and Pu(IV) oxidation states dominate under mildly reducing NNSS groundwater conditions resulting in similar transport behavior or (2) apparent Np transport is the result of transport of its parent {sup 241}Pu and {sup 241}Am isotopes and subsequent decay to {sup 237}Np. Finally, measured {sup 237}Np concentrations were compared to recent Hydrologic Source Term (HST) models. The 237Np data collected from three wells in Frenchman Flat (RNM-1, RNM-2S, and UE-5n) are in good agreement with recent HST transport model predictions (Carle et al., 2005). The agreement

  6. Corrective action investigation plan for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 342, the Area 23 Mercury Fire Training Pit (FTP), which is located in Area 23 at the Nevada Test Site (NTS). The NTS is approximately 88 km (55 mi) northwest of Las Vegas, Nevada. Corrective Action Unit 342 is comprised of CAS 23-56-01. The FTP is an area approximately 100 m by 140 m (350 ft by 450 ft) located west of the town of Mercury, Nevada, which was used between approximately 1965 and 1990 to train fire-fighting personnel (REECo, 1991; Jacobson, 1991). The surface and subsurface soils in the FTP have likely been impacted by hydrocarbons and other contaminants of potential concern (COPC) associated with burn activities and training exercises in the area.

  7. Nevada Test 1999 Waste Management Monitoring Report, Area 3 and Area 5 radioactive waste management sites

    International Nuclear Information System (INIS)

    Yvonne Townsend

    2000-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the alluvial aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 1999 was a dry year: rainfall totaled 3.9 inches at the Area 3 RWMS (61 percent of average) and 3.8 inches at the Area 5 RWMS (75 percent of average). Vadose zone monitoring data indicate that 1999 rainfall infiltrated less than one foot before being returned to the atmosphere by evaporation. Soil-gas tritium data indicate very slow migration, and tritium concentrations in biota were insignificant. All 1999 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing as expected at isolating buried waste

  8. Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-01-01

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

  9. Performance assessment of the Greater Confinement Disposal facility on the Nevada Test Site: Comparing the performance of two conceptual site models

    International Nuclear Information System (INIS)

    Baer, T.A.; Price, L.L.; Gallegos, D.P.

    1993-01-01

    A small amount of transuranic (TRU) waste has been disposed of at the Greater Confinement Disposal (GCD) site located on the Nevada Test Site's (NTS) Radioactive Waste Management Site (RWMS). The waste has been buried in several deep (37 m) boreholes dug into the floor of an alluvial basin. For the waste to remain in its current configuration, the DOE must demonstrate compliance of the site with the TRU disposal requirements, 40 CFR 191. Sandia's approach to process modelling in performance assessment is to use demonstrably conservative models of the site. Choosing the most conservative model, however, can be uncertain. As an example, diffusion of contaminants upward from the buried waste in the vadose zone water is the primary mechanism of release. This process can be modelled as straight upward planar diffusion or as spherical diffusion in all directions. The former has high fluxes but low release areas, the latter has lower fluxes but is spread over a greater area. We have developed analytic solutions to a simple test problem for both models and compared the total integrated discharges. The spherical diffusion conceptual model results in at least five times greater release to the accessible environment than the planar model at all diffusivities. Modifying the planar model to allow for a larger release, however, compensated for the smaller original planar discharge and resulted in a new planar model that was more conservative that the spherical model except at low diffusivities

  10. Nuclear test at Semipalatinsk test site and their environmental impacts

    International Nuclear Information System (INIS)

    Logachev, V.A.

    2000-01-01

    This paper present classification of nuclear tests conducted at the Semipalatinsk test site by tier radiation hazards. The Institute of Biophysics of the Russian Ministry of Health established a data base the archival data on radiation situation parameters and compiled an album of radioactive plum footprints. The paper states that external and internal exposure doses received by population lived in the test vicinity can sufficiently reliably assesses using archival data. (author)

  11. Nevada Test Site 2000 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    Yvonne Townsend

    2001-01-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2000 was an average rainfall year: rainfall totaled 167 mm (6.6 in) at the Area 3 RWMS (annual average is 156 mm [6.5 in]) and 123 mm (4.8 in) at the Area 5 RWMS (annual average is 127 mm [5.0 in]). Vadose zone monitoring data indicate that 2000 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2000 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing well at isolating buried waste

  12. Nevada Test Site 2001 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    Y. E. Townsend

    2002-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2001 was an average rainfall year: rainfall totaled 150 mm (5.9 in) at the Area 3 RWMS and 120 mm (4.7 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2001 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2001 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility performance assessments

  13. Nevada Test Site 2001 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites; TOPICAL

    International Nuclear Information System (INIS)

    Y. E. Townsend

    2002-01-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report[ASER], the National Emissions Standard for Hazardous Air Pollutants[NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2001 was an average rainfall year: rainfall totaled 150 mm (5.9 in) at the Area 3 RWMS and 120 mm (4.7 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2001 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2001 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility performance assessments

  14. An analysis of the intent of environmental standards in the united states that apply to waste disposed at the Nevada test site

    International Nuclear Information System (INIS)

    Hechanova, A.E.; Mattingly, B.T.

    2000-01-01

    This paper addresses the disposal of transuranic waste at the Nevada Test Site (NTS), the intention of the environmental standards under which the disposal is completed, and some lingering controversy surrounding the U.S. nuclear weapons complex remediation effort. A goal of this paper besides the informational value is to provide points of discussion regarding this very costly and large-scale program in the U.S. and provide a platform for the exchange of ideas regarding remediation activities in other countries. (authors)

  15. Nevada Test Site Area 25, Radiological Survey and Cleanup Project, 1974-1983 (a revised final report). Revision 1

    International Nuclear Information System (INIS)

    Miller, M.G.

    1984-12-01

    This report describes the radiological survey, decontamination and decommissioning (D and D) of the Nevada Test Site (NTS) Area 25 facilities and land areas incorporated in the Nuclear Rocket Development Station (NRDS). Buildings, facilities and support systems used after 1959 for nuclear reactor and engine testing were surveyed for the presence of radioactive contamination. The radiological survey portion of the project encompassed portable instrument surveys and removable contamination surveys (swipe) for beta plus gamma and alpha radioactive contamination of facilities, equipment and land areas. Soil sampling was also accomplished. The majority of Area 25 facilities and land areas have been returned to unrestricted use. Remaining radiologically contaminated areas are posted with warning signs and barricades. 9 references, 23 figures

  16. Hydrogeologic investigations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Trudeau, D.A.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices and, since 1963, all nuclear detonations there have been underground. Most tests are conducted in vertical shafts with a small percentage conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks or alluvium. In the testing areas the water table is 450--700 m below the surface. Pre- and post- event geologic investigations are conducted for each test location and long-term studies assess the impact of underground testing on a more regional scale. Studies in progress have not identified any impact on the regional ground water system from testing, but some local effects have been recognized. In some areas where several large tests have been conducted below the water table, water levels hundreds of meters above the regional water table have been measured and radioactivity has been discovered associated with fractures in a few holes. Flow-through and straddle packer testing has revealed unexpectedly high hydraulic pressures at depth. Recently, a multiple completion monitoring well installed to study three zones has confirmed the existence of a significant upward hydraulic gradient. These observations of local pressurization and fracture flow are being further explored to determine the influence of underground nuclear testing on the regional hydrogeologic system

  17. Corrective Action Decision Document for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada: Revision No. 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-10-17

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative appropriate to facilitate the closure of Corrective Action Unit (CAU) 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 5, 22, and 23 of the NTS, CAU 140 consists of nine corrective action sites (CASs). Investigation activities were performed from November 13 through December 11, 2002, with additional sampling to delineate the extent of contaminants of concern (COCs) conducted on February 4 and March 18 and 19, 2003. Results obtained from the investigation activities and sampling indicated that only 3 of the 9 CASs at CAU 140 had COCs identified. Following a review of existing data, future land use, and current operations at the NTS, the following preferred alternatives were developed for consideration: (1) No Further Action - six CASs (05-08-02, 05-17-01, 05-19-01, 05-35-01, 05-99-04, and 22-99-04); (2) Clean Closure - one CAS (05-08-01), and (3) Closure-in-Place - two CASs (05-23-01 and 23-17-01). These alternatives were judged to meet all requirements for the technical components evaluated. Additionally, the alternatives meet all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated media at CAU 140.

  18. Closure Report for Corrective Action Unit 110: Areas 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Smith

    2001-08-01

    This Closure Report (CR) has been prepared for the Area 3 Radioactive Waste Management Site (RWMS) U-3ax/bl Disposal Unit Corrective Action Unit (CAU) 110 in accordance with the reissued (November 2000) Resource Conservation and Recovery Act (RCRA) Part B operational permit NEV HW009 (Nevada Division of Environmental Protection [NDEP], 2000) and the Federal Facility and Consent Order (FFACO) (NDEP et al., 1996). CAU 110 consists of one Corrective Action Site 03-23-04, described as the U-3ax/bl Subsidence Crater. Certifications of closure are located in Appendix A. The U-3ax/bl is a historic disposal unit within the Area 3 RWMS located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit was closed under the RCRA, as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (m{sup 3}) (8.12 x 10{sup 6} cubic feet [ft{sup 3}]) of waste. NTS atmospheric nuclear device testing generated approximately 95% of the total waste volume disposed of in U-3ax/bl; 80% of the total volume was generated from the Waste Consolidation Project. Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is normally in a state of moisture deficit.

  19. Off-site environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1985

    International Nuclear Information System (INIS)

    Grossman, R.F.; Black, S.C.; Dye, R.E.; Smith, D.D.; Thome, D.J.; Mullen, A.A.

    1986-04-01

    The EMSL-LV operates an Off-Site Radiological Safety Program around the NTS and other sites as requested by the Department of Energy (DOE) under an Interagency Agreement between DOE and EPA. This report, prepared in accordance with DOE guidelines (DOE85a), covers the program activities for calendar year 1985. It contains descriptions of pertinent features of the NTS and its environs, summaries of the EMSL-LV dosimetry and sampling methods, analytical procedures, quality assurance, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation

  20. Corrective Action Decision Document for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-28

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative appropriate to facilitate the closure of Corrective Action Unit (CAU) 516: Septic Systems and Discharge Points, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 3, 6, and 22 on the NTS, CAU 516 includes six Corrective Action Sites (CASs) consisting of two septic systems, a sump and piping, a clean-out box and piping, dry wells, and a vehicle decontamination area. Corrective action investigation activities were performed from July 22 through August 14, 2003, with supplemental sampling conducted in late 2003 and early 2004. The potential exposure pathways for any contaminants of concern (COCs) identified during the development of the DQOs at CAU 516 gave rise to the following objectives: (1) prevent or mitigate exposure to media containing COCs at concentrations exceeding PALs as defined in the corrective action investigation plan; and (2) prevent the spread of COCs beyond each CAS. The following alternatives have been developed for consideration at CAU 516: Alternative 1 - No Further Action; Alternative 2 - Clean Closure; and Alternative 3 - Closure in Place with Administrative Controls. Alternative 1, No Further Action, is the preferred corrective action for two CASs (06-51-02 and 22-19-04). Alternative 2, Clean Closure, is the preferred corrective action for four CASs (03-59-01, 03-59-02, 06-51-01, and 06-51-03). The selected alternatives were judged to meet all requirements for the technical components evaluated, as well as meeting all applicable state and federal regulations for closure of the site and will further eliminate the contaminated media at CAU 516.

  1. Maintenance Plan for the Performance Assessments and Composite Analyses of the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    International Nuclear Information System (INIS)

    Vefa Yucel

    2007-01-01

    U.S. Department of Energy (DOE) Manual M 435.1-1 requires that performance assessments (PAs) and composite analyses (CAs) for low-level waste (LLW) disposal facilities be maintained by the field offices. This plan describes the activities performed to maintain the PA and the CA for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). This plan supersedes the Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (DOE/NV/11718--491-REV 1, dated September 2002). The plan is based on U.S. Department of Energy (DOE) Order 435.1 (DOE, 1999a), DOE Manual M 435.1-1 (DOE, 1999b), the DOE M 435.1-1 Implementation Guide DOE G 435.1-1 (DOE, 1999c), and the Maintenance Guide for PAs and CAs (DOE, 1999d). The plan includes a current update on PA/CA documentation, a revised schedule, and a section on Quality Assurance

  2. Site selection

    International Nuclear Information System (INIS)

    Olsen, C.W.

    1983-07-01

    The conditions and criteria for selecting a site for a nuclear weapons test at the Nevada Test Site are summarized. Factors considered are: (1) scheduling of drill rigs, (2) scheduling of site preparation (dirt work, auger hole, surface casing, cementing), (3) schedule of event (when are drill hole data needed), (4) depth range of proposed W.P., (5) geologic structure (faults, Pz contact, etc.), (6) stratigraphy (alluvium, location of Grouse Canyon Tuff, etc.), (7) material properties (particularly montmorillonite and CO 2 content), (8) water table depth, (9) potential drilling problems (caving), (10) adjacent collapse craters and chimneys, (11) adjacent expended but uncollapsed sites, (12) adjacent post-shot or other small diameter holes, (13) adjacent stockpile emplacement holes, (14) adjacent planned events (including LANL), (15) projected needs of Test Program for various DOB's and operational separations, and (16) optimal use of NTS real estate

  3. Petrology and geochemistry of the Grouse Canyon Member of the Belted Range Tuff, Rock-Mechanics Drift, U12g Tunnel, Nevada Test Site

    International Nuclear Information System (INIS)

    Connolly, J.R.; Mansker, W.L.; Hicks, R.; Allen, C.C.; Husler, J.; Keil, K.; Lappin, A.R.

    1983-04-01

    G-Tunnel at Nevada Test Site (NTS) is the site of thermal and thermomechanical experiments examining the feasibility of emplacing heat-producing nuclear wastes in silicic tuffs. This report describes the general stratigraphy, mineralogy, and bulk chemistry of welded portions of the Grouse Canyon Member of the Belted Range Tuff, the unit in which most of these experiments will be performed. The geologic characteristics of the Grouse Canyon Member are compared with those of the Topopah Spring Member of the Paintbrush Tuff, presently the preferred horizon for an actual waste repository at Yucca Mountain, near the southwest boundary of Nevada Test Site. This comparison suggests that test results obtained in welded tuff from G-Tunnel are applicable, with limitations, to evaluation of the Topopah Spring Member at Yucca Mountain

  4. Epidemiology of Non-Typhoidal Salmonella (NTS in Humans and Animals in the Gambia and Senegal

    Directory of Open Access Journals (Sweden)

    Dione, M.

    2010-01-01

    . However, one new clone of multi-resistant Salmonella Kentucky was found. This study provided us with new insights into the genetic diversity on NTS in Senegal. Molecular tools remain essential to study the epidemiology of NTS by tracking the sources of infection and/or contamination. These same techniques were used to study the animal to human transmission in The Gambia in the next chapter. In chapter 4, eight diarrheic children with confirmed salmonellosis and 6 healthy carriers were traced back to their compounds and Salmonella identified from the domestic animals (poultry, sheep and goat living in close contact in the same compound. The most common serotypes identified were Salmonella Colindale in humans (21.42% and Salmonella Poona in animals (14.28%. Among the animals, poultry carried the highest proportion of Salmonella (66.7%. In fact, poultry are considered as the most common asymptomatic carriers of Salmonella. However, serotypes in humans were different from those in animals except in one case where Salmonella Moualine was simultaneously found in chicken and a diarrheic child but in different compounds. After proceeding MLST on all isolates, we found that those two Salmonella Moualine were distinct but genetically very close because they differed at only one locus sucA. The similarity matrix of the strains revealed close genetic relatedness among Salmonella serotypes. There was at least 80% similarity and the majority varied between 98% and 100%. This showed the stability of Salmonella clones which are not subject to high genetic variability. There was therefore no indication of clonal groups which are adapted to a specific host because the genetic tree did reveal that all lineages contained isolates of mixed origin (human and animal. The association between salmonellosis and other diseases, most often malaria, in our study shows the role of opportunistic infections and malaria in NTS infections. Almost all serotypes were susceptible to all antibiotics tested

  5. Interim environmental monitoring report for the Nevada test site, first quarter 1981

    International Nuclear Information System (INIS)

    1981-08-01

    During the first calendar quarter of 1981, no radioactivity from the nuclear tests conducted at the Nevada Test Site was measured offsite by the US Environmental Protection Agency's Environmental Monitoring Systems Laboratory. Low concentrations of 95 Zr, 95 Nb, 103 Ru, and 141 Ce attributed to the People's Republic of China nuclear test of October 15, 1980, were detected in air samples throughout the Air Surveillance Network. The maximum concentrations of these radionuclides were less than 0.1 percent of the Concentration Guides. The dosimeters of fixed station at Complex I (Coal Valley) indicated an exposure of 1.6 mR, and the dosimeters of two offsite residents, one living at Glendale, Nev., and the other near Complex I, (Coal Valley) appeared to have net exposures of 3.1 mR and 3.2 mR, respectively; however, further evaluation revealed that the net exposures were not due to an exposure from NTS operations, but may be a statistical anomaly related to an unusually low variation in the environmental background exposure rate. Further investigation is in progress

  6. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-05-03

    The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

  7. Freshwater algae of the Nevada Test Site

    International Nuclear Information System (INIS)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs

  8. Glutamatergic Receptor Activation in the Commisural Nucleus Tractus Solitarii (cNTS) Mediates Brain Glucose Retention (BGR) Response to Anoxic Carotid Chemoreceptor (CChr) Stimulation in Rats.

    Science.gov (United States)

    Cuéllar, R; Montero, S; Luquín, S; García-Estrada, J; Dobrovinskaya, O; Melnikov, V; Lemus, M; de Álvarez-Buylla, E Roces

    2015-01-01

    Glutamate, released from central terminals of glossopharyngeal nerve, is a major excitatory neurotransmitter of commissural nucleus tractus solitarii (cNTS) afferent terminals, and brain derived neurotrophic factor (BDNF) has been shown to attenuate glutamatergic AMPA currents in NTS neurons. To test the hypothesis that AMPA contributes to glucose regulation in vivo modulating the hyperglycemic reflex with brain glucose retention (BGR), we microinjected AMPA and NBQX (AMPA antagonist) into the cNTS before carotid chemoreceptor stimulation in anesthetized normal Wistar rats, while hyperglycemic reflex an brain glucose retention (BGR) were analyzed. To investigate the underlying mechanisms, GluR2/3 receptor and c-Fos protein expressions in cNTS neurons were determined. We showed that AMPA in the cNTS before CChr stimulation inhibited BGR observed in aCSF group. In contrast, NBQX in similar conditions, did not modify the effects on glucose variables observed in aCSF control group. These experiments suggest that glutamatergic pathways, via AMPA receptors, in the cNTS may play a role in glucose homeostasis.

  9. The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

    1995-02-01

    This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

  10. Population dose near the Semipalatinsk test site.

    Science.gov (United States)

    Hille, R; Hill, P; Bouisset, P; Calmet, D; Kluson, J; Seisebaev, A; Smagulov, S

    1998-10-01

    To determine the consequences of atmospheric atomic bomb tests for the population in the surroundings of the former nuclear weapons test site near Semipalatinsk in Kazakhstan, a pilot study was performed by an international cooperation between Kazakh, French, Czech and German institutions at two villages, Mostik and Maisk. Together with Kazakh scientists, eight experts from Europe carried out a field mission in September 1995 to assess, within the framework of a NATO supported project, the radiological situation as far as external doses, environmental contamination and body burden of man were concerned. A summary of the results obtained is presented. The actual radiological situation near the test site is characterized by fallout contaminations. Cs was found in upper soil layers in concentrations similar to those of the global fallout. Also Sr, Am and Co were observed. The resulting present dose to the population is low. Mean external doses from soil contamination for Maisk and Mostik (0.60-0.63 mSv/year) presently correspond to mean external doses in normal environments. Mean values of the annual internal doses observed in these two villages are below 2 microSv/year for 90Sr. For other radionuclides the internal doses are also negligible.

  11. Population dose near the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Hille, R.; Hill, P.; Kluson, J.; Seisebaev, A.; Smagulov, S.

    1998-01-01

    To determine the consequences of atmospheric atomic bomb tests for the population in the surroundings of the former nuclear weapons test site near Semipalatinsk in Kazakhstan, a pilot study was performed by an international cooperation between Kazakh, French, Czech and German institutions at two villages, Mostik and Maisk. Together with Kazakh scientists, eight experts from Europe carried out a field mission in September 1995 to assess, within the framework of a NATO supported project, the radiological situation as far as external doses, environmental contamination and body burden of man were concerned. A summary of the results obtained is presented. The actual radiological situation near the test site is characterized by fallout contaminations. Cs was found in upper soil layers in concentrations similar to those of the global fallout. Also Sr, Am and Co were observed. The resulting present dose to the population is low. Mean external doses from soil contamination for Maisk and Mostik (0.60-0.63 mSv/ year) presently correspond to mean external doses in normal environments. Mean values of the annual internal doses observed in these two villages are below 2 μSv/year for 90 Sr. For other radionuclides the internal doses are also negligible. (orig.)

  12. Underground test area subproject waste management plan. Revision No. 1

    International Nuclear Information System (INIS)

    1996-08-01

    The Nevada Test Site (NTS), located in southern Nevada, was the site of 928 underground nuclear tests conducted between 1951 and 1992. The tests were performed as part of the Atomic Energy Commission and U.S. Department of Energy (DOE) nuclear weapons testing program. The NTS is managed by the DOE Nevada Operations Office (DOE/NV). Of the 928 tests conducted below ground surface at the NTS, approximately 200 were detonated below the water table. As an unavoidable consequence of these testing activities, radionuclides have been introduced into the subsurface environment, impacting groundwater. In the few instances of groundwater sampling, radionuclides have been detected in the groundwater; however, only a very limited investigation of the underground test sites and associated shot cavities has been conducted to date. The Underground Test Area (UGTA) Subproject was established to fill this void and to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the NTS. One of its primary objectives is to gather data to characterize the deep aquifer underlying the NTS

  13. Corrective Action Investigation Plan for Corrective Action Unit 555: Septic Systems Nevada Test Site, Nevada, Rev. No.: 0 with Errata

    International Nuclear Information System (INIS)

    Pastor, Laura

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 555: Septic Systems, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 555 is located in Areas 1, 3 and 6 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada, and is comprised of the five corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-59-01, Area 1 Camp Septic System; (2) CAS 03-59-03, Core Handling Building Septic System; (3) CAS 06-20-05, Birdwell Dry Well; (4) CAS 06-59-01, Birdwell Septic System; and (5) CAS 06-59-02, National Cementers Septic System. An FFACO modification was approved on December 14, 2005, to include CAS 06-20-05, Birdwell Dry Well, as part of the scope of CAU 555. The work scope was expanded in this document to include the investigation of CAS 06-20-05. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 555 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI

  14. Põhiseadus prügikastis / Randel Länts

    Index Scriptorium Estoniae

    Länts, Randel

    2006-01-01

    Sotsiaaldemokraatliku Erakonna peasekretär Randel Länts eelolevatest presidendivalimistest. Ilmunud ka: Vooremaa 22. aug., lk. 2, pealk.: President tuleb valida südametunnistuse järgi ; Sõnumitooja 23. aug., lk. 2 ; Vali Uudised 23. aug., lk. 2 ; Põhjarannik 23. aug., lk. 2 ; Severnoje Poberezhje 23. aug., lk. 2 ; Nädaline 24. aug., lk. 2 ; Lõunaleht 24. aug., lk. 2 ; Hiiu Leht 25. aug., lk. 2 ; Harjumaa 25. aug., lk. 2 ; Kuulutaja 25. aug., lk. 4 ; Pärnu Postimees 26. aug., lk. 19 ; Meie Maa 29. aug., lk. 2

  15. Distribution and characterization of radionuclides in soils from Nevada Test Site

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tamura, T.

    1985-01-01

    Selected physicochemical properties of plutonium-bearing radioactive particles and their association with host soils from the Nevada Test Site (NTS) were studied to aid in the environmental assessment of the radionuclides in the area and to provide technological concepts for potential cleanup operations. The dominant radioactive particles were amorphous to X-ray diffraction, very fragile by compression tests, and extremely porous with particle density 3 . The physical properties of the particles suggest that they can be broken to smaller respirable sizes by saltation during wind erosion and that their unique physical properties may be useful for mechanically separating them from the nonradioactive soil particles. Experimental results revealed that more than 90% of the total radioactivity was recovered in about 25% of the total sample weight through density separation techniques and in about 18% of the total weight by a grinding-sieving process. Radioactive particles might therefore be removed from the contaminated soil by a controlled vacuum collector, density separation, grinding-sieving separation, or a combination of these techniques on the basis of the density and compressibility differences between radioactive and nonradioactive particles. 21 references, 5 figures, 5 tables

  16. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 113: Reactor Maintenance, Assembly, and Disassembly Building Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Smith, J. L.

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure in place of Corrective Action Unit (CAU) 113 Area 25 Reactor Maintenance, Assembly, and Disassembly Facility (R-MAD). CAU 113 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (NDEP, 1996). The CAU is located in Area 25 of the Nevada Test Site (NTS) and consists of Corrective Action Site (CAS) 25-04-01, R-MAD Facility (Figures 1-2). This plan provides the methodology for closure in place of CAU 113. The site contains radiologically impacted and hazardous material. Based on preassessment field work, there is sufficient process knowledge to close in place CAU 113 using the SAFER process. At a future date when funding becomes available, the R-MAD Building (25-3110) will be demolished and inaccessible radiologic waste will be properly disposed in the Area 3 Radiological Waste Management Site (RWMS)

  17. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 113: Reactor Maintenance, Assembly, and Disassembly Building Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Smith

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure in place of Corrective Action Unit (CAU) 113 Area 25 Reactor Maintenance, Assembly, and Disassembly Facility (R-MAD). CAU 113 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (NDEP, 1996). The CAU is located in Area 25 of the Nevada Test Site (NTS) and consists of Corrective Action Site (CAS) 25-04-01, R-MAD Facility (Figures 1-2). This plan provides the methodology for closure in place of CAU 113. The site contains radiologically impacted and hazardous material. Based on preassessment field work, there is sufficient process knowledge to close in place CAU 113 using the SAFER process. At a future date when funding becomes available, the R-MAD Building (25-3110) will be demolished and inaccessible radiologic waste will be properly disposed in the Area 3 Radiological Waste Management Site (RWMS).

  18. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada

    2005-01-01

    This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site. This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site (NTS). The Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) are managed and operated by Bechtel Nevada (BN) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Integrated Closure and Monitoring Plan (ICMP) for these sites is based on guidance for developing closure plans issued by the DOE (DOE, 1999a). The plan does not closely follow the format suggested by the DOE guidance to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. Further, much of the information that would be included in the individual plans is the same, and integration provides efficient presentation. A cross-walk between the contents of the ICMP and the DOE guidance is given in Appendix A. Closure and monitoring were integrated because monitoring measures the degree to which the operational and closed disposal facilities are meeting performance objectives specified in the manual to DOE Order O 435.1. Department of Energy Order 435.1 governs management of radioactive waste, and associated with it are Manual DOE M 435.1-1 and Guidance DOE G 435.1-1. The performance objectives are intended to ensure protection of workers, the public, and the environment from radiological exposure associated with the RWMSs now and in the future

  19. Rehabilitation of nuclear test site at Maralinga

    International Nuclear Information System (INIS)

    Grad, P.

    1997-01-01

    A program to rehabilitate contaminated areas at the Maralinga Nuclear Test Range in South Australia is being undertaken by the Australian Department of Primary Industries and Energy (DPIE). A major part of the program is directed at reducing the risk presented by the contaminated debris buried at Taranaki, Maralinga's most heavily contaminated site. The rehabilitation program is using the insitu vitrification technology developed for the US Department of Energy. The program is now in its third phase, involving the construction of the full-scale treatment plant. This will be completed later this year. The fourth and last phase will involve the treatment of the Taranaki pits. This will commence in 1998. Tests carried out so far indicated that the normalized leach rates for all oxides in the vitrified product were less than 0.1g/m 2 . ills

  20. Corrective Action Investigation Plan for Corrective Action Unit 234: Mud Pits, Cellars, and Mud Spills, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Grant Evenson

    2007-01-01

    Corrective Action Unit 234, Mud Pits, Cellars, and Mud Spills, consists of 12 inactive sites located in the north and northeast section of the NTS. The 12 CAU 234 sites consist of mud pits, mud spills, mud sumps, and an open post-test cellar. The CAU 234 sites were all used to support nuclear testing conducted in the Yucca Flat and Rainier Mesa areas during the 1950s through the 1970s. The CASs in CAU 234 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting appropriate corrective action alternatives

  1. Ash-flow tuff distribution and fault patterns as indicators of rotation of late-tertiary regional extension, Nevada test site

    International Nuclear Information System (INIS)

    Ander, H.D.

    1983-01-01

    Isopach and structure contour maps generated for Yucca Flat as well as fault pattern analyses of the Nevada Test Site (NTS) can aid in more efficient site selection and site characterization necessary for containment. Furthermore, these geologic studies indicate that most of the alluvial deposition in Yucca Flat was controlled by north-trending faults responding to a regional extension direction oriented approximately 20 0 to 30 0 west of the N50 0 W direction observed today. The Yucca Flat basin-forming Carpetbag and Yucca fault systems seem to be deflected at their southern ends into the northeast-trending Cane Spring and Mine Mountain fault systems. Left-lateral strike-slip displacement of approx. 1.4 km found on these northeasterly faults requires that most of the displacement on the combined fault systems occurred in an extension field oriented approximately N80 0 W. Fault movement in this extensional field postdates the Ammonia Tanks tuff (approx. 11 My) and was strongly active during deposition of some 1100 meters of alluvium in Yucca Flat. Time of rotation of regional extension to the presently active N50 0 W direction is unknown; however, it occurred so recently that it has not greatly modified fault displacement patterns extant at the NTS

  2. GES [Ground Engineering System] test site preparation

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.; Schade, A.R.; Toyoda, K.G.

    1987-10-01

    Activities are under way at Hanford to convert the 309 containment building and its associated service wing to a nuclear test facility for the Ground Engineering System (GES) test. Conceptual design is about 80% complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system, a test article cell and handing system, control and data handling systems, and safety andl auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 25% complete. Cleanout of some 1000 m 3 of equipment from the earlier reactor test in the facility is 85% complete. An Environmental Assessment was prepared and revised to incorporate Department of Energy (DOE) comments. It is now in the DOE approval chain, where a Finding of No Significant Impact is expected. During the next year, definite design will be well advanced, long-lead procurements will be initiated, construction planning will be completed, an operator training plan will be prepared, and the site (preliminary) safety analysis report will be drafted

  3. Ground motion effects of underground nuclear testing on perennial vegetation at Nevada Test Site

    International Nuclear Information System (INIS)

    Rhoads, W.A.

    1976-07-01

    In this study to estimate the potential injury to vegetation from earth movement caused by underground nuclear detonations and to estimate the extent to which this may have occurred at NTS, two explosions in the megaton range on Pahute Mesa were studied in some detail: Boxcar, which caused a surface subsidence, and Benham, which did not. Because of the subsidence phenomenology, shock propagation through the earth and along the surface, and the resulting fractures, shrubs were killed at Boxcar around the perimeter of the subsidence crater. Both trees and shrubs were killed along tectonic faults, which became the path for earth fractures, and along fractures and rock falls elsewhere. There was also evidence at Boxcar of tree damage which antedated the nuclear testing program, presumably from natural earthquakes. With the possible exception of damage to aged junipers this investigation did not reveal any good evidence of immediate effects from underground testing on vegetation beyond that recognized earlier as the edge effect

  4. Optimizing NTS-polyplex as a tool for gene transfer to cultured dopamine neurons.

    Directory of Open Access Journals (Sweden)

    Daniel Hernandez-Baltazar

    Full Text Available The study of signal transduction in dopamine (DA-containing neurons as well as the development of new therapeutic approaches for Parkinson's disease requires the selective expression of transgenes in such neurons. Here we describe optimization of the use of the NTS-polyplex, a gene carrier system taking advantage of neurotensin receptor internalization, to transfect mouse DA neurons in primary culture. The plasmids DsRed2 (4.7 kbp and VGLUT2-Venus (11 kbp were used to compare the ability of this carrier system to transfect plasmids of different sizes. We examined the impact of age of the neurons (1, 3, 5 and 8 days after seeding, of culture media used during the transfection (Neurobasal with B27 vs. conditioned medium and of three molar ratios of plasmid DNA to carrier. While the NTS-polyplex successfully transfected both plasmids in a control N1E-115 cell line, only the pDsRed2 plasmid could be transfected in primary cultured DA neurons. We achieved 20% transfection efficiency of pDsRed2 in DA neurons, with 80% cell viability. The transfection was demonstrated pharmacologically to be dependent on activation of neurotensin receptors and to be selective for DA neurons. The presence of conditioned medium for transfection was found to be required to insure cell viability. Highest transfection efficiency was achieved in the most mature neurons. In contrast, transfection with the VGLUT2-Venus plasmid produced cell damage, most likely due to the high molar ratios required, as evidenced by a 15% cell viability of DA neurons at the three molar ratios tested (1:36, 1:39 and 1:42. We conclude that, when used at molar ratios lower than 1:33, the NTS-polyplex can selectively transfect mature cultured DA neurons with only low levels of toxicity. Our results provide evidence that the NTS-polyplex has good potential for targeted gene delivery in cultured DA neurons, an in vitro system of great use for the screening of new therapeutic approaches for Parkinson

  5. Analysis of the Variability of Classified and Unclassified Radiological Source term Inventories in the Frenchman Flat Area, Nevada test Site

    International Nuclear Information System (INIS)

    Zhao, P.; Zavarin, M.

    2008-01-01

    It has been proposed that unclassified source terms used in the reactive transport modeling investigations at NTS CAUs should be based on yield-weighted source terms calculated using the average source term from Bowen et al. (2001) and the unclassified announced yields reported in DOE/NV-209. This unclassified inventory is likely to be used in unclassified contaminant boundary calculations and is, thus, relevant to compare to the classified inventory. They have examined the classified radionuclide inventory produced by 10 underground nuclear tests conducted in the Frenchman Flat (FF) area of the Nevada Test Site. The goals were to (1) evaluate the variability in classified radiological source terms among the 10 tests and (2) compare that variability and inventory uncertainties to an average unclassified inventory (e.g. Bowen 2001). To evaluate source term variability among the 10 tests, radiological inventories were compared on two relative scales: geometric mean and yield-weighted geometric mean. Furthermore, radiological inventories were either decay corrected to a common date (9/23/1992) or the time zero (t 0 ) of each test. Thus, a total of four data sets were produced. The date of 9/23/1992 was chosen based on the date of the last underground nuclear test at the Nevada Test Site

  6. Soil surface stabilization using an in situ plutonium coating techniuqe at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lew, J.; Snipes, R.; Tamura, T.

    1996-01-01

    The Hazardous Waste Remedial Actions Program (HAZWRAP), in collaboration with the University of Nevada at Reno (UNR), has developed and is investigating an in situ plutonium treatment for soils at the Nevada Test Site (NTS). The concept, conceived by Dr. T. Tamura and refined at HAZWRAP, was developed during the Nevada Applied Ecology Program investigation. In analyzing for plutonium in soils, it was noted that the alpha emanation of plutonium was greatly attenuated if traces of iron or manganese oxides were present in the final electroplating stage. The technique would reduce resuspension of alpha particles into the air by coating the contaminants in soils in situ with an environmentally compatible, durable, and nontoxic material. The coating materials (calcium hydroxide, ferrous sulfate) reduce resuspension by providing a cementitious barrier against radiation penetration while retaining soil porosity. This technique not only stabilizes plutonium-contaminated soils, but also provides an additional protection from worker exposure to radiation during remediation activities. Additionally, the coating would decrease the water solubility of the contaminant and, thus, reduce its migration through soil and uptake by plants

  7. Nevada Test Site-Directed Research and Development: FY 2006 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2007-01-01

    The Nevada Test Site Directed Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R and D projects, as presented in this report

  8. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    International Nuclear Information System (INIS)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository

  9. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  10. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada, Rev. No.: 1 with ROTC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 552: Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 552 is comprised of the one Corrective Action Site which is 12-23-05, Ponds. One additional CAS, 12-06-04, Muckpile (G-Tunnel Muckpile), was removed from this CAU when it was determined that the muckpile is an active site. A modification to the FFACO to remove CAS 12-06-04 was approved by the Nevada Division of Environmental Protection (NDEP) on December 16, 2004. The G-Tunnel ponds were first identified in the 1991 Reynolds Electrical & Engineering Co., Inc. document entitled, ''Nevada Test Site Inventory of Inactive and Abandoned Facilities and Waste Sites'' (REECo, 1991). Corrective Action Unit 552 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Therefore, additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating and selecting the corrective action alternatives for the site. The CAI will include field inspections, radiological surveys, and sampling of appropriate media. Data will also be obtained to support investigation-derived waste (IDW) disposal and potential future waste management decisions.

  11. Nevada Test Site 2009 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    2010-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2009 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NTS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 87.6 millimeters (mm) (3.45 inches (in.)) of precipitation at the Area 3 RWMS during 2009 is 43 percent below the average of 152.4 mm (6.00 in.), and the 62.7 mm (2.47 in.) of precipitation at the Area 5 RWMS during 2009 is 49 percent below the average of 122.5 mm (4.82 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation

  12. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter

  13. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 91: AREA 3 U3 fi INJECTION WELL, NEVADA TEST SITE, NEVADA FOR THE PERIOD NOVEMBER 2003 - OCTOBER 2004

    International Nuclear Information System (INIS)

    2005-01-01

    This Post-Closure Inspection and Monitoring report provides an analysis and summary of inspections, meteorological information, and neutron soil moisture monitoring for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well, Nevada Test Site (NTS), Nevada. This report covers the annual period November 2003 through October 2004. Site inspections of CAU 91 are performed every six months to identify any significant changes that could impact the proper operation of the waste disposal unit. Inspection results for the current period indicate that the overall condition of the concrete pad, perimeter fence, and warning signs is good

  14. Processing and geologic analysis of conventional cores from well ER-20-6 No. 1, Nevada Test Site

    International Nuclear Information System (INIS)

    Prothro, L.B.; Townsend, M.J.; Drellack, S.L. Jr

    1997-09-01

    In 1996, Well Cluster ER-20-6 was drilled on Pahute Mesa in Area 20, in the northwestern corner of the Nevada Test Site (NTS). The three wells of the cluster are located from 166 to 296 meters (m) (544 to 971 feet [ft]) southwest of the site of the underground nuclear test code-named BULLION, conducted in 1990 in Emplacement Hole U-20bd. The well cluster was planned to be the site of a forced-gradient experiment designed to investigate radionuclide transport in groundwater. To obtain additional information on the occurrence of radionuclides, nature of fractures, and lithology, a portion of Well ER-20-6 No. 1, the hole closest to the explosion cavity, was cored for later analysis. Bechtel Nevada (BN) geologists originally prepared the geologic interpretation of the Well Cluster ER-20-6 site and documented the geology of each well in the cluster. However, the cores from Well ER-20-6 No. 1 were not accessible at the time of that work. As the forced-gradient experiment and other radio nuclide migration studies associated with the well cluster progressed, it was deemed appropriate to open the cores, describe the geology, and re-package the core for long-term air-tight storage. This report documents and describes the processing, geologic analysis, and preservation of the conventional cores from Well ER20-6 No. 1

  15. Processing and geologic analysis of conventional cores from well ER-20-6 No. 1, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, L.B., Townsend, M.J.; Drellack, S.L. Jr. [and others

    1997-09-01

    In 1996, Well Cluster ER-20-6 was drilled on Pahute Mesa in Area 20, in the northwestern corner of the Nevada Test Site (NTS). The three wells of the cluster are located from 166 to 296 meters (m) (544 to 971 feet [ft]) southwest of the site of the underground nuclear test code-named BULLION, conducted in 1990 in Emplacement Hole U-20bd. The well cluster was planned to be the site of a forced-gradient experiment designed to investigate radionuclide transport in groundwater. To obtain additional information on the occurrence of radionuclides, nature of fractures, and lithology, a portion of Well ER-20-6 No. 1, the hole closest to the explosion cavity, was cored for later analysis. Bechtel Nevada (BN) geologists originally prepared the geologic interpretation of the Well Cluster ER-20-6 site and documented the geology of each well in the cluster. However, the cores from Well ER-20-6 No. 1 were not accessible at the time of that work. As the forced-gradient experiment and other radio nuclide migration studies associated with the well cluster progressed, it was deemed appropriate to open the cores, describe the geology, and re-package the core for long-term air-tight storage. This report documents and describes the processing, geologic analysis, and preservation of the conventional cores from Well ER20-6 No. 1.

  16. Prehistoric spatial patterning and subsistence studies: Archaeological investigations at Sample Unit U19arP4, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Johnson, W.G.; DuBarton, A.; Edwards, S.; Drollinger, H.

    1992-01-01

    This report documents the methods and results of archaeological investigations at Sample Unit U19arP4 on Pahute Mesa at the Nevada Test Site (NTS). Eight sites were located there: four lithic artifact scatters (26NY1370, 26NY1372, 26NY3666 and 26NY3667), two temporary camps (26NY3665 and 26NY5418), one artifact locality (26NY5419), and one quarry (26NY3664). One of the lithic scatters, 26NY3667, incorporated a previously recorded rock ring, 26NY1371, that could not be relocated during subsequent investigations. Surface artifacts were collected from all but two of the sites, 26NY1370 and 26NY1372. The data retrieved from these investigations include over one thousand artifacts, such as projectile points, bifaces, debitage, groundstone, and pottery. The temporally diagnostic materials indicate periodic use of Sample Unit U19arP4 from the Middle Archaic to the Shoshonean period

  17. Summary of Natural Resources that Potentially Influence Human Intrusion at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    In 1993, Raytheon Services Nevada completed a review of natural resource literature and other sources to identify potentially exploitable resources and potential future land uses near the Area 5 Radioactive Waste Management Site (RWMS) of the Nevada Test Site (NTS), Nye County, Nevada, that could lead to future inadvertent human intrusion and subsequent release of radionuclides to the accessible environment. National Security Technologies, LLC, revised the original limited-distribution document to conform to current editorial standards and U.S. Department of Energy requirements for public release. The researchers examined the potential for future development of sand, gravel, mineral, petroleum, water resources, and rural land uses, such as agriculture, grazing, and hunting. The study was part of the performance assessment for Greater Confinement Disposal boreholes. Sand and gravel are not considered exploitable site resources because the materials are common throughout the area and the quality at the Area 5 RWMS is not ideal for typical commercial uses. Site information also indicates a very low mineral potential for the area. None of the 23 mining districts in southern Nye County report occurrences of economic mineral deposits in unconsolidated alluvium. The potential for oil and natural gas is low for southern Nye County. No occurrences of coal, tar sand, or oil shale on the NTS are reported in available literature. Several potential future uses of water were considered. Agricultural irrigation is impractical due to poor soils and existing water supply regulations. Use of water for geothermal energy development is unlikely because temperatures are too low for typical commercial applications using current technology. Human consumption of water has the most potential for cause of intrusion. The economics of future water needs may create a demand for the development of deep carbonate aquifers in the region. However, the Area 5 RWMS is not an optimal location for

  18. Closure report for CAU 339: Area 12 Fleet Operations steam-cleaning discharge area, Nevada Test Site

    International Nuclear Information System (INIS)

    1997-12-01

    This Closure Report (CR) provides documentation of the completed corrective action at the Area 12 Fleet Operations site located in the southeast portion of the Area 12 Camp at the Nevada Test Site (NTS). Field work was performed in July 1997 as outlined in the Corrective Action Plan (CAP). The CAP was approved by the Nevada Division of Environmental Protection (NDEP) in June 1997. This site is identified in the Federal Facility Agreement and Consent Order (FFACO) as Corrective Action Site (CAS) Number 12-19-01 and is the only CAS in Corrective Action Unit (CAU) 339. The former Area 12 Fleet Operations Building 12-16 functioned as a maintenance facility for light- and heavy-duty vehicles from approximately 1965 to January 1993. Services performed at the site included steam-cleaning, tire service, and preventative maintenance on vehicles and equipment. Past activities impacted the former steam-cleaning discharge area with volatile organic compounds (VOCs) and total petroleum hydrocarbons (TPH) as oil

  19. Energy and non-traditional security (NTS) in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Caballero-Anthony, Mely [Nanyang Technological Univ., Singapore (SG). Centre for Non-Traditional Security (NTS) Studies; Chang, Youngho [Nanyang Technological Univ., Singapore (Singapore). Division of Economics; Putra, Nur Azha (eds.) [National Univ. of Singapore (Singapore). Energy Security Division

    2012-07-01

    Traditional notions of security are premised on the primacy of state security. In relation to energy security, traditional policy thinking has focused on ensuring supply without much emphasis on socioeconomic and environmental impacts. Non-traditional security (NTS) scholars argue that threats to human security have become increasingly prominent since the end of the Cold War, and that it is thus critical to adopt a holistic and multidisciplinary approach in addressing rising energy needs. This volume represents the perspectives of scholars from across Asia, looking at diverse aspects of energy security through a non-traditional security lens. The issues covered include environmental and socioeconomic impacts, the role of the market, the role of civil society, energy sustainability and policy trends in the ASEAN region.

  20. Testing the ecological site group concept

    Science.gov (United States)

    The 2016 “Ecological Sites for Landscape Management” special issue of Rangelands recommended an update to our thinking of Ecological Sites, suggesting that in our desire to make Ecological Sites more quantitative, we abandoned consideration of Ecological Sites’ spatial context. In response, Ecologic...

  1. Study of the Nevada Test Site using Landsat satellite imagery

    International Nuclear Information System (INIS)

    Zimmerman, P.D.

    1993-07-01

    In the period covered by the purchase order CSIS has obtained one Landsat image and determined that two images previously supplied to the principal investigator under a subcontract with George Washington University were inherently defective. We have negotiated with EOSAT over the reprocessing of those scenes and anticipate final delivery within the next few weeks. A critical early purchase during the subcontract period was of an EXABYTE tape drive, Adaptec SCSI interface, and the appropriate software with which to read Landsat images at CSIS. This gives us the capability of reading and manipulating imagery in house without reliance on outside services which have not proven satisfactory. In addition to obtaining imagery for the study, we have also performed considerable analytic work on the newly and previously purchased images. A technique developed under an earlier subcontract for identifying underground nuclear tests at Pahute Mesa has been significantly refined, and similar techniques were applied to the summit of Rainier Mesa and to the Yucca Flats area. An entirely new technique for enhancing the spectral signatures of different regions of NTS was recently developed, and appears to have great promise of success

  2. Evaluation of the Radiochemistry of Near-Field Water Samples at the Nevada Test Site Applied to the Definition of a Hydrologic Source Term

    International Nuclear Information System (INIS)

    Smith, D K

    2002-01-01

    Effective management of available groundwater resources and strategies for remediation of water impacted by past nuclear testing practices depend on knowledge about the migration of radionuclides in groundwater away from the sites of the explosions. A primary concern is to assess the relative mobilities of the different radionuclide species found near sites of underground nuclear tests and to determine the concentration, extent, and speed of this movement. Ultimately the long term transport behavior of radionuclides with half-lives long enough that they will persist for decades, their interaction with groundwater, and the resulting flux of these contaminants is of paramount importance. As part of a comprehensive approach to these assessments, more than three decades of site-specific sites studies have been undertaken at the Nevada Test Site (NTS) which have focused on the means responsible for the observed or suspected movement of radionuclides away from underground nuclear tests (RNM, 1983). More recently regional and local models of groundwater flow and radionuclide transport have been developed as part of a federal and state of Nevada program to assess the long-term effects of underground nuclear testing on human health and environment (e.g., U.S. DOE/NV, 1997a; Tompson et al., 1999; Pawloski et al., 2001). Necessary to these efforts is a reliable measure of the hydrologic source term which is defined as those radionuclides dissolved in or otherwise transported by groundwater (Smith et al., 1995). Measurement of radionuclides in waters sampled near the sites of underground nuclear test provides arguably the best opportunity to bound the hydrologic source term. This empirical approach was recognized early and concentration data has been collected annually since mid-1970's. Initially three sites were studied at the NTS; over the years the program has been expanded to include more than fifteen study locations. As part of various field programs, Lawrence Livermore

  3. Closure Report for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2001-04-01

    The purpose of this Closure Report (CR) is to provide documentation of the completed corrective action at the Test Cell A Leachfield System and to provide data confirming the corrective action. The Test Cell A Leachfield System is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Corrective Action Unit (CAU) 261. Remediation of CAU 261 is required under the FFACO (1996). CAU 261 is located in Area 25 of the Nevada Test Site (NTS) which is approximately 140 kilometers (87 miles) northwest of Las Vegas, Nevada (Figure 1). CAU 261 consists of two Corrective Action Sites (CASS): CAS 25-05-01, Leachfield; and CAS 25-05-07, Acid Waste Leach Pit (AWLP) (Figures 2 and 3). Test Cell A was operated during the 1960s and 1970s to support the Nuclear Rocket Development Station. Various operations within Building 3124 at Test Cell A resulted in liquid waste releases to the Leachfield and the AWLP. The following existing site conditions were reported in the Corrective Action Decision Document (CADD) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999): Soil in the leachfield was found to exceed the Nevada Division of Environmental Protection (NDEP) Action Level for petroleum hydrocarbons, the U.S. Environmental Protection Agency (EPA) preliminary remediation goals for semi volatile organic compounds, and background concentrations for strontium-90; Soil below the sewer pipe and approximately 4.5 meters (m) (15 feet [ft]) downstream of the initial outfall was found to exceed background concentrations for cesium-137 and strontium-90; Sludge in the leachfield septic tank was found to exceed the NDEP Action Level for petroleum hydrocarbons and to contain americium-241, cesium-137, uranium-234, uranium-238, potassium-40, and strontium-90; No constituents of concern (COC) were identified at the AWLP. The NDEP-approved CADD (DOWNV, 1999) recommended Corrective Action Alternative 2, ''Closure of the Septic Tank and Distribution Box

  4. Interpreting Results from the Standardized UXO Test Sites

    National Research Council Canada - National Science Library

    May, Michael; Tuley, Michael

    2007-01-01

    ...) and the Environmental Security Technology Certification Program (ESCTP) to complete a detailed analysis of the results of testing carried out at the Standardized Unexploded Ordnance (UXO) Test Sites...

  5. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    McCord, John

    2004-01-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the

  6. Radiation exposures from nuclear tests at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, G M

    1958-12-01

    A summary of the pertinent data on radiation exposures from nuclear tests in Nevada is presented. The data are presented in categories of external ..gamma.. radiation, activity concentrations in air, and activity concentrations in water. Methods used to estimate exposure and to evaluate data are described. The data are tabulated. The maximum external exposure was 7 to 8 r for 15 persons involved. In terms of relatively large populations, the average exposure for the 1,000,000 people living nearest the site was at the rate of 1/2 r/30 yr. The highest concentration of fallout activity in the air was about 1.3 ..mu..c/m/sup 3/ averaged over the 30 hr that the activity was present in significant quantities. The highest concentration of fallout activity in a potential drinking water supply was about 1.4 x 10/sup -/ ..mu..c/me extrapolated to D + 3 days. Evaluation of these data is given.

  7. Nevada Test Site Site Treatment Plan. Revision 2

    International Nuclear Information System (INIS)

    1996-03-01

    Treatment Plans (STPS) are required for facilities at which the US Department of Energy (DOE) or stores mixed waste, defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act and a radioactive material subject to the Atomic Energy Act. On April 6, 1993, DOE published a Federal Register notice (58 FR 17875) describing its proposed process for developing the STPs in three phases including a Conceptual, a Draft, and a Proposed Site Treatment Plan (PSTP). All of the DOE Nevada Operations Office STP iterations have been developed with the state of Nevada's input. The options and schedules reflect a ''bottoms-up'' approach and have been evaluated for impacts on other DOE sites, as well as impacts to the overall DOE program. Changes may have occurred in the preferred option and associated schedules between the PSTP, which was submitted to the state of Nevada and US Environmental Protection Agency April 1995, and the Final STP (hereafter referred to as the STP) as treatment evaluations progressed. The STP includes changes that have occurred since the submittal of the PSTP as a result of state-to-state and DOE-to-state discussions

  8. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Rawlinson

    2001-09-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

  9. Mesozoic and Cenozoic structural geology of the CP Hills, Nevada Test Site, Nye County, Nevada; and regional implications

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, S. John [Univ. of Nevada, Reno, NV (United States)

    1991-08-01

    Detailed mapping and structural analysis of upper Proterozoic and Paleozoic rocks in the CP Hills of the Nevada Test Site, together with analysis of published maps and cross sections and a reconnaissance of regional structural relations indicate that the CP thrust of Barnes and Poole (1968) actually comprises two separate, oppositely verging Mesozoic thrust systems: (1) the west-vergent CP thrust which is well exposed in the CP Hills and at Mine Mountain, and (2) the east-vergent Belted Range thrust located northwest of Yucca Flat. West-vergence of the CP thrust is indicated by large scale west-vergent recumbent folds in both its hangingwall and footwall and by the fact that the CP thrust ramps up section through hangingwall strata toward the northwest. Regional structural relations indicate that the CP thrust forms part of a narrow sigmoidal belt of west-vergent folding and thrusting traceable for over 180 km along strike. The Belted Range thrust represents earlier Mesozoic deformation that was probably related to the Last Chance thrust system in southeastern California, as suggested by earlier workers. A pre-Tertiary reconstruction of the Cordilleran fold and thrust belt in the region between the NTS and the Las Vegas Range bears a close resemblance to other regions of the Cordillera and has important implications for the development of hinterland-vergent deformation as well as for the probable magnitude of Tertiary extension north of Las Vegas Valley. Subsequent to Mesozoic deformation, the CP Hills were disrupted by at least two episodes of Tertiary extensional deformation: (1) an earlier episode represented by pre-middle Miocene low-angle normal faults, and (2) a later, post-11 Ma episode of high-angle normal faulting. Both episodes of extension were related to regional deformation, the latter of which has resulted in the present basin and range topography of the NTS region.

  10. Mesozoic and Cenozoic structural geology of the CP Hills, Nevada Test Site, Nye County, Nevada; and regional implications

    International Nuclear Information System (INIS)

    Caskey, S.J.

    1991-08-01

    Detailed mapping and structural analysis of upper Proterozoic and Paleozoic rocks in the CP Hills of the Nevada Test Site, together with analysis of published maps and cross sections and a reconnaissance of regional structural relations indicate that the CP thrust of Barnes and Poole (1968) actually comprises two separate, oppositely verging Mesozoic thrust systems: (1) the west-vergent CP thrust which is well exposed in the CP Hills and at Mine Mountain, and (2) the east-vergent Belted Range thrust located northwest of Yucca Flat. West-vergence of the CP thrust is indicated by large scale west-vergent recumbent folds in both its hangingwall and footwall and by the fact that the CP thrust ramps up section through hangingwall strata toward the northwest. Regional structural relations indicate that the CP thrust forms part of a narrow sigmoidal belt of west-vergent folding and thrusting traceable for over 180 km along strike. The Belted Range thrust represents earlier Mesozoic deformation that was probably related to the Last Chance thrust system in southeastern California, as suggested by earlier workers. A pre-Tertiary reconstruction of the Cordilleran fold and thrust belt in the region between the NTS and the Las Vegas Range bears a close resemblance to other regions of the Cordillera and has important implications for the development of hinterland-vergent deformation as well as for the probable magnitude of Tertiary extension north of Las Vegas Valley. Subsequent to Mesozoic deformation, the CP Hills were disrupted by at least two episodes of Tertiary extensional deformation: (1) an earlier episode represented by pre-middle Miocene low-angle normal faults, and (2) a later, post-11 Ma episode of high-angle normal faulting. Both episodes of extension were related to regional deformation, the latter of which has resulted in the present basin and range topography of the NTS region

  11. A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, Lance; Drellack Jr., Sigmund; Mercadante, Jennifer

    2009-01-31

    Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock’s ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock’s primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of

  12. A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada

    International Nuclear Information System (INIS)

    Prothro, Lance; Drellack Jr, Sigmund; Mercadante, Jennifer

    2009-01-01

    Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock's ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock's primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic

  13. Trimble M3 1” and South Nts-362R Total Station Angle Measurement Accuracy Analysis

    Directory of Open Access Journals (Sweden)

    Oleniacz Grzegorz

    2017-03-01

    Full Text Available The main purpose of this study was to obtain information about the actual precision of angle measurements with two instruments (Trimble M3 1 "and South NTS-362R, realizable in given measurement conditions. This object is achieved by using a simplified method of testing instruments contained in the PN-ISO 17123-3 standard [1]. This is a continuation of research described in [2], carried out on the same test base, but this time in a different, less favorable field conditions. The use of the same instrument has created an opportunity to compare and analyze the measurement results. The scope of work includes the measurement and results preparation along with statistical processing of the obtained results for both instruments.

  14. Nevada Test Site, site treatment plan 1999 annual update

    International Nuclear Information System (INIS)

    1999-03-01

    A Site Treatment Plan (STP) is required for facilities at which the US Department of Energy Nevada Operations Office (DOE/NV) generates or stores mixed waste (MW), defined by the Federal Facility Compliance Act (FFC Act) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act (RCRA) and a radioactive material subject to the Atomic Energy Act. This STP was written to identify specific treatment facilities for treating DOE/NV generated MW and provides proposed implementation schedules. This STP was approved by the Nevada Division of Environmental Protection (NDEP) and provided the basis for the negotiation and issuance of the FFC Act Consent Order (CO) dated March 6, 1996, and revised June 15, 1998. The FFC Act CO sets forth stringent regulatory requirements to comply with the implementation of the STP

  15. Corrective Action Decision Document/Closure Report for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2006-11-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 551, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. The corrective actions proposed in this document are in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) that are shown on Figure 1-2 and listed below: CAS 12-01-09, Aboveground Storage Tank and Stain; CAS 12-06-05, U-12b Muckpile; CAS 12-06-07, Muckpile; and CAS 12-06-08, Muckpile. A detailed discussion of the history of this CAU is presented in the ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 551: Area 12 Muckpiles'' (NNSA/NSO, 2004). This CADD/CR provides justification for the closure of CAU 551 in place with administrative controls. This justification is based upon process knowledge and the results of the investigative activities conducted in accordance with the CAIP (NNSA/NSO, 2004). The CAIP provides information relating to the history, planning, and scope of the investigation; therefore, this information will not be repeated in the CADD/CR. Corrective Action Unit 551, Area 12 Muckpiles, consists of four inactive sites located in the southwestern portion of Area 12. The four CAU 551 sites consist of three muckpiles, and an aboveground storage tank (AST) and stain. The CAU 551 sites were all used during underground nuclear testing at the B-, C-, D- and F-Tunnels in the late 1950s and early 1960s and have mostly remained inactive since that period.

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 1

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2006-01-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 551, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. The corrective actions proposed in this document are in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) that are shown on Figure 1-2 and listed below: CAS 12-01-09, Aboveground Storage Tank and Stain; CAS 12-06-05, U-12b Muckpile; CAS 12-06-07, Muckpile; and CAS 12-06-08, Muckpile. A detailed discussion of the history of this CAU is presented in the ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 551: Area 12 Muckpiles'' (NNSA/NSO, 2004). This CADD/CR provides justification for the closure of CAU 551 in place with administrative controls. This justification is based upon process knowledge and the results of the investigative activities conducted in accordance with the CAIP (NNSA/NSO, 2004). The CAIP provides information relating to the history, planning, and scope of the investigation; therefore, this information will not be repeated in the CADD/CR. Corrective Action Unit 551, Area 12 Muckpiles, consists of four inactive sites located in the southwestern portion of Area 12. The four CAU 551 sites consist of three muckpiles, and an aboveground storage tank (AST) and stain. The CAU 551 sites were all used during underground nuclear testing at the B-, C-, D- and F-Tunnels in the late 1950s and early 1960s and have mostly remained inactive since that period

  17. Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 543: Liquid Disposal Units is listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO) which was agreed to by the state of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). CAU 543 sites are located in Areas 6 and 15 of the Nevada Test Site (NTS), which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven Corrective Action Sites (CASs) (Figure 1): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; and CAS 15-23-03, Contaminated Sump, Piping. All Area 15 CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm, which operated from 1963 to 1981 and was used to support animal experiments involving the uptake of radionuclides. Each of the Area 15 CASs, except CAS 15-23-01, is associated with the disposal of waste effluent from Building 15-06, which was the primary location of the various tests and experiments conducted onsite. Waste effluent disposal from Building 15-06 involved piping, sumps, outfalls, a septic tank with leachfield, underground storage tanks, and an aboveground storage tank (AST). CAS 15-23-01 was associated with decontamination activities of farm equipment potentially contaminated with radiological constituents, pesticides, and herbicides. While the building structures were removed before the investigation took place, all the original tanks, sumps, piping, and concrete building pads remain in place. The Area 6 CAS is located at the Decontamination Facility in Area 6, a facility which operated from 1971 to 2001 and was used to decontaminate vehicles, equipment, clothing, and other materials that had become contaminated during nuclear testing activities. The CAS includes the effluent collection and distribution systems for Buildings

  18. Structural geology report: Spent Fuel Test - Climax Nevada Test Site

    International Nuclear Information System (INIS)

    Wilder, D.G.; Yow, J.L. Jr.

    1984-10-01

    We performed underground mapping and core logging in the Climax Stock, a granitic intrusive at the Nevada Test Site, as part of a major field test to determine the feasibility of using granitic or crystalline rock for the underground storage of spent fuel from a nuclear reactor. This mapping and logging identified more than 2500 fractures, over 1500 of which were described in enough detail to allow statistical analyses and orientation studies to be performed. We identified eight joint sets, three major shear sets, and a fault zone within the Spent Fuel Test - Climax (SFT-C) portion of the Stock. Joint sets identified within the SFT-C and elsewhere in the Stock correlated well. The orientations of joint sets identified by other investigators were consistent with our findings, indicating that the joint sets are persistent and have a relatively uniform orientation throughout a major portion of the Stock. The one joint set not seen elsewhere in the Stock is healed and the wall rock is altered, implying that healed joints were not included in the mapping criteria used by other investigators. The shear sets were distinguished from the joint sets by virtue of crushed minerals, continuous clay infilling, and other evidences of shearing, and from faults by the lack of offsetting. Previous investigators working mainly in the Pile Driver Drifts identified two of the shear sets. The third set, being nearly parallel to these Drifts had not been identified previously. The fault zone identified at the far (Receiving Room) end of the project is oriented approximately N45 0 E-75 0 SE, similar to both the Boundary and Shaft Station Faults. We have, therefore, concluded that the Receiving Room Fault is one of a series of normal faults that occur within the Climax Stock and that are possibly related, in both age and genesis, to the Boundary Fault. 52 refs., 26 figs., 11 tabs

  19. Multiple Site Damage in Flat Panel Testing

    National Research Council Canada - National Science Library

    Shrage, Daniel

    2000-01-01

    This report aimed to experimentally verify analytical models that predict the residual strength of representative aircraft structures, such as wide panels, that are subjected to Multiple Site Damage (MSD...

  20. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada, Revision 0 with ROTC 1, 2, and Errata

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2004-04-01

    This Corrective Action Decision Document (CADD) has been prepared for Corrective Action Unit (CAU) 204 Storage Bunkers, Nevada Test Site (NTS), Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE); and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) north of Las Vegas, Nevada (Figure 1-1). The Corrective Action Sites (CASs) within CAU 204 are located in Areas 1, 2, 3, and 5 of the NTS, in Nye County, Nevada (Figure 1-2). Corrective Action Unit 204 is comprised of the six CASs identified in Table 1-1. As shown in Table 1-1, the FFACO describes four of these CASs as bunkers one as chemical exchange storage and one as a blockhouse. Subsequent investigations have identified four of these structures as instrumentation bunkers (CASs 01-34-01, 02-34-01, 03-34-01, 05-33-01), one as an explosives storage bunker (CAS 05-99-02), and one as both (CAS 05-18-02). The six bunkers included in CAU 204 were primarily used to monitor atmospheric testing or store munitions. The ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada'' (NNSA/NV, 2002a) provides information relating to the history, planning, and scope of the investigation; therefore, it will not be repeated in this CADD. This CADD identifies potential corrective action alternatives and provides a rationale for the selection of a recommended corrective action alternative for each CAS within CAU 204. The evaluation of corrective action alternatives is based on process knowledge and the results of investigative activities conducted in accordance with the CAIP (NNSA/NV, 2002a) that was approved prior to the start of the Corrective Action Investigation (CAI). Record of Technical Change (ROTC) No. 1 to the CAIP (approval pending) documents changes to the preliminary action levels

  1. Field testing a soil site field guide for Allegheny hardwoods

    Science.gov (United States)

    S.B. Jones

    1991-01-01

    A site quality evaluation decision model, developed for Allegheny hardwoods on the non-glaciated Allegheny Plateau of Pennsylvania and New York, was field tested by International Paper (IP) foresters and the author, on sites within the region of derivation and on glaciated sites north and west of the Wisconsin drift line. Results from the field testing are presented...

  2. Baroreflexes of the rat. V. Tetanus-induced potentiation of ADN A-fiber responses at the NTS.

    Science.gov (United States)

    Tang, Xiaorui; Dworkin, Barry R

    2007-12-01

    In a long-term neuromuscular blocked (NMB) rat preparation, tetanic stimulation of the aortic depressor nerve (ADN) enhanced the A-fiber evoked responses (ERs) in the cardiovascular region, the nucleus of the solitary tract (dmNTS). The potentiation persisted for at least several hours and may be a mechanism for adaptive adjustment of the gain of the baroreflex, with functional implications for blood pressure regulation. Using a capacitance electrode, we selectively stimulated A-fibers and acquired a stable 10-h "A-fiber only" ER baseline at the dmNTS. Following baseline, an A+C-fiber activating tetanus was applied to the ADN. The tetanus consisted of 1,000 "high current" pulses (10 trains; 300 mus, 100 Hz, 1 s), with intertrain interval of 9 s. A 10-h A-fiber only posttetanic test phase repeated the stimulus pattern of the baseline. Fourteen tetanus experiments were done in 12 rats. Compared with the baseline before tetanus, the A-fiber ER magnitudes of posttetanus hours were larger [F(13, 247) = 3.407, P ADN A+C fiber-activating tetanus produced increases in the magnitude of the A-fiber ERs in the dmNTS that persisted for several hours. In an additional rat, application of an NMDA receptor antagonist, prior to the tetanus, blocked the potentiation effect. The stimulus protocols, magnitude and duration of the effect, and pharmacology resemble associative long-term potentiation (LTP).

  3. Ecological studies of small mammals in a nuclear site on Nevada Test Site

    International Nuclear Information System (INIS)

    Bradley, W.G.; Moor, K.S.

    1978-01-01

    Ecological studies of small vertebrates in nuclear event sites in NTS began in spring 1977 with the establishment of a permanent live-trapping grid in Little Feller II. These study areas are located in Area 18, a relatively homogeneous area vegetatively and topographically. Most of the flora and fauna are typical of the Great Basin desert found in southern Nevada. Dominant vegetation includes Artemesia spp. and to a lesser extent Atriplex. Salsola is an abundant weed in areas that have been mechanically disturbed such as the vicinity of GZ. A 400-station live-trapping grid was established in Little Feller II, April 1977. Sixteen lines of live traps (25 traps per line, each trap 50 feet apart) comprise the 8.4 hectare grid encompassing GZ. Nine trapping periods have been completed to date totaling over 10,000 trap nights. Over 400 small vertebrates have been marked for permanent identification in the grid. Over 60 known residents (animals marked 3 months previously and recaptured in the same vicinity) have been collected and prepared for shipping; however, radioanalytical results were not available to include in this report. Both census and field note observations were used to develop an inventory of the vertebrates found in the study areas. Sufficient data have been generated from Little Feller II to estimate density of rodents. These data and comparative data from Area 5 (Mohave Desert), Area 11 (Transition), and Area 13 (Great Basin) are presented. It was readily apparent that rodents in general were more numerous in Little Feller II. In addition, Dipodomys ordii, a Great Basin species, was an important new addition to the rodent fauna

  4. Culture, corporation and collective action: The Department of Energy's American Indian consultation program on the Nevada Test Site in political ecological perspective

    Science.gov (United States)

    Halmo, David Brian

    In the western United States, Numic-speaking Indian peoples wield more power today than ever before. Following centuries of depopulation, land and resource loss, and directed change interventions aimed at assimilating them into mainstream society, they are revitalizing traditional culture and renewing their claims to lands and resources by demanding equal participation in national-level activities that affect land and resources that were once under their control. In 1994, representatives of Numic Indian tribes representing three ethnic groups involved in consultation with the U.S. Department of Energy on the Nevada Test Site (NTS) decided by consensus to "incorporate" themselves as the Consolidated Group of Tribes and Organizations (CGTO) to defend their common interests in and claims to NTS lands and resources. What caused 16 distinct, autonomous, sovereign American Indian tribal entities to incorporate themselves as a corporate organization? Using a political ecology perspective, this study examines the social, cultural and political processes operating at multiple levels of analysis and applies social and cultural theories of (1) ethnic cultural persistence, (2) the emergence and evolution of collective action groups for defending cultural interests in "common property," (3) the role of corporate and organizational structure and culture in the articulation of social relations between contending groups, and (4) the related shifts or changes in the distribution of structural power as a result of changing policy environments to a case study-based ethnographic analysis of an ongoing program of American Indian consultation.

  5. Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0

    International Nuclear Information System (INIS)

    Olson, A.L.; Nacht, S.J.

    1997-11-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D ampersand D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities

  6. Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Olson, A.L.; Nacht, S.J.

    1997-11-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D&D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities.

  7. Paleohydrology of the southern Great Basin, with special reference to water table fluctuations beneath the Nevada Test Site during the late(?) Pleistocene

    Science.gov (United States)

    Winograd, Isaac Judah; Doty, Gene C.

    1980-01-01

    Knowledge of the magnitude of water-table rise during Pleistocene pluvial climates, and of the resultant shortening of groundwater flow path and reduction in unsaturated zone thickness, is mandatory for a technical evaluation of the Nevada Test Site (NTS) or other arid zone sites as repositories for high-level or transuranic radioactive wastes. The distribution of calcitic veins filling fractures in alluvium, and of tufa deposits between the Ash Meadows spring discharge area and the Nevada Test Site indicates that discharge from the regional Paleozoic carbonate aquifer during the Late( ) Pleistocene pluvial periods may have occurred at an altitude about 50 meters higher than at present and 14 kilometers northeast of Ash Meadows. Use of the underflow equation (relating discharge to transmissivity, aquifer width, and hydraulic gradient), and various assumptions regarding pluvial recharge, transmissivity, and altitude of groundwater base level, suggest possible rises in potentiometric level in the carbonate aquifer of about -90 meters beneath central Frenchman Flat. During Wisconsin time the rise probably did not exceed 30 meters. Water-level rises beneath Frenchman Flat during future pluvials are unlikely to exceed 30 meters and might even be 10 meters lower than modern levels. Neither the cited rise in potentiometric level in the regional carbonate aquifer, nor the shortened flow path during the Late( ) Pleistocene preclude utilization of the NTS as a repository for high-level or transuranic-element radioactive wastes provided other requisite conditions are met as this site. Deep water tables, attendant thick (up to several hundred meter) unsaturated zones, and long groundwater flow paths characterized the region during the Wisconsin Stage and probably throughout the Pleistocene Epoch and are likely to so characterize it during future glacial periods. (USGS)

  8. Time-domain electromagnetic soundings at the Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Frischknecht, F.C.; Raab, P.V.

    1984-01-01

    Structural discontinuities and variations in the resistivity of near-surface rocks often seriously distort dc resistivity and frequency-domain electromagnetic (FDEM) depth sounding curves. Reliable interpretation of such curves using one-dimensional (1-D) models is difficult or impossible. Short-offset time-domain electromagnetic (TDEM) sounding methods offer a number of advantages over other common geoelectrical sounding methods when working in laterally heterogeneous areas. In order to test the TDEM method in a geologically complex region, measurements were made on the east flank of Yucca Mountain at the Nevada Test Site (NTS). Coincident, offset coincident, single, and central loop configurations with square transmitting loops, either 305 or 152 m on a side, were used. Measured transient voltages were transformed into apparent resistivity values and then inverted in terms of 1-D models. Good fits to all of the offset coincident and single loop data were obtained using three-layer models. In most of the area, two well-defined interfaces were mapped, one which corresponds closely to a contact between stratigraphic units at a depth of about 400 m and another which corresponds to a transition from relatively unaltered to altered volcanic rocks at a depth of about 1000 m. In comparison with the results of a dipole-dipole resistivity survey, the results of the TDEM survey emphasize changes in the geoelectrical section with depth. Nonetheless, discontinuities in the layering mapped with the TDEM method delineated major faults or fault zones along the survey traverse. 5 refs., 10 figs., 1 tab

  9. Establishment of a facility for intrusive characterization of transuranic waste at the Nevada Test Site

    International Nuclear Information System (INIS)

    Foster, B.D.; Musick, R.G.; Pedalino, J.P.; Cowley, J.L.; Karney, C.C.; Kremer, J.L.

    1998-01-01

    This paper describes design and construction, project management, and testing results associated with the Waste Examination Facility (WEF) recently constructed at the Nevada Test Site (NTS). The WEF and associated systems were designed, procured, and constructed on an extremely tight budget and within a fast track schedule. Part 1 of this paper focuses on design and construction activities, Part 2 discusses project management of WEF design and construction activities, and Part 3 describes the results of the transuranic (TRU) waste examination pilot project conducted at the WEF. In Part 1, the waste examination process is described within the context of Waste Isolation Pilot Plant (WIPP) characterization requirements. Design criteria are described from operational and radiological protection considerations. The WEF engineered systems are described. These systems include isolation barriers using a glove box and secondary containment structure, high efficiency particulate air (HEPA) filtration and ventilation systems, differential pressure monitoring systems, and fire protection systems. In Part 2, the project management techniques used for ensuring that stringent cost/schedule requirements were met are described. The critical attributes of these management systems are described with an emphasis on team work. In Part 3, the results of a pilot project directed at performing intrusive characterization (i.e., examination) of TRU waste at the WEF are described. Project activities included cold and hot operations. Cold operations included operator training, facility systems walk down, and operational procedures validation. Hot operations included working with plutonium contaminated TRU waste and consisted of waste container breaching, waste examination, waste segregation, data collection, and waste repackaging

  10. Interim report on flash floods, Area 5 - Nevada Test Site

    International Nuclear Information System (INIS)

    French, R.H.

    1980-09-01

    Examination of the presently available data indicates that consideration must be given to the possibility of flash floods when siting waste management facilities in Area 5 of the Nevada Test Site. 6 figures, 7 tables

  11. Testing Pearl Model In Three European Sites

    Science.gov (United States)

    Bouraoui, F.; Bidoglio, G.

    The Plant Protection Product Directive (91/414/EEC) stresses the need of validated models to calculate predicted environmental concentrations. The use of models has become an unavoidable step before pesticide registration. In this context, European Commission, and in particular DGVI, set up a FOrum for the Co-ordination of pes- ticide fate models and their USe (FOCUS). In a complementary effort, DG research supported the APECOP project, with one of its objective being the validation and im- provement of existing pesticide fate models. The main topic of research presented here is the validation of the PEARL model for different sites in Europe. The PEARL model, actually used in the Dutch pesticide registration procedure, was validated in three well- instrumented sites: Vredepeel (the Netherlands), Brimstone (UK), and Lanna (Swe- den). A step-wise procedure was used for the validation of the PEARL model. First the water transport module was calibrated, and then the solute transport module, using tracer measurements keeping unchanged the water transport parameters. The Vrede- peel site is characterised by a sandy soil. Fourteen months of measurements were used for the calibration. Two pesticides were applied on the site: bentazone and etho- prophos. PEARL predictions were very satisfactory for both soil moisture content, and pesticide concentration in the soil profile. The Brimstone site is characterised by a cracking clay soil. The calibration was conducted on a time series measurement of 7 years. The validation consisted in comparing predictions and measurement of soil moisture at different soil depths, and in comparing the predicted and measured con- centration of isoproturon in the drainage water. The results, even if in good agreement with the measuremens, highlighted the limitation of the model when the preferential flow becomes a dominant process. PEARL did not reproduce well soil moisture pro- file during summer months, and also under-predicted the arrival of

  12. A Title 40 Code of Federal Regulations Part 191 Evaluation of Buried Transuranic Waste at the Nevada Test Site - 8210

    International Nuclear Information System (INIS)

    G J Shott; V Yucel; L Desotell

    2008-01-01

    In 1986, 21 m 3 of transuranic (TRU) waste was inadvertently buried in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site (NTS). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is considered five options for management of the buried TRU waste. One option is to leave the waste in-place if the disposal can meet the requirements of Title 40 Code of Federal Regulations (CFR) Part 191, 'Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes'. This paper describes analyses that assess the likelihood that TRU waste in shallow land burial can meet the 40 CFR 191 standards for a geologic repository. The simulated probability of the cumulative release exceeding 1 and 10 times the 40 CFR 191.13 containment requirements is estimated to be 0.009 and less than 0.0001, respectively. The cumulative release is most sensitive to the number of groundwater withdrawal wells drilled through the disposal trench. The mean total effective dose equivalent for a member of the public is estimated to reach a maximum of 0.014 milliSievert (mSv) at 10,000 years, or approximately 10 percent of the 0.15 mSv 40 CFR 191.15 individual protection requirement. The dose is predominantly from inhalation of short-lived Rn-222 progeny in air produced by low-level waste disposed in the same trench. The transuranic radionuclide released in greatest amounts, Pu-239, contributes only 0.4 percent of the dose. The member of public dose is most sensitive to the U-234 inventory and the radon emanation coefficient. Reasonable assurance of compliance with the Subpart C groundwater protection standard is provided by site characterization data and hydrologic processes modeling which support a conclusion of no groundwater pathway within 10,000 years. Limited quantities of transuranic waste in a shallow land burial trench at the NTS can meet

  13. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2001-09-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 326, Areas 6 and 27 Release Sites. This CAU is currently listed in the January 2001, Appendix III of the Federal Facilities Agreement and Consent Order (FFACO) (FFACO, 1996). CAU 326 is located on the Nevada Test Site (NTS) and consists of the following four Corrective Action Sites (CASS) (Figure 1): CAS 06-25-01--Is a rupture in an underground pipe that carried heating oil (diesel) from the underground heating oil tank (Tank 6-CP-1) located to the west of Building CP-70 to the boiler in Building CP-1 in the Area 6 Control Point (CP) compound. CAS 06-25-02--A heating oil spill that is a result of overfilling an underground heating oil tank (Tank 6-DAF-5) located at the Area 6 Device Assembly Facility (DAF). CAS 06-25-04--A release of waste oil that occurred while removing used oil to from Tank 6-619-4. Tank 6-619-4 is located northwest of Building 6-619 at the Area 6 Gas Station. CAS 27-25-01--Consists of an excavation that was created in an attempt to remove impacted stained soil from the Site Maintenance Yard in Area 27. Approximately 53.5 cubic meters (m{sup 3}) (70 cubic yards [yd{sup 3}]) of soil impacted by total petroleum hydrocarbons (TPH) and polychlorinated biphenyls (PCBs) was excavated before the excavation activities were halted. The excavation activities were stopped because the volume of impacted soil exceeded estimated quantities and budget.

  14. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    A. T. Urbon

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 326, Areas 6 and 27 Release Sites. This CAU is currently listed in the January 2001, Appendix III of the Federal Facilities Agreement and Consent Order (FFACO) (FFACO, 1996). CAU 326 is located on the Nevada Test Site (NTS) and consists of the following four Corrective Action Sites (CASS) (Figure 1): CAS 06-25-01-Is a rupture in an underground pipe that carried heating oil (diesel) from the underground heating oil tank (Tank 6-CP-1) located to the west of Building CP-70 to the boiler in Building CP-1 in the Area 6 Control Point (CP) compound. CAS 06-25-02-A heating oil spill that is a result of overfilling an underground heating oil tank (Tank 6-DAF-5) located at the Area 6 Device Assembly Facility (DAF). CAS 06-25-04-A release of waste oil that occurred while removing used oil to from Tank 6-619-4. Tank 6-619-4 is located northwest of Building 6-619 at the Area 6 Gas Station. CAS 27-25-01-Consists of an excavation that was created in an attempt to remove impacted stained soil from the Site Maintenance Yard in Area 27. Approximately 53.5 cubic meters (m(sup 3)) (70 cubic yards[yd(sup 3)]) of soil impacted by total petroleum hydrocarbons (TPH) and polychlorinated biphenyls (PCBs) was excavated before the excavation activities were halted. The excavation activities were stopped because the volume of impacted soil exceeded estimated quantities and budget

  15. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    International Nuclear Information System (INIS)

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan

  16. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

  17. Alternative Site Technology Deployment-Monitoring System for the U-3ax/bl Disposal Unit at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dixon, J.M.; Levitt, D.G.; Rawlinson, S.E.

    2001-01-01

    In December 2000, a performance monitoring facility was constructed adjacent to the U-3ax/bl mixed waste disposal unit at the Nevada Test Site (NTS). Recent studies conducted in the arid southwestern United States suggest that a vegetated monolayer evapotranspiration (ET) closure cover may be more effective at isolating waste than traditional Resource Conservation and Recovery Act (RCRA) multi-layered designs. The monitoring system deployed next to the U-3ax/bl disposal unit consists of eight drainage lysimeters with three surface treatments: two are left bare; two are revegetated with native species; two are being allowed to revegetate with invader species; and two are reserved for future studies. Soil used in each lysimeter is native alluvium taken from the same location as the soil used for the cover material on U-3ax/bl. The lysimeters were constructed so that any drainage to the bottom can be collected and measured. To provide a detailed evaluation of the cover performance, an ar ray of 16 sensors was installed in each lysimeter to measure soil water content, soil water potential, and soil temperature. Revegetation of the U-3ax/bl closure cover establishes a stable plant community that maximizes water loss through transpiration while at the same time, reduces water and wind erosion and ultimately restores the disposal unit to its surrounding Great Basin Desert environment

  18. Lessons learned in the implementation of Integrated Safety Management at DOE Order Compliance Sites vs Necessary and Sufficient Sites

    International Nuclear Information System (INIS)

    Hill, R.L.

    2000-01-01

    This paper summarizes the development and implementation of Integrated Safety Management (ISM) at an Order Compliance Site (Savannah River Site) and a Necessary and Sufficient Site (Nevada Test Site). A discussion of each core safety function of ISM is followed by an example from an Order Compliance Site and a Necessary and Sufficient Site. The Savannah River Site was the first DOE site to have a DOE Headquarters-validated and approved ISM System. The NTS is beginning the process of verification and validation. This paper defines successful strategies for integrating Environment, Safety, and Health management into work under various scenarios

  19. Corrective Action Decision Document for Corrective Action Unit 271: Areas 25, 26, and 27 Septic Systems, Nevada Test Site, Nevada, Rev. 0

    International Nuclear Information System (INIS)

    2002-01-01

    This corrective action decision document (CADD) identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 271, Areas 25, 26, and 27 Septic Systems, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order (FFACO). Located on the NTS approximately 65 miles northwest of Las Vegas, CAU 271 consists of fifteen Corrective Action Sites (CASs). The CASs consist of 13 septic systems, a radioactive leachfield, and a contaminated reservoir. The purpose of this CADD is to identify and provide a rationale for the selection of a recommended CAA for each CAS within CAU 271. Corrective action investigation (CAI) activities were performed from October 29, 2001, through February 22, 2002, and April 29, 2002, through June 25, 2002. Analytes detected during the CAI were evaluated against preliminary action levels and regulatory disposal limits to determine contaminants of concern (COC) for each CAS. It was determined that contaminants of concern included hydrocarbon-contaminated media, polychlorinated biphenyls, and radiologically-contaminated media. Three corrective action objectives were identified for these CASs, and subsequently three CAAs developed for consideration based on a review of existing data, future use, and current operations in Areas 25, 26, and 27 of the NTS. These CAAs were: Alternative 1 - No Further Action, Alternative 2 - Clean Closure, and Alternative 3 - Closure in Place with Administrative Controls. Alternative 2, Clean Closure, was chosen as the preferred CAA for all but two of the CASs (25-04-04 and 27-05-02) because Nevada Administrative Control 444.818 requires clean closure of the septic tanks involved with these CASs. Alternative 3, Closure in Place, was chosen for the final two CASs because the short-term risks of

  20. Corrective Action Decision Document for Corrective Action Unit 271: Areas 25, 26, and 27 Septic Systems, Nevada Test Site, Nevada, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-09-16

    This corrective action decision document (CADD) identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 271, Areas 25, 26, and 27 Septic Systems, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order (FFACO). Located on the NTS approximately 65 miles northwest of Las Vegas, CAU 271 consists of fifteen Corrective Action Sites (CASs). The CASs consist of 13 septic systems, a radioactive leachfield, and a contaminated reservoir. The purpose of this CADD is to identify and provide a rationale for the selection of a recommended CAA for each CAS within CAU 271. Corrective action investigation (CAI) activities were performed from October 29, 2001, through February 22, 2002, and April 29, 2002, through June 25, 2002. Analytes detected during the CAI were evaluated against preliminary action levels and regulatory disposal limits to determine contaminants of concern (COC) for each CAS. It was determined that contaminants of concern included hydrocarbon-contaminated media, polychlorinated biphenyls, and radiologically-contaminated media. Three corrective action objectives were identified for these CASs, and subsequently three CAAs developed for consideration based on a review of existing data, future use, and current operations in Areas 25, 26, and 27 of the NTS. These CAAs were: Alternative 1 - No Further Action, Alternative 2 - Clean Closure, and Alternative 3 - Closure in Place with Administrative Controls. Alternative 2, Clean Closure, was chosen as the preferred CAA for all but two of the CASs (25-04-04 and 27-05-02) because Nevada Administrative Control 444.818 requires clean closure of the septic tanks involved with these CASs. Alternative 3, Closure in Place, was chosen for the final two CASs because the short-term risks of

  1. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 121, Storage Tanks and Miscellaneous Sites. CAU 121 is currently listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO, 1996) and consists of three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site (NTS): CAS 12-01-01, Aboveground Storage Tank; CAS 12-01-02, Aboveground Storage Tank; and CAS 12-22-26, Drums; 2 AST's. CASs 12-01-01 and 12-01-02 are located to the west of the Area 12 Camp, and CAS 12-22-26 is located near the U-12g Tunnel, also known as G-tunnel, in Area 12 (Figure 1). The aboveground storage tanks (ASTs) present at CASs 12-01-01 and 12-01-02 will be removed and disposed of at an appropriate facility. Soil below the ASTs will be sampled to identify whether it has been impacted with chemicals or radioactivity above action levels. If impacted soil above action levels is present, the soil will be excavated and disposed of at an appropriate facility. The CAS 12-22-26 site is composed of two overlapping areas, one where drums had formerly been stored, and the other where an AST was used to dispense diesel for locomotives used at G-tunnel. This area is located above an underground radioactive materials area (URMA), and within an area that may have elevated background radioactivity because of containment breaches during nuclear tests and associated tunnel reentry operations. CAS 12-22-26 does not include the URMA or the elevated background radioactivity. An AST that had previously been used to store liquid magnesium chloride (MgCl) was properly disposed of several years ago, and releases from this tank are not an environmental concern. The diesel AST will be removed and disposed of at an appropriate facility. Soil at the former drum area and the diesel AST area will be sampled to identify whether it has been impacted by releases, from the drums or the

  2. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Fitzmaurice, T. M.

    2000-01-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10 5 cubic meters (8.12 x 10 6 cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and repair

  3. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2000-08-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and

  4. Corrective Action Investigation Plan for Corrective Action Unit 555: Septic Systems Nevada Test Site, Nevada, Rev. No.: 0 with Errata

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, Laura

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 555: Septic Systems, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 555 is located in Areas 1, 3 and 6 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada, and is comprised of the five corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-59-01, Area 1 Camp Septic System; (2) CAS 03-59-03, Core Handling Building Septic System; (3) CAS 06-20-05, Birdwell Dry Well; (4) CAS 06-59-01, Birdwell Septic System; and (5) CAS 06-59-02, National Cementers Septic System. An FFACO modification was approved on December 14, 2005, to include CAS 06-20-05, Birdwell Dry Well, as part of the scope of CAU 555. The work scope was expanded in this document to include the investigation of CAS 06-20-05. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 555 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by

  5. Corrective Action Investigation Plan for Corrective Action Unit 500: Test Cell A Septic System, Nevada Test Site, Nevada, Revision 0, DOE/NV--528 UPDATED WITH TECHNICAL CHANGE No.1

    Energy Technology Data Exchange (ETDEWEB)

    ITLV

    1998-12-01

    This Corrective Action Investigation Plan (CAIP) addresses one of three leachfield systems associated with Test Cell A, which is located in Area 25 at the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (see Leachfield Work Plan Figure 1-1). Corrective Action Unit 500 is comprised of the Test Cell A Septic System (CAS 25-04-05) and the associated leachfield system presented in Figure 1-1 (FFACO, 1996). The leachfield is located 60 meters (m) (200 feet [ft]) southeast of the Building 3124 gate, and approximately 45 m (150 ft) southwest of Building 3116 at Test Cell A. Test Cell A operated during the 1960s to support nuclear rocket reactor testing as part of the Nuclear Rocket Development Station (NRDS) (SNPO, 1970). Various operations within Buildings 3113B (Mechanical Equipment Room), 3115 (Helium Compressor Station), 3116 (Pump House), a water tank drain and overflow, a ''yard and equipment drain system'' outside of Building 3116, and a trailer have resulted in potentially hazardous effluent releases to the leachfield system (DOE, 1988a). The leachfield system components include discharge lines, manways, a septic tank, an outfall line, a diversion chamber, and a 15 by 30 m (50 by 100 ft) leachfield (see Leachfield Work Plan Figure 3-1 for explanation of terminology). In addition, engineering drawings show an outfall system that may or may not be connected to the CAU 500 leachfield. In general, effluent contributed to the leachfield was sanitary wastewater associated with floor drains, toilet and lavatory facilities in Building 3113B and floor drains in the remaining source buildings. The surface and subsurface soils in the vicinity of the collection system, outfall, and leachfield may have been impacted by effluent containing contaminants of potential concern (COPCs) generated by support activities associated with Test Cell A reactor testing operations.

  6. Detecting and modeling persistent self-potential anomalies from underground nuclear explosions at the Nevada Test Site

    International Nuclear Information System (INIS)

    McKague, H.L.; Kansa, E.; Kasameyer, P.W.

    1992-01-01

    Self-potential anomalies are naturally occurring, nearly stationary electric fields that are detected by measuring the potential difference between two points on (or in) the ground. SP anomalies arise from a number of causes: principally electrochemical reactions, and heat and fluid flows. SP is routinely used to locate mineral deposits, geothermal systems, and zones of seepage. This paper is a progress report on our work toward detecting explosion-related SP signals at the Nevada Test Site (NTS) and in understanding the physics of these anomalies that persist and continue changing over periods of time that range from months to years. As background, we also include a brief description of how SP signals arise, and we mention their use in other areas such as exploring for geothermal resources and locating seepage through dams. Between the years 1988 and 1991, we surveyed the areas around seven underground nuclear tests for persistent SP anomalies. We not only detected anomalies, but we also found that various phenomena could be contributing to them and that we did not know which of these were actually occurring. We analyzed our new data with existing steady state codes and with a newly developed time-dependent thermal modeling code. Our results with the new code showed that the conductive decay of the thermal pulse from an underground nuclear test could produce many of the observed signals, and that others are probably caused by movement of fluid induced by the explosion. 25 refs

  7. Hanford Site Emergency Alerting System siren testing report

    International Nuclear Information System (INIS)

    Weidner, L.B.

    1997-01-01

    The purpose of the test was to determine the effective coverage of the proposed upgrades to the existing Hanford Site Emergency Alerting System (HSEAS). The upgrades are to enhance the existing HSEAS along the Columbia River from the Vernita Bridge to the White Bluffs Boat Launch as well as install a new alerting system in the 400 Area on the Hanford Site. Five siren sites along the Columbia River and two sites in the 400 Area were tested to determine the site locations that will provide the desired coverage

  8. HIV/AIDS testing sites and locator services

    Data.gov (United States)

    U.S. Department of Health & Human Services — The HIV Testing Sites & Care Services Locator is a first-of-its-kind, location-based search tool that allows you to search for testing services, housing...

  9. Reconstruction of absorbed dose by methods biological dosimetry inhabitans living in Semipalatinsk Nuclear Test Site

    International Nuclear Information System (INIS)

    Abildinova, G.

    2010-01-01

    As a result perennial overland and atmospheric test the nucleus weapon on Semipalatinsk nucler test site (NTS) about 1,2 ml person were subjected to frequentative sharp and chronic irradiation in different range of doses. Besides a significant number of battle radioactive matters tests with radionuclei dispersion on soil surface and an atmosphere was realized also. All this activity has caused the significant radioactive contamination and damage to an environment, and the local population has received extra exposure to radiation. These circumstances have essentially complicated the economy development of the given region. Aim: Reconstruction of absorbed dose by modern methods biological dosimetry beside inhabitants living in region of influence Semipalatinsk NTS. The cytogenetically examination of population Semipalatinsk region, living in different zones radiation risk: s. Dolon, s. Sarzhal, s. Mostik. Installed that total frequency of chromosome aberrations forms 4,8/100; 2,1/100; 2,5/100 cells, accordingly. High level of chromosome aberrations is conditioned to account radiations markers - acentric fragments (2,1/100 cells in s. Dolon; 1,09/100 cells in s. Sarzhal; 0,79/100 cells in s. Mostik); dysenteric and ring chromosomes (0,6; 0,2; 0,11) and stable type chromosome aberrations (1,02; 0,3; 1,0, accordingly). Frequency and spectrum of chromosome aberrations are indicative of significant mutation action ionizing radiations on chromosome device of somatic cells. Studied dependency an cytogenetically of effects from dose of irradiation within before 0,5 Gr in vitro for calibrated curve standard when undertaking reconstruction efficient dose at the time of irradiations examined group of population. Dependency is described the model a*cos(x) 1 + sin (x), where x - correlation a dysenteric and ring chromosomes to acentric fragments. Dependence of cytogenetic parameters upon ESR-doses had been studied. Had been received dependences: for the total frequency of

  10. US Department of Energy Nevada Field Office annual site environmental report, 1991

    International Nuclear Information System (INIS)

    Black, S.C.; Latham, A.R.; Townsend, Y.E.

    1992-09-01

    These appendices contain 1991 Nevada Test Site (NTS) onsite and offsite milk environmental monitoring results. The onsite data presented are accompanied by summaries of statistical evaluation of the data. Other offsite data collected by the EPA are available from the US Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Las Vegas, Nevada

  11. Semipalatinsk nuclear test site: History of building and function

    International Nuclear Information System (INIS)

    Sergazina, G.M.; Balmukhanov, S.B.

    1999-01-01

    A vast materials on history of Semipalatinsk nuclear test site creation and it building and function are presented. Authors with big reliability report one page of Kazakhstan's history. In steppe on naked place thousands of soldiers and officers, construct and military specialists have built the nuclear site on which during 40 years were conducting nuclear tests . Prolonged chronic radiation on population living near by site results to tragedy which is confessed by General Assembly of United Nations. In the book aspects of test site conversion and rehabilitation of injured population are considered. The book consists of introduction, three chapters and conclusion. The book is intended to wide circle of readers. (author)

  12. On-site cell field test support program

    Science.gov (United Sta