WorldWideScience

Sample records for test particle transport

  1. Plasma transport in stochastic magnetic fields. I. General considerations and test particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.; Kleva, R.G.; Oberman, C.

    1978-05-01

    A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-..beta.. micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient.

  2. Finite Larmor radius effects on test particle transport in drift wave-zonal flow turbulence

    Science.gov (United States)

    Dewhurst, J. M.; Hnat, B.; Dendy, R. O.

    2010-02-01

    The effect of finite Larmor radius on the transport of passive charged test particles moving in turbulent electrostatic fields is investigated. The turbulent field is governed by a flexible model which is able to produce turbulence where zonal flows are damped or free to self-generate. A subtle interplay between trapping in small scale vortices and entrainment in larger scale zonal flows determines the rate, character and Larmor radius dependence of the test particle transport. When zonal flows are damped, the transport is classically diffusive, with Gaussian statistics, and the rate of transport decreases with increasing Larmor radius. Once the Larmor radius is larger than the typical radius of the turbulent vortices, the rate of transport remains roughly constant. When zonal flows are allowed non-Gaussian statistics are observed. Radial transport (across the zones) is subdiffusive and decreases with the Larmor radius at a slower rate. Poloidal transport (along the zones), however, is superdiffusive and increases with small values of the Larmor radius.

  3. Finite Larmor radius effects on test particle transport in drift wave-zonal flow turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Dewhurst, J M; Hnat, B; Dendy, R O, E-mail: j.m.dewhurst@warwick.ac.u [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom)

    2010-02-15

    The effect of finite Larmor radius on the transport of passive charged test particles moving in turbulent electrostatic fields is investigated. The turbulent field is governed by a flexible model which is able to produce turbulence where zonal flows are damped or free to self-generate. A subtle interplay between trapping in small scale vortices and entrainment in larger scale zonal flows determines the rate, character and Larmor radius dependence of the test particle transport. When zonal flows are damped, the transport is classically diffusive, with Gaussian statistics, and the rate of transport decreases with increasing Larmor radius. Once the Larmor radius is larger than the typical radius of the turbulent vortices, the rate of transport remains roughly constant. When zonal flows are allowed non-Gaussian statistics are observed. Radial transport (across the zones) is subdiffusive and decreases with the Larmor radius at a slower rate. Poloidal transport (along the zones), however, is superdiffusive and increases with small values of the Larmor radius.

  4. Testing of a "smart-pebble" for measuring particle transport statistics

    Science.gov (United States)

    Kitsikoudis, Vasileios; Avgeris, Loukas; Valyrakis, Manousos

    2017-04-01

    This paper presents preliminary results from novel experiments aiming to assess coarse sediment transport statistics for a range of transport conditions, via the use of an innovative "smart-pebble" device. This device is a waterproof sphere, which has 7 cm diameter and is equipped with a number of sensors that provide information about the velocity, acceleration and positioning of the "smart-pebble" within the flow field. A series of specifically designed experiments are carried out to monitor the entrainment of a "smart-pebble" for fully developed, uniform, turbulent flow conditions over a hydraulically rough bed. Specifically, the bed surface is configured to three sections, each of them consisting of well packed glass beads of slightly increasing size at the downstream direction. The first section has a streamwise length of L1=150 cm and beads size of D1=15 mm, the second section has a length of L2=85 cm and beads size of D2=22 mm, and the third bed section has a length of L3=55 cm and beads size of D3=25.4 mm. Two cameras monitor the area of interest to provide additional information regarding the "smart-pebble" movement. Three-dimensional flow measurements are obtained with the aid of an acoustic Doppler velocimeter along a measurement grid to assess the flow forcing field. A wide range of flow rates near and above the threshold of entrainment is tested, while using four distinct densities for the "smart-pebble", which can affect its transport speed and total momentum. The acquired data are analyzed to derive Lagrangian transport statistics and the implications of such an important experiment for the transport of particles by rolling are discussed. The flow conditions for the initiation of motion, particle accelerations and equilibrium particle velocities (translating into transport rates), statistics of particle impact and its motion, can be extracted from the acquired data, which can be further compared to develop meaningful insights for sediment transport

  5. Development of test particle module for impurity generation and transport in BOUT++ framework

    Science.gov (United States)

    Xiao, Xiaotao; Xu, Xueqiao

    2014-10-01

    Developing the test particle module in BOUT++ framework is the first step to enhance its capability to simulate impurity generation and transport in edge plasmas, which potentially can be extended to efficiently simulate both turbulence and neoclassical physics in realistic geometry. The motion of impurity charged particles are governed by guiding-center (GC) equations in the presence of turbulent electromagnetic fields. The GC equations are the well-known Hamiltonian guiding center equation given by Littlejohn, Boozer, White and others. The Fourth-order Runge-Kutta algorithm is used to advance the GC equations in time. In order easily to couple with BOUT++ fluid module, the same field aligned coordinates are used except near the region close to X-point. The bilinear interpolation is used to interpolate 3D fluid turbulent electromagnetic fields from grid points to particle positions. The calculated orbits in equilibrium configuration are checked to conserve constants of motion. The various guiding-center orbits in divertor configuration under BOUT++ framework are demonstrated and benchmarked. Then spatial distribution of impurities in edge plasmas from given sources at the divertor plates and at the protection limiters near RF antennas is obtained in given background plasma. This work was performed for USDOE by LLNL under DE-AC52-07NA27344, LLNL LDRD project 12-ERD-022 and the China Natural Science Foundation under Contract No. 11105185.

  6. Plasma transport in stochastic magnetic fields. III. Kinetics of test-particle diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.; Oberman, C.; Kleva, R.G.

    1982-07-01

    A discussion is given of test particle transport in the presence of specified stochastic magnetic fields, with particular emphasis on the collisional limit. Certain paradoxes and inconsistencies in the literature regarding the form of the scaling laws are resolved by carefully distinguishing a number of physically distinct correlation lengths, and thus by identifying several collisional subregimes. The common procedure of averaging the conventional fluid equations over the statistics of a random field is shown to fail in some important cases because of breakdown of the Chapman-Enskog ordering in the presence of a stochastic field component with short autocorrelation length. A modified perturbation theory is introduced which leads to a Kubo-like formula valid in all collisionality regimes. The direct-interaction approximation is shown to fail in the interesting limit in which the orbit exponentiation length L/sub K/ appears explicitly. A higher order renormalized kinetic theory in which L/sub K/ appears naturally is discussed and used to rederive more systematically the results of the heuristic scaling arguments.

  7. The effects of non-uniform magnetic field strength on test particle transport in drift wave turbulence

    Science.gov (United States)

    Dendy, Richard; Dewhurst, Joseph; Hnat, Bogdan

    2009-11-01

    Our model of drift turbulence is a modified form of the Hasegawa-Wakatani equations, extended to include magnetic field inhomogeneity in the radial direction, thus incorporating interchange modes. Direct numerical simulation of this system yields local time series for: the turbulent E x B radial density flux γ, whose probability density function (PDF) is analyzed in terms of skewness and kurtosis; and the relative phase and amplitude of fluctuations in density n, electrostatic potential φ and radial velocity v. We investigate how changes in the magnitude C of the magnetic field inhomogeneity affect the relative phases of n, φ and v and in consequence the skewness of the PDF of γ. This is a consequence of the shift from drift to drift-interchange turbulence. The challenge is then to identify a Fickian expression linking γ to the radial diffusivity that embodies C as a parameter, while noting the conservation of potential vorticity. This is achieved, assisted and confirmed by statistical analysis of the transport of ensembles of test particles in stationary turbulence and by measurements of the decay of correlation in potential vorticity.

  8. Test particle transport in the electric potential generated by edge turbulence; Transport des particules-test dans le potentiel electrique genere par un modele de turbulence de bord. Cas d'un forcage par le flux

    Energy Technology Data Exchange (ETDEWEB)

    Garbet, X.; Ghendrih, Ph.; Sarazin, Y. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee, DRFC, 13 - Saint-Paul-lez-Durance (France); Grandgirard, V.; Agullo, O.; Benkadda, S. [CNRS-Universite de Provence, Equipe de Dynamique des Systemes Complexes, Aix-Marseille 1, 13 (France)

    2000-09-01

    Numerous experimental data show the existence of non-diffusive transport in tokamak plasmas. This article deals with the trajectories of test particles going through edge turbulence in scrape off layer (that is in the region where magnetic field lines are open). The interchange mechanism of the turbulence tends to generate convective cells by electrical shift, the radial extension is comparable to the size of the system. The resulting transport is mainly a ballistic-type transport whose time features are very short. Whenever the transport is directed towards outside, it appears profitable because it produces a broadening of the scrape off layer. On the contrary, the existence of ballistic trajectories directed towards the inside of the discharge implies an important contamination of the plasma by impurities coming from the wall. (A.C.)

  9. The effects of nonuniform magnetic field strength on density flux and test particle transport in drift wave turbulence

    Science.gov (United States)

    Dewhurst, J. M.; Hnat, B.; Dendy, R. O.

    2009-07-01

    The extended Hasegawa-Wakatani equations generate fully nonlinear self-consistent solutions for coupled density n and vorticity ∇2ϕ, where ϕ is electrostatic potential, in a plasma with background density inhomogeneity κ =-∂ ln n0/∂x and magnetic field strength inhomogeneity C =-∂ ln B/∂x. Finite C introduces interchange effects and ∇B drifts into the framework of drift turbulence through compressibility of the E ×B and diamagnetic drifts. This paper addresses the direct computation of the radial E ×B density flux Γn=-n∂ϕ/∂y, tracer particle transport, the statistical properties of the turbulent fluctuations that drive Γn and tracer motion, and analytical underpinnings. Systematic trends emerge in the dependence on C of the skewness of the distribution of pointwise Γn and in the relative phase of density-velocity and density-potential pairings. It is shown how these effects, together with conservation of potential vorticity Π =∇2ϕ-n+(κ -C)x, account for much of the transport phenomenology. Simple analytical arguments yield a Fickian relation Γn=(κ -C)Dx between the radial density flux Γn and the radial tracer diffusivity Dx, which is shown to explain key trends in the simulations.

  10. Monte Carlo methods for particle transport

    CERN Document Server

    Haghighat, Alireza

    2015-01-01

    The Monte Carlo method has become the de facto standard in radiation transport. Although powerful, if not understood and used appropriately, the method can give misleading results. Monte Carlo Methods for Particle Transport teaches appropriate use of the Monte Carlo method, explaining the method's fundamental concepts as well as its limitations. Concise yet comprehensive, this well-organized text: * Introduces the particle importance equation and its use for variance reduction * Describes general and particle-transport-specific variance reduction techniques * Presents particle transport eigenvalue issues and methodologies to address these issues * Explores advanced formulations based on the author's research activities * Discusses parallel processing concepts and factors affecting parallel performance Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, Monte Carlo Methods for Particle Transport provides nuclear engineers and scientists with a practical guide ...

  11. Transport of dust particles in tokamak devices

    Energy Technology Data Exchange (ETDEWEB)

    Pigarov, A.Yu. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: apigarov@uscd.edu; Smirnov, R.D. [University of California at San Diego, La Jolla, CA (United States); Krasheninnikov, S.I. [University of California at San Diego, La Jolla, CA (United States); Rognlien, T.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Rosenberg, M. [University of California at San Diego, La Jolla, CA (United States); Soboleva, T.K. [UNAM, Mexico, DistritoFederal (Mexico)

    2007-06-15

    Recent advances in the dust transport modeling in tokamak devices are discussed. Topics include: (1) physical model for dust transport; (2) modeling results on dynamics of dust particles in plasma; (3) conditions necessary for particle growth in plasma; (4) dust spreading over the tokamak; (5) density profiles for dust particles and impurity atoms associated with dust ablation in tokamak plasma; and (6) roles of dust in material/tritium migration.

  12. Particle Transport in Parallel-Plate Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rader, D.J.; Geller, A.S.

    1999-08-01

    A major cause of semiconductor yield degradation is contaminant particles that deposit on wafers while they reside in processing tools during integrated circuit manufacturing. This report presents numerical models for assessing particle transport and deposition in a parallel-plate geometry characteristic of a wide range of single-wafer processing tools: uniform downward flow exiting a perforated-plate showerhead separated by a gap from a circular wafer resting on a parallel susceptor. Particles are assumed to originate either upstream of the showerhead or from a specified position between the plates. The physical mechanisms controlling particle deposition and transport (inertia, diffusion, fluid drag, and external forces) are reviewed, with an emphasis on conditions encountered in semiconductor process tools (i.e., sub-atmospheric pressures and submicron particles). Isothermal flow is assumed, although small temperature differences are allowed to drive particle thermophoresis. Numerical solutions of the flow field are presented which agree with an analytic, creeping-flow expression for Re < 4. Deposition is quantified by use of a particle collection efficiency, which is defined as the fraction of particles in the reactor that deposit on the wafer. Analytic expressions for collection efficiency are presented for the limiting case where external forces control deposition (i.e., neglecting particle diffusion and inertia). Deposition from simultaneous particle diffusion and external forces is analyzed by an Eulerian formulation; for creeping flow and particles released from a planar trap, the analysis yields an analytic, integral expression for particle deposition based on process and particle properties. Deposition from simultaneous particle inertia and external forces is analyzed by a Lagrangian formulation, which can describe inertia-enhanced deposition resulting from particle acceleration in the showerhead. An approximate analytic expression is derived for particle

  13. LDL Particle Testing

    Science.gov (United States)

    ... Chains Sex Hormone Binding Globulin (SHBG) Shiga toxin-producing Escherichia coli Sickle Cell Tests Sirolimus Smooth Muscle ... the effectiveness of lipid-lowering treatment and/or lifestyle changes Sample Required? A blood sample drawn from ...

  14. Particle transport and deposition: basic physics of particle kinetics.

    Science.gov (United States)

    Tsuda, Akira; Henry, Frank S; Butler, James P

    2013-10-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research. © 2013 American Physiological Society. Compr Physiol 3:1437-1471, 2013.

  15. LDL Particle Testing

    Science.gov (United States)

    ... age, especially if their total cholesterol and LDL cholesterol (LDL-C) values are not significantly elevated. LDL subfraction testing is ... March-April). Clinical Implications of Discordance Between LDL Cholesterol and LDL ... and Lipid Values. Cardiovasc Drugs Ther . 2013 Jul 28. Abstract [Epub ...

  16. Particle transport in inclined annuli

    Energy Technology Data Exchange (ETDEWEB)

    Kurtzhals, Erik

    1993-12-31

    A new model for the formation and behaviour of deposits in inclined wellbores is formulated. The annular space is divided into two layers, separated by a distinct plane boundary. While the lower layer is taken to consist of closely packed cuttings, the upper layer is presumed to behave as a pure fluid. A force balance for the lower layer decides whether it is stationary or slides in the upwards- or downwards direction. The position of the deposit surface is governed by the fluid shear stress at the deposit surface. The proposed model represents a major improvement compared to an earlier model. The predictions from the SCSB-model are in good qualitative agreement with experimental results obtained by the author, and results published by research groups in the U.S.A., United Kingdom and Germany. The quantitative agreement is variable, presumably because the SCSB-model is a somewhat simplified description of particle behaviour in inclined annuli. However, the model provides a clearer understanding of the physical background for previously published experimental results. In order to couple the theoretical work with experimental observations, an annular flow loop has been constructed. A characteristic feature in the flow loop design is the application of load cells, which permits determination of the annular particle content at steady state as well as under transient conditions. Due to delays in the constructional work, it has only been possible to perform a limited number of investigations in the loop. However, the results produced are in agreement with results published by other research groups. (au)

  17. The energetic alpha particle transport method EATM

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, R.C.

    1998-02-01

    The EATM method is an evolving attempt to find an efficient method of treating the transport of energetic charged particles in a dynamic magnetized (MHD) plasma for which the mean free path of the particles and the Larmor radius may be long compared to the gradient lengths in the plasma. The intent is to span the range of parameter space with the efficiency and accuracy thought necessary for experimental analysis and design of magnetized fusion targets.

  18. Scalable Domain Decomposed Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  19. FLUKA: A Multi-Particle Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; Sala, P.R.; /CERN /INFN, Milan; Fasso, A.; /SLAC; Ranft, J.; /Siegen U.

    2005-12-14

    This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner's guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.

  20. Particle Swarm Transport in Fracture Networks

    Science.gov (United States)

    Pyrak-Nolte, L. J.; Mackin, T.; Boomsma, E.

    2012-12-01

    Colloidal particles of many types occur in fractures in the subsurface as a result of both natural and industrial processes (e.g., environmental influences, synthetic nano- & micro-particles from consumer products, chemical and mechanical erosion of geologic material, proppants used in gas and oil extraction, etc.). The degree of localization and speed of transport of such particles depends on the transport mechanisms, the chemical and physical properties of the particles and the surrounding rock, and the flow path geometry through the fracture. In this study, we investigated the transport of particle swarms through artificial fracture networks. A synthetic fracture network was created using an Objet Eden 350V 3D printer to build a network of fractures. Each fracture in the network had a rectangular cross-sectional area with a constant depth of 7 mm but with widths that ranged from 2 mm to 11 mm. The overall dimensions of the network were 132 mm by 166 mm. The fracture network had 7 ports that were used either as the inlet or outlet for fluid flow through the sample or for introducing a particle swarm. Water flow rates through the fracture were controlled with a syringe pump, and ranged from zero flow to 6 ml/min. Swarms were composed of a dilute suspension (2% by mass) of 3 μm fluorescent polystyrene beads in water. Swarms with volumes of 5, 10, 20, 30 and 60 μl were used and delivered into the network using a second syringe pump. The swarm behavior was imaged using an optical fluorescent imaging system illuminated by green (525 nm) LED arrays and captured by a CCD camera. For fracture networks with quiescent fluids, particle swarms fell under gravity and remained localized within the network. Large swarms (30-60 μl) were observed to bifurcate at shallower depths resulting in a broader dispersal of the particles than for smaller swarm volumes. For all swarm volumes studied, particle swarms tended to bifurcate at the intersection between fractures. These

  1. Particle Acceleration and Fractional Transport in Turbulent Reconnection

    Science.gov (United States)

    Isliker, Heinz; Pisokas, Theophilos; Vlahos, Loukas; Anastasiadis, Anastasios

    2017-11-01

    We consider a large-scale environment of turbulent reconnection that is fragmented into a number of randomly distributed unstable current sheets (UCSs), and we statistically analyze the acceleration of particles within this environment. We address two important cases of acceleration mechanisms when particles interact with the UCS: (a) electric field acceleration and (b) acceleration by reflection at contracting islands. Electrons and ions are accelerated very efficiently, attaining an energy distribution of power-law shape with an index 1–2, depending on the acceleration mechanism. The transport coefficients in energy space are estimated from test-particle simulation data, and we show that the classical Fokker–Planck (FP) equation fails to reproduce the simulation results when the transport coefficients are inserted into it and it is solved numerically. The cause for this failure is that the particles perform Levy flights in energy space, while the distributions of the energy increments exhibit power-law tails. We then use the fractional transport equation (FTE) derived by Isliker et al., whose parameters and the order of the fractional derivatives are inferred from the simulation data, and solving the FTE numerically, we show that the FTE successfully reproduces the kinetic energy distribution of the test particles. We discuss in detail the analysis of the simulation data and the criteria that allow one to judge the appropriateness of either an FTE or a classical FP equation as a transport model.

  2. Transport of Particle Swarms Through Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    The transport of engineered micro- and nano-scale particles through fractured rock is often assumed to occur as dispersions or emulsions. Another potential transport mechanism is the release of particle swarms from natural or industrial processes where small liquid drops, containing thousands to millions of colloidal-size particles, are released over time from seepage or leaks. Swarms have higher velocities than any individual colloid because the interactions among the particles maintain the cohesiveness of the swarm as it falls under gravity. Thus particle swarms give rise to the possibility that engineered particles may be transported farther and faster in fractures than predicted by traditional dispersion models. In this study, the effect of fractures on colloidal swarm cohesiveness and evolution was studied as a swarm falls under gravity and interacts with fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with either (1) a uniform aperture or (2) a converging aperture followed by a uniform aperture (funnel-shaped). The samples consisted of two blocks that measured 100 x 100 x 50 mm. The separation between these blocks determined the aperture (0.5 mm to 50 mm). During experiments, a fracture was fully submerged in water and swarms were released into it. The swarms consisted of dilute suspensions of either 25 micron soda-lime glass beads (2% by mass) or 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. In the uniform aperture fracture, the speed of the swarm prior to bifurcation increased with aperture up to a maximum at a fracture width of approximately 10 mm. For apertures greater than ~15 mm, the velocity was essentially constant with fracture width (but less than at 10 mm). This peak suggests that two competing mechanisms affect swarm velocity in fractures. The wall provides both drag, which

  3. Gyrokinetic particle simulation of neoclassical transport

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1995-02-01

    A time varying weighting ({delta} f) scheme for gyrokinetic particle simulation is applied to a steady state, multi-species simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated in these multispecies simulations that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion-electron plasma. An important physics feature of the present scheme is the introduction of toroidal sheared flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory of Hinton and Wong. The poloidal electric field associated with toroidal mass flow is found to enhance density gradient driven electron particle flux and the bootstrap current while reducing temperature gradient driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, the present work demonstrates a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes.

  4. Particle Tracking Model and Abstraction of Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    B. Robinson

    2000-04-07

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone.

  5. A generalized transport-velocity formulation for smoothed particle hydrodynamics

    Science.gov (United States)

    Zhang, Chi; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-05-01

    The standard smoothed particle hydrodynamics (SPH) method suffers from tensile instability. In fluid-dynamics simulations this instability leads to particle clumping and void regions when negative pressure occurs. In solid-dynamics simulations, it results in unphysical structure fragmentation. In this work the transport-velocity formulation of Adami et al. (2013) [14] is generalized for providing a solution of this long-standing problem. Other than imposing a global background pressure, a variable background pressure is used to modify the particle transport velocity and eliminate the tensile instability completely. Furthermore, such a modification is localized by defining a shortened smoothing length. The generalized formulation is suitable for fluid and solid materials with and without free surfaces. The results of extensive numerical tests on both fluid and solid dynamics problems indicate that the new method provides a unified approach for multi-physics SPH simulations.

  6. A generalized transport-velocity formulation for smoothed particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chi; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A.

    2017-05-15

    The standard smoothed particle hydrodynamics (SPH) method suffers from tensile instability. In fluid-dynamics simulations this instability leads to particle clumping and void regions when negative pressure occurs. In solid-dynamics simulations, it results in unphysical structure fragmentation. In this work the transport-velocity formulation of Adami et al. (2013) is generalized for providing a solution of this long-standing problem. Other than imposing a global background pressure, a variable background pressure is used to modify the particle transport velocity and eliminate the tensile instability completely. Furthermore, such a modification is localized by defining a shortened smoothing length. The generalized formulation is suitable for fluid and solid materials with and without free surfaces. The results of extensive numerical tests on both fluid and solid dynamics problems indicate that the new method provides a unified approach for multi-physics SPH simulations.

  7. The 3D simulation of Dust particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, S.I.; Pigarov, A.Yu. [MAE, University of California at San Diego, La Jolla, CA 92093 (United States); Tanaka, Y. [Kanazawa University, Kakuma-cho, Kanazawa (Japan); Hutchinson, I.H. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA (United States); Rognlien, T.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Soboleva, T.K. [Instituto de Ciencias Nucleares, UNAM, Mexico D., F. (Mexico)

    2006-09-15

    Recently, the presence of dust particles in tokamak plasma and the role of dust in material re-deposition, core contamination, and tritium inventory brought significant attention of the fusion community. The physical model for dust transport in fusion devices and the newly developed 3D code DUSTT are discussed. The DUSTT code takes into account both the dust dynamics due to dust-plasma interactions as well as the effects of dust charging, heating and evaporation. The code allows tracking of test dust particle in realistic plasma background calculated with edge-plasma transport code UEDGE. Some results on dust transport in DIII-D tokamak are presented. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. The PDF Approach for Modelling Particle Transport in Turbulent Flows

    Science.gov (United States)

    Reeks, Michael

    2004-11-01

    The Probabaility Density (PDF) approach for modelling dispersed particle flow is analogous to the classical kinetic theory gases. That is, there exists a master equation (analogous to the Maxwell Boltzmann equation of Kinetic Theory) which can be used in a formal way to derive the two-fluid model equations for both phases of the flow and the associated constitutive relations. In addition the approach deals with the near wall behaviour, incorporating the natural boundary conditions of the flow. There are currently two forms of pdf approach: the first form is similar to kinetic theory in that the pdf P(v,x,t) refers to particle velocity v and position x at time t; a second approach in which the pdf P(v,u,x,t) involves the carrier flow velocity u encountered by a particle based on a generalised Langevin equation. Both approaches deal with both dilute and dense particle flows: the influence of inter-particle collisions is directly analogous to the treatment of molecular collisions in kinetic theory. This presentation will describe how each PDF master equation is derived and the form of the closure approximations for the turbulent fluxes. The form of the continuum equations and constitutive relations derived from these equations will be presented and contrasted and the treatment of near wall behaviour briefly discussed. Validation of these approaches for homogeneous and simple shear flows will be given as well as model predictions for a number of test cases involving transport of particles in non-uniform flows.

  9. Test particles dynamics in the JOREK 3D non-linear MHD code and application to electron transport in a disruption simulation

    Science.gov (United States)

    Sommariva, C.; Nardon, E.; Beyer, P.; Hoelzl, M.; Huijsmans, G. T. A.; van Vugt, D.; Contributors, JET

    2018-01-01

    In order to contribute to the understanding of runaway electron generation mechanisms during tokamak disruptions, a test particle tracker is introduced in the JOREK 3D non-linear MHD code, able to compute both full and guiding center relativistic orbits. Tests of the module show good conservation of the invariants of motion and consistency between full orbit and guiding center solutions. A first application is presented where test electron confinement properties are investigated in a massive gas injection-triggered disruption simulation in JET-like geometry. It is found that electron populations initialised before the thermal quench (TQ) are typically not fully deconfined in spite of the global stochasticity of the magnetic field during the TQ. The fraction of ‘survivors’ decreases from a few tens down to a few tenths of percent as the electron energy varies from 1 keV to 10 MeV. The underlying mechanism for electron ‘survival’ is the prompt reformation of closed magnetic surfaces at the plasma core and, to a smaller extent, the subsequent reappearance of a magnetic surface at the edge. It is also found that electrons are less deconfined at 10 MeV than at 1 MeV, which appears consistent with a phase averaging effect due to orbit shifts at high energy.

  10. Peristaltic particle transport using the Lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Connington, Kevin William [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr [Los Alamos National Laboratory; Chen, Shiyi [JOHNS HOPKINS UNIV.

    2009-01-01

    Peristaltic transport refers to a class of internal fluid flows where the periodic deformation of flexible containing walls elicits a non-negligible fluid motion. It is a mechanism used to transport fluid and immersed solid particles in a tube or channel when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two-dimensional channel using the lattice Boltzmann method. We systematically investigate the effect of variation of the relevant dimensionless parameters of the system on the particle transport. We find, among other results, a case where an increase in Reynolds number can actually lead to a slight increase in particle transport, and a case where, as the wall deformation increases, the motion of the particle becomes non-negative only. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid trapping. Under these circumstances, the particle may itself become trapped where it is subsequently transported at the wave speed, which is the maximum possible transport in the absence of a favorable pressure gradient. Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles. We find that the levels of shear stress are most hazardous near the throat of the channel. We advise that shear-sensitive particles should be transported under conditions where trapping occurs as the particle is typically situated in a region of innocuous shear stress levels.

  11. Particle Flow Characteristics and Transportation Optimization of Superfine Unclassified Backfilling

    Directory of Open Access Journals (Sweden)

    Ke-ping Zhou

    2017-01-01

    Full Text Available In order to investigate the high volume fraction problem of the solid phase in superfine unclassified backfilling pipeline transportation, characteristic parameters were obtained by fitting to test data with an R–R particle size distribution function; then, a Euler dense-phase DPM (Discrete phase model model was established by applying solid–liquid two-phase flow theory and the kinetic theory of granular flow (KTGF. The collision and friction of particles were imported by the UDF (User-define function function, and the pipeline fluidization system, dominated by interphase drag forces, was analyzed. The best concentration and flow rate were finally obtained by comparing the results of the stress conditions, flow field characteristics, and the discrete phase distributions. It is revealed that reducing the concentration and flow rate could control pressure loss and pipe damage to a certain degree, while lower parameters show negative effects on the transportation integrity and backfilling strength. Indoor tests and field industrial tests verify the reliability of the results of the numerical simulations. Research shows that the model optimization method is versatile and practical for other, similar, complex flow field working conditions.

  12. Dust-Particle Transport in Tokamak Edge Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K; Rognlien, T D

    2005-09-12

    Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensive dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.

  13. Energy and particle core transport in tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, Marc; Angioni, Clemente; Beidler, Craig; Dinklage, Andreas; Fuchert, Golo; Hirsch, Matthias; Puetterich, Thomas; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald/Garching (Germany)

    2016-07-01

    The paper discusses expectations for core transport in the Wendelstein 7-X stellarator (W7-X) and presents a comparison to tokamaks. In tokamaks, the neoclassical trapped-particle-driven losses are small and turbulence dominates the energy and particle transport. At reactor relevant low collisionality, the heat transport is limited by ion temperature gradient limited turbulence, clamping the temperature gradient. The particle transport is set by an anomalous inward pinch, yielding peaked profiles. A strong edge pedestal adds to the good confinement properties. In traditional stellarators the 3D geometry cause increased trapped orbit losses. At reactor relevant low collisionality and high temperatures, these neoclassical losses would be well above the turbulent transport losses. The W7-X design minimizes neoclassical losses and turbulent transport can become dominant. Moreover, the separation of regions of bad curvature and that of trapped particle orbits in W7-X may have favourable implications on the turbulent electron heat transport. The neoclassical particle thermodiffusion is outward. Without core particle sources the density profile is flat or even hollow. The presence of a turbulence driven inward anomalous particle pinch in W7-X (like in tokamaks) is an open topic of research.

  14. Nano iron particles transport in fractured rocks: laboratory and field scale

    Science.gov (United States)

    Cohen, Meirav; Weisbrod, Noam

    2017-04-01

    Our study deals with the transport potential of nano iron particles (NIPs) in fractured media. Two different systemswere used to investigate transport on two scales: (1 )a laboratory flow system of a naturally discrete fractured chalk core, 0.43 and 0.18 m in length and diamater, respectively; and (2) a field system of hydraulically connected boreholes located 47 m apart which penetrate a fractured chalk aquifer. We started by testing the transport potential of various NIPs under different conditions. Particle stability experiments were conducted using various NIPs and different stabilizersat two ionic strengths. Overall, four different NIPs and three stabilizers were tested. Particles and solution properties (stability, aggregate/particle size, viscosity and density) were tested in batch experiments, and transport experiments (breakthrough curves (BTCs) and recovery) were conduted in the fractured chalk core. We have learned that the key parameters controlling particle transport are the particle/aggregate size and stability, which govern NIP settling rates and ultimately their migration distance. The governing mechanism controlling NIP transport was found to be sedimentation, and to a much lesser extent, processes such as diffusion, straining or interception. On the basis of these experiments, Carbo-Iron® particles ( 800 nm activated carbon particles doped with nano zero valent iron particles) and Carboxymethyl cellulose (CMC) stabilizer were selected for the field test injection. In the field, Carbo-Iron particles were initially injected into the fractured aquifer using an excess of stabilizer in order to ensure maximum recovery. This resulted in high particle recovery and fast arrival time, similar to the ideal tracer (iodide). The high recovery of the stable particle solution emphasized the importance of particle stability for transport in fractures. To test mobility manipulation potential of the particles and simulate more realistic scenarios, a second field

  15. Lattice symmetries and the topologically protected transport of colloidal particles.

    Science.gov (United States)

    Loehr, Johannes; de Las Heras, Daniel; Loenne, Michael; Bugase, Jonas; Jarosz, Adam; Urbaniak, Maciej; Stobiecki, Feliks; Tomita, Andreea; Huhnstock, Rico; Koch, Iris; Ehresmann, Arno; Holzinger, Dennis; Fischer, Thomas M

    2017-07-26

    The topologically protected transport of colloidal particles on top of periodic magnetic patterns is studied experimentally, theoretically, and with computer simulations. To uncover the interplay between topology and symmetry we use patterns of all possible two dimensional magnetic point group symmetries with equal lengths lattice vectors. Transport of colloids is achieved by modulating the potential with external, homogeneous but time dependent magnetic fields. The modulation loops can be classified into topologically distinct classes. All loops falling into the same class cause motion in the same direction, making the transport robust against internal and external perturbations. We show that the lattice symmetry has a profound influence on the transport modes, the accessibility of transport networks, and the individual transport directions of paramagnetic and diamagnetic colloidal particles. We show how the transport of colloidal particles above a two fold symmetric stripe pattern changes from universal adiabatic transport at large elevations via a topologically protected ratchet motion at intermediate elevations toward a non-transport regime at low elevations. Transport above four-fold symmetric patterns is closely related to the two-fold symmetric case. The three-fold symmetric case however consists of a whole family of patterns that continuously vary with a phase variable. We show how this family can be divided into two topologically distinct classes supporting different transport modes and being protected by proper and improper six fold symmetries. We discuss and experimentally demonstrate the topological transition between both classes. All three-fold symmetric patterns support independent transport directions of paramagnetic and diamagnetic particles. The similarities and the differences in the lattice symmetry protected transport of classical over-damped colloidal particles versus the topologically protected transport in quantum mechanical systems are

  16. ASYMPTOTICS OF a PARTICLES TRANSPORT PROBLEM

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2017-11-01

    Full Text Available Subject: a groundwater filtration affects the strength and stability of underground and hydro-technical constructions. Research objectives: the study of one-dimensional problem of displacement of suspension by the flow of pure water in a porous medium. Materials and methods: when filtering a suspension some particles pass through the porous medium, and some of them are stuck in the pores. It is assumed that size distributions of the solid particles and the pores overlap. In this case, the main mechanism of particle retention is a size-exclusion: the particles pass freely through the large pores and get stuck at the inlet of the tiny pores that are smaller than the particle diameter. The concentrations of suspended and retained particles satisfy two quasi-linear differential equations of the first order. To solve the filtration problem, methods of nonlinear asymptotic analysis are used. Results: in a mathematical model of filtration of suspensions, which takes into account the dependence of the porosity and permeability of the porous medium on concentration of retained particles, the boundary between two phases is moving with variable velocity. The asymptotic solution to the problem is constructed for a small filtration coefficient. The theorem of existence of the asymptotics is proved. Analytical expressions for the principal asymptotic terms are presented for the case of linear coefficients and initial conditions. The asymptotics of the boundary of two phases is given in explicit form. Conclusions: the filtration problem under study can be solved analytically.

  17. Cosmic-Ray Transport in Heliospheric Magnetic Structures. II. Modeling Particle Transport through Corotating Interaction Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Andreas [Université Libre de Bruxelles, Service de Physique Statistique et des Plasmas, CP 231, B-1050 Brussels (Belgium); Wiengarten, Tobias; Fichtner, Horst [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Effenberger, Frederic [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Kühl, Patrick; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, Christian-Albrecht-Universität zu Kiel, D-24098 Kiel (Germany); Raath, Jan-Louis; Potgieter, Marius S. [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)

    2017-03-01

    The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.

  18. Relativity primer for particle transport. A LASL monograph. [Monograph

    Energy Technology Data Exchange (ETDEWEB)

    Everett, C.J.; Cashwell, E.D.

    1979-04-01

    The basic principles of special relativity involved in Monte Carlo transport problems are developed with emphasis on the possible transmutations of particles, and on computational methods. Charged particle ballistics and polarized scattering are included, as well as a discussion of colliding beams.

  19. Transport of suspended particles in turbulent open channel flows

    NARCIS (Netherlands)

    Breugem, W.A.

    2012-01-01

    Two experiments are performed in order to investigate suspended sediment transport in a turbulent open channel flow. The first experiment used particle image velocimetry (PIV) to measure the fluid velocity with a high spatial resolution, while particle tracking velocimetry (PTV) was used to measure

  20. Microstripes for transport and separation of magnetic particles

    DEFF Research Database (Denmark)

    Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt

    2012-01-01

    We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally...

  1. Particle transport in a two-dimensional septate channel

    Energy Technology Data Exchange (ETDEWEB)

    Borromeo, M. [Dipartimento di Fisica, Universita di Perugia, I-06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Marchesoni, F., E-mail: fabio.marchesoni@pg.infn.it [Dipartimento di Fisica, Universita di Camerino, I-62032 Camerino (Italy); Department of Physics, Boston University, Boston, MA 02215 (United States)

    2010-10-05

    Graphical abstract: {open_square}{open_square}{open_square}. - Abstract: We analyze the transport properties of a Brownian particle diffusing along a two-dimensional septate channel, namely, a channel formed by equal rectangular cavities separated by narrow pores, subjected to an external longitudinal drive. We determine analytical formulas for the dependence of the particle mobility and diffusivity on the geometric channel parameters at zero and large applied drives. Finally, we rule out anomalous negative mobility for pointlike particles in a septate channel.

  2. Particle transport in tokamak plasmas, theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Angioni, C [Max-Planck Institut fuer Plasmaphysik, IPP-EURATOM Association, D-85748 Garching (Germany); Fable, E; Maslov, M; Weisen, H [Centre de Recherches en Physique des Plasmas, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Greenwald, M [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA (United States); Peeters, A G [Centre for Fusion, Space and Astrophysics, University of Warwick, CV4 7AL, Coventry (United Kingdom); Takenaga, H [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)

    2009-12-15

    The physical processes producing electron particle transport in the core of tokamak plasmas are described. Starting from the gyrokinetic equation, a simple analytical derivation is used as guidance to illustrate the main mechanisms driving turbulent particle convection. A review of the experimental observations on particle transport in tokamaks is presented and the consistency with the theoretical predictions is discussed. An overall qualitative agreement, and in some cases even a specific quantitative agreement, emerges between complex theoretical predictions and equally complex experimental observations, exhibiting different dependences on plasma parameters under different regimes. By these results, the direct connection between macroscopic transport properties and the character of microscopic turbulence is pointed out, and an important confirmation of the paradigm of microinstabilities and turbulence as the main cause of transport in the core of tokamaks is obtained. Finally, the impact of these results on the prediction of the peaking of the electron density profile in a fusion reactor is illustrated.

  3. Transport of large particles released in a nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R.; Toivonen, H.; Lahtinen, J.; Ilander, T.

    1995-10-01

    Highly radioactive particulate material may be released in a nuclear accident or sometimes during normal operation of a nuclear power plant. However, consequence analyses related to radioactive releases are often performed neglecting the particle nature of the release. The properties of the particles have an important role in the radiological hazard. A particle deposited on the skin may cause a large and highly non-uniform skin beta dose. Skin dose limits may be exceeded although the overall activity concentration in air is below the level of countermeasures. For sheltering purposes it is crucial to find out the transport range, i.e. the travel distance of the particles. A method for estimating the transport range of large particles (aerodynamic diameter d{sub a} > 20 {mu}m) in simplified meteorological conditions is presented. A user-friendly computer code, known as TROP, is developed for fast range calculations in a nuclear emergency. (orig.) (23 refs., 13 figs.).

  4. Computational Investigation of the Transport of Burning Particles

    Science.gov (United States)

    Matvienko, O. V.; Fil'kov, A. I.; Grishin, A. M.

    2016-09-01

    Computational modeling of the dynamics of the convective column formed by a low forest fire and of the transport of particles burning in it has been carried out. At the initial stage of formation of a thermal column, medium- and large-size particles move with the ascending air flow to its upper boundary; then they are entrained by the torroidal vortex and carried out of the combustion zone to the outer boundary of the circulation flow where they settle to the underlying surface. With increasing size of particles the maximum rise height of particles and the distance for which they are transported by the vortex flow decrease. The temperature of large particles at the moment of their landing is above the critical one, which can initiate ignition of the underlying surface and the formation of a secondary site of fire.

  5. Test particle trajectories near cosmic strings

    Indian Academy of Sciences (India)

    We present a detailed analysis of the motion of test particle in the gravitational field of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.

  6. The Screened Field of a Test Particle

    Science.gov (United States)

    Dewar, Robert L.

    The screened field (forward field and wake) of a test particle moving at constant velocity through an unmagnetised collisionless plasma is calculated analytically and numerically. This paper is based on unpublished material from my MSc thesis, supervised by the late Dr. K. C. Hines.

  7. Controlled particle transport in a plasma chamber with striped electrode

    Science.gov (United States)

    Jiang, Ke; Li, Yang-fang; Shimizu, T.; Konopka, U.; Thomas, H. M.; Morfill, G. E.

    2009-12-01

    The controlled transport of micrometer size dust particles in a parallel-plate radio frequency discharge has been investigated. The lower stainless steel electrode consisted of 100 independently controllable electrical metal stripes. The voltage signals on these stripes were modulated, causing traveling plasma sheath distortions. Because the particles trapped in local potential wells moved according to the direction of the distortion, the transport velocity could be actively controlled by adjusting frequencies and phase shifts of the applied periodic voltage signals. To investigate the detailed principle of this transport, molecular dynamic simulations was performed to reproduce the observations with the plasma background conditions calculated by separated particle-in-cell simulations for the experimental parameters. The findings will help develop novel technologies for investigating large-scale complex plasma systems and techniques for achieving clean environments in plasma processing reactors.

  8. Directed transport of Brownian particles in a changing temperature field

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, A [DMFCI, Facolta di Ingegneria, Universita di Catania. Viale Andrea Doria 6, 95125 Catania (Italy); Jinha, A [HPL-Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 (Canada); Federico, S [HPL-Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 (Canada); Ait-Haddou, R [HPL-Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 (Canada); Herzog, W [HPL-Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 (Canada); Giaquinta, G [DMFCI, Facolta di Ingegneria, Universita di Catania. Viale Andrea Doria 6, 95125 Catania (Italy)

    2008-01-11

    We study the interaction of Brownian particles with a changing temperature field in the presence of a one-dimensional periodic adiabatic potential. We show the existence of directed transport through the determination of the overall current of Brownian particles crossing the boundary of the system. With respect to the case of Brownian particles in a thermal bath, we determine a current which exhibits a contribution explicitly related to the presence of a thermal gradient. Beyond the self-consistent calculation of the temperature and probability density distribution of Brownian particles, we evaluate the energy consumption for directed transport to take place. Our description is based on Streater's model, and solutions are obtained by perturbing the system from its initial thermodynamic equilibrium state.

  9. Computational methods for two-phase flow and particle transport

    CERN Document Server

    Lee, Wen Ho

    2013-01-01

    This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.

  10. Experimental investigation of suspended particles transport through porous media: particle and grain size effect.

    Science.gov (United States)

    Liu, Quansheng; Cui, Xianze; Zhang, Chengyuan; Huang, Shibing

    2016-01-01

    Particle and grain size may influence the transportation and deposition characteristics of particles within pollutant transport and within granular filters that are typically used in wastewater treatment. We conducted two-dimensional sandbox experiments using quartz powder as the particles and quartz sand as the porous medium to study the response of transportation and deposition formation to changes in particle diameter (ds, with median diameter 18, 41, and 82 μm) and grain diameter (dp, with median diameter 0.36, 1.25, and 2.82 mm) considering a wide range of diameter ratios (ds/dp) from 0.0064 to 0.228. Particles were suspended in deionized water, and quartz sand was used as the porous medium, which was meticulously cleaned to minimize any physicochemical and impurities effects that could result in indeterminate results. After the experiments, the particle concentration of the effluent and particle mass per gram of dry sands were measured to explore changes in transportation and deposition characteristics under different conditions. In addition, a micro-analysis was conducted to better analyse the results on a mesoscopic scale. The experimental observation analyses indicate that different diameter ratios (ds/dp) may lead to different deposit formations. As ds/dp increased, the deposit formation changed from 'Random Deposition Type' to 'Gradient Deposition Type', and eventually became 'Inlet Deposition Type'.

  11. Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem

    Science.gov (United States)

    Rahmalia, Dinita

    2017-08-01

    Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.

  12. Solar energetic particles: Acceleration and transport

    Science.gov (United States)

    Cliver, Edward W.

    2000-06-01

    This paper reviews highlights of the 26th ICRC in the area of acceleration and propagation of solar energetic particles (SEPs). New results on SEP charge state and composition, a lively topic during the Conference, are covered in an accompanying paper by Klecker. I begin with a brief historical review of the field to provide context for the key advances/developments on SEP acceleration/propagation presented in Salt Lake City. These include: (1) the use of gamma-ray emissions as diagnostics of the acceleration process(es) and probes of the interaction region; (2) the observation of ~10 GeV (or higher) protons for the 6 November 1997 ground level event by the Milagrito experiment; (3) observations of coronal Moreton waves as ``smoking pistols'' of shock acceleration/injection of SEPs; (4) an investigation of the role of proton event spectra in the current ``two-class'' picture of SEP events; (5) an analysis of the Gnevyshev Gap in SEP activity; (6) a Ulysses-based determination of the dependence of SEP mean free path on radial distance from the Sun and on heliographic latitude, and (7) an examination of the dissipation range in the power spectrum of interplanetary magnetic field fluctuations. I conclude with a discussion of new instrumentation (e.g., Milagro, HESSI) and a look to the expected level of SEP activity for the approaching maximum of solar cycle 23. .

  13. Settling velocity of marine microplastic particles: laboratory tests

    Science.gov (United States)

    Isachenko, Igor; Khatmullina, Lilia; Chubarenko, Irina; Stepanova, Natalia

    2016-04-01

    An assessment of the settling velocity of different classes of microplastic particles (microplastic particles is usually outside the Stokes range (Re 105). Even for such transitional regime, the settling velocity of the particles that could be treated as more or less smooth spheres can be predicted with high accuracy by relationships available in publications. This is not the case for the non-spherical particles like fibres or flakes. There are quite a large number of quasi-theoretical or semi-empirical approaches that take into account the shape and roughness of the particles, usually in the applications to transport of natural sediments. Some engineering formulas for the settling velocity are also developed which have simpler structure along with high degree of accuracy on the set of experimental data. For marine microplastic particles, the absence of relationship between the settling velocity and the properties of the particle requires testing on the samples of marine microplastics. Besides small fragments of rigid plastic (granules, microbeads), there are also fibres and thin plastic sheets (flakes) with some degree of flexibility. The applicability of available formulae to thin and/or flexible plastic particles again requires verification by experiments. The set of laboratory experiments on settling of microplastic particles of various shapes and excess densities in homogeneous water is reported. The particles were collected in water column, bottom sediments and on the beaches of the South-Eastern Baltic. The experiments demonstrate not just different regimes of motion but different manner of the sinking of spheres, flakes and fibres. The very definition of the "settling velocity" has a specific meaning for every kind of a particle shape. The results of test measurements are compared with predictions by several published semi-empirical formulae. We conclude that there are several new questions to discuss in this regard: (i) proper definition of the meaning of

  14. Test Frequency Selection Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Zdenek Kincl

    2013-01-01

    Full Text Available The paper deals with the problem of test frequency selection for multi-frequency parametric fault diagnosis of analog linear circuits. An appropriate set of test frequencies is determined by minimizing the conditionality of the sensitivity matrix based on the system of fault equations using a global stochastic optimization. A novel method based on the Particle Swarm Optimization, which provides more accurate results and improves the convergence rate, is described. The paper provides several practical examples of its application to test frequency selection for active RC filters. A comparison of the results obtained by the proposed method and by the Genetic Algorithm is also presented.

  15. Design and tests of a package for the transport of radioactive sources; Projeto e testes de uma embalagem para o transporte de fontes radioativas

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo de Oliveira, E-mail: pos@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-10-26

    The Type A package was designed for transportation of seven cobalt-60 sources with total activity of 1 GBq. The shield thickness to accomplish the dose rate and the transport index established by the radioactive transport regulation was calculated by the code MCNP (Monte Carlo N-Particle Transport Code Version 5). The sealed cobalt-60 sources were tested for leakages. according to the regulation ISO 9978:1992 (E). The package was tested according to regulation Radioactive Material Transport CNEN. The leakage tests results pf the sources, and the package tests demonstrate that the transport can be safe performed from the CDTN to the steelmaking industries

  16. Injection Efficiency of Low-energy Particles at Oblique Shocks with a Focused Transport Model

    Science.gov (United States)

    Zuo, P.; Zhang, M.; Rassoul, H.

    2013-12-01

    There is strong evidence that a small portion of thermal and suprathermal particles from hot coronal material or remnants of previous solar energetic particle (SEP) events serve as the source of large SEP events (Desai et al. 2006). To build more powerful SEP models, it is necessary to model the detailed particle injection and acceleration process for source particles especially at lower energies. We present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by Laminar nonrelativistic oblique shocks in the framework of the focused transport theory, which is proved to contain all necessary physics of shock acceleration, but avoid the limitation of diffusive shock acceleration (DSA). The injection efficiency as a function of Mach number, obliquity, injection speed, shock strength, cross-shock potential and the degree of turbulence is calculated. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection. The results can be applied to modeling the SEP acceleration from source particles.

  17. Diffusion in pulsar wind nebulae: an investigation using magnetohydrodynamic and particle transport models

    Science.gov (United States)

    Porth, O.; Vorster, M. J.; Lyutikov, M.; Engelbrecht, N. E.

    2016-08-01

    We study the transport of high-energy particles in pulsar wind nebulae (PWN) using three-dimensional magnetohydrodynamic (MHD) and test-particle simulations, as well as a Fokker-Planck particle transport model. The latter includes radiative and adiabatic losses, diffusion, and advection on the background flow of the simulated MHD nebula. By combining the models, the spatial evolution of flux and photon index of the X-ray synchrotron emission is modelled for the three nebulae G21.5-0.9, the inner regions of Vela, and 3C 58, thereby allowing us to derive governing parameters: the magnetic field strength, average flow velocity, and spatial diffusion coefficient. For comparison, the nebulae are also modelled with the semi-analytic Kennel & Coroniti model but the Porth et al. model generally yields better fits to the observational data. We find that high velocity fluctuations in the turbulent nebula (downstream of the termination shock) give rise to efficient diffusive transport of particles, with average Péclet number close to unity, indicating that both advection and diffusion play an important role in particle transport. We find that the diffusive transport coefficient of the order of ˜ 2 × 1027(Ls/0.42 Ly) cm2 s- 1 (Ls is the size of the termination shock) is independent of energy up to extreme particle Lorentz factors of γp ˜ 1010.

  18. Linear kinetic theory and particle transport in stochastic mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Pomraning, G.C. [Univ. of California, Los Angeles, CA (United States)

    1995-12-31

    We consider the formulation of linear transport and kinetic theory describing energy and particle flow in a random mixture of two or more immiscible materials. Following an introduction, we summarize early and fundamental work in this area, and we conclude with a brief discussion of recent results.

  19. Probing cytoskeleton dynamics by intracellular particle transport analysis

    Science.gov (United States)

    Götz, M.; Hodeck, K. F.; Witzel, P.; Nandi, A.; Lindner, B.; Heinrich, D.

    2015-07-01

    All cellular functions arise from the transport of molecules through a heterogeneous, highly dynamic cell interior for intracellular signaling. Here, the impact of intracellular architecture and cytoskeleton dynamics on transport processes is revealed by high-resolution single particle tracking within living cells, in combination with time-resolved local mean squared displacement (I-MSD) analysis. We apply the I-MSD analysis to trajectories of 200 nm silica particles within living cells of Dictyostelium discoideum obtained by high resolution spinning disc confocal microscopy with a frame rate of 100 fps and imaging in one fixed focal plane. We investigate phases of motor-driven active transport and subdiffusion, normal diffusion, as well as superdiffusion with high spatial and temporal resolution. Active directed intracellular motion is attributed to microtubule associated molecular motor driven transport with average absolute velocities of 2.8 μm s-1 for 200 nm diameter particles. Diffusion processes of these particles within wild-type cells are found to exhibit diffusion constants ranging across two orders of magnitude from subdiffusive to superdiffusive behavior. This type of analysis might prove of ample importance for medical applications, like targeted drug treatment of cells by nano-sized carriers or innovative diagnostic assays.

  20. FLUKA A multi-particle transport code (program version 2005)

    CERN Document Server

    Ferrari, A; Fassò, A; Ranft, Johannes

    2005-01-01

    This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner’s guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.

  1. A review of transport theory. [particle acceleration in astrophysical plasmas

    Science.gov (United States)

    Jones, Frank C.

    1992-01-01

    Ways in which energy change terms arise in the transport equation and how the various terms relate to the modes of energy exchange between the particles and plasma are shown. It is argued that the transport equation cannot be used to describe the initial acceleration of thermal particles by plasma shocks or relativistic shocks where the energetic particle speeds are never much greater than the flow speeds. In most other situations, it describes almost any acceleration process that can be caused by a moving plasma. It describes shock acceleration for both parallel shocks and oblique ones, and stochastic acceleration by the turbulent motion of the scatterers as well as by their motion across the magnetic field.

  2. A concurrent vector-based steering framework for particle transport

    CERN Document Server

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    High Energy Physics has traditionally been a technology - limited science that has pushed the boundaries of both the detectors collecting the information about the particles and the computing infrastructure processing this information. However, since a few years the increase in computing power comes in the form of increased parallelism at all levels, and High Energy Physics has now to optimise its code to take advantage of the new architectures, including GPUs and hybrid systems. One of the primary targets for optimisation is the particle transport code used to simulate the detector response, as it is largely experiment independent and one of the most demanding applications in terms of CPU resources . The Geant Vector Prototype project aims to explore innovative designs in particle transport aimed at obtaining maximal performance on the new architectures. This paper describes the current status of the project and its future perspectives. In particular we describe how the present design tries to expose the par...

  3. Adaptive multilevel splitting for Monte Carlo particle transport

    Directory of Open Access Journals (Sweden)

    Louvin Henri

    2017-01-01

    Full Text Available In the Monte Carlo simulation of particle transport, and especially for shielding applications, variance reduction techniques are widely used to help simulate realisations of rare events and reduce the relative errors on the estimated scores for a given computation time. Adaptive Multilevel Splitting (AMS is one of these variance reduction techniques that has recently appeared in the literature. In the present paper, we propose an alternative version of the AMS algorithm, adapted for the first time to the field of particle transport. Within this context, it can be used to build an unbiased estimator of any quantity associated with particle tracks, such as flux, reaction rates or even non-Boltzmann tallies like pulse-height tallies and other spectra. Furthermore, the efficiency of the AMS algorithm is shown not to be very sensitive to variations of its input parameters, which makes it capable of significant variance reduction without requiring extended user effort.

  4. Estimates of Lagrangian particle transport by wave groups: forward transport by Stokes drift and backward transport by the return flow

    Science.gov (United States)

    van den Bremer, Ton S.; Taylor, Paul H.

    2014-11-01

    Although the literature has examined Stokes drift, the net Lagrangian transport by particles due to of surface gravity waves, in great detail, the motion of fluid particles transported by surface gravity wave groups has received considerably less attention. In practice nevertheless, the wave field on the open sea often has a group-like structure. The motion of particles is different, as particles at sufficient depth are transported backwards by the Eulerian return current that was first described by Longuet-Higgins & Stewart (1962) and forms an inseparable counterpart of Stokes drift for wave groups ensuring the (irrotational) mass balance holds. We use WKB theory to study the variation of the Lagrangian transport by the return current with depth distinguishing two-dimensional seas, three-dimensional seas, infinite depth and finite depth. We then provide dimensional estimates of the net horizontal Lagrangian transport by the Stokes drift on the one hand and the return flow on the other hand for realistic sea states in all four cases. Finally we propose a simple scaling relationship for the transition depth: the depth above which Lagrangian particles are transported forwards by the Stokes drift and below which such particles are transported backwards by the return current.

  5. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  6. Dynamics and transport of dust particles in tokamak edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, S I [University of California, San Diego, La Jolla, CA 92093 (United States); Soboleva, T K [UNAM, Mexico D.F., Mexico and Kurchatov Institute, Moscow (Russian Federation)

    2005-05-01

    We discuss the dust particle dynamics in tokamak edge plasmas, with special emphasis on dust particle transport in the sheath and plasma recycling regions. We demonstrate that being dragged by plasma flows in the vicinity of the material surface, dust particles can be accelerated to speeds of {approx}10{sup 3}-10{sup 4} cm s{sup -1}. The opposite direction of plasma recycling flow as well as the frictional forces at the inner and outer divertor legs, propel the dust particles in opposite toroidal directions depending on their location. The interactions of a dust particle with a corrugated surface or plasma turbulence can cause it to exit the recycling region and fly through the scrape-off layer plasma towards the tokamak core. It is conceivable that dust formation in and transport from the divertor region can play an important role in core plasma contamination. However, even then, the dust particle density around the separatrix is {approx}10{sup -2} cm{sup -3}, which makes it difficult to detect.

  7. Origin and transport of high energy particles in the galaxy

    Science.gov (United States)

    Wefel, John P.

    1987-01-01

    The origin, confinement, and transport of cosmic ray nuclei in the galaxy was studied. The work involves interpretations of the existing cosmic ray physics database derived from both balloon and satellite measurements, combined with an effort directed towards defining the next generation of instruments for the study of cosmic radiation. The shape and the energy dependence of the cosmic ray pathlength distribution in the galaxy was studied, demonstrating that the leaky box model is not a good representation of the detailed particle transport over the energy range covered by the database. Alternative confinement methods were investigated, analyzing the confinement lifetime in these models based upon the available data for radioactive secondary isotopes. The source abundances of several isotopes were studied using compiled nuclear physics data and the detailed transport calculations. The effects of distributed particle acceleration on the secondary to primary ratios were investigated.

  8. Relativistic particle transport in extragalactic jets: I. Coupling MHD and kinetic theory

    OpenAIRE

    Casse, F.; Marcowith, A.

    2003-01-01

    Multidimensional magneto-hydrodynamical (MHD) simulations coupled with stochastic differential equations (SDEs) adapted to test particle acceleration and transport in complex astrophysical flows are presented. The numerical scheme allows the investigation of shock acceleration, adiabatic and radiative losses as well as diffusive spatial transport in various diffusion regimes. The applicability of SDEs to astrophysics is first discussed in regards to the different regimes and the MHD code spat...

  9. Particle transport in a wave spectrum with a thermal distribution of Larmor radii

    Science.gov (United States)

    Martinell, Julio; Kryukov, Nikolay; Del Castillo-Negrete, Diego

    2017-10-01

    Test particle E × B transport is studied due to an infinite spectrum of drift waves in two dimensions using a Hamiltonian approach, which can be reduced to a 2D mapping. Finite Larmor radius (FLR) effects are included taking a gyroaverage. When the wave amplitude is increased there is a gradual transition to chaos but the chaos level is reduced when FLR grows, implying that fast particles are better confined. The fraction of confined particles is found to be reduced as the wave amplitude rises. The statistical properties of transport are studied finding that, in the absence of a background flow, it is diffusive with a Gaussian PDF, when all particles have the same FLR. In contrast, for a thermal FLR distribution, the PDF is non-Gaussian but the transport remains diffusive. A theoretical explanation of this is given showing that a superposition of Gaussians produces a PDF with long tails. When a background flow is introduced that varies monotonically with radius, the transport becomes strongly super-diffusive due to the appearance of long Levy flights which dominate the particles. The PDF develops long tails as the flow strength is increased. The particle variance scales as σ t3 for chaotic regime but reduces to ballistic ( t2) for low chaos. Work funded by PAPIIT-UNAM project IN109115.

  10. Dynamics and transport of laser-accelerated particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stefan

    2010-04-19

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  11. A Fano cavity test for Monte Carlo proton transport algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Sterpin, Edmond, E-mail: esterpin@yahoo.fr [Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Experimentale et Clinique, Avenue Hippocrate 54, 1200 Brussels (Belgium); Sorriaux, Jefferson; Souris, Kevin [Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Experimentale et Clinique, Avenue Hippocrate 54, 1200 Brussels, Belgium and Université catholique de Louvain, ICTEAM institute, Chemin du cyclotron 6, 1348 Louvain-la-Neuve (Belgium); Vynckier, Stefaan [Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Experimentale et Clinique, Avenue Hippocrate 54, 1200 Brussels, Belgium and Département de Radiothérapie, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 54, 1200 Brussels (Belgium); Bouchard, Hugo [Département de radio-oncologie, Centre hospitalier de l’Université de Montréal (CHUM), 1560 Sherbrooke est, Montréal, Québec H2L 4M1 (Canada)

    2014-01-15

    Purpose: In the scope of reference dosimetry of radiotherapy beams, Monte Carlo (MC) simulations are widely used to compute ionization chamber dose response accurately. Uncertainties related to the transport algorithm can be verified performing self-consistency tests, i.e., the so-called “Fano cavity test.” The Fano cavity test is based on the Fano theorem, which states that under charged particle equilibrium conditions, the charged particle fluence is independent of the mass density of the media as long as the cross-sections are uniform. Such tests have not been performed yet for MC codes simulating proton transport. The objectives of this study are to design a new Fano cavity test for proton MC and to implement the methodology in two MC codes: Geant4 and PENELOPE extended to protons (PENH). Methods: The new Fano test is designed to evaluate the accuracy of proton transport. Virtual particles with an energy ofE{sub 0} and a mass macroscopic cross section of (Σ)/(ρ) are transported, having the ability to generate protons with kinetic energy E{sub 0} and to be restored after each interaction, thus providing proton equilibrium. To perform the test, the authors use a simplified simulation model and rigorously demonstrate that the computed cavity dose per incident fluence must equal (ΣE{sub 0})/(ρ) , as expected in classic Fano tests. The implementation of the test is performed in Geant4 and PENH. The geometry used for testing is a 10 × 10 cm{sup 2} parallel virtual field and a cavity (2 × 2 × 0.2 cm{sup 3} size) in a water phantom with dimensions large enough to ensure proton equilibrium. Results: For conservative user-defined simulation parameters (leading to small step sizes), both Geant4 and PENH pass the Fano cavity test within 0.1%. However, differences of 0.6% and 0.7% were observed for PENH and Geant4, respectively, using larger step sizes. For PENH, the difference is attributed to the random-hinge method that introduces an artificial energy

  12. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    Science.gov (United States)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  13. Dust particle diffusion in ion beam transport region

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M., E-mail: mwada@mail.doshisha.ac.jp [Graduate school of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  14. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Patrick H.

    2011-09-21

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  15. Variational Algorithms for Test Particle Trajectories

    Science.gov (United States)

    Ellison, C. Leland; Finn, John M.; Qin, Hong; Tang, William M.

    2015-11-01

    The theory of variational integration provides a novel framework for constructing conservative numerical methods for magnetized test particle dynamics. The retention of conservation laws in the numerical time advance captures the correct qualitative behavior of the long time dynamics. For modeling the Lorentz force system, new variational integrators have been developed that are both symplectic and electromagnetically gauge invariant. For guiding center test particle dynamics, discretization of the phase-space action principle yields multistep variational algorithms, in general. Obtaining the desired long-term numerical fidelity requires mitigation of the multistep method's parasitic modes or applying a discretization scheme that possesses a discrete degeneracy to yield a one-step method. Dissipative effects may be modeled using Lagrange-D'Alembert variational principles. Numerical results will be presented using a new numerical platform that interfaces with popular equilibrium codes and utilizes parallel hardware to achieve reduced times to solution. This work was supported by DOE Contract DE-AC02-09CH11466.

  16. Adaptive Multilevel Splitting for Monte Carlo particle transport

    Science.gov (United States)

    Louvin, Henri; Dumonteil, Eric; Lelièvre, Tony; Rousset, Mathias; Diop, Cheikh M.

    2017-09-01

    In the Monte Carlo simulation of particle transport, and especially for shielding applications, variance reduction techniques are widely used to help simulate realisations of rare events and reduce the relative errors on the estimated scores for a given computation time. Adaptive Multilevel Splitting is one of these variance reduction techniques that has recently appeared in the literature. In the present paper, we propose an alternative version of the AMS algortihm, adapted for the first time to the field of particle tranport. Within this context, it can be used to build an unbiased estimator of any quantity associated with particle tracks, such as flux, reaction rates or even non-Boltzmann tallies. Furthermore, the effciency of the AMS algorithm is shown not to be very sensitive to variations of its input parameters, which makes it capable of significant variance reduction without requiring extended user effort.

  17. Simulation of Cell Adhesion using a Particle Transport Model

    Science.gov (United States)

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  18. Adaptive Multilevel Splitting for Monte Carlo particle transport

    Directory of Open Access Journals (Sweden)

    Louvin Henri

    2017-01-01

    Full Text Available In the Monte Carlo simulation of particle transport, and especially for shielding applications, variance reduction techniques are widely used to help simulate realisations of rare events and reduce the relative errors on the estimated scores for a given computation time. Adaptive Multilevel Splitting is one of these variance reduction techniques that has recently appeared in the literature. In the present paper, we propose an alternative version of the AMS algortihm, adapted for the first time to the field of particle tranport. Within this context, it can be used to build an unbiased estimator of any quantity associated with particle tracks, such as flux, reaction rates or even non-Boltzmann tallies. Furthermore, the effciency of the AMS algorithm is shown not to be very sensitive to variations of its input parameters, which makes it capable of significant variance reduction without requiring extended user effort.

  19. Particle transport in pellet fueled JET (Jet European Torus) plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, L.R.

    1990-01-01

    Pellet fueling experiments have been carried out on the Joint European Torus (JET) tokamak with a multi-pellet injector. The pellets are injected at speeds approaching 1400 m/s and penetrate deep into the JET plasma. Highly peaked electron density profiles are achieved when penetration of the pellets approaches or goes beyond the magnetic axis, and these peaked profiles persist for more than two seconds in ohmic discharges and over one second in ICRF heated discharges. In this dissertation, analysis of electron particle transport in multi-pellet fueled JET limiter plasmas under a variety of heating conditions is described. The analysis is carried out with a one and one-half dimensional radial particle transport code to model the experimental density evolution with various particle transport coefficients. These analyses are carried out in plasmas with ohmic heating, ICRF heating, and neural beam heating, in limiter configurations. Peaked density profile cases are generally characterized by diffusion coefficients with a central (r/a < 0.5) diffusivity {approximately}0.1 m{sup 2}/s that increases rapidly to {approximately}0.3 m{sup 2}/s at r/a = 0.6 and then increases out to the plasma edge as (r/a){sup 2}. These discharges can be satisfactorily modeled without any anomalous convective (pinch) flux. 79 refs., 60 figs.

  20. Transport of Particle Swarms Through Variable Aperture Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2012-12-01

    Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity

  1. Saturated Particle Transport in Porous Media: An Investigation into the Influence of Flow Direction and Particle Size Distribution

    Science.gov (United States)

    2015-06-28

    military and industrial operations. Contaminants can include PCBs, fuels, solvents, herbicides/pesticides, heavy metals, munitions materials, and...interpretation of laboratory or field experiments, and have led to the generation of a range of particle filtration and transport models that are thought...of flow direction and particle size distribution on particle filtration . To meet this objective, particle transport experiments were conducted in the

  2. Characterization of molecule and particle transport through nanoscale conduits

    Science.gov (United States)

    Alibakhshi, Mohammad Amin

    Nanofluidic devices have been of great interest due to their applications in variety of fields, including energy conversion and storage, water desalination, biological and chemical separations, and lab-on-a-chip devices. Although these applications cross the boundaries of many different disciplines, they all share the demand for understanding transport in nanoscale conduits. In this thesis, different elusive aspects of molecule and particle transport through nanofluidic conduits are investigated, including liquid and ion transport in nanochannels, diffusion- and reaction-governed enzyme transport in nanofluidic channels, and finally translocation of nanobeads through nanopores. Liquid or solvent transport through nanoconfinements is an essential yet barely characterized component of any nanofluidic systems. In the first chapter, water transport through single hydrophilic nanochannels with heights down to 7 nm is experimentally investigated using a new measurement technique. This technique has been developed based on the capillary flow and a novel hybrid nanochannel design and is capable of characterizing flow in both single nanoconduits as well as nanoporous media. The presence of a 0.7 nm thick hydration layer on hydrophilic surfaces and its effect on increasing the hydraulic resistance of the nanochannels is verified. Next, ion transport in a new class of nanofluidic rectifiers is theoretically and experimentally investigated. These so called nanofluidic diodes are nanochannels with asymmetric geometries which preferentially allow ion transport in one direction. A nondimensional number as a function of electrolyte concentration, nanochannel dimensions, and surface charge is derived that summarizes the rectification behavior of this system. In the fourth chapter, diffusion- and reaction-governed enzyme transport in nanofluidic channels is studied and the theoretical background necessary for understanding enzymatic activity in nanofluidic channels is presented. A

  3. Measurement of particle transport coefficients on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.

  4. Particle Communication and Domain Neighbor Coupling: Scalable Domain Decomposed Algorithms for Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, M. J.; Brantley, P. S.

    2015-01-20

    In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of:(1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain’s replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.

  5. Particle transport in 3He-rich events: wave-particle interactions and particle anisotropy measurements

    Directory of Open Access Journals (Sweden)

    T. Hada

    Full Text Available Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths lW - P are calculated using the measured wave intensities, polarizations, and k directions. The values of lW - P are found to be ~ 5 times less than the value of lHe , the latter derived from He intensity and anisotropy time profiles. It is demonstrated by computer simulation that scattering rates through a 90° pitch angle are lower than that of other pitch angles, and that this is a possible explanation for the discrepancy between the lW - P and lHe values. At this time the scattering mechanism(s is unknown. We suggest a means where a direct comparison between the two l values could be made. Computer simulations indicate that although scattering through 90° is lower, it still occurs. Possibilities are either large pitch angle scattering through resonant interactions, or particle mirroring off of field compression regions. The largest solar proton events are analyzed to investigate the possibilities of local wave generation at 1 AU. In accordance with the results of a previous calculation (Gary et al., 1985 of beam stability, proton beams at 1 AU are found to be marginally stable. No evidence for substantial wave amplitude was found. Locally generated waves, if present, were less than 10-3 nT 2 Hz-1 at the leading

  6. Particle transport in 3He-rich events: wave-particle interactions and particle anisotropy measurements

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2002-04-01

    Full Text Available Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths lW - P are calculated using the measured wave intensities, polarizations, and k directions. The values of lW - P are found to be ~ 5 times less than the value of lHe , the latter derived from He intensity and anisotropy time profiles. It is demonstrated by computer simulation that scattering rates through a 90° pitch angle are lower than that of other pitch angles, and that this is a possible explanation for the discrepancy between the lW - P and lHe values. At this time the scattering mechanism(s is unknown. We suggest a means where a direct comparison between the two l values could be made. Computer simulations indicate that although scattering through 90° is lower, it still occurs. Possibilities are either large pitch angle scattering through resonant interactions, or particle mirroring off of field compression regions. The largest solar proton events are analyzed to investigate the possibilities of local wave generation at 1 AU. In accordance with the results of a previous calculation (Gary et al., 1985 of beam stability, proton beams at 1 AU are found to be marginally stable. No evidence for substantial wave amplitude was found. Locally generated waves, if present, were less than 10-3 nT 2 Hz-1 at the leading

  7. Particle dispersing system and method for testing semiconductor manufacturing equipment

    Science.gov (United States)

    Chandrachood, Madhavi; Ghanayem, Steve G.; Cantwell, Nancy; Rader, Daniel J.; Geller, Anthony S.

    1998-01-01

    The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.

  8. Transport Network Technologies – Study and Testing

    DEFF Research Database (Denmark)

    Bozorgebrahimi, K.; Channegowda, M.; Colmenero, A.

    Following on from the theoretical research into Carrier Class Transport Network Technologies (CCTNTs) documented in DJ1.1.1, this report describes the extensive testing performed by JRA1 Task 1. The tests covered EoMPLS, Ethernet OAM, Synchronous Ethernet, PBB-TE, MPLS-TP, OTN and GMPLS, and the ......Following on from the theoretical research into Carrier Class Transport Network Technologies (CCTNTs) documented in DJ1.1.1, this report describes the extensive testing performed by JRA1 Task 1. The tests covered EoMPLS, Ethernet OAM, Synchronous Ethernet, PBB-TE, MPLS-TP, OTN and GMPLS...

  9. Used Fuel Testing Transportation Model

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Best, Ralph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maheras, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); England, Jeffery L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); LeDuc, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-25

    This report identifies shipping packages/casks that might be used by the Used Nuclear Fuel Disposition Campaign Program (UFDC) to ship fuel rods and pieces of fuel rods taken from high-burnup used nuclear fuel (UNF) assemblies to and between research facilities for purposes of evaluation and testing. Also identified are the actions that would need to be taken, if any, to obtain U.S. Nuclear Regulatory (NRC) or other regulatory authority approval to use each of the packages and/or shipping casks for this purpose.

  10. Overview of Particle and Heavy Ion Transport Code System PHITS

    Science.gov (United States)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  11. Particle transport in the vicinity of divertor separatrix

    Science.gov (United States)

    Nishimura, Y.; Lyu, J. C.

    2017-10-01

    Guiding center orbit following code in a tokamak edge geometry is developed which connects straight field line coordinate system (away from the separatrix) and Cartesian coordinate system (in the vicinity of the separatrix) smoothly in the equation of motion. In the presence of magnetic stochasticity charged particles in the closed magnetic field line region can be transported to the open field line region and then hit the divertor plates within several toroidal transits. Our preliminary studies suggest finite heat load both on the inner and outer divertor plates. Energy spectrum of particles reaching the plates (which differs from that of the bulk plasma) as function of imposed magnetic stochasticity, is analyzed. This work is supported by Taiwan MOST 104-2112-M-006-019.

  12. On the use of antithetic variates in particle transport problems

    Energy Technology Data Exchange (ETDEWEB)

    Milgram, M.S. E-mail: khbae@nanum.kaeri.re.krmike@geometrics-unlimited.com

    2001-03-01

    The possible use of antithetic variates as a method of variance reduction in particle transport problems is investigated, by performing some numerical experiments. It is found that if variance reduction is not very carefully defined, it is possible, with antithetic variates, to spuriously detect reduction, or not detect true reduction. Once such subtleties are overcome, it is shown that antithetic variates can reduce variance in multidimensional integration up to a point. The phenomenon of spontaneous correlation is defined and identified as the cause of failure. The surprising result that it sometimes pays to track non-contributing particle histories is demonstrated by means of a zero variance integration analogue. The principles developed in the investigation of multi-variable integration are then employed in a simple calculation of energy deposition using the EGS4 computer code. Promising results are obtained for the total energy deposition problem, but the depth/dose problem remains unsolved. Possible means of overcoming the difficulties are suggested.

  13. Magnetic Particle Testing, RQA/M1-5330.16.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on magnetic particle testing. The subject is divided under the following headings: Introduction, Principles of Magnetic Particle Testing, Magnetic Particle Test…

  14. Quantum interference effects in particle transport through square lattices

    Science.gov (United States)

    Cuansing, E.; Nakanishi, H.

    2004-12-01

    We study the transport of a quantum particle through square lattices of various sizes by employing the tight-binding Hamiltonian from quantum percolation. Input and output semi-infinite chains are attached to the lattice either by diagonal point-to-point contacts or by a busbar connection. We find resonant transmission and reflection occurring whenever the incident particle’s energy is near an eigenvalue of the lattice alone (i.e., the lattice without the chains attached). We also find the transmission to be strongly dependent on the way the chains are attached to the lattice.

  15. Computational transport phenomena of fluid-particle systems

    CERN Document Server

    Arastoopour, Hamid; Abbasi, Emad

    2017-01-01

    This book concerns the most up-to-date advances in computational transport phenomena (CTP), an emerging tool for the design of gas-solid processes such as fluidized bed systems. The authors examine recent work in kinetic theory and CTP and illustrate gas-solid processes’ many applications in the energy, chemical, pharmaceutical, and food industries. They also discuss the kinetic theory approach in developing constitutive equations for gas-solid flow systems and how it has advanced over the last decade as well as the possibility of obtaining innovative designs for multiphase reactors, such as those needed to capture CO2 from flue gases. Suitable as a concise reference and a textbook supplement for graduate courses, Computational Transport Phenomena of Gas-Solid Systems is ideal for practitioners in industries involved with the design and operation of processes based on fluid/particle mixtures, such as the energy, chemicals, pharmaceuticals, and food processing. Explains how to couple the population balance e...

  16. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  17. A Lagrangian particle method with remeshing for tracer transport on the sphere

    Science.gov (United States)

    Bosler, Peter A.; Kent, James; Krasny, Robert; Jablonowski, Christiane

    2017-07-01

    A Lagrangian particle method (called LPM) based on the flow map is presented for tracer transport on the sphere. The particles carry tracer values and are located at the centers and vertices of triangular Lagrangian panels. Remeshing is applied to control particle disorder and two schemes are compared, one using direct tracer interpolation and another using inverse flow map interpolation with sampling of the initial tracer density. Test cases include a moving-vortices flow and reversing-deformational flow with both zero and nonzero divergence, as well as smooth and discontinuous tracers. We examine the accuracy of the computed tracer density and tracer integral, and preservation of nonlinear correlation in a pair of tracers. We compare results obtained using LPM and the Lin-Rood finite-volume scheme. An adaptive particle/panel refinement scheme is demonstrated.

  18. Large Payload Ground Transportation and Test Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  19. Exposure visualisation of ultrafine particle counts in a transport microenvironment

    Science.gov (United States)

    Kaur, S.; Clark, R. D. R.; Walsh, P. T.; Arnold, S. J.; Colvile, R. N.; Nieuwenhuijsen, M. J.

    An increasing number of studies indicate that short-term peak exposures, such as those seen in the transport microenvironment, pose particular health threats. Short-term exposure can only be sufficiently characterised using portable, fast-response monitoring instrumentation with detailed summaries of individual activity. In this paper, we present an exposure visualisation system that addresses this issue—it allows the simultaneous presentation of mobile video imagery synchronised with measured real-time ultrafine particle count exposure of an individual. The combined data can be examined in detail for the contribution of the surrounding environment and the individual's activities to their peak and overall exposure. The exposure visualisation system is demonstrated and evaluated around the DAPPLE study site in Central London using different modes of transport (walking, cycling, bus, car and taxi). The video images, synchronised with the exposure profile, highlight the extent to which ultrafine particle exposure is associated with traffic density and proximity to pollutant source. The extremely rapid decline in concentration with increasing distance away from the pollutant source, such as from the main street to the backstreets, is clearly evident. The visualisation technique allows these data to be presented to both technical audiences and laypersons thus making it an effective environmental risk communication tool. Some exposure peaks however are not obviously associated with any event recorded on video—in these cases it will be necessary to use advanced dispersion modelling techniques to investigate meteorological conditions and other variables influencing in-street conditions to identify their possible causes.

  20. Particle Swarm Transport through Immiscible Fluid Layers in a Fracture

    Science.gov (United States)

    Teasdale, N. D.; Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    Immiscible fluids occur either naturally (e.g. oil & water) or from anthropogenic processes (e.g. liquid CO2 & water) in the subsurface and complicate the transport of natural or engineered micro- or nano-scale particles. In this study, we examined the effect of immiscible fluids on the formation and evolution of particle swarms in a fracture. A particle swarm is a collection of colloidal-size particles in a dilute suspension that exhibits cohesive behavior. Swarms fall under gravity with a velocity that is greater than the settling velocity of a single particle. Thus a particle swarm of colloidal contaminants can potentially travel farther and faster in a fracture than expected for a dispersion or emulsion of colloidal particles. We investigated the formation, evolution, and break-up of colloidal swarms under gravity in a uniform aperture fracture as hydrophobic/hydrophyllic particle swarms move across an oil-water interface. A uniform aperture fracture was fabricated from two transparent acrylic rectangular prisms (100 mm x 50 mm x 100 mm) that are separated by 1, 2.5, 5, 10 or 50 mm. The fracture was placed, vertically, inside a glass tank containing a layer of pure silicone oil (polydimethylsiloxane) on distilled water. Along the length of the fracture, 30 mm was filled with oil and 70 mm with water. Experiments were conducted using silicone oils with viscosities of 5, 10, 100, or 1000 cSt. Particle swarms (5 μl) were comprised of a 1% concentration (by mass) of 25 micron glass beads (hydrophilic) suspended in a water drop, or a 1% concentration (by mass) of 3 micron polystyrene fluorescent beads (hydrophobic) suspended in a water drop. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera and by green (525 nm) LED arrays for illumination. Swarms were spherical and remained coherent as they fell through the oil because of the immiscibility of oil and water. However, as a swarm approached the oil-water interface, it

  1. Synthesis of electrostatic fields for transportation of charged particle beams

    Directory of Open Access Journals (Sweden)

    Vladimir V. Pavlov

    2016-06-01

    Full Text Available In this paper, an approach to creating corpuscular-optical devices for transportation and transformation of charged particle beams has been elucidated. These devices are able to optimize and create the most convenient configuration of ionic or electron paths. The approach relies upon the inverse dynamics problem formulated on the basis of the Hamilton-Jacobi equation. The motion in the symmetry plane of a three-dimensional (3D field was considered. The problem was solved by analytical methods. An algorithm for constructing electric fields providing the particle motion on the desired trajectories was described. А key to this algorithm lies with a concept of conformal transformation from the theory of complex-valued function. This procedure was illustrated by examples. Quadratic potential was chosen as a basis. Three functions of conformal transformation were considered, providing the rotation of the focused charged particle beam at a fixed angle, the transformation of divergent flow to parallel one. The calculated two-dimensional potentials were extended into 3D-space by power series expansion on transverse coordinate. Device embodiments were suggested on the basis of the calculated field structures.

  2. Transport of nucleosome core particles in semidilute DNA solutions.

    Science.gov (United States)

    Mangenot, Stéphanie; Keller, Simon; Rädler, Joachim

    2003-09-01

    We studied the diffusion of native and trypsinized nucleosome core particles (NCPs), in aqueous solution and in concentrated DNA solutions (0.25-100 mg/ml) using fluorescence correlation spectroscopy (FCS). The highest DNA concentrations studied mimic the DNA density inside the cell nucleus. The diffusion coefficient of freely diffusing NCPs depends on the presence or absence of histone tails and is affected by the salt concentration due to the relaxation effect of counterions. NCPs placed in a network of long DNA molecules (30-50 kbp) reveal anomalous diffusion. We demonstrate that NCPs diffusion is in agreement with known particle transport in entangled macromolecular solutions as long as the histone tails are folded onto the particles. In contrast, when these tails are unfolded, the reversible adsorption of NCPs onto the DNA network has to be taken into account. This is confirmed by the fact that removal of the tails leads to reduction of the interaction between NCPs and the DNA network. The findings suggest that histone tail bridging plays an important role in chromatin dynamics.

  3. Evidence for particle transport between alveolar macrophages in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Nikula, K.J.; Guilmette, R.A.

    1995-12-01

    Recent studies at this Institute have focused on determining the role of alveolar macrophages (AMs) in the transport of particles within and form the lung. For those studies, AMs previously labeled using the nuclear stain Hoechst 33342 and polychromatic Fluoresbrite microspheres (1 {mu}m diameter, Polysciences, Inc., Warrington, PA) were instilled into lungs of recipient F344 rats. The fate of the donor particles and the doubly labeled AMs within recipient lungs was followed for 32 d. Within 2-4 d after instillation, the polychromatic microspheres were found in both donor and resident AMs, suggesting that particle transfer occurred between the donor and resident AMs. However, this may also have been an artifact resulting from phagocytosis of the microspheres form dead donor cells or from the fading or degradation of Hoechst 33342 within the donor cells leading to their misidentification as resident AMs. The results support the earlier findings that microspheres in donor AMs can be transferred to resident AMs within 2 d after instillation.

  4. High energy electromagnetic particle transportation on the GPU

    Energy Technology Data Exchange (ETDEWEB)

    Canal, P. [Fermilab; Elvira, D. [Fermilab; Jun, S. Y. [Fermilab; Kowalkowski, J. [Fermilab; Paterno, M. [Fermilab; Apostolakis, J. [CERN

    2014-01-01

    We present massively parallel high energy electromagnetic particle transportation through a finely segmented detector on a Graphics Processing Unit (GPU). Simulating events of energetic particle decay in a general-purpose high energy physics (HEP) detector requires intensive computing resources, due to the complexity of the geometry as well as physics processes applied to particles copiously produced by primary collisions and secondary interactions. The recent advent of hardware architectures of many-core or accelerated processors provides the variety of concurrent programming models applicable not only for the high performance parallel computing, but also for the conventional computing intensive application such as the HEP detector simulation. The components of our prototype are a transportation process under a non-uniform magnetic field, geometry navigation with a set of solid shapes and materials, electromagnetic physics processes for electrons and photons, and an interface to a framework that dispatches bundles of tracks in a highly vectorized manner optimizing for spatial locality and throughput. Core algorithms and methods are excerpted from the Geant4 toolkit, and are modified and optimized for the GPU application. Program kernels written in C/C++ are designed to be compatible with CUDA and OpenCL and with the aim to be generic enough for easy porting to future programming models and hardware architectures. To improve throughput by overlapping data transfers with kernel execution, multiple CUDA streams are used. Issues with floating point accuracy, random numbers generation, data structure, kernel divergences and register spills are also considered. Performance evaluation for the relative speedup compared to the corresponding sequential execution on CPU is presented as well.

  5. Particle transport model sensitivity on wave-induced processes

    Science.gov (United States)

    Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna

    2017-04-01

    Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.

  6. Particle integrity, sampling, and application of a DNA-tagged tracer for aerosol transport studies

    Energy Technology Data Exchange (ETDEWEB)

    Kaeser, Cynthia Jeanne [Michigan State Univ., East Lansing, MI (United States)

    2017-07-21

    Aerosols are an ever-present part of our daily environment and have extensive effects on both human and environmental health. Particles in the inhalable range (1-10 μm diameter) are of particular concern because their deposition in the lung can lead to a variety of illnesses including allergic reactions, viral or bacterial infections, and cancer. Understanding the transport of inhalable aerosols across both short and long distances is necessary to predict human exposures to aerosols. To assess the transport of hazardous aerosols, surrogate tracer particles are required to measure their transport through occupied spaces. These tracer particles must not only possess similar transport characteristics to those of interest but also be easily distinguished from the background at low levels and survive the environmental conditions of the testing environment. A previously-developed DNA-tagged particle (DNATrax), composed of food-grade sugar and a DNA oligonucleotide as a “barcode” label, shows promise as a new aerosol tracer. Herein, the use of DNATrax material is validated for use in both indoor and outdoor environments. Utilizing passive samplers made of materials commonly found in indoor environments followed by quantitative polymerase chain reaction (qPCR) assay for endpoint particle detection, particles detection was achieved up to 90 m from the aerosolization location and across shorter distances with high spatial resolution. The unique DNA label and PCR assay specificity were leveraged to perform multiple simultaneous experiments. This allowed the assessment of experimental reproducibility, a rare occurrence among aerosol field tests. To transition to outdoor testing, the solid material provides some protection of the DNA label when exposed to ultraviolet (UV) radiation, with 60% of the DNA remaining intact after 60 minutes under a germicidal lamp and the rate of degradation declining with irradiation time. Additionally, exposure of the DNATrax material using

  7. Electrokinetic Particle Transport in Micro-Nanofluidics Direct Numerical Simulation Analysis

    CERN Document Server

    Qian, Shizhi

    2012-01-01

    Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro/nano-fluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving elect

  8. Particle-bound polycyclic aromatic hydrocarbon concentrations in transportation microenvironments

    Science.gov (United States)

    Houston, Douglas; Wu, Jun; Yang, Dongwoo; Jaimes, Guillermo

    2013-06-01

    This study is one of the first case studies to characterize the exposure of urban residents to traffic-related air pollution across locations and transportation microenvironments during everyday activities. Twenty-four adult residents of Boyle Heights, a neighborhood near downtown Los Angeles, carried a portable air pollution monitor and a Global Positioning Systems (GPS) tracking device for a total of 96 days. We found significant spatial and temporal variation in the particle-bound polycyclic aromatic hydrocarbon (pPAH) concentrations in transportation microenvironments. Average pPAH concentrations were higher while walking outdoors (190 ng m-3) compared to traveling in private passenger vehicles (138-155 ng m-3) or traveling in public transportation (61-124 ng m-3). Although travel comprised 5% of participant days, it was associated with 27% of overall daily pPAH exposure. Regression models explained 40-55% of the variation in daily average pPAH concentrations, and 40-44% of the variation in 1-min interval concentrations. Important factors included time spent traveling, travel speed, meteorological and nearby land use factors, time of day, and proximity to roadways. Although future research is needed to develop stronger predictive models, our study demonstrates portable tracking devices can provide a more complete, diurnal characterization of air pollution exposures for urban populations.

  9. Turbulent particle transport in streams: can exponential settling be reconciled with fluid mechanics?

    Science.gov (United States)

    McNair, James N; Newbold, J Denis

    2012-05-07

    Most ecological studies of particle transport in streams that focus on fine particulate organic matter or benthic invertebrates use the Exponential Settling Model (ESM) to characterize the longitudinal pattern of particle settling on the bed. The ESM predicts that if particles are released into a stream, the proportion that have not yet settled will decline exponentially with transport time or distance and will be independent of the release elevation above the bed. To date, no credible basis in fluid mechanics has been established for this model, nor has it been rigorously tested against more-mechanistic alternative models. One alternative is the Local Exchange Model (LEM), which is a stochastic advection-diffusion model that includes both longitudinal and vertical spatial dimensions and is based on classical fluid mechanics. The LEM predicts that particle settling will be non-exponential in the near field but will become exponential in the far field, providing a new theoretical justification for far-field exponential settling that is based on plausible fluid mechanics. We review properties of the ESM and LEM and compare these with available empirical evidence. Most evidence supports the prediction of both models that settling will be exponential in the far field but contradicts the ESM's prediction that a single exponential distribution will hold for all transport times and distances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    Science.gov (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  11. The Random Ray Method for neutral particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Tramm, John R., E-mail: jtramm@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science Engineering, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439 (United States); Smith, Kord S., E-mail: kord@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science Engineering, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Forget, Benoit, E-mail: bforget@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science Engineering, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Siegel, Andrew R., E-mail: siegela@mcs.anl.gov [Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439 (United States)

    2017-08-01

    A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.

  12. Laboratory and field performance of a laser particle counter for measuring aeolian sand transport

    Science.gov (United States)

    Hugenholtz, Chris H.; Barchyn, Thomas E.

    2011-03-01

    This paper reports the results of laboratory and field tests that evaluate the performance of a new laser particle counter for measuring aeolian sand transport. The Wenglor® model YH03PCT8 ("Wenglor") consists of a laser (655 nm), photo sensor, and switching circuit. When a particle passes through the 0.6 mm diameter, 30 mm long laser beam, the sensor outputs a digital signal. Laboratory tests with medium sand and a vertical gravity flume show that the Wenglor count rate scales approximately linearly with mass flux up to the saturation point of the sensor, after which the count rate decreases despite increasing mass flux. Saturation depends on the diameter and concentration of particles in the airstream and may occur during extreme events in the field. Below saturation sensor performance is relatively consistent; the mean difference between average count rate response was between 50 and 100 counts. Field tests provide a complimentary frame of reference for evaluating the performance of the Wenglor under varying environmental conditions and to gauge its performance with respect to a collocated piezoelectric impact sensor (Sensit H11-B). During 136.5 h of deployment on an active sand dune the relative proportion of time sand transport recorded by two Wenglors was 0.09% and 0.79%, compared to 4.68% by the Sensit H11-B. The weak performance of the Wenglors is attributed to persistent lens contamination from adhesion of sand grains on the sensors after rainfall. However, during dry and windy conditions the Wenglor performance improved substantially; sensors measured a concentration of sand particles in the airstream more than seven times greater than that measured by the Sensit. Between the two Wenglors, the mean absolute count rate difference was 6.16 counts per second, with a standard deviation of 8.53 counts per second. For short-term measurement campaigns in dry conditions, therefore, the Wenglor is relatively consistent and can outperform the Sensit in detecting

  13. Fundamentals of charged particle transport in gases and condensed matter

    CERN Document Server

    Robson, Robert E; Hildebrandt, Malte

    2018-01-01

    This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell’s equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor.

  14. Progress in Solving the Elusive Ag Transport Mechanism in TRISO Coated Particles: What is new?

    Energy Technology Data Exchange (ETDEWEB)

    Isabella Van Rooyen

    2014-10-01

    The TRISO particle for HTRs has been developed to an advanced state where the coating withstands internal gas pressures and retains fission products during irradiation and under postulated accidents. However, one exception is Ag that has been found to be released from high quality TRISO coated particles when irradiated and can also during high temperature accident heating tests. Although out- of- pile laboratory tests have never hither to been able to demonstrate a diffusion process of Ag in SiC, effective diffusion coefficients have been derived to successfully reproduce measured Ag-110m releases from irradiated HTR fuel elements, compacts and TRISO particles It was found that silver transport through SiC does not proceed via bulk volume diffusion. Presently grain boundary diffusion that may be irradiation enhanced either by neutron bombardment or by the presence of fission products such as Pd, are being investigated. Recent studies of irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), transmission kukuchi diffraction (TKD) patterns and high resolution transmission electron microscopy (HRTEM) have been used to further the understanding of Ag transport through TRISO particles. No silver was observed in SiC grains, but Ag was identified at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in some of the very same triple junctions, but this could be related to silver behavior as Ag-110m decays to Cd-110. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries and in most SiC grain boundaries and the potential role of Pd in the transport of Ag will be discussed.

  15. Graphical User Interface for High Energy Multi-Particle Transport Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Computer codes such as MCNPX now have the capability to transport most high energy particle types (34 particle types now supported in MCNPX) with energies extending...

  16. Gyrokinetic simulations of particle transport in pellet fuelled JET discharges

    Science.gov (United States)

    Tegnered, D.; Oberparleiter, M.; Nordman, H.; Strand, P.; Garzotti, L.; Lupelli, I.; Roach, C. M.; Romanelli, M.; Valovič, M.; Contributors, JET

    2017-10-01

    Pellet injection is a likely fuelling method of reactor grade plasmas. When the pellet ablates, it will transiently perturb the density and temperature profiles of the plasma. This will in turn change dimensionless parameters such as a/{L}n,a/{L}T and plasma β. The microstability properties of the plasma then changes which influences the transport of heat and particles. In this paper, gyrokinetic simulations of a JET L-mode pellet fuelled discharge are performed. The ion temperature gradient/trapped electron mode turbulence is compared at the time point when the effect from the pellet is the most pronounced with a hollow density profile and when the profiles have relaxed again. Linear and nonlinear simulations are performed using the gyrokinetic code GENE including electromagnetic effects and collisions in a realistic geometry in local mode. Furthermore, global nonlinear simulations are performed in order to assess any nonlocal effects. It is found that the positive density gradient has a stabilizing effect that is partly counteracted by the increased temperature gradient in the this region. The effective diffusion coefficients are reduced in the positive density region region compared to the intra pellet time point. No major effect on the turbulent transport due to nonlocal effects are observed.

  17. Particle Transport and Accumulation in Norfolk and Baltimore Canyons

    Science.gov (United States)

    Robertson, C.; Mienis, F.; Duineveld, G.; Prouty, N.; Davies, A. J.; Ross, S. W.; Demopoulos, A. W.

    2016-02-01

    The Mid-Atlantic Bight is incised by several large canyons two of which were studied as part of a multi-disciplinary project initiated by the Bureau of Ocean Energy Management (BOEM, USA) and jointly funded by BOEM, NOAA and USGS. The heads of the canyons, which are situated 140 km apart, both lie at a distance of 90 km off shore on the same shelf margin and lack direct input from rivers. Two hypotheses were formulated at the start of the study: i) canyons incising the MAB shelf, including Norfolk and Baltimore, capture sediment and organic carbon. This transport ultimately enriches the canyon floor sediment, resulting in higher concentration and quality of carbon than the adjacent slope, and ii) given Baltimore and Norfolk canyons have a very different morphology and orientation from each other, and previous reports indicated differences in sediment grain size and transport properties, the canyons have different sedimentation patterns and accumulation rates, which explains the differing faunal communities between the two canyons. Core samples collected along the canyon axis and for comparison on the adjacent open slope were analyzed for their sediment composition, organic matter content and accumulation rates. Additionally water column properties, including turbidity were measured with CTD. In contrast to our expectations, sediment distribution, sedimentation rates and organic matter content differed strongly between both canyons. Although accumulation rates in both canyons were higher than accumulation rates on the open slope, Norfolk canyon showed an even distribution of sediment and organic matter along the canyon axis. While two distinct zones were observed in Baltimore Canyon; coarse grained sediments with low organic matter in the upper canyon and finer grained sediments with high organic matter content in the lower canyon. Differences are attributed to canyon morphology, physical processes and active particle transport.

  18. Bed load transport for a mixture of particle sizes: Downstream sorting rather than anomalous diffusion

    Science.gov (United States)

    Fan, Niannian; Xie, Yushu; Nie, Ruihua

    2017-10-01

    The stochastic nature of bed load transport induces diffusion of sediment tracers, which is governed by the dynamics of their bulk behavior over time. By deploying both numerical simulations and flume experiments, the emergent particle diffusion regimes for both uniform and mixed tracer particles were studied and compared. For uniform particles, power-law-distributed resting times Tr produced super-, sub- or normal diffusion regimes for certain values of the tail exponent ν . Based on the assumption that heterogeneity in particle size leads to a power-law distribution of Tr , a completely different diffusion regime emerges in mixtures compared with those obtained from uniform particles with the same value of the tail exponent ν . Mixtures exhibited the same ballistic regime (the variance of travel distance grows as time squared) for different values of ν , and ballistic regimes for mixtures also emerged from several other tested models. Furthermore, our experimental results confirmed the ballistic regime; however, the decreasing number of tracked particles may result in apparent but deceptive sub-diffusion. We conclude that ballistic regimes for mixtures result from violations of the independent and identically distributed (i.i.d.) assumptions, attributing to downstream sorting processes.

  19. Experiments support an improved model for particle transport in fluidized beds.

    Science.gov (United States)

    Zhang, Huili; Kong, Weibin; Tan, Tianwei; Gilles, Flamant; Baeyens, Jan

    2017-08-31

    The upwards flow of particles in an Upflow Bubbling Fluidized Bed (UBFB) is studied experimentally and modelled from pressure drop considerations and energy loss equations. For Geldart group A powders tested, the upward solid flux, G s , in the tube can be expressed in terms of the applied superficial gas velocity, the free fall (terminal) velocity of the particles during their hindered settling, KU t , the pressure exerted at the base of the conveyor tube, and the tube length. The model expression [Formula: see text] can be used for design purposes, with K, the correction factor for hindered settling of the particles, approximately equal to 0.1 at high G s -values, but a function of the solids fraction in the upward conveying. The energy efficiency of the system increases with increasing U and G s . The model equation was tentatively applied to predict the effects of particle size, tube length and operation in Circulating Fluidized Bed mode. It is demonstrated that the UBFB is an efficient and flexible way of transporting particles upwards, with limited particle attrition or tube erosion due to the low gas velocity applied.

  20. Gyrokinetic calculations of steady-state particle transport in electron internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Fable, E; Sauter, O [Centre de Recherches en Physique des Plasmas, Association EURATOM-Confederation Suisse, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Angioni, C [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany)], E-mail: emiliano.fable@epfl.ch

    2008-11-15

    The appearance of an internal particle transport barrier, correlated with a heat transport barrier, during strongly electron heated discharges in reversed magnetic shear scenario is well-established experimental evidence. Turbulent transport is believed to be responsible for the observed inward pinch. The mechanisms for the sustainment of such peaked density profiles in the absence of core particle sources are analysed in the framework of collisionless linear gyrokinetic turbulence theory. In particular, it is elucidated how the thermodiffusive pinch can become the dominant contribution to the total inward pinch. In stationary conditions, the pinch is shown to be carried mostly by trapped electrons, while passing electrons give a smaller contribution. The pinch is maximized when two different microinstabilities, namely the ion temperature gradient mode and the trapped electron mode are believed to coexist at similar linear growth rates. To reach this state at high values of the normalized density gradient, it is necessary to reduce the trapped electron mode activity via different stabilizing mechanisms. The role of impurities is also briefly discussed. A comprehensive analytical-numerical study of the linear stability properties of the modes allows the understanding of the physical mechanism in detail and the clarification of the possible drive of the observed pinch.

  1. Sources, transport, and mixing of particle-bound PAHs fluxes in the upper Neckar River basin

    Science.gov (United States)

    Schwientek, Marc; Rügner, Hermann; Qin, Xintong; Scherer, Ulrike; Grathwohl, Peter

    2016-04-01

    Transport of many urban pollutants in rivers is coupled to transport of suspended particles. The degree of contamination of these suspended particles depends on the mixture of "polluted" urban and "clean" background particles. Recent results have shown that, in several meso-scale catchments studied in southwestern and eastern Germany, the loading of particles with polycyclic aromatic hydrocarbons (PAHs) was stable over time and characteristic for each catchment. The absence of significant long-term trends or pronounced changes of the catchment-specific loadings indicate that either input and output of PAHs into the stream networks are largely at steady state or that storage of PAHs in the sediments within the stream network are sufficient to smooth out larger fluctuations. Moreover, it was shown that the contamination of sediments and suspended particles with PAHs is proportional to the number of inhabitants per suspended sediment flux in a catchment. These processes are being further studied at larger scale in the upper Neckar River basin (2300 km²) in southwestern Germany. This basin, located between the mountain ranges of the Black Forest and the Swabian Alb, comprises sub-catchments that are diverse in terms of urban impact, geology (ranging from gypsum and limetstones to siliceous sandstones) and hydrology (dynamics driven either by summerly convective events or by winterly frontal systems and snow melt). Accordingly, quality and quantity of particles being released in the sub-catchments as potential vectors for hydrophobic pollutants differ; and so do the events that mobilize the particles. These settings enable the investigation of how particle-bound pollutant fluxes generated at the meso-scale are mixed and transported at larger scales when introduced into a higher order river. A prominent research question is whether varying contributions from contrasting sub-catchments lead to changing contamination patterns in the main stem or if the sediment storage in

  2. Determining pitch-angle diffusion coefficients from test particle simulations

    CERN Document Server

    Ivascenko, A; Spanier, F; Vainio, R

    2016-01-01

    Transport and acceleration of charged particles in turbulent media is a topic of great interest in space physics and interstellar astrophysics. These processes are dominated by the scattering of particles off magnetic irregularities. The scattering process itself is usually described by small-angle scattering with the pitch-angle coefficient $D_{\\mu\\mu}$ playing a major role. Since the diffusion coefficient $D_{\\mu\\mu}$ can be determined analytically only for the approximation of quasi-linear theory, the determination of this coefficient from numerical simulations has, therefore, become more important. So far these simulations yield particle tracks for small-scale scattering, which can then be interpreted using the running diffusion coefficients. This method has a limited range of validity. This paper presents two new methods that allow for the calculation of the pitch-angle diffusion coefficient from numerical simulations. These methods no longer analyse particle trajectories, but the change of particle dist...

  3. Transient Particle Transport Analysis on TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Eguilior, S.; Castejon, F.; Guasp, J.; Estrada, T.; Medina, F.; Tabares, F.L.; Branas, B.

    2006-12-18

    Particle diffusivity and convective velocity have been determined in ECRH plasmas confined in the stellarator TJ-II by analysing the evolving density profile. This is obtained from an amplitude modulation reflectometry system in addition to an X-ray tomographic reconstruction. The source term, which is needed as an input for transport equations, is obtained using EIRENE code. In order to discriminate between the diffusive and convective contributions, the dynamics of the density evolution has been analysed in several perturbative experiments. This evolution has been considered in discharges with injection of a single pulse of H2 as well as in those that present a spontaneous transition to an enhanced confinement mode and whose confinement properties are modified by inducing an ohmic current. The pinch velocity and diffusivity are parameterized by different expressions in order to fit the experimental time evolution of density profile. The profile evolution is very different from one case to another due to the different values of convective velocities and diffusivities, besides the different source terms. (Author) 19 refs.

  4. Aerodynamic Characteristics of Individual Ballast Particle by Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    G.Q. Jing

    2014-04-01

    Full Text Available Ballast flying has been considered as a problem in train aerodynamics with increasing the maximal speed. And this phenomenon seriously threats the safety of train operation. However, aerodynamic characteristics of individual ballast were less studied in the previous literature. This paper describes an investigation of the aerodynamic effect of ballast particles by wind tunnel tests. It considers the nature of the wind and ballast physical characteristics. A simple method for calculating the wind effects by CFD is set out, ballast particles were classified according to their shapes and mass in order to investigate the influence of the wind velocity, wind pressure and other parameters on displacement of ballast particles. Two sets of wind tunnel tests were performed under the conditions that ballast particles were movable and unmovable on the platform respectively. The tests data and reasonable explanations were given, as well as the CFD simulations of individual ballast particles.

  5. Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.

    2009-05-21

    We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.

  6. Test-particle motion in the nonsymmetric gravitation theory

    Science.gov (United States)

    Moffat, J. W.

    1987-06-01

    A derivation of the motion of test particles in the nonsymmetric gravitational theory (NGT) is given using the field equations in the presence of matter. The motion of the particle is governed by the Christoffel symbols, which are formed from the symmetric part of the fundamental tensor gμν, as well as by a tensorial piece determined by the skew part of the contracted curvature tensor Rμν. Given the energy-momentum tensor for a perfect fluid and the definition of a test particle in the NGT, the equations of motion follow from the conservation laws. The tensorial piece in the equations of motion describes a new force in nature that acts on the conserved charge in a body. Particles that carry this new charge do not follow geodesic world lines in the NGT, whereas photons do satisfy geodesic equations of motion and the equivalence principle of general relativity. Astronomical predictions, based on the exact static, spherically symmetric solution of the field equations in a vacuum and the test-particle equations of motion, are derived in detail. The maximally extended coordinates that remove the event-horizon singularities in the static, spherically symmetric solution are presented. It is shown how an inward radially falling test particle can be prevented from forming an event horizon for a value greater than a specified critical value of the source charge. If a test particle does fall through an event horizon, then it must continue to fall until it reaches the singularity at r=0.

  7. Scientists confirm delay in testing new CERN particle accelerator

    CERN Multimedia

    2007-01-01

    "Scientists seeking to uncover the secrets of the universe will have to wait a little longer after the CERN laboratory inswitzerland on Monday confirmed a delay in tests of a massive new particle accelerator." (1 page)

  8. Mobilization and transport of metal-rich colloidal particles from mine tailings into soil under transient chemical and physical conditions.

    Science.gov (United States)

    Lu, Cong; Wu, Yaoguo; Hu, Sihai; Raza, Muhammad Ali; Fu, Yilin

    2016-04-01

    Exposed mine tailing wastes with considerable heavy metals can release hazardous colloidal particles into soil under transient chemical and physical conditions. Two-layered packed columns with tailings above and soils below were established to investigate mobilization and transport of colloidal particles from metal-rich mine tailings into soil under transient infiltration ionic strength (IS: 100, 20, 2 mM) and flow rate (FR: 20.7, 41, and 62.3 mm h(-1)), with Cu and Pb as representatives of the heavy metals. Results show that the tailing particles within the colloidal size (below 2 μm) were released from the columns. A step-decrease in infiltration IS and FR enhanced, whereas a step-increase in the IS and FR restrained the release of tailing particles from the column. The effects of step-changing FR were unexpected due to the small size of the released tailing particles (220-342 nm, being not sensitive to hydrodynamic shear force), the diffusion-controlled particle release process and the relatively compact pore structure. The tailing particles present in the solution with tested IS were found negatively charged and more stable than soil particles, which provides favorable conditions for tailing particles to be transported over a long distance in the soil. The mobilization and transport of Cu and Pb from the tailings into soil were mediated by the tailing particles. Therefore, the inherent toxic tailing particles could be considerably introduced into soil under certain conditions (IS reduction or FR decrease), which may result in serious environmental pollution.

  9. A combined Lattice Boltzmann and Immersed Boundary approach for predicting the vascular transport of differently shaped particles

    CERN Document Server

    Coclite, Alessandro; Pascazio, Giuseppe; Decuzzi, Paolo

    2016-01-01

    Modelling the vascular transport and adhesion of man-made particles is crucial for optimizing their efficacy in the detection and treatment of diseases. Here, a Lattice Boltzmann and Immersed Boundary methods are combined together for predicting the near wall dynamics of particles with different shapes in a laminar flow. For the lattice Boltzmann modelling, a Gauss-Hermite projection is used to derive the lattice equation, wall boundary conditions are imposed through the Zou-He framework, and a moving least squares algorithm accurately reconstructs the forcing term accounting for the immersed boundary. First, the computational code is validated against two well-known test cases: the sedimentation of circular and elliptical cylinders in a quiescent fluid. A very good agreement is observed between the present results and those available in the literature. Then, the transport of circular, elliptical, rectangular, square and triangular particles is analyzed in a Couette flow, at Re=20. All particles drifted later...

  10. Convective and diffusive effects on particle transport in asymmetric periodic capillaries.

    Directory of Open Access Journals (Sweden)

    Nazmul Islam

    Full Text Available We present here results of a theoretical investigation of particle transport in longitudinally asymmetric but axially symmetric capillaries, allowing for the influence of both diffusion and convection. In this study we have focused attention primarily on characterizing the influence of tube geometry and applied hydraulic pressure on the magnitude, direction and rate of transport of particles in axi-symmetric, saw-tooth shaped tubes. Three initial value problems are considered. The first involves the evolution of a fixed number of particles initially confined to a central wave-section. The second involves the evolution of the same initial state but including an ongoing production of particles in the central wave-section. The third involves the evolution of particles a fully laden tube. Based on a physical model of convective-diffusive transport, assuming an underlying oscillatory fluid velocity field that is unaffected by the presence of the particles, we find that transport rates and even net transport directions depend critically on the design specifics, such as tube geometry, flow rate, initial particle configuration and whether or not particles are continuously introduced. The second transient scenario is qualitatively independent of the details of how particles are generated. In the third scenario there is no net transport. As the study is fundamental in nature, our findings could engender greater understanding of practical systems.

  11. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy.

    Science.gov (United States)

    Chi, Yujie; Tian, Zhen; Jia, Xun

    2016-08-07

    Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0

  12. Transport and Retention of Engineered Nanoporous Particles in Porous Media: Effects of Concentration and Flow Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming

    2013-01-20

    Engineered nanoporous particles are an important class of nano-structured materials that can be functionalized in their internal surfaces for various applications including groundwater contaminant sequestration. This paper reported a study of transport and retention of engineered nanoporous silicate particles (ENSPs) that are designed for treatment and remediation of contaminants such as uranium in groundwater and sediments. The transport and retention of ENSPs were investigated under variable particle concentrations and dynamic flow conditions in a synthetic groundwater that mimics field groundwater chemical composition. The dynamic flow condition was achieved using a flow-interruption (stop-flow) approach with variable stop-flow durations to explore particle retention and release kinetics. The results showed that the ENSPs transport was strongly affected by the particle concentrations and dynamic flow conditions. A lower injected ENSPs concentration and longer stop-flow duration led to a more particle retention. The experimental data were used to evaluate the applicability of various kinetic models that were developed for colloidal particle retention and release in describing ENSPs transport. Model fits suggested that the transport and retention of ENSPs were subjected to a complex coupling of reversible attachment/detachment and straining/liberation processes. Both experimental and modeling results indicated that dynamic groundwater flow condition is an important parameter to be considered in exploring and modeling engineered particle transport in subsurface porous media.

  13. Wave-induced mixing and transport of buoyant particles: application to the Statfjord A oil spill

    Directory of Open Access Journals (Sweden)

    M. Drivdal

    2014-12-01

    Full Text Available This study focuses on how wave–current and wave–turbulence interactions modify the transport of buoyant particles in the ocean. Here the particles can represent oil droplets, plastic particles, or plankton such as fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production, as well as the stronger veering by the Coriolis–Stokes force, affects the drift of the particles. The energy and momentum fluxes, as well as the Stokes drift, depend on the directional wave spectrum obtained from a wave model. As a first test, the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (i.e., classical Ekman theory. Secondly, the model is applied to a case in which we investigate the oil drift after an oil spill off the west coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by oil-drift models. In this case, using wind and wave forcing from the ERA Interim archive it is shown that the wave effects are important for the resultant drift and have the potential to improve drift forecasting.

  14. Radionuclide particle transport, sedimentation and resuspension in the Forsmark and Laxemar coastal regions

    Energy Technology Data Exchange (ETDEWEB)

    Kling, Hanna; Doeoes, Kristofer (Dept. of Meteorology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    In the safety assessment of a potential repository for spent nuclear fuel, it is important to assess the consequences of a hypothetical leak of radionuclides through the seabed and into a waterborne transport phase. Radionuclides adsorbed to sediment particles may be transported great distances through the processes of sedimentation and resuspension. This study investigates the transport patterns of sediment particles of two different sizes, released in the Forsmark and Laxemar area. The results show that the closed waters around Forsmark to a higher degree makes the particles stay in the area close to the release points

  15. Particle Swarm Optimization for inverse modeling of solute transport in fractured gneiss aquifer.

    Science.gov (United States)

    Abdelaziz, Ramadan; Zambrano-Bigiarini, Mauricio

    2014-08-01

    Particle Swarm Optimization (PSO) has received considerable attention as a global optimization technique from scientists of different disciplines around the world. In this article, we illustrate how to use PSO for inverse modeling of a coupled flow and transport groundwater model (MODFLOW2005-MT3DMS) in a fractured gneiss aquifer. In particular, the hydroPSO R package is used as optimization engine, because it has been specifically designed to calibrate environmental, hydrological and hydrogeological models. In addition, hydroPSO implements the latest Standard Particle Swarm Optimization algorithm (SPSO-2011), with an adaptive random topology and rotational invariance constituting the main advancements over previous PSO versions. A tracer test conducted in the experimental field at TU Bergakademie Freiberg (Germany) is used as case study. A double-porosity approach is used to simulate the solute transport in the fractured Gneiss aquifer. Tracer concentrations obtained with hydroPSO were in good agreement with its corresponding observations, as measured by a high value of the coefficient of determination and a low sum of squared residuals. Several graphical outputs automatically generated by hydroPSO provided useful insights to assess the quality of the calibration results. It was found that hydroPSO required a small number of model runs to reach the region of the global optimum, and it proved to be both an effective and efficient optimization technique to calibrate the movement of solute transport over time in a fractured aquifer. In addition, the parallel feature of hydroPSO allowed to reduce the total computation time used in the inverse modeling process up to an eighth of the total time required without using that feature. This work provides a first attempt to demonstrate the capability and versatility of hydroPSO to work as an optimizer of a coupled flow and transport model for contaminant migration. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. AE Test of Calcareous Sands with Particle Rushing

    Directory of Open Access Journals (Sweden)

    Tan Fengyi

    2017-08-01

    Full Text Available The particle of calcareous sands was forced to crush, then the energy from the crushing was released by the form of sound waves. Therefore the AE technique was used to detect the calcareous sands AE signal when it crushed. by to study the AE characteristics, the mechanics of calcareous sands was studied. Study showed that: (1 there was the AE activities on the low confining pressure condition at the beginnig of test, (2 there was more and more AE activities with the continuing of test until to the end, (3 the calcareous sands’ AE activities was on the whole testing, (4 the calcareous sands’ particle crushing and mutual friction played different roles for its AE activities. Then the AE model based on the calcarous sands’ particle crushing was discussed.

  17. Biogeochemical significance of transport exopolymer particles in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Sarma, V.V.S.S.; Ramaiah, N.; Gauns, M.; DeSousa, S.N.

    The behaviour of Transparent Exopolymer Particles (TEP), produced by biochemical processes, was studied for the North Indian Ocean, an area of global biogeochemical significance, during 1996 southwest monsoon. Very different behaviour of TEP...

  18. Small particle transport across turbulent nonisothermal boundary layers

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  19. On the Way to Future's High Energy Particle Physics Transport Code

    CERN Document Server

    Bíró, Gábor; Futó, Endre

    2015-01-01

    High Energy Physics (HEP) needs a huge amount of computing resources. In addition data acquisition, transfer, and analysis require a well developed infrastructure too. In order to prove new physics disciplines it is required to higher the luminosity of the accelerator facilities, which produce more-and-more data in the experimental detectors. Both testing new theories and detector R&D are based on complex simulations. Today have already reach that level, the Monte Carlo detector simulation takes much more time than real data collection. This is why speed up of the calculations and simulations became important in the HEP community. The Geant Vector Prototype (GeantV) project aims to optimize the most-used particle transport code applying parallel computing and to exploit the capabilities of the modern CPU and GPU architectures as well. With the maximized concurrency at multiple levels the GeantV is intended to be the successor of the Geant4 particle transport code that has been used since two decades succe...

  20. Validating a universal model of particle transport lengths with laboratory measurements of suspended grain motions

    NARCIS (Netherlands)

    Naqshband, Suleyman; McElroy, Brandon; Mahon, Robert C.

    2017-01-01

    The mechanics of sediment transport are of fundamental importance for fluvio-deltaic morphodynamics. The present study focuses on quantifying particle motions and trajectories across a wide range of flow conditions. In particular, a continuous model is presented that predicts particle travel

  1. On the Use of Importance Sampling in Particle Transport Problems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, B.

    1965-06-15

    The idea of importance sampling is applied to the problem of solving integral equations of Fredholm's type. Especially Bolzmann's neutron transport equation is taken into consideration. For the solution of the latter equation, an importance sampling technique is derived from some simple transformations at the original transport equation into a similar equation. Examples of transformations are given, which have been used with great success in practice.

  2. DANTSYS: A diffusion accelerated neutral particle transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O`Dell, R.D.; Walters, W.F.

    1995-06-01

    The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZ{Theta} symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing.

  3. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has

  4. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    Science.gov (United States)

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  5. A baker's dozen of new particle flows for nonlinear filters, Bayesian decisions and transport

    Science.gov (United States)

    Daum, Fred; Huang, Jim

    2015-05-01

    We describe a baker's dozen of new particle flows to compute Bayes' rule for nonlinear filters, Bayesian decisions and learning as well as transport. Several of these new flows were inspired by transport theory, but others were inspired by physics or statistics or Markov chain Monte Carlo methods.

  6. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  7. Particle Identification Studies with an ALICE Test TPC

    CERN Document Server

    Christiansen, P

    2007-01-01

    Using a test TPC, consisting of the ALICE TPC field cage prototype in combination with the final ALICE TPC readout and electronics, the energy loss distribution and resolution were measured for identified protons. The measurements were compared to theoretical calculations and good quantitative agreement was found when detector effects were taken into account. The implications for particle identification are discussed.

  8. Rectified transport of chiral active particles in the two-dimensional channel with varied upper wall

    Science.gov (United States)

    Huang, Xiao-qun; An, Meng

    2018-02-01

    Rectified transport of chiral self-propelled particles is numerically investigated in a two-dimensional channel with varied upper wall. Due to the chirality of active particles, the transversal asymmetry can break the symmetry of the system and induce a longitudinal net transport. It is found that the variation of the channel walls can strongly affect the rectified transport. There exist optimal values of the parameters (the variation parameter, the self-propelled velocity, the angular velocity, and the translational diffusion) at which the scaled average velocity takes its maximal value.

  9. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasma

    CERN Document Server

    Choudhary, Mangilal; Bandyopadhyay, P

    2016-01-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current (DC) glow discharge. These dust particles are found to get trapped in an electrostatic potential well which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self excited dust acoustic waves and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust par...

  10. Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model

    Science.gov (United States)

    Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.

    2009-01-01

    Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.

  11. Suspended particle transport through constriction channel with Brownian motion

    Science.gov (United States)

    Hanasaki, Itsuo; Walther, Jens H.

    2017-08-01

    It is well known that translocation events of a polymer or rod through pores or narrower parts of micro- and nanochannels have a stochastic nature due to the Brownian motion. However, it is not clear whether the objects of interest need to have a larger size than the entrance to exhibit the deviation from the dynamics of the surrounding fluid. We show by numerical analysis that the particle injection into the narrower part of the channel is affected by thermal fluctuation, where the particles have spherical symmetry and are smaller than the height of the constriction. The Péclet number (Pe) is the order parameter that governs the phenomena, which clarifies the spatio-temporal significance of Brownian motion compared to hydrodynamics. Furthermore, we find that there exists an optimal condition of Pe to attain the highest flow rate of particles relative to the dispersant fluid flow. Our finding is important in science and technology from nanopore DNA sequencers and lab-on-a-chip devices to filtration by porous materials and chromatography.

  12. Transport and fate of microplastic particles in wastewater treatment plants.

    Science.gov (United States)

    Carr, Steve A; Liu, Jin; Tesoro, Arnold G

    2016-03-15

    Municipal wastewater treatment plants (WWTPs) are frequently suspected as significant point sources or conduits of microplastics to the environment. To directly investigate these suspicions, effluent discharges from seven tertiary plants and one secondary plant in Southern California were studied. The study also looked at influent loads, particle size/type, conveyance, and removal at these wastewater treatment facilities. Over 0.189 million liters of effluent at each of the seven tertiary plants were filtered using an assembled stack of sieves with mesh sizes between 400 and 45 μm. Additionally, the surface of 28.4 million liters of final effluent at three tertiary plants was skimmed using a 125 μm filtering assembly. The results suggest that tertiary effluent is not a significant source of microplastics and that these plastic pollutants are effectively removed during the skimming and settling treatment processes. However, at a downstream secondary plant, an average of one micro-particle in every 1.14 thousand liters of final effluent was counted. The majority of microplastics identified in this study had a profile (color, shape, and size) similar to the blue polyethylene particles present in toothpaste formulations. Existing treatment processes were determined to be very effective for removal of microplastic contaminants entering typical municipal WWTPs. Published by Elsevier Ltd.

  13. Nonlinear mechanisms for drift wave saturation and induced particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Dimits, A.M. (Maryland Univ., College Park, MD (USA). Lab. for Plasma Research); Lee, W.W. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1989-12-01

    A detailed theoretical study of the nonlinear dynamics of gyrokinetic particle simulations of electrostatic collisionless and weakly collisional drift waves is presented. In previous studies it was shown that, in the nonlinearly saturated phase of the evolution, the saturation levels and especially the particle fluxes have an unexpected dependence on collisionality. In this paper, the explanations for these collisionality dependences are found to be as follows: The saturation level is determined by a balance between the electron and ion fluxes. The ion flux is small for levels of the potential below an E {times} B-trapping threshold and increases sharply once this threshold is crossed. Due to the presence of resonant electrons, the electron flux has a much smoother dependence on the potential. In the 2-1/2-dimensional ( pseudo-3D'') geometry, the electrons are accelerated away from the resonance as they diffuse spatially, resulting in an inhibition of their diffusion. Collisions and three-dimensional effects can repopulate the resonance thereby increasing the value of the particle flux. 30 refs., 32 figs., 2 tabs.

  14. Transport equations for subdiffusion with nonlinear particle interaction.

    Science.gov (United States)

    Straka, P; Fedotov, S

    2015-02-07

    We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables us to show that volume filling can prevent "anomalous aggregation," which occurs in subdiffusive systems with a spatially varying anomalous exponent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Inertial Effects on the Vertical Transport of Suspended Particles in a Turbulent Boundary Layer

    Science.gov (United States)

    Richter, David; Chamecki, Marcelo

    2017-11-01

    In many atmospheric flows, a dispersed phase is actively suspended by turbulence, whose competition with gravitational settling ultimately dictates its vertical distribution. Examples of dispersed phases include snow, sea-spray droplets, dust, or sand, where individual elements of much larger density than the surrounding air are carried by turbulent motions after emission from the surface. In cases where the particle is assumed to deviate from local fluid motions only by its gravitational settling (i.e., they are inertialess), traditional flux balances predict a power-law dependence of particle concentration with height. It is unclear, however, how particle inertia influences this relationship, and this question is the focus of this work. Direct numerical simulations are conducted of turbulent open-channel flow, laden with Lagrangian particles of specified inertia; in this way the study focuses on the turbulent transport which occurs in the lowest few meters of the planetary boundary layer, in regions critical for connecting emission fluxes to the fluxes felt by the full-scale boundary layer. Simulations over a wide range of particle Stokes number, while holding the dimensionless settling velocity constant, are performed to understand the role of particle inertia on vertical dispersion. It is found that particles deviate from their inertialess behaviour in ways that are not easily captured by traditional theory; concentrations are reduced with increasing Stokes number. Furthermore, a similarity-based eddy diffusivity for particle concentration fails as particles experience inertial acceleration, precluding a closed-form solution for particle concentration as in the case of inertialess particles. The primary consequence of this result is that typical flux parametrizations connecting surface emission models (e.g., saltation models or sea-spray generation functions) to elevated boundary conditions may overestimate particle concentrations due to the reduced vertical

  16. GYROKINETIC PARTICLE SIMULATION OF TURBULENT TRANSPORT IN BURNING PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Claude Wendell

    2014-06-10

    The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of the turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, “Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).

  17. Perpendicular Diffusion in the Transport of Solar Energetic Particles from Unconnected Sources: The Counter-streaming Particle Beams Revisited

    CERN Document Server

    He, H -Q

    2015-01-01

    In some solar energetic particle (SEP) events, a counter-streaming particle beam with a deep depression of flux near 90 degrees pitch angle during the beginning phase is observed. Two different interpretations exist in the community to explain this interesting phenomenon. One explanation invokes the hypothesis of an outer reflecting boundary or a magnetic mirror beyond the observer. The other one considers the effect of the perpendicular diffusion on the transport process of SEPs in the interplanetary space. In this work, we revisit the problem of the counter-streaming particle beams observed in SEP events and discuss the possible mechanisms responsible for the formation of this phenomenon. We clarify some results in previous works.

  18. Impact of particle nanotopology on water transport through hydrophobic soils.

    Science.gov (United States)

    Truong, Vi Khanh; Owuor, Elizabeth A; Murugaraj, Pandiyan; Crawford, Russell J; Mainwaring, David E

    2015-12-15

    The impact of non- and poorly wetting soils has become increasingly important, due to its direct influence on the water-limited potential yield of rain-fed grain crops at a time of enhanced global competition for fresh water. This study investigates the physical and compositional mechanisms underlying the influence of soil organic matter (SOM) on the wetting processes of model systems. These model systems are directly related to two sandy wheat-producing soils that have contrasting hydrophobicities. Atomic force microscopy (AFM), contact angle and Raman micro-spectroscopy measurements on model planar and particulate SOM-containing surfaces demonstrated the role of the hierarchical surface structure on the wetting dynamics of packed particulate beds. It was found that a nanoscale surface topology is superimposed over the microscale roughness of the packed particles, and this controls the extent of water ingress into particulate packed beds of these particles. Using two of the dominant component organic species found in the SOM of the two soils used in this study, it was found that the specific interactions taking place between the SOM components, rather than their absolute quantities, dictated the formation of highly hydrophobic surface nanotopologies. This hydrophobicity was demonstrated, using micro-Raman imaging, to arise from the surface being in a composite Cassie-Baxter wetting state. Raman imaging demonstrated that the particle surface nanotopography influenced the degree of air entrapment in the interstices within the particle bed. The influence of a conventional surfactant on the wetting kinetics of both the model planar surfaces and packed particulate beds was quantified in terms of their respective advancing contact angles and the capillary wetting force vector. The information obtained for all of the planar and particulate surfaces, together with that obtained for the two soils, allowed linear relationships to be obtained in plots of the contact angle

  19. Accelerated Transport of Particles in Confined Channels with a High Roughness Amplitude.

    Science.gov (United States)

    Ranchon, Hubert; Cacheux, Jean; Reig, Benjamin; Liot, Olivier; Teerapanich, Pattamon; Leichlé, Thierry; Joseph, Pierre; Bancaud, Aurélien

    2018-01-30

    We investigate the pressure-driven transport of particles 200 or 300 nm in diameter in shallow microfluidic channels ∼1 μm in height with a bottom wall characterized by a high roughness amplitude of ∼100 nm. This study starts with the description of an assay to generate cracks in hydrophilic thin polymer films together with a structural characterization of these corrugations. Microfluidic chips of variable height are then assembled on top of these rough surfaces, and the transport of particles is assessed by measuring the velocity distribution function for a set of pressure drops. We specifically detect anomalous transport properties for rough surfaces. The maximum particle velocity at the centerline of the channel is comparable to that obtained with smooth surfaces, but the average particle velocity increases nonlinearly with the flow rate. We suggest that the change in the boundary condition at the rough wall is not sufficient to account for our data and that the occurrence of contacts between the particle and the surface transports the particle away from the wall and speeds up its motion. We finally draw perspectives for the separation by field-flow fractionation.

  20. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk.

    Science.gov (United States)

    Hoshino, Masahiro

    2015-02-13

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes.

  1. Modeling nitrogen transport and transformation in aquifers using a particle-tracking approach

    Science.gov (United States)

    Cui, Zhengtao; Welty, Claire; Maxwell, Reed M.

    2014-09-01

    We have integrated multispecies biodegradation and geochemical reactions into an existing particle-tracking code to simulate reactive transport in three-dimensional variably saturated media, with a focus on nitrification and denitrification processes. This new numerical model includes reactive air-phase transport so that gases such as N2 and CO2 can be tracked. Although nitrogen biodegradation is the primary problem addressed here, the method presented is also applicable to other reactive multispecies transport problems. We verified the model by comparison with (1) analytical solutions for saturated one- and two-dimensional cases; (2) a finite element model for a one-dimensional unsaturated case; and (3) laboratory observations for a one-dimensional saturated case. Good agreement between the new code and the verification problems is demonstrated. The new model can simulate nitrogen transport and transformation in a heterogeneous permeability field where sharp concentration gradients are present. An example application to nitrogen species biodegradation and transport of a plume emanating from a leaking sewer in a heterogeneous, variably saturated aquifer is presented to illustrate this capability. This example is a novel application of coupling unsaturated/saturated zone transport with nitrogen species biodegradation. The code has the computational advantages of particle-tracking algorithms, including local and global mass conservation and minimal numerical dispersion. We also present new methods for improving particle code efficiency by implementing the concept of tracking surplus/deficit particles and particle recycling in order to control the growth of particle numbers. The new model retains the advantages of the particle tracking approach such as allowing relatively low spatial and temporal resolutions to be used, while incorporating the robustness of grid-based Monod kinetics to simulate biogeochemical reactions.

  2. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles.

    Science.gov (United States)

    Ahfir, Nasre-Dine; Hammadi, Ahmed; Alem, Abdellah; Wang, HuaQing; Le Bras, Gilbert; Ouahbi, Tariq

    2017-03-01

    The effects of porous media grain size distribution on the transport and deposition of polydisperse suspended particles under different flow velocities were investigated. Selected Kaolinite particles (2-30μm) and Fluorescein (dissolved tracer) were injected in the porous media by step input injection technique. Three sands filled columns were used: Fine sand, Coarse sand, and a third sand (Mixture) obtained by mixing the two last sands in equal weight proportion. The porous media performance on the particle removal was evaluated by analysing particles breakthrough curves, hydro-dispersive parameters determined using the analytical solution of convection-dispersion equation with a first order deposition kinetics, particles deposition profiles, and particle-size distribution of the recovered and the deposited particles. The deposition kinetics and the longitudinal hydrodynamic dispersion coefficients are controlled by the porous media grain size distribution. Mixture sand is more dispersive than Fine and Coarse sands. More the uniformity coefficient of the porous medium is large, higher is the filtration efficiency. At low velocities, porous media capture all sizes of suspended particles injected with larger ones mainly captured at the entrance. A high flow velocity carries the particles deeper into the porous media, producing more gradual changes in the deposition profile. The median diameter of the deposited particles at different depth increases with flow velocity. The large grain size distribution leads to build narrow pores enhancing the deposition of the particles by straining. Copyright © 2016. Published by Elsevier B.V.

  3. Solar Energetic Particle Transport Near a Heliospheric Current Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Battarbee, Markus; Dalla, Silvia [Jeremiah Horrocks Institute, University of Central Lancashire, PR1 2HE (United Kingdom); Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk [Met Office, Exeter, EX1 3 PB (United Kingdom)

    2017-02-10

    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.

  4. Modeling particle transport and discoloration risk in drinking water distribution networks

    Directory of Open Access Journals (Sweden)

    J. van Summeren

    2017-10-01

    Full Text Available Discoloration of drinking water is a worldwide phenomenon caused by accumulation and subsequent remobilization of particulate matter in drinking water distribution systems (DWDSs. It contributes a substantial fraction of customer complaints to water utilities. Accurate discoloration risk predictions could improve system operation by allowing for more effective programs on cleaning and prevention actions and field measurements, but are challenged by incomplete understanding on the origins and properties of particles and a complex and not fully understood interplay of processes in distribution networks. In this paper, we assess and describe relevant hydraulic processes that govern particle transport in turbulent pipe flow, including gravitational settling, bed-load transport, and particle entrainment into suspension. We assess which transport mechanisms are dominant for a range of bulk flow velocities, particle diameters, and particle mass densities, which includes common conditions for DWDSs in the Netherlands, the UK, and Australia. Our analysis shows that the theoretically predicted particle settling velocity and threshold shear stresses for incipient particle motion are in the same range as, but more variable than, previous estimates from lab experiments, field measurements, and modeling. The presented material will be used in the future development of a numerical modeling tool to determine and predict the spatial distribution of particulate material and discoloration risk in DWDSs. Our approach is aimed at understanding specific causalities and processes, which can complement data-driven approaches.

  5. Modeling particle transport and discoloration risk in drinking water distribution networks

    Science.gov (United States)

    van Summeren, Joost; Blokker, Mirjam

    2017-10-01

    Discoloration of drinking water is a worldwide phenomenon caused by accumulation and subsequent remobilization of particulate matter in drinking water distribution systems (DWDSs). It contributes a substantial fraction of customer complaints to water utilities. Accurate discoloration risk predictions could improve system operation by allowing for more effective programs on cleaning and prevention actions and field measurements, but are challenged by incomplete understanding on the origins and properties of particles and a complex and not fully understood interplay of processes in distribution networks. In this paper, we assess and describe relevant hydraulic processes that govern particle transport in turbulent pipe flow, including gravitational settling, bed-load transport, and particle entrainment into suspension. We assess which transport mechanisms are dominant for a range of bulk flow velocities, particle diameters, and particle mass densities, which includes common conditions for DWDSs in the Netherlands, the UK, and Australia. Our analysis shows that the theoretically predicted particle settling velocity and threshold shear stresses for incipient particle motion are in the same range as, but more variable than, previous estimates from lab experiments, field measurements, and modeling. The presented material will be used in the future development of a numerical modeling tool to determine and predict the spatial distribution of particulate material and discoloration risk in DWDSs. Our approach is aimed at understanding specific causalities and processes, which can complement data-driven approaches.

  6. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, P.H.; Lin, Z.; Wang, W.; Horton, W.; Klasky, S.; Decyk, V.; Ma, K.-L.; Chames, J.; Adams, M.

    2011-09-21

    The three-year project GPS-TTBP resulted in over 152 publications and 135 presentations. This summary focuses on the scientific progress made by the project team. A major focus of the project was on the physics intrinsic rotation in tokamaks. Progress included the first ever flux driven study of net intrinsic spin-up, mediated by boundary effects (in collaboration with CPES), detailed studies of the microphysics origins of the Rice scaling, comparative studies of symmetry breaking mechanisms, a pioneering study of intrinsic torque driven by trapped electron modes, and studies of intrinsic rotation generation as a thermodynamic engine. Validation studies were performed with C-Mod, DIII-D and CSDX. This work resulted in very successful completion of the FY2010 Theory Milestone Activity for OFES, and several prominent papers of the 2008 and 2010 IAEA Conferences. A second major focus was on the relation between zonal flow formation and transport non-locality. This culminated in the discovery of the ExB staircase - a conceptually new phenomenon. This also makes useful interdisciplinary contact with the physics of the PV staircase, well-known in oceans and atmospheres. A third topic where progress was made was in the simulation and theory of turbulence spreading. This work, now well cited, is important for understanding the dynamics of non-locality in turbulent transport. Progress was made in studies of conjectured non-diffusive transport in trapped electron turbulence. Pioneering studies of ITB formation, coupling to intrinsic rotation and hysteresis were completed. These results may be especially significant for future ITER operation. All told, the physics per dollar performance of this project was quite good. The intense focus was beneficial and SciDAC resources were essential to its success.

  7. A plethora of open problems in particle flow research for nonlinear filters, Bayesian decisions, Bayesian learning, and transport

    Science.gov (United States)

    Daum, Fred; Huang, Jim

    2016-05-01

    We describe many open problems for research in particle flows to compute Bayes' rule for nonlinear filters, Bayesian decisions and Bayesian learning as well as transport. Particle flow mitigates particle degeneracy, which is the main cause of the curse of dimensionality for particle filters. Particle flow filters are many orders of magnitude faster to compute in real time compared with standard particle filters for the same accuracy for difficult high dimensional problems.

  8. Validating a universal model of particle transport lengths with laboratory measurements of suspended grain motions

    Science.gov (United States)

    Naqshband, Suleyman; McElroy, Brandon; Mahon, Robert C.

    2017-05-01

    The mechanics of sediment transport are of fundamental importance for fluvio-deltaic morphodynamics. The present study focuses on quantifying particle motions and trajectories across a wide range of flow conditions. In particular, a continuous model is presented that predicts particle travel distances for saltation and suspension based on Rouse number and relative grain roughness. By utilizing a series of eight video cameras in a plexiglass flume direct measurements of the distributions of particle travel distances (excursion lengths) were obtained. To this end, experiments were carried out in dark under black lights with fluorescent painted plastic and quartz sand particles. For relatively high Rouse numbers indicating bed load dominant transport regime (P≥2.5), particle motion is governed by the effect of gravitational forces (settling velocities) and measured excursion lengths closely follow a Gaussian distribution. For P=2.5, particle motion is equally subjected to both gravitational and turbulent forces. Consequently, measured excursion lengths exhibit a bimodal distribution with two distinct peaks. As turbulent fluctuations increase and dominate particle motion over gravity (P(P=1.8-8.9). Furthermore, measured excursion lengths are observed to fit within the predicted range of excursion lengths with no significant difference between measured excursion lengths of plastic and quartz sand particles.

  9. Neptunium Transport Behavior in the Vicinity of Underground Nuclear Tests at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P; Tinnacher, R M; Zavarin, M; Williams, R W; Kersting, A B

    2010-12-03

    We used short lived {sup 239}Np as a yield tracer and state of the art magnetic sector ICP-MS to measure ultra low levels of {sup 237}Np in a number of 'hot wells' at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site (NTS). The results indicate that {sup 237}Np concentrations at the Almendro, Cambric, Dalhart, Cheshire and Chancellor sites, are in the range of 3 x 10{sup -5} to 7 x 10{sup -2} pCi/L and well below the MCL for alpha emitting radionuclides (15 pCi/L) (EPA, 2009). Thus, while Np transport is believed to occur at the NNSS, activities are expected to be well below the regulatory limits for alpha-emitting radionuclides. We also compared {sup 237}Np concentration data to other radionuclides, including tritium, {sup 14}C, {sup 36}Cl, {sup 99}Tc, {sup 129}I, and plutonium, to evaluate the relative {sup 237}Np transport behavior. Based on isotope ratios relative to published unclassified Radiologic Source Terms (Bowen et al., 1999) and taking into consideration radionuclide distribution between melt glass, rubble and groundwater (IAEA, 1998), {sup 237}Np appears to be substantially less mobile than tritium and other non-sorbing radionuclides, as expected. However, this analysis also suggests that {sup 237}Np mobility is surprisingly similar to that of plutonium. The similar transport behavior of Np and Pu can be explained by one of two possibilities: (1) Np(IV) and Pu(IV) oxidation states dominate under mildly reducing NNSS groundwater conditions resulting in similar transport behavior or (2) apparent Np transport is the result of transport of its parent {sup 241}Pu and {sup 241}Am isotopes and subsequent decay to {sup 237}Np. Finally, measured {sup 237}Np concentrations were compared to recent Hydrologic Source Term (HST) models. The 237Np data collected from three wells in Frenchman Flat (RNM-1, RNM-2S, and UE-5n) are in good agreement with recent HST transport model predictions (Carle et al., 2005). The agreement

  10. Physical considerations relevant to HZE-particle transport in matter.

    Science.gov (United States)

    Schimmerling, W

    1988-06-01

    High-energy, highly charged (HZE) heavy nuclei may seem at first sight to be an exotic type of radiation, only remotely connected with nuclear power generation. On closer examination it becomes evident that heavy-ion accelerators are being seriously considered for driving inertial confinement fusion reactors, and high-energy heavy nuclei in the cosmic radiation are likely to place significant constraints on satellite power system deployment and space-based power generation. The use of beams of heavy nuclei in an increasing number of current applications, as well as their importance for the development of the state of the art of the future, makes it necessary to develop at the same time a good understanding of their transport through matter.

  11. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  12. SU-F-J-152: Accuracy of Charge Particle Transport in Magnetic Fields Using EGSnrc

    Energy Technology Data Exchange (ETDEWEB)

    Mainegra-Hing, E [National Research Council of Canada, Ottawa, ON (Canada); Bouchard, H [Universite de Montreal, Montreal, QC (Canada); Tessier, F; Walters, B [National Research Council Canada, Ottawa, Ontario (Canada)

    2016-06-15

    Purpose: Determine accuracy of the current implementation of electron transport under magnetic fields in EGSnrc by means of single scattering (SS) and Fano convergence tests, and establish quantitatively the electron step size restriction required to achieve a desired level of accuracy for ionization chamber dosimetry. Methods: Condensed history (CH) dose calculations are compared to SS results for a PTW30013 ionization chamber irradiated in air by a 60Co photon beam. CH dose results for this chamber irradiated in a water phantom by a source of mono-energetic electrons are compared to the prediction of Fano’s theorem for step size restrictions EM ESTEPE from 0.01 to 0.1 and strengths of 0.5 T, 1.0 T, and 1.5 T. Results: CH calculations in air for 60Co photons using an EM ESTEPE of 0.25 overestimate SS values by 6% for a 1.5 T field and by 1.5% for a 0.5 T field. Agreement improves with decreasing EM ESTEPE reducing this difference at 0.02 to 0.13% and 0.04% for 1.5 T and 0.5 T respectively. CH results converge with decreasing EM ESTEPE reaching an agreement of 0.2% at a value of EM ESTEPE of 0.01 for 100 keV electrons. SS results at 100 keV for 1.5 T show the same EM ESTEPE dependency as the CH results. Conclusion: Accurate transport of charged particles in magnetic fields is only possible if the step size is significantly restricted. An EM ESTEPE value of 0.02 is required to reproduce SS results at the 0.1% level for a calculation in air. The EM ESTEPE dependency of the SS results suggests SS is bypassed when simulating the transport of charged particles in magnetic fields. Fano test results for in water calculation suggest that only a 0.2% accuracy can be achieved with the current implementation.

  13. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    Science.gov (United States)

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  14. Investigating coarse sediment particles transport using PTV and "smart-pebbles" instrumented with inertial sensors

    Science.gov (United States)

    Valyrakis, Manousos; Farhadi, Hamed

    2017-04-01

    This study, reports on the analysis of appropriately designed fluvial experiments investigating the transport of coarse bed material using two approaches: particle tracking velocimetry (PTV) to extract bulk transport parameters and inertia sensor data (via the use of "smart-pebbles") to obtain refined statistics for the transport of the particle. The purpose of this study is to provide further insight on the use of technologies (optical techniques and inertial sensors) that are complementary one to another, towards producing improved estimates of bedload transport in natural rivers. The experiments are conducted in the Water Engineering Lab at the University of Glasgow on a tilting recirculating flume with 90 cm width. Ten different discharges have been implemented in this study. A couple of fake beds, made of well-packed beads of three different sizes have been set up in the flume. The particle motion is captured by two high-speed commercial cameras, responsible for recording the top view covering the full length of the fake beds over which the "smart-pebble" is allowed to be transported. "Smart-pebbles" of four different densities are initially located at the upstream end of the configuration, fully exposed to the instream flow. These are instrumented with appropriate inertial sensors that allow recording the particle's motion, in the Langrangian frame, in high resolution. Specifically, the "smart-pebble" employ a tri-axial gyroscope, magnetometer and accelerometer, which are utilized to obtain minute linear and angular displacements in high frequency (up to 200Hz). However, these are not enough to accurately reconstruct the full trajectory of the particles rolling downstream. To that goal optical methods are used. In particular, by using particle tracking velocimetry data and image processing techniques, the location, orientation and velocities of the "smart-pebble" are derived. Specific consideration is given to appropriately preprocess the obtained video, as

  15. Enhancement of transport properties of a Brownian particle due to quantum effects: Smoluchowski limit

    Energy Technology Data Exchange (ETDEWEB)

    Shit, Anindita [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Chattopadhyay, Sudip, E-mail: sudip_chattopadhyay@rediffmail.com [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Chaudhuri, Jyotipratim Ray, E-mail: jprc_8@yahoo.com [Department of Physics, Katwa College, Katwa, Burdwan 713130 (India)

    2012-03-13

    Graphical abstract: By invoking physically motivated coordinate transformation into quantum Smoluchowski equation, we have presented a transparent treatment for the determination of the effective diffusion coefficient and current of a quantum Brownian particle. Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects. Highlights:: Black-Right-Pointing-Pointer Transport of a quantum Brownian particle in a periodic potential has been addressed. Black-Right-Pointing-Pointer Governing quantum Smoluchowski equation (QSE) includes state dependent diffusion. Black-Right-Pointing-Pointer A coordinate transformation is used to recast QSE with constant diffusion. Black-Right-Pointing-Pointer Transport properties increases in comparison to the corresponding classical result. Black-Right-Pointing-Pointer This enhancement is purely a quantum effect. - Abstract: The transport property of a quantum Brownian particle that interacts strongly with a bath (in which a typical damping constant by far exceeds a characteristic frequency of the isolated system) under the influence of a tilted periodic potential has been studied by solving quantum Smoluchowski equation (QSE). By invoking physically motivated coordinate transformation into QSE, we have presented a transparent treatment for the determination of the effective diffusion coefficient of a quantum Brownian particle and the current (the average stationary velocity). Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects only if the bath temperature hovers around an appropriate range of intermediate values. Our findings also confirm the results obtained in the classical cases.

  16. Clay preference and particle transport behavior of Formosan subterranean termites (Isoptera: Rhinotermitidae): a laboratory study.

    Science.gov (United States)

    Wang, Cai; Henderson, Gregg

    2014-12-01

    Although preference and utilization of clay have been studied in many higher termites, little attention has been paid to lower termites, especially subterranean termites. The Formosan subterranean termite, Coptotermes formosanus Shiraki, can modify its habitat by using clay to fill tree cavities. Here, the biological significance of clay on C. formosanus was investigated. Choice tests showed that significantly more termites aggregated in chambers where clay blocks were provided, regardless of colony group, observation period, or nutritional condition (fed or starved). No-choice tests showed that clay had no observable effect on survivorship, live or dry biomass, water content, and tunneling activity after 33-35 d. However, clay appeared to significantly decrease filter paper consumption (dry weight loss). Active particle (sand, paper, and clay) transport behavior was observed in both choice and no-choice tests. When present, clay was preferentially spread on the substrate, attached to the smooth surfaces of the containers, and used to line sand tunnels. Mechanisms and potential application of clay attraction are discussed. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  17. Vertical Drop Test of a Transport Fuselage Section

    OpenAIRE

    熊倉, 郁夫; KUMAKURA, Ikuo

    2002-01-01

    The NAL Structures and Materials Research Center conducted a vertical drop test of a fuselage section from a YS-11A transport airplane in December 2001. This test program is part of research into the structural crashworthiness of transport aircraft in the event of a crash accident, one of the subjects of Aviation Safety and Environmental Compatibility Technology Research(ASET) at NAL. Cooperative research related to this test program has also been carried out by NAL and Kawasaki Heavy Industr...

  18. LANL LDRD-funded project: Test particle simulations of energetic ions in natural and artificial radiation belts

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa [Los Alamos National Laboratory; Liu, Kaijun [Los Alamos National Laboratory; Friedel, Reinhard H. [Los Alamos National Laboratory; Reeves, Geoffrey D. [Los Alamos National Laboratory

    2012-07-17

    We summarize the scientific problem and work plan for the LANL LDRD-funded project to use a test particle code to study the sudden de-trapping of inner belt protons and possible cross-L transport of debris ions after a high altitude nuclear explosion (HANE). We also discuss future application of the code for other HANE-related problems.

  19. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    Science.gov (United States)

    China, Swarup; Alpert, Peter A.; Zhang, Bo; Schum, Simeon; Dzepina, Katja; Wright, Kendra; Owen, R. Chris; Fialho, Paulo; Mazzoleni, Lynn R.; Mazzoleni, Claudio; Knopf, Daniel A.

    2017-03-01

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition between samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity (RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. This study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.

  20. HMPT: Hazardous Waste Transportation Live 27928, Test 27929

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-17

    HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.

  1. SIMULATION OF ENERGETIC PARTICLE TRANSPORT AND ACCELERATION AT SHOCK WAVES IN A FOCUSED TRANSPORT MODEL: IMPLICATIONS FOR MIXED SOLAR PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, Y. Y.; Dröge, W. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany); Gedalin, M. [Department of Physics, Ben-Gurion Unversity of the Negev, Beer-Sheva (Israel)

    2016-03-20

    We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock for which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.

  2. Methods of Monte Carlo electron transport in particle-in-cell codes

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, T.J.T.; Snell, C.M.

    1985-01-01

    An algorithm has been implemented in CCUBE and ISIS to treat electron transport in materials using a Monte Carlo method in addition to the electron dynamics determined by the self-consistent electromagnetic, relativistic, particle-in-cell simulation codes that have been used extensively to model generation of electron beams and intense microwave production. Incorporation of a Monte Carlo method to model the transport of electrons in materials (conductors and dielectrics) in a particle-in-cell code represents a giant step toward realistic simulation of the physics of charged-particle beams. The basic Monte Carlo method used in the implementation includes both scattering of electrons by background atoms and energy degradation.

  3. Modeling Bimolecular Reactions and Transport in Porous Media Via Particle Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Dong Ding; David Benson; Amir Paster; Diogo Bolster

    2012-01-01

    We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In this numerical method, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing displacement front, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO_4 and EDTA^{4-}) and products (CuEDTA^{4-}) were quantified by snapshots of transmitted light through a column packed with cryloite sand. The thermodynamic rate coefficient in the latter experiment was 10^7 times greater than the former experiment, making it essentially instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20% to 40% less overall product, which is attributed to poor mixing. The poor mixing also leads to higher product concentrations on the edges of the mixing zones, which the particle

  4. FCTESTNET - Testing fuel cells for transportation

    NARCIS (Netherlands)

    Winkel, R.G.; Foster, D.L.; Smokers, R.T.M.

    2006-01-01

    FCTESTNET (Fuel Cell Testing and Standardization Network) is an ongoing European network project within Framework Program 5. It is a three-year project that commenced January 2003, with 55 partners from European research centers, universities, and industry, working in the field of fuel cell R and D.

  5. Observed chemical characteristics of long-range transported particles at a marine background site in Korea.

    Science.gov (United States)

    Cayetano, Mylene G; Kim, Young J; Jung, Jin Sang; Batmunkh, Tsatsral; Lee, Kwang Yul; Kim, Sung Yong; Kim, Kwan Chul; Kim, Dong Gyu; Lee, Suk Jo; Kim, Jeong Soo; Chang, Lim Seek

    2011-11-01

    Deokjeok Island is located off the west coast of the Korean Peninsula and is a suitable place to monitor the long-range transport of air pollutants from the Asian continent. In addition to pollutants, Asian dust particles are also transported to the island during long-range transport events. Episodic transport of dust and secondary particles was observed during intensive measurements in the spring (March 31-April 11) and fall (October 13-26) of 2009. In this study, the chemical characteristics of long-range-transported particles were investigated based on highly time-resolved ionic measurements with a particle-into-liquid system coupled with an online ion chromatograph (PILS-IC) that simultaneously measures concentrations of cations (Li+, Na , NH4+, K+, Ca2+, Mg2+) and anions (F-, C1-, NO3-, SO42-). The aerosol optical thickness (AOT) distribution retrieved by the modified Bremen Aerosol Retrieval (M-BAER) algorithm from moderate resolution imaging spectroradiometer (MODIS) satellite data confirmed the presence of a thick aerosol plume coming from the Asian continent towards the Korean peninsula. Seven distinctive events involving the long-range transport (LRT) of aerosols were identified and studied, the chemical components of which were strongly related to sector sources. Enrichment of acidic secondary aerosols on mineral dust particles, and even of sea-salt components, during transport was observed in this study. Backward trajectory, chemical analyses, and satellite aerosol retrievals identified two distinct events: a distinctively high [Ca2++Mg2]/[Na+] ratio (>2.0), which was indicative of a preprocessed mineral dust transport event, and a low [Ca2++Mg2+]/[Na+] ratio (<2.0), which was indicative of severe aging of sea-salt components on the processed dust particles. Particulate C1- was depleted by up to 85% in spring and 50% in the fall. A consistent fraction of carbonate replacement (FCR) averaged 0.53 in spring and 0.55 in the fall. Supporting evidences of C1

  6. Numerical simulation of aerosol particle transport by oscillating flow in respiratory airways.

    Science.gov (United States)

    Briant, J K; Frank, D D; James, A C; Eyler, L L

    1992-01-01

    Particle transport by oscillating flow in a tapered channel or in a tapered tube was computed from the complete equations of motion. These geometries represent a simplified model of the divergent flow field of the mammalian bronchial tree. The computed deformation profile of a line of particles, transported by the oscillatory motion, was compared with prior experimental results and analytical calculations. All three methods agree that there is transport in the divergent direction of the tube by an axial stream of steady drift in the core for moderately high frequency of oscillation (Womersley parameter in the range of 1 to 10). Bidirectional flow is established by an annular stream in the convergent direction, with no net flow on integral cycles of the oscillating fluid. At higher frequency, however, the steady stream transforms to a different shape in the tapered tube, with transport in the divergent direction nearer the walls of the tube, rather than in the core. Transport by the continuing streams with oscillatory ventilation of the respiratory tract should deliver medicinal aerosols of low intrinsic particle mobility to the peripheral regions of the lungs.

  7. Coupling fine particle and bedload transport in gravel-bedded streams

    Science.gov (United States)

    Park, Jungsu; Hunt, James R.

    2017-09-01

    Fine particles in the silt- and clay-size range are important determinants of surface water quality. Since fine particle loading rates are not unique functions of stream discharge this limits the utility of the available models for water quality assessment. Data from 38 minimally developed watersheds within the United States Geological Survey stream gauging network in California, USA reveal three lines of evidence that fine particle release is coupled with bedload transport. First, there is a transition in fine particle loading rate as a function of discharge for gravel-bedded sediments that does not appear when the sediment bed is composed of sand, cobbles, boulders, or bedrock. Second, the discharge at the transition in the loading rate is correlated with the initiation of gravel mobilization. Third, high frequency particle concentration and discharge data are dominated by clockwise hysteresis where rising limb discharges generally have higher concentrations than falling limb discharges. These three observations across multiple watersheds lead to a conceptual model that fine particles accumulate within the sediment bed at discharges less than the transition and then the gravel bed fluidizes with fine particle release at discharges above the transition discharge. While these observations were individually recognized in the literature, this analysis provides a consistent conceptual model based on the coupling of fine particle dynamics with filtration at low discharges and gravel bed fluidization at higher discharges.

  8. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chame, Jacqueline

    2011-05-27

    The goal of this project is the development of the Gyrokinetic Toroidal Code (GTC) Framework and its applications to problems related to the physics of turbulence and turbulent transport in tokamaks,. The project involves physics studies, code development, noise effect mitigation, supporting computer science efforts, diagnostics and advanced visualizations, verification and validation. Its main scientific themes are mesoscale dynamics and non-locality effects on transport, the physics of secondary structures such as zonal flows, and strongly coherent wave-particle interaction phenomena at magnetic precession resonances. Special emphasis is placed on the implications of these themes for rho-star and current scalings and for the turbulent transport of momentum. GTC-TTBP also explores applications to electron thermal transport, particle transport; ITB formation and cross-cuts such as edge-core coupling, interaction of energetic particles with turbulence and neoclassical tearing mode trigger dynamics. Code development focuses on major initiatives in the development of full-f formulations and the capacity to simulate flux-driven transport. In addition to the full-f -formulation, the project includes the development of numerical collision models and methods for coarse graining in phase space. Verification is pursued by linear stability study comparisons with the FULL and HD7 codes and by benchmarking with the GKV, GYSELA and other gyrokinetic simulation codes. Validation of gyrokinetic models of ion and electron thermal transport is pursed by systematic stressing comparisons with fluctuation and transport data from the DIII-D and NSTX tokamaks. The physics and code development research programs are supported by complementary efforts in computer sciences, high performance computing, and data management.

  9. Particle release transport in Danshuei River estuarine system and adjacent coastal ocean: a modeling assessment.

    Science.gov (United States)

    Chen, Wei-Bo; Liu, Wen-Cheng; Kimura, Nobuaki; Hsu, Ming-Hsi

    2010-09-01

    A three-dimensional hydrodynamic model was created to study the Danshuei River estuarine system and adjacent coastal ocean in Taiwan. The model was verified using measurements of the time-series water surface elevation, tidal current, and salinity from 1999. We conclude that our model is consistent with these observations. Our particle-tracking model was also used to explore the transport of particles released from the Hsin-Hai Bridge, an area that is heavily polluted. The results suggest that it takes a much longer time for the estuary to be flushed out under low freshwater discharge conditions than with high freshwater discharge. We conclude that the northeast and southwest winds minimally impact particle dispersion in the estuary. The particles fail to settle to the bottom in the absence of density-induced circulation. Our model was also used to simulate the ocean outfall at the Bali. Our experimental results suggest that the tidal current dominates the particle trajectories and influences the transport properties in the absence of a wind stress condition. The particles tend to move northeast or southwest along the coast when northeast or southwest winds prevail. Our data suggest that wind-driven currents and tidal currents play important roles in water movement as linked with ocean outfall in the context of the Danshuei River.

  10. Aeolian particle transport inferred using a ~150-year sediment record from Sayram Lake, arid northwest China

    Directory of Open Access Journals (Sweden)

    Long Ma

    2015-05-01

    Full Text Available We studied sediment cores from Sayram Lake in the Tianshan Mountains of northwest China to evaluate variations in aeolian transport processes over the past ~150 years. Using an end-member modeling algorithm of particle size data, we interpreted end members with a strong bimodal distribution as having been transported by aeolian processes, whereas other end members were interpreted to have been transported by fluvial processes. The aeolian fraction accounted for an average of 27% of the terrigenous components in the core. We used the ratio of aeolian to fluvial content in the Sayram Lake sediments as an index of past intensity of aeolian transport in the Tianshan Mountains. During the interval 1910-1930, the index was high, reflecting the fact that dry climate provided optimal conditions for aeolian dust transport. From 1930-1980, the intensity of aeolian transport was weak. From the 1980s to the 2000s, aeolian transport to Sayram Lake increased. Although climate in northwest China became more humid in the mid-1980s, human activity had by that time altered the impact of climate on the landscape, leading to enhanced surface erosion, which provided more transportable material for dust storms. Comparison of the Lake Sayram sediment record with sediment records from other lakes in the region indicates synchronous intervals of enhanced aeolian transport from 1910 to 1930 and 1980 to 2000.

  11. Ultrafine particle transport and deposition in a large scale 17-generation lung model.

    Science.gov (United States)

    Islam, Mohammad S; Saha, Suvash C; Sauret, Emilie; Gemci, Tevfik; Yang, Ian A; Gu, Y T

    2017-11-07

    To understand how to assess optimally the risks of inhaled particles on respiratory health, it is necessary to comprehend the uptake of ultrafine particulate matter by inhalation during the complex transport process through a non-dichotomously bifurcating network of conduit airways. It is evident that the highly toxic ultrafine particles damage the respiratory epithelium in the terminal bronchioles. The wide range of in silico available and the limited realistic model for the extrathoracic region of the lung have improved understanding of the ultrafine particle transport and deposition (TD) in the upper airways. However, comprehensive ultrafine particle TD data for the real and entire lung model are still unavailable in the literature. Therefore, this study is aimed to provide an understanding of the ultrafine particle TD in the terminal bronchioles for the development of future therapeutics. The Euler-Lagrange (E-L) approach and ANSYS fluent (17.2) solver were used to investigate ultrafine particle TD. The physical conditions of sleeping, resting, and light activity were considered in this modelling study. A comprehensive pressure-drop along five selected path lines in different lobes was calculated. The non-linear behaviour of pressure-drops is observed, which could aid the health risk assessment system for patients with respiratory diseases. Numerical results also showed that ultrafine particle-deposition efficiency (DE) in different lobes is different for various physical activities. Moreover, the numerical results showed hot spots in various locations among the different lobes for different flow rates, which could be helpful for targeted therapeutical aerosol transport to terminal bronchioles and the alveolar region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Experimental Exploration of Particle-Scale Bed Load Transport and Near-Bed Fluid Velocities

    Science.gov (United States)

    Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.

    2016-12-01

    Bed load sediment particles move as complex motions over the surface of a stream bed, accelerating and decelerating in response to the near-bed turbulence and due to particle-bed interactions. Using high-speed imagery of coarse sand particles on a planer bed surface, we track individual particle motions from start to stop, combined with measurements of near-bed fluid velocities to better characterize the relationship between these properties. These simultaneous measurements provide an initial step towards describing the dynamic relationship between the fluid and particle entrainment on the grain-scale. We start with an Eulerian a priori method wherein we grid the analyzed area and compare the fluid velocity time series to the entrainment time series within each grid space. We progressively increase the size of the grids and monitor the correlation between the two time series. We then use an a posteriori method that focuses on the fluid velocities in the vicinity of entrained particles both at the moment of entrainment and prior to the initiation of motion. We further our analysis of the relationship between particle motions and the near-bed fluid using detailed measurements of particle motions to calibrate estimates of the sediment load using a pixel differencing method. This allows us to examine connections between the fluid and particle activity over many frames rather than over the limited, manually tracked time period. Furthermore, this allows us to empirically define a distribution of particle wait times, or the duration of time between successive entrainment events over a set area, which acts to determine the transport intensity. Preliminary results suggest that there is not a clear correlation between near-bed fluid velocities and particle entrainment. In absence of a correlation we find that (1) we must think more deeply about collective entrainment and how it 'works', and (2) we must consider how the microstructure of the particles on the bed act to set up

  13. Antiproton annihilation physics annihilation physics in the Monte Carlo particle transport code particle transport code SHIELD-HIT12A

    DEFF Research Database (Denmark)

    Taasti, Vicki Trier; Knudsen, Helge; Holzscheiter, Michael

    2015-01-01

    . An experimental depth dose curve obtained by the AD-4/ACE collaboration was compared with an earlier version of SHIELD-HIT, but since then inelastic annihilation cross sections for antiprotons have been updated and a more detailed geometric model of the AD-4/ACE experiment was applied. Furthermore, the Fermi...... of these updates is tested by comparing simulated data with the antiproton depth dose curve in water. It is found that the implementation of these new capture probabilities results in an overestimation of the depth dose curve in the Bragg peak. This can be mitigated by scaling the antiproton collision cross...... sections, which restores the agreement, but some small deviations still remain. Best agreement is achieved by using the most recent antiproton collision cross sections and the Fermi–Teller Z-law, even if experimental data conclude that the Z-law is inadequately describing annihilation on compounds. We...

  14. Simulations of Lateral Transport and Dropout Structure of Energetic Particles from Impulsive Solar Flares

    Science.gov (United States)

    Matthaeus, W. H.; Ruffolo, D. J.; Tooprakai, P.; Seripienlert, A.; Chuychai, P.

    2016-12-01

    We simulate trajectories of energetic particles from impulsive solar flares for 2D+slab models of magnetic turbulence in spherical geometry to study dropout features, i.e., sharp, repeated changes in the particle density, and the particles' lateral transport. Among random-phase realizations of 2D turbulence, a spherical harmonic expansion can generate homogeneous turbulence over a sphere, but a 2D fast Fourier transform (FFT) locally mapped onto the lateral coordinates in the region of interest is much faster computationally, and we show that the results are qualitatively similar. We then use the 2D FFT field as input to a 2D MHD simulation, which dynamically generates realistic features of turbulence such as coherent structures. The magnetic field lines and particles spread non-diffusively (ballistically) to a patchy distribution reaching up to 25° from the injection longitude and latitude at r 1 AU. This dropout pattern in field line trajectories has sharper features in the case of the more realistic 2D MHD model, in better qualitative agreement with observations. The initial dropout pattern in particle trajectories is relatively insensitive to particle energy, though the energy affects the pattern's evolution with time. We make predictions for future observations of solar particles near the Sun (e.g., at 0.25 AU), for which we expect a sharp pulse of outgoing particles along the dropout pattern, followed by backscattering that first remains close to the dropout pattern and later exhibits cross-field transport to a distribution that is more diffusive, yet mostly contained within the dropout pattern found at greater distances. Partially supported by the Thailand Research Fund (Grants BRG5880009 and RTA5980003), the U.S. NSF (AGS-1063439), NASA (NNX14AI63G & NNX15AB88G), and the Solar Probe Plus/ISIS project.

  15. Modeling particle-facilitated solute transport using the C-Ride module of HYDRUS

    Science.gov (United States)

    Simunek, Jiri; Bradford, Scott A.

    2017-04-01

    Strongly sorbing chemicals (e.g., heavy metals, radionuclides, pharmaceuticals, and/or explosives) in soils are associated predominantly with the solid phase, which is commonly assumed to be stationary. However, recent field- and laboratory-scale observations have shown that, in the presence of mobile colloidal particles (e.g., microbes, humic substances, clays and metal oxides), the colloids could act as pollutant carriers and thus provide a rapid transport pathway for strongly sorbing contaminants. Such transport can be further accelerated since these colloidal particles may travel through interconnected larger pores where the water velocity is relatively high. Additionally, colloidal particles have a considerable adsorption capacity for other species present in water because of their large specific surface areas and their high concentrations in soil-water and groundwater. As a result, the transport of contaminants can be significantly, sometimes dramatically, enhanced when they are adsorbed to mobile colloids. To address this problem, we have developed the C-Ride module for HYDRUS-1D. This one-dimensional numerical module is based on the HYDRUS-1D software package and incorporates mechanisms associated with colloid and colloid-facilitated solute transport in variably saturated porous media. This numerical model accounts for both colloid and solute movement due to convection, diffusion, and dispersion in variably-saturated soils, as well as for solute movement facilitated by colloid transport. The colloids transport module additionally considers processes of attachment/detachment to/from the solid phase, straining, and/or size exclusion. Various blocking and depth dependent functions can be used to modify the attachment and straining coefficients. The module additionally considers the effects of changes in the water content on colloid/bacteria transport and attachment/detachment to/from solid-water and air-water interfaces. For example, when the air

  16. Transport properties of soil particles in Sakiyamawan-Amitoriwan nature conservation area, Iriomote Island, Japan

    Science.gov (United States)

    Shimokawa, Shinya; Murakami, Tomokazu; Kohno, Hiroyoshi; Mizutani, Akira

    2017-12-01

    The actual states of soil particle transport in and exchange between the Sakiyama and Amitori bays, Iriomote Island, Japan, were investigated using atmosphere-ocean-river observations and numerical simulations. The results show that in summer in both bays large particles (≥15 μm) do not move from the vicinity of the river mouths. Small particles, however, do move to the respective east sides of the bays. In winter in both the bays, large particles move towards the center of the bays from the vicinity of the river mouths, whereas small particles move to the respective west sides of the bays. Furthermore, soil particles move mainly from the Sakiyama to the Amitori bay in summer, but this direction is reversed in winter. These features are explainable mainly by seasonal differences in wind speed and direction, but the combination among seasonal differences in wind speed and direction, the wind-driven current and the topography is also important for them. The results are useful for assessing soil particle impact on coastal marine ecosystems, such as those containing reef-building coral and Enhalus acoroides, and their effective conservation in the natural conservation areas of the Sakiyama and Amitori bays.

  17. Silver (Ag) Transport Mechanisms in TRISO coated particles: A Critical Review

    Energy Technology Data Exchange (ETDEWEB)

    I J van Rooyen; J H Neethling; J A A Engelbrecht; P M van Rooyen; G Strydom

    2012-10-01

    Transport of 110mAg in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coated particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE’s fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.

  18. The Roles of Transport and Wave-Particle Interactions on Radiation Belt Dynamics

    Science.gov (United States)

    Fok, Mei-Ching; Glocer, Alex; Zheng, Qiuhua

    2011-01-01

    Particle fluxes in the radiation belts can vary dramatically during geomagnetic active periods. Transport and wave-particle interactions are believed to be the two main types of mechanisms that control the radiation belt dynamics. Major transport processes include substorm dipolarization and injection, radial diffusion, convection, adiabatic acceleration and deceleration, and magnetopause shadowing. Energetic electrons and ions are also subjected to pitch-angle and energy diffusion when interact with plasma waves in the radiation belts. Important wave modes include whistler mode chorus waves, plasmaspheric hiss, electromagnetic ion cyclotron waves, and magnetosonic waves. We investigate the relative roles of transport and wave associated processes in radiation belt variations. Energetic electron fluxes during several storms are simulated using our Radiation Belt Environment (RBE) model. The model includes important transport and wave processes such as substorm dipolarization in global MHD fields, chorus waves, and plasmaspheric hiss. We discuss the effects of these competing processes at different phases of the storms and validate the results by comparison with satellite and ground-based observations. Keywords: Radiation Belts, Space Weather, Wave-Particle Interaction, Storm and Substorm

  19. Bacterial composition and survival on Sahara dust particles transported to the European Alps

    Directory of Open Access Journals (Sweden)

    Marco eMeola

    2015-12-01

    Full Text Available Deposition of Sahara dust (SD particles is a frequent phenomenon in Europe, but little is known about the viability and composition of the bacterial community transported with SD. The goal of this study was to characterize SD-associated bacteria transported to the European Alps, deposited and entrapped in snow. During two distinct events in February and May 2014, SD particles were deposited and promptly covered by falling snow, thus preserving them in distinct ochre layers within the snowpack. In June 2014, we collected samples at different depths from a snow profile at the Jungfraujoch (Swiss Alps; 3621 m a.s.l.. After filtration, we performed various microbiological and physicochemical analyses of the snow and dust particles therein that originated in Algeria.Our results show that bacteria survive and are metabolically active after the transport to the European Alps. Using high throughput sequencing, we observed distinct differences in bacterial community composition and structure in SD-layers as compared to clean snow layers. Sporulating bacteria were not enriched in the SD-layers; however, phyla with low abundance such as Gemmatimonadetes and Deinococcus-Thermus appeared to be specific bio-indicators for SD. Since many members of these phyla are known to be adapted to arid oligotrophic environments and UV radiation, they are well suited to survive the harsh conditions of long-range airborne transport.

  20. Particle Transport in ECRH Plasmas of the TJ-II; Transporte de Particulas en Plasmas ECRH del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Estrada, T.; Guasp, J.; Reynolds, J. M.; Velasco, J. L.; Herranz, J.

    2007-07-01

    We present a systematic study of particle transport in ECRH plasmas of TJ-II with different densities. The goal is to fi nd particle confinement time and electron diffusivity dependence with line-averaged density. The experimental information consists of electron temperature profiles, T{sub e} (Thomson Scattering TS) and electron density, n{sub e}, (TS and reflectometry) and measured puffing data in stationary discharges. The profile of the electron source, Se, was obtained by the 3D Monte-Carlo code EIRENE. The analysis of particle balance has been done by linking the results of the code EIRENE with the results of a model that reproduces ECRH plasmas in stationary conditions. In the range of densities studied (0.58 {<=}n{sub e}> (10{sup 1}9m{sup -}3) {<=}0.80) there are two regions of confinement separated by a threshold density, {approx}0.65 10{sup 1}9m{sup -}3. Below this threshold density the particle confinement time is low, and vice versa. This is reflected in the effective diffusivity, D{sub e}, which in the range of validity of this study, 0.5 <{rho}<0.9 being {rho} normalized plasma radius, decreased significantly above the threshold density. The profiles of D{sub e} are flat for {>=}0,63(10{sup 1}9m{sup -}3). (Author) 35 refs.

  1. Approximate models for neutral particle transport in ducts with wall migration

    Science.gov (United States)

    Gonzalez, Arnulfo

    The problem of monoenergetic neutral particle transport in a duct with wall migration for various shielding materials is treated using an approximate one-dimensional model and a Monte Carlo-based multivariate logistic regression model. The one-dimensional model is a third-order approximation in a hierarchy of approximations derived by a weighted residual procedure that accounts for wall migration by means of a kernel density. Physical constants required for the one-dimensional model--scattering probability (c) and the average distance traveled in walls (d) -- are calculated using MCNP's PTRAC and a corresponding parsing code. Numerical results for the one-dimensional model are based on a discrete ordinates solution and compared to MCNP. The logistic regression models are developed using the R language in statistical computing for three explanatory variables-- duct radius (r), length (L), and shield thickness plus inner radius (S)-- where each parameter is explored via univariate models. Data for the models is collected from MCNP via automated processes using Python and shell scripts. The logistic regression models lead to analytical expressions, which are evaluated by randomly dividing our data set into training and test sets, and calculating predictions.

  2. Short-duration Electron Precipitation Studied by Test Particle Simulation

    Directory of Open Access Journals (Sweden)

    Jaejin Lee

    2015-12-01

    Full Text Available Energy spectra of electron microbursts from 170 keV to 340 keV have been measured by the solid-state detectors aboard the low-altitude (680 km polar-orbiting Korean STSAT-1 (Science and Technology SATellite. These measurements have revealed two important characteristics unique to the microbursts: (1 They are produced by a fast-loss cone-filling process in which the interaction time for pitch-angle scattering is less than 50 ms and (2 The e-folding energy of the perpendicular component is larger than that of the parallel component, and the loss cone is not completely filled by electrons. To understand how wave-particle interactions could generate microbursts, we performed a test particle simulation and investigated how the waves scattered electron pitch angles within the timescale required for microburst precipitation. The application of rising-frequency whistler-mode waves to electrons of different energies moving in a dipole magnetic field showed that chorus magnetic wave fields, rather than electric fields, were the main cause of microburst events, which implied that microbursts could be produced by a quasi-adiabatic process. In addition, the simulation results showed that high-energy electrons could resonate with chorus waves at high magnetic latitudes where the loss cone was larger, which might explain the decreased e-folding energy of precipitated microbursts compared to that of trapped electrons.

  3. The Eccentric Kozai-Lidov Mechanism for Outer Test Particle

    Science.gov (United States)

    Naoz, Smadar; Li, Gongjie; Zanardi, Macarena; de Elía, Gonzalo Carlos; Di Sisto, Romina P.

    2017-07-01

    The secular approximation of the hierarchical three body systems has been proven to be very useful in addressing many astrophysical systems, from planets to stars to black holes. In such a system, two objects are on a tight orbit and the tertiary is on a much wider orbit. Here, we study the dynamics of a system by taking the tertiary mass to zero and solve the hierarchical three body system up to the octupole level of approximation. We find a rich dynamics that the outer orbit undergoes due to gravitational perturbations from the inner binary. The nominal result of the precession of the nodes is mostly limited for the lowest order of approximation; however, when the octupole level of approximation is introduced, the system becomes chaotic, as expected, and the tertiary oscillates below and above 90°, similarly to the non-test particle flip behavior. We provide the Hamiltonian of the system and investigate the dynamics of the system from the quadrupole to the octupole level of approximations. We also analyze the chaotic and quasi-periodic orbital evolution by studying the surfaces of sections. Furthermore, including general relativity, we showcase the long-term evolution of individual debris disk particles under the influence of a far-away interior eccentric planet. We show that this dynamics can naturally result in retrograde objects and a puffy disk after a long timescale evolution (a few Gyr) for initially aligned configuration.

  4. The Eccentric Kozai–Lidov Mechanism for Outer Test Particle

    Energy Technology Data Exchange (ETDEWEB)

    Naoz, Smadar [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Li, Gongjie [Harvard Smithsonian Center for Astrophysics, Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States); Zanardi, Macarena; De Elía, Gonzalo Carlos; Di Sisto, Romina P., E-mail: snaoz@astro.ucla.edu [Instituto de Astrofísica de La Plata, CCT La Plata-CONICET-UNLP Paseo del Bosque S/N (1900), La Plata (Argentina)

    2017-07-01

    The secular approximation of the hierarchical three body systems has been proven to be very useful in addressing many astrophysical systems, from planets to stars to black holes. In such a system, two objects are on a tight orbit and the tertiary is on a much wider orbit. Here, we study the dynamics of a system by taking the tertiary mass to zero and solve the hierarchical three body system up to the octupole level of approximation. We find a rich dynamics that the outer orbit undergoes due to gravitational perturbations from the inner binary. The nominal result of the precession of the nodes is mostly limited for the lowest order of approximation; however, when the octupole level of approximation is introduced, the system becomes chaotic, as expected, and the tertiary oscillates below and above 90°, similarly to the non-test particle flip behavior. We provide the Hamiltonian of the system and investigate the dynamics of the system from the quadrupole to the octupole level of approximations. We also analyze the chaotic and quasi-periodic orbital evolution by studying the surfaces of sections. Furthermore, including general relativity, we showcase the long-term evolution of individual debris disk particles under the influence of a far-away interior eccentric planet. We show that this dynamics can naturally result in retrograde objects and a puffy disk after a long timescale evolution (a few Gyr) for initially aligned configuration.

  5. Integral and Lagrangian simulations of particle and radiation transport in plasma

    Science.gov (United States)

    Christlieb, A. J.; Hitchon, W. N. G.; Lawler, J. E.; Lister, G. G.

    2009-10-01

    Accurate integral and Lagrangian models of transport in plasmas, in which the models reflect the actual physical behaviour as closely as possible, are presented. These methods are applied to the behaviour of particles and photons in plasmas. First, to show how these types of models arise in a wide range of plasma physics applications, an application to radiation transport in a lighting discharge is given. The radiation transport is solved self-consistently with a model of the discharge to provide what are believed to be very accurate 1D simulations of fluorescent lamps. To extend these integral methods to higher dimensions is computationally very costly. The wide utility of 'treecodes' in solving massive integral problems in plasma physics is discussed, and illustrated in modelling vortex formation in a Penning trap, where a remarkably detailed simulation of vortex formation in the trap is obtained. Extension of treecode methods to other integral problems such as radiation transport is under consideration.

  6. Airline Transport Pilot-Airplane (Air Carrier) Written Test Guide.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    Presented is information useful to applicants who are preparing for the Airline Transport Pilot-Airplane (Air Carrier) Written Test. The guide describes the basic aeronautical knowledge and associated requirements for certification, as well as information on source material, instructions for taking the official test, and questions that are…

  7. Design and Test Space Exploration of Transport-Triggered Architectures

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper describes a new approach in the high level design and test of transport-triggered architectures (TTA), a special type of application specific instruction processors (ASIP). The proposed method introduces the test as an additional constraint, besides throughput and circuit area. The

  8. GTNEUT: A code for the calculation of neutral particle transport in plasmas based on the Transmission and Escape Probability method

    Science.gov (United States)

    Mandrekas, John

    2004-08-01

    GTNEUT is a two-dimensional code for the calculation of the transport of neutral particles in fusion plasmas. It is based on the Transmission and Escape Probabilities (TEP) method and can be considered a computationally efficient alternative to traditional Monte Carlo methods. The code has been benchmarked extensively against Monte Carlo and has been used to model the distribution of neutrals in fusion experiments. Program summaryTitle of program: GTNEUT Catalogue identifier: ADTX Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTX Computer for which the program is designed and others on which it has been tested: The program was developed on a SUN Ultra 10 workstation and has been tested on other Unix workstations and PCs. Operating systems or monitors under which the program has been tested: Solaris 8, 9, HP-UX 11i, Linux Red Hat v8.0, Windows NT/2000/XP. Programming language used: Fortran 77 Memory required to execute with typical data: 6 219 388 bytes No. of bits in a word: 32 No. of processors used: 1 Has the code been vectorized or parallelized?: No No. of bytes in distributed program, including test data, etc.: 300 709 No. of lines in distributed program, including test data, etc.: 17 365 Distribution format: compressed tar gzip file Keywords: Neutral transport in plasmas, Escape probability methods Nature of physical problem: This code calculates the transport of neutral particles in thermonuclear plasmas in two-dimensional geometric configurations. Method of solution: The code is based on the Transmission and Escape Probability (TEP) methodology [1], which is part of the family of integral transport methods for neutral particles and neutrons. The resulting linear system of equations is solved by standard direct linear system solvers (sparse and non-sparse versions are included). Restrictions on the complexity of the problem: The current version of the code can

  9. Transport of particles by magnetic forces and cellular blood flow in a model microvessel

    Science.gov (United States)

    Freund, J. B.; Shapiro, B.

    2012-05-01

    The transport of particles (diameter 0.56 μm) by magnetic forces in a small blood vessel (diameter D = 16.9 μm, mean velocity U = 2.89 mm/s, red cell volume fraction Hc = 0.22) is studied using a simulation model that explicitly includes hydrodynamic interactions with realistically deformable red blood cells. A biomedical application of such a system is targeted drug or hyperthermia delivery, for which transport to the vessel wall is essential for localizing therapy. In the absence of magnetic forces, it is seen that interactions with the unsteadily flowing red cells cause lateral particle velocity fluctuations with an approximately normal distribution with variance σ = 140 μm/s. The resulting dispersion is over 100 times faster than expected for Brownian diffusion, which we neglect. Magnetic forces relative to the drag force on a hypothetically fixed particle at the vessel center are selected to range from Ψ = 0.006 to 0.204. The stronger forces quickly drive the magnetic particles to the vessel wall, though in this case the red cells impede margination; for weaker forces, many of the particles are marginated more quickly than might be predicted for a homogeneous fluid by the apparently chaotic stirring induced by the motions of the red cells. A corresponding non-dimensional parameter Ψ', which is based on the characteristic fluctuation velocity σ rather than the centerline velocity, explains the switch-over between these behaviors. Forces that are applied parallel to the vessel are seen to have a surprisingly strong effect due to the streamwise-asymmetric orientation of the flowing blood cells. In essence, the cells act as low-Reynolds number analogs of turning vanes, causing streamwise accelerated particles to be directed toward the vessel center and streamwise decelerated particles to be directed toward the vessel wall.

  10. PTC test bed upgrades to provide ACSES testing support capabilities at transportation technology center.

    Science.gov (United States)

    2015-06-01

    FRA Task Order 314 upgraded the Positive Train Control (PTC) Test Bed at the Transportation Technology Center to support : testing of PTC systems, components, and related equipment associated with the Advanced Civil Speed Enforcement System : (ACSES)...

  11. SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Lühr, Armin

    2014-01-01

    . We experienced that new users quickly learn to use SHIELD-HIT12A and setup new geometries. Contrary to previous versions of SHIELD-HIT, the 12A distribution comes along with easy-to-use example files and an English manual. A new implementation of Vavilov straggling resulted in a massive reduction...... of computation time. Scheduled for later release are CT import and photon-electron transport. Conclusions: SHIELD-HIT12A is an interesting alternative ion transport engine. Apart from being a flexible particle therapy research tool, it can also serve as a back end for a MC ion treatment planning system. More...

  12. Recent Improvements of Particle and Heavy Ion Transport code System: PHITS

    Science.gov (United States)

    Sato, Tatsuhiko; Niita, Koji; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shin-ichiro; Kai, Takeshi; Matsuda, Norihiro; Okumura, Keisuke; Kai, Tetsuya; Iwase, Hiroshi; Sihver, Lembit

    2017-09-01

    The Particle and Heavy Ion Transport code System, PHITS, has been developed under the collaboration of several research institutes in Japan and Europe. This system can simulate the transport of most particles with energy levels up to 1 TeV (per nucleon for ion) using different nuclear reaction models and data libraries. More than 2,500 registered researchers and technicians have used this system for various applications such as accelerator design, radiation shielding and protection, medical physics, and space- and geo-sciences. This paper summarizes the physics models and functions recently implemented in PHITS, between versions 2.52 and 2.88, especially those related to source generation useful for simulating brachytherapy and internal exposures of radioisotopes.

  13. Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Mario Ivan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Drumm, Clifton R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.

  14. Smoothed Particle Hydrodynamics and its applications for multiphase flow and reactive transport in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovsky, Alexandre M.; Trask, Nathaniel; Pan, K.; Jones, Bruce D.; Pan, Wenxiao; Williams, John R.

    2016-03-11

    Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method based on a meshless discretization of partial differential equations. In this review, we present SPH discretization of the Navier-Stokes and Advection-Diffusion-Reaction equations, implementation of various boundary conditions, and time integration of the SPH equations, and we discuss applications of the SPH method for modeling pore-scale multiphase flows and reactive transport in porous and fractured media.

  15. Alfvén eigenmode stability and critical gradient energetic particle transport using the Trapped-Gyro-Landau-Fluid model

    Science.gov (United States)

    Sheng, He; Waltz, R. E.; Staebler, G. M.

    2017-07-01

    The Trapped-Gyro-Landau-Fluid (TGLF) transport model is a physically realistic and comprehensive theory based on a local quasilinear transport model fitted to linear and nonlinear GYRO gyrokinetic simulations [Staebler et al., Phys. Plasmas 14, 55909 (2007)]. This work presents the first use of the TGLF model to treat low-n Alfvén eigenmode (AE) stability and energetic particle (EP) transport. TGLF accurately recovers the local GYRO toroidicity-induced AE (TAE) and energetic particle mode (EPM) linear growth and frequency rates for a fusion alpha case. With a very high grid resolution, TGLF can quickly find the critical EP pressure gradient profile for stiff EP transport based on an AE linear threshold given the background thermal plasma profiles in DIII-D. The TGLF critical gradient profile using the recipe γAE = 0, that is the linear AE growth rate without additional driving rates from the background plasma gradients, matches the more expensive linear GYRO results with a single worst toroidal mode number n. TGLF can easily find the minimum critical gradient profile with testing multiple ns. From a database of runs using a newly developed TGLFEP code, a rough but insightful parametric "power law" scaling for critical EP beta is demonstrated. An important toroidal stabilization condition on the EP pressure gradient pEP/LpEP drive is isolated: R /LpEP>CR ˜ 3 , where LpEP is the EP pressure gradient length and R is the tokamak major radius. This paper also demonstrates that relaxation of the fixed slowing down EP profile shape approximation often used to find the critical EP density profile has little effect on the resulting EP transport. The single EP species critical gradient model is generalized to handle two EP species.

  16. {sup 210}Pb and {sup 210}Po as tracers of particle transport mechanisms on continental margins

    Energy Technology Data Exchange (ETDEWEB)

    Radakovitch, O.; Heussner, S. [Perpignan Univ., 66 (France). Lab. de Sedimentologie et Geochimie Marines; Biscaye, P.; Abassi, A. [Columbia Univ., Palisades, NY (United States). Lamont Doherty Earth Observatory

    1997-12-31

    The natural radionuclides {sup 210}Po and {sup 210}Pb, members of the {sup 238}U decay chain, are particularly helpful to the understanding of particle transport processes in the ocean. These isotopes were analysed on sediment trap particles collected during 3 one-year experiments on continental margins. In the Bay of Biscay (Northeastern Atlantic) and in the Gulf of Lion (Northwestern Mediterranean Sea) both as part of the French ECOMARGE programme, and in the Middle Atlantic Bight (Northwestern Atlantic) as part of the SEEP programme. They yielded great insights into scenarios of particle transfer at each site, mainly based on the spatial and temporal distribution of {sup 210}Pb particulate concentrations and fluxes. (author) 11 refs.

  17. Space weather predictions and energetic particle transport in the solar wind.

    Science.gov (United States)

    Zimbardo, G.; Veltri, P.; Pommois, P.

    Solar-terrestrial relationships are a wide range of physical phenomena which include perturbations of the Earth's magnetosphere and of the Earth's environment due to solar activity. These perturbations can heavily influence systems which use advanced technologies. For instance, geomagnetic storms can induce very strong EMF in the power distribution network. Also, increased fluxes of energetic particles in the magnetosphere can seriously damage telecommunication and navigation spacecraft. The research programme known as "Space Weather" aims at making predictions of such perturbations in order to minimize the risk for human life and economic losses. In particular, an understanding of energetic particle transport either from the Sun or from interplanetary shocks to the Earth can help to forecast high risk periods. Numerical results on particle propagation in solar wind magnetic turbulence is discussed.

  18. Monte Carlo particle transport in random media: The effects of mixing statistics

    Science.gov (United States)

    Larmier, Coline; Zoia, Andrea; Malvagi, Fausto; Dumonteil, Eric; Mazzolo, Alain

    2017-07-01

    Particle transport in random media obeying a given mixing statistics is key in several applications in nuclear reactor physics and more generally in diffusion phenomena emerging in optics and life sciences. Exact solutions for the ensemble-averaged physical observables are hardly available, and several approximate models have been thus developed, providing a compromise between the accurate treatment of the disorder-induced spatial correlations and the computational time. In order to validate these models, it is mandatory to use reference solutions in benchmark configurations, typically obtained by explicitly generating by Monte Carlo methods several realizations of random media, simulating particle transport in each realization, and finally taking the ensemble averages for the quantities of interest. In this context, intense research efforts have been devoted to Poisson (Markov) mixing statistics, where benchmark solutions have been derived for transport in one-dimensional geometries. In a recent work, we have generalized these solutions to two and three-dimensional configurations, and shown how dimension affects the simulation results. In this paper we will examine the impact of mixing statistics: to this aim, we will compare the reflection and transmission probabilities, as well as the particle flux, for three-dimensional random media obtained by using Poisson, Voronoi and Box stochastic tessellations. For each tessellation, we will furthermore discuss the effects of varying the fragmentation of the stochastic geometry, the material compositions, and the cross sections of the background materials.

  19. Experimental and theoretical study of particle transport in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Fable, E.

    2009-06-15

    The main scope of this thesis work is to compare theoretical models with experimental observations on particle transport in particular regimes of plasma operation from the Tokamak à Configuration Variable (TCV) located at CRPP–EPFL in Lausanne. We introduce the main topics in Tokamak fusion research and the challenging problems in the first Chapter. A particular attention is devoted to the modelling of heat and particle transport. In the second Chapter the experimental part is presented, including an overview of TCV capabilities, a brief review of the relevant diagnostic systems, and a discussion of the numerical tools used to analyze the experimental data. In addition, the numerical codes that are used to interpret the experimental data and to compare them with theoretical predictions are introduced. The third Chapter deals with the problem of understanding the mechanisms that regulate the transport of energy in TCV plasmas, in particular in the electron Internal Transport Barrier (eITB) scenario. A radial transport code, integrated with an external module for the calculation of the turbulence-induced transport coefficients, is employed to reproduce the experimental scenario and to understand the physics at play. It is shown how the sustainment of an improved confinement regime is linked to the presence of a reversed safety factor profile. The improvement of confinement in the eITB regime is visible in the energy channel and in the particle channel as well. The density profile shows strong correlation with the temperature profile and has a large local logarithmic gradient. This is an important result obtained from the TCV eITB scenario analysis and is presented in the fourth Chapter. In the same chapter we present the estimate of the particle diffusion and convection coefficients obtained from density transient experiments performed in the eITB scenario. The theoretical understanding of the strong correlation between density and temperature observed in the e

  20. Application of State Quantization-Based Methods in HEP Particle Transport Simulation

    Science.gov (United States)

    Santi, Lucio; Ponieman, Nicolás; Jun, Soon Yung; Genser, Krzysztof; Elvira, Daniel; Castro, Rodrigo

    2017-10-01

    Simulation of particle-matter interactions in complex geometries is one of the main tasks in high energy physics (HEP) research. An essential aspect of it is an accurate and efficient particle transportation in a non-uniform magnetic field, which includes the handling of volume crossings within a predefined 3D geometry. Quantized State Systems (QSS) is a family of numerical methods that provides attractive features for particle transportation processes, such as dense output (sequences of polynomial segments changing only according to accuracy-driven discrete events) and lightweight detection and handling of volume crossings (based on simple root-finding of polynomial functions). In this work we present a proof-of-concept performance comparison between a QSS-based standalone numerical solver and an application based on the Geant4 simulation toolkit, with its default Runge-Kutta based adaptive step method. In a case study with a charged particle circulating in a vacuum (with interactions with matter turned off), in a uniform magnetic field, and crossing up to 200 volume boundaries twice per turn, simulation results showed speedups of up to 6 times in favor of QSS while it being 10 times slower in the case with zero volume boundaries.

  1. Effects of Protons and HZE Particles on Glutamate Transport in Astrocytes, Neurons and Mixed Cultures

    Science.gov (United States)

    Sanchez, Martha C.; Nelson, Gregory A.; Green, Lora M.

    2010-01-01

    Radiation-induced neurotoxicity is a well-characterized phenomenon. However, the underlying mechanism of this toxicity is poorly understood. In the central nervous system (CNS), excitotoxic mechanisms are implicated in many neurodegenerative disease processes. Pivotal to the excitotoxic pathway is dysfunction of glutamate signaling. We reported previously that exposure to low-LET γ radiation results in altered glutamate transport in neurons and astrocytes. In the present study, we sought to investigate the effects of various particle radiations of differing LET on glutamate transport as a measure of the neurochemical vulnerability of the CNS. NTera2-derived neurons and astrocytes isolated as pure and mixed cultures were exposed to doses of 10 cGy, 50 cGy or 2 Gy of 250 MeV protons, 290 MeV/nucleon carbon ions, or 1000 MeV/nucleon iron ions. Transporter function was assessed at 3 h, 2 days and 7days after exposure. Functional assessment of glutamate transport revealed that neurons and astrocytes respond in a reciprocal manner after exposure to particle radiation. Uptake activity in neurons increased after particle irradiation. This effect was evident as late as our last time (7 days) after exposure (P < 0.05). In astrocytes, transporter activity decreased after exposure. The decrease in uptake observed in astrocytes was evident 7 days after exposure to carbon and iron ions. Uptake in mixed cultures after exposure to all three forms of radiation revealed a muted interactive response suggestive of the individual responses of each cellular phenotype acting in opposition. PMID:21128790

  2. Transport of colloidal silica in unsaturated sand: Effect of charging properties of sand and silica particles.

    Science.gov (United States)

    Fujita, Yosuke; Kobayashi, Motoyoshi

    2016-07-01

    We have studied the transport of colloidal silica in various degrees of a water-saturated Toyoura sand column, because silica particles are widely used as catalyst carriers and abrasive agents, and their toxicity is reported recently. Since water-silica, water-sand, and air-water interfaces have pH-dependent negative charges, the magnitude of surface charge was controlled by changing the solution pH. The results show that, at high pH conditions (pH 7.4), the deposition of colloidal silica to the sand surface is interrupted and the silica concentration at the column outlet immediately reaches the input concentration in saturated conditions. In addition, the relative concentration of silica at the column outlet only slightly decreases to 0.9 with decreasing degrees of water saturation to 38%, because silica particles are trapped in straining regions in the soil pore and air-water interface. On the other hand, at pH 5 conditions (low pH), where sand and colloid have less charge, reduced repulsive forces result in colloidal silica attaching onto the sand in saturated conditions. The deposition amount of silica particles remarkably increases with decreasing degrees of water saturation to 37%, which is explained by more particles being retained in the sand column associated with the air-water interface. In conclusion, at higher pH, the mobility of silica particles is high, and the air-water interface is inactive for the deposition of silica. On the other hand, at low pH, the deposition amount increases with decreasing water saturation, and the particle transport is inhibited. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Baseline tests of the Volkswagen transporter electric delivery van

    Science.gov (United States)

    Soltis, R. F.; Mcbrien, E. F.; Bozek, J. M.; Gourash, F.

    1978-01-01

    The Volkswagen Transporter, an electric delivery van, was tested as part of an Energy Research and Development Administration (ERDA) project to characterize the state of the art of electric vehicles. The Volkswagen Transporter is a standard Volkswagen van that has been converted to an electric vehicle. It is powered by a 144-volt traction battery. A direct current (dc) chopper controller, actuated by a conventional accelerator pedal, regulates the voltage or power applied to the 16-kilowatt (21-hp) motor. The braking system uses conventional hydraulic braking in combination with an electric regenerative braking system. The Volkswagen vehicle performance test results are presented.

  4. Measurements of Impurity Particle Transport Associated with Drift-Wave Turbulence in MST

    Science.gov (United States)

    Nishizawa, Takashi; Nornberg, Mark; Boguski, John; Craig, Darren; den Hartog, Daniel; Pueschel, M. J.; Sarff, John; Terry, Paul; Williams, Zach; Xing, Zichuan

    2017-10-01

    Understanding and controlling impurity transport in a toroidal magnetized plasma is one of the critical issues that need to be addressed in order to achieve controlled fusion. Gyrokinetic modeling shows turbulence can drive impurity transport, but direct measurements of the turbulent flux have not been made. Particle balance is typically used to infer the presence of turbulent impurity transport. We report, for the first time in a toroidal plasma, direct measurements of turbulence-driven impurity transport. Trapped electron mode (TEM) turbulence appears in MST plasmas when MHD tearing fluctuations are suppressed. Impurity ion-Doppler spectroscopy is used to correlate impurity density and radial velocity fluctuations associated with TEM. Small Doppler shifts associated with the radial velocity fluctuations (rms 1km/s) are resolved with the use of a new linearized spectrum correlation analysis method, which improves the rejection of Poisson noise. The method employs frequency-domain correlation analysis to expose the fluctuation and transport spectrum. The C+ 2 impurity transport velocity driven by turbulence is found to be 48m/s (inward), which is sufficiently large to impact an impurity flux balance in MST improved-confinement plasmas. This work is supported by the US DOE.

  5. BEAMR: An interactive graphic computer program for design of charged particle beam transport systems

    Science.gov (United States)

    Leonard, R. F.; Giamati, C. C.

    1973-01-01

    A computer program for a PDP-15 is presented which calculates, to first order, the characteristics of charged-particle beam as it is transported through a sequence of focusing and bending magnets. The maximum dimensions of the beam envelope normal to the transport system axis are continuously plotted on an oscilloscope as a function of distance along the axis. Provision is made to iterate the calculation by changing the types of magnets, their positions, and their field strengths. The program is especially useful for transport system design studies because of the ease and rapidity of altering parameters from panel switches. A typical calculation for a system with eight elements is completed in less than 10 seconds. An IBM 7094 version containing more-detailed printed output but no oscilloscope display is also presented.

  6. Effects of Flow Velocity and Particle Size on Transport of Ultrafine Bubbles in Porous Media

    Science.gov (United States)

    Hamamoto, S.; Nihei, N.; Ueda, Y.; Nishimura, T.

    2015-12-01

    Potential applications of ultrafine bubbles (UFBs) have drawn more attention, especially in environmental engineering fields such as soil/groundwater remediation. Understanding a transport mechanism of UFBs in soils is essential to optimize remediation techniques using UFBs. In this study, column transport experiments using glass beads with different size fraction were conducted, where UFBs created by either air or oxygen were injected to the column with different flow conditions. Effects of particle size and flow velocities on transport characteristics of UFBs were investigated based on the column experiments. The results showed that attachments of UFBs were enhanced under lower water velocity condition, exhibiting more than 50% of UFBs injected were attached inside the column. The mobility of O2-UFBs which have lower zeta potential was higher than that of Air-UFBs. A convection-dispersion model including bubble attachment and detachment terms was applied to the obtained breakthrough curves for each experiment, showing good fitness against the measured data.

  7. Regulation of human hepatic drug transporter activity and expression by diesel exhaust particle extract.

    Directory of Open Access Journals (Sweden)

    Marc Le Vee

    Full Text Available Diesel exhaust particles (DEPs are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC uptake transporters organic anion-transporting polypeptides (OATP 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP, whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP. Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a reference activator of the aryl hydrocarbon receptor (AhR pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute

  8. 75 FR 59105 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs: Federal Drug Testing...

    Science.gov (United States)

    2010-09-27

    ... Transportation (DOT) drug testing regulation, 49 CFR Part 40, must be collected using chain-of-custody procedures... Alcohol Testing Programs: Federal Drug Testing Custody and Control Form; Technical Amendment AGENCY... Services recently issued a new Federal Drug Testing Custody and Control Form for use in both the Federal...

  9. Topology of hydrothermal waves in liquid bridges and dissipative structures of transported particles.

    Science.gov (United States)

    Mukin, Roman V; Kuhlmann, Hendrik C

    2013-11-01

    High-resolution three-dimensional numerical simulations are carried out for hydrothermal waves in a thermocapillary liquid bridge with Prandtl number Pr=4 and length-to-radius aspect ratio Γ=0.66. The flow topology is analyzed using Poincaré sections in a frame of reference co-rotating with the phase velocity of the wave. We find regions of regular and chaotic motion. The regular regions are shown to be of key importance for dissipative structures of transported particles. Suspended particles which are passively advected in the bulk, but experience dissipation in a thin layer below the free surface, can rapidly form dissipative structures, also called particle accumulation structures. The shape and the formation time of the particulate structures are determined by the location of the invariant tori of the flow field with respect to the sub-surface layer in which the dissipation of the particle motion acts. The results from a hard-wall particle-free-surface interaction model are in good agreement with experimental observations.

  10. Inactivation of particle-associated microorganisms in wastewater disinfection: modeling of ozone and chlorine reactive diffusive transport in polydispersed suspensions.

    Science.gov (United States)

    Dietrich, Joseph P; Loge, Frank J; Ginn, Timothy R; Başağaoğlu, Hakan

    2007-05-01

    Occlusion of microorganisms in wastewater particles often governs the overall performance of a disinfection system, and the associated health risks of post-disinfected effluents. Little is currently known on the penetration of chemical oxidants into particles developed in wastewater treatment. In this work, a reactive transport model that incorporates intra- and extra-particle chemical decay, radial intra-particle diffusion, mass transfer resistance at particle surfaces, and non-linear reaction kinetics within a competitive multi-particle size aqueous environment, was used to analyze the penetration of ozone and chlorine into wastewater particles. Individual characteristics from two secondary wastewater treatment facilities were used in model calibration. Simulations revealed that significant ozone transport within particles greater than 6 microm required large initial concentrations to exhaust the preferential reaction with aqueous soluble matter. Chlorinated samples exhibited apparently slower reactions and thus deeper penetration (22-40 microm). Chlorine penetration was less sensitive to variations in the extra-particle reaction and disinfectant concentration than ozone. Model simulations that considered elevated initial concentrations of chemical disinfectants revealed that complete inactivation of all particle size domains was not possible with current disinfection practices (e.g., contact times). Reduction in the health risks associated with wastewater particles requires treatment that efficiently balances particle removal (filtration) and particle inactivation (disinfection).

  11. Giving peeps to my props: Using 3D printing to shed new light on particle transport in fractured rock.

    Science.gov (United States)

    Walsh, S. D.; Du Frane, W. L.; Vericella, J. J.; Aines, R. D.

    2014-12-01

    Smart tracers and smart proppants promise new methods for sensing and manipulating rock fractures. However, the correct use and interpretation of these technologies relies on accurate models of their transport. Even for less exotic particles, the factors controlling particle transport through fractures are poorly understood. In this presentation, we will describe ongoing research at Lawrence Livermore National Laboratory into the transport properties of particles in natural rock fractures. Using three dimensional printing techniques, we create clear-plastic reproductions of real-world fracture surfaces, thereby enabling direct observation of the particle movement. We will also discuss how particle tracking of dense particle packs can be further enhanced by using such specially tailored flow cells in combination with micro-encapsulated tracer particles. Experimental results investigating the transport behavior of smart tracers and proppants close to the neutrally buoyant limit will be presented and we will describe how data from these experiments can be used to improve large-scale models of particle transport in fractures. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Tests of a particle flow algorithm with CALICE test beam data

    CERN Document Server

    ,; CALICE Collaboration

    2011-01-01

    The studies presented in this paper provide a first experimental test of the Particle Flow Algorithm (PFA) concept using data recorded in high granularity calorimeters. Pairs of overlaid pion showers from CALICE 2007 test beam data are reconstructed by the PandoraPFA program developed to implement PFA for a future lepton collider. Recovery of a neutral hadron's energy in the vicinity of a charged hadron is studied. The impact of the two overlapping hadron showers on energy resolution is investigated. The dependence of the confusion error on the distance between a 10 GeV neutral hadron and a charged pion is derived for pion energies of 10 and 30 GeV which are representative of a 100 GeV jet. The comparison of these test beam data results with Monte Carlo simulation is done for various hadron shower models within the GEANT4 framework. The results for simulated particles and for beam data are in good agreement thereby providing support for previous simulation studies of the power of Particle Flow Calorimetry at ...

  13. Observations of bromine monoxide transport in the Arctic sustained on aerosol particles

    Science.gov (United States)

    Peterson, Peter K.; Pöhler, Denis; Sihler, Holger; Zielcke, Johannes; General, Stephan; Frieß, Udo; Platt, Ulrich; Simpson, William R.; Nghiem, Son V.; Shepson, Paul B.; Stirm, Brian H.; Dhaniyala, Suresh; Wagner, Thomas; Caulton, Dana R.; Fuentes, Jose D.; Pratt, Kerri A.

    2017-06-01

    The return of sunlight in the polar spring leads to the production of reactive halogen species from the surface snowpack, significantly altering the chemical composition of the Arctic near-surface atmosphere and the fate of long-range transported pollutants, including mercury. Recent work has shown the initial production of reactive bromine at the Arctic surface snowpack; however, we have limited knowledge of the vertical extent of this chemistry, as well as the lifetime and possible transport of reactive bromine aloft. Here, we present bromine monoxide (BrO) and aerosol particle measurements obtained during the March 2012 BRomine Ozone Mercury EXperiment (BROMEX) near Utqiaġvik (Barrow), AK. The airborne differential optical absorption spectroscopy (DOAS) measurements provided an unprecedented level of spatial resolution, over 2 orders of magnitude greater than satellite observations and with vertical resolution unable to be achieved by satellite methods, for BrO in the Arctic. This novel method provided quantitative identification of a BrO plume, between 500 m and 1 km aloft, moving at the speed of the air mass. Concurrent aerosol particle measurements suggest that this lofted reactive bromine plume was transported and maintained at elevated levels through heterogeneous reactions on colocated supermicron aerosol particles, independent of surface snowpack bromine chemistry. This chemical transport mechanism explains the large spatial extents often observed for reactive bromine chemistry, which impacts atmospheric composition and pollutant fate across the Arctic region, beyond areas of initial snowpack halogen production. The possibility of BrO enhancements disconnected from the surface potentially contributes to sustaining BrO in the free troposphere and must also be considered in the interpretation of satellite BrO column observations, particularly in the context of the rapidly changing Arctic sea ice and snowpack.

  14. Observations of bromine monoxide transport in the Arctic sustained on aerosol particles

    Directory of Open Access Journals (Sweden)

    P. K. Peterson

    2017-06-01

    Full Text Available The return of sunlight in the polar spring leads to the production of reactive halogen species from the surface snowpack, significantly altering the chemical composition of the Arctic near-surface atmosphere and the fate of long-range transported pollutants, including mercury. Recent work has shown the initial production of reactive bromine at the Arctic surface snowpack; however, we have limited knowledge of the vertical extent of this chemistry, as well as the lifetime and possible transport of reactive bromine aloft. Here, we present bromine monoxide (BrO and aerosol particle measurements obtained during the March 2012 BRomine Ozone Mercury EXperiment (BROMEX near Utqiaġvik (Barrow, AK. The airborne differential optical absorption spectroscopy (DOAS measurements provided an unprecedented level of spatial resolution, over 2 orders of magnitude greater than satellite observations and with vertical resolution unable to be achieved by satellite methods, for BrO in the Arctic. This novel method provided quantitative identification of a BrO plume, between 500 m and 1 km aloft, moving at the speed of the air mass. Concurrent aerosol particle measurements suggest that this lofted reactive bromine plume was transported and maintained at elevated levels through heterogeneous reactions on colocated supermicron aerosol particles, independent of surface snowpack bromine chemistry. This chemical transport mechanism explains the large spatial extents often observed for reactive bromine chemistry, which impacts atmospheric composition and pollutant fate across the Arctic region, beyond areas of initial snowpack halogen production. The possibility of BrO enhancements disconnected from the surface potentially contributes to sustaining BrO in the free troposphere and must also be considered in the interpretation of satellite BrO column observations, particularly in the context of the rapidly changing Arctic sea ice and snowpack.

  15. New particle formation in air mass transported between two measurement sites in Northern Finland

    Directory of Open Access Journals (Sweden)

    M. Komppula

    2006-01-01

    Full Text Available This study covers four years of aerosol number size distribution data from Pallas and Värriö sites 250 km apart from each other in Northern Finland and compares new particle formation events between these sites. In air masses of eastern origin almost all events were observed to start earlier at the eastern station Värriö, whereas in air masses of western origin most of the events were observed to start earlier at the western station Pallas. This demonstrates that particle formation in a certain air mass type depends not only on the diurnal variation of the parameters causing the phenomenon (such as photochemistry but also on some properties carried by the air mass itself. The correlation in growth rates between the two sites was relatively good, which suggests that the amount of condensable vapour causing the growth must have been at about the same level in both sites. The condensation sink was frequently much higher at the downwind station. It seems that secondary particle formation related to biogenic sources dominate in many cases over the particle sinks during the air mass transport between the sites. Two cases of transport from Pallas to Värriö were further analysed with an aerosol dynamics model. The model was able to reproduce the observed nucleation events 250 km down-wind at Värriö but revealed some differences between the two cases. The simulated nucleation rates were in both cases similar but the organic concentration profiles that best reproduced the observations were different in the two cases indicating that divergent formation reactions may dominate under different conditions. The simulations also suggested that organic compounds were the main contributor to new particle growth, which offers a tentative hypothesis to the distinct features of new particles at the two sites: Air masses arriving from the Atlantic Ocean typically spent approximately only ten hours over land before arriving at Pallas, and thus the time for the

  16. Simulating mesoscale transport and diffusion of radioactive noble gases using the Lagrangian particle dispersion model.

    Science.gov (United States)

    Kim, Cheol-Hee; Song, Chang-Keun; Lee, Sang-Hyun; Song, Sang-Keun

    2008-10-01

    In order to simulate the impact of mesoscale wind fields and to assess potential capability of atmospheric Lagrangian particle dispersion model (LPDM) as an emergency response model for the decision supports, two different simulations of LPDM with the mesoscale prognostic model MM5 (Mesoscale Model ver. 5) were driven. The first simulation of radioactive noble gas (85Kr exponent) emitted during JCO accident occurred from 30 September to 3 October 1999 at Tokai, Japan showed that the first arriving short pulse was found in Tsukuba located at 60 km away from the accidental area. However, the released radioactive noble gas was transported back to the origin site about 2 days later due to the mesoscale meteorological wind circulation, enhancing the levels of 85Kr with the secondary peak in Tsukuba. The second simulation of atmospheric dilution factors (the ratio of concentration to the emission rate, chi/Q), during the underground nuclear test (UNT) performed by North Korea showed that high chi/Q moved to the eastward and extended toward southward in accordance with the mesoscale atmospheric circulations generated by mesoscale prognostic model MM5. In comparison with the measurements, the simulated horizontal distribution patterns of 85Kr during the JCO are well accord with that of observation in Tsukuba such as the existence of secondary peak which is associated with the mesoscale circulations. However, the simulated level of 85Kr anomaly was found to be significantly lower than the observations, and some interpretations on these discrepancies were described. Applications of LPDM to two mesoscale emergency response dispersion cases suggest the potential capability of LPDM to be used as a decision support model provided accurate emission rate of accident in case of a large accident.

  17. Fractal and Morphological Characteristics of Single Marble Particle Crushing in Uniaxial Compression Tests

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    2015-01-01

    Full Text Available Crushing of rock particles is a phenomenon commonly encountered in geotechnical engineering practice. It is however difficult to study the crushing of rock particles using classical theory because the physical structure of the particles is complex and irregular. This paper aims at evaluating fractal and morphological characteristics of single rock particle. A large number of particle crushing tests are conducted on single rock particle. The force-displacement curves and the particle size distributions (PSD of crushed particles are analysed based on particle crushing tests. Particle shape plays an important role in both the micro- and macroscale responses of a granular assembly. The PSD of an assortment of rocks are analysed by fractal methods, and the fractal dimension is obtained. A theoretical formula for particle crushing strength is derived, utilising the fractal model, and a simple method is proposed for predicting the probability of particle survival based on the Weibull statistics. Based on a few physical assumptions, simple equations are derived for determining particle crushing energy. The results of applying these equations are tested against the actual experimental data and prove to be very consistent. Fractal theory is therefore applicable for analysis of particle crushing.

  18. Creating and using a type of free-form geometry in Monte Carlo particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Wessol, D.E.; Wheeler, F.J. (EG and G Idaho, Inc., Idaho Falls (United States))

    1993-04-01

    While the reactor physicists were fine-tuning the Monte Carlo paradigm for particle transport in regular geometries, the computer scientists were developing rendering algorithms to display extremely realistic renditions of irregular objects ranging from the ubiquitous teakettle to dynamic Jell-O. Even though the modeling methods share a common basis, the initial strategies each discipline developed for variance reduction were remarkably different. Initially, the reactor physicist used Russian roulette, importance sampling, particle splitting, and rejection techniques. In the early stages of development, the computer scientist relied primarily on rejection techniques, including a very elegant hierarchical construction and sampling method. This sampling method allowed the computer scientist to viably track particles through irregular geometries in three-dimensional space, while the initial methods developed by the reactor physicists would only allow for efficient searches through analytical surfaces or objects. As time goes by, it appears there has been some merging of the variance reduction strategies between the two disciplines. This is an early (possibly first) incorporation of geometric hierarchical construction and sampling into the reactor physicists' Monte Carlo transport model that permits efficient tracking through nonuniform rational B-spline surfaces in three-dimensional space. After some discussion, the results from this model are compared with experiments and the model employing implicit (analytical) geometric representation.

  19. Transport properties of zeolite Na-X-Nafion membranes: effect of zeolite loadings and particle size

    Energy Technology Data Exchange (ETDEWEB)

    Lavorgna, M. [Institute of Composite and Biomedical Materials, National Research Council, Portici (Italy); Sansone, L.; Scherillo, G. [Department of Materials and Production, University of Napoli Federico II, Napoli (Italy); Gu, R.; Baker, A.P. [Department of Materials Science and Engineering, HIT Graduate School, Xili, Shenzhen (China)

    2011-12-15

    Na-X zeolites particles, synthesized in two size ranges, namely 200-300 nm and 30-100 nm, were used to prepare Nafion/Na-X zeolite composite membranes by recast method. The physical, chemical, and morphological properties of the zeolite powders and composite membranes were examined by XRD, N{sub 2} adsorption isotherms, FTIR, SEM, and SAXS analysis. Furthermore, the effect of zeolite particles size and loadings (i.e., 5 and 10% w/w) on the water, methanol, and proton transport properties was investigated. It has been found that the size of the Na-X zeolite particles plays a key role in the proton and methanol transport behavior since it rules the zeolite hydrophilic behavior, the morphology of polymer-filler interphase, and also the nature of water established in the composite membrane. The results show that the membranes loaded with a 5% w/w of submicron-sized Na-X zeolite exhibit a proton conductivity and selectivity significantly higher than Nafion. In particular the proton conductivity at 120 C is around eight times and the selectivity at 25 C is around 40% higher than those exhibited by recast Nafion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Effects of Natural Organic Matter on Stability, Transport and Deposition of Engineered Nano-particles in Porous Media

    Science.gov (United States)

    The interaction of nano-particles and organic substances, like natural organic matter, could have significant influence on the fate, transport and bioavailability of toxic substances. Natural organic matter (NOM) is a mixture of chemically complex polyelectrolytes with varying m...

  1. Modelling and analysis of particles transport in a tokamak plasma; Modelisation et analyse du transport des particules dans un plasma de Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Laporte Patrice, M.

    1996-02-22

    The results developed in this thesis describe the ions and neutral atoms transport in a tokamak plasma. The effort is especially made on modelling of neutral particles transport. The presentation of the two computer codes Trap and Neli take the first part of the thesis. This study shows that heat and matter transport anomaly present some real characteristics of an electrostatic turbulence. Then, if particles diffusivity stays abnormal on the whole discharge of a tore supra plasma, in revenge in the central part of the discharge, the convective flux value is compatible with neoclassical theory. (N.C.). 67 refs., 67 figs., 6 appends.

  2. Using DNA-labelled nano- and microparticles to track particle transport in the environment

    Science.gov (United States)

    McNew, Coy; Wang, Chaozi; Dahlke, Helen; Lyon, Steve; Walter, Todd

    2017-04-01

    By utilizing bio-molecular nanotechnology developed for nano-medicines and drug delivery, we are able to produce DNA-labelled nano- and microparticle tracers for use in a myriad of environmental systems. The use of custom sequenced DNA allows for the fabrication of an enormous number of uniquely labelled tracers with identical transport properties (approximately 1.61 x 1060 unique sequences), each independently quantifiable, that can be applied simultaneously in any hydrologic system. By controlling the fabrication procedure to produce particles of custom size and charge, we are able to tag each size-charge combination uniquely in order to directly probe the effect of these variables on the transport properties of the particles. Here we present our methods for fabrication, extraction, and analysis of the DNA nano- and microparticle tracers, along with results from several successful applications of the tracers, including transport and retention analysis at the lab, continuum, and field scales. To date, our DNA-labelled nano- and microparticle tracers have proved useful in surface and subsurface water applications, soil retention, and even subglacial flow pathways. The range of potential applications continue to prove nearly limitless.

  3. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    Science.gov (United States)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu

    2011-07-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  4. Charged-Particle Transport in the Data-Driven, Non-Isotropic Turbulent Mangetic Field in the Solar Wind

    Science.gov (United States)

    Sun, P.; Jokipii, J. R.; Giacalone, J.

    2016-12-01

    Anisotropies in astrophysical turbulence has been proposed and observed for a long time. And recent observations adopting the multi-scale analysis techniques provided a detailed description of the scale-dependent power spectrum of the magnetic field parallel and perpendicular to the scale-dependent magnetic field line at different scales in the solar wind. In the previous work, we proposed a multi-scale method to synthesize non-isotropic turbulent magnetic field with pre-determined power spectra of the fluctuating magnetic field as a function of scales. We present the effect of test particle transport in the resulting field with a two-scale algorithm. We find that the scale-dependent turbulence anisotropy has a significant difference in the effect on charged par- ticle transport from what the isotropy or the global anisotropy has. It is important to apply this field synthesis method to the solar wind magnetic field based on spacecraft data. However, this relies on how we extract the power spectra of the turbulent magnetic field across different scales. In this study, we propose here a power spectrum synthesis method based on Fourier analysis to extract the large and small scale power spectrum from a single spacecraft observation with a long enough period and a high sampling frequency. We apply the method to the solar wind measurement by the magnetometer onboard the ACE spacecraft and regenerate the large scale isotropic 2D spectrum and the small scale anisotropic 2D spectrum. We run test particle simulations in the magnetid field generated in this way to estimate the transport coefficients and to compare with the isotropic turbulence model.

  5. Scale-Dependent Fracture-Matrix Interactions and Their Impact on Radionuclide Transport: Development of efficient particle-tracking methods

    Energy Technology Data Exchange (ETDEWEB)

    Rajaram, Harihar [University of Colorado, Boulder; Brutz, Michael [University of Colorado, Boulder; Klein, Dylan R [University of Colorado, Boulder; Mallikamas, Wasin [University of Colorado, Boulder

    2014-09-18

    Matrix Diffusion and Adsorption within a rock matrix are important mechanisms for retarding transport of radionuclides in fractured rock. Due to computational limitations and difficulties in characterizing complex subsurface systems, diffusive exchange between a fracture network and surrounding rock matrix is often modeled using simplified conceptual representations. There is significant uncertainty in “effective” parameters used in these models, such as the “effective matrix diffusivity”. Often, these parameters are estimated by fitting sparse breakthrough data, and estimated values fall outside meaningful ranges, because simplified interpretive models do not consider complex three-dimensional flow. There is limited understanding of the relationship between the effective parameters and rock mass characteristics including network structure and matrix properties. There is also evidence for an apparent scale-dependence in “effective matrix diffusion” coefficients. These observations raise questions on whether fracture-matrix interaction parameters estimated from small-scale tracer tests can be used for predicting radionuclide fate and transport at the scale of DOE field sites. High-resolution three-dimensional Discrete-Fracture-Network-Matrix (DFNM) models based on well-defined local scale transport equations can help to address some of these questions. Due to tremendous advances in computational technology over the last 10 years, DFNM modeling in relatively large domains is now feasible. The overarching objective of our research is to use DFNM modeling to improve fundamental understanding of how effective parameters in conceptual models are related to fracture network structure and matrix properties. An advanced three-dimensional DFNM model is being developed, which combines upscaled particle-tracking algorithms for fracture-matrix interaction and a parallel fracture-network flow simulator. The particle-tracking algorithms allow complexity in flow fields

  6. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  7. Transport and retention of xanthan gum-stabilized microscale zero-valent iron particles in saturated porous media.

    Science.gov (United States)

    Xin, Jia; Tang, Fenglin; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf

    2016-01-01

    Microscale zero valent iron (mZVI) is a promising material for in-situ contaminated groundwater remediation. However, its usefulness has been usually inhibited by mZVI particles' low mobility in saturated porous media for sedimentation and deposition. In our study, laboratory experiments, including sedimentation studies, rheological measurements and transport tests, were conducted to investigate the feasibility of xanthan gum (XG) being used as a coating agent for mZVI particle stabilization. In addition, the effects of XG concentration, flow rate, grain diameter and water chemistry on XG-coated mZVI (XG-mZVI) particle mobility were explored by analyzing its breakthrough curves and retention profiles. It was demonstrated that XG worked efficiently to enhance the suspension stability and mobility of mZVI particles through the porous media as a shear thinning fluid, especially at a higher concentration level (3 g/L). The results of the column study showed that the mobility of XG-mZVI particles increased with an increasing flow rate and larger grain diameter. At the highest flow rate (2.30 × 10(-3) m/s) within the coarsest porous media (0.8-1.2 mm), 86.52% of the XG-mZVI flowed through the column. At the lowest flow rate (0.97 × 10(-4) m/s) within the finest porous media (0.3-0.6 mm), the retention was dramatically strengthened, with only 48.22% of the particles flowing through the column. The XG-mZVI particles appeared to be easily trapped at the beginning of the column especially at a low flow rate. In terms of two representative water chemistry parameters (ion strength and pH value), no significant influence on XG-mZVI particle mobility was observed. The experimental results suggested that straining was the primary mechanism of XG-mZVI retention under saturated condition. Given the above results, the specific site-related conditions should be taken into consideration for the design of a successful delivery system to achieve a compromise between

  8. Bronchial Mucus as a Complex Fluid: Molecular Interactions and Influence of Nanostructured Particles on Rheological and Transport Properties

    Directory of Open Access Journals (Sweden)

    Odziomek Marcin

    2017-06-01

    Full Text Available Transport properties of bronchial mucus are investigated by two-stage experimental approach focused on: (a rheological properties and (b mass transfer rate through the stagnant layer of solutions of mucus components (mucine, DNA, proteins and simulated multi-component mucus. Studies were done using thermostated horizontal diffusion cells with sodium cromoglycate and carminic acid as transferred solutes. Rheological properties of tested liquids was studied by a rotational viscometer and a cone-plate rheometer (dynamic method. First part of the studies demonstrated that inter-molecular interactions in these complex liquids influence both rheological and permeability characteristics. Transfer rate is governed not only by mucus composition and concentration but also by hydrophobic/hydrophilic properties of transported molecules. Second part was focused on the properties of such a layer in presence of selected nanostructured particles (different nanoclays and graphene oxide which may be present in lungs after inhalation. It was shown that most of such particles increase visco-elasticity of the mucus and reduce the rate of mass transfer of model drugs. Measured effects may have adverse impact on health, since they will reduce mucociliary clearance in vivo and slow down drug penetration to the bronchial epithelium during inhalation therapy.

  9. Reconnection and particle acceleration in interacting flux ropes - I. Magnetohydrodynamics and test particles in 2.5D

    Science.gov (United States)

    Ripperda, B.; Porth, O.; Xia, C.; Keppens, R.

    2017-05-01

    Magnetic reconnection and non-thermal particle distributions associated with current-driven instabilities are investigated by means of resistive magnetohydrodynamics (MHD) simulations combined with relativistic test particle methods. We propose a system with two parallel, repelling current channels in an initially force-free equilibrium, as a simplified representation of flux ropes in a stellar magnetosphere. The current channels undergo a rotation and separation on Alfvénic time-scales, forming secondary islands and (up to tearing unstable) current sheets in which non-thermal energy distributions are expected to develop. Using the recently developed particle module of our open-source grid-adaptive mpi-amrvac software, we simulate MHD evolution combined with test particle treatments in MHD snapshots. We explore under which plasma-β conditions the fastest reconnection occurs in 2.5D scenarios, and in these settings, test particles are evolved. We quantify energy distributions, acceleration mechanisms, relativistic corrections to the particle equations of motion and effects of resistivity in magnetically dominated proton-electron plasmas. Due to large resistive electric fields and indefinite acceleration of particles in the infinitely long current channels, hard energy spectra are found in 2.5D configurations. Solutions to these numerical artefacts are proposed for both 2.5D setups and future 3D work. We discuss the MHD of an additional kink instability in 3D setups and the expected effects on energy distributions. The obtained results hold as a proof-of-principle for test particle approaches in MHD simulations, relevant to explore less idealized scenarios like solar flares and more exotic astrophysical phenomena, like black hole flares, magnetar magnetospheres and pulsar wind nebulae.

  10. Modeling of the transport and deposition of polydispersed particles: Effects of hydrodynamics and spatiotemporal evolution of the deposition rate.

    Science.gov (United States)

    Ma, Enze; Ouahbi, Tariq; Wang, Huaqing; Ahfir, Nasre-Dine; Alem, Abdellah; Hammadi, Ahmed

    2017-11-11

    A time-distance-dependent deposition model is built to investigate the effects of hydrodynamic forces on the transport and deposition of polydispersed particles and the evolution of deposition rates with time and distance. Straining and the heterogeneity of the particle population are considered to play important roles in the decreasing distribution of deposition rates. Numerical simulations were applied in a series of sand column experiments at different fluid velocities for three different porous media. The effects of hydrodynamics forces are elaborated with the systematic variations of deposition dynamic parameters of the proposed model. With retention distributions with particle size as well as temporal and spatial evolutions of deposition rates, the transport and deposition mechanisms of polydispersed particles will be elucidated through the interplay of the variation of the particle size distribution of mobile particle populations and the geometrical change of the porous medium due to retention (straining and blocking). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Generalized Boltzmann Fokker-Planck Method for Coupled Charged Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, Anil K

    2012-01-09

    The goal of this project was to develop and investigate the performance of reduced-physics formulations of high energy charged particle (electrons, protons and heavier ions) transport that are computationally more efficient than not only analog Monte Carlo methods but also the established condensed history Monte Carlo technique. Charged particles interact with matter by Coulomb collisions with target nuclei and electrons, by bremsstrahlung radiation loss and by nuclear reactions such as spallation and fission. Of these, inelastic electronic collisions and elastic nuclear collisions are the dominant cause of energy-loss straggling and angular deflection or range straggling of a primary particle. These collisions are characterized by extremely short mean free paths (sub-microns) and highly peaked, near-singular differential cross sections about forward directions and zero energy loss, with the situation for protons and heavier ions more extreme than for electrons. For this reason, analog or truephysics single-event Monte Carlo simulation, while possible in principle, is computationally prohibitive for routine calculation of charged particle interaction phenomena.

  12. Slip Effects on Peristaltic Transport of a Particle-Fluid Suspension in a Planar Channel

    Directory of Open Access Journals (Sweden)

    Mohammed H. Kamel

    2015-01-01

    Full Text Available Peristaltic pumping induced by a sinusoidal traveling wave in the walls of a two-dimensional channel filled with a viscous incompressible fluid mixed with rigid spherical particles is investigated theoretically taking the slip effect on the wall into account. A perturbation solution is obtained which satisfies the momentum equations for the case in which amplitude ratio (wave amplitude/channel half width is small. The analysis has been carried out by duly accounting for the nonlinear convective acceleration terms and the slip condition for the fluid part on the wavy wall. The governing equations are developed up to the second order of the amplitude ratio. The zeroth-order terms yield the Poiseuille flow and the first-order terms give the Orr-Sommerfeld equation. The results show that the slip conditions have significant effect within certain range of concentration. The phenomenon of reflux (the mean flow reversal is discussed under slip conditions. It is found that the critical reflux pressure is lower for the particle-fluid suspension than for the particle-free fluid and is affected by slip condition. A motivation of the present analysis has been the hope that such theory of two-phase flow process under slip condition is very useful in understanding the role of peristaltic muscular contraction in transporting biofluid behaving like a particle-fluid mixture. Also the theory is important to the engineering applications of pumping solid-fluid mixture by peristalsis.

  13. Transport and Quantum Coherence in Graphene Rings: Aharonov-Bohm Oscillations, Klein Tunneling, and Particle Localization

    Science.gov (United States)

    Filusch, Alexander; Wurl, Christian; Pieper, Andreas; Fehske, Holger

    2017-12-01

    Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes, the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, nn'n - or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case, the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.

  14. ParPor: Particles in Pores. Stochastic Modeling of Polydisperse Transport

    DEFF Research Database (Denmark)

    Yuan, Hao

    2010-01-01

    Liquid flow containing particles in the different types of porous media appear in a large variety of practically important industrial and natural processes. The project aims at developing a stochastic model for the deep bed filtration process in which the polydisperse suspension flow...... in the polydisperse porous media. Instead of the traditional parabolic Advection-Dispersion Equation (ADE) the novel elliptic PDE based on the Continuous Time Random Walk is adopted for the particle size kinetics. The pore kinetics is either described by the stochastic size exclusion mechanism or the incomplete pore...... plugging model. In the current phase of the project the computation is only performed for the polydisperse suspension flow in monodisperse porous media. The slower transport speed of the peak and larger tail indicates that the elliptic model is more adaptable for anomalous diffusion. Porosity decline...

  15. Testing the Maxwell-Boltzmann distribution using Brownian particles

    National Research Council Canada - National Science Library

    Mo, Jianyong; Simha, Akarsh; Kheifets, Simon; Raizen, Mark G

    2015-01-01

    .... We provide a direct verification of a modified Maxwell-Boltzmann velocity distribution and modified energy equipartition theorem that account for the kinetic energy of the liquid displaced by the particle...

  16. Flow and Transport in Smooth and Rough Unsaturated Wide Aperture Fractures with Smoothed Particle Hydrodynamics

    Science.gov (United States)

    Kordilla, J.; Tartakovsky, A. M.; Geyer, T.

    2014-12-01

    Unsaturated flow in fractured porous media exhibits highly complex flow dynamics and a wide range of intermittent flow processes. Especially in wide aperture fractures, flow processes may be dominated by gravitational instead of capillary forces leading to a deviation from the classical volume effective approaches (Richard's equation, Van Genuchten type relationships). The existence of various flow modes such as droplets, rivulets, turbulent and adsorbed films is well known, however, their spatial and temporal distribution within fracture networks is still an open question partially due to the lack of appropriate modeling tools. With our work we want to gain a deeper understanding of the underlying flow and transport dynamics in unsaturated fractured media in order to support the development of more refined upscaled methods, applicable on catchment scales. We present pore- and fracture-scale flow simulations obtained with a Smoothed Particle Hydrodynamics (SPH) model. The model allows to simulate free-surface flow dynamics including the effect of surface tension for a wide range of wetting conditions. Several empirical and semi-analytical solutions are used to verify the model. We show that our results satisfy the empirical scaling laws for droplet velocity and critical contact angle. Due to the efficient generation of surface tension via particle-particle interaction forces the dynamic wetting of surfaces as well as the velocity enhancement of droplets on saturated surfaces can readily be obtained. Furthermore, we study the effect of surface roughness on droplet velocities. Lastly, we present flow and transport simulations in the presence of an adjacent porous matrix in order to investigate its influence on the fracture surface flow dynamics and transport across the matrix-fracture interface.

  17. Transient airflow structures and particle transport in a sequentially branching lung airway model

    Science.gov (United States)

    Zhang, Z.; Kleinstreuer, C.

    2002-02-01

    Considering oscillatory laminar incompressible three-dimensional flow in triple planar and nonplanar bifurcations representing generations three to six of the human respiratory system, air flow fields and micron-particle transport have been simulated under normal breathing and high-frequency ventilation (HFV) conditions. A finite-volume code (CFX4.3 from AEA Technology, Pittsburgh, PA) and its user-enhanced FORTRAN programs were validated with experimental velocity data points for a single bifurcation. The airflow structures and micron-particle motion in the triple bifurcations were analyzed for a representative normal breathing cycle as well as HFV condition. While both the peak inspiratory and expiratory velocity profiles for the low Womersley case (α=0.93) agree well with those of instantaneously equivalent steady-state cases, some differences can be observed between flow acceleration and deceleration at off-peak periods or near flow reversal, especially during inspiratory flow. Similarly, the basic features of instantaneous particle motion closely resemble the steady-state case at equivalent inlet Reynolds numbers. The preferential concentration of particles caused by the coherent vortical structures was found in both inhalation and exhalation; however, it is more complicated during expiration. The effects of Womersley number and non-planar geometries as well as the variations in secondary flow intensity plus pressure drops across various bifurcations under normal breathing and HFV conditions were analyzed as well. This work may elucidate basic physical insight of aerosol transport relevant in dosimetry-and-health-effect studies as well as for drug aerosol delivery analyses.

  18. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic

    Directory of Open Access Journals (Sweden)

    M. van der Does

    2016-11-01

    Full Text Available Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 32 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also, the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.

  19. Estimating bacteria emissions from inversion of atmospheric transport: sensitivity to modelled particle characteristics

    Directory of Open Access Journals (Sweden)

    S. M. Burrows

    2013-06-01

    Full Text Available Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC. Source estimation via Markov Chain Monte Carlo is applied to a suite of sensitivity simulations, and the global mean emissions are estimated for the example problem of bacteria-containing aerosol particles. We present an analysis of the uncertainties in the global mean emissions, and a partitioning of the uncertainties that are attributable to particle size, activity as cloud condensation nuclei (CCN, the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error. For this example, uncertainty due to CCN activity or to a 1 μm error in particle size is typically between 10% and 40% of the uncertainty due to observation uncertainty, as measured by the 5–95th percentile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mixed-phase clouds is as high as 10–20% of that attributable to observation uncertainty. Taken together, the four model parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the observations. This was a surprisingly large contribution from model uncertainty in light of the substantial observation uncertainty, which ranges from 81–870% of the mean for each of ten ecosystems for this case study. The effects of these and other model parameters in contributing to the uncertainties in the transport of atmospheric aerosol

  20. Test Method for High β Particle Emission Rate of 63Ni Source Plate

    Directory of Open Access Journals (Sweden)

    ZHANG Li-feng

    2015-01-01

    Full Text Available For the problem of measurement difficulties of β particle emission rate of Ni-63 source plate used for Ni-63 betavoltaic battery, a relative test method of scintillation current method was erected according to the measurement principle of scintillation detector.β particle emission rate of homemade Ni-63 source plate was tested by the method, and the test results were analysed and evaluated, it was initially thought that scintillation current method was a feasible way of testing β particle emission rate of Ni-63 source plate with high β particle emission rate.

  1. Transport and diffusion properties of Brownian particles powered by a rotating wheel.

    Science.gov (United States)

    Ai, Bao-Quan

    2017-07-01

    Diffusion and rectification of Brownian particles powered by a rotating wheel are numerically investigated in a two-dimensional channel. The nonequilibrium driving comes from the rotating wheel, which can break thermodynamical equilibrium and induce the directed transport in an asymmetric potential. It is found that the direction of the transport along the potential is determined by the asymmetry of the potential and the position of the wheel. The average velocity is a peaked function of the angular speed (or the diffusion coefficient) and the position of the peak shifts to large angular speed (or diffusion coefficient) when the diffusion coefficient (or the angular speed) increases. There exists an optimal angular speed (or diffusion coefficient) at which the effective diffusion coefficient takes its maximal value. Remarkably, the giant acceleration of diffusion is observed by suitably adjusting the system parameters. The parameters corresponding to the maximum effective diffusion coefficient are not the same as the parameters at which average velocity is maximum.

  2. GPU-accelerated Red Blood Cells Simulations with Transport Dissipative Particle Dynamics

    CERN Document Server

    Blumers, Ansel L; Li, Zhen; Li, Xuejin; Karniadakis, George E

    2016-01-01

    Mesoscopic numerical simulations provide a unique approach for the quantification of the chemical influences on red blood cell functionalities. The transport Dissipative Particles Dynamics (tDPD) method can lead to such effective multiscale simulations due to its ability to simultaneously capture mesoscopic advection, diffusion, and reaction. In this paper, we present a GPU-accelerated red blood cell simulation package based on a tDPD adaptation of our red blood cell model, which can correctly recover the cell membrane viscosity, elasticity, bending stiffness, and cross-membrane chemical transport. The package essentially processes all computational workloads in parallel by GPU, and it incorporates multi-stream scheduling and non-blocking MPI communications to improve inter-node scalability. Our code is validated for accuracy and compared against the CPU counterpart for speed. Strong scaling and weak scaling are also presented to characterizes scalability. We observe a speedup of 10.1 on one GPU over all 16 c...

  3. Simulated relativistic particle transport and nonthermal emission in three-dimensional magnetohydrodynamical models of radio galaxies

    Science.gov (United States)

    Tregillis, Ian Lee

    2002-11-01

    We present the first fully three-dimensional magnetohydrodynamical radio galaxy jet models to include explicit acceleration and transport of nonthermal particles. These models allow us to study not only the dynamical behaviors of radio jets, but also the relationship between dynamics and the transport of relativistic electrons. The level of physical detail in the simulations is sufficiently high that we are able to compute extensive sets of “synthetic” radio and X-ray observations of our simulated radio galaxies. These are the first synthetic radio galaxy observations to be compatible with standard astronomical analysis procedures. This work is part of an ongoing effort to understand the dynamical and radiative behavior of radio galaxies. We analyze a suite of simulations of dynamically- identical radio galaxies, designed to help isolate the effects of various particle transport parameters. We find that the cartoon model for radio jets is insufficient for describing sources with strongly broken symmetry. Synchrotron radio surface brightness maps for dynamically-identical models can be markedly different, depending on the dominant transport parameters. Using synthetic observations, we perform two analyses that are commonly used to infer magnetic field values in radio galaxies, and compare the results to the actual simulation data. We find that the method of combining inverse-Compton X-ray and radio synchrotron data to infer field values generally works quite well. Minimum-energy arguments are not nearly as reliable and can be highly misleading. Reanalyzing the standard minimum-energy calculation, we find that serious attempts to use minimum energy must account for the presence of even mild spectral curvature. Synthetic observations are also used to perform an extensive polarimetry analysis of our simulated sources. Our simulations reproduce most of the salient polarization features of real radio galaxies, and very naturally give rise to a so-called

  4. Models and numerical methods for time- and energy-dependent particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Olbrant, Edgar

    2012-04-13

    Particles passing through a medium can be described by the Boltzmann transport equation. Therein, all physical interactions of particles with matter are given by cross sections. We compare different analytical models of cross sections for photons, electrons and protons to state-of-the-art databases. The large dimensionality of the transport equation and its integro-differential form make it analytically difficult and computationally costly to solve. In this work, we focus on the following approximative models to the linear Boltzmann equation: (i) the time-dependent simplified P{sub N} (SP{sub N}) equations, (ii) the M{sub 1} model derived from entropy-based closures and (iii) a new perturbed M{sub 1} model derived from a perturbative entropy closure. In particular, an asymptotic analysis for SP{sub N} equations is presented and confirmed by numerical computations in 2D. Moreover, we design an explicit Runge-Kutta discontinuous Galerkin (RKDG) method to the M{sub 1} model of radiative transfer in slab geometry and construct a scheme ensuring the realizability of the moment variables. Among other things, M{sub 1} numerical results are compared with an analytical solution in a Riemann problem and the Marshak wave problem is considered. Additionally, we rigorously derive a new hierarchy of kinetic moment models in the context of grey photon transport in one spatial dimension. For the perturbed M{sub 1} model, we present numerical results known as the two beam instability or the analytical benchmark due to Su and Olson and compare them to the standard M{sub 1} as well as transport solutions.

  5. Dynamics of test particles and pointlike gyroscopes in the brane world and other 5D models

    Science.gov (United States)

    Seahra, Sanjeev S.

    2002-06-01

    We study the dynamics of test particles and pointlike gyroscopes in 5D manifolds such as those used in the Randall-Sundrum brane world and noncompact Kaluza-Klein models. Our analysis is based on a covariant foliation of the manifold using (3+1)-dimensional spacetime slices orthogonal to the extra dimension, and is hence similar to the Arnowitt-Deser-Misner 3+1 split in ordinary general relativity. We derive gauge invariant equations of motion for freely falling test particles in the 5D and 4D affine parametrizations and contrast these results with previous work concerning the so-called ``fifth force.'' Motivated by the conjectured localization of matter fields on a 3-brane, we derive the form of the classical nongravitational force required to confine particles to a 4D hypersurface and show that the resulting trajectories are geometrically identical to the spacetime geodesics of Einstein's theory. We then discuss the issue of determining the 5D dynamics of a torque-free spinning body in the point-dipole approximation, and then perform a covariant (3+1)+1 decomposition of the relevant formulas (i.e., the 5D Fermi-Walker transport equation) for the cases of freely falling and hypersurface-confined point gyroscopes. In both cases, the 4D spin tensor is seen to be subject to an anomalous torque. We solve the spin equations for a gyroscope confined to a single spacetime section in a simple 5D cosmological model and observe a cosmological variation of the magnitude and orientation of the 4D spin.

  6. Development of an expert system for automatic mesh generation for S(N) particle transport method in parallel environment

    Science.gov (United States)

    Patchimpattapong, Apisit

    This dissertation develops an expert system for generating an effective spatial mesh distribution for the discrete ordinates particle transport method in a parallel environment. This expert system consists of two main parts: (1) an algorithm for generating an effective mesh distribution in a serial environment, and (2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. The mesh generation algorithm consists of four steps: creation of a geometric model as partitioned into coarse meshes, determination of an approximate flux shape, selection of appropriate differencing schemes, and generation of an effective fine mesh distribution. A geometric model was created using AutoCAD. A parallel code PENFC (Parallel Environment Neutral-Particle First Collision) has been developed to calculate an uncollided flux in a 3-D Cartesian geometry. The appropriate differencing schemes were selected based on the uncollided flux distribution using a least squares methodology. A menu-driven serial code PENXMSH has been developed to generate an effective spatial mesh distribution that preserves problem geometry and physics. The domain decomposition selection process involves evaluation of the four factors that affect parallel performance, which include number of processors and memory available per processor, load balance, granularity, and degree-of-coupling among processors. These factors are used to derive a parallel-performance-index that provides expected performance of a parallel algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems: the VENUS-3 experimental facility and the BWR core shroud.

  7. Optical testing using the transport-of-intensity equation.

    Science.gov (United States)

    Dorrer, C; Zuegel, J D

    2007-06-11

    The transport-of-intensity equation links the intensity and phase of an optical source to the longitudinal variation of its intensity in the presence of Fresnel diffraction. This equation can be used to provide a simple, accurate spatial-phase measurement for optical testing of flat surfaces. The properties of this approach are derived. The experimental demonstration is performed by quantifying the surface variations induced by the magnetorheological finishing process on laser rods.

  8. Gas transport duringin vitroandin vivopreclinical testing of inert gas therapies.

    Science.gov (United States)

    Katz, Ira; Palgen, Marc; Murdock, Jacqueline; Martin, Andrew R; Farjot, Géraldine; Caillibotte, Georges

    2016-03-01

    New gas therapies using inert gases such as xenon and argon are being studied, which require in vitro and in vivo preclinical experiments. Examples of the kinetics of gas transport during such experiments are analyzed in this paper. Using analytical and numerical models, we analyze an in vitro experiment for gas transport to a 96 cell well plate and an in vivo delivery to a small animal chamber, where the key processes considered are the wash-in of test gas into an apparatus dead volume, the diffusion of test gas through the liquid media in a well of a cell test plate, and the pharmacokinetics in a rat. In the case of small animals in a chamber, the key variable controlling the kinetics is the chamber wash-in time constant that is a function of the chamber volume and the gas flow rate. For cells covered by a liquid media the diffusion of gas through the liquid media is the dominant mechanism, such that liquid depth and the gas diffusion constant are the key parameters. The key message from these analyses is that the transport of gas during preclinical experiments can be important in determining the true dose as experienced at the site of action in an animal or to a cell.

  9. Non-Axisymmetric Perpendicular Diffusion of Charged Particles and their Transport Across Tangential Magnetic Discontinuities

    Science.gov (United States)

    Strauss, R. D.; le Roux, J. A.; Engelbrecht, N. E.; Ruffolo, D.; Dunzlaff, P.

    2016-07-01

    We investigate the transport of charged particles across magnetic discontinuities, focusing specifically on stream interfaces associated with co-rotating interaction regions in the solar wind. We argue that the magnetic field fluctuations perpendicular to the magnetic discontinuity, and usually also perpendicular to the mean magnetic field, are strongly damped in the vicinity of such a magnetic structure, leading to anisotropic perpendicular diffusion. Assuming that perpendicular diffusion arises from drifts in a turbulent magnetic field, we adopt a simplified approach to derive the relevant perpendicular diffusion coefficient. This approach, which we believe gives the correct principal dependences as expected from more elaborate calculations, allows us to investigate transport in different turbulent geometries, such as longitudinal compressional turbulence that may be present near the heliopause. Although highly dependent on the (possibly anisotropic) perpendicular length scales and turbulence levels, we generally find perpendicular diffusion to be strongly damped at magnetic discontinuities, which may in turn provide an explanation for the large particle gradients associated with these structures.

  10. Anomalous particle pinch and scaling of vin/D based on transport analysis and multiple regression

    Science.gov (United States)

    Becker, G.; Kardaun, O.

    2007-01-01

    Predictions of density profiles in current tokamaks and ITER require a validated scaling relation for vin/D where vin is the anomalous inward drift velocity and D is the anomalous diffusion coefficient. Transport analysis is necessary for determining the anomalous particle pinch from measured density profiles and for separating the impact of particle sources. A set of discharges in ASDEX Upgrade, DIII-D, JET and ASDEX is analysed using a special version of the 1.5-D BALDUR transport code. Profiles of ρsvin/D with ρs the effective separatrix radius, five other dimensionless parameters and many further quantities in the confinement zone are compiled, resulting in the dataset VIND1.dat, which covers a wide parameter range. Weighted multiple regression is applied to the ASDEX Upgrade subset which leads to a two-term scaling \\rho _sv_in ({x'}) /D ({x'}) =0.0432 [ { ({L_{T_{\\rme}} ({ \\bar {x}'}) / \\rho _s}) ^{-2.58}+7.13 \\, U_L^{1.55} \

  11. Transport effect of Vorticella's stalk contraction cycle is more effective for motile food particles

    Science.gov (United States)

    Ryu, Sangjin; Zhou, Jiazhong; Admiraal, David

    2017-11-01

    The coiling stalk of Vorticella contracts in a few milliseconds and then relaxes over a few seconds. During this cycle, the cell body (zooid) of this sessile protozoan is translated toward and then away from the no-slip substrate to which Vorticella is attached. As a result, the surrounding water flows with a maximum Reynolds number of 1 and stalk contraction and relaxation, respectively. To elucidate how Vorticella uses its stalk contraction-relaxation cycle, we investigated the resultant water flow using a CFD model for Vorticella. The simulated flow shows that one cycle can displace virtual particles around the Vorticellaup to 190 μm with a maximum net vertical displacement of 3-4 μm. This transport effect seems to be caused by asymmetry in the flow field between the contraction and relaxation phases, and it appears to be more effective on motile food particles than non-motile ones. Therefore, our Vorticella model enabled investigating the hypothesis that Vorticella's stalk contraction can enhance food transport near the substrate. This study was supported by UNL Layman Seed Grant and Nebraska EPSCoR First Award.

  12. Reconnection and particle acceleration in interacting flux ropes - II. 3D effects on test particles in magnetically dominated plasmas

    Science.gov (United States)

    Ripperda, B.; Porth, O.; Xia, C.; Keppens, R.

    2017-11-01

    We analyse particle acceleration in explosive reconnection events in magnetically dominated proton-electron plasmas. Reconnection is driven by large-scale magnetic stresses in interacting current-carrying flux tubes. Our model relies on development of current-driven instabilities on macroscopic scales. These tilt-kink instabilities develop in an initially force-free equilibrium of repelling current channels. Using magnetohydrodynamics (MHD) methods we study a 3D model of repelling and interacting flux tubes in which we simultaneously evolve test particles, guided by electromagnetic fields obtained from MHD. We identify two stages of particle acceleration; initially particles accelerate in the current channels, after which the flux ropes start tilting and kinking and particles accelerate due to reconnection processes in the plasma. The explosive stage of reconnection produces non-thermal energy distributions with slopes that depend on plasma resistivity and the initial particle velocity. We also discuss the influence of the length of the flux ropes on particle acceleration and energy distributions. This study extends previous 2.5D results to 3D setups, providing all ingredients needed to model realistic scenarios like solar flares, black hole flares and particle acceleration in pulsar wind nebulae: formation of strong resistive electric fields, explosive reconnection and non-thermal particle distributions. By assuming initial energy equipartition between electrons and protons, applying low resistivity in accordance with solar corona conditions and limiting the flux rope length to a fraction of a solar radius, we obtain realistic energy distributions for solar flares with non-thermal power-law tails and maximum electron energies up to 11 MeV and maximum proton energies up to 1 GeV.

  13. Implementation Strategies for Large-Scale Transport Simulations Using Time Domain Particle Tracking

    Science.gov (United States)

    Painter, S.; Cvetkovic, V.; Mancillas, J.; Selroos, J.

    2008-12-01

    Time domain particle tracking is an emerging alternative to the conventional random walk particle tracking algorithm. With time domain particle tracking, particles are moved from node to node on one-dimensional pathways defined by streamlines of the groundwater flow field or by discrete subsurface features. The time to complete each deterministic segment is sampled from residence time distributions that include the effects of advection, longitudinal dispersion, a variety of kinetically controlled retention (sorption) processes, linear transformation, and temporal changes in groundwater velocities and sorption parameters. The simulation results in a set of arrival times at a monitoring location that can be post-processed with a kernel method to construct mass discharge (breakthrough) versus time. Implementation strategies differ for discrete flow (fractured media) systems and continuous porous media systems. The implementation strategy also depends on the scale at which hydraulic property heterogeneity is represented in the supporting flow model. For flow models that explicitly represent discrete features (e.g., discrete fracture networks), the sampling of residence times along segments is conceptually straightforward. For continuous porous media, such sampling needs to be related to the Lagrangian velocity field. Analytical or semi-analytical methods may be used to approximate the Lagrangian segment velocity distributions in aquifers with low-to-moderate variability, thereby capturing transport effects of subgrid velocity variability. If variability in hydraulic properties is large, however, Lagrangian velocity distributions are difficult to characterize and numerical simulations are required; in particular, numerical simulations are likely to be required for estimating the velocity integral scale as a basis for advective segment distributions. Aquifers with evolving heterogeneity scales present additional challenges. Large-scale simulations of radionuclide

  14. Particle number and mass exposure concentrations by commuter transport modes in Milan, Italy

    Directory of Open Access Journals (Sweden)

    Senem Ozgen

    2016-03-01

    Full Text Available There is increasing awareness amongst the general public about exposure to atmospheric pollution while travelling in urban areas especially when taking active travelling modes such as walking and cycling. This study presents a comparative investigation of ultrafine particles (UFP, PM10, PM2.5, PM1 exposure levels associated with four transport modes (i.e., walking, cycling, car, and subway in the city of Milan measured by means of portable instruments. Significant differences in particle exposure between transport modes were found. The subway mode was characterized by the highest PM mass concentrations: PM10, PM2.5, PM1 subway levels were respectively about 2-4-3 times higher than those of the car and open air active modes (i.e. cycling and walking. Conversely, these latter modes displayed the highest UFP levels about 2 to 3 times higher than the subway and car modes, highlighting the influence of direct traffic emissions. The car mode (closed windows, air conditioning and air recirculation on reported the lowest PM and UFP concentration levels. In particular, the open-air/car average concentration ratio varied from about 2 for UFP up to 4 for PM1 and 6 for PM10 and PM2.5, showing differences that increase with increasing particle size. This work points out that active mode travelling in Milan city centre in summertime results in higher exposure levels than the car mode. Walkers’ and cyclists’ exposure levels is expected to be even higher during wintertime, due to the higher ambient PM and UFP concentration. Interventions intended to re-design the urban mobility should therefore include dedicated routes in order to limit their exposure to PM and UFP by increasing their distance from road traffic.

  15. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.

    Science.gov (United States)

    Strutz, Tessa J; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf

    2016-08-01

    Successful groundwater remediation by injecting nanoscale zero-valent iron (NZVI) particles requires efficient particle transportation and distribution in the subsurface. This study focused on the influence of injection velocity and particle concentration on the spatial NZVI particle distribution, the deposition processes and on quantifying the induced decrease in hydraulic conductivity (K) as a result of particle retention by lab tests and numerical simulations. Horizontal column tests of 2m length were performed with initial Darcy injection velocities (q0) of 0.5, 1.5, and 4.1m/h and elemental iron input concentrations (Fe(0)in) of 0.6, 10, and 17g/L. Concentrations of Fe(0) in the sand were determined by magnetic susceptibility scans, which provide detailed Fe(0) distribution profiles along the column. NZVI particles were transported farther at higher injection velocity and higher input concentrations. K decreased by one order of magnitude during injection in all experiments, with a stronger decrease after reaching Fe(0) concentrations of about 14-18g/kg(sand). To simulate the observed nanoparticle transport behavior the existing finite-element code OGS has been successfully extended and parameterized for the investigated experiments using blocking, ripening, and straining as governing deposition processes. Considering parameter relationships deduced from single simulations for each experiment (e.g. deposition rate constants as a function of flow velocity) one mean parameter set has been generated reproducing the observations in an adequate way for most cases of the investigated realistic injection conditions. An assessment of the deposition processes related to clogging effects showed that the percentage of retention due to straining and ripening increased during experimental run time resulting in an ongoing reduction of K. Clogging is mainly evoked by straining which dominates particle deposition at higher flow velocities, while blocking and ripening play a

  16. Asymptotic description of a test particle around a Schwarzschild black hole

    Science.gov (United States)

    Rosales-Vera, Marco

    2018-03-01

    In this paper, the movement of a test particle around a Schwarzschild black hole is revisited. Using matched asymptotic expansions, approximate analytical expressions for the orbit of the test particle in the case of large eccentricity are found. The asymptotic solutions are compared with numerical and analytical results.

  17. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    White, Morgan C. [Univ. of Florida, Gainesville, FL (United States)

    2000-07-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second

  18. Third-Order Transport with MAD Input: A Computer Program for Designing Charged Particle Beam Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Karl

    1998-10-28

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems.

  19. Importance of Physical and Physiological Parameters in Simulated Particle Transport in the Alveolar Zone of the Human Lung

    Directory of Open Access Journals (Sweden)

    Dogan Ciloglu

    2017-01-01

    Full Text Available The trajectory and deposition efficiency of micron-sized (1–5 µm particles, inhaled into the pulmonary system, are accurately determined with the aid of a newly developed model and modified simulation techniques. This alveolar model, which has a simple but physiologically appropriate geometry, and the utilized fluid structure interaction (FSI methods permit the precise simulation of tissue wall deformation and particle fluid interactions. The relation between tissue movement and airflow in the alveolated duct is solved by a two-way fluid structure interaction simulation technique, using ANSYS Workbench (Release 16.0, ANSYS INC., Pittsburgh, PA, USA, 2015. The dynamic transport of particles and their deposition are investigated as a function of aerodynamic particle size, tissue visco-elasticity, tidal breathing period, gravity orientation and particle–fluid interactions. It is found that the fluid flows and streamlines differ between the present flexible model and rigid models, and the two-way coupling particle trajectories vary relative to one-way particle coupling. In addition, the results indicate that modelling the two-way coupling particle system is important because the two-way discrete phase method (DPM approach despite its complexity provides more extensive particle interactions and is more reliable than transport results from the one-way DPM approach. The substantial difference between the results of the two approaches is likely due to particle–fluid interactions, which re-suspend the sediment particles in the airway stream and hence pass from the current generation.

  20. Integrating Geochemical Reactions with a Particle-Tracking Approach to Simulate Nitrogen Transport and Transformation in Aquifers

    Science.gov (United States)

    Cui, Z.; Welty, C.; Maxwell, R. M.

    2011-12-01

    Lagrangian, particle-tracking models are commonly used to simulate solute advection and dispersion in aquifers. They are computationally efficient and suffer from much less numerical dispersion than grid-based techniques, especially in heterogeneous and advectively-dominated systems. Although particle-tracking models are capable of simulating geochemical reactions, these reactions are often simplified to first-order decay and/or linear, first-order kinetics. Nitrogen transport and transformation in aquifers involves both biodegradation and higher-order geochemical reactions. In order to take advantage of the particle-tracking approach, we have enhanced an existing particle-tracking code SLIM-FAST, to simulate nitrogen transport and transformation in aquifers. The approach we are taking is a hybrid one: the reactive multispecies transport process is operator split into two steps: (1) the physical movement of the particles including the attachment/detachment to solid surfaces, which is modeled by a Lagrangian random-walk algorithm; and (2) multispecies reactions including biodegradation are modeled by coupling multiple Monod equations with other geochemical reactions. The coupled reaction system is solved by an ordinary differential equation solver. In order to solve the coupled system of equations, after step 1, the particles are converted to grid-based concentrations based on the mass and position of the particles, and after step 2 the newly calculated concentration values are mapped back to particles. The enhanced particle-tracking code is capable of simulating subsurface nitrogen transport and transformation in a three-dimensional domain with variably saturated conditions. Potential application of the enhanced code is to simulate subsurface nitrogen loading to the Chesapeake Bay and its tributaries. Implementation details, verification results of the enhanced code with one-dimensional analytical solutions and other existing numerical models will be presented in

  1. In vitro testing of femoral impaction grafting with porous titanium particles: a pilot study.

    Science.gov (United States)

    Aquarius, René; Walschot, Luc; Buma, Pieter; Schreurs, Berend Willem; Verdonschot, Nico

    2009-06-01

    The disadvantages of allografts to restore femoral bone defects during revision hip surgery have led to the search for alternative materials. We investigated the feasibility of using porous titanium particles and posed the following questions: (1) Is it possible to create a high-quality femoral graft of porous titanium particles in terms of graft thickness, cement thickness, and cement penetration? (2) Does this titanium particle graft layer provide initial stability when a femoral cemented stem is implanted in it? (3) What sizes of particles are released from the porous titanium particles during impaction and subsequent cyclic loading of the reconstruction? We simulated cemented revision reconstructions with titanium particles in seven composite femurs loaded for 300,000 cycles and measured stem subsidence. Particle release from the titanium particle grafts was analyzed during impaction and loading. Impacted titanium particles formed a highly interlocked graft layer. We observed limited cement penetration into the titanium particle graft. A total mean subsidence of 1.04 mm was observed after 300,000 cycles. Most particles released during impaction were in the phagocytable range (animal testing is warranted to investigate the biologic effect of small-particle release.

  2. Morphochemical characteristics and mixing state of long range transported wildfire particles at Ny-Ålesund (Svalbard Islands)

    Science.gov (United States)

    Moroni, Beatrice; Cappelletti, David; Crocchianti, Stefano; Becagli, Silvia; Caiazzo, Laura; Traversi, Rita; Udisti, Roberto; Mazzola, Mauro; Markowicz, Krzysztof; Ritter, Christoph; Zielinski, Tymon

    2017-05-01

    A prolonged and exceptionally intense air mass advection event transporting biomass burning aerosols generated in Alaska affected Ny-Ålesund in the mid of July 2015. This paper reports the morphochemical characteristics and mixing state of individual aerosol particles collected during the event. To this aim aerosol samples were collected on nucleopore polycarbonate membrane filters using a DEKATI 12-stage low volume impactor and analyzed by scanning electron microscopy (SEM) techniques. Results of SEM investigations depict a complex aerosol characterized by an external mixing between a main part of carbonaceous organic particles (tar balls and organic particles), lower ammonium sulfate and minor potassium chloride and mineral dust amounts. The carbonaceous particles are spherical to slightly elongated and the organic particles show an internal mixing of low density organics and/or ammonium sulfate upon denser nuclei. Most particles are in the accumulation mode size range although the size and the morphology of the chloride and the sulfate salts evidence the growth of these species both in the air and upon the sampling membranes. Individual particle analyses were complemented by aerosol size distribution (Aerodynamic Particle Sizer, Scanning Mobility Particle Sizer) and optical (Particle Soot Absorption Photometer, nephelometer) measurements at ground level in order to retrieve the optical and radiative properties of the aerosol in the atmosphere and to predict the fate and behaviour of particles upon deposition at ground level. Individual particle analyses were also compared with bulk chemical analyses on daily sampling filters and back-trajectory analyses of the air mass movement in order to enucleate distinct sources of the aerosol during the long range transport.

  3. High performance modelling of the transport of energetic particles for photon radiotherapy.

    Science.gov (United States)

    Birindelli, Gabriele; Feugeas, Jean-Luc; Caron, Jérôme; Dubroca, Bruno; Kantor, Guy; Page, Jonathan; Pichard, Teddy; Tikhonchuk, Vladimir; Nicolaï, Philippe

    2017-06-30

    This work consists of the validation of a new Grid Based Boltzmann Solver (GBBS) conceived for the description of the transport and energy deposition by energetic particles for radiotherapy purposes. The entropic closure and a compact mathematical formulation allow our code (M1) to calculate the delivered dose with an accuracy comparable to the Monte-Carlo (MC) codes with a computational time that is reduced to the order of few minutes without any special processing power requirement. A validation protocol with heterogeneity inserts has been defined for different photon sources. The comparison with the MC calculated depth-dose curves and transverse profiles of the beam at different depths shows an excellent accuracy of the M1 model. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics

    Science.gov (United States)

    Hassanzadeh Afrouzi, Hamid; Farhadi, Mousa; Sedighi, Kurosh; Moshfegh, Abouzar

    2018-02-01

    In present study, a novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced for modelling electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Moreover, capability of different thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field in nano scale application (0.072 600 in DPD units regardless of electric field intensity. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0.145 [ v / nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the radial distribution function with available electrolyte structure modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  5. Parallel processing of Monte Carlo code MCNP for particle transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Kawasaki, Takuji

    1996-06-01

    It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)

  6. Impacts on particles and ozone by transport processes recorded at urban and high-altitude monitoring stations

    Energy Technology Data Exchange (ETDEWEB)

    Nicolás, J.F., E-mail: j.nicolas@umh.es [Laboratory of Atmospheric Pollution (LCA), Miguel Hernández University, Av. de la Universidad s/n, Edif. Alcudia, 03202 Elche (Spain); Crespo, J.; Yubero, E.; Soler, R. [Laboratory of Atmospheric Pollution (LCA), Miguel Hernández University, Av. de la Universidad s/n, Edif. Alcudia, 03202 Elche (Spain); Carratalá, A. [Department of Chemical Engineering, University of Alicante, P.O. Box 99, 03080 Alicante (Spain); Mantilla, E. [Instituto Universitario CEAM-UMH, Parque Tecnológico, C/Charles R. Darwin 14, E-46980 Paterna (Spain)

    2014-01-01

    In order to evaluate the influence of particle transport episodes on particle number concentration temporal trends at both urban and high-altitude (Aitana peak-1558 m a.s.l.) stations, a simultaneous sampling campaign from October 2011 to September 2012 was performed. The monitoring stations are located in southeastern Spain, close to the Mediterranean coast. The annual average value of particle concentration obtained in the larger accumulation mode (size range 0.25–1 μm) at the mountain site, 55.0 ± 3.0 cm{sup − 3}, was practically half that of the value obtained at the urban station (112.0 ± 4.0 cm{sup − 3}). The largest difference between both stations was recorded during December 2011 and January 2012, when particles at the mountain station registered the lowest values. It was observed that during urban stagnant episodes, particle transport from urban sites to the mountain station could take place under specific atmospheric conditions. During these transports, the major particle transfer is produced in the 0.5–2 μm size range. The minimum difference between stations was recorded in summer, particularly in July 2012, which is most likely due to several particle transport events that affected only the mountain station. The particle concentration in the coarse mode was very similar at both monitoring sites, with the biggest difference being recorded during the summer months, 0.4 ± 0.1 cm{sup − 3} at the urban site and 0.9 ± 0.1 cm{sup − 3} at the Aitana peak in August 2012. Saharan dust outbreaks were the main factor responsible for these values during summer time. The regional station was affected more by these outbreaks, recording values of > 4.0 cm{sup − 3}, than the urban site. This long-range particle transport from the Sahara desert also had an effect upon O{sub 3} levels measured at the mountain station. During periods affected by Saharan dust outbreaks, ozone levels underwent a significant decrease (3–17%) with respect to its mean

  7. Study on the creation and destruction of transport barriers via the effective safety factors for energetic particles

    Science.gov (United States)

    Ogawa, Shun; Leoncini, Xavier; Dif-Pradalier, Guilhem; Garbet, Xavier

    2016-12-01

    Charged particles with low kinetic energy move along the magnetic field lines, but so do not the energetic particles. We investigate the topological structure changes in the phase space of energetic particles with respect to the magnetic one. For this study, cylindrical magnetic fields with non-monotonic safety factors that induce the magnetic internal transport barrier are considered. We show that the topological structure of the magnetic field line and of the particle trajectories can be quite different. We explain this difference using the concept of an effective particle q-profile. Using this notion, we can investigate the location and existence of resonances for particle orbits that are different from the magnetic ones. These are examined both numerically by integrating an equation of motion and theoretically by the use of Alfvén's guiding center theory and by the use of an effective reduced Hamiltonian for the integrable unperturbed system. It is clarified that, for the energetic particles, the grad B drift effect shifts the resonances and the drift induced by curvature of the magnetic field line leads to the vanishing of the resonances. As a result, we give two different mechanisms that lead to the creation of transport barriers for energetic particles in the region where the magnetic field line is chaotic.

  8. Full-f Neoclassical Simulations toward a Predictive Model for H-mode Pedestal Ion Energy, Particle and Momentum Transport

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, D. J. [PPPL; Boedo, J. A. [University of California San Diego; Burrell, K. H. [General Atomics; Chang, C. S. [PPPL; Canik, J. M. [ORNL; deGrassie, J. S. [General Atomics; Gerhardt, S. P. [PPPL; Grierson, B. A. [General Atomics; Groebner, R. J. [General Atomics; Maingi, Rajesh [PPPL; Smith, S. P. [General Atomics

    2014-09-01

    Energy and particle transport rates are decoupled in the H-mode edge since the ion thermal transport rate is primarily set by the neoclassical transport of the deuterium ions in the tail of the thermal energy distribution, while the net particle transport rate is set by anomalous transport of the colder bulk ions. Ion orbit loss drives the energy distributions away from Maxwellian, and describes the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the Ti profile. Non-Maxwellian distributions also drive large intrinsic edge flows, and the interaction of turbulence at the top of the pedestal with the intrinsic edge flow can generate an intrinsic core torque. The primary driver of the radial electric field (Er) in the pedestal and scrapeoff layer (SOL) are kinetic neoclassical effects, such as ion orbit loss of tail ions and parallel electron loss to the divertor. This paper describes the first multi-species kinetic neoclassical transport calculations for ELM-free H-mode pedestal and scrape-off layer on DIII-D using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. This interpretative technique quantifies the role of neoclassical, anomalous and neutral transport to the overall pedestal structure, and consequently illustrates the importance of including kinetic effects self-consistently in transport calculations around transport barriers.

  9. Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization

    Science.gov (United States)

    Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard

    2002-01-01

    The purpose of this paper is to demonstrate the application of particle swarm optimization to a realistic multidisciplinary optimization test problem. The paper's new contributions to multidisciplinary optimization is the application of a new algorithm for dealing with the unique challenges associated with multidisciplinary optimization problems, and recommendations as to the utility of the algorithm in future multidisciplinary optimization applications. The selected example is a bi-level optimization problem that demonstrates severe numerical noise and has a combination of continuous and truly discrete design variables. The use of traditional gradient-based optimization algorithms is thus not practical. The numerical results presented indicate that the particle swarm optimization algorithm is able to reliably find the optimum design for the problem presented here. The algorithm is capable of dealing with the unique challenges posed by multidisciplinary optimization as well as the numerical noise and truly discrete variables present in the current example problem.

  10. An adsorption chromatography assay to probe bulk particle transport through hydrogels.

    Science.gov (United States)

    Vladescu, I; Lieleg, O; Jang, S; Ribbeck, Katharina

    2012-01-01

    Biopolymer-based hydrogels such as mucus and the basal lamina play a key role in biology, where they control the exchange of material between different compartments. They also pose a barrier that needs to be overcome for successful drug delivery. Characterizing the permeability properties of such hydrogels is mandatory for the development of suitable drug delivery vectors and pharmaceutics. Here, we present an experimental method to measure bulk particle transport through hydrogels. We validate our assay by applying it to mucin hydrogels and show that the permeability properties of these mucin hydrogels can be modulated by polymer density and pH, in agreement with previous results obtained from single particle tracking. The method we present here is easy to handle, inexpensive, and high-throughput compatible. It is also a suitable platform for the design and screening of drugs that aim at modifying the barrier properties of hydrogels. This system can also aid in the characterization and development of synthetic gels for a range of biomedical applications. Copyright © 2011 Wiley-Liss, Inc.

  11. Numerical investigation of diesel exhaust particle transport and deposition in the CT-scan based lung airway

    Science.gov (United States)

    Islam, Mohammad S.; Saha, Suvash C.; Sauret, Emilie; Gu, Y. T.; Molla, Md Mamun

    2017-06-01

    Diesel exhaust particulates matter (DEPM) is a compound mixture of gasses and fine particles that contain more than 40 toxic air pollutants including benzene, formaldehyde, and nitrogen oxides. Exposure of DEPM to human lung airway during respiratory inhalation causes severe health hazards like diverse pulmonary diseases. This paper studies the DEPM transport and deposition in upper three generations of the realistic lung airways. A 3-D digital airway bifurcation model is constructed from the computerized tomography (CT) scan data of a healthy adult man. The Euler-Lagrange approach is used to solve the continuum and disperse phases of the calculation. Local averaged Navier-Stokes equations are solved to calculate the transport of the continuum phase. Lagrangian based Discrete Phase Model (DPM) is used to investigate the particle transport and deposition in the current anatomical model. The effects of size specific monodispersed particles on deposition are extensively investigated during different breathing pattern. The numerical results illustrate that particle diameter and breathing pattern have a substantial impact on particles transport and deposition in the tracheobronchial airways. The present realistic bifurcation model also depicts a new deposition hot spot which could advance the understanding of the therapeutic drug delivery system to the specific position of the respiratory airways.

  12. Tracking suspended particle transport via radium isotopes ((226)Ra and (228)Ra) through the Apalachicola-Chattahoochee-Flint River system.

    Science.gov (United States)

    Peterson, Richard N; Burnett, William C; Opsahl, Stephen P; Santos, Isaac R; Misra, Sambuddha; Froelich, Philip N

    2013-02-01

    Suspended particles in rivers can carry metals, nutrients, and pollutants downstream which can become bioactive in estuaries and coastal marine waters. In river systems with multiple sources of both suspended particles and contamination sources, it is important to assess the hydrologic conditions under which contaminated particles can be delivered to downstream ecosystems. The Apalachicola-Chattahoochee-Flint (ACF) River system in the southeastern United States represents an ideal system to study these hydrologic impacts on particle transport through a heavily-impacted river (the Chattahoochee River) and one much less impacted by anthropogenic activities (the Flint River). We demonstrate here the utility of natural radioisotopes as tracers of suspended particles through the ACF system, where particles contaminated with arsenic (As) and antimony (Sb) have been shown to be contributed from coal-fired power plants along the Chattahoochee River, and have elevated concentrations in the surficial sediments of the Apalachicola Bay Delta. Radium isotopes ((228)Ra and (226)Ra) on suspended particles should vary throughout the different geologic provinces of this river system, allowing differentiation of the relative contributions of the Chattahoochee and Flint Rivers to the suspended load delivered to Lake Seminole, the Apalachicola River, and ultimately to Apalachicola Bay. We also use various geochemical proxies ((40)K, organic carbon, and calcium) to assess the relative composition of suspended particles (lithogenic, organic, and carbonate fractions, respectively) under a range of hydrologic conditions. During low (base) flow conditions, the Flint River contributed 70% of the suspended particle load to both the Apalachicola River and the bay, whereas the Chattahoochee River became the dominant source during higher discharge, contributing 80% of the suspended load to the Apalachicola River and 62% of the particles entering the estuary. Neither of these hydrologic

  13. Light transport through disordered layers of dense gallium arsenide submicron particles

    Science.gov (United States)

    van der Beek, T.; Barthelemy, P.; Johnson, P. M.; Wiersma, D. S.; Lagendijk, A.

    2012-03-01

    We present a study of optical transport properties of powder layers with submicrometer, strongly scattering gallium arsenide (GaAs) particles. Uniform, thin samples with well controlled thicknesses were created through the use of varying grinding times, sedimentation fractionation, annealing, and a new sedimentation technique. These fabrication parameters were optimized to produce maximum scattering and minimum absorption. The physical properties were characterized using scanning electron microscopy (SEM) and x-ray diffraction. The optical transport mean-free path, absorption length, and the diffusion constant were determined for each sample using both continuous wave and time-resolved methods. The samples scatter strongly in the near infrared region. Total reflection and transmission measurements show that all of these samples have high absorption. X-ray diffraction results suggest that the source of this absorption is grinding induced strain and/or defects in the crystal structure. For all the different grinded GaAs powder samples that we investigated, the absorption length was less than ten micrometers.

  14. GPU-accelerated red blood cells simulations with transport dissipative particle dynamics

    Science.gov (United States)

    Blumers, Ansel L.; Tang, Yu-Hang; Li, Zhen; Li, Xuejin; Karniadakis, George E.

    2017-08-01

    Mesoscopic numerical simulations provide a unique approach for the quantification of the chemical influences on red blood cell functionalities. The transport Dissipative Particle Dynamics (tDPD) method can lead to such effective multiscale simulations due to its ability to simultaneously capture mesoscopic advection, diffusion, and reaction. In this paper, we present a GPU-accelerated red blood cell simulation package based on a tDPD adaptation of our red blood cell model, which can correctly recover the cell membrane viscosity, elasticity, bending stiffness, and cross-membrane chemical transport. The package essentially processes all computational workloads in parallel by GPU, and it incorporates multi-stream scheduling and non-blocking MPI communications to improve inter-node scalability. Our code is validated for accuracy and compared against the CPU counterpart for speed. Strong scaling and weak scaling are also presented to characterize scalability. We observe a speedup of 10 . 1 on one GPU over all 16 cores within a single node, and a weak scaling efficiency of 91% across 256 nodes. The program enables quick-turnaround and high-throughput numerical simulations for investigating chemical-driven red blood cell phenomena and disorders.

  15. GPU-accelerated Red Blood Cells Simulations with Transport Dissipative Particle Dynamics.

    Science.gov (United States)

    Blumers, Ansel L; Tang, Yu-Hang; Li, Zhen; Li, Xuejin; Karniadakis, George E

    2017-08-01

    Mesoscopic numerical simulations provide a unique approach for the quantification of the chemical influences on red blood cell functionalities. The transport Dissipative Particles Dynamics (tDPD) method can lead to such effective multiscale simulations due to its ability to simultaneously capture mesoscopic advection, diffusion, and reaction. In this paper, we present a GPU-accelerated red blood cell simulation package based on a tDPD adaptation of our red blood cell model, which can correctly recover the cell membrane viscosity, elasticity, bending stiffness, and cross-membrane chemical transport. The package essentially processes all computational workloads in parallel by GPU, and it incorporates multi-stream scheduling and non-blocking MPI communications to improve inter-node scalability. Our code is validated for accuracy and compared against the CPU counterpart for speed. Strong scaling and weak scaling are also presented to characterizes scalability. We observe a speedup of 10.1 on one GPU over all 16 cores within a single node, and a weak scaling efficiency of 91% across 256 nodes. The program enables quick-turnaround and high-throughput numerical simulations for investigating chemical-driven red blood cell phenomena and disorders.

  16. Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field.

    Science.gov (United States)

    Yang, Y M; Bednarz, B

    2013-02-21

    Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water-air-water slab phantom and a water-lung-water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department.

  17. Particle-in-Cell Simulations of the VENUS Ion Beam Transport System

    CERN Document Server

    Todd, Damon; Leitner, Daniela; Lyneis, Claude; Qiang, Ji

    2005-01-01

    The next-generation superconducting ECR ion source VENUS serves as the prototype injector ion source for the linac driver of the proposed Rare Isotope Accelerator (RIA). The high-intensity heavy ion beams required by the RIA driver linac present significant challenges for the design and simulation of an ECR extraction and low energy ion beam transport system. Extraction and beam formation take place in a strong (up to 3T) axial magnetic field, which leads to significantly different focusing properties for the different ion masses and charge states of the extracted beam. Typically, beam simulations must take into account the contributions of up to 30 different charge states and ion masses. Two three-dimensional, particle-in-cell codes developed for other purposes, IMPACT and WARP, have been adapted in order to model intense, multi-species DC beams. A discussion of the differences of these codes and the advantages of each in the simulation of the low energy beam transport system of an ECR ion source is given. D...

  18. Tonopah Test Range Air Monitoring: CY2016 Meteorological, Radiological, and Wind Transported Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if wind blowing across the Clean Slate sites is transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites.

  19. Spatially resolved data on sediment transport: 1) field application examining fluorescent soil particle movement from tillage

    Science.gov (United States)

    Quinton, John; Hardy, Robert; Pates, Jacqueline; James, Michael

    2017-04-01

    Understanding where sediment originates from and where it travels to, in what quantities and at which rate is at the heart of many questions surrounding sediment transport. Progress towards unravelling these questions and deepening our understanding has come from a wide range of approaches, including laboratory and field experiments conducted at a variety of scales. In seeking to understand the connectivity of sources and sinks of sediment scientists have spent considerable energy in developing tracing technologies. These have included numerous studies that have relied on the chemical properties of the soil and sediment to establish source-sink connectivity, and the use of 137Ceasium, from radioactive fall-out, to map sediment redistribution. More recently there has been an upsurge in interest in the use of artificially applied soil tracers, including rare earth element oxides and magnetic minerals. However all these tracing methods have a significant drawback: they rely on the collection of samples to assess their concentration. This means that their spatial distribution cannot easily be established in situ and that the environment that is being studied is damaged by the sampling process; nor can data be collected in real time which allows a dynamic understanding of erosion and transport processes to be developed. Here we report on the field application of a fluorescent sand sized tracer at the hillslope scale during a tillage erosion experiment. Here we trialled both intensity based and particle counting methodologies for tracer enumeration. After simulating seven years of tillage on a hillslope we were able to precisely determine the distribution of the fluorescent tracer and also its incorporation and distribution within the soil profile. Single grains of tracer could be found over 35 m from the insertion point. In a second abstract we report on an application that combines novel fluorescent videography techniques with custom image processing to trace the

  20. Particle-based mesoscale modeling of flow and transport in complex fluids

    Science.gov (United States)

    Tuzel, Erkan

    The dynamic behavior of complex liquids and soft materials is of great importance in a wide range of disciplines. Computational studies of these phenomena are particularly demanding because of the presence of disparate length and energy scales, and the complicated coupling between the embedded objects and the hydrodynamic flow field. The goal of this dissertation is to contribute to the understanding of these systems through the development and application of robust, quantitative mesoscale simulation techniques which incorporate both hydrodynamic interactions and thermal fluctuations. The work involves the further development of a specific particle-based mesoscale algorithm---stochastic rotation dynamics---which solves the hydrodynamic equations by following the discrete time dynamics of particles with continuous coordinates and velocities, using efficient multi-particle collisions. A detailed study of the long length- and time-scale properties of the algorithm, which involves analytical derivations of hydrodynamic equations, Green-Kubo relations, and transport coefficients is presented. Extensive simulations are performed to verify these results. The original algorithm is generalized to model dense fluids and binary mixtures. The equation of state and analytical expressions for the transport coefficients are derived. It is also shown that the non-ideal model exhibits an order-disorder transition and caging in the limit of large collision frequencies. The phase diagram of the entropically driven de-mixing transition of the binary mixture is presented, the surface tension for a droplet is calculated, and a detailed analysis of the capillary wave spectrum is performed. Finally, the algorithm is extended to amphiphilic mixtures in order to be able to study microemulsions and micelle formation. We have also developed a constrained dynamics algorithm for modeling the dynamical behavior of wormlike chains embedded in a mesoscale solvent. Rigorously enforced bond

  1. Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Anderson L.; Gee, Glendon W.

    2000-06-23

    This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptual models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.

  2. SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research

    Science.gov (United States)

    Bassler, N.; Hansen, D. C.; Lühr, A.; Thomsen, B.; Petersen, J. B.; Sobolevsky, N.

    2014-03-01

    Purpose: The Monte Carlo (MC) code SHIELD-HIT simulates the transport of ions through matter. Since SHIELD-HIT08 we added numerous features that improves speed, usability and underlying physics and thereby the user experience. The "-A" fork of SHIELD-HIT also aims to attach SHIELD-HIT to a heavy ion dose optimization algorithm to provide MC-optimized treatment plans that include radiobiology. Methods: SHIELD-HIT12A is written in FORTRAN and carefully retains platform independence. A powerful scoring engine is implemented scoring relevant quantities such as dose and track-average LET. It supports native formats compatible with the heavy ion treatment planning system TRiP. Stopping power files follow ICRU standard and are generated using the libdEdx library, which allows the user to choose from a multitude of stopping power tables. Results: SHIELD-HIT12A runs on Linux and Windows platforms. We experienced that new users quickly learn to use SHIELD-HIT12A and setup new geometries. Contrary to previous versions of SHIELD-HIT, the 12A distribution comes along with easy-to-use example files and an English manual. A new implementation of Vavilov straggling resulted in a massive reduction of computation time. Scheduled for later release are CT import and photon-electron transport. Conclusions: SHIELD-HIT12A is an interesting alternative ion transport engine. Apart from being a flexible particle therapy research tool, it can also serve as a back end for a MC ion treatment planning system. More information about SHIELD-HIT12A and a demo version can be found on http://www.shieldhit.org.

  3. Physicists purchase materials testing machine in support of pioneering particle physics experiments

    CERN Multimedia

    Sharpe, Suzanne

    2007-01-01

    "The particle physics group at Liverpool University has purchased an LRXPlus singlecolumn materials testing machine from Lloyd Instruments, which will be used to help characterise the carbon-fibre support frames for detectors used for state-of-the-art particle physics experiments." (1 page)

  4. Vadose zone transport field study: Detailed test plan for simulated leak tests

    Energy Technology Data Exchange (ETDEWEB)

    AL Ward; GW Gee

    2000-06-23

    Hanford to: identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.

  5. Modeling Transport in Fractured Porous Media with the Random-Walk Particle Method: The Transient Activity Range and the Particle-Transfer Probability

    Energy Technology Data Exchange (ETDEWEB)

    Lehua Pan; G.S. Bodvarsson

    2001-10-22

    Multiscale features of transport processes in fractured porous media make numerical modeling a difficult task, both in conceptualization and computation. Modeling the mass transfer through the fracture-matrix interface is one of the critical issues in the simulation of transport in a fractured porous medium. Because conventional dual-continuum-based numerical methods are unable to capture the transient features of the diffusion depth into the matrix (unless they assume a passive matrix medium), such methods will overestimate the transport of tracers through the fractures, especially for the cases with large fracture spacing, resulting in artificial early breakthroughs. We have developed a new method for calculating the particle-transfer probability that can capture the transient features of diffusion depth into the matrix within the framework of the dual-continuum random-walk particle method (RWPM) by introducing a new concept of activity range of a particle within the matrix. Unlike the multiple-continuum approach, the new dual-continuum RWPM does not require using additional grid blocks to represent the matrix. It does not assume a passive matrix medium and can be applied to the cases where global water flow exists in both continua. The new method has been verified against analytical solutions for transport in the fracture-matrix systems with various fracture spacing. The calculations of the breakthrough curves of radionuclides from a potential repository to the water table in Yucca Mountain demonstrate the effectiveness of the new method for simulating 3-D, mountain-scale transport in a heterogeneous, fractured porous medium under variably saturated conditions.

  6. The Wigner Monte-Carlo method for nanoelectronic devices a particle description of quantum transport and decoherence

    CERN Document Server

    Querlioz, Damien

    2013-01-01

    This book gives an overview of the quantum transport approaches for nanodevices and focuses on the Wigner formalism. It details the implementation of a particle-based Monte Carlo solution of the Wigner transport equation and how the technique is applied to typical devices exhibiting quantum phenomena, such as the resonant tunnelling diode, the ultra-short silicon MOSFET and the carbon nanotube transistor. In the final part, decoherence theory is used to explain the emergence of the semi-classical transport in nanodevices.

  7. Analysis of a transport fuselage section drop test

    Science.gov (United States)

    Fasanella, E. L.; Hayduk, R. J.; Robinson, M. P.; Widmayer, E.

    1984-01-01

    Transport fuselage section drop tests provided useful information about the crash behavior of metal aircraft in preparation for a full-scale Boeing 720 controlled impact demonstration (CID). The fuselage sections have also provided an operational test environment for the data acquisition system designed for the CID test, and data for analysis and correlation with the DYCAST nonlinear finite-element program. The correlation of the DYCAST section model predictions was quite good for the total fuselage crushing deflection (22 to 24 inches predicted versus 24 to 26 inches measured), floor deformation, and accelerations for the floor and fuselage. The DYCAST seat and occupant model was adequate to approximate dynamic loading to the floor, but a more sophisticated model would be required for good correlation with dummy accelerations. Although a full-section model using only finite elements for the subfloor was desirable, constraints of time and computer resources limited the finite-element subfloor model to a two-frame model. Results from the two-frame model indicate that DYCAST can provide excellent correlation with experimental crash behavior of fuselage structure with a minimum of empirical force-deflection data representing structure in the analytical model.

  8. Proton Particle Test Fluence: What's the Right Number?

    Science.gov (United States)

    LaBel, Kenneth A.; Ladbury, Raymond

    2015-01-01

    While we have been utilizing standard fluence levels such as those listed in the JESD57 document, we have begun revisiting what an appropriate test fluence is when it comes to qualifying a device for single events. Instead of a fixed fluence level or until a specific number of events occurs, a different thought process is required.

  9. Eddy Current, Magnetic Particle and Hardness Testing, Aviation Quality Control (Advanced): 9227.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This unit of instruction includes the principles of eddy current, magnetic particle and hardness testing; standards used for analyzing test results; techniques of operating equipment; interpretation of indications; advantages and limitations of these methods of testing; care and calibration of equipment; and safety and work precautions. Motion…

  10. SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhihong [Univ. of California, Irvine, CA (United States)

    2017-12-30

    Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulation codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the

  11. Transport and binding characterization of a novel hybrid particle impregnated membrane material for bioseparations.

    Science.gov (United States)

    Herigstad, M Omon; Gurgel, Patrick V; Carbonell, Ruben G

    2011-01-01

    The transport and binding properties of a novel hybrid particle-nonwoven membrane medium are described. In this construct, a polymeric chromatographic resin is entrapped between two layers of a nonwoven polypropylene membrane. The membrane-supported resin medium offers the advantage of increased interstitial pore diameter to allow passage of cells and other debris in the feed, while providing sufficiently high surface area for product capture within the resin particles. Columns packed with PIM displayed excellent flow distribution and had interstitial porosities of 0.48 ± 0.01, 25-60% larger than those typical of a packed bed. These columns were able to pass over 95% of E. coli cells and human red blood cell concentrate in 30 column volumes while maintaining a pressure drop significantly lower than that of a packed bed with a similar amount of resin. The dynamic binding capacity of bovine serum albumin (BSA) to the chromatographic resin entrapped in the PIM packed column was essentially the same as that observed with the same volume of resin in a packed bed. The General Rate (GR) model of chromatography was used to analyze experiments indicating the breakthrough behavior of the PIM columns is predictable, and very similar to those of a normal packed bed. These results suggest that PIM constructs can be designed to process viscous mobile phases containing particulates while retaining the desirable binding characteristics of the embedded chromatographic resin and could find uses in adsorption separation processes from complex feed streams such as whole blood, cell culture, and food processing. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  12. Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis

    Science.gov (United States)

    Jeong, G. Y.; Kim, J. Y.; Seo, J.; Kim, G. M.; Jin, H. C.; Chun, Y.

    2014-01-01

    Giant particles transported over long distances are generally of limited concern in atmospheric studies due to their low number concentrations in mineral dust and possible local origin. However, they can play an important role in regional circulation of earth materials due to their enormous volume concentration. Asian dust laden with giant particles was observed in Korea on 31 March 2012, after a migration of about 2000 km across the Yellow Sea from the Gobi Desert. Scanning electron microscopy (SEM) revealed that 20% of the particles exceeded 10 μm in equivalent sphere diameter, with a maximum of 60 μm. The median diameter from the number distribution was 5.7 μm, which was larger than the diameters recorded of 2.5 and 2.9 μm in Asian dust storms in 2010 and 2011, respectively, and was consistent with independent optical particle counter data. Giant particles (>10 μm) contributed about 89% of the volume of the dust in the 2012 storm. Illite-smectite series clay minerals were the major mineral group followed by quartz, plagioclase, K-feldspar, and calcite. The total phyllosilicate content was ~52%. The direct long-range transport of giant particles was confirmed by calcite nanofibers closely associated with clays in a submicron scale identified by high-resolution SEM and transmission electron microscopy. Since giant particles consisted of clay agglomerates and clay-coated quartz, feldspars, and micas, the mineral composition varied little throughout the fine (20 μm) size bins. Analysis of the synoptic conditions of the 2012 dust event and its migration indicated that the mid-tropospheric strong wind belt directly stretching to Korea induced rapid transport of the dust, delivering giant particles. Giant dust particles with high settling velocity would be the major input into the terrestrial and marine sedimentary and ecological systems of East Asia and the western Pacific. Analysis of ancient aeolian deposits in Korea suggested the common deposition of giant

  13. A Hitch-hiker's Guide to Stochastic Differential Equations. Solution Methods for Energetic Particle Transport in Space Physics and Astrophysics

    Science.gov (United States)

    Strauss, R. Du Toit; Effenberger, Frederic

    2017-10-01

    In this review, an overview of the recent history of stochastic differential equations (SDEs) in application to particle transport problems in space physics and astrophysics is given. The aim is to present a helpful working guide to the literature and at the same time introduce key principles of the SDE approach via "toy models". Using these examples, we hope to provide an easy way for newcomers to the field to use such methods in their own research. Aspects covered are the solar modulation of cosmic rays, diffusive shock acceleration, galactic cosmic ray propagation and solar energetic particle transport. We believe that the SDE method, due to its simplicity and computational efficiency on modern computer architectures, will be of significant relevance in energetic particle studies in the years to come.

  14. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Science.gov (United States)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  15. Exposure to ultrafine particles in different transport modes in the city of Rome.

    Science.gov (United States)

    Grana, Mario; Toschi, Nicola; Vicentini, Laura; Pietroiusti, Antonio; Magrini, Andrea

    2017-09-01

    There is evidence of adverse health impacts from human exposure to particulate air pollution, including increased rates of respiratory and cardiovascular illness, hospitalizations, and pre-mature mortality. Most recent hypotheses assign an important role to ultrafine particles (UFP) (morning and evening traffic peak hours throughout the winter season (December 2013-March 2014), for a total of 98 trips. Our results suggest that the lowest UFP exposures are experienced by underground train commuters, with an average number concentration of 14 134 cm(-3), and are largely a reflection of the routes being at greater distance from vehicular traffic. Motorcyclists experienced significantly higher average concentrations (73 168 cm(-3)) than all other exposure classes, and this is most likely a result of the presence of high-concentration and short-duration peaks which do not occur when the same routes are traveled by car. UFP concentrations in subway train environments were found to be comparable to urban background levels. Still, in underground trains we found the highest values of PM10 mass concentration with a maximum value of 422 μg/m(3). PM10 concentration in trains was found to be four and two times higher than what was measured in car and motorbike trips, respectively. Transport mode contribution to total integrated UFP daily exposure was found to be 16.3%-20.9% while travelling by car, 28.7% for motorbike trips, and 8.7% for subway trips. Due to lower exposure times, commuting by car and motorbike is comparable to other daily activities in terms of exposure. Our data can provide relevant information for transport decision-making and increase environmental awareness in the hope that the information about inhaled pollutants can translate into a more rational approach to urban travelling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Test Particle Energization and the Anisotropic Effects of Dynamical MHD Turbulence

    Science.gov (United States)

    González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.

    2017-11-01

    In this paper, we analyze the effect of dynamical three-dimensional magnetohydrodynamic (MHD) turbulence on test particle acceleration and compare how this evolving system affects particle energization by current sheet interaction, as opposed to frozen-in-time fields. To do this, we analyze the ensemble particle acceleration for static electromagnetic fields extracted from direct numerical simulations of the MHD equations, and compare it with the dynamical fields. We show that a reduction in particle acceleration in the dynamical model results from particle trapping in field lines, which forces the particles to be advected by the flow and suppresses long exposures to the strong electric field gradients that take place between structures and generate (among other effects) an efficient particle acceleration in the static case. In addition, we analyze the effect of anisotropy caused by the mean magnetic field. It is well known that for sufficiently strong external fields, the system experiences a transition toward a two-dimensional flow. This causes an increment in the size of the coherent structures, resulting in a magnetized state of the particles and a reduction in particle energization.

  17. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-10-01

    underground testing areas on a regional scale. The groundwater flow model was used in conjunction with a particle-tracking code to define the pathlines followed by groundwater particles originating from 415 points associated with 253 nuclear test locations. Three of the most rapid pathlines were selected for transport simulations. These pathlines are associated with three nuclear test locations, each representing one of the three largest testing areas. These testing locations are: BOURBON on Yucca Flat, HOUSTON on Central Pahute Mesa, and TYBO on Western Pahute Mesa. One-dimensional stochastic tritium transport simulations were performed for the three pathlines using the Monte Carlo method with Latin hypercube sampling. For the BOURBON and TYBO pathlines, sources of tritium from other tests located along the same pathline were included in the simulations. Sensitivity analyses were also performed on the transport model to evaluate the uncertainties associated with the geologic model, the rates of groundwater flow, the tritium source, and the transport parameters. Tritium concentration predictions were found to be mostly sensitive to the regional geology in controlling the horizontal and vertical position of transport pathways. The simulated concentrations are also sensitive to matrix diffusion, an important mechanism governing the migration of tritium in fractured carbonate and volcanic rocks. Source term concentration uncertainty is most important near the test locations and decreases in importance as the travel distance increases. The uncertainty on groundwater flow rates is as important as that on matrix diffusion at downgradient locations. The risk assessment was performed to provide conservative and bounding estimates of the potential risks to human health and the environment from tritium in groundwater. Risk models were designed by coupling scenario-specific tritium intake with tritium dose models and cancer and genetic risk estimates using the Monte Carlo method

  18. IRRADIATION DEVICE FOR IRRADIATION TESTING OF COATED PARTICLE FUEL AT HANARO

    Directory of Open Access Journals (Sweden)

    BONG GOO KIM

    2013-12-01

    Full Text Available The Korean Nuclear-Hydrogen Technology Development (NHTD Plan will be performing irradiation testing of coated particle fuel at HANARO to support the development of VHTR in Korea. This testing will be carried out to demonstrate and qualify TRISO-coated particle fuel for use in VHTR. The testing will be irradiated in an inert gas atmosphere without on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The irradiation device contains two test rods, one has nine fuel compacts and the other five compacts and eight graphite specimens. Each compact contains about 260 TRISO-coated particles. The irradiation device is being loaded and irradiated into the OR5 hole of the in HANARO core from August 2013. The device will be operated for about 150 effective full-power days at a peak temperature of about 1030°C in BOC (Beginning of Cycle during irradiation testing. After a peak burn-up of about 4 atomic percentage and a peak fast neutron fluence of about 1.7×1021 n/cm2, PIE (Post-Irradiation Examination of the irradiated coated particle fuel will be performed at IMEF (Irradiated Material Examination Facility. This paper reviews the design of test rod and irradiation device for coated particle fuel, and discusses the technical results for irradiation testing at HANARO.

  19. Development Of A Parallel Performance Model For The THOR Neutral Particle Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Yessayan, Raffi; Azmy, Yousry; Schunert, Sebastian

    2017-02-01

    The THOR neutral particle transport code enables simulation of complex geometries for various problems from reactor simulations to nuclear non-proliferation. It is undergoing a thorough V&V requiring computational efficiency. This has motivated various improvements including angular parallelization, outer iteration acceleration, and development of peripheral tools. For guiding future improvements to the code’s efficiency, better characterization of its parallel performance is useful. A parallel performance model (PPM) can be used to evaluate the benefits of modifications and to identify performance bottlenecks. Using INL’s Falcon HPC, the PPM development incorporates an evaluation of network communication behavior over heterogeneous links and a functional characterization of the per-cell/angle/group runtime of each major code component. After evaluating several possible sources of variability, this resulted in a communication model and a parallel portion model. The former’s accuracy is bounded by the variability of communication on Falcon while the latter has an error on the order of 1%.

  20. Development of a test system for verification and validation of nuclear transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    White, Morgan C [Los Alamos National Laboratory; Triplett, Brian S [GENERAL ELECTRIC; Anghaie, Samim [UNIV OF FL

    2008-01-01

    Verification and validation of nuclear data is critical to the accuracy of both stochastic and deterministic particle transport codes. In order to effectively test a set of nuclear data, the data must be applied to a wide variety of transport problems. Performing this task in a timely, efficient manner is tedious. The nuclear data team at Los Alamos National laboratory in collaboration with the University of Florida has developed a methodology to automate the process of nuclear data verification and validation (V and V). This automated V and V process can efficiently test a number of data libraries using well defined benchmark experiments, such as those in the International Criticality Safety Benchmark Experiment Project (ICSBEP). The process is implemented through an integrated set of Pyton scripts. Material and geometry data are read from an existing medium or given directly by the user to generate a benchmark experiment template file. The user specifies the choice of benchmark templates, codes, and libraries to form a V and V project. The Python scripts generate input decks for multiple transport codes from the templates, run and monitor individual jobs, and parse the relevant output automatically. The output can then be used to generate reports directly or can be stored into a database for later analysis. This methodology eases the burden on the user by reducing the amount of time and effort required for obtaining and compiling calculation results. The resource savings by using this automated methodology could potentially be an enabling technology for more sophisticated data studies, such as nuclear data uncertainty quantification. Once deployed, this tool will allow the nuclear data community to more thoroughly test data libraries leading to higher fidelity data in the future.

  1. The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles

    Directory of Open Access Journals (Sweden)

    Gulumian Mary

    2009-04-01

    Full Text Available Abstract In vitro studies with particles are a major staple of particle toxicology, generally used to investigate mechanisms and better understand the molecular events underlying cellular effects. However, there is ethical and financial pressure in nanotoxicology, the new sub-specialty of particle toxicology, to avoid using animals. Therefore an increasing amount of studies are being published using in vitro approaches and such studies require careful interpretation. We point out here that 3 different conventional pathogenic particle types, PM10, asbestos and quartz, which cause diverse pathological effects, have been reported to cause very similar oxidative stress effects in cells in culture. We discuss the likely explanation and implications of this apparent paradox, and its relevance for testing in nanotoxicology.

  2. Simulation Models in Testing Reliability of Transport Process

    Directory of Open Access Journals (Sweden)

    Jacyna Marianna

    2016-07-01

    Full Text Available The paper touches the problem of applying simulation models to assess the reliability of services in transport networks. Investigation of the transport processes in terms of their reliability is a complex decision-making task. The paper describes a method for assessing the reliability of transport process on the base of the criterion of minimizing the normalized lost time of vehicles. The time is wasted in a result of conflict situations occurring in the transport network during the transport process. The study includes stochastic distributions of system input. It enables studying the quality parameters of the transport network equipment, including service providers working under different workload and all kinds of disturbances. The method uses simulation models. Simulation studies were performed with Java Modelling Tools.

  3. Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC

    Science.gov (United States)

    Li, Xinlin; Roth, I.; Temerin, M.; Wygant, J. R.; Hudson, M. K.; Blake, J. B.

    1993-01-01

    We model the rapid (about 1 min) formation of a new electron radiation belt at L about or = 2.5 that resulted from the Storm Sudden Commencement (SSC) of March 24, 1991 as observed by the Combined Release and Radiation Effects Satellite (CRRES) satellite. Guided by the observed electric and magnetic fields, we represent the time-dependent magnetospheric electric field during the SSC by an asymmetric bipolar pulse that is associated with the compression and relaxation of the Earth's magnetic field. We follow the electrons using a relativistic guiding center code. The test-particle simulations show that electrons with energies of a few MeV at L greater than 6 were energized up to 40 MeV and transported to L about or = 2.5 during a fraction of their drift period. The energization process conserves the first adiabatic invariant and is enhanced due to resonance of the electron drift motion with the time-varying electric field. Our simulation results, with an initial W(exp -8) energy flux spectra, reproduce the observed electron drift echoes and show that the interplanetary shock impacted the magnetosphere between 1500 and 1800 MLT.

  4. Annotated bibliography of literature relating to wind transport of plutonium-contaminated soils at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, N.; Bamford, R.

    1993-12-01

    During the period from 1954 through 1963, a number of tests were conducted on the Nevada Test Site (NTS) and Tonopah Test Range (TTR) to determine the safety of nuclear devices with respect to storage, handling, transport, and accidents. These tests were referred to as ``safety shots.`` ``Safety`` in this context meant ``safety against fission reaction.`` The safety tests were comprised of chemical high explosive detonations with components of nuclear devices. The conduct of these tests resulted in the dispersion of plutonium, and some americium over areas ranging from several tens to several hundreds of hectares. Of the various locations used for safety tests, the site referred to as ``Plutonium Valley`` was subject to a significant amount of plutonium contamination. Plutonium Valley is located in Area 11 on the eastern boundary of the NTS at an elevation of about 1036 m (3400 ft). Plutonium Valley was the location of four safety tests (A,B,C, and D) conducted during 1956. A major environmental, health, and safety concern is the potential for inhalation of Pu{sup 239,240} by humans as a result of airborne dust containing Pu particles. Thus, the wind transport of Pu{sup 239,240} particles has been the subject of considerable research. This annotated bibliography was created as a reference guide to assist in the better understanding of the environmental characteristics of Plutonium Valley, the safety tests performed there, the processes and variables involved with the wind transport of dust, and as an overview of proposed clean-up procedures.

  5. Rapid transport of nano-particles having a fractional elementary charge on average in capacitively-coupled rf discharges by amplitude-modulating discharge voltage.

    Science.gov (United States)

    Shiratani, Masaharu; Koga, Kazunori; Iwashita, Shinya; Nunomura, Syota

    2008-01-01

    We have observed transport of nano-particles having, on average, a fractional elementary charge in single pulse and double pulse capacitively-coupled rf discharges both without and with an Amplitude Modulation (AM) of the discharge voltage, using a two-dimensional laser-light scattering method. Rapid transport of nano-particles towards the grounded electrode is realized using rf discharges with AM. Two important parameters for the rapid transport of nano-particles are the discharge voltage and the period of AM. An important key of the rapid transport is fast redistribution of ion current over the whole discharge region; that is, fast change of spatial distribution of forces exerted on nano-particles. The longer period of the modulation is needed for rapid transport for the larger nano-particles. The higher discharge voltage of the modulation is needed for rapid transport of nano-particles having a smaller mean charge. Local perturbation of electric potential using a probe does not bring about global rapid transport of nano-particles, whereas it leads to their local transport near the probe.

  6. Study of transient flow and particle transport in continuous steel caster molds: Part I. Fluid flow

    Science.gov (United States)

    Yuan, Quan; Thomas, Brian G.; Vanka, S. P.

    2004-08-01

    Unsteady three-dimensional flow in the mold region of the liquid pool during continuous casting of steel slabs has been computed using realistic geometries starting from the submerged inlet nozzle. Three large-eddy simulations (LES) have been validated with measurements and used to compare results between full-pool and symmetric half-pool domains and between a full-scale water model and actual behavior in a thin-slab steel caster. First, time-dependent turbulent flow in the submerged nozzle is computed. The time-dependent velocities exiting the nozzle ports are then used as inlet conditions for the flow in the liquid pool. Complex time-varying flow structures are observed in the simulation results, in spite of the nominally steady casting conditions. Flow in the mold region is seen to switch between a “double-roll” recirculation zone and a complex flow pattern with multiple vortices. The computed time-averaged flow pattern agrees well with measurements obtained by hot-wire anemometry and dye injection in full-scale water models. Full-pool simulations show asymmetries between the left and right sides of the flow, especially in the lower recirculation zone. These asymmetries, caused by interactions between two halves of the liquid pool, are not present in the half-pool simulation. This work also quantifies differences between flow in the water model and the corresponding steel caster. The top-surface liquid profile and fluctuations are predicted in both systems and agree favorably with measurements. The flow field in the water model is predicted to differ from that in the steel caster in having higher upward velocities in the lower-mold region and a more uniform top-surface liquid profile. A spectral analysis of the computed velocities shows characteristics similar to previous measurements. The flow results presented here are later used (in Part II of this article) to investigate the transport of inclusion particles.

  7. Near-wall effects for momentum, heat and mass transport in gas-particle suspensions at moderate Reynolds numbers

    Science.gov (United States)

    Radl, Stefan; Municchi, Federico; Goniva, Christoph

    2016-11-01

    Understanding transport phenomena in fluid-particle systems is of primary importance for the design of large-scale equipment, e.g., in the chemical industry. Typically, the analysis of such systems is performed by numerically solving a set of partial differential equations modeling the particle phase and the fluid phase as interpenetrating continua. Such models require a number of closure models that are often constructed via spatial filtering of data obtained from particle-resolved direct numerical simulations (PR-DNS). In the present work we make use of PR-DNS to evaluate corrections to existing closure models. Specifically, we aim on accounting for wall effects on the fluid-particle drag force and the particle-individual Nusselt number. We then propose an improved closure model to be used in particle-unresolved Euler-Lagrange (PU-EL) simulations. We demonstrate that such an advanced closure should account for a dimensionless filter size, as well as a normalized distance from the wall. In addition, we make an attempt to model the filtered fluid velocity profile in wall-bounded suspension flows. The authors acknowledge funding from the European Commission through FP7 Grant Agreement No. 604656, as well as VSC-3 and dcluster.tugraz.at.

  8. Combined technology for observing, understanding and predicting suspended particle transport and fate from anthropogenic discharges in coastal waters

    Science.gov (United States)

    Davies, E. J.

    2016-02-01

    The combined observation, understanding and prediction of suspended particle transport and fate in coastal waters is essential for assessing environmental stresses that originate from anthropogenic sources. We present a toolbox consisting of an optics-based instrument suite, post-processing and analysis tools, and numerical models for understanding particle transport and fate, and its effect on the marine environment. We show results from a combined measurement and modelling campaign, focussed on understanding the transport of flocculating particulate material discharged into a Norwegian fjord, and demonstrate the application of this approach to real-time monitoring of drilling discharges in the vicinity of coral reefs. Unique measurements and images of suspended particulates, obtained from multiple water column profiles within a fjord, are presented. Initial model predictions of particle transport were used to highlight target areas for the field campaign, where model uncertainty was highest. Regular discharges of flocculating material were released into the fjord, requiring particle observations to span several orders of magnitude in size and concentration. This was achieved by combining data from a LISST-100, LISST-HOLO, and a bespoke Silhouette particle imaging system. Together, these instruments produced size distributions ranging from 2.5-10000microns. In-situ imaging proved essential in providing a realistic picture of the nature of the flocculated material, with many long, string-like flocs of several cm in length being advected hundreds of metres from their discharge location. Observations surrounding the discharge within this fjord system are used to help validate an improved particle transport model aimed at accurately accounting for flocculation, subsequent sedimentation and modifications to seabed bathymetry. The numerical formulation enhanced by this combined measurement and modelling approach is applicable for a wide variety of scenarios where human

  9. Discrete particle model for sheet flow sediment transport in the nearshore

    National Research Council Canada - National Science Library

    Drake, Thomas G; Calantoni, Joseph

    2001-01-01

    ...‐related term to widely used energetics sediment transport formulae. Transport predicted by the acceleration term becomes increasingly significant as wave shape approaches the sawtooth profile characteristic of surf zone bores...

  10. Particle dynamics in self-generated dunes over a range of hydraulic and sediment transport conditions using LES--DEM

    CERN Document Server

    Sun, Rui; Strom, Kyle

    2016-01-01

    Direct measurement of vertical and longitudinal sediment fluxes on migrating sandy bedforms are extremely difficult to perform in both the field and laboratory. In this study we use the LES--DEM (large eddy simulation--discrete element method) solver SediFoam to examine the individual particle motions and resulting fluxes in a domain of self-generated dunes. In SediFoam, the motions of, and collisions among, the sediment grains as well as their interactions with surrounding turbulent flows are resolved. The numerical simulations are performed over a range of transport settings, spanning bedform inception through washout conditions, to examine the individual particle dynamics. The space-time evolution of dune surfaces is demonstrated. The self-generated dunes are stable at relatively low Reynolds numbers, but then become increasingly unstable at higher Reynolds numbers; eventually washing out as the number of bypass grains and particles in suspension increase. Data from the simulation are used to examine the v...

  11. Effects of a Radial Dependence in Transport Parameters on the Estimation of Solar Particle Fluence at Jupiter's Orbit

    Science.gov (United States)

    Saiz, A.; Ruffolo, D. J.; Bieber, J. W.; Evenson, P. A.

    2009-12-01

    Solar energetic particles (SEPs) are one major hazard concern for astronauts in space missions, and their possible effects need to be evaluated before planning long-term missions such as eventual manned trips to Mars. Although particle transport between the Sun and the Earth is currently well understood, an accurate modeling technique for transport to larger distances is still needed in order to predict potential damage to spacecraft and crew by SEPs, especially during extreme events. A common consensus is that the pitch-angle scattering radial mean free path can be assumed to be constant, but new results in simulations of solar wind turbulence suggest that there is a dependence on distance to the Sun. In this work we model the radial transport of SEPs in the inner heliosphere and out to the orbit of Jupiter by specifying a different radial dependence for the pitch-angle scattering mean free path. We estimate time profiles and fluence at different distances from the Sun for different particle energies, and compare the results with those corresponding to the previous assumptions. Partially supported by the Thailand Research Fund and NASA's Living With a Star program under grant NNX08AQ18G.

  12. Missouri S&T hydrogen transportation test bed equipment & construction.

    Science.gov (United States)

    2010-08-01

    Investments through the National University Transportation Center at Missouri University of Science and Technology have really scored on the Centers mission areas and particularly Transition-state fuel vehicle infrastructure leading to a hydrogen ...

  13. Hybrid mesh/particle meshless method for modeling geological flows with discontinuous transport properties

    Science.gov (United States)

    Bourantas, Georgios; Lavier, Luc; Claus, Susanne; Van Dam, Tonie; Bordas, Stephane

    2015-04-01

    meshless point collocation Eulerian method, while energy equation are solved using a set of particles, distributed over the spatial domain, with the solution interpolated back to the Eulerian grid at every time step. This hybrid approach allows for the accurate calculation of fine thermal structures, through the ease of adaptivity offered by the flexibility of the particle method. The approximation space is constructed using the Discretization Correction Particle Strength Exchange (DC PSE) method. The proposed scheme gives the capability of solving flow equations (Stokes flow) in fully irregular geometries while particles, "sprinkled" in the spatial domain, are used to solve convection-diffusion problems avoiding the oscillation produced in the Eulerian approach. The resulting algebraic linear systems were solved using direct solvers. Our hybrid approach can capture sharp variations of stresses and thermal gradients in problems with a strongly variable viscosity and thermal conductivity as demonstrated through various benchmarking test cases such as the development of Rayleigh-Taylor instabilities, viscous heating and flows with non-Newtonian rheology.

  14. Nonequilibrium fluctuation-dissipation relations for one- and two-particle correlation functions in steady-state quantum transport.

    Science.gov (United States)

    Ness, H; Dash, L K

    2014-04-14

    We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments.

  15. Effect of static vs. dynamic imaging on particle transport in CT-based numerical models of human central airways.

    Science.gov (United States)

    Miyawaki, Shinjiro; Hoffman, Eric A; Lin, Ching-Long

    2016-10-01

    Advances in quantitative computed tomography (CT) has provided methods to assess the detailed structure of the pulmonary airways and parenchyma, providing the means of applying computational fluid dynamics-based modeling to better understand subject-specific differences in structure-to-function relationships. Most of the previous numerical studies, seeking to predict patterns of inhaled particle deposition, have considered airway geometry and regional ventilation derived from static images. Because geometric alterations of the airway and parenchyma associated with regional ventilation may greatly affect particle transport, we have sought to investigate the effect of rigid vs. deforming airways, linear vs. nonlinear airway deformations, and step-wise static vs. dynamic imaging on particle deposition with varying numbers of intermediate lung volume increments. Airway geometry and regional ventilation at different time points were defined by four-dimensional (space and time) dynamic or static CT images. Laminar, transitional, and turbulent air flows were reproduced with a three-dimensional eddy-resolving computational fluid dynamics model. Finally, trajectories of particles were computed with the Lagrangian tracking algorithm. The results demonstrated that static-imaging-based models can contribute 7% uncertainty to overall particle distribution and deposition primarily due to regional flow rate (ventilation) differences as opposed to geometric alterations. The effect of rigid vs. deforming airways on serial distribution of particles over generations was significantly smaller than reported in a previous study that used the symmetric Weibel geometric model with smaller flow rate. Rigid vs. deforming airways were also shown to affect parallel particle distribution over lobes by 8% and the differences associated with use of static vs. dynamic imaging was 18%. These differences demonstrate that estimates derived from static vs. dynamic imaging can significantly affect the

  16. Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations

    Science.gov (United States)

    Ortiz-Amezcua, Pablo; Guerrero-Rascado, Juan Luis; José Granados-Muñoz, María; Benavent-Oltra, José Antonio; Böckmann, Christine; Samaras, Stefanos; Stachlewska, Iwona S.; Janicka, Łucja; Baars, Holger; Bohlmann, Stephanie; Alados-Arboledas, Lucas

    2017-05-01

    Strong events of long-range transported biomass burning aerosol were detected during July 2013 at three EARLINET (European Aerosol Research Lidar Network) stations, namely Granada (Spain), Leipzig (Germany) and Warsaw (Poland). Satellite observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instruments, as well as modeling tools such as HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and NAAPS (Navy Aerosol Analysis and Prediction System), have been used to estimate the sources and transport paths of those North American forest fire smoke particles. A multiwavelength Raman lidar technique was applied to obtain vertically resolved particle optical properties, and further inversion of those properties with a regularization algorithm allowed for retrieving microphysical information on the studied particles. The results highlight the presence of smoke layers of 1-2 km thickness, located at about 5 km a.s.l. altitude over Granada and Leipzig and around 2.5 km a.s.l. at Warsaw. These layers were intense, as they accounted for more than 30 % of the total AOD (aerosol optical depth) in all cases, and presented optical and microphysical features typical for different aging degrees: color ratio of lidar ratios (LR532 / LR355) around 2, α-related ångström exponents of less than 1, effective radii of 0.3 µm and large values of single scattering albedos (SSA), nearly spectrally independent. The intensive microphysical properties were compared with columnar retrievals form co-located AERONET (Aerosol Robotic Network) stations. The intensity of the layers was also characterized in terms of particle volume concentration, and then an experimental relationship between this magnitude and the particle extinction coefficient was established.

  17. A Direct Time-Domain Particle Tracking Method for Modeling Solute Transport in a Network of Fractures

    Science.gov (United States)

    Lee, H.-S.; Liou, T.-S.

    2009-04-01

    Modeling of solute transport in naturally fractured rocks is challenged by a suitable description of the inherent heterogeneity and associated uncertainty of the fracture network. Despite the success of discrete fracture network (DFN) models in reproducing geometric and structural properties of a fracture network, the extensive computational load of DFNs on numerical simulation of solute transport inevitably limits themselves to small-scale applications. Therefore, we have developed a direct time-domain particle tracking (TDPT) method for overcoming these difficulties. Transport processes considered in our TDPT model includes advection and hydrodynamic dispersion in the fracture and Fickian diffusion in the matrix. Mass exchange between fracture and matrix is also assumed by molecular diffusion. Decay and kinetic sorption onto fracture surfaces and within matrix pores are considered as well. This approach is different from other TDPTs in that particle arrival time can be sampled directly by a single step, and that hydrodynamic dispersion is taken into account for a reliable prediction of particle travel time. The ‘directedness' of our TDPT is achieved by neglecting aperture variability within a single fracture and by incorporating hydrodynamic dispersion into the transport model. Note, however, that a heterogeneous aperture field within the network is allowed in order to reflect large-scale flow channeling caused by velocity variation between fracture segments. We also derive a memory function to represent the retention process due to kinetic sorption and Fickian diffusion into rock matrix of limited size. Laplace domain transport model is first solved from a Lagragian perspective, which is then numerically inverted to get the particle arrival time. Simulation results in a single fracture show that early-time BTC characteristics are determined mainly by transport in the fracture. On the other hand, late-time BTC is controlled by retention-related processes such

  18. Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 2. Particle displacement variance

    Science.gov (United States)

    Soltanian, Mohamad Reza; Ritzi, Robert W.; Huang, Chao Cheng; Dai, Zhenxue

    2015-03-01

    This series of papers addresses the transport of sorbing solutes in groundwater. In part 2, plume dispersion, as quantified by the particle displacement variance, X11R>(t>), is linked to hierarchical sedimentary architecture using a Lagrangian-based transport model. This allows for a fundamental understanding of how dispersion arises from the hierarchical architecture of sedimentary facies, and allows for a quantitative decomposition of dispersion into facies-related contributions at different scales within the hierarchy. As in part 1, the plume behavior is assumed to be controlled by linear-equilibrium sorption and the heterogeneity in both the log permeability, Y=ln⁡>(k>), and the log distribution coefficient, Ξ=ln⁡>(Kd>). Heterogeneity in Y and Ξ arises from sedimentary processes and is structured by the consequent sedimentary architecture. Our goal is to understand the basic science of the dispersion process at this very fundamental level. The spatial auto and cross covariances for the relevant attributes are linear sums of terms corresponding to the probability of transitioning across stratal facies types defined at different scales. Unlike previous studies that used empirical relationships for the spatial covariances, here the model parameters are developed from independent measurements of physically quantifiable attributes of the stratal architecture (i.e., proportions and lengths of facies types, and univariate statistics for Y and Ξ). Nothing is assumed about Y-Ξ point correlation; it is allowed to differ by facies type. However, it is assumed that Y and Ξ variance is small but meaningful, and that pore-scale dispersion is negligible. The time-dependent spreading rate is a function of the effective ranges of the cross-transition probability structures (i.e., the ranges of indicator correlation structures) for each relevant scale of stratal hierarchy. As in part 1, the well-documented perchloroethene (PCE) tracer test at the Borden research site is

  19. Determinants of black carbon, particle mass and number concentrations in London transport microenvironments

    Science.gov (United States)

    Rivas, Ioar; Kumar, Prashant; Hagen-Zanker, Alex; Andrade, Maria de Fatima; Slovic, Anne Dorothee; Pritchard, John P.; Geurs, Karst T.

    2017-07-01

    We investigated the determinants of personal exposure concentrations of commuters' to black carbon (BC), ultrafine particle number concentrations (PNC), and particulate matter (PM1, PM2.5 and PM10) in different travel modes. We quantified the contribution of key factors that explain the variation of the previous pollutants in four commuting routes in London, each covered by four transport modes (car, bus, walk and underground). Models were performed for each pollutant, separately to assess the effect of meteorology (wind speed) or ambient concentrations (with either high spatial or temporal resolution). Concentration variations were mainly explained by wind speed or ambient concentrations and to a lesser extent by route and period of the day. In multivariate models with wind speed, the wind speed was the common significant predictor for all the pollutants in the above-ground modes (i.e., car, bus, walk); and the only predictor variable for the PM fractions. Wind speed had the strongest effect on PM during the bus trips, with an increase in 1 m s-1 leading to a decrease in 2.25, 2.90 and 4.98 μg m-3 of PM1, PM2.5 and PM10, respectively. PM2.5 and PM10 concentrations in car trips were better explained by ambient concentrations with high temporal resolution although from a single monitoring station. On the other hand, ambient concentrations with high spatial coverage but lower temporal resolution predicted better the concentrations in bus trips, due to bus routes passing through streets with a high variability of traffic intensity. In the underground models, wind speed was not significant and line and type of windows on the train explained 42% of the variation of PNC and 90% of all PM fractions. Trains in the district line with openable windows had an increase in concentrations of 1 684 cm-3 for PNC and 40.69 μg m-3 for PM2.5 compared with trains that had non-openable windows. The results from this work can be used to target efforts to reduce personal exposures of

  20. Mass transport models for a single particle in gas phase propylene polymerization

    NARCIS (Netherlands)

    Parasu Veera, U.

    2003-01-01

    Olefin polymerisation on heterogeneous catalysts is gaining importance due to widening of the polymer properties window. The supported active catalyst on the heterogeneous particle reacts with the monomer and produces polymer. Polymeric flow (PF) model is relatively simple and assume that particle

  1. Transport of particles, drops, and small organisms in density stratified fluids

    Science.gov (United States)

    Ardekani, Arezoo M.; Doostmohammadi, Amin; Desai, Nikhil

    2017-10-01

    Sedimenting particles and motile organisms are ubiquitously found in oceans and lakes, where density stratification naturally occurs due to temperature or salinity gradients. We explore the effects of stratification on the fundamental hydrodynamics of settling particles, rising drops, and small organisms. The results of our direct numerical simulations of the sedimentation of particles show that the presence of vertical density gradients in the water column can substantially affect the settling dynamics of a particle, interaction between a pair of particles, and settling rates and microstructure of suspension of particles. We show that elongation of particles affects both the settling orientation and the settling rate of particles in stratified fluids, which will have direct consequences on the vertical flux of particulate matter and carbon flux in the ocean. We further demonstrate an unexpected effect of buoyancy, potentially affecting a broad range of processes at pycnoclines in oceans and lakes. In particular, stratification has a major effect on the flow field, energy expenditure, and nutrient uptake of small organisms. In addition, the role of stratification in pattern formation of bioconvection plumes of algal cells and in biogenic mixing is investigated. In particular, the numerical approach allows for considering the effects of background turbulence and hydrodynamic perturbations produced by swimming organisms, shedding light on the contribution of organisms in the mixing process in aqueous environments.

  2. Experimental and Particle-Tracking Model Analysis of Anomalous Transport and Sorption of Nickel in Natural Soil Columns

    Science.gov (United States)

    Edery, Y.; Rubin, S.; Dror, I.; Berkowitz, B.

    2012-12-01

    Nickel migration measured in laboratory-scale, natural soil column experiments is shown to display anomalous (non-Fickian) transport and non-equilibrium adsorption and desorption patterns. Similar experiments using a conservative tracer also exhibit anomalous behavior. In parallel batch experiments, adsorption and desorption isotherms demonstrate hysteresis, indicating some permanent adsorption. While adsorption is described by the Langmuir isotherm, equilibrium concentrations are higher than those predicted by the same model for desorption. Furthermore, batch and flow-through column experiments show the occurrence of ion exchange of nickel with magnesium and potassium in the soil; aluminum and other ion concentrations are also affected by the presence of nickel. Strong retention of nickel during transport in soil columns leads to delayed initial breakthrough (~40 pore volumes), slow increase in concentration, and extended concentration tailing at long times. Standard models, including two-site non-equilibrium formulations, fail to capture these features quantitatively. We describe the mechanisms of transport and adsorption/desorption in terms of a continuous time random walk (CTRW) model, and use a particle tracking formulation to simulate the nickel migration in the column. This approach allows us to capture the non-Fickian transport and the subtle local effects of adsorption and desorption. The model uses transport parameters estimated from the conservative tracer and, as a starting point, adsorption/desorption parameters based on the batch experiments to account for the reactions. It is shown that the batch parameters under-estimate the actual adsorption in the column. The CTRW particle tracking model is shown to capture both the full evolution of the measured breakthrough curve and the measured spatial concentration profile. Analysis of these results provides further understanding of the interaction and dynamics between transport and sorption mechanisms in

  3. Direct Pb Isotopic Analysis of a Nuclear Fallout Debris Particle from the Trinity Nuclear Test.

    Science.gov (United States)

    Bellucci, Jeremy J; Snape, Joshua F; Whitehouse, Martin J; Nemchin, Alexander A

    2017-02-07

    The Pb isotope composition of a nuclear fallout debris particle has been directly measured in post-detonation materials produced during the Trinity nuclear test by a secondary ion mass spectrometry (SIMS) scanning ion image technique (SII). This technique permits the visual assessment of the spatial distribution of Pb and can be used to obtain full Pb isotope compositions in user-defined regions in a 70 μm × 70 μm analytical window. In conjunction with backscattered electron (BSE) and energy-dispersive spectroscopy (EDS) mapping of the same particle, the Pb measured in this fallout particle cannot be from a major phase in the precursor arkosic sand. Similarly, the Pb isotope composition of the particle is resolvable from the surrounding glass at the 2σ uncertainty level (where σ represents the standard deviation). The Pb isotope composition measured in the particle here is in excellent agreement with that inferred from measurements of green and red trinitite, suggesting that these types of particles are responsible for the Pb isotope compositions measured in both trinitite glasses.

  4. Stochastic modeling of groundwater flow and particle transport in a 2-D heterogeneous medium by the method of conditional probabilities; Modelisation stochastique conditionnelle de l`ecoulement et du transport particulaire dans un milieu heterogene bidimensionnel

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, C. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1997-12-31

    The study addresses the issues of groundwater flow and particle transport in a 2-D heterogenous porous medium. We follow here the line of G. Dagan and Y. Rubin. In a series of articles these authors propose and represent the variables involves (transmissivity, head, Darcy velocity, particle position and travel time) by means of stochastic processes. The (unconditional) moments are first derived by solving the partial differential equations corresponding to a 2-D flow in a saturated medium, with no recharge. In a second step, the variances of the processes are reduced bu taking local data into account within the conditional probabilities framework. In this document we present a complete theoretical study of the method and apply it on synthetical test cases. We deal with the following matters: study the impact of different data type and configurations on the conditional estimation of the flow and transport variables; study the robustness of the model for increasing levels of heterogeneity by means of comparison with the moments obtained by Monte-Carlo simulations. The method is enlarged to weakly un-stationary flow cases (non constant transmissivity and head gradient means) and applied on synthetical test cases. (author) 80 refs.

  5. Key U.S.-built part fails during testing for world's largest particle collider

    CERN Document Server

    2007-01-01

    "Scientists are scrambling to redesign a key U.S.-built part that broke "with a loud bang and a cloud of dust" during a high-pressure test for the world's largest particle physics collider that is supposed to start up in November, officials sais Tuesday." (1,5 page)

  6. A Finite Element Projection Method for the Solution of Particle Transport Problems with Anisotropic Scattering.

    Science.gov (United States)

    1984-07-01

    Ackroyd , R. T. "A Finite Element Technique for the Even Parity Neutron Transport Equation," The Mathematics of Finite Elements and...state transport equation. In 1972 a more detailed examination of the use of finite elements to solve neutron diffusion problems was provided by Kaper...79, 269-277 (1981). Ukai, S., "Solution of the Multi-dimensional Neutron Transport Equation by Finite Element Methods,"

  7. A New Method to Improve Performance of Resampling Process in Particles Filter by Genetic Algorithm and Gamma Test Algorithm

    Science.gov (United States)

    Wang, Zhenwu; Hut, Rolf; van de Giesen, Nick

    2017-04-01

    Particle filtering is a nonlinear and non-Gaussian dynamical filtering system. It has found widespread applications in hydrological data assimilation. In order to solve the loss of particle diversity exiting in resampling process of particle filter, this research proposes an improved particle filter algorithm using genetic algorithm optimization and Gamma test. This method combines the genetic algorithm and Gamma test into the resampling procedure of particle filter to improve the adaptability and performance of particle filter in data assimilation. First, the particles are classified to three different groups based on resampling method. The particles with high weight values remain unchanged. Then genetic algorithm is used to cross and variate the rest of the particles. In the process of the optimization, the Gamma test method is applied for monitoring the quality of the new generated particles. When the gamma statistic stays stable, the algorithm will end the optimization and continue to perturb next observations in particle algorithm. The algorithm is illustrated for the three-dimensional Lorenz model and the much more complex 40-dimensional Lorenz model. The results demonstrate this method can keep the diversity of the particles and enhance the performance of the particle filter, leading to the promising conjecture that the method is applicable to realistic hydrological problems.

  8. Full-Scale Model of Subionospheric VLF Signal Propagation Based on First-Principles Charged Particle Transport Calculations

    Science.gov (United States)

    Kouznetsov, A.; Cully, C. M.; Knudsen, D. J.

    2016-12-01

    Changes in D-Region ionization caused by energetic particle precipitation are monitored by the Array for Broadband Observations of VLF/ELF Emissions (ABOVE) - a network of receivers deployed across Western Canada. The observed amplitudes and phases of subionospheric-propagating VLF signals from distant artificial transmitters depend sensitively on the free electron population created by precipitation of energetic charged particles. Those include both primary (electrons, protons and heavier ions) and secondary (cascades of ionized particles and electromagnetic radiation) components. We have designed and implemented a full-scale model to predict the received VLF signals based on first-principle charged particle transport calculations coupled to the Long Wavelength Propagation Capability (LWPC) software. Calculations of ionization rates and free electron densities are based on MCNP-6 (a general-purpose Monte Carlo N- Particle) software taking advantage of its capability of coupled neutron/photon/electron transport and novel library of cross-sections for low-energetic electron and photon interactions with matter. Cosmic ray calculations of background ionization are based on source spectra obtained both from PAMELA direct Cosmic Rays spectra measurements and based on the recently-implemented MCNP 6 galactic cosmic-ray source, scaled using our (Calgary) neutron monitor measurement results. Conversion from calculated fluxes (MCNP F4 tallies) to ionization rates for low-energy electrons are based on the total ionization cross-sections for oxygen and nitrogen molecules from the National Institute of Standard and Technology. We use our model to explore the complexity of the physical processes affecting VLF propagation.

  9. Acceleration, Transport, Forecasting and Impact of solar energetic particles in the framework of the 'HESPERIA' HORIZON 2020 project

    Science.gov (United States)

    Malandraki, Olga; Klein, Karl-Ludwig; Vainio, Rami; Agueda, Neus; Nunez, Marlon; Heber, Bernd; Buetikofer, Rolf; Sarlanis, Christos; Crosby, Norma

    2017-04-01

    High-energy solar energetic particles (SEPs) emitted from the Sun are a major space weather hazard motivating the development of predictive capabilities. In this work, the current state of knowledge on the origin and forecasting of SEP events will be reviewed. Subsequently, we will present the EU HORIZON2020 HESPERIA (High Energy Solar Particle Events foRecastIng and Analysis) project, its structure, its main scientific objectives and forecasting operational tools, as well as the added value to SEP research both from the observational as well as the SEP modelling perspective. The project addresses through multi-frequency observations and simulations the chain of processes from particle acceleration in the corona, particle transport in the magnetically complex corona and interplanetary space to the detection near 1 AU. Furthermore, publicly available software to invert neutron monitor observations of relativistic SEPs to physical parameters that can be compared with space-borne measurements at lower energies is provided for the first time by HESPERIA. In order to achieve these goals, HESPERIA is exploiting already available large datasets stored in databases such as the neutron monitor database (NMDB) and SEPServer that were developed under EU FP7 projects from 2008 to 2013. Forecasting results of the two novel SEP operational forecasting tools published via the consortium server of 'HESPERIA' will be presented, as well as some scientific key results on the acceleration, transport and impact on Earth of high-energy particles. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  10. Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam

    CERN Document Server

    Baszczyk, Mateusz Karol; Calabrese, Roberto; Cardinale, Roberta; Carniti, Paolo; Cassina, Lorenzo; Cavallero, Giovanni; Cojocariu, Lucian Nicolae; Cotta Ramusino, Angelo; D'Ambrosio, Carmelo; Dorosz, Piotr Andrzej; Easo, Sajan; Eisenhardt, Stephan; Fiorini, Massimiliano; Frei, Christoph; Gambetta, Silvia; Gibson, Valerie; Gotti, Claudio; Harnew, Neville; He, Jibo; Keizer, Floris; Kucewicz, Wojciech; Maciuc, Florin; Maino, Matteo; Malaguti, Roberto; Matteuzzi, Clara; Mccann, Michael Andrew; Morris, Adam; Muheim, Franz; Papanestis, Antonis; Pessina, Gianluigi; Petrolini, Alessandro; Piedigrossi, Didier; Pistone, Alessandro; Placinta, Vlad-Mihai; Sigurdsson, Saevar; Simi, Gabriele; Smith, Jackson William; Spradlin, Patrick; Tomassetti, Luca; Wotton, Stephen

    2016-01-01

    The LHCb detector will be upgraded to use the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov (RICH) detectors are one of the key components of the LHCb detector for particle identification. In this paper, we describe the setup and the results of the first tests in a particle beam carried out to assess prototypes of the upgraded optoelectronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.

  11. Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam

    CERN Document Server

    Baszczyk, M.K.

    2017-01-16

    The LHCb detector will be upgraded to make more efficient use of the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb detector for particle identification. In this paper we describe the setup and the results of tests in a charged particle beam, carried out to assess prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.

  12. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Science.gov (United States)

    2010-07-01

    ... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...

  13. BLAZE-DEM: A GPU based Polyhedral DEM particle transport code

    CSIR Research Space (South Africa)

    Govender, Nicolin

    2013-05-01

    Full Text Available -sphere approaches , which approximate polyhedral geometries. The modeling of real particle shapes is critical for realistically simulating complex interaction phenomena in granular assemblies. BLAZE-DEM primarily concerns itself with simulating the flow of granular...

  14. An Efficient Surface Algorithm for Random-Particle Simulation of Vorticity and Heat Transport

    Science.gov (United States)

    Smith, P. A.; Stansby, P. K.

    1989-04-01

    A new surface algorithm has been incorporated into the random-vortex method for the simulation of 2-dimensional laminar flow, in which vortex particles are deleted rather than reflected as they cross a solid surface. This involves a modification to the strength and random walk of newly created vortex particles. Computations of the early stages of symmetric, impulsively started flow around a circular cylinder for a wide range of Reynolds numbers demonstrate that the number of vortices required for convergence is substantially reduced. The method has been further extended to accommodate forced convective heat transfer where temperature particles are created at a surface to satisfy the condition of constant surface temperature. Vortex and temperature particles are handled together throughout each time step. For long runs, in which a steady state is reached, comparison is made with some time-averaged experimental heat transfer data for Reynolds numbers up to a few hundred. A Karman vortex street occurs at the higher Reynolds numbers.

  15. The Diffusion Approximation versus the Telegraph Equation for Modeling Solar Energetic Particle Transport with Adiabatic Focusing. I. Isotropic Pitch-angle Scattering

    Science.gov (United States)

    Effenberger, Frederic; Litvinenko, Yuri E.

    2014-03-01

    The diffusion approximation to the Fokker-Planck equation is commonly used to model the transport of solar energetic particles in interplanetary space. In this study, we present exact analytical predictions of a higher order telegraph approximation for particle transport and compare them with the corresponding predictions of the diffusion approximation and numerical solutions of the full Fokker-Planck equation. We specifically investigate the role of the adiabatic focusing effect of a spatially varying magnetic field on an evolving particle distribution. Comparison of the analytical and numerical results shows that the telegraph approximation reproduces the particle intensity profiles much more accurately than does the diffusion approximation, especially when the focusing is strong. However, the telegraph approximation appears to offer no significant advantage over the diffusion approximation for calculating the particle anisotropy. The telegraph approximation can be a useful tool for describing both diffusive and wave-like aspects of the cosmic-ray transport.

  16. Representation of aerosol particles and associated transport pathways in regional climate modelling in Africa

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2016-11-01

    Full Text Available Agricultural Research Council. Pretoria, South Africa 5Centre for High Performance Computing, CSIR, Pretoria, South Africa School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, South Africa Aerosol particles can have... of was to investigate the monthly cycle of aerosol particles from CCAM to understand if that cycle is captured correctly. Multi-year monthly averages of the CCAM modelled and the Aerosol Robotic Network (AERONET) measured aerosol optical depth (AOD) were compared...

  17. On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence

    CERN Document Server

    González, C A; Mininni, P D; Matthaeus, W H

    2016-01-01

    The effect of compressibility in charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the compressibilty effect over the particle dynamics we performed different numerical experiments: an incompressible case, and two weak compressible cases with Mach number M = 0.1 and M = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. We show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the ot...

  18. PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morris, Robert Noel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baldwin, Charles A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.

  19. A KDEL Retrieval System for ER-Golgi Transport of Japanese Encephalitis Viral Particles.

    Science.gov (United States)

    Wang, Robert Y L; Wu, Yu-Jen; Chen, Han-Shan; Chen, Chih-Jung

    2016-02-05

    Evidence has emerged that RNA viruses utilize the host secretory pathway for processing and trafficking mature viral particles and for exiting the infected cells. Upon completing the complex assembly process, the viral particles take advantage of the cellular secretory trafficking machinery for their intracellular trafficking toward the Golgi organelle and budding or export of virions. In this study, we showed that Japanese encephalitis virus (JEV)-induced extracellular GRP78 contains no KDEL motif using an anti-KDEL-specific antibody. Overexpression of the KDEL-truncated GRP78 in the GPR78 knocked down cells significantly reduced JEV infectivity, suggesting that the KDEL motif is required for GRP78 function in the release of JE viral particles. In addition, we demonstrated the KDELR protein, an ER-Golgi retrieval system component, is associated with viral envelope proteins and is engaged in the subcellular localization of viral particles in Golgi. More importantly, accumulation of intracellular virions was observed in the KDELR knocked down cells, indicating that the KDELR protein mediated the intracellular trafficking of JE viral particles. Altogether, we demonstrated that intracellular trafficking of JE assembled viral particles was mediated by the host ER-Golgi retrieval system prior to exit by the secretory pathway.

  20. On the transport and acceleration of solar flare particles in a coronal loop

    Science.gov (United States)

    Ryan, James M.; Lee, Martin A.

    1991-01-01

    The turbulent environment of a flaring solar coronal loop directly affects the population of particles to be accelerated or already accelerated. Under the assumption of a uniform turbulent MHD wave field within the loop, the behavior of a particle distribution as it interacts with the turbulence is discussed, including particle precipitation to the footpoints of the loop and the evolution of the energy distribution as the particles undergo second-order stochastic acceleration. Two cases are discussed in detail: (1) particles spatially diffusing within the loop and precipitating with minimal acceleration in the short time scale of an impulsive event and (2) particles diffusing in both real and momentum space in a long duration event. Collisional losses due to ambient electrons are included. The gamma-ray flare of June 3, 1982 is modeled, and good agreement is obtained between predicted and observed time profiles if the loop length is 100,000 km with an intrinsic spatial diffusion time of 100-450 s. It follows that the production of high-energy neutrons and pi mesons extends over a time scale of 1000 s as observed.

  1. Impact of Spherical Inclusion Mean Chord Length and Radius Distribution on Three-Dimensional Binary Stochastic Medium Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    Brantley, P S; Martos, J N

    2011-03-02

    We describe a parallel benchmark procedure and numerical results for a three-dimensional binary stochastic medium particle transport benchmark problem. The binary stochastic medium is composed of optically thick spherical inclusions distributed in an optically thin background matrix material. We investigate three sphere mean chord lengths, three distributions for the sphere radii (constant, uniform, and exponential), and six sphere volume fractions ranging from 0.05 to 0.3. For each sampled independent material realization, we solve the associated transport problem using the Mercury Monte Carlo particle transport code. We compare the ensemble-averaged benchmark fiducial tallies of reflection from and transmission through the spatial domain as well as absorption in the spherical inclusion and background matrix materials. For the parameter values investigated, we find a significant dependence of the ensemble-averaged fiducial tallies on both sphere mean chord length and sphere volume fraction, with the most dramatic variation occurring for the transmission through the spatial domain. We find a weaker dependence of most benchmark tally quantities on the distribution describing the sphere radii, provided the sphere mean chord length used is the same in the different distributions. The exponential distribution produces larger differences from the constant distribution than the uniform distribution produces. The transmission through the spatial domain does exhibit a significant variation when an exponential radius distribution is used.

  2. Potential Use of BEST® Sediment Trap in Splash - Saltation Transport Process by Simultaneous Wind and Rain Tests.

    Directory of Open Access Journals (Sweden)

    Mustafa Basaran

    Full Text Available The research on wind-driven rain (WDR transport process of the splash-saltation has increased over the last twenty years as wind tunnel experimental studies provide new insights into the mechanisms of simultaneous wind and rain (WDR transport. The present study was conducted to investigate the efficiency of the BEST® sediment traps in catching the sand particles transported through the splash-saltation process under WDR conditions. Experiments were conducted in a wind tunnel rainfall simulator facility with water sprayed through sprinkler nozzles and free-flowing wind at different velocities to simulate the WDR conditions. Not only for vertical sediment distribution, but a series of experimental tests for horizontal distribution of sediments was also performed using BEST® collectors to obtain the actual total sediment mass flow by the splash-saltation in the center of the wind tunnel test section. Total mass transport (kg m-2 were estimated by analytically integrating the exponential functional relationship using the measured sediment amounts at the set trap heights for every run. Results revealed the integrated efficiency of the BEST® traps at 6, 9, 12 and 15 m s-1 wind velocities under 55.8, 50.5, 55.0 and 50.5 mm h-1 rain intensities were, respectively, 83, 106, 105, and 102%. Results as well showed that the efficiencies of BEST® did not change much as compared with those under rainless wind condition.

  3. Wind Turbine Blade Nondestructive Testing with a Transportable Radiography System

    Directory of Open Access Journals (Sweden)

    J. G. Fantidis

    2011-01-01

    Full Text Available Wind turbines are becoming widely used as they are an environmentally friendly way for energy production without emissions; however, they are exposed to a corrosive environment. In addition, as wind turbines typically are the tallest structures in the surrounding area of a wind farm, it is expected that they will attract direct lightning strikes several times during their operating life. The purpose of this paper is to show that the radiography with a transportable unit is a solution to find defects in the wind turbine blade and reduce the cost of inspection. A transportable neutron radiography system, incorporating an Sb–Be source, has been simulated using the MCNPX code. The simulated system has a wide range of radiography parameters.

  4. VERTIGO (VERtical Transport In the Global Ocean): A study of particle sources and flux attenuation in the North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Buesseler, K.O.; Trull, T.W.; Steinberg, D.K.; Silver, M.W.; Siegel, D.A.; Saitoh, S.-I.; Lamborg, C.H.; Lam, P.J.; Karl, D.M.; Jiao, N.Z.; Honda, M.C.; Elskens, M.; Dehairs, F.; Brown, S.L.; Boyd, P.W.; Bishop, J.K.B.; Bidigare, R.R.

    2008-06-10

    The VERtical Transport In the Global Ocean (VERTIGO) study examined particle sources and fluxes through the ocean's 'twilight zone' (defined here as depths below the euphotic zone to 1000 m). Interdisciplinary process studies were conducted at contrasting sites off Hawaii (ALOHA) and in the NW Pacific (K2) during 3 week occupations in 2004 and 2005, respectively. We examine in this overview paper the contrasting physical, chemical and biological settings and how these conditions impact the source characteristics of the sinking material and the transport efficiency through the twilight zone. A major finding in VERTIGO is the considerably lower transfer efficiency (T{sub eff}) of particulate organic carbon (POC), POC flux 500/150 m, at ALOHA (20%) vs. K2 (50%). This efficiency is higher in the diatom-dominated setting at K2 where silica-rich particles dominate the flux at the end of a diatom bloom, and where zooplankton and their pellets are larger. At K2, the drawdown of macronutrients is used to assess export and suggests that shallow remineralization above our 150 m trap is significant, especially for N relative to Si. We explore here also surface export ratios (POC flux/primary production) and possible reasons why this ratio is higher at K2, especially during the first trap deployment. When we compare the 500 m fluxes to deep moored traps, both sites lose about half of the sinking POC by >4000 m, but this comparison is limited in that fluxes at depth may have both a local and distant component. Certainly, the greatest difference in particle flux attenuation is in the mesopelagic, and we highlight other VERTIGO papers that provide a more detailed examination of the particle sources, flux and processes that attenuate the flux of sinking particles. Ultimately, we contend that at least three types of processes need to be considered: heterotrophic degradation of sinking particles, zooplankton migration and surface feeding, and lateral sources of

  5. ON THE RELATIVISTIC PRECESSION AND OSCILLATION FREQUENCIES OF TEST PARTICLES AROUND RAPIDLY ROTATING COMPACT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Pachon, Leonardo A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Rueda, Jorge A. [Dipartimento di Fisica and ICRA, Sapienza Universita di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); Valenzuela-Toledo, Cesar A., E-mail: leonardo.pachon@fisica.udea.edu.co, E-mail: jorge.rueda@icra.it, E-mail: cesar.valenzuela@correounivalle.edu.co [Departamento de Fisica, Universidad del Valle, A.A. 25360, Santiago de Cali (Colombia)

    2012-09-01

    Whether or not analytic exact vacuum (electrovacuum) solutions of the Einstein (Einstein-Maxwell) field equations can accurately describe the exterior space-time of compact stars still remains an interesting open question in relativistic astrophysics. As an attempt to establish their level of accuracy, the radii of the innermost stable circular orbits (ISCOs) of test particles given by analytic exterior space-time geometries have been compared with those given by numerical solutions for neutron stars (NSs) obeying a realistic equation of state (EOS). It has been so shown that the six-parametric solution of Pachon et al. (PRS) more accurately describes the NS ISCO radii than other analytic models do. We propose here an additional test of accuracy for analytic exterior geometries based on the comparison of orbital frequencies of neutral test particles. We compute the Keplerian, frame-dragging, and precession and oscillation frequencies of the radial and vertical motions of neutral test particles for the Kerr and PRS geometries and then compare them with the numerical values obtained by Morsink and Stella for realistic NSs. We identify the role of high-order multipole moments such as the mass quadrupole and current octupole in the determination of the orbital frequencies, especially in the rapid rotation regime. The results of this work are relevant to cast a separatrix between black hole and NS signatures and to probe the nuclear-matter EOS and NS parameters from the quasi-periodic oscillations observed in low-mass X-ray binaries.

  6. The Role of Cohesive Particle Interactions on Solids Uniformity and Mobilization During Jet Mixing: Testing Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Wells, Beric E.; Bamberger, Judith A.; Fort, James A.; Chun, Jaehun; Jenks, Jeromy WJ

    2010-04-01

    Radioactive waste that is currently stored in large underground tanks at the Hanford Site will be staged in selected double-shell tanks (DSTs) and then transferred to the Waste Treatment and Immobilization Plant (WTP). Before being transferred, the waste will be mixed, sampled, and characterized to determine if the waste composition and meets the waste feed specifications. Washington River Protection Solutions is conducting a Tank Mixing and Sampling Demonstration Program to determine the mixing effectiveness of the current baseline mixing system that uses two jet mixer pumps and the adequacy of the planned sampling method. The overall purpose of the demonstration program is to mitigate the technical risk associated with the mixing and sampling systems meeting the feed certification requirements for transferring waste to the WTP.The purpose of this report is to analyze existing data and evaluate whether scaled mixing tests with cohesive simulants are needed to meet the overall objectives of the small-scale mixing demonstration program. This evaluation will focus on estimating the role of cohesive particle interactions on various physical phenomena that occur in parts of the mixing process. A specific focus of the evaluation will be on the uniformity of suspended solids in the mixed region. Based on the evaluation presented in this report and the absence of definitive studies, the recommendation is to conduct scaled mixing tests with cohesive particles and augment the initial testing with non-cohesive particles. In addition, planning for the quantitative tests would benefit from having test results from some scoping experiments that would provide results on the general behavior when cohesive inter-particle forces are important.

  7. Optimal run-and-tumble-based transportation of a Janus particle with active steering.

    Science.gov (United States)

    Mano, Tomoyuki; Delfau, Jean-Baptiste; Iwasawa, Junichiro; Sano, Masaki

    2017-03-28

    Although making artificial micrometric swimmers has been made possible by using various propulsion mechanisms, guiding their motion in the presence of thermal fluctuations still remains a great challenge. Such a task is essential in biological systems, which present a number of intriguing solutions that are robust against noisy environmental conditions as well as variability in individual genetic makeup. Using synthetic Janus particles driven by an electric field, we present a feedback-based particle-guiding method quite analogous to the "run-and-tumbling" behavior of Escherichia coli but with a deterministic steering in the tumbling phase: the particle is set to the run state when its orientation vector aligns with the target, whereas the transition to the "steering" state is triggered when it exceeds a tolerance angle [Formula: see text] The active and deterministic reorientation of the particle is achieved by a characteristic rotational motion that can be switched on and off by modulating the ac frequency of the electric field, which is reported in this work. Relying on numerical simulations and analytical results, we show that this feedback algorithm can be optimized by tuning the tolerance angle [Formula: see text] The optimal resetting angle depends on signal to noise ratio in the steering state, and it is shown in the experiment. The proposed method is simple and robust for targeting, despite variability in self-propelling speeds and angular velocities of individual particles.

  8. ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt

    2012-08-31

    Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

  9. Study of particle transport in a high power spallation target for an accelerator-driven transmutation system

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Nikhil Vittal

    2013-01-31

    AGATE is a project envisaged to demonstrate the feasibility of transmutation in a gas (helium) cooled accelerator-driven system using solid spallation target. Development of the spallation target module and assessing its safety aspects are studied in this work. According to the AGATE concept parameters, 600 MeV protons are delivered on to the segmented tungsten spallation target. The Monte Carlo toolkit Geant4 has been used in the simulation of particle transport. Binary cascade is used to simulate intra-nuclear cascades, along with the G4NDL neutron data library for low energy neutrons (<20 MeV).

  10. (210)Pb as a tracer of soil erosion, sediment source area identification and particle transport in the terrestrial environment.

    Science.gov (United States)

    Matisoff, Gerald

    2014-12-01

    Although (137)Cs has been used extensively to study soil erosion and particle transport in the terrestrial environment, there has been much less work using excess or unsupported (210)Pb ((210)Pbxs) to study the same processes. Furthermore, since (137)Cs activities in soils are decreasing because of radioactive decay, some locations have an added complication due to the addition of Chernobyl-derived (137)Cs, and the activities of (137)Cs in the southern hemisphere are low, there is a need to develop techniques that use (210)Pbxs to provide estimates of rates of soil erosion and particle transport. This paper reviews the current status of (210)Pbxs methods to quantify soil erosion rates, to identify and partition suspended sediment source areas, and to determine the transport rates of particles in the terrestrial landscape. Soil erosion rates determined using (210)Pbxs are based on the unsupported (210)Pb ((210)Pbxs) inventory in the soil, the depth distribution of (210)Pbxs, and a mass balance calibration ('conversion model') that relates the soil inventory to the erosion rate using a 'reference site' at which neither soil erosion nor soil deposition has occurred. In this paper several different models are presented to illustrate the effects of different model assumptions such as the timing, depth and rates of the surface soil mixing on the calculated erosion rates. The suitability of model assumptions, including estimates of the depositional flux of (210)Pbxs to the soil surface and the post-depositional mobility of (210)Pb are also discussed. (210)Pb can be used as one tracer to permit sediment source area identification. This sediment 'fingerprinting' has been extended far beyond using (210)Pb as a single radioisotope to include numerous radioactive and stable tracers and has been applied to identifying the source areas of suspended sediment based on underlying rock type, land use (roads, stream banks, channel beds, cultivated or uncultivated lands, pasture lands

  11. Altered ion transport in normal human bronchial epithelial cells following exposure to chemically distinct metal welding fume particles.

    Science.gov (United States)

    Fedan, Jeffrey S; Thompson, Janet A; Meighan, Terence G; Zeidler-Erdely, Patti C; Antonini, James M

    2017-07-01

    Welding fume inhalation causes pulmonary toxicity, including susceptibility to infection. We hypothesized that airway epithelial ion transport is a target of fume toxicity, and investigated the effects of fume particulates from manual metal arc-stainless steel (MMA-SS) and gas metal arc-mild steel (GMA-MS) on ion transport in normal human bronchial epithelium (NHBE) cultured in air-interface. MMA-SS particles, more soluble than GMA-MS particles, contain Cr, Ni, Fe and Mn; GMA-MS particles contain Fe and Mn. MMA-SS or GMA-MS particles (0.0167-166.7μg/cm 2 ) were applied apically to NHBEs. After 18h transepithelial potential difference (V t ), resistance (R t ), and short circuit current (I sc ) were measured. Particle effects on Na + and Cl¯ channels and the Na + ,K + ,2Cl¯-cotransporter were evaluated using amiloride (apical), 5-nitro-2-[(3-phenylpropyl)amino]benzoic acid (NPPB, apical), and bumetanide (basolateral), respectively. MMA-SS (0.0167-16.7μg/cm 2 ) increased basal V t . Only 16.7μg/cm 2 GMA-MS increased basal V t significantly. MMA-SS or GMA-MS exposure potentiated I sc responses (decreases) to amiloride and bumetanide, while not affecting those to NPPB, GMA-MS to a lesser degree than MMA-SS. Variable effects on R t were observed in response to amiloride, and bumetanide. Generally, MMA-SS was more potent in altering responses to amiloride and bumetanide than GMA-MS. Hyperpolarization occurred in the absence of LDH release, but decreases in V t , R t , and I sc at higher fume particulate doses accompanied LDH release, to a greater extent for MMA-SS. Thus, Na + transport and Na + ,K + ,2Cl¯-cotransport are affected by fume exposure; MMA-MS is more potent than GMA-MS. Enhanced Na + absorption and decreased airway surface liquid could compromise defenses against infection. Published by Elsevier Inc.

  12. Numerical Test of the Additivity Principle in Anomalous Transport

    Science.gov (United States)

    Tamaki, Shuji

    2017-10-01

    The additivity principle (AP) is one of the remarkable predictions that systematically generates all information on current fluctuations once the value of average current in the linear response regime is input. However, conditions to justify the AP are still ambiguous. We hence consider three tractable models, and discuss possible conditions. The models include the harmonic chain (HC), momentum exchange (ME) model, and momentum flip (MF) model, which respectively show ballistic, anomalous, and diffusive transport. We compare the heat current cumulants predicted by the AP with exact numerical data obtained for these models. The HC does not show the AP, whereas the MF model satisfies it, as expected, since the AP was originally proposed for diffusive systems. Surprisingly, the ME model also shows the AP. The ME model is known to show the anomalous transport similar to that shown in nonlinear systems such as the Fermi-Pasta-Ulam model. Our finding indicates that general nonlinear systems may satisfy the AP. Possible conditions for satisfying the AP are discussed.

  13. Development and Demonstration of a Computational Tool for the Analysis of Particle Vitiation Effects in Hypersonic Propulsion Test Facilities

    Science.gov (United States)

    Perkins, Hugh Douglas

    2010-01-01

    In order to improve the understanding of particle vitiation effects in hypersonic propulsion test facilities, a quasi-one dimensional numerical tool was developed to efficiently model reacting particle-gas flows over a wide range of conditions. Features of this code include gas-phase finite-rate kinetics, a global porous-particle combustion model, mass, momentum and energy interactions between phases, and subsonic and supersonic particle drag and heat transfer models. The basic capabilities of this tool were validated against available data or other validated codes. To demonstrate the capabilities of the code a series of computations were performed for a model hypersonic propulsion test facility and scramjet. Parameters studied were simulated flight Mach number, particle size, particle mass fraction and particle material.

  14. Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings

    Science.gov (United States)

    Lowry, G.V.; Shaw, S.; Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.

    2004-01-01

    Mercury (Hg) release from inoperative Hg mines in the California Coast Range has been documented, but little is known about the release and transport mechanisms. In this study, tailings from Hg mines located in different geologic settings-New Idria (NI), a Si-carbonate Hg deposit, and Sulphur Bank (SB), a hot-spring Hg deposit-were characterized, and particle release from these wastes was studied in column experiments to (1) investigate the mechanisms of Hg release from NI and SB mine wastes, (2) determine the speciation of particle-bound Hg released from the mine wastes, and (3) determine the effect of calcinations on Hg release processes. The physical and chemical properties of tailings and the colloids released from them were determined using chemical analyses, selective chemical extractions, XRD, SEM, TEM, and X-ray absorption spectroscopy techniques. The total Hg concentration in tailings increased with decreasing particle size in NI and SB calcines (roasted ore), but reached a maximum at an intermediate particle size in the SB waste rock (unroasted ore). Hg in the tailings exists predominantly as low-solubility HgS (cinnabar and metacinnabar), with NI calcines having >50% HgS, SB calcines having >89% HgS, and SB waste rock having ???100% HgS. Leaching experiments with a high-ionic-strength solution (0.1 M NaCl) resulted in a rapid but brief release of soluble and particulate Hg. Lowering the ionic strength of the leach solution (0.005 M NaCl) resulted in the release of colloidal Hg from two of the three mine wastes studied (NI calcines and SB waste rock). Colloid-associated Hg accounts for as much as 95% of the Hg released during episodic particle release. Colloids generated from the NI calcines are produced by a breakup and release mechanism and consist of hematite, jarosite/alunite, and Al-Si gel with particle sizes of 10-200 nm. ATEM and XAFS analyses indicate that the majority (???78%) of the mercury is present in the form of HgS. SB calcines also

  15. A theory of motion for test particles in relativistic celestial mechanics

    Science.gov (United States)

    Chechin, L. M.

    Zel'manov's (1976) monad formalism is used to develop a theory of motion for test particles in the solar system as they are observed by a terrestrial observer. Relativistic additions are made to Zel'manov's calculations which are connected with transformations to planetary reference system, and to all four classical effects of Einstein's gravitational theory. It is found that a correct description of the real system of reference leads to greater conformity between theoretical conclusions and experimental results.

  16. Subscale Testing of Nozzle Ablative Materials in a Supersonic Particle Impingement Environment

    Science.gov (United States)

    Howse, S.; Lawrence, T.

    2004-01-01

    Recent efforts to evaluate materials to replace the current NARC rayon used in the nozzle ablative of the NASA's Reusable Solid Rocket Motor (SRM), several tests were developed to look at the performance of supersonic particle impact region of the aft exit cone. It was seen in early testing that some potential candidates did not perform as well as the current NARC based material and so the 24 inch Solid Rocket Motor (SRTM) exit cone design was extended and contoured to induce particle impingement in the aft end. The SRTM testing provided a larger testbed to evaluate the results seen in the Solid Fuel Supersonic Blast Tube. Testing was performed in each test bed on two variants of the final two candidate materials. The materials were a standard prewoven Lyocell, a postwoven Lyocell, an Enka rayon, and Enka rayon processed at a higher carbonization temperature. This paper presents the results of the four materials in the SSBT and the SRTM tests as compared against the NARC baseline. Erosion, char, and plylift results are discussed in detail.

  17. Distinct Structural Behavior and Transport of TiO2 Nano- and Nanostructured Particles in Sand

    Science.gov (United States)

    Environmental impact of TiO2 particles along with other widely-used nanomaterials as a new class of contaminants has recently emerged. Due to the lack of detailed information and proper understanding of their properties as a result of synthesis (nanoparticles vs nanost...

  18. Application of a robust and efficient Lagrangian particle scheme to soot transport in turbulent flames

    KAUST Repository

    Attili, Antonio

    2013-09-01

    A Lagrangian particle scheme is applied to the solution of soot dynamics in turbulent nonpremixed flames. Soot particulate is described using a method of moments and the resulting set of continuum advection-reaction equations is solved using the Lagrangian particle scheme. The key property of the approach is the independence between advection, described by the movement of Lagrangian notional particles along pathlines, and internal aerosol processes, evolving on each notional particle via source terms. Consequently, the method overcomes the issues in Eulerian grid-based schemes for the advection of moments: errors in the advective fluxes pollute the moments compromising their realizability and the stiffness of source terms weakens the stability of the method. The proposed scheme exhibits superior properties with respect to conventional Eulerian schemes in terms of stability, accuracy, and grid convergence. Taking into account the quality of the solution, the Lagrangian approach can be computationally more economical than commonly used Eulerian schemes as it allows the resolution requirements dictated by the different physical phenomena to be independently optimized. Finally, the scheme posseses excellent scalability on massively parallel computers. © 2013 Elsevier Ltd.

  19. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic

    NARCIS (Netherlands)

    van der Does, M.; Korte, L.F.; Munday, C.I.; Brummer, G.-J. A.; Stuut, J-B W.

    2016-01-01

    Mineral dust has a large impact on regional andglobal climate, depending on its particle size. Especially inthe Atlantic Ocean downwind of the Sahara, the largest dustsource on earth, the effects can be substantial but are poorlyunderstood. This study focuses on seasonal and spatial variationsin

  20. Acceleration and particle transport in collisionless plasma in the process of dipolarization and nonstationary turbulence

    Science.gov (United States)

    Zhukova, E. I.; Malova, Kh. V.; Popov, V. Yu.; Grigorenko, E. E.; Petrukovich, A. A.; Zelenyi, L. M.

    2017-11-01

    This work is devoted to studying the processes of the acceleration of plasma particles in thin current sheets that appear during magnetospheric substorms in the Earth's magnetosphere tail. A numerical model of magnetic dipolarization accompanied by plasma turbulence has been constructed and studied. The model allows one to investigate the particle acceleration due to the action of three principal mechanisms: (1) plasma turbulence; (2) magnetic dipolarization; (3) their simultaneous action. For the given velocity kappa-distributions, we obtained energy spectra of three types of accelerated particles, i.e., protons p +, ions of oxygen O+, and electrons e -. It has been shown that the combined mechanism of dipolarization with turbulence (3) makes the largest contribution to the increase in the energy of protons and heavy ions as compared with a separate action of each of mechanisms (1) and (2); in this case, electrons accelerate less. The consideration of the joint action of acceleration mechanisms (1) and (2) can explain the apparition of particles with energies on the order of magnitude equal to hundreds keV in the Earth's magnetosphere tail.

  1. Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway.

    Science.gov (United States)

    Wendel, Cato Christian; Fifield, L Keith; Oughton, Deborah H; Lind, Ole Christian; Skipperud, Lindis; Bartnicki, Jerzy; Tims, Stephen G; Høibråten, Steinar; Salbu, Brit

    2013-09-01

    A combination of state-of-the-art isotopic fingerprinting techniques and atmospheric transport modelling using real-time historical meteorological data has been used to demonstrate direct tropospheric transport of radioactive debris from specific nuclear detonations at the Semipalatinsk test site in Kazakhstan to Norway via large areas of Europe. A selection of archived air filters collected at ground level at 9 stations in Norway during the most intensive atmospheric nuclear weapon testing periods (1957-1958 and 1961-1962) has been screened for radioactive particles and analysed with respect to the concentrations and atom ratios of plutonium (Pu) and uranium (U) using accelerator mass spectrometry (AMS). Digital autoradiography screening demonstrated the presence of radioactive particles in the filters. Concentrations of (236)U (0.17-23nBqm(-3)) and (239+240)Pu (1.3-782μBqm(-3)) as well as the atom ratios (240)Pu/(239)Pu (0.0517-0.237) and (236)U/(239)Pu (0.0188-0.7) varied widely indicating several different sources. Filter samples from autumn and winter tended to have lower atom ratios than those sampled in spring and summer, and this likely reflects a tropospheric influence in months with little stratospheric fallout. Very high (236)U, (239+240)Pu and gross beta activity concentrations as well as low (240)Pu/(239)Pu (0.0517-0.077), (241)Pu/(239)Pu (0.00025-0.00062) and (236)U/(239)Pu (0.0188-0.046) atom ratios, characteristic of close-in and tropospheric fallout, were observed in filters collected at all stations in Nov 1962, 7-12days after three low-yield detonations at Semipalatinsk (Kazakhstan). Atmospheric transport modelling (NOAA HYSPLIT_4) using real-time meteorological data confirmed that long range transport of radionuclides, and possibly radioactive particles, from Semipalatinsk to Norway during this period was plausible. The present work shows that direct tropospheric transport of fallout from atmospheric nuclear detonations periodically may have

  2. Pressure Prediction of Coal Slurry Transportation Pipeline Based on Particle Swarm Optimization Kernel Function Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xue-cun Yang

    2015-01-01

    Full Text Available For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM and kernel function extreme learning machine prediction model (KELM. The results prove that mean square error (MSE for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.

  3. Testing hydrometeor particle type discrimination derived from CloudSat and CALIPSO

    Science.gov (United States)

    Kikuchi, Maki; Okamoto, Hajime; Sato, Kaori; Hagihara, Yuichiro

    2017-02-01

    We developed a test version of algorithm that discriminate cloud/precipitation phase and ice cloud particle shape (hereafter, hydrometeor particle type) from the synergy use of the cloud profiling radar (CPR) onboard CloudSat satellite and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. We used the CALIOP classification algorithm that was developed by Yoshida et al. (2010) and modified by Hirakata et al. (2014). The CPR algorithm mainly consisted of the following steps: (1) initial discrimination by the look-up-table derived from the match-up statistical analysis of the CPR radar reflectivity, CALIOP cloud particle type and Tropical Rainfall Measuring Mission (TRMM) precipitation, and (2) precipitation correction of initial discrimination by unattenuated surface radar reflectivity. Lastly, the CPR and CALIOP synergy particle type was discriminated, simply by selecting the hydrometeor type that was most reasonable. In this study, we showed two case studies of the CPR, the CALIOP and the synergy discrimination results. By taking the advantage of CPR's capability to penetrate into thick cloud and observe light precipitation, and CALIOP's sensitivity to detect thin ice clouds, the synergy algorithm gave seamless vertical profile from thin cloud to precipitation.

  4. A test-bed for optimizing high-resolution single particle reconstructions.

    Science.gov (United States)

    Stagg, Scott M; Lander, Gabriel C; Quispe, Joel; Voss, Neil R; Cheng, Anchi; Bradlow, Henry; Bradlow, Steven; Carragher, Bridget; Potter, Clinton S

    2008-07-01

    It is becoming routine for cryoEM single particle reconstructions to result in 3D electron density maps with resolutions of approximately 10A, but maps with resolutions of 5A or better are still celebrated events. The electron microscope has a resolving power to better than 2A, and thus should not be a limiting factor; instead the practical limitations in resolution most likely arise from a combination of specimen preparation methods, data collection parameters, and data analysis procedures. With the aid of a highly automated system for acquiring images, coupled to a relational database to keep track of all processing parameters, we have taken a systematic approach to optimizing parameters affecting the resolution of single particle reconstructions. Using GroEL as a test-bed, we performed a series of 3D reconstructions where we systematically varied the number of particles used in computing the map, the accelerating voltage of the microscope, and the electron dose used to acquire the images. We also investigated methods for excluding unacceptable or "bad" particles from contributing to the final 3D map. Using relatively standard instrumentation (Tecnai F20, 4K x 4K CCD, side entry cold stage) and a completely automated approach, these approaches resulted in a map with a nominal resolution of 5.4A (FSC(0.5)) in which secondary structure is clearly discernable and the handedness of some of the alpha-helices in the GroEL structure can be determined.

  5. An Invariant Imbedding, Orders-of-Scattering Approach to Particle Transport in a Slab

    Science.gov (United States)

    1976-01-13

    tions ranging from neutron transport in reactors to laboratory studies of electron transport in thin films . As in the case of one-dimensional...to^onrtir» in^-^Miooiiro’^ noir -^-ojo^-xinaj MMMMMOOC t«->cirir.’ .»c. orvjfkjM — — — — oor^irr) « ^, ^ ^ _ c c ec-occc-c-oooocoo...application of the OOSII method can be found in the investigation of the scattering of low energy electrons in thin films . On the basis of empirical

  6. Applications of Turbulence Models for Transport of Dissolved Pollutants and Particles

    DEFF Research Database (Denmark)

    Petersen, Ole

    The present report concerns itself with numerical models of turbulent transport and mixing, with emphasis on the description of the mixing processes which occur in recipients and tanks. Consequently a part of the report is dedicated to a discussion of flows where differences in density play...... a substantial role in the mixing. In the first part of the report the theoretical bask for the partial differential equations which govern turbulent flows and the transport of matter is derived. The background for one- and two-equation turbulence models is reviewed and formulated both in a general way...

  7. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  8. Photon dose calculation based on electron multiple-scattering theory: practical representation of dose and particle transport integrals.

    Science.gov (United States)

    Jette, D

    1999-06-01

    In modern photon dose-calculation algorithms one is frequently called upon to evaluate the integral at various points throughout the irradiated material of a dose or particle transport quantity multiplied by a weighting factor. For example, for a given dose-calculation point one might be integrating the product of the dose deposited by a monoenergetic beam and the energy distribution of the actual beam, and want to do this throughout the treatment volume. We have developed explicit formulas for replacing such integrations with a weighted sum of two or three functions (of, for example, the point of dose calculation) in order to greatly reduce the calculation time for the algorithm being used. We demonstrate the accuracy of this method of representing dose and particle transport integrals through comparisons with Monte Carlo calculations of dose distributions for two typical problems, in dealing with the energy spectrum of the photon beam and with the energy deposited by all the Compton electrons emerging from a particular interaction point, respectively.

  9. Design of MgB2 superconducting dipole magnet for particle beam transport in accelerators

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.; Zangenberg, N.; Baurichter, A.

    2006-01-01

    . The existing markets of superconducting technology is within highly specialized scientific areas such as magnetic confinement in fusion energy, sample environment in neutron scattering and large scale acceleratorssuch as the Large Hadron Collider(LHC) at Cern, or in the nuclear magnetic resonance (NMR...... for the collaborating company Danfysik A/S, which has a strongtradition in building resistive magnets for particle accelerators[4]. A technology transfer project was formulated at the end of 2005 with the purpose to collect the knowledge about the MgB2 superconductor gained in the STVF program and in the European...... in a dipole magnet for guiding particle beams in a small scale accelerator is examined with the purpose to build lighter and smaller than the present resistive magnets. Here the criticalcurrent density of primarily MgB2 will be compared with current density determined by specifications similar to the Tevatron...

  10. Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken

    2009-01-01

    the water retention curve), both exhibiting similar and exponential relationships with D50. Under variably saturated conditions, higher Dp and ka in coarser sand (larger D50) were observed due to rapid gas diffusion and advection through the less tortuous large-pore networks. In addition, soil compaction......The soil gas diffusion coefficient (Dp) and air permeability (ka) and their dependency on soil air content ( ) control gas diffusion and advection in soils. This study investigated the effects of average particle size (D50) and dry bulk density ( b) on Dp and ka for six sandy soils under variably...... saturated conditions. Data showed that particle size markedly affects the effective diameter of the drained pores active in leading gas through the sample at –100 cm H2O of soil water matric potential (calculated from Dp and ka) as well as the average pore diameter at half saturation (calculated from...

  11. Reduction of cytochromes by nitrite in electron-transport particles from Nitrobacter winogradskyi: proposal of a mechanism for H+ translocation.

    Science.gov (United States)

    Cobley, J G

    1976-06-15

    1. A novel component in the respiratory chain of Nitrobacter winogradskyi was identified. This component absorbs maximally at 552.5 nm when in its reduced form, has an Eo' (pH7.0) value of-110mV and undergoes reduction by a mechanism involving the transfer of a single electron. 2. Degrees of reduction of cytochromes c and a1 in electron-transport (ET) particles were monitored during the course of NO2- oxidation, and the effects of ADP together with Pi, oligomycin and of carbonyl cyanide phenylhydrazone were determined. 3. The influences of ionophorous antibiotics, NH4Cl and cyclohexylamine hydrochloride on the reductions of cytochromes c and a1 by NO2- indicate that the flow of reducing equivalents from cytochrome a1 (+350mV) to cytochrome c (+270mV) is facilitated by deltapsi, the electrical component of the protonmotive force. 4. Cytochromes c and a1 in ET particles are reduced by the non-physiological reductant KBH4 in a manner similar to that observed with the physiological reductant NO2-. 5. To account both for the observed cytochrome reductions and for the translocation of H+ ions which accompanies NO2- oxidation, a mechanism is proposed which involves the transfer of a hydride equivalent (H+ plus 2e) inward across the membrane of the ET particle in response to deltapsi.

  12. Heat pump without particle transport or external work on the medium achieved by differential thermostatting of the phase space.

    Science.gov (United States)

    Patra, Puneet Kumar; Bhattacharya, Baidurya

    2016-03-01

    We propose a mechanism that enables heat flow from a colder region to a hotter region without necessitating either particle transport or external work on the conductor, thereby bypassing the compressor part of a classical heat pump cycle. Our mechanism relies on thermostatting the kinetic and configurational temperatures of the same particle differently. We keep the two ends of a conductor, which in the present study is a single dimensional ϕ(4) chain, at the same kinetic temperature T(0), but at different configurational temperatures--one end hotter and the other end colder than T(0). While external energy is needed within the thermostatted regions to achieve this differential thermostatting, no external work is performed on the system itself. We show that the mechanism satisfies the statistical form of the second law of thermodynamics (the fluctuation theorem). The proposed mechanism reveals two interesting findings: (i) contrary to traditional thermodynamics where only the kinetic temperature is thought to govern heat conduction, configurational temperature can also play an important role, and (ii) the relative temperature difference between the kinetic and configurational variables governs the direction of heat flow. The challenge, however, is in developing experimental techniques to thermostat the kinetic and configurational variables of the same particle at different values.

  13. Heat pump without particle transport or external work on the medium achieved by differential thermostatting of the phase space

    Science.gov (United States)

    Patra, Puneet Kumar; Bhattacharya, Baidurya

    2016-03-01

    We propose a mechanism that enables heat flow from a colder region to a hotter region without necessitating either particle transport or external work on the conductor, thereby bypassing the compressor part of a classical heat pump cycle. Our mechanism relies on thermostatting the kinetic and configurational temperatures of the same particle differently. We keep the two ends of a conductor, which in the present study is a single dimensional ϕ4 chain, at the same kinetic temperature T0, but at different configurational temperatures—one end hotter and the other end colder than T0. While external energy is needed within the thermostatted regions to achieve this differential thermostatting, no external work is performed on the system itself. We show that the mechanism satisfies the statistical form of the second law of thermodynamics (the fluctuation theorem). The proposed mechanism reveals two interesting findings: (i) contrary to traditional thermodynamics where only the kinetic temperature is thought to govern heat conduction, configurational temperature can also play an important role, and (ii) the relative temperature difference between the kinetic and configurational variables governs the direction of heat flow. The challenge, however, is in developing experimental techniques to thermostat the kinetic and configurational variables of the same particle at different values.

  14. Outward particle transport by coherent mode in the H-mode pedestal in the Experimental Advanced Superconducting Tokamak (EAST)

    Science.gov (United States)

    Zhang, T.; Han, X.; Gao, X.; Liu, H. Q.; Shi, T. H.; Liu, J. B.; Liu, Y.; Kong, D. F.; Liu, Z. X.; Qu, H.; Xiang, H. M.; Geng, K. N.; Wang, Y. M.; Wen, F.; Zhang, S. B.; Ling, B. L.; the EAST Team

    2017-06-01

    A coherent mode (CM) in the edge pedestal region has been observed on different fluctuation quantities, including density fluctuation, electron temperature fluctuation and magnetic fluctuation in H mode plasma on the Experimental Advanced Superconducting Tokamak (EAST) tokamak. Measurements at different poloidal positions show that the local poloidal wavenumber is smallest at the outboard midplane and will increase with poloidal angle. This poloidal asymmetry is consistent with the flute-like assumption (i.e. k// ˜ 0) from which the toroidal mode number of the mode has been estimated as between 12 and 17. It was further found that the density fluctuation amplitude of the CM also demonstrated poloidal asymmetry. The appearance of a CM can clearly decrease or even stop the increase in the edge density, while the disappearance of a CM will lead to an increase in the pedestal density and density gradient. Statistical analysis showed there was a trend that as the CM mode amplitude increased, the rate of increase of the edge density decreased and the particle flux (Γdiv) onto the divertor plate increased. The CM sometimes showed burst behavior, and these bursts led bursts on Γdiv with a time of about 230 μs, which is close to the time for particle flow from the outer midplane to the divertor targets along the scrape-off layer magnetic field line. This evidence showed that the CM had an effect on the outward transport of particles.

  15. Intelligent transportation systems field operational test cross-cutting study : emissions management using ITS technology

    Science.gov (United States)

    1998-09-01

    Emissions Management Using ITS Technology report summarizes and interprets the results of three Intelligent Transportation Systems (ITS) Field Operational Tests (FOTs) that evaluated the use of emerging technologies to help authorities measure emissi...

  16. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    Science.gov (United States)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  17. Summary of Developmental Testing for the Light Strike Vehicle/Internally Transportable Vehicle

    National Research Council Canada - National Science Library

    Gallagher, Michael

    1999-01-01

    ...)/ Internally Transportable Vehicle (ITV) Program. An extensive amount of testing has been undertaken and accomplished in anticipation of a Milestone I decision to proceed with development and fielding of the LSV/ITV...

  18. Comparison between Genetic Algorithms and Particle Swarm Optimization Methods on Standard Test Functions and Machine Design

    DEFF Research Database (Denmark)

    Nica, Florin Valentin Traian; Ritchie, Ewen; Leban, Krisztina Monika

    2013-01-01

    Nowadays the requirements imposed by the industry and economy ask for better quality and performance while the price must be maintained in the same range. To achieve this goal optimization must be introduced in the design process. Two of the best known optimization algorithms for machine design......, genetic algorithm and particle swarm are shortly presented in this paper. These two algorithms are tested to determine their performance on five different benchmark test functions. The algorithms are tested based on three requirements: precision of the result, number of iterations and calculation time....... Both algorithms are also tested on an analytical design process of a Transverse Flux Permanent Magnet Generator to observe their performances in an electrical machine design application....

  19. Advanced testing and characterization of transportation soils and bituminous sands

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2007-12-01

    Full Text Available Modulus with Hydrostatic Stress for Oil Sands at 30oC. .......... 79 FIGURE 4.7 Bulk Modulus Model 3 Performances for Oil Sand Samples at 20oC................... 82 FIGURE 4.8 Bulk Modulus Model 3 Performances for Oil Sand Samples at 30o... of Resilient Modulus with Applied Deviator Stress at Two Test Temperatures for AU-14 Sample............................................................................................. 140 FIGURE 6.15 Performances of the SE-09 Oil sand Sample Resilient...

  20. Improved Ribbon Bridge (IRB) Prototype Transporter-Operational Test

    Science.gov (United States)

    1992-05-01

    exception of a Gerry-can holder on the left rear side of the vehicle. The Gerry- can intefered with the rear mounting bracket on the LjIS and was not... intefered with the stop block on the winch frame A- 14 twpoved mbmo &1dge am RB)Pofot’. Tromwoer-opwo11oio Test A-g Photo 23. The ramp bay bow ponton

  1. Extracellular transport of cell-size particles and tumor cells by dendritic cells in culture.

    Science.gov (United States)

    Thacker, Robert I; Retzinger, Andrew C; Cash, James G; Dentler, Michael D; Retzinger, Gregory S

    2013-12-01

    Many particulate materials of sizes approximating that of a cell disseminate after being introduced into the body. While some move about within phagocytic inflammatory cells, others appear to move about outside of, but in contact with, such cells. In this report, we provide unequivocal photomicroscopic evidence that cultured, mature, human dendritic cells can transport in extracellular fashion over significant distances both polymeric beads and tumor cells. At least in the case of polymeric beads, both fibrinogen and the β2-integrin subunit, CD18, appear to play important roles in the transport process. These discoveries may yield insight into a host of disease-related phenomena, including and especially tumor cell invasion and metastasis. © 2013. Published by Elsevier Inc. All rights reserved.

  2. Micro/nano-particles and Cells: Manipulation, Transport, and Self-assembly

    Science.gov (United States)

    2014-10-23

    Transport, IEEE Transactions on Magnetics, (01 2013): 300. doi: 10.1109/TMAG.2012.2224850 Nima Jokilaakso, Eric Salm, Aaron Chen, Larry Millet, Carlos...08/21/2012 08/21/2012 10/04/2013 10/04/2013 10/17/2014 10/22/2014 10.00 17.00 18.00 Received Paper 5.00 6.00 9.00 Nima Jokilaakso,Eric Salm, Aaron

  3. Development of a Low-Cost, Subscale Test System to Evaluate Particle Impingement Erosion in Nozzle Ablative Materials

    Science.gov (United States)

    Lansing, Matthew D.; Lawrence, Timothy W.; Gordon, Gail H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview on the development of a low-cost, subscale test system to evaluate particle impingement erosion in nozzle ablative materials. Details are given on the need for a new test bed, solid fuel torch components, solid fuel torch test, additional uses for the solid fuel torch, the development of a supersonic blast tube (SSBT), and particle impingement material discrimination.

  4. Evaluation of a Rapid Immunochromatographic Treponemal Antibody Test Comparing the Treponema Pallidum Particle Agglutination Assay.

    Science.gov (United States)

    Lee, Jong-Han; Lim, Chae Seung; Lee, Min-Geol; Kim, Hyon-Suk

    2015-09-01

    In addition to conventional tests, several methods for detection of treponema-specific antibodies in clinical settings have been recently introduced. We aim to comparatively evaluate a rapid immunochromatographic test (ICT) for Treponema pallidum specific antibody (SD Bioline Syphilis 3.0) and the T. pallidum particle agglutination (TPPA) assay. In all, 132 serum samples from 78 syphilis patients and 54 syphilis-negative controls were analyzed. SD Bioline Syphilis 3.0 test (Standard Diagnostic, Inc., Yongin, Korea) was evaluated and compared to Serodia TPPA assay (Fujirebio, Inc., Tokyo, Japan). All discrepant results between the two assays were repeatedly tested and evaluated by the fluorescent treponemal antibody-absorption (FTA-ABS) assay. Test reproducibility and 95% limit of detection of SD Bioline Syphilis 3.0 were determined across three different lots for seven consecutive days in triplicate. Interference due to autoantibodies and pregnancy was also tested. Percent agreement between SD Bioline Syphilis 3.0 and TPPA assays was 99.2%. Sensitivity and specificity were 100%, respectively. In TPPA assay, test-to-test, day-to-day, and lot-to-lot variations were not identified until 1:320 titer (eightfold dilutions). There was no interference due to the presence of antinuclear antibodies or samples or pregnancy. Percent agreement of SD Syphilis 3.0 and TPPA was very good. Sensitivity and specificity were appropriate for T. pallidum antibody detection. Thus, a rapid ICT could be suitable for syphilis antibody detection. © 2014 Wiley Periodicals, Inc.

  5. Linking Particle and Pore-Size Distribution Parameters to Soil Gas Transport Properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Schjønning, Per

    2012-01-01

    , respectively) and the Campbell water retention parameter b were used to characterize particle and pore size distributions, respectively. Campbell b yielded a wide interval (4.6–26.2) and was highly correlated with α, β, and volumetric clay content. Both Dp/Do and ka followed simple power-law functions (PLFs......) of air-filled porosity (εa). The PLF tortuosity–connectivity factors (X*) for Dp/Do and ka were both highly correlated with all basic soil characteristics, in the order of volumetric clay content = Campbell b > gravimetric clay content > α > β. The PLF water blockage factors (H) for Dp/Do and ka were...

  6. Molecular dynamics study on mechanism of preformed particle gel transporting through nanopores: Surface chemistry and heterogeneity

    Science.gov (United States)

    Cui, Peng; Zhang, Heng; Ma, Ying; Hao, Qingquan; Liu, Gang; Sun, Jichao; Yuan, Shiling

    2017-10-01

    The translocation behavior of preformed particle gel (PPG) in porous media is crucial for its application in enhanced oil recovery. By means of non-equilibrium molecular dynamics simulation, the translocation mechanism of PPG confined in different silica nanopores were investigated. The influence of surface chemistry and chemical heterogeneity of silica nanopore on the translocation process was revealed. As the degree of surface hydroxylation increases and the heterogeneity decreases, the pulling force needed to drive PPG decreases. We infer that the nanopore's surface (i.e. surface chemistry and heterogeneity) affects the translocation of PPG indirectly by forming different hydration layers.

  7. Erythrocyte adenosine transport. A rapid screening test for cardiovascular drugs.

    Science.gov (United States)

    Yeung, P K; Mosher, S J; Li, R; Farmer, P S; Klassen, G A; Pollak, P T; McMullen, M; Ferrier, G

    1993-11-01

    An erythrocyte (RBC) model based on whole blood was used to investigate the effect of cardiovascular drugs on the uptake of adenosine in vitro. Fresh whole blood obtained from healthy volunteers was allowed to equilibrate with various concentrations (5-1000 microM) of a tested agent. (2-3H)-Adenosine was used as a substrate, and the reaction was terminated after 2 sec of incubation at room temperature by rapid addition of a "Stopping Solution" which was a mixture of erythro-9-(2-hydroxy-3-nonyl)adenine, dipyridamole, and EDTA. The mixture was centrifuged (1760 g, 4 degrees C, 10 min), and the radioactivity of an aliquot of the supernatant was determined by a scintillation counter. The results showed that dipyridamole was the most potent agent tested (IC50 = 0.2 microM). Amongst the calcium antagonists studied, isradipine was most potent, followed by verapamil, clentiazem, diltiazem, and then nifedipine. The racemates of two metabolites of diltiazem, MX and MB, were more potent than the parent drug. The antiarrhythmic agents, amiodarone and sotalol, the two new lipid peroxidation inhibitors, U-74389F and U-78517F, and the anxiolytic agent, alprazolam, were as active as verapamil. The beta-receptor antagonist propranolol and the angiotensin converting enzyme (ACE) inhibitor, enalapril, were practically inactive. In addition, the model was stereoselective such that the S(-)-enantiomer of verapamil was considerably more potent than the R(+)-antipote, whereas d(+)-sotalol was practically inactive compared to racemic sotalol.

  8. Experimental Testing of the Effects of Fine Particles on the Properties of the Self-Compacting Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Sandra Juradin

    2012-01-01

    Full Text Available The self-compacting lightweight concrete (SCLC is a combination of the Self compacting concrete (SCC and the Lightweight concrete. It combines all the good properties of those two materials and is extremely convenient for the construction of buildings that require low mass and do not require high compressive strength, for example restoration works in old structures (e.g., replacement of wooden floors, prefabricated elements that require transportation, and for structures and elements where the concrete surface should be visible. In this paper the effect of the amount of fine particles on the properties of the self-compacting lightweight concrete (SCLC in the fresh and hardened state was explored. For this purpose, sets of specimens with different combinations of admixtures of silica fume, fly ash, and filler were prepared and tested. Slump flow and flow time of fresh concrete, as well as the dynamic elastic modulus and compressive strength of hardened concrete, were measured at different ages of concrete. The processes of manufacturing and methods of testing are described, as well as the obtained results.

  9. Strength Evaluation of PyC for TRISO Particles: Development of Equibiaxial Flexural Test

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kondo, Sosuke [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2008-09-01

    For the purpose of evaluating fracture strength of inner pyro-carbon (IPyC) for TRISO particles, a disc equibiaxial flexural test technique was developed and IPyC-relevant specimens fabricated in a test-run of fluidized-bed chemical vapor deposition were evaluated. It was demonstrated that the test technique developed is effective to determine the apparent fracture strength of thin specimen of PyC. Moreover, true strength was estimated from the acquired apparent strength values based on the result from finite element analysis. The estimated true strength values appeared reasonable for flexural strength of dense PyC. The influence of geometrical features introduced to the specimens due to the specific preparation procedures appeared insignificant.

  10. Combined Ceria Reduction and Methane Reforming in a Solar-Driven Particle-Transport Reactor.

    Science.gov (United States)

    Welte, Michael; Warren, Kent; Scheffe, Jonathan R; Steinfeld, Aldo

    2017-09-20

    We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO2 and reforming of CH4 using concentrated radiation as the source of process heat. The 2 kWth solar reactor prototype utilizes a cavity receiver enclosing a vertical Al2O3 tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH4 flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s. The maximum extent of ceria reduction, given by the nonstoichiometry δ (CeO2-δ), was 0.25. The solar-to-fuel energy conversion efficiency reached 12%. The syngas produced had a H2:CO molar ratio of 2, and its calorific value was solar-upgraded by 24% over that of the CH4 reformed.

  11. Aerosol particle evolution in an aircraft wake: Implications for the high-speed civil transport fleet impact on ozone

    Science.gov (United States)

    Danilin, M. Y.; Rodriguez, J. M.; Ko, M. K. W.; Weisenstein, D. K.; Brown, R. C.; Miake-Lye, R. C.; Anderson, M. R.

    1997-09-01

    Previous calculations of the ozone impact from a fleet of high-speed civil transports (HSCTs) have been carried out by global two-dimensional (2-D) models [Bekki and PyIe, 1993; Pitari et al., 1993] which have not included explicit wake processing of sulfur species. This processing could be important for the global sulfate aerosol and ozone perturbations [Weisenstein et al., 1996]. For an HSCT scenario with emission indices of NOx and sulfur equal to 5 and 0.4, respectively, and a cruise speed of Mach 2.4 [Stolarski and Wesoky, 1993b], the Atmospheric and Environmental Research (AER) 2-D model gives 0.50-1.1% as the range of the annually averaged O3 column depletion at 40°-50°N. This range is determined by the extreme assumption that emitted SO2 is diluted into the global model grid box either as gas or as 10 nm sulfate particles. A hierarchy of models is used here to investigate the impact of processes in the wake on the calculated global ozone response to sulfur emissions by a proposed HSCT fleet. We follow the evolution of aircraft emissions from the nozzle plane using three numerical models: the Standard Plume Flowfield-II/Plume Nucleation and Condensation model (SPF-II/PNC), an AER far wake model incorporating microphysics of aerosol particles, and the AER global 2-D chemistry-transport model. Particle measurements in the wake of the Concorde [Fahey et al., 1995a] are used to place constraints on sulfur oxidation processes in the engine and the near field. To explain the Concorde measurements, we consider cases with different fractions of SO3 (2%, 20%, and 40%) in the sulfur emissions at the nozzle plane and also the possibility of other unknown heterogeneous or homogeneous oxidation processes for SO2 in the wake. Assuming similar characteristics for the proposed HSCT fleet, the global ozone response is then calculated by the 2-D model. Using the model-calculated wake processing of sulfur emissions under the above assumptions and constrained by the Concorde

  12. System tests of the LHCb RICH detectors in a charged particle beam

    CERN Document Server

    Skottowe, Hugh

    2009-01-01

    The RICH detectors of the LHCb experiment will provide efficient particle identification over the momentum range 1-100 GeV=c. Results are presented from a beam test of the LHCb RICH system using final production pixel Hybrid Photon Detectors, the final readout electronics and an adapted version of LHCb RICH reconstruction software. Measurements of the photon yields and Cherenkov angle resolutions for both nitrogen and C4F10 radiators agree well with full simulations. The quality of the data and the results obtained demonstrate that all aspects meet the stringent physics requirements of the experiment are now ready for first data.

  13. Do we really need a large number of particles to simulate bimolecular reactive transport with random walk methods? A kernel density estimation approach

    Science.gov (United States)

    Rahbaralam, Maryam; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-12-01

    Random walk particle tracking methods are a computationally efficient family of methods to solve reactive transport problems. While the number of particles in most realistic applications is in the order of 106-109, the number of reactive molecules even in diluted systems might be in the order of fractions of the Avogadro number. Thus, each particle actually represents a group of potentially reactive molecules. The use of a low number of particles may result not only in loss of accuracy, but also may lead to an improper reproduction of the mixing process, limited by diffusion. Recent works have used this effect as a proxy to model incomplete mixing in porous media. In this work, we propose using a Kernel Density Estimation (KDE) of the concentrations that allows getting the expected results for a well-mixed solution with a limited number of particles. The idea consists of treating each particle as a sample drawn from the pool of molecules that it represents; this way, the actual location of a tracked particle is seen as a sample drawn from the density function of the location of molecules represented by that given particle, rigorously represented by a kernel density function. The probability of reaction can be obtained by combining the kernels associated to two potentially reactive particles. We demonstrate that the observed deviation in the reaction vs time curves in numerical experiments reported in the literature could be attributed to the statistical method used to reconstruct concentrations (fixed particle support) from discrete particle distributions, and not to the occurrence of true incomplete mixing. We further explore the evolution of the kernel size with time, linking it to the diffusion process. Our results show that KDEs are powerful tools to improve computational efficiency and robustness in reactive transport simulations, and indicates that incomplete mixing in diluted systems should be modeled based on alternative mechanistic models and not on a

  14. Numerical convergence and validation of the DIMP inverse particle transport model

    Directory of Open Access Journals (Sweden)

    Noel Nelson

    2017-09-01

    Full Text Available The data integration with modeled predictions (DIMP model is a promising inverse radiation transport method for solving the special nuclear material (SNM holdup problem. Unlike previous methods, DIMP is a completely passive nondestructive assay technique that requires no initial assumptions regarding the source distribution or active measurement time. DIMP predicts the most probable source location and distribution through Bayesian inference and quasi-Newtonian optimization of predicted detector responses (using the adjoint transport solution with measured responses. DIMP performs well with forward hemispherical collimation and unshielded measurements, but several considerations are required when using narrow-view collimated detectors. DIMP converged well to the correct source distribution as the number of synthetic responses increased. DIMP also performed well for the first experimental validation exercise after applying a collimation factor, and sufficiently reducing the source search volume's extent to prevent the optimizer from getting stuck in local minima. DIMP's simple point detector response function (DRF is being improved to address coplanar false positive/negative responses, and an angular DRF is being considered for integration with the next version of DIMP to account for highly collimated responses. Overall, DIMP shows promise for solving the SNM holdup inverse problem, especially once an improved optimization algorithm is implemented.

  15. Linear Characteristic Spatial Quadrature for Discrete Ordinates Neutral Particle Transport on Arbitrary Triangles

    Science.gov (United States)

    1993-06-01

    1•) + ) •,(v)(•,L) = ()(Q)+ sEXT (F). (4) The scalar flux, 0, is related to the angular flux, W, by (F)= f (dQ Vh) (5) and the particle current, J...J," v,p’) u +at(U, v) w(u, U, p’)= as(u, v) O(u, v) + SEXT (uv)] (92) 0 Ul,(V) I Assuming the area of the triangle is sufficiently small that cross...M + SEXT () (98) Wvn and WoUT are angular flux averages along the input and output edges, respectively, and are defined by WD Iv = f- ds. V(s.v) (99

  16. The effect of a concentration-dependent viscosity on particle transport in a channel flow with porous walls

    KAUST Repository

    Herterich, James G.

    2014-02-02

    The transport of a dilute suspension of particles through a channel with porous walls, accounting for the concentration dependence of the viscosity, is analyzed. In particular, we study two cases of fluid permeation through the porous channel walls: (1) at a constant flux and (2) dependent on the pressure drop across the wall. We also consider the effect of mixing the suspension first compared with point injection by considering inlet concentration distributions of different widths. We find that a pessimal inlet distribution width exists that maximizes the required hydrodynamic pressure for a constant fluid influx. The effect of an external hydrodynamic pressure, to compensate for the reduced transmembrane pressure difference due to osmotic pressure, is investigated. © 2014 American Institute of Chemical Engineers.

  17. Unconditionally stable and robust adjacent-cell diffusive preconditioning of weighted-difference particle transport methods is impossible

    CERN Document Server

    Azmy, Y Y

    2002-01-01

    We construct a particle transport problem for which there exists no preconditioner with a cell-centered diffusion coupling stencil that is unconditionally stable and robust. In particular we consider an asymptotic limit of the periodic horizontal interface (PHI) configuration wherein the cell height in both layers approaches zero like sigma sup 2 while the total cross section vanishes like sigma in one layer and diverges like sigma sup - sup 1 as sigma->0 in the other layer. In such cases we show that the conditions for stability and robustness of the flat eigenmodes of the iteration residual imply instability of the modes flat in the y-dimension and rapidly varying in the x-dimension. Two assumptions are made in the proof. (i) Only cell-centered adjacent-cell preconditioners (AP) are considered; nevertheless numerical experiments with face-centered preconditioners of the diffusion synthetic acceleration (DSA) type on problem configurations with sharp material discontinuities suffer similar deterioration in s...

  18. Decision-Making in Pediatric Transport Team Dispatch Using Script Concordance Testing.

    Science.gov (United States)

    Rajapreyar, Prakadeshwari; Marcdante, Karen; Zhang, Liyun; Simpson, Pippa; Meyer, Michael T

    2017-11-01

    Our objective was to compare decision-making in dispatching pediatric transport teams by Medical Directors of pediatric transport teams (serving as experts) to that of Pediatric Intensivists and Critical Care fellows who often serve as Medical Control physicians. Understanding decision-making around team composition and dispatch could impact clinical management, cost effectiveness, and educational needs. Survey was developed using Script Concordance Testing guidelines. The survey contained 15 transport case vignettes covering 20 scenarios (45 questions). Eleven scenarios assessed impact of intrinsic patient factors (e.g., procedural needs), whereas nine assessed extrinsic factors (e.g., weather). Pediatric Critical Care programs accredited by the Accreditation Council for Graduate Medical Education (the United States). Pediatric Intensivists and senior Critical Care fellows at Pediatric Critical Care programs were the target population with Transport Medical Directors serving as the expert panel. None. Survey results were scored per Script Concordance Testing guidelines. Concordance within groups was assessed using simple percentage agreement. There was little concordance in decision-making by Transport Medical Directors (median Script Concordance Testing percentage score [interquartile range] of 33.9 [30.4-37.3]). In addition, there was no statistically significant difference between the median Script Concordance Testing scores among the senior fellows and Pediatric Intensivists (31.1 [29.6-33.2] vs 29.7 [28.3-32.3], respectively; p = 0.12). Transport Medical Directors were more concordant on reasoning involving intrinsic patient factors rather than extrinsic factors (10/21 vs 4/24). Our study demonstrates pediatric transport team dispatch decision-making discordance by pediatric critical care physicians of varying levels of expertise and experience. Script Concordance Testing at a local level may better elucidate standards in medical decision-making within

  19. 76 FR 59574 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs: Federal Drug Testing...

    Science.gov (United States)

    2011-09-27

    ... under the DOT drug testing regulation, 49 CFR Part 40, must be collected using chain-of-custody... Alcohol Testing Programs: Federal Drug Testing Custody and Control Form; Technical Amendment AGENCY... of a new Federal Drug Testing Custody and Control Form (CCF) in its drug testing program. Use of the...

  20. Particles fluidized bed receiver/reactor tests with quartz sand particles using a 100-kWth beam-down solar concentrating system at Miyazaki

    Science.gov (United States)

    Kodama, Tatsuya; Gokon, Nobuyuki; Cho, Hyun Seok; Matsubara, Koji; Kaneko, Hiroshi; Senuma, Kazuya; Itoh, Sumie; Yokota, Shin-nosuke

    2017-06-01

    A window-type, solar fluidized bed receiver with quartz sand particles was tested by a 100-kWth novel beam-down solar concentrating system at Miyazaki, Japan. A compound parabolic concentrator (CPC) was placed above the quartz window of the receiver to increase the concentration of the solar fluxes from the beam-down solar concentrating system. The solar tests were performed in the middle of December, 2015. The central bed temperature of the receiver was reached around 960-1100° C. It was found that only 20 Ndm3/min of air flow rate was enough to create the uniform fluidization of the particles at the given temperature range. It was predicted that if the central bed temperature could have been higher than 1100°C if solar receiver test had conducted in other seasons than winter. The next solar campaign of the receiver test will be carried out in October, 2016.

  1. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  2. Investigation of the shape change of bio-flocs and its influence on mass transport using particle image velocimetry.

    Science.gov (United States)

    Ren, T T; Xiao, F; Sun, W J; Sun, F Y; Lam, K M; Li, X Y

    2014-01-01

    In this laboratory study, an advanced flow visualization technique - particle image velocimetry (PIV) - was employed to investigate the change of shape of activated sludge flocs in water and its influence on the material transport characteristics of the flocs. The continuous shape change of the bio-flocs that occurred within a very short period of time could be captured by the PIV system. The results demonstrate that the fluid turbulence caused the shift of parts of a floc from one side to the other in less than 200 ms. During the continuous shape change, the liquid within the floc was forced out of the floc, which was then refilled with the liquid from the surrounding flow. For the bio-flocs saturated with a tracer dye, it was shown that the dye could be released from the flocs at a faster rate when the flocs were swayed around in water. The experimental results indicate that frequent shape change of bio-flocs facilitates the exchange of fluid and materials between the floc interior and the surrounding water. This mass transfer mechanism can be more important than molecular diffusion and internal permeation to the function and behavior of particle aggregates, including bio-flocs, in natural waters and treatment systems.

  3. Towards scalable parellelism in Monte Carlo particle transport codes using remote memory access

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Paul K [Los Alamos National Laboratory; Brown, Forrest B [Los Alamos National Laboratory; Forget, Benoit [MIT

    2010-01-01

    One forthcoming challenge in the area of high-performance computing is having the ability to run large-scale problems while coping with less memory per compute node. In this work, they investigate a novel data decomposition method that would allow Monte Carlo transport calculations to be performed on systems with limited memory per compute node. In this method, each compute node remotely retrieves a small set of geometry and cross-section data as needed and remotely accumulates local tallies when crossing the boundary of the local spatial domain. initial results demonstrate that while the method does allow large problems to be run in a memory-limited environment, achieving scalability may be difficult due to inefficiencies in the current implementation of RMA operations.

  4. Equations of motion of test particles for solving the spin-dependent Boltzmann–Vlasov equation

    Directory of Open Access Journals (Sweden)

    Yin Xia

    2016-08-01

    Full Text Available A consistent derivation of the equations of motion (EOMs of test particles for solving the spin-dependent Boltzmann–Vlasov equation is presented. The resulting EOMs in phase space are similar to the canonical equations in Hamiltonian dynamics, and the EOM of spin is the same as that in the Heisenburg picture of quantum mechanics. Considering further the quantum nature of spin and choosing the direction of total angular momentum in heavy-ion reactions as a reference of measuring nucleon spin, the EOMs of spin-up and spin-down nucleons are given separately. The key elements affecting the spin dynamics in heavy-ion collisions are identified. The resulting EOMs provide a solid foundation for using the test-particle approach in studying spin dynamics in heavy-ion collisions at intermediate energies. Future comparisons of model simulations with experimental data will help to constrain the poorly known in-medium nucleon spin–orbit coupling relevant for understanding properties of rare isotopes and their astrophysical impacts.

  5. Particle and impurity transport in the Axial Symmetric Divertor Experiment Upgrade and the Joint European Torus, experimental observations and theoretical understanding

    DEFF Research Database (Denmark)

    Angioni, C.; Carraro, L.; Dannert, T.

    2007-01-01

    Experimental observations on core particle and impurity transport from the Axial Symmetric Divertor Experiment Upgrade [O. Gruber, H.-S. Bosch, S. Gunter , Nucl Fusion 39, 1321 (1999)] and the Joint European Torus [J. Pamela, E. R. Solano, and JET EFDA Contributors, Nucl. Fusion 43, 1540 (2003......)] tokamaks are reviewed and compared. Robust general experimental behaviors observed in both the devices and related parametric dependences are identified. The experimental observations are compared with the most recent theoretical results in the field of core particle transport. (C) 2007 American Institute...

  6. Sediment transport modeling in deposited bed sewers: unified form of May's equations using the particle swarm optimization algorithm.

    Science.gov (United States)

    Safari, Mir Jafar Sadegh; Shirzad, Akbar; Mohammadi, Mirali

    2017-08-01

    May proposed two dimensionless parameters of transport (η) and mobility (Fs) for self-cleansing design of sewers with deposited bed condition. The relationships between those two parameters were introduced in conditional form for specific ranges of Fs, which makes it difficult to use as a practical tool for sewer design. In this study, using the same experimental data used by May and employing the particle swarm optimization algorithm, a unified equation is recommended based on η and Fs. The developed model is compared with original May relationships as well as corresponding models available in the literature. A large amount of data taken from the literature is used for the models' evaluation. The results demonstrate that the developed model in this study is superior to May and other existing models in the literature. Due to the fact that in May's dimensionless parameters more effective variables in the sediment transport process in sewers with deposited bed condition are considered, it is concluded that the revised May equation proposed in this study is a reliable model for sewer design.

  7. Analytical Tests for Ray Effect Errors in Discrete Ordinate Methods for Solving the Neutron Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, B

    2004-03-22

    This paper contains three analytical solutions of transport problems which can be used to test ray-effect errors in the numerical solutions of the Boltzmann Transport Equation (BTE). We derived the first two solutions and the third was shown to us by M. Prasad. Since this paper is intended to be an internal LLNL report, no attempt was made to find the original derivations of the solutions in the literature in order to cite the authors for their work.

  8. Application of column tests and electrical resistivity methods for leachate transport monitoring

    OpenAIRE

    Wychowaniak Dorota; Zawadzki Łukasz; Lech Mariusz

    2015-01-01

    Development of the human civilization leads to the pollution of environment. One of the contamination which are a real threat to soil and groundwater are leachates from landfills. In this paper the solute transport through soil was considered. For this purpose, the laboratory column tests of chlorides tracer and leachates transport on two soil samples have been carried out. Furthermore, the electrical resistivity method was applied as auxiliary tool to follow the movements of solute through t...

  9. Towards real time spatially resolved data on sediment transport: 1) tracing the motion of the fluorescent soil particles under rainfall

    Science.gov (United States)

    Quinton, John; Hardy, Rob; Pates, Jackie; James, Mike

    2017-04-01

    Understanding where sediment originates from and where it travels to, in what quantities and at which rate is at the heart of many questions surrounding sediment transport, including the connectivity problem. Progress towards unravelling these questions and deepening our understanding has come from a wide range of approaches, including laboratory and field experiments conducted at a variety of scales. In seeking to understand the connectivity of sources and sinks of sediment scientists have spent considerable energy in developing tracing technologies. These have included numerous studies that have relied on the chemical properties of the soil and sediment to establish source-sink connectivity, and the use of 137Ceasium, from radioactive fall-out, to map sediment redistribution. More recently there has been an upsurge in interest in the use of artificially applied soil tracers, including rare earth element oxides and magnetic minerals. However all these tracing methods have a significant drawback: they rely on the collection of samples to assess their concentration. This means that their spatial distribution cannot easily be established in situ and that the environment that is being studied is damaged by the sampling process; nor can data be collected in real time which allows a dynamic understanding of erosion and transport processes to be developed. In this paper we present a methodology for use with a commercially available fluorescent tracer. The tracer is produced in a range of sizes and fluorescent signatures and can be applied to the soil surface. Here we report on an application that combines novel fluorescent videography techniques with custom image processing to trace the motion of the fluorescent soil particles under rainfall. Here we demonstrate the tracking of multiple sub-millimetre particles simultaneously, establishing their position 50 times a second with submillimetre precision. From this we are able to visualise and quantify parameters such as

  10. A numerical test method of California bearing ratio on graded crushed rocks using particle flow modeling

    Directory of Open Access Journals (Sweden)

    Yingjun Jiang

    2015-04-01

    Full Text Available In order to better understand the mechanical properties of graded crushed rocks (GCRs and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed for the California bearing ratio (CBR test on GCRs. The effects of different testing conditions and micro-mechanical parameters used in the model on the CBR numerical results have been systematically studied. The reliability of the numerical technique is verified. The numerical results suggest that the influences of the loading rate and Poisson's ratio on the CBR numerical test results are not significant. As such, a loading rate of 1.0–3.0 mm/min, a piston diameter of 5 cm, a specimen height of 15 cm and a specimen diameter of 15 cm are adopted for the CBR numerical test. The numerical results reveal that the CBR values increase with the friction coefficient at the contact and shear modulus of the rocks, while the influence of Poisson's ratio on the CBR values is insignificant. The close agreement between the CBR numerical results and experimental results suggests that the numerical simulation of the CBR values is promising to help assess the mechanical properties of GCRs and to optimize the grading design. Besides, the numerical study can provide useful insights on the mesoscopic mechanism.

  11. Transport of particle pollution into the Maipo Valley: winter 2015 campaign results

    Science.gov (United States)

    Huneeus, Nicolás; Mazzeo, Andrea; Ordóñez, César; Donoso, Nicolás; Gallardo, Laura; Molina, Luisa; Moreno, Valeria; Muñoz, Ricardo; Orfanoz, Andrea; Vizcarra, Aldo

    2016-04-01

    Each winter, Santiago (33° 27'S, 70° 40'W) the capital of Chile with a population of about 7 million people, experiences episodes with particulate matter (PM) concentrations larger than allowed by Chilean environmental regulations. Transport and residential heating largely dominate emissions prior to and during these episodes. Important impact of black carbon (BC) on the cryosphere has been documented in other parts of the world associated with urban pollution. In order to explore if BC from Santiago has the potential to reach the Andean cryosphere during the aforementioned episodes, a one week-long campaign was conducted in Santiago and the Maipo Valley between 18th and 25th of July 2015 when the air quality conditions of the city reached twice the critical levels (pre-emergency in Chilean regulations). Measurements were carried out at three sites: downtown Santiago, the entrance of the valley (and outskirts of Santiago) and 12 km inside the Maipo Valley. At each of these sites both surface and vertically distributed measurements were conducted. A meteorological station measuring standard meteorological parameters and an E-Sampler measuring PM10 concentrations were installed at each site. In addition, a tethered balloon equipped with a sonde and a mini-aethalometer was used in each site to measure vertical profiles of standard meteorological parameters and BC concentrations, respectively. The tethered balloon was raised every three hours up to a maximum of 1000 meters above ground level, whenever meteorological conditions allowed. In general, the BC concentrations inside the valley, both at the surface and in the vertical, were dominated by emissions within the valley and BC was limited to shallow layers above the ground. However, on both days with critical air quality levels, winds blowing from the city and deeper BC layers were observed inside the valley. Furthermore, during these days observations at the entrance of the valley and those taken inside were

  12. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    Science.gov (United States)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  13. Monte Carlo model of neutral-particle transport in diverted plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Heifetz, D.; Post, D.; Petravic, M.; Weisheit, J.; Bateman, G.

    1981-11-01

    The transport of neutral atoms and molecules in the edge and divertor regions of fusion experiments has been calculated using Monte-Carlo techniques. The deuterium, tritium, and helium atoms are produced by recombination in the plasma and at the walls. The relevant collision processes of charge exchange, ionization, and dissociation between the neutrals and the flowing plasma electrons and ions are included, along with wall reflection models. General two-dimensional wall and plasma geometries are treated in a flexible manner so that varied configurations can be easily studied. The algorithm uses a pseudo-collision method. Splitting with Russian roulette, suppression of absorption, and efficient scoring techniques are used to reduce the variance. The resulting code is sufficiently fast and compact to be incorporated into iterative treatments of plasma dynamics requiring numerous neutral profiles. The calculation yields the neutral gas densities, pressures, fluxes, ionization rates, momentum transfer rates, energy transfer rates, and wall sputtering rates. Applications have included modeling of proposed INTOR/FED poloidal divertor designs and other experimental devices.

  14. Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence

    Directory of Open Access Journals (Sweden)

    Mimoun Maurice

    2011-03-01

    Full Text Available Abstract Background Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD. Methods The study was carried out in 4 steps: i patient room design, ii CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii construction of a prototype room and subsequent experimental studies to characterize its performance iv qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF open-source software Code_Saturne® (http://www.code-saturne.org was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations. Results We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to

  15. Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence.

    Science.gov (United States)

    Beauchêne, Christian; Laudinet, Nicolas; Choukri, Firas; Rousset, Jean-Luc; Benhamadouche, Sofiane; Larbre, Juliette; Chaouat, Marc; Benbunan, Marc; Mimoun, Maurice; Lajonchère, Jean-Patrick; Bergeron, Vance; Derouin, Francis

    2011-03-03

    Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD). The study was carried out in 4 steps: i) patient room design, ii) CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii) construction of a prototype room and subsequent experimental studies to characterize its performance iv) qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF) open-source software Code_Saturne® (http://www.code-saturne.org) was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations. We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes) can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to enter into the positive pressure room when the

  16. Sorption of PAHs to humic acid- and iron(III)carbon ate particles by using passive dosing vials for investigating the transport of organic contamination in stormwater runoff

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Mikkelsen, Peter Steen; Baun, Anders

    2013-01-01

    During the last decades, the growing urbanisation a nd increasing anthropogenic activities in urban areas have turned urban stormwater runoff int o a surface water quality contamination problem. The concerns of urban stormwater runoff as a source of contamination in the receiving surface water......) has been foun d to facilitate transport of organic contaminants and metals in stormwater runoff system s, but little is known about the role of the colloidal fraction including nano-sized particl es (0.001-1 μm). Based on the large specific surface area of colloids and nanosized particles, t heir...... for their ability to sorb polycyclic aromatic hydrocarbons (PAH’s) in an aqueous solution. These particles were used as indicators for stormwater particles which a re diverse in size and composition. For controlling the sorption onto the particles, passiv e doing vials were used (Birch et. al., 2010). Using passive...

  17. Mathematical Basis and Test Cases for Colloid-Facilitated Radionuclide Transport Modeling in GDSA-PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-31

    This report provides documentation of the mathematical basis for a colloid-facilitated radionuclide transport modeling capability that can be incorporated into GDSA-PFLOTRAN. It also provides numerous test cases against which the modeling capability can be benchmarked once the model is implemented numerically in GDSA-PFLOTRAN. The test cases were run using a 1-D numerical model developed by the author, and the inputs and outputs from the 1-D model are provided in an electronic spreadsheet supplement to this report so that all cases can be reproduced in GDSA-PFLOTRAN, and the outputs can be directly compared with the 1-D model. The cases include examples of all potential scenarios in which colloid-facilitated transport could result in the accelerated transport of a radionuclide relative to its transport in the absence of colloids. Although it cannot be claimed that all the model features that are described in the mathematical basis were rigorously exercised in the test cases, the goal was to test the features that matter the most for colloid-facilitated transport; i.e., slow desorption of radionuclides from colloids, slow filtration of colloids, and equilibrium radionuclide partitioning to colloids that is strongly favored over partitioning to immobile surfaces, resulting in a substantial fraction of radionuclide mass being associated with mobile colloids.

  18. Bounce-averaged advection and diffusion coefficients for monochromatic electromagnetic ion cyclotron wave: Comparison between test-particle and quasi-linear models

    Science.gov (United States)

    Su, Z.; Zhu, H.; Xiao, F.; Zheng, H.; Shen, C.; Wang, Y.; Wang, S.

    2012-12-01

    The electromagnetic ion cyclotron (EMIC) wave has been long suggested to be responsible for the rapid loss of radiation belt relativistic electrons. The test-particle simulations are performed to calculate the bounce-averaged pitch-angle advection and diffusion coefficients for parallel-propagating monochromatic EMIC waves. The comparison between test-particle (TP) and quasi-linear (QL) transport coefficients is further made to quantify the influence of nonlinear processes. For typical EMIC waves, four nonlinear physical processes, i.e., the boundary reflection effect, finite perturbation effect, phase bunching and phase trapping, are found to occur sequentially from small to large equatorial pitch angles. The pitch-angle averaged finite perturbation effect yields slight differences between the transport coefficients of TP and QL models. The boundary reflection effect and phase bunching produce an average reduction of >80% in the diffusion coefficients but a small change in the corresponding average advection coefficients, tending to lower the loss rate predicted by QL theory. In contrast, the phase trapping causes continuous negative advection toward the loss cone and a minor change in the corresponding diffusion coefficients, tending to increase the loss rate predicted by QL theory. For small amplitude EMIC waves, the transport coefficients grow linearly with the square of wave amplitude. As the amplitude increases, the boundary reflection effect, phase bunching and phase trapping start to occur. Consequently, the TP advection coefficients deviate from the linear growth with the square of wave amplitude, and the TP diffusion coefficients become saturated with the amplitude approaching 1nT or above. The current results suggest that these nonlinear processes can cause significant deviation of transport coefficients from the prediction of QL theory, which should be taken into account in the future simulations of radiation belt dynamics driven by the EMIC waves.

  19. Underground Test Area Subproject Phase I Data Analysis Task. Volume VII - Tritium Transport Model Documentation Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-12-01

    Volume VII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the tritium transport model documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  20. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    Science.gov (United States)

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    can occur and that the calibrated model resulted in smaller differences than the alternative models between simulated and interpreted ages and measured tracer concentrations in most, but not all, wells. Results of the first alternative model indicate that the distribution of young water in the upper confined aquifer is substantially different when well-bore leakage at known abandoned wells and test holes is removed from the model. In the second alternative model, simulated age near the bottom of the unconfined aquifer was younger than interpreted ages and simulated chlorofluorocarbon-11 concentrations in the upper confined aquifer were zero in five out of six wells because the conventional Well Package fails to account for flow between model layers though well bores. The third alternative model produced differences between simulated and interpreted ground-water ages and measured chlorofluorocarbon-11 concentrations that were comparable to the calibrated model. However, simulated hydraulic heads deviated from measured hydraulic heads by a greater amount than for the calibrated model. Even so, because the third alternative model simulates steady-state flow, additional analysis was possible using steady-state particle tracking to assess the contributing recharge area to a public supply well selected for analysis of factors contributing to well vulnerability. Results from particle-tracking software (MODPATH) using the third alternative model indicates that the contributing recharge area of the study public-supply well is a composite of elongated, seemingly isolated areas associated with wells that are screened in multiple aquifers. The simulated age distribution of particles at the study public-supply well indicates that all water younger than 58 years travels through well bores of wells screened in multiple aquifers. The age distribution from the steady-state model using MODPATH estimates the youngest 7 percent of the water to have a flow-weighted mean age

  1. Angular Distribution of Particles Emerging from a Diffusive Region and its Implications for the Fleck-Canfield Random Walk Algorithm for Implicit Monte Carlo Radiation Transport

    CERN Document Server

    Cooper, M A

    2000-01-01

    We present various approximations for the angular distribution of particles emerging from an optically thick, purely isotropically scattering region into a vacuum. Our motivation is to use such a distribution for the Fleck-Canfield random walk method [1] for implicit Monte Carlo (IMC) [2] radiation transport problems. We demonstrate that the cosine distribution recommended in the original random walk paper [1] is a poor approximation to the angular distribution predicted by transport theory. Then we examine other approximations that more closely match the transport angular distribution.

  2. Model of electronic energy relaxation in the test-particle Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Roblin, P.; Rosengard, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes d`Enrichissement; Nguyen, T.T. [Compagnie Internationale de Services en Informatique (CISI) - Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1994-12-31

    We previously presented a new test-particle Monte Carlo method (1) (which we call PTMC), an iterative method for solving the Boltzmann equation, and now improved and very well-suited to the collisional steady gas flows. Here, we apply a statistical method, described by Anderson (2), to treat electronic translational energy transfer by a collisional process, to atomic uranium vapor. For our study, only three levels of its multiple energy states are considered: 0,620 cm{sup -1} and an average level grouping upper levels. After presenting two-dimensional results, we apply this model to the evaporation of uranium by electron bombardment and show that the PTMC results, for given initial electronic temperatures, are in good agreement with experimental radial velocity measurements. (author). 12 refs., 1 fig.

  3. Beam test of a 12-layer scintillating-fiber charged-particle tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, B.; Howell, B.L.; Koltick, D.; McIlwain, R.L.; Schmitz, C.J.; Shibata, E.I.; Zhou, Z.; Baumbaugh, B.; Ivancic, M.; Jaques, J.; Kehoe, R.; Kelley, M.; Mahoney, M.; Marchant, J.; Ruchti, R.; Wayne, M.; Atac, M.; Baumbaugh, A.; Elias, J.E.; Romero, A.; Chrisman, D.; Park, J.; Adams, M.R.; Chung, M.; Goldberg, H.; Margulies, S.; Solomon, J.; Chaney, R.; Orgeron, J.; Armstrong, T.; Lewis, R.A.; Mitchell, G.S.; Moore, R.S.; Passaneau, J.; Smith, G.A.; Corcoran, M.; Adams, D.; Bird, F.; Fenker, H.; Regan, T.; Thomas, J. (Dept. of Physics, Purdue Univ., West Lafayette, IN (United States) Dept. of Physics, Univ. of Notre Dame, IN (United States) Fermilab, Batavia, IL (United States) Dept. of Physics, Univ. of California, Los Angeles, CA (United States) Dept. of Physics, Univ. of Illinois, Chicago, IL (United States) Dept. of Physics, Univ. of Texas, Richardson, TX (United States) Dept. of Physics, Pennsylvania State Univ., University Park, PA (United States) Dept. of Physics, Rice Univ

    1994-02-01

    A 96-channel, 3-superlayer, scintillating-fiber tracking system has been tested in a 5 GeV/c [pi][sup -] beam. The scintillating fibers were 830 [mu]m in diameter, spaced 850 [mu]m apart, and 4.3 m in length. They were coupled to 6 m long, clear fiber waveguides and finally to visible light photon counters. A spatial resolution of [approx]150 [mu]m for a double-layered ribbon was achieved with this tracking system. This first prototype of a charged-particle tracking system configured for the Solenoidal Detector Collaboration at the Superconducting Super Collider is a benchmark in verifying the expected number of photoelectrons from the fibers. (orig.)

  4. The terminator "toy" chemistry test: a simple tool to assess errors in transport schemes

    Directory of Open Access Journals (Sweden)

    P. H. Lauritzen

    2015-05-01

    Full Text Available This test extends the evaluation of transport schemes from prescribed advection of inert scalars to reactive species. The test consists of transporting two interacting chemical species in the Nair and Lauritzen 2-D idealized flow field. The sources and sinks for these two species are given by a simple, but non-linear, "toy" chemistry that represents combination (X + X → X2 and dissociation (X2 → X + X. This chemistry mimics photolysis-driven conditions near the solar terminator, where strong gradients in the spatial distribution of the species develop near its edge. Despite the large spatial variations in each species, the weighted sum XT = X + 2X2 should always be preserved at spatial scales at which molecular diffusion is excluded. The terminator test demonstrates how well the advection–transport scheme preserves linear correlations. Chemistry–transport (physics–dynamics coupling can also be studied with this test. Examples of the consequences of this test are shown for illustration.

  5. Relevance of IAEA tests to severe accidents in nuclear fuel cycle transport

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, W.L. [World Nuclear Transport Inst., London (United Kingdom)

    2004-07-01

    The design and performance standards for packages used for the transport of nuclear fuel cycle materials, are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials, TS-R-1, in order to ensure safety under both normal and accident conditions of transport. The underlying philosophy is that safety is vested principally in the package and the design and performance criteria are related to the potential hazard. Type B packages are high duty packages which are used for the transport of the more radioactive materials, notably spent fuel and vitrified high-level waste (VHLW). Tests are specified in the IAEA Regulations to ensure the integrity of these packages in potential transport accidents involving impacts, fires or immersion in water. The mechanical tests for Type B packages include drop tests onto an unyielding surface without giving rise to a significant release of radioactivity. The objects which a package could impact in real life transport accidents, such as concrete roads, bridge abutments and piers, will yield to some extent and absorb some of the energy of the moving package. Impact tests onto an unyielding surface are therefore relevant to impacts onto real-life objects at much higher speeds. The thermal test specifies that Type B packages should be able to withstand a fully engulfing fire of 8000 C for 30 minutes. Analytical studies backed up by experimental tests have shown that these packages can withstand such conditions without significant release of radioactivity. The Regulations also specify immersion tests for Type B packages; 15 metres for 8 hours without significant release of radioactivity and, in addition for spent fuel and VHLW packages, 200 metres for 1 hour without rupture of the containment. Studies have shown that spent fuel and VHLW casks would meet these conditions. Therefore, there is a large body of evidence to show that the current IAEA Type B test requirements are severe and cover all the situations which can

  6. Assimilation of observations of radiation level into an atmospheric transport model: A case study with the particle filter and the ETEX tracer dataset

    NARCIS (Netherlands)

    Hiemstra, P.H.; Karssenberg, D.J.; Dijk, A. van

    2011-01-01

    Atmospheric transport models and observations from monitoring networks are commonly used aids for forecasting spatial distribution of contamination in case of a radiological incident. In this study, we assessed the particle filter data-assimilation technique as a tool for ensemble forecasting the

  7. TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    DeForest, C. E.; Howard, T. A. [Southwest Research Institute, 1050 Walnut Street Suite 300, Boulder, CO 80302 (United States); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Laboratory, Newark, DE 19711 (United States); Rice, D. R. [Northwestern University, 633 Clark St., Evanston, IL 60208 (United States)

    2015-10-20

    By analyzing the motions of test particles observed remotely in the tail of Comet Encke, we demonstrate that the solar wind undergoes turbulent processing enroute from the Sun to the Earth and that the kinetic energy entrained in the large-scale turbulence is sufficient to explain the well-known anomalous heating of the solar wind. Using the heliospheric imaging (HI-1) camera on board NASA's STEREO-A spacecraft, we have observed an ensemble of compact features in the comet tail as they became entrained in the solar wind near 0.4 AU. We find that the features are useful as test particles, via mean-motion analysis and a forward model of pickup dynamics. Using population analysis of the ensemble's relative motion, we find a regime of random-walk diffusion in the solar wind, followed, on larger scales, by a surprising regime of semiconfinement that we attribute to turbulent eddies in the solar wind. The entrained kinetic energy of the turbulent motions represents a sufficient energy reservoir to heat the solar wind to observed temperatures at 1 AU. We determine the Lagrangian-frame diffusion coefficient in the diffusive regime, derive upper limits for the small scale coherence length of solar wind turbulence, compare our results to existing Eulerian-frame measurements, and compare the turbulent velocity with the size of the observed eddies extrapolated to 1 AU. We conclude that the slow solar wind is fully mixed by turbulence on scales corresponding to a 1–2 hr crossing time at Earth; and that solar wind variability on timescales shorter than 1–2 hr is therefore dominated by turbulent processing rather than by direct solar effects.

  8. Transportation

    Science.gov (United States)

    2006-01-01

    container. It now permits free transit of shipping containers from their western ports, if transported by rail directly to the U.S. ( Mireles , 2005, p...Transportation Industry Study Seminar. Mireles , Richard, Castillo. (2005, January). A Cure for West Coast Congestion. Logistics Today, Vol. 46, Issue 1. 1

  9. Radionuclide Transport in Tuff and Carbonate Fractures from Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, M; Johnson, M R; Roberts, S K; Pletcher, R; Rose, T P; Kersting, A B; Eaton, G; Hu, Q; Ramon, E; Walensky, J; Zhao, P

    2006-02-01

    In the Yucca Flat basin of the Nevada Test Site (NTS), 747 shaft and tunnel nuclear detonations were conducted primarily within the tuff confining unit (TCU) or the overlying alluvium. The TCU in the Yucca Flat basin is hypothesized to reduce radionuclide migration to the regional carbonate aquifer (lower carbonate aquifer) due to its wide-spread aerial extent and chemical reactivity. However, shortcuts through the TCU by way of fractures may provide a migration path for radionuclides to the lower carbonate aquifer (LCA). It is, therefore, imperative to understand how radionuclides migrate or are retarded in TCU fractures. Furthermore, understanding the migration behavior of radionuclides once they reach the fractured LCA is important for predicting contaminant transport within the regional aquifer. The work presented in this report includes: (1) information on the radionuclide reactive transport through Yucca Flat TCU fractures (likely to be the primary conduit to the LCA), (2) information on the reactive transport of radionuclides through LCA fractures and (3) data needed to calibrate the fracture flow conceptualization of predictive models. The predictive models are used to define the extent of contamination for the Underground Test Area (UGTA) project. Because of the complex nature of reactive transport in fractures, a stepwise approach to identifying mechanisms controlling radionuclide transport was used. In the first set of TCU experiments, radionuclide transport through simple synthetic parallel-plate fractured tuff cores was examined. In the second, naturally fractured TCU cores were used. For the fractured LCA experiments, both parallel-plate and rough-walled fracture transport experiments were conducted to evaluate how fracture topography affects radionuclide transport. Tuff cores were prepared from archived UE-7az and UE-7ba core obtained from the USGS core library, Mercury, Nevada. Carbonate cores were prepared from archived ER-6-1 core, also obtained

  10. Application of column tests and electrical resistivity methods for leachate transport monitoring

    Directory of Open Access Journals (Sweden)

    Wychowaniak Dorota

    2015-09-01

    Full Text Available Development of the human civilization leads to the pollution of environment. One of the contamination which are a real threat to soil and groundwater are leachates from landfills. In this paper the solute transport through soil was considered. For this purpose, the laboratory column tests of chlorides tracer and leachates transport on two soil samples have been carried out. Furthermore, the electrical resistivity method was applied as auxiliary tool to follow the movements of solute through the soil column what allowed to compare between the results obtained with column test method and electrical resistivity measurements. Breakthrough curves obtained by conductivity and resistivity methods represents similar trends which leads to the conclusion about the suitability of electrical resistivity methods for contamination transport monitoring in soil-water systems.

  11. A rapid ultrasound particle agglutination method for HIV antibody detection: Comparison with conventional rapid HIV tests.

    Science.gov (United States)

    Bystryak, Simon; Ossina, Natalya

    2017-11-01

    We present the results of the feasibility and preliminary studies on analytical performance of a rapid test for detection of human immunodeficiency virus (HIV) antibodies in human serum or plasma that is an important advance in detecting HIV infection. Current methods for rapid testing of antibodies against HIV are qualitative and exhibit poor sensitivity (limit of detection). In this paper, we describe an ultrasound particle agglutination (UPA) method that leads to a significant increase of the sensitivity of conventional latex agglutination tests for HIV antibody detection in human serum or plasma. The UPA method is based on the use of: 1) a dual mode ultrasound, wherein a first single-frequency mode is used to accelerate the latex agglutination process, and then a second swept-frequency mode of sonication is used to disintegrate non-specifically bound aggregates; and 2) a numerical assessment of results of the agglutination process. The numerical assessment is carried out by optical detection and analysis of moving patterns in the resonator cell during the swept-frequency mode. The single-step UPA method is rapid and more sensitive than the three commercial rapid HIV test kits analyzed in the study: analytical sensitivity of the new UPA method was found to be 510-, 115-, and 80-fold higher than that for Capillus™, Multispot™ and Uni-Gold™ Recombigen HIV antibody rapid test kits, respectively. The newly developed UPA method opens up additional possibilities for detection of a number of clinically significant markers in point-of-care settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Model Validation of an RSRM Transporter Through Full-scale Operational and Modal Testing

    Science.gov (United States)

    Brillhart, Ralph; Davis, Joshua; Allred, Bradley

    2009-01-01

    The Reusable Solid Rocket Motor (RSRM) segments, which are part of the current Space Shuttle system and will provide the first stage of the Ares launch vehicle, must be transported from their manufacturing facility in Promontory, Utah, to a railhead in Corinne, Utah. This approximately 25-mile trip on secondary paved roads is accomplished using a special transporter system which lifts and conveys each individual segment. ATK Launch Systems (ATK) has recently obtained a new set of these transporters from Scheuerle, a company in Germany. The transporter is a 96-wheel, dual tractor vehicle that supports the payload via a hydraulic suspension. Since this system is a different design than was previously used, computer modeling with validation via test is required to ensure that the environment to which the segment is exposed is not too severe for this space-critical hardware. Accurate prediction of the loads imparted to the rocket motor is essential in order to prevent damage to the segment. To develop and validate a finite element model capable of such accurate predictions, ATA Engineering, Inc., teamed with ATK to perform a modal survey of the transport system, including a forward RSRM segment. A set of electrodynamic shakers was placed around the transporter at locations capable of exciting the transporter vehicle dynamics. Forces from the shakers with varying phase combinations were applied using sinusoidal sweep excitation. The relative phase of the shaker forcing functions was adjusted to match the shape characteristics of each of several target modes, thereby customizing each sweep run for exciting a particular mode. The resulting frequency response functions (FRF) from this series of sine sweeps allowed identification of all target modes and other higher-order modes, allowing good comparison to the finite element model. Furthermore, the survey-derived modal frequencies were correlated with peak frequencies observed during road-going operating tests. This

  13. 75 FR 5722 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs

    Science.gov (United States)

    2010-02-04

    ... include making specimen validity testing (SVT) mandatory for the transportation industry contingent upon U.S. Department of Health and Human Services (HHS) publishing its Mandatory Guidelines on SVT. In late... HHS had not finalized its Mandatory Guidelines regarding SVT. We said that SVT would remain authorized...

  14. Motion simulation of transport aircraft in extended envelopes : Test pilot assessment

    NARCIS (Netherlands)

    Nooij, S.A.E.; Wentink, M.; Smaili, H.; Zaichik, L.; Groen, E.L.

    2016-01-01

    The European research project SUPRA (“Simulation of Upset Recovery in Aviation”) produced an extended aerodynamic model for simulation of a generic transport aircraft, capturing the key aircraft behavior beyond aerodynamic stall. As described in the current paper, a group of 11 test pilots with

  15. 75 FR 8526 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs

    Science.gov (United States)

    2010-02-25

    ... Office of the Secretary 49 CFR Part 40 RIN 2105-AD64 Procedures for Transportation Workplace Drug and... required method. However, in response to comments requesting additional flexibility in testing methods, the... may increase flexibility and lower costs for employers who choose to use them over more expensive...

  16. 75 FR 8524 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs

    Science.gov (United States)

    2010-02-25

    ... Office of the Secretary 49 CFR Part 40 RIN 2105-AD67 Procedures for Transportation Workplace Drug and... owner-operators. Consequently, the Department certifies under the Regulatory Flexibility Act that this... WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Accordingly, the Interim Final Rule amending 49 CFR Part 40...

  17. Gravity from Poincare Gauge Theory of the Fundamental Particles. II : Equations of Motion for Test Bodies and Various Limits

    OpenAIRE

    Kenji, HAYASHI; Takeshi, SHIRAFUJI; Institute of Physics, University of Tokyo; Physics Department, Saitama University

    1980-01-01

    We study the equations of motion for test bodies and various limits in Poincare gauge theory with linear and quadratic Lagrangians. The classical equations of motion are derived both for spin-1/2 particles and for macroscopic test bodies. It is also shown that various limits can be taken, including General Relativity and New General Relativity.

  18. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    Science.gov (United States)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  19. Transport Modeling Analysis to Test the Efficiency of Fish Markets in Oman

    Directory of Open Access Journals (Sweden)

    Khamis S. Al-Abri

    2009-01-01

    Full Text Available Oman’s fish exports have shown an increasing trend while supplies to the domestic market have declined, despite increased domestic demand caused by population growth and income. This study hypothesized that declining fish supplies to domestic markets were due to inefficiency of the transport function of the fish marketing system in Oman. The hypothesis was tested by comparing the observed prices of several fish species at several markets with optimal prices. The optimal prices were estimated by the dual of a fish transport cost- minimizing linear programming model. Primary data on market prices and transportation costs and quantities transported were gathered through a survey of a sample of fish transporters. The quantity demanded at market sites was estimated using secondary data. The analysis indicated that the differences between the observed prices and the estimated optimal prices were not significantly different showing that the transport function of fish markets in Oman is efficient. This implies that the increasing trend of fish exports vis-à-vis the decreasing trend of supplies to domestic markets is rational and will continue. This may not be considered to be equitable but it is efficient and may have long-term implications for national food security and have an adverse impact on the nutritional and health status of the rural poor population. Policy makers may have to recognize the trade off between the efficiency and equity implications of the fish markets in Oman and make policy decisions accordingly in order to ensure national food security.

  20. Mesoscale eddies drive cross-shelf transport, particle and nutrient biogeochemistry, and the nutritional value of zooplankton

    Science.gov (United States)

    Waite, A.

    2016-02-01

    Mesoscale eddies drive a significant component of cross-shelf transport important in the ecology of coastal ecosystems. The Leeuwin Current off Western Australia has a high kinetic energy in southwest WA which peaks and becomes unstable in the austral autumn triggering the formation of eddies. We captured the dynamics of an evolving anticyclonic eddy in situ and we traced water masses as they were incorporated into the eddy. ADCP profiles confirmed periodic offshore movement of 2 Sv of shelf waters into the forming eddy from the adjacent shelf, carrying a load of shelf-sourced organic particles. Oxygen and nutrient profiles suggested rapid remineralization of nitrate mid-depth in the isolated water mass as it rotated, with a total drawdown of oxygen of 3.6 mol m-2 to 350 m ( 0.5 mol O2 m-2 d-1) on the timescale of 1 week. This implies that nitrate is acting primarily as a regenerated nutrient rather than as a source of new nitrogen. Zooplankton isotopic signatures indicated that warm-core eddies carried animals of poorer nutritional value than cold-core eddies, and this was reflected in the lipid content of rock lobster larvae isolated in the two eddy types. We present a conceptual model of the potential bottom-up control of zooplankton lipid stores by the mesoscale eddy field.

  1. Study of the Parametric Performance of Solid Particle Erosion Wear under the Slurry Pot Test Rig

    Directory of Open Access Journals (Sweden)

    S.R. More

    2017-12-01

    Full Text Available Stainless Steel (SS 304 is commonly used material for slurry handling applications like pipelines, valves, pumps and other equipment's. Slurry erosion wear is a common problem in many engineering applications like process industry, thermal and hydraulic power plants and slurry handling equipments. In this paper, experimental investigation of the influence of solid particle size, impact velocity, impact angle and solid concentration parameters in slurry erosion wear behavior of SS 304 using slurry pot test rig. In this study the design of experiments was considered using Taguchi technique. A comparison has been made for the experimental and Taguchi technique results. The erosion wear morphology was studied using micro-graph obtained by scanning electron microscope (SEM analysis. At shallow impact angle 30°, the material removal pattern was observed in the form of micro displacing, scratching and ploughing with plastic deformation of the material. At 60° impact angle, mixed type of micro indentations and pitting action is observed. At normal impact angle 90°, the material removal pattern was observed in form of indentation and rounded lips. It is found that particle velocity was the most influence factor than impact angle, size and solid concentration. From this investigation, it can be concluded that the slurry erosion wear is minimized by controlling the slurry flow velocity which improves the service life of the slurry handling equipments. From the comparison of experimental and Taguchi experimental design results it is found that the percentage deviation was very small with a higher correlation coefficient (r2 0.987 which is agreeable.

  2. Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  3. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings.

    Science.gov (United States)

    Phenrat, Tanapon; Cihan, Abdullah; Kim, Hye-Jin; Mital, Menka; Illangasekare, Tissa; Lowry, Gregory V

    2010-12-01

    Concentrated suspensions of polymer-modified Fe(0) nanoparticles (NZVI) are injected into heterogeneous porous media for groundwater remediation. This study evaluated the effect of porous media heterogeneity and the dispersion properties including particle concentration, Fe(0) content, and adsorbed polymer mass and layer thickness which are expected to affect the delivery and emplacement of NZVI in heterogeneous porous media in a two-dimensional (2-D) cell. Heterogeneity in hydraulic conductivity had a significant impact on the deposition of NZVI. Polymer modified NZVI followed preferential flow paths and deposited in the regions where fluid shear is insufficient to prevent NZVI agglomeration and deposition. NZVI transported in heterogeneous porous media better at low particle concentration (0.3 g/L) than at high particle concentrations (3 and 6 g/L) due to greater particle agglomeration at high concentration. High Fe(0) content decreased transport during injection due to agglomeration promoted by magnetic attraction. NZVI with a flat adsorbed polymeric layer (thickness ∼30 nm) could not be transported effectively due to pore clogging and deposition near the inlet, while NZVI with a more extended adsorbed layer thickness (i.e., ∼70 nm) were mobile in porous media. This study indicates the importance of characterizing porous media heterogeneity and NZVI dispersion properties as part of the design of a robust delivery strategy for NZVI in the subsurface.

  4. Transport and Deposition of Micro-and Nano-Particles in Human Tracheobronchial Tree by an Asymmetric Multi-Level Bifurcation Model

    Directory of Open Access Journals (Sweden)

    Lin Tian

    2012-06-01

    Full Text Available Transport and deposition of particles in the upper tracheobronchial tree were analyzed using a multi-level asymmetric lung bifurcation model. The first three generations of tracheobronchial tree were included in the study. The laryngeal jet at the trachea entrance was modeled as an effective turbulence disturbance, and the study was focused on how to accurately simulate the airflow and predict the motion of the inhaled particles. Downstream in the lower level of the bronchial region, a laminar flow model was used, as smoother flow condition was expected. Transport and deposition of nano- and micro-scale spherical particles in the range of 0.01 μm to 30 μm were evaluated. The particle local deposition pattern and deposition rate in the lung bifurcation was discussed. The proposed multi-level asymmetric lung bifurcation model was found to be flexible, easy to use and computationally highly efficient. It was also shown that the selection of the anisotropic Reynolds stress transport turbulence model (RSTM was appropriate, and the use of the enhanced two-layer model boundary treatment was needed for accurate simulation of the turbulent airflow conditions in the upper airways.

  5. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.; Sorenson, Ken B.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPS eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.

  6. Exploring the wake of a dust particle by a continuously approaching test grain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hendrik, E-mail: hjung@physik.uni-kiel.de; Greiner, Franko; Asnaz, Oguz Han; Piel, Alexander [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany); Carstensen, Jan [ABB Switzerland Ltd., CH-5405 Baden-Daettwil (Switzerland)

    2015-05-15

    The structure of the ion wake behind a dust particle in the plasma sheath of an rf discharge is studied in a two-particle system. The wake formation leads to attractive forces between the negatively charged dust and can cause a reduction of the charge of a particle. By evaluating the dynamic response of the particle system to small external perturbations, these quantities can be measured. Plasma inherent etching processes are used to achieve a continuous mass loss and hence an increasing levitation height of the lower particle, so that the structure of the wake of the upper particle, which is nearly unaffected by etching, can be probed. The results show a significant modification of the wake structure in the plasma sheath to one long potential tail.

  7. Development of RFQ particle dynamics simulation tools and validation with beam tests

    Energy Technology Data Exchange (ETDEWEB)

    Maus, Johannes M.

    2010-07-01

    Two different strategies of designing RFQs have been introduced. The analytic description of the electric fields inside the quadrupole channel has been derived and the two term simplification was shown as well as the limitation of these approaches. The main work of this thesis was the implementation and analysis of a multigrid Poisson solver to describe the potential and electric field of RFQs which are needed to simulate the particle dynamics accurately. The main two ingredients of a multigrid Poisson solver are the ability of a Gauss-Seidel iteration method to smooth the error of an approximation within a few iteration steps and the coarse grid principle. The smoothing corresponds to a damping of the high frequency components of the error. After the smoothing, the error term can well be approximated on a coarser grid in which the low frequency components of the error on the fine grid are converted to high frequency errors on the coarse grid which can be damped further with the same Gauss-Seidel method. After implementation, the multigrid Poisson solver was analyzed using two different type of test problems: with and without a charge density. As a charge density, a homogeneously charged ball and cylinder were used to represent the bunched and unbunched beam and placed inside a quadruple channel. The solver showed a good performance. Next, the performance of the solver to calculate the external potentials (and fields) of RFQs was analyzed. Closing the analysis of the external field, the transmission and fraction of accelerated particles of the set of 12 RFQs for the two different methods were shown. In the last chapter of this thesis some experimental work on the MAFF (Munich Accelerator for Fission Fragments) IH-RFQ is described. The MAFF RFQ was designed to accelerate very neutron-rich fission fragments for various experiments. The machine was assembled in Frankfurt and a beam test stand was built. As a part of this thesis the shunt impedance of the structure was

  8. Safely Transporting the assembled EUSO-SPB instrument 1000 miles for field testing

    Science.gov (United States)

    Cummings, Austin; Gregg, Rachael; Polonsky, Zach

    2017-01-01

    The EUSO-SPB instrument assembled and tested at Colorado School of Mines and then transported in this state to the Telescope Array site in Delta Utah for field tests. 6 hours after arrival the instrument recorded first light from a laser 20 km distant. We describe the structures and methods that we developed drive this instrument to the test site. The vibration data collected during the 1000 mile round trip and the lessons learned will also be presented. In our experience, there is relatively little quantitative information available about this type of critical operation.

  9. Testing the cosmic censorship conjecture with point particles: The effect of radiation reaction and the self-force

    Science.gov (United States)

    Barausse, Enrico; Cardoso, Vitor; Khanna, Gaurav

    2011-11-01

    A classical thought-experiment to destroy black holes was envisaged by Wald in 1974: it consists of throwing particles with large angular momentum into an extremal black hole, checking whether their capture can overspin the black hole past the extremal limit and create a naked singularity. Wald showed that in the test-particle limit, particles that would be otherwise capable of producing naked singularities are simply scattered. Recently, Jacobson and Sotiriou showed that if one considers instead a black hole that is almost, but not exactly extremal, then in the absence of backreaction effects particle capture could indeed overspin the spacetime above the Kerr limit. Here we analyze backreaction effects and show that for some of the trajectories giving rise to naked singularities, radiative effects can be neglected. However, for these orbits the conservative self-force is important, and seems to have the right sign to prevent the formation of naked singularities.

  10. Testing strategy for classifying self-heating substances for transport of dangerous goods.

    Science.gov (United States)

    Chervin, Sima; Bodman, Glenn T

    2004-11-11

    A testing strategy for the classification of self-heating substances for transport of dangerous goods is proposed. The strategy was developed based on the tests described and correlations used in the UN Recommendations. It was demonstrated that the value of activation energy of the exothermic reaction has a significant impact on the extrapolation of test results with regard to different container sizes and temperatures. Based on a combination of the Grewer Oven test screening, the 25 mm cube test at 140 degrees C, and the determination of the activation energy of a specific material, a flowchart is presented for classifying chemicals as self-heating. The presented approach allows predicting chemical stability in large containers more accurately and eliminates the need to perform hazardous large-scale tests of energetic chemicals in a laboratory.

  11. A novel sputum transport solution eliminates cold chain and supports routine tuberculosis testing in Nepal

    Directory of Open Access Journals (Sweden)

    Bhagwan Maharjan

    2016-12-01

    Full Text Available This preliminary study evaluated the transport reagent OMNIgene SPUTUM (OMS in a real-world, resource-limited setting: a zonal hospital and national tuberculosis (TB reference laboratory, Nepal. The objectives were to: (1 assess the performance of OMS for transporting sputum from peripheral sites without cold chain stabilization; and (2 compare with Nepal’s standard of care (SOC for Mycobacterium tuberculosis smear and culture diagnostics. Sixty sputa were manually split into a SOC sample (airline-couriered to the laboratory, conventional processing and an OMS sample (OMS added at collection, no cold chain transport or processing. Smear microscopy and solid culture were performed. Transport was 0–8 days. Forty-one samples (68% were smear-positive using both methods. Of the OMS cultures, 37 (62% were positive, 22 (36% were negative, and one (2% was contaminated. Corresponding SOC results were 32 (53%, 21 (35%, and seven (12%. OMS “rescued” six (i.e., missed using SOC compared with one rescue using SOC. Of smear-positives, six SOC samples produced contaminated cultures whereas only one OMS sample was contaminated. OMS reduced culture contamination from 12% to 2%, and improved TB detection by 9%. The results suggest that OMS could perform well as a no cold chain, long-term transport solution for smear and culture testing. The findings provide a basis for larger feasibility studies.

  12. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    Energy Technology Data Exchange (ETDEWEB)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  13. High pulse number thermal shock tests on tungsten with steady state particle background

    Science.gov (United States)

    Wirtz, M.; Kreter, A.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Sergienko, G.; Steudel, I.; Unterberg, B.; Wessel, E.

    2017-12-01

    Thermal fatigue of metallic materials, which will be exposed to severe environmental conditions e.g. plasma facing materials in future fusion reactors, is an important issue in order to predict the life time of complete wall components. Therefore experiments in the linear plasma device PSI-2 were performed to investigate the synergistic effects of high pulse number thermal shock events (L = 0.38 GW m‑2, Δt = 0.5 ms) and stationary D/He (6%) plasma particle background on the thermal fatigue behavior of tungsten. Similar to experiments with pure thermal loads, the induced microstructural and surface modifications such as recrystallization and roughening as well as crack formation become more pronounced with increasing number of thermal shock events. However, the amount of damage significantly increases for synergistic loads showing severe surface roughening, plastic deformation and erosion resulting from the degradation of the mechanical properties caused by bombardment and diffusion of D/He to the surface and the bulk of the material. Additionally, D/He induced blistering and bubble formation were observed for all tested samples, which could change the thermal and mechanical properties of near surface regions.

  14. Investigation of Thunniform Swimming Using Material Testing, Biomimetic Robotics and Particle Image Velocimetry

    Science.gov (United States)

    Zhu, Ruijie; Saraiya, Vishaal; Zhu, Jianzhong; Lewis, Gregory; Bart-Smith, Hilary

    2015-11-01

    Thunniform swimming is well recognized as an efficient method for high-speed long-distance underwater travelers such as tuna. Previous research has shown that tuna relies on contraction and relaxation of red muscle to generate angular motion of its large, crescent-shaped caudal fin through its peduncle. However, few researchers conduct deep investigation of material properties of tuna caudal fin and peduncle. This research project is composed of two parts, first of which is determining mechanical properties of components such as spine joints, tendons, fin rays and cartilage, from which the biomechanics of tuna tail can be better understood. The second part is building a robotic system mimicking a real tuna tail based on previously retrieved information, and testing the system inside a flow tank. With the help of PIV (Particle Image Velocimetry), fluid-structure interaction of the biomimetic fin is visualized and data such as swimming speed and power consumption are retrieved through the robotic system. The final outcome should explain how the material properties of tuna tail affect fluid dynamics of thunniform swimming. This project is supported by Office of Naval Research (ONRBAA13-022).

  15. Geodesic motions of test particles in a relativistic core-shell spacetime

    Science.gov (United States)

    Liu, Lei; Wu, Xin; Huang, Guoqing

    2017-02-01

    In this paper, we discuss the geodesic motions of test particles in the intermediate vacuum between a monopolar core and an exterior shell of dipoles, quadrupoles and octopoles. The radii of the innermost stable circular orbits at the equatorial plane depend only on the quadrupoles. A given oblate quadrupolar leads to the existence of two innermost stable circular orbits, and their radii are larger than in the Schwarzschild spacetime. However, a given prolate quadrupolar corresponds to only one innermost stable circular orbit, and its radius is smaller than in the Schwarzschild spacetime. As to the general geodesic orbits, one of the recently developed extended phase space fourth order explicit symplectic-like methods is efficiently applicable to them although the Hamiltonian of the relativistic core-shell system is not separable. With the aid of both this fast integrator without secular growth in the energy errors and gauge invariant chaotic indicators, the effect of these shell multipoles on the geodesic dynamics of order and chaos is estimated numerically.

  16. Design and testing of monolithic active pixel sensors for charged particle tracking

    CERN Document Server

    Deptuch, G; Claus, G; Colledani, C; Dulinski, W; Gornushkin, Y; Husson, D; Riester, J L; Winter, M

    2002-01-01

    A monolithic active pixel sensor (MAPS) for charged particle tracking based on a novel detector structure has been proposed, simulated, fabricated and tested. This detector is inseparable from the readout electronics, since both of them are integrated on the same, low- resistivity silicon wafer standard for a CMOS process. The individual pixel is comprised of only three MOS transistors and a photodiode collecting the charge created in the thin undepleted epitaxial layer. This approach provides a low cost, high resolution and thin device with the whole detector area sensitive to radiation (100% fill factor). Detailed device simulations using the ISE-TCAD package have been carried out in order to study the charge. collection mechanism and to validate the proposed idea. In order to demonstrate viability of the technique, two prototype chips were successively fabricated using 0.6 mu m and 0.35 mu m CMOS processes. Both chips have been fully characterized. The pixel conversion gain has been calibrated using a /sup...

  17. A standard test case suite for two-dimensional linear transport on the sphere

    Directory of Open Access Journals (Sweden)

    P. H. Lauritzen

    2012-06-01

    Full Text Available It is the purpose of this paper to propose a standard test case suite for two-dimensional transport schemes on the sphere intended to be used for model development and facilitating scheme intercomparison. The test cases are designed to assess important aspects of accuracy in geophysical fluid dynamics such as numerical order of convergence, "minimal" resolution, the ability of the transport scheme to preserve filaments, transport "rough" distributions, and to preserve pre-existing functional relations between species/tracers under challenging flow conditions.

    The experiments are designed to be easy to set up. They are specified in terms of two analytical wind fields (one non-divergent and one divergent and four analytical initial conditions (varying from smooth to discontinuous. Both conventional error norms as well as novel mixing and filament preservation diagnostics are used that are easy to implement. The experiments pose different challenges for the range of transport approaches from Lagrangian to Eulerian. The mixing and filament preservation diagnostics do not require an analytical/reference solution, which is in contrast to standard error norms where a "true" solution is needed. Results using the CSLAM (Conservative Semi-Lagrangian Multi-tracer scheme on the cubed-sphere are presented for reference and illustrative purposes.

  18. Measurement of aerosol particles, gases and flux radiation in the Pico de Orizaba National Park, and its relationship to air pollution transport

    Science.gov (United States)

    Márquez, C.; Castro, T.; Muhlia, A.; Moya, M.; Martínez-Arroyo, A.; Báez, A.

    Continuous atmospheric measurements were carried out at the Pico de Orizaba National Park (PONP), Mexico, in order to evaluate the characteristics and sources of air quality. This action allowed one to identify specific threats for the effective protection of natural resources and biodiversity. Results show the presence of particles and polluted gases transported by winds from the urban zones nearby (cities of Mexico, Puebla and Tlaxcala), as well as their measurable influence on the optical properties of the park environment. Nitrogen dioxide, carbon monoxide and sulfur dioxide show a daily pattern suggesting an influence of pollution generated by anthropogenic processes. Average concentration of SO 2 was higher than recorded at the southern part of Mexico City. Ozone concentrations ranging from 0.035 to 0.06 ppm suggest residual or background ozone character. Back trajectory analysis of air parcels arriving at the site confirm pollution caused by biomass burning and mass transport from urban zones. The SO 42-/TC ratio exhibited values (0.88±0.33) similar to urban areas. Ratios BC/TC and OC/BC for PONP are similar to those reported as influenced by burning emissions of fossil fuels. Typical rural aerosols were also found at the site, and sulfate and ammonium concentrations were correlated. The most predominating mode in surface particles size distribution was at 0.32 μm with no significant presence of coarse particles. Total carbon (OC+BC) content of fine particle mass (PM less than 1 μm) comprised, on average, 75%. Optical properties retrieved from photometric data show intermittent influence from urban pollution. Time periods with low absorbing particles, great visibility and abundance of small particles alternating with short times with bigger particles and high turbidity indicated by the optical depth.

  19. Toward Reliable Lipoprotein Particle Predictions from NMR Spectra of Human Blood: An Interlaboratory Ring Test.

    Science.gov (United States)

    Monsonis Centelles, Sandra; Hoefsloot, Huub C J; Khakimov, Bekzod; Ebrahimi, Parvaneh; Lind, Mads V; Kristensen, Mette; de Roo, Niels; Jacobs, Doris M; van Duynhoven, John; Cannet, Claire; Fang, Fang; Humpfer, Eberhard; Schäfer, Hartmut; Spraul, Manfred; Engelsen, Søren B; Smilde, Age K

    2017-08-01

    Lipoprotein profiling of human blood by (1)H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states in medicine and nutrition. However, lack of standardization of measurement protocols has prevented the use of NMR-based lipoprotein profiling in metastudies. In this study, a standardized NMR measurement protocol was applied in a ring test performed across three different laboratories in Europe on plasma and serum samples from 28 individuals. Data was evaluated in terms of (i) spectral differences, (ii) differences in LPD predictions obtained using an existing prediction model, and (iii) agreement of predictions with cholesterol concentrations in high- and low-density lipoproteins (HDL and LDL) particles measured by standardized clinical assays. ANOVA-simultaneous component analysis (ASCA) of the ring test spectral ensemble that contains methylene and methyl peaks (1.4-0.6 ppm) showed that 97.99% of the variance in the data is related to subject, 1.62% to sample type (serum or plasma), and 0.39% to laboratory. This interlaboratory variation is in fact smaller than the maximum acceptable intralaboratory variation on quality control samples. It is also shown that the reproducibility between laboratories is good enough for the LPD predictions to be exchangeable when the stan