WorldWideScience

Sample records for terrestrial planetary dynamics

  1. Planetary Protection: Two Relevant Terrestrial Examples

    Science.gov (United States)

    Chyba, C.

    2002-09-01

    Concerns about potential pathogens in returned samples from Mars ("Mars Sample Return: Issues and Recommendations", National Research Council, 1997) or planetary satellites ("Evaluating the Biological Potential in Samples Returned from Planetary Satellites and Small Solar System Bodies", National Research Council, 1998) focus on two potential types of pathogenesis, toxic and infectious. The National Research Council reports cited above state that the chances of extraterrestrial organisms proving either toxic or infectious to humans are extremely low, but cannot be entirely ruled out. Here I discuss recently discovered terrestrial examples relevant to each possibility, in order to make these concerns concrete. The first example concerns the production of hepatotoxins (toxins affecting the liver) and neurotoxins by cyanobacteria in glacial lakes on alpine pastures in Switzerland. In this example, mat-forming benthic cyanobacteria are implicated in a hundred cattle poisonings that have been reported from alpine pasteurs in southeastern Switzerland over the past twenty-five years (e.g. K. Mez et al, Hydrobiologia 368, 1-15 (1998)). It is unlikely that these cyanobacteria evolved the toxins in response to dairy cows; rather the susceptibility of cattle to these toxins seems simply to be an unfortunate coincidence of a toxin working across a large evolutionary distance. The second example concerns the recent demonstration that the decimation of shallow-water Caribbean elkhorn coral is due to infection by a common fecal enterobacterium associated with the human gut (K. L. Patterson et al., PNAS 99, 8725-8730 (2002)). The bacterium, Serratia marcenscens, is also a free-living microbe in water and soil, as well as an opportunistic pathogen in a variety of animal species. The distance between humans and corals emphasizes the possibility that certain organisms may prove pathogenic across a wide evolutionary divide. Of course, in neither of these cases are the evolutionary

  2. Solar planetary systems stardust to terrestrial and extraterrestrial planetary sciences

    CERN Document Server

    Bhattacharya, Asit B

    2017-01-01

    The authors have put forth great efforts in gathering present day knowledge about different objects within our solar system and universe. This book features the most current information on the subject with information acquired from noted scientists in this area. The main objective is to convey the importance of the subject and provide detailed information on the physical makeup of our planetary system and technologies used for research. Information on educational projects has also been included in the Radio Astronomy chapters.This information is a real plus for students and educators considering a career in Planetary Science or for increasing their knowledge about our planetary system

  3. Dynamical Evolution of Planetary Systems

    Science.gov (United States)

    Morbidelli, Alessandro

    The apparent regularity of the motion of the giant planets of our solar system suggested for decades that said planets formed onto orbits similar to the current onesand that nothing dramatic ever happened during their lifetime. The discovery of extrasolar planets showed astonishingly that the orbital structure of our planetary system is not typical. Many giant extrasolar planets have orbits with semimajor axes of ˜ 1 AU,and some have even smaller orbital radii, sometimes with orbital periods of just a few days. Moreover, most extrasolar planets have large eccentricities, up to values that only comets have in our solar system. Why is there such a great diversitybetween our solar system and the extrasolar systems, as well as among the extrasolar systems themselves? This chapter aims to give a partial answer to this fundamental question. Its guideline is a discussion of the evolution of our solarsystem, certainly biased by a view that emerges, in part, from a series of works comprising the "Nice model." According to this view, the giant planets of the solar system migrated radially while they were still embedded in a protoplanetary disk of gas and presumably achieved a multi-resonant orbital configuration, characterized by smaller interorbital spacings and smaller eccentricities and inclinations with respect to the current configuration.The current orbits of the giant planets may have been achieved during a phase of orbital instability, during which the planets acquired temporarily large-eccentricity orbits and all experienced close encounters with at least oneother planet. This instability phase occurred presumably during the putative "Late Heavy Bombardment" of the terrestrial planets, approximately ˜ 3.9 Gy ago (Tera et al. 1974). The interaction with a massive, distant planetesimal disk (the ancestor of the current Kuiper belt) eventually damped the eccentricities of the planets, ending the phase of mutual planetary encounters and parking the planets onto their

  4. Does the terrestrial biosphere have planetary tipping points?

    Science.gov (United States)

    Brook, Barry W; Ellis, Erle C; Perring, Michael P; Mackay, Anson W; Blomqvist, Linus

    2013-07-01

    Tipping points--where systems shift radically and potentially irreversibly into a different state--have received considerable attention in ecology. Although there is convincing evidence that human drivers can cause regime shifts at local and regional scales, the increasingly invoked concept of planetary scale tipping points in the terrestrial biosphere remains unconfirmed. By evaluating potential mechanisms and drivers, we conclude that spatial heterogeneity in drivers and responses, and lack of strong continental interconnectivity, probably induce relatively smooth changes at the global scale, without an expectation of marked tipping patterns. This implies that identifying critical points along global continua of drivers might be unfeasible and that characterizing global biotic change with single aggregates is inapt. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Lunar and Planetary Science XXXV: Terrestrial Planets: Building Blocks and Differentiation

    Science.gov (United States)

    2004-01-01

    The session "Terrestrial Planets: Building Blocks and Differentiation: included the following topics:Magnesium Isotopes in the Earth, Moon, Mars, and Pallasite Parent Body: High-Precision Analysis of Olivine by Laser-Ablation Multi-Collector ICPMS; Meteoritic Constraints on Collision Rates in the Primordial Asteroid Belt and Its Origin; New Constraints on the Origin of the Highly Siderophile Elements in the Earth's Upper Mantle; Further Lu-Hf and Sm-Nd Isotopic Data on Planetary Materials and Consequences for Planetary Differentiation; A Deep Lunar Magma Ocean Based on Neodymium, Strontium and Hafnium Isotope Mass Balance Partial Resetting on Hf-W System by Giant Impacts; On the Problem of Metal-Silicate Equilibration During Planet Formation: Significance for Hf-W Chronometry ; Solid Metal-Liquid Metal Partitioning of Pt, Re, and Os: The Effect of Carbon; Siderophile Element Abundances in Fe-S-Ni-O Melts Segregated from Partially Molten Ordinary Chondrite Under Dynamic Conditions; Activity Coefficients of Silicon in Iron-Nickel Alloys: Experimental Determination and Relevance for Planetary Differentiation; Reinvestigation of the Ni and Co Metal-Silicate Partitioning; Metal/Silicate Paritioning of P, Ga, and W at High Pressures and Temperatures: Dependence on Silicate Melt Composition; and Closure of the Fe-S-Si Liquid Miscibility Gap at High Pressure and Its Implications for Planetary Core Formation.

  6. Planetary Geology Education on the Stage: Dynamics of Planetary Morphology in Theatre Performance

    Science.gov (United States)

    Bérczi, Zs.; Bérczi, Sz.; Terebessy, T.

    2011-03-01

    The Living Picture Company planned and produced a performance, where planetary surface dynamics were realized and planetary morphology processes were animated, both of which are useful in planetary morphology education.

  7. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  8. Testing Lorentz symmetry with planetary orbital dynamics

    CERN Document Server

    Hees, Aurélien; Poncin-Lafitte, Christophe Le; Bourgoin, Adrien; Rivoldini, Attilio; Lamine, Brahim; Meynadier, Frédéric; Guerlin, Christine; Wolf, Peter

    2015-01-01

    Planetary ephemerides are a very powerful tool to constrain deviations from the theory of General Relativity using orbital dynamics. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In this communication, we use the latest determinations of the supplementary advances of the perihelia and of the nodes obtained by planetary ephemerides analysis to constrain SME coefficients from the pure gravity sector and also from gravity-matter couplings. Our results do not show any deviation from GR and they improve current constraints. Moreover, combinations with existing constraints from Lunar Laser Ranging and from atom interferometry gravimetry allow us to disentangle contributions from the pure gravity sector from the gravity-matter couplings.

  9. The Hunt for Observable Signatures of Terrestrial Planetary Systems (HOSTS)

    Science.gov (United States)

    Defrère, D.; Hinz, P.; Bryden, G.; Danchi, W. C.; Mennesson, B.; Millan-Gabet, R.; Skemer, A.; Stapeldfeld, K.; Weinberger, A.; Wyatt, M.; Absil, O.; Bailey, V.; Beichman, C.; Downey, E.; Grenz, P.; Haniff, C.; Hoffmann, W.; Kennedy, G.; Lebreton, J.; Leisenring, J.; Marion, L.; Mahon, T. M.; Montoya, M.; Rieke, G.; Roberge, A.; Serabyn, E.; Su, K.; Vaitheeswaran, V.; Vaz, A.

    2014-03-01

    The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct imaging of Earth-like exoplanets and, hence, the search for biosignatures (Roberge et al. 2012). However, it is also considered as a signpost for the presence of terrestrial planets that might be hidden in the dust disk (Stark and Kuchner 2008). Characterizing exozodiacal dust around nearby sequence stars is therefore a crucial step toward one of the main goals of modern astronomy: finding extraterrestrial life. After briefly reviewing the latest results in this field, we present the exozodiacal dust survey on the Large Binocular Telescope Interferometer (LBTI). The survey is called HOSTS and is specifically designed to determine the prevalence and brightness of exozodiacal dust disks with the sensitivity required to prepare for future New Worlds Missions that will image Earth-like exoplanets. To achieve this objective, the LBTI science team has carefully established a balanced list of 50 nearby main-sequence stars that are likely candidates of these missions and/or can be observed with the best instrument performance (see companion abstract by Roberge et al.). Exozodiacal dust disk candidates detected by the Keck Interferometer Nuller will also be observed. The first results of the survey will be presented. To precisely detect exozodiacal dust, the LBTI combines the two 8-m primary mirrors of the LBT using N-band nulling interferometry. Interferometric combination provides the required angular resolution (70-90 mas) to resolve the habitable zone of nearby main sequence stars while nulling is used to subtract the stellar light and reach the required contrast of a few 10-4. A Kband fringe tracker ensures the stability of the null. The current performance of the instrument and the first nulling measurements will be presented.

  10. Primordial atmosphere incorporation in planetary embryos and the origin of Neon in terrestrial planets

    Science.gov (United States)

    Jaupart, Etienne; Charnoz, Sebatien; Moreira, Manuel

    2017-09-01

    The presence of Neon in terrestrial planet mantles may be attributed to the implantation of solar wind in planetary precursors or to the dissolution of primordial solar gases captured from the accretionary disk into an early magma ocean. This is suggested by the Neon isotopic ratio similar to those of the Sun observed in the Earth mantle. Here, we evaluate the second hypothesis. We use general considerations of planetary accretion and atmospheric science. Using current models of terrestrial planet formation, we study the evolution of standard planetary embryos with masses in a range of 0.1-0.2 MEarth, where MEarth is the Earth's mass, in an annular region at distances between 0.5 and 1.5 Astronomical Units from the star. We determine the characteristics of atmospheres that can be captured by such embryos for a wide range of parameters and calculate the maximum amount of Neon that can be dissolved in the planet. Our calculations may be directly transposed to any other planet. However, we only know of the amount of Neon in the Earth's solid mantle. Thus we use Earth to discuss our results. We find that the amount of dissolved Neon is too small to account for the present-day Neon contents of the Earth's mantle, if the nebular gas disk completely disappears before the largest planetary embryos grow to be ∼0.2 MEarth. This leaves solar irradiation as the most likely source of Neon in terrestrial planets for the most standard case of planetary formation models.

  11. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets.

    Science.gov (United States)

    Des Marais, David J; Harwit, Martin O; Jucks, Kenneth W; Kasting, James F; Lin, Douglas N C; Lunine, Jonathan I; Schneider, Jean; Seager, Sara; Traub, Wesley A; Woolf, Neville J

    2002-01-01

    The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.

  12. Formation of Authigenic Sulfates in Cold Dry Glaciers: Terrestrial and Planetary Implications of Sublimites

    Science.gov (United States)

    Massé, M.; Rondeau, B.; Ginot, P.; Schmitt, B.; Bourgeois, O.; Mitri, G.

    2015-12-01

    Salts are common on planetary surfaces, and sulfates have been widely observed on Earth, Mars (Gendrin et al., 2005) and on some of Jupiter's and Saturn's icy moons like Europa (Dalton et al., 2007). These minerals can form under a wide range of conditions, and the determination of sulfate formation processes can provide key elements for deciphering past planetary surface conditions. Most terrestrial sulfates form as evaporites in warm environments with high water/rock ratios, but these conditions are rarely encountered on other planets. Here we describe the formation of cryogenic sulfates in an extreme cold and dry environment: the Guanaco glacier located in the Chilean Andes (Fig.1a, Rabatel et al., 2011). Field analyses reveal that it is a cold-based glacier, its surface temperature remains below 0°C throughout the year, and ablation occurs mostly by sublimation. Ablation creates ice cliffs punctuated of pluricentimetric whitish, tapered crystals embedded in the ice (Fig.1b, c). By Raman and chemistry, they proved to be gypsum, covered by micrometric crystals of jarosite, halotrichite and native sulfur. The euhedral morphology of these soft minerals indicates that they are neoformed and have not been transported in the ice. This is supported by the absence of gypsum crystals in ice cores drilled through the glacier. We infer that the crystallization thus occurred at the glacier surface during ice sublimation and does not involve liquid water. To distinguish this original salt formation process from the more common evaporites, we name these minerals "sublimites". Though this formation process is uncommon and generates minor quantities of sulfates on Earth, it may be dominant on other bodies in the Solar System where sublimation is effective. Examples of planetary sublimites may include gypsum on the North Polar Cap of Mars (Massé et al., 2012), and other sulfates on icy moons where sublimation has been observed (Howard et al., 2008).

  13. Dynamical modeling of a planetary wave mechanism for a Martian polar warming

    Science.gov (United States)

    Barnes, Jeffrey R.; Hollingsworth, Jeffery L.

    1987-01-01

    The mechanisms involved in the global dust storm and polar warming seen in the Martian atmosphere by the Viking IRTM during the winter solstice of 1977 are investigated theoretically by means of numerical simulations. A two-component dynamical model (based on the combined action of a zonally symmetric 'Hadley' circulation at low and middle latitudes and a planetary-wave circulation at middle and high latitudes) is constructed by analogy to the model of Holton and Mass (1976) for terrestrial sudden stratospheric warmings. The Viking data and simulation results are presented in extensive graphs and characterized in detail. It is demonstrated that a planetary-wave mechanism, based primarily on wavenumber 1 and including a high degree of topographical or thermal wave forcing, can reproduce the observed polar warming. The roles of radiative damping, dissipation, and the transport of dust and water are explored.

  14. Target Selection for the LBTI Hunt for Observable Signatures of Terrestrial Planetary Systems

    Science.gov (United States)

    Roberge, A.; Weinberger, A.; Kennedy, G.; Defrère, D.; LBTI Instrument; Science Teams

    2014-03-01

    The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) on the Large Binocular Telescope Interferometer (LBTI) will survey nearby stars for faint exozodiacal dust (exozodi). This warm circumstellar dust, analogous to the interplanetary dust found in the vicinity of the Earth in our own system, is produced in comet breakups and asteroid collisions. Exozodi will be the major source of astrophysical noise for a future space telescope aimed at direct imaging and spectroscopy of habitable zone terrestrial planets (exo-Earths). About 20% of nearby field stars have cold dust coming from planetesimals at large distances from the stars (Eiroa et al. 2013). Much less is known about exozodi; current detection limits for individual stars are at best ~ 500 times our solar system's level (aka. 500 zodi). LBTI-HOSTS will be the first survey capable of measuring exozodi at the 10 zodi level (3s). Detections of warm dust will also reveal new information about planetary system architectures and evolution. We describe the target star selection by the LBTI Science Team to satisfy the goals of the HOSTS survey - to inform mission design and target selection for a future exo-Earth mission. We are interested in both 1) actual stars likely to be observed by such a mission and 2) stars whose observation will enable sensible extrapolations for stars that cannot be observed with LBTI. We integrated two approaches to generate the HOSTS target list. The mission-driven approach concentrates on F, G, and K-type stars that are the best targets for future direct observations of exo-Earths, thereby providing model-independent "ground truth" dust observations. However, not every potential target of a future exo-Earth mission can be observed with LBTI. The sensitivity-driven approach selects targets based on maximizing the exozodi sensitivity that can be achieved, without consideration of exo-Earth mission constraints. This naturally chooses more luminous stars (A and early F

  15. Terrestrial vegetation dynamics and global climate controls

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Christopher [NASA Ames Research Center, Moffett Field, CA (United States); Boriah, Shyam; Steinbach, Michael; Kumar, Vipin [University of Minnesota, Minneapolis, MN (United States); Klooster, Steven [California State University Monterey Bay, Seaside, CA (United States)

    2008-07-15

    Monthly data from the moderate resolution imaging spectroradiometer (MODIS) and its predecessor satellite sensors was used to reconstruct vegetation dynamics in response to climate patterns over the period 1983-2005. Results suggest that plant growth over extensive land areas of southern Africa and Central Asia were the most closely coupled of any major land area to El Nino-southern oscillation (ENSO) effects on regional climate. Others land areas strongly tied to recent ENSO climate effects were in northern Canada, Alaska, western US, northern Mexico, northern Argentina, and Australia. Localized variations in precipitation were the most common controllers of monthly values for the fraction absorbed of photosynthetically active radiation (FPAR) over these regions. In addition to the areas cited above, seasonal FPAR values from MODIS were closely coupled to rainfall patterns in grassland and cropland areas of the northern and central US. Historical associations between global vegetation FPAR and atmospheric carbon dioxide (CO{sub 2}) anomalies suggest that the terrestrial biosphere can contribute major fluxes of CO{sub 2} during major drought events, such as those triggered by 1997-1998 El Nino event. (orig.)

  16. CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX?

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Botzler, C. S.; Bray, J. C.; Cherrie, J. M.; Rattenbury, N. J. [Department of Physics, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Philpott, L. C. [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Abe, F.; Muraki, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, P.O. Box 4800, Christchurch 8020 (New Zealand); Bennett, D. P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A. [Institute for Information and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland 1330 (New Zealand); Christie, G. W.; Natusch, T. [Auckland Observatory, PO Box 180, Royal Oak, Auckland 1345 (New Zealand); Dionnet, Z. [Université d' Orsay, bat 470, F-91400 Orsay (France); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Han, C. [Department of Physics, Chungbuk National University, 410 Seongbong-Rho, Hungduk-Gu, Chongju 371-763 (Korea, Republic of); Heyrovský, D. [Institute of Theoretical Physics, Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague (Czech Republic); McCormick, J. M. [Farm Cove Observatory, 2/24 Rapallo Place, Pakuranga, Auckland 2012 (New Zealand); Moorhouse, D. M. [Kumeu Observatory, Kumeu (New Zealand); Skowron, J., E-mail: mfre070@aucklanduni.ac.nz [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478, Warszawa (Poland); and others

    2015-02-01

    Recently Sumi et al. reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits ≥10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large, and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3σ level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 ± 0.30 M {sub J} and 0.80 ± 0.25 kpc respectively. We exclude a host star to the lens out to a separation ∼40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.

  17. The coplanarity of planetary orbits places bounds on dynamical aether

    OpenAIRE

    Sudarsky, Daniel; Zloshchastiev, Konstantin G.

    2004-01-01

    OBITUARY The Article and we have been friends for more than half a year. With it, we shared many experiences, both in planetary dynamics and field theory. This research is something I shall always remember with a smile on my face, and a pain in my heart. Today is a day of sadness and mourning for the loss of our ill-born Article. After more thorough medical examination we came to the conclusion that the precession of planetary orbits cannot be used to bound anything except human fantasy. Yet ...

  18. Planetary Formation and Dynamics in Binary Systems

    Science.gov (United States)

    Xie, J. W.

    2013-01-01

    As of today, over 500 exoplanets have been detected since the first exoplanet was discovered around a solar-like star in 1995. The planets in binaries could be common as stars are usually born in binary or multiple star systems. Although current observations show that the planet host rate in multiple star systems is around 17%, this fraction should be considered as a lower limit because of noticeable selection effects against binaries in planet searches. Most of the current known planet-bearing binary systems are S-types, meaning the companion star acts as a distant satellite, typically orbiting the inner star-planet system over 100 AU away. Nevertheless, there are four systems with a smaller separation of 20 AU, including the Gamma Cephei, GJ 86, HD 41004, and HD 196885. In addition to the planets in circumprimary (S-type) orbits discussed above, planets in circumbinary (P-type) orbits have been found in only two systems. In this thesis, we mainly study the planet formation in the S-type binary systems. In chapter 1, we first summarize current observational facts of exoplanets both in single-star and binary systems, then review the theoretical models of planet formation, with special attention to the application in binary systems. Perturbative effects from stellar companions render the planet formation process in binary systems even more complex than that in single-star systems. The perturbations from a binary companion can excite planetesimal orbits, and increase their mutual impact velocities to the values that might exceed their escape velocity or even the critical velocity for the onset of eroding collisions. The intermediate stage of the formation process---from planetesimals to planetary embryos---is thus the most problematic. In the following chapters, we investigate whether and how the planet formation goes through such a problematic stage. In chapter 2, we study the effects of gas dissipation on the planetesimals' mutual accretion. We find that in a

  19. Dynamics of Populations of Planetary Systems (IAU C197)

    Science.gov (United States)

    Knezevic, Zoran; Milani, Andrea

    2005-05-01

    1. Resonances and stability of extra-solar planetary systems C. Beaugé, N. Callegari, S. Ferraz-Mello and T. A. Michtchenko; 2. Formation, migration, and stability of extrasolar planetary systems Fred C. Adams; 3. Dynamical evolution of extrasolar planetary systems Ji-Lin Zhou and Yi-Sui Sun; 4. Dynamics of planetesimals: the role of two-body relaxation Eiichiro Kokubo; 5. Fitting orbits Andrzej J. Maciejewski, Krzysztof Gozdziewski and Szymon Kozlowski; 6. The secular planetary three body problem revisited Jacques Henrard and Anne-Sophie Libert; 7. Dynamics of extrasolar systems at the 5/2 resonance: application to 47 UMa Dionyssia Psychoyos and John D. Hadjidemetriou; 8. Our solar system as model for exosolar planetary systems Rudolf Dvorak, Áron Süli and Florian Freistetter; 9. Planetary motion in double stars: the influence of the secondary Elke Pilat-Lohinger; 10. Planetary orbits in double stars: influence of the binary's orbital eccentricity Daniel Benest and Robert Gonczi; 11. Astrometric observations of 51 Peg and Gliese 623 at Pulkovo observatory with 65 cm refractor N. A. Shakht; 12. Observations of 61 Cyg at Pulkovo Denis L. Gorshanov, N. A. Shakht, A. A. Kisselev and E. V. Poliakow; 13. Formation of the solar system by instability Evgeny Griv and Michael Gedalin; 14. Behaviour of a two-planetary system on a cosmogonic time-scale Konstantin V. Kholshevnikov and Eduard D. Kuznetsov; 15. Boundaries of the habitable zone: unifying dynamics, astrophysics, and astrobiology Milan M. Cirkovic; 16. Asteroid proper elements: recent computational progress Fernando Roig and Cristian Beaugé; 17. Asteroid family classification from very large catalogues Anne Lemaitre; 18. Non-gravitational perturbations and evolution of the asteroid main belt David Vokrouhlicky, M. Broz and W. F. Bottke, D. Nesvorny and A. Morbidelli; 19. Diffusion in the asteroid belt Harry Varvoglis; 20. Accurate model for the Yarkovsky effect David Capek and David Vokrouhlicky; 21. The

  20. The Manicouagan impact structure as a terrestrial analogue site for lunar and martian planetary science

    Science.gov (United States)

    Spray, John G.; Thompson, Lucy M.; Biren, Marc B.; O'Connell-Cooper, Catherine

    2010-03-01

    The 90 km diameter, late Triassic Manicouagan impact structure of Québec, Canada, is a well-preserved, undeformed complex crater possessing an anorthositic central uplift and a 55 km diameter melt sheet. As such, it provides a valuable terrestrial analogue for impact structures developed on other planetary bodies, especially the Moon and Mars, which are currently the focus of exploration initiatives. The scientific value of Manicouagan has recently been enhanced due to the production, between 1994 and 2006, of ˜18 km of drill core from 38 holes by the mineral exploration industry. Three of these holes are in excess of 1.5 km deep, with the deepest reaching 1.8 km. Here we combine recent field work, sampling and the drill core data with previous knowledge to provide insight into processes occurring at Manicouagan and, by inference, within extraterrestrial impact structures. Four areas of comparative planetology are discussed: impact melt sheets, central uplifts, impact-generated hydrothermal regimes and footwall breccias. Human training and instrument testing opportunities are also considered. The drill core reveals that the impact melt and clast-bearing impact melts in the centre of the structure reach thicknesses of 1.4 km. The 1.1 km thick impact melt has undergone differentiation to yield a lower monzodiorite, a transitional quartz monzodiorite and an upper quartz monzonite sequence. This calls into question the previous citing of Manicouagan as an exemplar of a relatively large crater possessing an undifferentiated melt sheet, which was used as a rationale for assigning different composition lunar impact melts and clast-bearing impact melts to separate cratering events. The predominantly anorthositic central uplift at Manicouagan is comparable to certain lunar highlands material, with morphometric analogies to the King, Tycho, Pythagoras, Jackson, and Copernicus impact structures, which have similar diameters and uplift structure. Excellent exposure of the

  1. Iodine dynamics in the terrestrial environment

    OpenAIRE

    Bowley, Hannah E.

    2013-01-01

    The aim of this work was to investigate the effect of soil properties on soil iodine dynamics and uptake to plants. Soil and vegetation samples were collected from across eastern Northern Ireland (NI) to form the basis of most experimental work; samples from the Rothamsted Park Grass archive were used to investigate the role of changing soil chemistry through time and due to selected fertiliser applications; and iodine dynamics in humic acid (HA) were studied to improve understanding of the r...

  2. Reduction and identification for hybrid dynamical models of terrestrial locomotion

    Science.gov (United States)

    Burden, Samuel A.; Sastry, S. Shankar

    2013-06-01

    The study of terrestrial locomotion has compelling applications ranging from design of legged robots to development of novel prosthetic devices. From a first-principles perspective, the dynamics of legged locomotion seem overwhelmingly complex as nonlinear rigid body dynamics couple to a granular substrate through viscoelastic limbs. However, a surfeit of empirical data demonstrates that animals use a small fraction of their available degrees-of-freedom during locomotion on regular terrain, suggesting that a reduced-order model can accurately describe the dynamical variation observed during steady-state locomotion. Exploiting this emergent phenomena has the potential to dramatically simplify design and control of micro-scale legged robots. We propose a paradigm for studying dynamic terrestrial locomotion using empirically-validated reduced{order models.

  3. The dynamics of post-main sequence planetary systems

    Science.gov (United States)

    Mustill, Alexander James

    2017-06-01

    The study of planetary systems after their host stars have left the main sequence is of fundamental importance for exoplanet science, as the most direct determination of the compositions of extra-Solar planets, asteroids and comets is in fact made by an analysis of the elemental abundances of the remnants of these bodies accreted into the atmospheres of white dwarfs.To understand how the accreted bodies relate to the source populations in the planetary system, and to model their dynamical delivery to the white dwarf, it is necessary to understand the effects of stellar evolution on bodies' orbits. On the red giant branch (RGB) and asymptotic giant branch (AGB) prior to becoming a white dwarf, stars expand to a large size (>1 au) and are easily deformed by orbiting planets, leading to tidal energy dissipation and orbital decay. They also lose half or more of their mass, causing the expansion of bodies' orbits. This mass loss increases the planet:star mass ratio, so planetary systems orbiting white dwarfs can be much less stable than those orbiting their main-sequence progenitors. Finally, small bodies in the system experience strong non-gravitational forces during the RGB and AGB: aerodynamic drag from the mass shed by the star, and strong radiation forces as the stellar luminosity reaches several thousand Solar luminosities.I will review these effects, focusing on planet--star tidal interactions and planet--asteroid interactions, and I will discuss some of the numerical challenges in modelling systems over their entire lifetimes of multiple Gyr.

  4. A highly dynamical debris disc in an evolved planetary system

    Science.gov (United States)

    Manser, Christopher

    2017-08-01

    Our HST/COS survey for the photospheric pollution by planetary debris undisputably demonstrates that at least 25% of white dwarfs host an evolved planetary system. The debris discs holding the material that accretes onto the white dwarf are produced by the tidal disruption of asteroids, and are observed in nearly 40 systems by infrared excess emission from micron-sized dust. In a small number of cases, we have also detected double-peaked Ca II 860 nm emission lines from a metal-rich gaseous disc in addition to photospheric pollution and circumstellar dust. Our ground-based monitoring of the brightest of these systems, SDSS J1228+1040, over the last eleven years shows a dramatic morphological change in the emission line profiles on the time-scale of years. The evolution of the line profiles is consistent with the precession of an eccentric disc on a period of 25 years, indicating a recent dynamical interaction within the underlying dust disc. This could either be related to the initial circularisation of the disc, or a secondary impact onto an existing disc. We expect that the accretion rate onto the white dwarf varies on the same timescale as the Ca II emission lines, and there is the tantalising possibility to detect changes in the bulk abundances, if the impact of a planetesimal with a different bulk abundance stirred up the disc. We request a small amount of COS time to monitor the debris abundances over the next three HST Cycles to test this hypothesis, and bolster our understanding of the late evolution of planetary systems.

  5. Dynamics, statistics and predictability of planetary flow regimes

    Science.gov (United States)

    Ghil, Michael

    1986-01-01

    Consideration is given to regimes of low-frequency variability in large-scale atmospheric dynamics. The model utilized is the fully-nonlinear, equivalent-baratropic vorticity equation on the sphere, with simplified forcing, dissipation and topography. It is found that certain limited regions in the system's phase space are visited repeatedly and for extended periods by model solutions. Flow patterns coupled with these regions correspond to synoptically-defined zonal and blocked Northern Hemisphere midlatitude flows. It is shown that the system's macrodynamics can be depicted by two or more planetary flow regimes, the expected residence time in each regime, and the transition properties from one regime to another. These model-derived ideas are also applied to a time series of atmospheric data from the Southern Hemisphere.

  6. Enabling novel planetary and terrestrial mechanisms using electroactive materials at the JPL's NDEAA Lab

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Lih, Shyh-Shiuh

    2004-01-01

    Increasingly, electroactive materials are used to produce acutators, sensors, displays and other elements of mechanisms and devices. In recognition of the potential of these materials, research at the JPL's NDEAA Lab have led to many novel space and terrestrial applications. This effort involves mostly the use of piezoelectric and electroactive polymers (EAP).

  7. On the Effect of Planetary Stable Isotope Compositions on Growth and Survival of Terrestrial Organisms.

    Directory of Open Access Journals (Sweden)

    Xueshu Xie

    Full Text Available Isotopic compositions of reactants affect the rates of chemical and biochemical reactions. Usually it is assumed that heavy stable isotope enrichment leads to progressively slower reactions. Yet the effect of stable isotopes may be nonlinear, as exemplified by the "isotopic resonance" phenomenon. Since the isotopic compositions of other planets of Solar system, including Mars and Venus, are markedly different from terrestrial (e.g., deuterium content is ≈5 and ≈100 times higher, respectively, it is far from certain that terrestrial life will thrive in these isotopic conditions. Here we found that Martian deuterium content negatively affected survival of shrimp in semi-closed biosphere on a year-long time scale. Moreover, the bacterium Escherichia coli grows slower at Martian isotopic compositions and even slower at Venus's compositions. Thus, the biological impact of varying stable isotope compositions needs to be taken into account when planning interplanetary missions.

  8. On the Effect of Planetary Stable Isotope Compositions on Growth and Survival of Terrestrial Organisms.

    Science.gov (United States)

    Xie, Xueshu; Zubarev, Roman A

    2017-01-01

    Isotopic compositions of reactants affect the rates of chemical and biochemical reactions. Usually it is assumed that heavy stable isotope enrichment leads to progressively slower reactions. Yet the effect of stable isotopes may be nonlinear, as exemplified by the "isotopic resonance" phenomenon. Since the isotopic compositions of other planets of Solar system, including Mars and Venus, are markedly different from terrestrial (e.g., deuterium content is ≈5 and ≈100 times higher, respectively), it is far from certain that terrestrial life will thrive in these isotopic conditions. Here we found that Martian deuterium content negatively affected survival of shrimp in semi-closed biosphere on a year-long time scale. Moreover, the bacterium Escherichia coli grows slower at Martian isotopic compositions and even slower at Venus's compositions. Thus, the biological impact of varying stable isotope compositions needs to be taken into account when planning interplanetary missions.

  9. Flowing Hot or Cold: User-Friendly Computational Models of Terrestrial and Planetary Lava Channels and Lakes

    Science.gov (United States)

    Sakimoto, S. E. H.

    2016-12-01

    Planetary volcanism has redefined what is considered volcanism. "Magma" now may be considered to be anything from the molten rock familiar at terrestrial volcanoes to cryovolcanic ammonia-water mixes erupted on an outer solar system moon. However, even with unfamiliar compositions and source mechanisms, we find familiar landforms such as volcanic channels, lakes, flows, and domes and thus a multitude of possibilities for modeling. As on Earth, these landforms lend themselves to analysis for estimating storage, eruption and/or flow rates. This has potential pitfalls, as extension of the simplified analytic models we often use for terrestrial features into unfamiliar parameter space might yield misleading results. Our most commonly used tools for estimating flow and cooling have tended to lag significantly behind state-of-the-art; the easiest methods to use are neither realistic or accurate, but the more realistic and accurate computational methods are not simple to use. Since the latter computational tools tend to be both expensive and require a significant learning curve, there is a need for a user-friendly approach that still takes advantage of their accuracy. One method is use of the computational package for generation of a server-based tool that allows less computationally inclined users to get accurate results over their range of input parameters for a given problem geometry. A second method is to use the computational package for the generation of a polynomial empirical solution for each class of flow geometry that can be fairly easily solved by anyone with a spreadsheet. In this study, we demonstrate both approaches for several channel flow and lava lake geometries with terrestrial and extraterrestrial examples and compare their results. Specifically, we model cooling rectangular channel flow with a yield strength material, with applications to Mauna Loa, Kilauea, Venus, and Mars. This approach also shows promise with model applications to lava lakes, magma

  10. Understanding the responses of precipitation, evaporative demand, and terrestrial water availability to planetary temperature in climate models

    Science.gov (United States)

    Scheff, Jacob

    -Monteith equation at a roughly Clausius-Clapeyron rate, ~ 6% K-1, but it increases the denominator more slowly, especially in colder base climates. Thus, evaporative demand increases with local warming at around 1.5-4 % K -1, where the larger values occur in colder regions. A simple analytic scaling for this sensitivity very accurately predicts the PET response field of each model. This PET increase is large enough that in each of the 16 CMIP5 models examined, the ratio P/PET declines with global warming in most land areas in the tropics, the subtropics, and the midlatitudes, implying aridification. However, in our idealized-land GCM, the weakly increasing land P response and strongly increasing PET response that enable this are not general. Depending on the prescribed ocean heat transport, continental configuration, and base planetary temperature, greenhouse warming often causes our modeled land P to strongly decrease, or sometimes to increase so strongly as to entirely suppress the PET increase (even as global-mean P increases weakly in all cases.) The former occurs when the basic-state terrestrial climate is already drier, and the latter occurs when it is quite wet. Future work may investigate what drives this broad range of land P and PET responses to warming, and whether this idealized-model behavior sheds any light on the tension between non-arid past greenhouses and the arid future projections.

  11. Size distribution of particles in planetary rings. [applied to Saturn and terrestrial planets

    Science.gov (United States)

    Greenberg, R.; Davis, D. R.; Hartmann, W. K.; Chapman, C. R.

    1977-01-01

    Harris (1975) has suggested that the maximum size of particles in a planetary ring is controlled by collisional fragmentation rather than tidal stress. While this conclusion is probably true, estimated radius limits must be revised upward from Harris' values of a few kilometers by at least an order of magnitude. Accretion of particles within the Roche limit is also possible. These considerations affect theories concerning the evolution of Saturn's rings, of the moon, and of possible former satellites of Mercury and Venus. In the case of Saturn's rings, comparison of various theoretical scenarios with available observational evidence suggests that the rings formed from the breakup of larger particles rather than from original condensation as small particles. This process implies a distribution of particle sizes in Saturn's rings possibly ranging up to about 100 km but with most of the cross section in centimeter-scale particles.

  12. Building the Terrestrial Planets: Constraining Planetary Accretion in the inner Solar System

    Science.gov (United States)

    Raymond, Sean N.; O'Brien, D. P.; Morbidelli, A.; Kaib, N. A.

    2008-05-01

    We present results of N-body simulations of planetary accretion with the goal of reproducing the inner Solar System. Planetary embryos and planetesimals evolve and grow under the influence of Jupiter and Saturn, which are assumed to have formed during the short gaseous phase of the Solar Nebula. We compare the results of these simulations to the current Solar System in order to constrain the configuration of Jupiter and Saturn at early times, analyzing cases that are both consistent and contrary to the 'Nice model.' We attempt to reproduce 1) the masses and orbits of Venus, Earth and Mars -- Mars' relatively small mass in particular has not been adequately reproduced in previous simulations; 2) the structure of the asteroid belt -- we show that a remnant embryo larger than the Moon is inconsistent with the main belt structure; and 3) the water content of the Earth, assuming that it was delivered in the form of water-rich primitive asteroidal material. We find that Jupiter and Saturn are the most important factor in the outcome, exciting asteroidal bodies via secular and mean motion resonances. A configuration with the giant planets on circular orbits can form a water-rich Earth and Venus but Mars' mass is too large by a factor of 5-10. A configuration with Jupiter and Saturn in their current locations but with slightly higher eccentricities produces Earth, Venus, Mars and the asteroid belt, but does not allow water delivery to Earth. Further simulations with a range of configurations of Jupiter and Saturn are currently underway in order to better reproduce all of the above characteristics of the inner Solar System. This will allow us to constrain Jupiter and Saturn's orbits at early times and test the validity of scenarios such as the 'Nice model.'

  13. Terrestrial models for development of methods to search for life on Mars and other planetary bodies

    Science.gov (United States)

    Abyzov, S. S.; Duxbury, N. S.; Fukuchi, M.; Hoover, R. B.; Kanda, H.; Mitskevich, I. N.; Mulyukin, A. L.; Naganuma, T.; Poglazova, M. N.; Ivanov, M. V.

    Successful missions to Mars, Europa and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost habitats as terrestrial analogues. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the most ancient and deepest strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radiolabeling and other techniques made it possible for us to obtain a convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future search for microbial life and/or its biosignatures on extraterrestrial objects.

  14. The reversibility error method (REM): a new, dynamical fast indicator for planetary dynamics

    Science.gov (United States)

    Panichi, Federico; Goździewski, Krzyszof; Turchetti, Giorgio

    2017-06-01

    We describe the reversibility error method (REM) and its applications to planetary dynamics. REM is based on the time-reversibility analysis of the phase-space trajectories of conservative Hamiltonian systems. The round-off errors break the time reversibility and the displacement from the initial condition, occurring when we integrate it forward and backward for the same time interval, is related to the dynamical character of the trajectory. If the motion is chaotic, in the sense of non-zero maximal Lyapunov characteristic exponent (mLCE), then REM increases exponentially with time, as exp λt, while when the motion is regular (quasi-periodic), then REM increases as a power law in time, as tα, where α and λ are real coefficients. We compare the REM with a variant of mLCE, the mean exponential growth factor of nearby orbits. The test set includes the restricted three-body problem and five resonant planetary systems: HD 37124, Kepler-60, Kepler-36, Kepler-29 and Kepler-26. We found a very good agreement between the outcomes of these algorithms. Moreover, the numerical implementation of REM is astonishing simple, and is based on solid theoretical background. The REM requires only a symplectic and time-reversible (symmetric) integrator of the equations of motion. This method is also CPU efficient. It may be particularly useful for the dynamical analysis of multiple planetary systems in the Kepler sample, characterized by low-eccentricity orbits and relatively weak mutual interactions. As an interesting side result, we found a possible stable chaos occurrence in the Kepler-29 planetary system.

  15. Dynamic Rover Simulation for Teleoperations in Planetary Surface Exploration

    NARCIS (Netherlands)

    Maas, H.L.M.M.; Kuijper, F.; Verheul, C.H.; Dumay, A.C.M.; Bagiana, F.

    1995-01-01

    Advanced Simulation Techniques (AST) combine interactive technologies like Virtual Environments (VEs), Augmented Reality (AR) and real-time simulation, and finds potential space applications. One of these applications is the exploration of a planetary surface by teleoperated rovers. This paper

  16. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  17. Dynamic Analysis of Wind Turbine Planetary Gears Using an Extended Harmonic Balance Approach: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keller, J.; Parker, R. G.

    2012-06-01

    The dynamics of wind turbine planetary gears with gravity effects are investigated using an extended harmonic balance method that extends established harmonic balance formulations to include simultaneous internal and external excitations. The extended harmonic balance method with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear model including gravity, fluctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to obtain the planetary gear dynamic response. The calculated responses compare well with time domain integrated mathematical models and experimental results. Gravity is a fundamental vibration source in wind turbine planetary gears and plays an important role in system dynamics, causing hardening effects induced by tooth wedging and bearing-raceway contacts. Bearing clearance significantly reduces the lowest resonant frequencies of translational modes. Gravity and bearing clearance together lowers the speed at which tooth wedging occurs lower than the resonant frequency.

  18. Warner Prize Lecture: A New View on Planetary Orbital Dynamics

    Science.gov (United States)

    Ford, Eric B.

    2013-01-01

    Prior to the discovery of exoplanets, astronomers fine tuned theories of planet formation to explain detailed properties of the solar system. Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke strong mutual gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with sizes between Earth and Neptune and closely-spaced orbits. These systems represent another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. I will describe how transit timing observations by Kepler are characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets and providing precise (but complex) constraints on planetary masses, densities and orbits, even for planetary systems with faint host stars. I will discuss early efforts to translate these observations into new constraints on the formation and orbital evolution of planetary systems with low-mass planets.

  19. Space Robotics: Robotic Rovers for Planetary Exploration

    Directory of Open Access Journals (Sweden)

    Alex Ellery

    2008-11-01

    Full Text Available In this third of three short papers, I introduce some of the basic concepts of planetary rovers with an emphasis on some specific challenging areas of research that are peculiar to planetary robotics and not usually associated with terrestrial mobile robotics. The style of these short papers is pedagogical and this paper stresses the issue of rover-terrain interaction as an important consideration. Soil-vehicle interaction originates from military vehicle research but may be regarded as part of the dynamical approach to mobile robotics. For hostile planetary surfaces, this is essential in order to design a robotic rover with sufficient tractive capability to traverse planetary surfaces.

  20. Dynamic Rover Simulation for teleoperations in Planetary Surface Exploration

    NARCIS (Netherlands)

    Maas, H.L.M.M.; Kuijper, F.; Donkers, H.C.; Dumay, A.C.M.

    1997-01-01

    Advanced Simulation Techniques (AST) combine interactive technologies like Virtual Environments (VEs), Augmented Reality (AR) and real-time simulation, and finds potential space applications. One of these applications is the exploration of a planetary sur£ace by teleoperated rovers. This paper

  1. Planetary boundary layer and circulation dynamics at Gale Crater, Mars

    Science.gov (United States)

    Fonseca, Ricardo M.; Zorzano-Mier, María-Paz; Martín-Torres, Javier

    2018-03-01

    The Mars implementation of the Planet Weather Research and Forecasting (PlanetWRF) model, MarsWRF, is used here to simulate the atmospheric conditions at Gale Crater for different seasons during a period coincident with the Curiosity rover operations. The model is first evaluated with the existing single-point observations from the Rover Environmental Monitoring Station (REMS), and is then used to provide a larger scale interpretation of these unique measurements as well as to give complementary information where there are gaps in the measurements. The variability of the planetary boundary layer depth may be a driver of the changes in the local dust and trace gas content within the crater. Our results show that the average time when the PBL height is deeper than the crater rim increases and decreases with the same rate and pattern as Curiosity's observations of the line-of-sight of dust within the crater and that the season when maximal (minimal) mixing is produced is Ls 225°-315° (Ls 90°-110°). Thus the diurnal and seasonal variability of the PBL depth seems to be the driver of the changes in the local dust content within the crater. A comparison with the available methane measurements suggests that changes in the PBL depth may also be one of the factors that accounts for the observed variability, with the model results pointing towards a local source to the north of the MSL site. The interaction between regional and local flows at Gale Crater is also investigated assuming that the meridional wind, the dynamically important component of the horizontal wind at Gale, anomalies with respect to the daily mean can be approximated by a sinusoidal function as they typically oscillate between positive (south to north) and negative (north to south) values that correspond to upslope/downslope or downslope/upslope regimes along the crater rim and Mount Sharp slopes and the dichotomy boundary. The smallest magnitudes are found in the northern crater floor in a region that

  2. A New Model of the Fractional Order Dynamics of the Planetary Gears

    Directory of Open Access Journals (Sweden)

    Vera Nikolic-Stanojevic

    2013-01-01

    Full Text Available A theoretical model of planetary gears dynamics is presented. Planetary gears are parametrically excited by the time-varying mesh stiffness that fluctuates as the number of gear tooth pairs in contact changes during gear rotation. In the paper, it has been indicated that even the small disturbance in design realizations of this gear cause nonlinear properties of dynamics which are the source of vibrations and noise in the gear transmission. Dynamic model of the planetary gears with four degrees of freedom is used. Applying the basic principles of analytical mechanics and taking the initial and boundary conditions into consideration, it is possible to obtain the system of equations representing physical meshing process between the two or more gears. This investigation was focused to a new model of the fractional order dynamics of the planetary gear. For this model analytical expressions for the corresponding fractional order modes like one frequency eigen vibrational modes are obtained. For one planetary gear, eigen fractional modes are obtained, and a visualization is presented. By using MathCAD the solution is obtained.

  3. Integration of nitrogen dynamics into a global terrestrial ecosystem model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaojuan [University of Illinois, Urbana-Champaign; Wittig, Victoria [University of Illinois, Urbana-Champaign; Jain, Atul [University of Illinois, Urbana-Champaign; Post, Wilfred M [ORNL

    2009-01-01

    A comprehensive model of terrestrial N dynamics has been developed and coupled with the geographically explicit terrestrial C cycle component of the Integrated Science Assessment Model (ISAM). The coupled C-N cycle model represents all the major processes in the N cycle and all major interactions between C and N that affect plant productivity and soil and litter decomposition. Observations from the LIDET data set were compiled for calibration and evaluation of the decomposition submodel within ISAM. For aboveground decomposition, the calibration is accomplished by optimizing parameters related to four processes: the partitioning of leaf litter between metabolic and structural material, the effect of lignin on decomposition, the climate control on decomposition and N mineralization and immobilization. For belowground decomposition, the calibrated processes include the partitioning of root litter between decomposable and resistant material as a function of litter quality, N mineralization and immobilization. The calibrated model successfully captured both the C and N dynamics during decomposition for all major biomes and a wide range of climate conditions. Model results show that net N immobilization and mineralization during litter decomposition are dominantly controlled by initial N concentration of litter and the mass remaining during decomposition. The highest and lowest soil organicNstorage are in tundra (1.24 KgNm2) and desert soil (0.06 Kg N m2). The vegetation N storage is highest in tropical forests (0.5 Kg N m2), and lowest in tundra and desert (<0.03 Kg N m2). N uptake by vegetation is highest in warm and moist regions, and lowest in cold and dry regions. Higher rates of N leaching are found in tropical regions and subtropical regions where soil moisture is higher. The global patterns of vegetation and soil N, N uptake and N leaching estimated with ISAM are consistent with measurements and previous modeling studies. This gives us confidence that ISAM

  4. Numerical simulation of time-invariant error and its effect on planetary gearbox dynamics

    Directory of Open Access Journals (Sweden)

    Venkataram Nithin

    2018-01-01

    Full Text Available Planetary gearbox is used in high precision applications such as robotic arm, control system of antenna, positioning and radar tracking systems. Planetary gearbox have high torque-to-weight ratio, high degree of control over the speed range and better efficiency. Most of the literatures assume that the gearbox are free from errors. Errors significantly affect the dynamic characteristics of the gearbox. The major challenge is to model these errors and study its behaviour under dynamic condition. The simulation results of time domain signal when converted to frequency domain signal, it shows the presence of error in the gearbox. Also, simulation result indicates a non-uniform motion of planetary gearbox in the presence of errors.

  5. Thermal Mapping to Achieve 3-D Structure and Dynamics of Planetary Atmospheres Throughout the Solar System

    Science.gov (United States)

    Greathouse, T. K.; Retherford, K. D.; Mandt, K. E.; Wyrick, D. Y.

    2017-02-01

    We have completed our first look at all planets in the solar system. It is now time to move forward with more complete studies of solar system planetary atmospheres to further our understanding of atmospheric dynamics of planets unlike the Earth.

  6. Planetary geosciences, 1989-1990

    Science.gov (United States)

    Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)

    1992-01-01

    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.

  7. Planetary Nebulae as kinematic and dynamical tracers of galaxy halos

    NARCIS (Netherlands)

    Coccato, Lodovico; Napolitano, Nicola; Arnaboldi, Magda; Cortesi, Arianna; Romanowsky, Aaron; Gerhard, Ortwin; Merrifield, Michael; Kuijken, Konrad; Freeman, Ken; Douglas, Nigel

    2015-01-01

    The kinematics and dynamical properties of galaxy halos are difficult to measure, given the faint stellar surface brightness that characterizes those regions. Gas-rich systems such as spiral galaxies can be probed using the radio emission of their gas component. Early type galaxies contain less gas,

  8. Regional terrestrial ecosystem dynamics and their interactions with the atmosphere

    Science.gov (United States)

    Ojima, D.; Schimel, D.; Parton, W.; McKeown, R.

    2003-04-01

    Integration of land use with human dimensions, biological, atmospheric and hydrological processes is necessary for us to estimate net carbon exchange from the terrestrial biota. However, proper handling of scale across a set of divergent processes interconnecting the atmosphere and the biosphere is critical to the success of this analysis. Development of the new IGBP “Land” Project will develop a structure to better integrate research that has advanced during the past decade. Our understanding of the long term changes in the terrestrial biosphere will provide greater insight to the environmental sustainability under different stresses and provide an indication of how different regions may respond to changes in climate, disturbance regimes, and land use. This insight will provide a framework to better develop earth system science over the coming decade and to better incorporate the human-environmental system perspective. Our understanding of the biological controls of carbon fluxes between the atmosphere and the land surface (referring to the soil, vegetation, water system) is critical to our estimation of net terrestrial carbon fluxes and the connection of key natural resources (e.g., water, vegetation, soils, etc) to climate and land use changes. Terrestrial biological processes respond strongly to atmospheric temperature, humidity, CO2 levels, N-deposition, precipitation, and radiative transfers. The development of this integrated science perspective to understand the scope of effects human activities on land are affecting the feedbacks to the earth system and the impacts on the terrestrial human-environment system. The presentation will focus on the development of this framework and highlight recent advances in our observational and analytical components of terrestrial biosphere research.

  9. Dynamics and collisional evolution of closely packed planetary systems

    Science.gov (United States)

    Hwang, Jason A.; Steffen, Jason H.; Lombardi, J. C., Jr.; Rasio, Frederic A.

    2017-10-01

    High-multiplicity Kepler systems (referred to as Kepler multis) are often tightly packed and may be on the verge of instability. Many systems of this type could have experienced past instabilities, where the compact orbits and often low densities make physical collisions likely outcomes. We use numerical simulations to study the dynamical instabilities and planet-planet interactions in a synthetically generated sample of closely packed, high-multiplicity systems. We focus specifically on systems resembling Kepler-11, a Kepler multi with six planets, and run a suite of dynamical integrations, sampling the initial orbital parameters around the nominal values reported in Lissauer et al. (2011a), finding that most of the realizations are unstable, resulting in orbit crossings and, eventually, collisions and mergers. We study in detail the dependence of stability on the orbital parameters of the planets and planet-pair characteristics to identify possible precursors to instability, compare the systems that emerge from dynamical instabilities to the observed Kepler sample (after applying observational corrections), and propose possible observable signatures of these instabilities. We examine the characteristics of each planet-planet collision, categorizing collisions by the degree of contact and collision energy, and find that grazing collisions are more common than direct impacts. Since the structure of many planets found in Kepler multis is such that the mass is dominated by a rocky core, but the volume is dominated by a low-density gaseous envelope, the sticky-sphere approximation may not be valid, and we present hydrodynamic calculations of planet-planet collisions clearly deviating from this approximation. Finally, we rerun a subset of our dynamical calculations using instead a modified prescription to handle collisions, finding, in general, higher multiplicity remnant systems.

  10. Gaia: mapping the dynamics and morphologies of Galactic Planetary Nebulae: First results from Gaia Data Release 1

    Science.gov (United States)

    Walton, Nicholas A.; Rejkuba, Marina; Walsh, Jeremy R.; Zijstra, Albert A.

    2017-10-01

    This paper comments on the use Gaia in studying the internal dynamics and morphologies of Planetary Nebulae (PN). It is noted that the second and subsequent releases of Gaia data, will have significant potential in unravelling PN morphologies.

  11. MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics.

    Science.gov (United States)

    Jupp, Tim E; Cox, Peter M

    2010-05-12

    A two-box model for equator-to-pole planetary heat transport is extended to include simple atmospheric dynamics. The surface drag coefficient CD is treated as a free parameter and solutions are calculated analytically in terms of the dimensionless planetary parameters eta (atmospheric thickness), omega (rotation rate) and xi (advective capability). Solutions corresponding to maximum entropy production (MEP) are compared with solutions previously obtained from dynamically unconstrained two-box models. As long as the advective capability xi is sufficiently large, dynamically constrained MEP solutions are identical to dynamically unconstrained MEP solutions. Consequently, the addition of a dynamical constraint does not alter the previously obtained MEP results for Earth, Mars and Titan, and an analogous result is presented here for Venus. The rate of entropy production in an MEP state is shown to be independent of rotation rate if the advective capability xi is sufficiently large (as for the four examples in the solar system), or if the rotation rate omega is sufficiently small. The model indicates, however, that the dynamical constraint does influence the MEP state when xi is small, which might be the case for some extrasolar planets. Finally, results from the model developed here are compared with previous numerical simulations in which the effect of varying surface drag coefficient on entropy production was calculated.

  12. Considering Planetary Constraints and Dynamic Screening in Solar Evolution Modeling

    Science.gov (United States)

    Wood, Suzannah R.; Mussack, Katie; Guzik, Joyce A.

    2018-01-01

    The ‘faint early sun problem’ remains unsolved. This problem consists of the apparent contradiction between the standard solar model prediction of lower luminosity (70% of current luminosity) and the observations of liquid water on early Earth and Mars. The presence of liquid water on early Earth and Mars should not be neglected and should be used as a constraint for solar evolution modeling. In addition, modifications to standard solar models are needed to address the discrepancy with solar structure inferred from helioseismology given the latest solar abundance determinations. Here, we will utilize the three different solar abundances: GN93 (Grevesse & Noels, 1993), AGS05 (Asplund et al., 2005), AGSS09 (Asplund et al., 2009). Here, we propose an early mass loss model with an initial solar mass between 1.07 and 1.15 solar masses and an exponentially decreasing mass-loss rate to meet conditions in the early solar system (Wood et al, submitted). Additionally, we investigate the effects of dynamic screening and the new OPLIB opacities from Los Alamos (Colgan et al., 2016). We show the effects of these modifications to the standard solar evolution models on the interior structure, neutrino fluxes, sound speed, p-mode frequencies, convection zone depth, and envelope helium and element abundance of the model sun at the present day.

  13. The dynamics of impactors on a synchronous planetary satellite

    Science.gov (United States)

    Valsecchi, Giovanni B.; Alessi, Elisa Maria; Rossi, Alessandro

    2015-08-01

    We have applied the extension of Opik's theory of close encounters by Valsecchi et al. (2003) to the case of a satellite in a circular orbit about a planet that, in turn, is in a circular orbit about the Sun, with the further assumption that the plane of the planetocentric orbit of the satellite is the same as that of the heliocentric orbit of the planet.The goal is to understand the effects on the satellite surface of the cratering caused by impacts due to a population of small bodies on planet-crossing, inclined orbits.With this setup, we have computed analytically the velocity and the elongation from the apex of the bodies impacting the satellite, as simple functions of the heliocentric orbital elements of the impactor and of the longitude of the satellite at impact (Valsecchi et al. 2014).In the present work, we delve deeper into the dynamics of the impactors, taking into account the gravitational deflection induced by the gravity of the planet; in this way, we are able to treat also trajectories leading to impacts on the satellite just after a close encounter with the planet.

  14. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    Science.gov (United States)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-11-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use LPJ-GUESS, a dynamic vegetation model employing a detailed individual- and patch-based representation of vegetation dynamics, to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one representative "business-as-usual" climate scenario). Single-factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model as documented in previous studies using other global models. Under an RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics up to the present. However, during the 21st century, nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contrasts with previous results with other global models that have shown an 8 to 37% decrease in carbon uptake relative to modern baseline conditions. Implications for the plausibility of earlier projections of future terrestrial C dynamics based on C-only models are discussed.

  15. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Science.gov (United States)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  16. Anthropogenic lead dynamics in the terrestrial and marine environment

    Science.gov (United States)

    Reuer, Matthew K.; Weiss, Dominik J.

    2002-12-01

    Human activities have greatly altered the natural geochemical cycles of several heavy metals, most notably lead derived from leaded-petrol and metal-smelting emissions. This inadvertent geochemical tracer experiment poses two challenges: understanding how anthropogenic lead affects human health and the environment, and quantifying its time-dependent distribution within terrestrial and marine systems. Accurate assessment of the latter relies on well-constrained historical and modern lead fluxes from proxy records and direct observations, lead source estimates from stable lead isotopes, and transport rate estimates from radionuclides. Numerous studies support the global-scale atmospheric lead fluxes principally derived from anthropogenic activities, the short lead residence time in the atmosphere and surface ocean, and the predominance of North American and European lead emissions. Emerging observations and models are currently addressing the time-dependent evolution of this reactive tracer in the atmosphere and oceans.

  17. Validating early stellar encounters as the cause of dynamically hot planetary systems

    Science.gov (United States)

    Kalas, Paul

    2017-08-01

    One of the key questions concerning exoplanetary systems is why some are dynamically cold, such as TRAPPIST-1, whereas others are dynamically hot, with highly eccentric planets and/or perturbed debris disks. Dynamical theory describes a variety of plausible mechanisms, but few can be empirically tested since the critical dynamical evolution that sets the final planetary architecture is short-lived. One rare system available for testing dynamical upheaval scenarios is the 400 Myr-old Fomalhaut system. In Cycle 22 we coronagraphically studied Fomalhaut C, which is a wide M-dwarf companion to Fomalhaut A, in order to test our prediction that the unresolved, Herschel-detected debris disk around Fomalhaut C may be highly perturbed because of a recent close interaction with Fomalhaut A. Using HST/STIS we discovered a highly asymmetric feature extending northward of Fomalhaut C by 3 that resembles our model of a dynamically hot disk. However, it may be a background galaxy and the definitive test of its physical relationship to Fomalhaut C is to demonstrate common proper motion. Using Keck adaptive optics follow-up observations in J band, we did not detect the feature, and hence follow-up HST observations are the only way to test for common proper motion. Here we request a very small program to revisit Fomalhaut C with STIS in order to validate the initial discovery as a debris disk (1 proper motion between HST epochs). The astrophysical significance is demonstrating that the Fomalhaut system is a valuable case for studying dynamical upheavals via stellar encounters that are inferred to occur in the evolution of many other planetary systems.

  18. Feasibility of Dynamic Stability Measurements of Planetary Entry Capsules Using MSBS

    Science.gov (United States)

    Britcher, Colin; Schoenenberger, Mark

    2015-01-01

    The feasibility of conducting dynamic stability testing of planetary entry capsules at low supersonic Mach numbers using a Magnetic Suspension and Balance System (MSBS) is reviewed. The proposed approach would employ a spherical magnetic core, exert control in three degrees-of-freedom (i.e. x, y, z translations) and allow the model to freely rotate in pitch, yaw, and roll. A proof-of-concept system using an existing MSBS electromagnet array in a subsonic wind tunnel is described, with future potential for development of a new system for a supersonic wind tunnel.

  19. Random Vibration and Dynamic Analysis of a Planetary Gear Train in a Wind Turbine

    Directory of Open Access Journals (Sweden)

    Jianming Yang

    2016-01-01

    Full Text Available Premature failure of gearboxes is a big challenge facing the wind power industry. It highly depends on fully understanding the embedded dynamics to solve this problem. To this end, this paper investigates the random vibration and dynamics of planetary gear trains (PGTs in wind turbines under the excitation of wind turbulence. The turbulence is represented by the Von Karmon spectrum and implemented by passing white noise through a 2nd-order shaping filter. Then, extra equations are formed and added to the original governing equations of motion. With this augmented equation set, a recursive numerical algorithm based on stochastic Newmark scheme is applied to solve for the statistics of the responses starting from initial conditions. After simulation, the variances of the vibration responses and the dynamic meshing forces at gear meshes are obtained.

  20. Gazetteer of Planetary Nomenclature

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be...

  1. Dynamic disequilibrium of the terrestrial carbon cycle under global change.

    Science.gov (United States)

    Luo, Yiqi; Weng, Ensheng

    2011-02-01

    In this review, we propose a new framework, dynamic disequilibrium of the carbon cycles, to assess future land carbon-sink dynamics. The framework recognizes internal ecosystem processes that drive the carbon cycle toward equilibrium, such as donor pool-dominated transfer; and external forces that create disequilibrium, such as disturbances and global change. Dynamic disequilibrium within one disturbance-recovery episode causes temporal changes in the carbon source and sink at yearly and decadal scales, but has no impacts on longer-term carbon sequestration unless disturbance regimes shift. Such shifts can result in long-term regional carbon loss or gain and be quantified by stochastic statistics for use in prognostic modeling. If the regime shifts result in ecosystem state changes in regions with large carbon reserves at risk, the global carbon cycle might be destabilized. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Dust charging and dynamics on the surfaces of airless planetary bodies

    Science.gov (United States)

    Wang, Xu; Schwan, Joseph; Hsu, Hsiang-Wen; Deca, Jan; Grün, Eberhard; Horányi, Mihály

    2017-04-01

    Our recent laboratory experiments have advanced our understanding of a long-standing problem of dust charging and transport on the surfaces of airless planetary bodies, leading us to eventually explain several observed planetary phenomena and to understand how electrostatic dust transport changes the surface processes. A new "patched charge model", developed on our experimental results, predicts that particles forming micro-cavities on a dusty surface can attain large negative charges from the collection of photo- and/or secondary electrons emitted by their neighbouring particles due to exposure to ultraviolet (UV) radiation and/or energetic electrons. These unexpectedly large negative charges, and the resulting repulsive forces between them, are suggested to be responsible for electrostatic dust transport on surfaces. The predictions of this new model are verified with our new charge measurements, showing 1) the negative charge polarity of dust, even under UV radiation; and 2) large charge magnitudes, two orders larger than those predicted by previous customary charging models. Subsequent dust dynamics are also analysed with the imaging data, showing that the plasma sheath electric field modifies the dust lofting. Computer simulations are under development to study the dynamics of charged dust with the initial conditions, including both the dust charge and launch speed, provided from our laboratory results.

  3. The dynamics and scaling laws of planetary dynamos driven by inertial waves

    Science.gov (United States)

    Davidson, P. A.

    2014-09-01

    Great progress has been made in the numerical simulation of planetary dynamos, though these numerical experiments still operate in a regime very far from the planets. For example, it seems unlikely that viscous forces are at all significant in planetary interiors, yet some of the simulations display a significant dependence on viscosity, and indeed in some of the simulations the dynamo mechanism is itself viscously driven, taking the form of helical Ekman pumping within columnar convection rolls. Given the similarity of the external magnetic fields observed in the terrestrial planets and gas giants, and the extremely small value of the Ekman number in all such cases, it seems natural to suppose that the underlying dynamo mechanism in these planets is simple, robust, independent of viscosity and insensitive to mechanical boundary conditions. A key step to identifying this mechanism is to determine the source of helicity in planetary cores, which itself should be robust, independent of viscosity and insensitive to boundary conditions. In this paper, we explore the possibility that the helicity in the core of the Earth arises from the spontaneous emission of inertial waves, driven by the equatorial heat flux in the outer core. We also ask if a similar mechanism might operate in other planets, and perhaps act to supplement the helicity driven by Ekman pumping in the (viscous) numerical simulations. We demonstrate that such waves do indeed produce the required helicity distribution outside the tangent cylinder. Moreover, we show that these waves inevitably propagate along the axis of the columnar vortices, and indeed they are the very mechanism by which the columnar vortices form in the first place and the means by which the columns subsequently evolve. We also calculate the emf induced by such axially propagating inertial waves and show that, in principle, this emf is sufficient to support a self-sustaining dynamo of the α2 type. Finally, we derive the scaling laws

  4. Martian Superoxide and Peroxide O2 Release (OR) Assay: A New Technology for Terrestrial and Planetary Applications

    Science.gov (United States)

    Georgiou, Christos D.; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Grintzalis, Kontantinos; Papapostolou, Ioannis; Quinn, Richard C.; McKay, Christopher P.; Sun, Henry J.

    2015-01-01

    This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O2, and their quantification by an O2 electrode based on the stoichiometry of the involved reactions: The intermediate product O2 from the hydrolysis of metal superoxides is converted by cytochrome c to O2, and also by superoxide dismutase (SOD) to 1/2 mol O2 and 1/2 mol H2O2, which is then converted by catalase (CAT) to 1/2 mol O2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to 1/2 mol O2 by CAT. The assay-method was validated in a sealed sample chamber using a liquid-phase Clark-type O2 electrode with known concentrations of O2 and H2O2, and with commercial metal superoxide and peroxide mixed with Mars analogue Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. The assay lower limit of detection, using luminescence quenching/optical sensing O2-electrodes, is 1 nmol O2 cm(exp. -3) or better. The activity of the assay enzymes SOD and cytochrome c was unaffected up to 6 Gy exposure by gamma-radiation, while CAT retained 100% and 40% of its activity at 3 and 6 Gy, respectively, demonstrating the suitability of these enzymes for planetary missions, e.g., in Mars or Europa.

  5. A Model for the Dynamical and Ionization Structure of Planetary Nebula IC 418

    Directory of Open Access Journals (Sweden)

    J. Ghanbari

    1997-04-01

    Full Text Available   The interacting two winds model and a spherical density distribution function are introduced to study the dynamical and ionization structure of the planetary nebula IC 418. A fast wind with a mechanical luminousity  2/34×1034erg.s-1 of interacts with a super wind with a mass-loss rate of  2×10-5M(°yr-1 and  a velocity of 10 , and produces a dense and luminous medium.   In this model, the expansion velocities of OI and HI lines are predicted to be 11 and 10.5kms-1 , respectively. The calculated dynamical time-scale 1033yr for the nebula is in good agreement with the evolution time of the central star after the interaction of the two winds. Our calculations give a luminosity  0.05M(°of for the central star

  6. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON THE DELIVERY OF ATMOPHILE ELEMENTS DURING TERRESTRIAL PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Soko [School of Engineering, Physics, and Mathematics, University of Dundee, DD1 4HN, Scotland (United Kingdom); Brasser, Ramon; Ida, Shigeru, E-mail: s.matsumura@dundee.ac.uk [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550 (Japan)

    2016-02-10

    Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of these elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively.

  7. THE LAST STAGES OF TERRESTRIAL PLANET FORMATION: DYNAMICAL FRICTION AND THE LATE VENEER

    Energy Technology Data Exchange (ETDEWEB)

    Schlichting, Hilke E.; Warren, Paul H. [UCLA, Department of Earth and Space Science, 595 Charles E. Young Drive East, Los Angeles, CA 90095 (United States); Yin Qingzhu, E-mail: hilke@ucla.edu [UCD, Department of Geology, One Shields Avenue, Davis, CA 95616 (United States)

    2012-06-10

    The final stage of terrestrial planet formation consists of the clean-up of residual planetesimals after the giant impact phase. Dynamically, a residual planetesimal population is needed to damp the high eccentricities and inclinations of the terrestrial planets to circular and coplanar orbits after the giant impact stage. Geochemically, highly siderophile element (HSE) abundance patterns inferred for the terrestrial planets and the Moon suggest that a total of about 0.01 M{sub Circled-Plus} of chondritic material was delivered as 'late veneer' by planetesimals to the terrestrial planets after the end of giant impacts. Here, we combine these two independent lines of evidence for a leftover population of planetesimals and show that: (1) a residual population of small planetesimals containing 0.01 M{sub Circled-Plus} is able to damp the high eccentricities and inclinations of the terrestrial planets after giant impacts to their observed values. (2) At the same time, this planetesimal population can account for the observed relative amounts of late veneer added to the Earth, Moon, and Mars provided that the majority of the accreted late veneer was delivered by small planetesimals with radii {approx}< 10 m. These small planetesimal sizes are required to ensure efficient damping of the planetesimal's velocity dispersion by mutual collisions, which in turn ensures sufficiently low relative velocities between the terrestrial planets and the planetesimals such that the planets' accretion cross sections are significantly enhanced by gravitational focusing above their geometric values. Specifically, we find that, in the limit that the relative velocity between the terrestrial planets and the planetesimals is significantly less than the terrestrial planets' escape velocities, gravitational focusing yields a mass accretion ratio of Earth/Mars {approx}({rho}{sub Circled-Plus }/{rho}{sub mars})(R{sub Circled-Plus }/R{sub mars}){sup 4} {approx} 17, which

  8. Quantifying terrestrial ecosystem carbon dynamics in the Jinsha watershed, Upper Yangtze, China from 1975 to 2000

    Science.gov (United States)

    Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo

    2010-01-01

    Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.

  9. Dynamic occlusion detection and inpainting of in situ captured terrestrial laser scanning point clouds sequence

    Science.gov (United States)

    Chen, Chi; Yang, Bisheng

    2016-09-01

    Laser point clouds captured using terrestrial laser scanning (TLS) in an uncontrollable urban outdoor or indoor scene suffer from irregular shaped data blanks caused by dynamic occlusion that temporarily exists, i.e., moving objects, such as pedestrians or cars, resulting in integrality and quality losses of the scene data. This paper proposes a novel automatic dynamic occlusion detection and inpainting method for sequential TLS point clouds captured from one scan position. In situ collected laser point clouds sequences are indexed by establishing a novel panoramic space partition that assigns a three dimensional voxel to each laser point according to the scanning setups. Then two stationary background models are constructed at the ray voxel level using the laser reflectance intensity and geometrical attributes of the point set inside each voxel across the TLS sequence. Finally, the background models are combined to detect the points on the dynamic object, and the ray voxels of the detected dynamic points are tracked for further inpainting by replacing the ray voxels with the corresponding background voxels from another scan. The resulting scene is free of dynamic occlusions. Experiments validated the effectiveness of the proposed method for indoor and outdoor TLS point clouds captured by a commercial terrestrial scanner. The proposed method achieves high precision and recall rate for dynamic occlusion detection and produces clean inpainted point clouds for further processing.

  10. Design and Dynamics Analysis of a Bio-Inspired Intermittent Hopping Robot for Planetary Surface Exploration

    Directory of Open Access Journals (Sweden)

    Long Bai

    2012-10-01

    Full Text Available A small, bio-inspired and minimally actuated intermittent hopping robot for planetary surface exploration is proposed in this paper. The robot uses a combined-geared six-bar linkage/spring mechanism, which has a possible rich trajectory and metamorphic characteristics and, due to this, the robot is able to recharge, lock/release and jump by using just a micro-power motor as the actuator. Since the robotic system has a closed-chain structure and employs underactuated redundant motion, the constrained multi-body dynamics are derived with time-varying driving parameters and ground unilateral constraint both taken into consideration. In addition, the established dynamics equations, mixed of higher order differential and algebraic expressions, are solved by the immediate integration algorithm. A prototype is implemented and experiments are carried out. The results show that the robot, using a micro-power motor as the actuator and solar cells as the power supply, can achieve a biomimetic multi-body hopping stance and a nonlinearly increasing driving force. Typically, the robot can jump a horizontal distance of about 1 m and a vertical height of about 0.3 m, with its trunk and foot moving stably during takeoff. In addition, the computational and experimental results are consistent as regards the hopping performance of the robot, which suggests that the proposed dynamics model and its solution have general applicability to motion prediction and the performance analysis of intermittent hopping robots.

  11. Quantifying the influence of the terrestrial biosphere on glacial-interglacial climate dynamics

    Science.gov (United States)

    Davies-Barnard, Taraka; Ridgwell, Andy; Singarayer, Joy; Valdes, Paul

    2017-10-01

    The terrestrial biosphere is thought to be a key component in the climatic variability seen in the palaeo-record. It has a direct impact on surface temperature through changes in surface albedo and evapotranspiration (so-called biogeophysical effects) and, in addition, has an important indirect effect through changes in vegetation and soil carbon storage (biogeochemical effects) and hence modulates the concentrations of greenhouse gases in the atmosphere. The biogeochemical and biogeophysical effects generally have opposite signs, meaning that the terrestrial biosphere could potentially have played only a very minor role in the dynamics of the glacial-interglacial cycles of the late Quaternary. Here we use a fully coupled dynamic atmosphere-ocean-vegetation general circulation model (GCM) to generate a set of 62 equilibrium simulations spanning the last 120 kyr. The analysis of these simulations elucidates the relative importance of the biogeophysical versus biogeochemical terrestrial biosphere interactions with climate. We find that the biogeophysical effects of vegetation account for up to an additional -0.91 °C global mean cooling, with regional cooling as large as -5 °C, but with considerable variability across the glacial-interglacial cycle. By comparison, while opposite in sign, our model estimates of the biogeochemical impacts are substantially smaller in magnitude. Offline simulations show a maximum of +0.33 °C warming due to an increase of 25 ppm above our (pre-industrial) baseline atmospheric CO2 mixing ratio. In contrast to shorter (century) timescale projections of future terrestrial biosphere response where direct and indirect responses may at times cancel out, we find that the biogeophysical effects consistently and strongly dominate the biogeochemical effect over the inter-glacial cycle. On average across the period, the terrestrial biosphere has a -0.26 °C effect on temperature, with -0.58 °C at the Last Glacial Maximum. Depending on

  12. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics

    Directory of Open Access Journals (Sweden)

    T. Davies-Barnard

    2017-10-01

    Full Text Available The terrestrial biosphere is thought to be a key component in the climatic variability seen in the palaeo-record. It has a direct impact on surface temperature through changes in surface albedo and evapotranspiration (so-called biogeophysical effects and, in addition, has an important indirect effect through changes in vegetation and soil carbon storage (biogeochemical effects and hence modulates the concentrations of greenhouse gases in the atmosphere. The biogeochemical and biogeophysical effects generally have opposite signs, meaning that the terrestrial biosphere could potentially have played only a very minor role in the dynamics of the glacial–interglacial cycles of the late Quaternary. Here we use a fully coupled dynamic atmosphere–ocean–vegetation general circulation model (GCM to generate a set of 62 equilibrium simulations spanning the last 120 kyr. The analysis of these simulations elucidates the relative importance of the biogeophysical versus biogeochemical terrestrial biosphere interactions with climate. We find that the biogeophysical effects of vegetation account for up to an additional −0.91 °C global mean cooling, with regional cooling as large as −5 °C, but with considerable variability across the glacial–interglacial cycle. By comparison, while opposite in sign, our model estimates of the biogeochemical impacts are substantially smaller in magnitude. Offline simulations show a maximum of +0.33 °C warming due to an increase of 25 ppm above our (pre-industrial baseline atmospheric CO2 mixing ratio. In contrast to shorter (century timescale projections of future terrestrial biosphere response where direct and indirect responses may at times cancel out, we find that the biogeophysical effects consistently and strongly dominate the biogeochemical effect over the inter-glacial cycle. On average across the period, the terrestrial biosphere has a −0.26 °C effect on temperature, with −0.58 °C at the

  13. Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics.

    Science.gov (United States)

    Bartels, Pia; Cucherousset, Julien; Steger, Kristin; Eklöv, Peter; Tranvik, Lars J; Hillebrand, Helmut

    2012-05-01

    Cross-ecosystem movements of material and energy, particularly reciprocal resource fluxes across the freshwater-land interface, have received major attention. Freshwater ecosystems may receive higher amounts of subsidies (i.e., resources produced outside the focal ecosystem) than terrestrial ecosystems, potentially leading to increased secondary production in freshwaters. Here we used a meta-analytic approach to quantify the magnitude and direction of subsidy inputs across the freshwater-land interface and to determine subsequent responses in recipient animals. Terrestrial and freshwater ecosystems differed in the magnitude of subsidies they received, with aquatic ecosystems generally receiving higher subsidies than terrestrial ecosystems. Surprisingly, and despite the large discrepancy in magnitude, the contribution of these subsidies to animal carbon inferred from stable isotope composition did not differ between freshwater and terrestrial ecosystems, likely due to the differences in subsidy quality. The contribution of allochthonous subsidies was highest to primary consumers and predators, suggesting that bottom-up and top-down effects may be affected considerably by the input of allochthonous resources. Future work on subsidies will profit from a food web dynamic approach including indirect trophic interactions and propagating effects.

  14. Ignoring detailed fast-changing dynamics of land use overestimates regional terrestrial carbon sequestration

    Directory of Open Access Journals (Sweden)

    S. Q. Zhao

    2009-08-01

    Full Text Available Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS, along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively, to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at the local to global scales.

  15. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  16. Validation of Atmospheric Dynamics (VADY) - connections between planetary waves and atmospheric circulation types

    Science.gov (United States)

    Lang, Benjamin; Jacobeit, Jucundus; Beck, Christoph; Philipp, Andreas

    2015-04-01

    The climate research program "Medium-range Climate Predictions" (MiKlip), funded by the Federal Ministry of Education and Research in Germany (BMBF), has the aim to develop a climate model system (MPI-ESM) that can provide reliable decadal predictions of climate, including extreme weather events. A substantial part of the development process is a comprehensive model validation. Within MiKlip, it includes comparisons of model simulations and observations in order to allow statements about the performance of the model and to give particular recommendations for the further development of the model. The research project "Validation of Atmospheric Dynamics" (VADY), conducted by the cooperation partners "Institute of Geography at the University of Augsburg" (IGUA) and the "German Aerospace Centre" (DLR), contributes to model validation within MiKlip with a special focus on atmospheric waves and circulation dynamics. Within the framework of VADY, DLR validates the representation of atmospheric waves on different levels and scales based on suitable activity indices (e.g. the so-called large-scale dynamical activity index (LDAI), which is a measure for the activity of planetary waves). The focus of IGUA is on the model validation with respect to the representation of atmospheric circulation types, dynamical modes and the teleconnectivity of the atmospheric circulation. Currently, the connection between LDAI and atmospheric circulation types on different levels and for different seasons in the North Atlantic-European region is analysed by considering, in particular, the North Atlantic Oscillation. Results will be shown for the connection between LDAI and atmospheric circulation types and subsequently for the representation of the identified connections in the decadal-prediction model system of MPI-ESM.

  17. Planetary Dynamics From Laser Altimetry: Spin and Tidal Deformation of the Moon and Mercury

    Science.gov (United States)

    Barker, M. K.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2016-12-01

    Studying the dynamics of planetary bodies can shed light on their interior structure and evolution. For example, the temperature variation with depth affects how a planet's surface deforms under the influence of gravitational tidal forcing. Also, the pole orientation, libration, and spin rate of a planet depend on its interior mass distribution and thermal evolution. Altimetric crossovers measured by orbiting spacecraft are ideal for observing these subtle dynamical effects because they have little sensitivity to local and regional relief, which can mask the signals of interest. On the Moon, the tidal surface deformation has an amplitude of only 10 cm, but Mazarico et al. (2014) were able to measure the radial Love number h2 using the highest quality crossovers from the Lunar Orbiter Laser Altimeter (LOLA). Building upon that work, we are incorporating more crossovers to improve the spatial and temporal sampling of the tidal signal. On Mercury, tidal torques from the Sun cause longitudinal librations about its 3:2 spin-orbit resonance with an amplitude of 450 m at the equator. This amplitude is significantly larger than the geolocation uncertainty of MESSENGER's Mercury Laser Altimeter (MLA) data ( 10/100 m in radial/horizontal), and could, thus, be detectable from MLA crossovers. Here we describe recent work using MLA crossovers to measure deviations of Mercury's rotation from the canonical IAU model. Careful accounting of the spacecraft orbital errors and MLA pointing biases will allow an estimation of libration amplitude, pole position, and mean spin rate.

  18. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.

    2009-01-01

    We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to

  19. Dynamics of ion sound waves in the front of the terrestrial bow shock

    Directory of Open Access Journals (Sweden)

    I. Giagkiozis

    2011-05-01

    Full Text Available Single spacecraft measurements from the Cluster 3 satellite are used to identify nonlinear processes in ion-sound turbulence observed within the front of the quasiperpendicular terrestrial bow shock. Ion sound waves possess spatial scales that are too small for the efficient use of multipoint measurements on inter-satellite separation scales. However, it is shown how frequency domain modelling can be applied to single spacecraft electric field data obtained using the EFW internal burst mode. The resulting characteristics of the nonlinear processes are used to argue about the possible wave sources and investigate their dynamics.

  20. DYNAMICS OF SELF-GRAVITY WAKES IN DENSE PLANETARY RINGS. I. PITCH ANGLE

    Energy Technology Data Exchange (ETDEWEB)

    Michikoshi, Shugo; Kokubo, Eiichiro [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Fujii, Akihiko [University of Calgary, Calgary, Alberta, T2N 1N4 (Canada); Salo, Heikki, E-mail: shugo.michikoshi@nao.ac.jp, E-mail: kokubo@th.nao.ac.jp, E-mail: akihiko.fujii2@ucalgary.ca, E-mail: heikki.salo@oulu.fi [Department of Physics, Astronomy Division, University of Oulu, P.O. Box 3000, FI-90014 (Finland)

    2015-10-20

    We investigate the dynamics of self-gravity wakes in dense planetary rings. In particular, we examine how the pitch angles of self-gravity wakes depend on ring parameters using N-body simulations. We calculate the pitch angles using the two-dimensional autocorrelation function of the ring surface density. We obtain the pitch angles for the inner and outer parts of the autocorrelation function separately. We confirm that the pitch angles are 15°–30° for reasonable ring parameters, which are consistent with previous studies. We find that the inner pitch angle increases with the Saturnicentric distance, while it barely depends on the optical depth and the restitution coefficient of ring particles. The increase of the inner pitch angle with the Saturnicentric distance is consistent with the observations of the A ring. The outer pitch angle does not have a clear dependence on any ring parameters and is about 10°–15°. This value is consistent with the pitch angle of spiral arms in collisionless systems.

  1. An investigation of ozone and planetary boundary layer dynamics over the complex topography of Grenoble combining measurements and modeling

    OpenAIRE

    Couach, O.; Balin, I.; Jiménez, R.; Ristori, P.; Perego, S.; Kirchner, F.; Simeonov, V.; Calpini, B.; Bergh, H.

    2003-01-01

    This paper concerns an evaluation of ozone (O3) and planetary boundary layer (PBL) dynamics over the complex topography of the Grenoble region through a combination of measurements and mesoscale model (METPHOMOD) predictions for three days, during July 1999. The measurements of O3 and PBL structure were obtained with a Differential Absorption Lidar (DIAL) system, situated 20 km south of Grenoble at Vif (310 m ASL). The combined lidar observations ...

  2. Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa.

    Science.gov (United States)

    Ardö, Jonas

    2015-12-01

    Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.

  3. Construction of Hierarchical Models for Fluid Dynamics in Earth and Planetary Sciences : DCMODEL project

    Science.gov (United States)

    Takahashi, Y. O.; Takehiro, S.; Sugiyama, K.; Odaka, M.; Ishiwatari, M.; Sasaki, Y.; Nishizawa, S.; Ishioka, K.; Nakajima, K.; Hayashi, Y.

    2012-12-01

    ) is a collection of various sample programs using ``SPML''. These sample programs provide the basekit for simple numerical experiments of geophysical fluid dynamics. For example, SPMODEL includes 1-dimensional KdV equation model, 2-dimensional barotropic, shallow water, Boussinesq models, 3-dimensional MHD dynamo models in rotating spherical shells. These models are written in the common style in harmony with SPML functions. ``Deepconv'' (Sugiyama et al., 2010) and ``Dcpam'' are a cloud resolving model and a general circulation model for the purpose of applications to the planetary atmospheres, respectively. ``Deepconv'' includes several physical processes appropriate for simulations of Jupiter and Mars atmospheres, while ``Dcpam'' does for simulations of Earth, Mars, and Venus-like atmospheres. ``Rdoc-f95'' is a automatic generator of reference manuals of Fortran90/95 programs, which is an extension of ruby documentation tool kit ``rdoc''. It analyzes dependency of modules, functions, and subroutines in the multiple program source codes. At the same time, it can list up the namelist variables in the programs.

  4. An Approach for the Dynamic Measurement of Ring Gear Strains of Planetary Gearboxes Using Fiber Bragg Gratings.

    Science.gov (United States)

    Niu, Hang; Zhang, Xiaodong; Hou, Chenggang

    2017-12-16

    The strain of the ring gear can reflect the dynamic characteristics of planetary gearboxes directly, which makes it an ideal signal to monitor the health condition of the gearbox. To overcome the disadvantages of traditional methods, a new approach for the dynamic measurement of ring gear strains using fiber Bragg gratings (FBGs) is proposed in this paper. Firstly, the installation of FBGs is determined according to the analysis for the strain distribution of the ring gear. Secondly, the parameters of the FBG are determined in consideration of the accuracy and sensitivity of the measurement as well as the size of the ring gear. The strain measured by the FBG is then simulated under non-uniform strain field conditions. Thirdly, a dynamic measurement system is built and tested. Finally, the strains of the ring gear are measured in a planetary gearbox under normal and faulty conditions. The experimental results showed good agreement with the theoretical results in values, trends, and the fault features can be seen from the time domain of the measured strain signal, which proves that the proposed method is feasible for the measurement of the ring gear strains of planetary gearboxes.

  5. Evaluation of the Terrestrial Ecosystem Formation and Diversity in a Modified Dynamic Global Vegetation Model

    Science.gov (United States)

    Zeng, X.; Shao, P.; Song, X.

    2010-12-01

    Terrestrial ecosystem formation and diversity have great impact on the stability and frangibility of ecosystem. It is important that Dynamic Global Vegetation Models (DGVMs) can capture these essential properties so that they can correctly simulate the succession and transition of terrestrial ecosystem in company with the global climate change. Previous studies have shown that DGVMs can roughly reproduce the spatial distributions of different vegetation types as well as the dependence of the vegetation distribution on climate conditions, however, the capability of DGVMs to reproduce the global vegetation distribution and ecosystem formation has not been fully evaluated. This study is based on our modified DGVM coupled with the Community Land Model (CLM-DGVM). The modified CLM-DGVM can simulate 12 plant functional types (PFTs) besides the bare soil. It allows two or more PFTs coexisting in a grid cell, in contrast to the DGVMs which tend to generate the ecosystem with single dominant plant functional type and hence lose the functional diversity of ecosystem. Our results show that the density distributions of fractional coverage (DDFC) of three vegetation categories (e.g., forest, grassland, and shrubland) and PFTs are different with the observation. In particular, the model overestimates the DDFC over regions with tree coverage larger than 70%, but underestimates the DDFC over regions with tree coverage less than 40%. Furthermore, the functional diversity of PFTs in each gridcell is generally lower than that in the observation. Sensitivity tests show that substantial changes in the terrestrial ecosystem usually occur within the areas where two or more PFTs coexist with comparable fractions, i.e., and the functional diversity is high. These results imply that current CLM-DGVM may not be able to appropriately produce the averaged amplitude and spatial pattern of the transition in global ecosystem. Therefore, we suggest that extensive studies are required to improve

  6. Improved methods for estimating local terrestrial water dynamics from GRACE in the Northern High Plains

    Science.gov (United States)

    Seyoum, Wondwosen M.; Milewski, Adam M.

    2017-12-01

    Investigating terrestrial water cycle dynamics is vital for understanding the recent climatic variability and human impacts in the hydrologic cycle. In this study, a downscaling approach was developed and tested, to improve the applicability of terrestrial water storage (TWS) anomaly data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission for understanding local terrestrial water cycle dynamics in the Northern High Plains region. A non-parametric, artificial neural network (ANN)-based model, was utilized to downscale GRACE data by integrating it with hydrological variables (e.g. soil moisture) derived from satellite and land surface model data. The downscaling model, constructed through calibration and sensitivity analysis, was used to estimate TWS anomaly for watersheds ranging from 5000 to 20,000 km2 in the study area. The downscaled water storage anomaly data were evaluated using water storage data derived from an (1) integrated hydrologic model, (2) land surface model (e.g. Noah), and (3) storage anomalies calculated from in-situ groundwater level measurements. Results demonstrate the ANN predicts monthly TWS anomaly within the uncertainty (conservative error estimate = 34 mm) for most of the watersheds. Seasonal derived groundwater storage anomaly (GWSA) from the ANN correlated well (r = ∼0.85) with GWSAs calculated from in-situ groundwater level measurements for a watershed size as small as 6000 km2. ANN downscaled TWSA matches closely with Noah-based TWSA compared to standard GRACE extracted TWSA at a local scale. Moreover, the ANN-downscaled change in TWS replicated the water storage variability resulting from the combined effect of climatic and human impacts (e.g. abstraction). The implications of utilizing finer resolution GRACE data for improving local and regional water resources management decisions and applications are clear, particularly in areas lacking in-situ hydrologic monitoring networks.

  7. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    NARCIS (Netherlands)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-01-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global

  8. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  9. An Improved Rigid Multibody Model for the Dynamic Analysis of the Planetary Gearbox in a Wind Turbine

    Directory of Open Access Journals (Sweden)

    Wenguang Yang

    2016-01-01

    Full Text Available This paper proposes an improved rigid multibody model for the dynamic analysis of the planetary gearbox in a wind turbine. The improvements mainly include choosing the inertia frame as the reference frame of the carrier, the ring, and the sun and adding a new degree of freedom for each planet. An element assembly method is introduced to build the model, and a time-varying mesh stiffness model is presented. A planetary gear study case is employed to verify the validity of the improved model. Comparisons between the improvement model and the traditional model show that the natural characteristics are very close; the improved model can obtain the right equivalent moment of inertia of the planetary gear in the transient simulation, and all the rotation speeds satisfy the transmission relationships well; harmonic resonance and resonance modulation phenomena can be found in their vibration signals. The improved model is applied in a multistage gearbox dynamics analysis to reveal the prospects of the model. Modal analysis and transient analysis with and without time-varying mesh stiffness considered are conducted. The rotation speeds from the transient analysis are consistent with the theory, and resonance modulation can be found in the vibration signals.

  10. A Comparison of the Dynamical Evolution of Planetary Systems Proceedings of the Sixth Alexander von Humboldt Colloquium on Celestial Mechanics Bad Hofgastein (Austria), 21–27 March 2004

    CERN Document Server

    Dvorak, Rudolf

    2005-01-01

    The papers in this volume cover a wide range of subjects covering the most recent developments in Celestial Mechanics from the theoretical point of nonlinear dynamical systems to the application to real problems. We emphasize the papers on the formation of planetary systems, their stability and also the problem of habitable zones in extrasolar planetary systems. A special topic is the stability of Trojans in our planetary system, where more and more realistic dynamical models are used to explain their complex motions: besides the important contribution from the theoretical point of view, the results of several numerical experiments unraveled the structure of the stable zone around the librations points. This volume will be of interest to astronomers and mathematicians interested in Hamiltonian mechanics and in the dynamics of planetary systems.

  11. Lightning detection in planetary atmospheres

    Science.gov (United States)

    Aplin, Karen L.; Fischer, Georg

    2017-02-01

    Lightning in planetary atmospheres is now a well-established concept. Here we discuss the available detection techniques for, and observations of, planetary lightning by spacecraft, planetary landers and, increasingly, sophisticated terrestrial radio telescopes. Future space missions carrying lightning-related instrumentation are also summarised, specifically the European ExoMars mission and Japanese Akatsuki mission to Venus, which could both yield lightning observations in 2016.

  12. Lightning detection in planetary atmospheres

    OpenAIRE

    Aplin, Karen L; Fischer, Georg

    2016-01-01

    Lightning in planetary atmospheres is now a well-established concept. Here we discuss the available detection techniques for, and observations of, planetary lightning by spacecraft, planetary landers and, increasingly, sophisticated terrestrial radio telescopes. Future space missions carrying lightning-related instrumentation are also summarised, specifically the European ExoMars mission and Japanese Akatsuki mission to Venus, which could both yield lightning observations in 2016.

  13. Integrating terrestrial and marine archives of Late Wisconsinan ice stream dynamics in the Canadian Arctic Archipelago

    Science.gov (United States)

    Lakeman, Thomas; Blasco, Steve; MacLean, Brian; Bennett, Robbie; England, John; Hughes Clarke, John; Covill, Bob; Patton, Eric

    2014-05-01

    During Late Wisconsinan glaciation the northern Laurentide and Innuitian ice sheets converged over the Canadian Arctic Archipelago. This ice sheet complex included several major ice streams, which constituted important dynamical components. Discharging into the Beaufort Sea and Baffin Bay, these ice streams were a primary control on ice sheet mass balance and ice age sedimentation on adjacent continental margins, including the Arctic Ocean basin. This study presents a new compilation of multibeam echosounder data, sub-bottom profiler data, radiocarbon ages, and marine sediment cores acquired primarily during regional surveys with the CCGS Amundsen. These data characterize the nature and thickness of seafloor sediments in Parry Channel (and many of its connecting channels) and Amundsen Gulf. When combined with the results of terrestrial geomorphological mapping of the adjacent islands, this dataset constrains the maximum extent, chronology, and behaviour of former ice streams in M'Clure Strait, Viscount Melville Sound, Lancaster Sound, and Amundsen Gulf. Importantly, these data highlight complex patterns of past ice stream flow during regional deglaciation. These results contribute to a better understanding of the causal mechanisms that occasioned retreat of the terrestrial and marine sectors of the Laurentide and Innuitian ice sheets. As well, this study helps to quantify past iceberg fluxes to the Arctic Ocean, which has implications for assessing past climate, and the origin of ice-rafted sediment and deep iceberg scours in the Arctic Ocean basin.

  14. Habitable Zones for Earth-mass Planets in Multiple Planetary Systems

    OpenAIRE

    Jianghui, Ji; Lin, Liu; Kinoshita, H; Guangyu, Li

    2009-01-01

    We perform numerical simulations to study the Habitable zones (HZs) and dynamical structure for Earth-mass planets in multiple planetary systems. For example, in the HD 69830 system, we extensively explore the planetary configuration of three Neptune-mass companions with one massive terrestrial planet residing in 0.07 AU $\\leq a \\leq$ 1.20 AU, to examine the asteroid structure in this system. We underline that there are stable zones of at least $10^5$ yr for low-mass terrestrial planets locat...

  15. Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events

    NARCIS (Netherlands)

    Petoukhov, Vladimir; Petri, Stefan; Rahmstorf, Stefan; Coumou, Dim; Kornhuber, Kai; Schellnhuber, Hans Joachim

    2016-01-01

    In boreal spring-to-autumn (May-to-September) 2012 and 2013, the Northern Hemisphere (NH) has experienced a large number of severe midlatitude regional weather extremes. Here we show that a considerable part of these extremes were accompanied by highly magnified quasistationary midlatitude planetary

  16. 30-year Dynamics of Terrestrial Vegetation Activity and the Relationship with Climatologies

    Science.gov (United States)

    de Jong, R.; Schaepman, M. E.; Furrer, R.; de Bruin, S.; Verburg, P. H.

    2013-12-01

    The climate governs the seasonal activity of terrestrial vegetation while humankind influences it. The relative role of these drivers in changing vegetation activity is crucial information for accurate modeling of vegetation and climate dynamics and for adaptation and mitigation strategies. Disentangling the two, however, is an ongoing scientific challenge, because of limited data availability, mainly regarding non-climatic drivers, and complex biosphere-atmosphere feedback mechanisms. Here, we contribute to this quest by modeling the spatial relationship between climatologies and changes in global vegetation activity (de Jong et al., 2013a). Vegetation activity is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature, including the detection of shifts (de Jong et al., 2013b), which may be related to climate (e.g. Zhao & Running, 2010). However, little remains known about the exact processes underlying vegetation change at large spatial scales. Depending on eco-region, three climatologies potentially constrain plant growth (Churkina and Running, 1998). In the humid mid-latitudes, for example, temperature is the largest influencing factor; in (semi) arid regions it is the availability of water and in the tropics incident solar radiation. Based on this logic, we developed a mixed-effect model to relate changes in these climatologies to changes in vegetation activity and to quantify the spatial process underlying the other drivers, including human land use. Little over 50% of the spatial variation in vegetation change could be attributed to changes in climatologies; conspicuously, many of the global ';greening' trends and the ';browning' hotspots in Argentina and Australia. Browning hotspots in the non-climatic component were especially located in subequatorial Africa (e.g. parts of Zimbabwe and Tanzania), where human drivers may be

  17. A terrestrial analog for transverse aeolian ridges (TARs): Environment, morphometry, and recent dynamics

    Science.gov (United States)

    Hugenholtz, Chris H.; Barchyn, Thomas E.

    2017-06-01

    Transverse aeolian ridges (TARs) are a distinct aeolian bedform found on Mars. The formative processes, evolution, and geological significance of TARs is poorly understood. Fundamentally, it is unknown whether TARs are dunes, mega-ripples, or another bedform type. We examined aeolian bedforms in the Lut Desert of Iran as a terrestrial analog for Martian TARs. From an objective sampling strategy with high-resolution satellite imagery, we developed a large morphometric dataset for comparison with existing Martian TARs. We also examined the dynamics of the Lut bedforms between 2004 and 2012 to determine if they were static or migrating. Results indicate that the range in the dimensions (length, width, height, and wavelength) of the Lut bedforms and Martian TARs overlap, suggesting Lut bedforms are a viable terrestrial TAR analog. Our sample yielded median values of 55.18 m, 9.80, 1.02 m, and 20 m for length (longest planview axis), width (shortest planview axis), height, and wavelength, respectively. Cumulative log-frequency plots of morphometric parameters suggest the sample is from a single population and process mechanism. Although the vast majority of Lut bedforms examined were static between 2004 and 2012, some migrated up to 0.09 myr-1 on average. This is much slower than nearby dunes (4-12 myr-1), but is explained by the existence of a surface lag of coarse particles on the TAR-like bedforms. The combination of morphometry, surface sedimentology, and slow migration rate indicate the Lut bedforms are mega-ripples, which provides evidence supporting interpretation of Martian TARs as mega-ripples. Testing the mega-ripple hypothesis for Martian TARs requires measurements of their sedimentology, which may be possible with the Mars Science Laboratory rover Curiosity, as well as expanded measurements of TAR morphometry to constrain their size, shape, and scaling.

  18. Solar cycle dynamic of the Martian induced magnetosphere. Planetary ions acceleration zones and escape.

    Science.gov (United States)

    Fedorov, Andrey; Modolo, Ronan; Jarvinen, Riku; Barabash, Stas

    2016-10-01

    This work presents a massive statistical analysis of the ion flows in the Martian induced magnetosphere. We performed this analysis using Mars Express ion mass spectrometer data taken during 2008 - 2013 time interval. This data allows to make an enhanced study of the induced magnetosphere variations as a response of the solar activity level. Since Mars Express has no onboard magnetometer, we used the hybrid models of the Martian plasma environment to get a proper frame to make an adequate statistics of the magnetospheric response. In this paper we present a spatial distribution of the planetary plasma properties in the planetary wake as well as the ionosospheric escape as a function of the solar activity.

  19. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories

    Science.gov (United States)

    Miller, David A.; Clark, W.R.; Arnold, S.J.; Bronikowski, A.M.

    2011-01-01

    Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (??s) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on ?? s. The magnitude of variation in the proportion of gravid females and its effect on ??s was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on ??s was 4- 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life

  20. Planetary Dune Workshop Expands to Include Subaqueous Processes as Possible Venus Analogs

    Science.gov (United States)

    Titus, T. N.; Rubin, D.; Bryant, G.

    2017-11-01

    The 2017 International Planetary Dune Workshop at Dixie State University, the fifth in a series focusing on planetary dunes, brought together 65 terrestrial, marine, and planetary researchers. Highlights pertaining to Venus will be presented.

  1. A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection

    Science.gov (United States)

    Li, Yongbo; Yang, Yuantao; Li, Guoyan; Xu, Minqiang; Huang, Wenhu

    2017-07-01

    Health condition identification of planetary gearboxes is crucial to reduce the downtime and maximize productivity. This paper aims to develop a novel fault diagnosis method based on modified multi-scale symbolic dynamic entropy (MMSDE) and minimum redundancy maximum relevance (mRMR) to identify the different health conditions of planetary gearbox. MMSDE is proposed to quantify the regularity of time series, which can assess the dynamical characteristics over a range of scales. MMSDE has obvious advantages in the detection of dynamical changes and computation efficiency. Then, the mRMR approach is introduced to refine the fault features. Lastly, the obtained new features are fed into the least square support vector machine (LSSVM) to complete the fault pattern identification. The proposed method is numerically and experimentally demonstrated to be able to recognize the different fault types of planetary gearboxes.

  2. Dynamical Simulations of Extrasolar Planetary Systems with Debris Disks Using a GPU Accelerated N-Body Code

    Science.gov (United States)

    Moore, Alexander

    This thesis begins with a description of a hybrid symplectic integrator named QYMSYM which is capable of planetary system simulations. This integrator has been programmed with the Compute Unified Device Architecture (CUDA) language which allows for implementation on Graphics Processing Units (GPUs). With the enhanced compute performance made available by this choice, QYMSYM was used to study the effects debris disks have on the dynamics of the extrasolar planetary systems HR 8799 and KOI-730. The four planet system HR 8799 was chosen because it was known to have relatively small regions of stability in orbital phase space. Using this fact, it can be shown that a simulated debris disk of moderate mass around HR 8799 can easily pull this system out of these regions of stability. In other cases it is possible to migrate the system to a region of stability - although this requires significantly more mass and a degree of fine tuning. These findings suggest that previous studies on the stability of HR 8799 which do not include a debris disk may not accurately report on the size and location of the stable orbital phase space available for the planets. This insight also calls into question the practice of using dynamical simulations to help constrain observed planetary orbital data. Next, by studying the stability of another four planet system, KOI-730, whose planets are in an 8:6:4:3 mean motion resonance, we were additionally able to determine mass constraints on debris disks for KOI-730 like Kepler objects. Noting that planet inclinations increase by a couple of degrees when migrating through a Neptune mass debris disk, and that planet candidates discovered by the Kepler Space Telescope are along the line of site, it is concluded that significant planetary migration did not occur among the Kepler objects. This result indicates that Kepler objects like KOI-730 have relatively small or stable debris disks which did not cause migration of their planets - ruling out late

  3. Differentiating the degradation dynamics of algal and terrestrial carbon within complex natural dissolved organic carbon in temperate lakes

    Science.gov (United States)

    Guillemette, François; McCallister, S. Leigh; del Giorgio, Paul A.

    2013-07-01

    It has often been hypothesized that the dissolved organic carbon (DOC) pool of algal origin in lakes is more bioavailable than its terrestrial counterpart, but this hypothesis has seldom been directly tested. Here we test this hypothesis by tracking the production and isotopic signature of bacterial respiratory CO2 in 2 week lake water incubations and use the resulting data to reconstruct and model the bacterial consumption dynamics of algal and terrestrial DOC. The proportion of algal DOC respired decreased systematically over time in all experiments, suggesting a rapid consumption and depletion of this substrate. Our results further show that the algal DOC pool was used in proportions and at rates twice and 10 times as high as the terrestrial DOC pool, respectively. On the other hand, the absolute amount of labile terrestrial DOC was on average four times higher than labile algal DOC, accounting for almost the entire long-term residual C metabolism, but also contributing to short-term bacterial C consumption. The absolute amount of labile algal DOC increased with chlorophyll a concentrations, whereas total phosphorus appeared to enhance the amount of terrestrial DOC that bacteria could consume, suggesting that the degradation of these pools is not solely governed by their respective chemical properties, but also by interactions with nutrients. Our study shows that there is a highly reactive pool of terrestrial DOC that is processed in parallel to algal DOC, and because of interactions with nutrients, terrestrial DOC likely supports high levels of bacterial metabolism and CO2 production even in more productive lakes.

  4. The Role of Nitrogen Dynamics in the Responses of Terrestrial Carbon Dynamics to Changes in Atmospheric Carbon Dioxide, Climate, and Land Use

    Science.gov (United States)

    McGuire, A. D.; Melillo, J.; Kicklighter, D.; Joyce, L.

    2007-12-01

    While it has long been appreciated that alterations of the nitrogen cycle can substantially affect the carbon dynamics of terrestrial ecosystems, most large-scale models of terrestrial carbon dynamics have ignored carbon-nitrogen interactions in making projections of how carbon dynamics will respond to changes in atmospheric carbon dioxide, climate, and land use. Numerous experimental studies have documented that the uptake of carbon by terrestrial ecosystems is enhanced by nitrogen fertilization under baseline and elevated atmospheric carbon dioxide concentrations. Ecosystem warming studies often identify that the uptake of carbon is enhanced when mineralization of soil organic nitrogen increases in response to warming, but the response often depends on how warming affects soil moisture. Nitrogen amendments are a standard practice in heavily managed agro-forestry ecosystems because of the enhanced response of plant growth to nitrogen fertilization. We have used the Terrestrial Ecosystem Model (TEM) as a tool to explore the regional and global implications of how carbon-nitrogen interactions may influence the responses of terrestrial carbon dynamics to environmental change and land use. Comparisons of the model with and without nitrogen dynamics indicate that the response of carbon uptake to increases in atmospheric carbon dioxide are clearly constrained by nitrogen dynamics. In contrast, carbon uptake is enhanced in situations in which warming enhances the mineralization of soil organic nitrogen, and this response can lead to increases in vegetation carbon storage that are greater than losses of carbon from increases in decomposition of soil organic matter. Land use can result in substantial depletion of nitrogen from terrestrial ecosystems in the harvest of agricultural products. As substantial sink activity is associated with forest re-growth after agricultural land abandonment, we conducted simulations with TEM in the eastern United State to evaluate to role of

  5. CubeSats in Hydrology: Ultra-High Resolution Insights into Vegetation Dynamics and Terrestrial Evaporation

    KAUST Repository

    McCabe, Matthew

    2017-12-01

    Satellite-based remote sensing has generally necessitated a trade-off between spatial resolution and temporal frequency, affecting the capacity to observe fast hydrological processes and rapidly changing land surface conditions. An avenue for overcoming these spatiotemporal restrictions is the concept of using constellations of satellites, as opposed to the mission focus exemplified by the more conventional space-agency approach to earth observation. Referred to as CubeSats, these platforms offer the potential to provide new insights into a range of earth system variables and processes. Their emergence heralds a paradigm shift from single-sensor launches to an operational approach that envisions tens to hundreds of small, lightweight and comparatively inexpensive satellites placed into a range of low earth orbits. Although current systems are largely limited to sensing in the optical portion of the electromagnetic spectrum, we demonstrate the opportunity and potential that CubeSats present the hydrological community via the retrieval of vegetation dynamics and terrestrial evaporation and foreshadow future sensing capabilities.

  6. Deriving Vegetation Dynamics of Natural Terrestrial Ecosystems from MODIS NDVI/EVI Data over Turkey.

    Science.gov (United States)

    Evrendilek, Fatih; Gulbeyaz, Onder

    2008-09-01

    The 16-day composite MODIS vegetation indices (VIs) at 500-m resolution for the period between 2000 to 2007 were seasonally averaged on the basis of the estimated distribution of 16 potential natural terrestrial ecosystems (NTEs) across Turkey. Graphical and statistical analyses of the time-series VIs for the NTEs spatially disaggregated in terms of biogeoclimate zones and land cover types included descriptive statistics, correlations, discrete Fourier transform (DFT), time-series decomposition, and simple linear regression (SLR) models. Our spatio-temporal analyses revealed that both MODIS VIs, on average, depicted similar seasonal variations for the NTEs, with the NDVI values having higher mean and SD values. The seasonal VIs were most correlated in decreasing order for: barren/sparsely vegetated land > grassland > shrubland/woodland > forest; (sub)nival > warm temperate > alpine > cool temperate > boreal = Mediterranean; and summer > spring > autumn > winter. Most pronounced differences between the MODIS VI responses over Turkey occurred in boreal and Mediterranean climate zones and forests, and in winter (the senescence phase of the growing season). Our results showed the potential of the time-series MODIS VI datasets in the estimation and monitoring of seasonal and interannual ecosystem dynamics over Turkey that needs to be further improved and refined through systematic and extensive field measurements and validations across various biomes.

  7. Dynamical Origin and Terrestrial Impact Flux of Large Near-Earth Asteroids

    Science.gov (United States)

    Nesvorný, David; Roig, Fernando

    2018-01-01

    Dynamical models of the asteroid delivery from the main belt suggest that the current impact flux of diameter D> 10 km asteroids on the Earth is ≃0.5–1 Gyr‑1. Studies of the Near-Earth Asteroid (NEA) population find a much higher flux, with ≃ 7 D> 10 km asteroid impacts per Gyr. Here we show that this problem is rooted in the application of impact probability of small NEAs (≃1.5 Gyr‑1 per object), whose population is well characterized, to large NEAs. In reality, large NEAs evolve from the main belt by different escape routes, have a different orbital distribution, and lower impact probabilities (0.8 ± 0.3 Gyr‑1 per object) than small NEAs. In addition, we find that the current population of two D> 10 km NEAs (Ganymed and Eros) is a slight fluctuation over the long-term average of 1.1+/- 0.5 D> 10 km NEAs in a steady state. These results have important implications for our understanding of the occurrence of the K/T-scale impacts on the terrestrial worlds.

  8. Data-driven diagnostics of terrestrial carbon dynamics over North America

    Science.gov (United States)

    Jingfeng Xiao; Scott V. Ollinger; Steve Frolking; George C. Hurtt; David Y. Hollinger; Kenneth J. Davis; Yude Pan; Xiaoyang Zhang; Feng Deng; Jiquan Chen; Dennis D. Baldocchi; Bevery E. Law; M. Altaf Arain; Ankur R. Desai; Andrew D. Richardson; Ge Sun; Brian Amiro; Hank Margolis; Lianhong Gu; Russell L. Scott; Peter D. Blanken; Andrew E. Suyker

    2014-01-01

    The exchange of carbon dioxide is a key measure of ecosystem metabolism and a critical intersection between the terrestrial biosphere and the Earth's climate. Despite the general agreement that the terrestrial ecosystems in North America provide a sizeable carbon sink, the size and distribution of the sink remain uncertain. We use a data-driven approach to upscale...

  9. Multilevel Model of Planetary Boundary-layer Suitable for use with Mesoscale Dynamic Models

    DEFF Research Database (Denmark)

    Busch, N. E.; Chang, S. W.; Anthes, R. A.

    1976-01-01

    In this paper a simple model of the planetary boundary layer (PBL) is proposed. The surface layer is modeled according to established similarity theory. Above the surface layer a prognostic equation for the mixing length is introduced. The time-dependent mixing length is a function of the PBL...... characteristics, including the height of the capping inversion, the local friction velocity and the surface heat flux. In a preliminary experiment, the behavior of the PBL is compared with observations from the Great Plains Experiment....

  10. Modelling the dynamics of ambient dose rates induced by radiocaesium in the Fukushima terrestrial environment

    Science.gov (United States)

    Gonze, Marc-André; Mourlon, Christophe; Calmon, Philippe; Manach, Erwan; Debayle, Christophe; Baccou, Jean

    2017-09-01

    Since the Fukushima accident, Japanese scientists have been intensively monitoring ambient radiations in the highly contaminated territories situated within 80 km of the nuclear site. The surveys that were conducted through mainly carborne, airborne and in situ gamma-ray measurement devices, enabled to efficiently characterize the spatial distribution and temporal evolution of air dose rates induced by Caesium-134 and Caesium-137 in the terrestrial systems. These measurements revealed that radiation levels decreased at rates greater than expected from physical decay in 2011-2012 (up to a factor of 2), and dependent on the type of environment (i.e. urban, agricultural or forest). Unlike carborne measurements that may have been strongly influenced by the depuration of road surfaces, no obvious reason can be invoked for airborne measurements, especially above forests that are known to efficiently retain and recycle radiocaesium. The purpose of our research project is to develop a comprehensive understanding of the data acquired by Japanese, and identify the environmental mechanisms or factors that may explain such decays. The methodology relies on the use of a process-based and spatially-distributed dynamic model that predicts radiocaesium transfer and associated air dose rates inside/above a terrestrial environment (e.g., forests, croplands, meadows, bare soils and urban areas). Despite the lack of site-specific data, our numerical study predicts decrease rates that are globally consistent with both aerial and in situ observations. The simulation at a flying altitude of 200 m indicated that ambient radiation levels decreased over the first 12 months by about 45% over dense urban areas, 15% above evergreen coniferous forests and between 2 and 12% above agricultural lands, owing to environmental processes that are identified and discussed. In particular, we demonstrate that the decrease over evergreen coniferous regions might be due the combined effects of canopy

  11. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  12. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  13. Challenging the planetary boundaries II: Assessing the sustainable global population and phosphate supply, using a systems dynamics assessment model

    Energy Technology Data Exchange (ETDEWEB)

    Sverdrup, Harald U., E-mail: harald.sverdrup@chemeng.lth.se [Applied Systems Analysis and Dynamics Group, Chemical Engineering, Lund University, Box 124, SE-221 00 Lund (Sweden); Ragnarsdottir, Kristin Vala [Institute of Earth Sciences, School of Engineering and Natural Sciences, University of Iceland, IS-101 Reykjavik (Iceland)

    2011-06-15

    Highlights: > Peak phosphorus supply behaviour. > Recycling essential for phosphorus supply. > Phosphorus supply is connected to food security. - Abstract: A systems dynamics model was developed to assess the planetary boundary for P supply in relation to use by human society. It is concluded that present day use rates and poor recycling rates of P are unsustainable at timescales beyond 100+ a. The predictions made suggest that P will become a scarce and expensive material in the future. The study shows clearly that market mechanisms alone will not be able to secure an efficient use before a large part of the resource will have been allowed to dissipate into the natural environment. It is suggested that population size management and effective recycling measures must be planned long term to avoid unpleasant consequences of hunger and necessary corrections imposed on society by mass balance and thermodynamics.

  14. Super-long Anabiosis of Ancient Microorganisms in Ice and Terrestrial Models for Development of Methods to Search for Life on Mars, Europa and other Planetary Bodies

    Science.gov (United States)

    Abyzov, S. S.; Duxbury, N. S.; Bobin, N. E.; Fukuchi, M.; Hoover, R. B.; Kanda, H.; Mitskevich, I. N.; Mulyukin, A. L.; Naganuma, T.; Poglazova, M. N.; hide

    2007-01-01

    Successful missions to Mars, Europe and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost as terrestrial analogues of Martian habitats. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the deepest and thus most ancient strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radioisotope labeling and other techniques made it possible for us to obtain convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication, we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future searches for microbial life and/or its biological signatures on extraterrestrial objects.

  15. Super-long anabiosis of ancient microorganisms in ice and terrestrial models for development of methods to search for life on Mars, Europa and other planetary bodies

    Science.gov (United States)

    Abyzov, S. S.; Duxbury, N. S.; Bobin, N. E.; Fukuchi, M.; Hoover, R. B.; Kanda, H.; Mitskevich, I. N.; Mulyukin, A. L.; Naganuma, T.; Poglazova, M. N.; Ivanov, M. V.

    2006-01-01

    Successful missions to Mars, Europe and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost as terrestrial analogues of Martian habitats. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the deepest and thus most ancient strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radioisotope labeling and other techniques made it possible for us to obtain convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication, we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future searches for microbial life and/or its biological signatures on extraterrestrial objects.

  16. Planetary seismology and interiors

    Science.gov (United States)

    Toksoz, M. N.

    1979-01-01

    This report briefly summarizes knowledge gained in the area of planetary seismology in the period 1969-1979. Attention is given to the seismic instruments, the seismic environment (noise, characteristics of seismic wave propagation, etc.), and the seismicity of the moon and Mars as determined by the Apollo missions and Viking Lander experiments, respectively. The models of internal structures of the terrestrial planets are discussed, with the earth used for reference.

  17. Planetary noble gases

    Science.gov (United States)

    Zahnle, Kevin

    1993-01-01

    An overview of the history and current status of research on planetary noble gases is presented. The discovery that neon and argon are vastly more abundant on Venus than on earth points to the solar wind rather than condensation as the fundamental process for placing noble gases in the atmospheres of the terrestrial planets; however, solar wind implantation may not be able to fully reproduce the observed gradient, nor does it obviously account for similar planetary Ne/Ar ratios and dissimilar planetary Ar/Kr ratios. More recent studies have emphasized escape rather than accretion. Hydrodynamic escape, which is fractionating, readily accounts for the difference between atmospheric neon and isotopically light mantle neon. Atmospheric cratering, which is nearly nonfractionating, can account for the extreme scarcity of nonradiogenic noble gases (and other volatiles) on Mars.

  18. The solubility of carbon monoxide in silicate melts at high pressures and its effect on silicate phase relations. [in terrestrial and other planetary interiors

    Science.gov (United States)

    Eggler, D. H.; Mysen, B. O.; Hoering, T. C.; Holloway, J. R.

    1979-01-01

    Autoradiographic analysis and gas chromatography were used to measure the solubility in silicate melts of CO-CO2 vapors (30 to 40% CO by thermodynamic calculation) in equilibrium with graphite at temperatures up to 1700 deg C and pressures to 30 kbar. At near-liquidus temperatures CO-CO2 vapors were found to be slightly more soluble than CO2 alone. As a result of the apparently negative temperature dependence of CO solubility, the solubility of CO-CO2 at superliquidus temperatures is less than that of CO2. Melting points of two silicates were depressed more by CO than by CO2. Phase boundary orientations suggest that CO/CO + CO2 is greater in the liquid than in the vapor. The effect of the presence of CO on periodotite phase relations was investigated, and it was found that melts containing both CO and CO2 are nearly as polymerized as those containing only CO2. These results suggest that crystallization processes in planetary interiors can be expected to be about the same, whether the melts contain CO2 alone or CO2 and CO.

  19. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  20. Orbital Dynamics of Planetary Systems with Super-Earths and Mini-Neptunes

    Science.gov (United States)

    Ford, E. B.; Carrera, D.; Jontof-Hutter, D.; Lissuer, J. J.; Rogers, L. A.; Wolfgang, A.

    2017-11-01

    Planet formation directly determines various properties of planets that impact their habitability. I propose to review the orbital dynamics of exoplanetary systems, emphasizing the implications for characteristics likely to impact habitability.

  1. A new, mainly dynamical, two-stage scenario for forming the Sun's planetary system and its relation to exoplanet findings

    Science.gov (United States)

    Osmaston, M. F.

    2009-04-01

    As Jeans [1] showed, endorsed by Lyttleton (1941) and Gold (1984), a single contracting solar nebula (SCSN) is dynamically incapable of forming both the Sun and the planets, due to the 6 degree tilt of the planetary plane and their huge (x 137,000) mean specific angular momentum (a.m.) relative to the Sun's. Yet the SCSN model is still pursued by cosmochemists and astronomers, believing them to have been formed in a single event, from a common body of material. We report here the further development of a two-stage scenario [2, 4]. In this the protoSun is formed as a star (possibly in an SCSN mode) in one nebular dust cloud, subsequently traversing a second, from which it acquires a 'coating' of different material and establishes a disk in which the planets are formed. This basic scenario provides for (1) the possible input of material unconstrained by canonical nebular collapse times, (2) receipt of short-life radionuclides from a near-by stellar event at any time along the traverse, (3) the enhanced metallicity characteristic both of the Sun and of many exoplanet-harbouring stars, (4) the tilt of the planetary plane, a relic of the motions within the second cloud. This paper is offered as test-case support for the hypothesis [2 - 5], arising from the author's ongoing work in fundamental physics [5] that a gravitation-related radial electric field exists around the Sun (and drives stellar winds generally, supervening radiation pressure) and that it dominated the acquisition dynamics of this second-cloud material. There resulted an in-at-the-poles, out-near-the-equator flow, within which CAIs were formed and then took up to 2 Ma to spiral outward to the asteroid belt, where chondrules were being formed. Some of the flow 'contaminated' the supra-tachocline zone of the Sun, so its composition compares well with the planets. Protoplanets were nucleated successively close to the Sun, where magnetic coupling provided prograde spins and dust shielded them from solar

  2. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes

    NARCIS (Netherlands)

    Van der Wal, A.; Geydan, T.D.; Kuyper, T.W.; De Boer, W.

    2013-01-01

    Filamentous fungi are critical to the decomposition of terrestrial organic matter and, consequently, in the global carbon cycle. In particular, their contribution to degradation of recalcitrant lignocellulose complexes has been widely studied. In this review, we focus on the functioning of

  3. Evolving dynamical regimes during secular cooling of terrestrial planets : insights and inferences from numerical models

    NARCIS (Netherlands)

    Thienen, Peter van

    2003-01-01

    Although plate tectonics is the present-day mode of geodynamics on Earth, it is not so on Mars and Venus, and probably also not during the early history of the Earth. In this thesis, the conditions under which plate tectonics may operate on terrestrial planets are investigated. Numerical model

  4. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  5. The PN.S elliptical galaxy survey : Data reduction, planetary nebula catalog, and basic dynamics for NGC 3379

    NARCIS (Netherlands)

    Douglas, N. G.; Napolitano, N. R.; Romanowsky, A. J.; Coccato, L.; Kuijken, K.; Merrifield, M. R.; Arnaboldi, M.; Gerhard, O.; Freeman, K. C.; Merrett, H. R.; Noordermeer, E.; Capaccioli, M.

    2007-01-01

    We present results from Planetary Nebula Spectrograph (PN. S) observations of the elliptical galaxy NGC 3379 and a description of the data reduction pipeline. We detected 214 planetary nebulae, of which 191 are ascribed to NGC 3379 and 23 to the companion galaxy NGC 3384. Comparison with data from

  6. An ALMA Dynamical Mass Estimate of the Proposed Planetary-mass Companion FW Tau C

    Science.gov (United States)

    Wu, Ya-Lin; Sheehan, Patrick D.

    2017-09-01

    Dynamical mass estimates down to the planet-mass regime can help to understand planet formation. We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm observations of FW Tau C, a proposed ˜10 M Jup planet-mass companion at ˜330 au from the host binary FW Tau AB. We spatially and spectrally resolve the accretion disk of FW Tau C in 12CO (2-1). By modeling the Keplerian rotation of gas, we derive a dynamical mass of ˜0.1 M ⊙. Therefore, FW Tau C is unlikely a planet, but rather a low-mass star with a highly inclined disk. This also suggests that FW Tau is a triple system consisting of three ˜0.1 M ⊙ stars.

  7. An investigation of ozone and planetary boundary layer dynamics over the complex topography of Grenoble combining measurements and modeling

    Directory of Open Access Journals (Sweden)

    O. Couach

    2003-01-01

    Full Text Available This paper concerns an evaluation of ozone (O3 and planetary boundary layer (PBL dynamics over the complex topography of the Grenoble region through a combination of measurements and mesoscale model (METPHOMOD predictions for three days, during July 1999. The measurements of O3 and PBL structure were obtained with a Differential Absorption Lidar (DIAL system, situated 20 km south of Grenoble at Vif (310 m ASL. The combined lidar observations and model calculations are in good agreement with atmospheric measurements obtained with an instrumented aircraft (METAIR. Ozone fluxes were calculated using lidar measurements of ozone vertical profiles concentrations and the horizontal wind speeds measured with a Radar Doppler wind profiler (DEGREANE. The ozone flux patterns indicate that the diurnal cycle of ozone production is controlled by local thermal winds. The convective PBL maximum height was some 2700 m above the land surface while the nighttime residual ozone layer was generally found between 1200 and 2200 m. Finally we evaluate the magnitude of the ozone processes at different altitudes in order to estimate the photochemical ozone production due to the primary pollutants emissions of Grenoble city and the regional network of automobile traffic.

  8. The adaptation rate of terrestrial ecosystems as a critical factor in global climate dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fuessler, J.S.; Gassmann, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A conceptual climate model describing regional two-way atmosphere-vegetation interaction has been extended by a simple qualitative scheme of ecosystem adaptation to drought stress. The results of this explorative study indicate that the role of terrestrial vegetation under different forcing scenarios depends crucially on the rate of the ecosystems adaptation to drought stress. The faster the adaptation of important ecosystems such as forests the better global climate is protected from abrupt climate changes. (author) 1 fig., 3 refs.

  9. Effects of an eccentric inner Jupiter on the dynamical evolution of icy body reservoirs in a planetary scattering scenario

    Science.gov (United States)

    Zanardi, M.; de Elía, G. C.; Di Sisto, R. P.; Naoz, S.; Li, G.; Guilera, O. M.; Brunini, A.

    2017-09-01

    Aims: We analyze the dynamics of small body reservoirs under the effects of an eccentric inner giant planet resulting from a planetary scattering event around a 0.5 M⊙ star. Methods: First, we used a semi-analytical model to define the properties of the protoplanetary disk that lead to the formation of three Jupiter-mass planets. Then, we carried out N-body simulations assuming that the planets are close to their stability limit together with an outer planetesimal disk. In particular, the present work focused on the analysis of N-body simulations in which a single Jupiter-mass planet survives after the dynamical instability event. Results: Our simulations produce outer small body reservoirs with particles on prograde and retrograde orbits, and other ones whose orbital plane flips from prograde to retrograde and back again along their evolution ("Type-F particles"). We find strong correlations between the inclination i and the ascending node longitude Ω of Type-F particles. First, Ω librates around 90° or/and 270°. This property represents a necessary and sufficient condition for the flipping of an orbit. Moreover, the libration periods of i and Ω are equal and they are out to phase by a quarter period. We also remark that the larger the libration amplitude of i, the larger the libration amplitude of Ω. We analyze the orbital parameters of Type-F particles immediately after the instability event (post IE orbital parameters), when a single Jupiter-mass planet survives in the system. Our results suggest that the orbit of a particle can flip for any value of its post IE eccentricity, although we find only two Type-F particles with post IE inclinations i ≲ 17°. Finally, our study indicates that the minimum value of the inclination of the Type-F particles in a given system decreases with an increase in the eccentricity of the giant planet.

  10. Contributions of wildland fire to terrestrial ecosystem carbon dynamics in North America from 1990 to 2012

    Science.gov (United States)

    Chen, Guangsheng; Hayes, Daniel J.; McGuire, A. David

    2017-01-01

    Burn area and the frequency of extreme fire events have been increasing during recent decades in North America, and this trend is expected to continue over the 21st century. While many aspects of the North American carbon budget have been intensively studied, the net contribution of fire disturbance to the overall net carbon flux at the continental scale remains uncertain. Based on national scale, spatially explicit and long-term fire data, along with the improved model parameterization in a process-based ecosystem model, we simulated the impact of fire disturbance on both direct carbon emissions and net terrestrial ecosystem carbon balance in North America. Fire-caused direct carbon emissions were 106.55 ± 15.98 Tg C/yr during 1990–2012; however, the net ecosystem carbon balance associated with fire was −26.09 ± 5.22 Tg C/yr, indicating that most of the emitted carbon was resequestered by the terrestrial ecosystem. Direct carbon emissions showed an increase in Alaska and Canada during 1990–2012 as compared to prior periods due to more extreme fire events, resulting in a large carbon source from these two regions. Among biomes, the largest carbon source was found to be from the boreal forest, primarily due to large reductions in soil organic matter during, and with slower recovery after, fire events. The interactions between fire and environmental factors reduced the fire-caused ecosystem carbon source. Fire disturbance only caused a weak carbon source as compared to the best estimate terrestrial carbon sink in North America owing to the long-term legacy effects of historical burn area coupled with fast ecosystem recovery during 1990–2012.

  11. Contributions of wildland fire to terrestrial ecosystem carbon dynamics in North America from 1990 to 2012

    Science.gov (United States)

    Chen, Guangsheng; Hayes, Daniel J.; David McGuire, A.

    2017-05-01

    Burn area and the frequency of extreme fire events have been increasing during recent decades in North America, and this trend is expected to continue over the 21st century. While many aspects of the North American carbon budget have been intensively studied, the net contribution of fire disturbance to the overall net carbon flux at the continental scale remains uncertain. Based on national scale, spatially explicit and long-term fire data, along with the improved model parameterization in a process-based ecosystem model, we simulated the impact of fire disturbance on both direct carbon emissions and net terrestrial ecosystem carbon balance in North America. Fire-caused direct carbon emissions were 106.55 ± 15.98 Tg C/yr during 1990-2012; however, the net ecosystem carbon balance associated with fire was -26.09 ± 5.22 Tg C/yr, indicating that most of the emitted carbon was resequestered by the terrestrial ecosystem. Direct carbon emissions showed an increase in Alaska and Canada during 1990-2012 as compared to prior periods due to more extreme fire events, resulting in a large carbon source from these two regions. Among biomes, the largest carbon source was found to be from the boreal forest, primarily due to large reductions in soil organic matter during, and with slower recovery after, fire events. The interactions between fire and environmental factors reduced the fire-caused ecosystem carbon source. Fire disturbance only caused a weak carbon source as compared to the best estimate terrestrial carbon sink in North America owing to the long-term legacy effects of historical burn area coupled with fast ecosystem recovery during 1990-2012.

  12. Dynamic plantar pressure distribution during terrestrial locomotion of bonobos (Pan paniscus).

    Science.gov (United States)

    Vereecke, Evie; D'Août, Kristiaan; De Clercq, Dirk; Van Elsacker, Linda; Aerts, Peter

    2003-04-01

    We collected high-resolution plantar pressure distributions of seven bonobos during terrestrial bipedal and quadrupedal locomotion (N = 146). Functional foot length, degree of hallux abduction, and total contact time were determined, and plots, showing pressure as a function of time for six different foot regions, were generated. We also studied five adult humans for comparison (N = 13). Both locomotion types of the bonobo show a large variation in plantar pressure distributions, which could be due to the interference of instantaneous behavior with locomotion and differences in walking speed and body dimensions. The heel and the lateral midfoot typically touch down simultaneously at initial ground contact in bipedal and quadrupedal walking of bonobos, in contrast with the typical heel-strike of human bipedalism. The center of pressure follows a curved course during quadrupedalism, as a consequence of the medial weight transfer during mid-stance. Bipedal locomotion of bonobos is characterized by a more plantar positioning of the feet and by a shorter contact time than during quadrupedal walking, according to a smaller stride and step length at a higher frequency. We observed a varus position of the foot with an abducted hallux, which likely possesses an important sustaining and stabilizing function during terrestrial locomotion. Copyright 2003 Wiley-Liss, Inc.

  13. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  14. Planetary Defense

    Science.gov (United States)

    2016-05-01

    extraterrestrial objects. Such an organization might be an efficient way to pool capital from the many governments of the world and perhaps even from the...4 Abstract Planetary defense against asteroids should be a major concern for every government in the world. Millions of asteroids and...private sector. A second path would be the development of technology required for planetary defense for other objectives such as asteroid mining

  15. Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction

    Directory of Open Access Journals (Sweden)

    E. L. Hodson

    2011-08-01

    Full Text Available Terrestrial and oceanic carbon cycle processes remove ~55 % of global carbon emissions, with the remaining 45 %, known as the "airborne fraction", accumulating in the atmosphere. The long-term dynamics of the component fluxes contributing to the airborne fraction are challenging to interpret, but important for informing fossil-fuel emission targets and for monitoring the trends of biospheric carbon fluxes. Climate and land-cover forcing data for terrestrial ecosystem models are a largely unexplored source of uncertainty in terms of their contribution to understanding airborne fraction dynamics. Here we present results using a single dynamic global vegetation model forced by an ensemble experiment of climate (CRU, ERA-Interim, NCEP-DOE II, and diagnostic land-cover datasets (GLC2000, GlobCover, MODIS. For the averaging period 1996–2005, forcing uncertainties resulted in a large range of simulated global carbon fluxes, up to 13 % for net primary production (52.4 to 60.2 Pg C a−1 and 19 % for soil respiration (44.2 to 54.8 Pg C a−1. The sensitivity of contemporary global terrestrial carbon fluxes to climate strongly depends on forcing data (1.2–5.9 Pg C K−1 or 0.5 to 2.7 ppmv CO2 K−1, but weakening carbon sinks in sub-tropical regions and strengthening carbon sinks in northern latitudes are found to be robust. The climate and land-cover combination that best correlate to the inferred carbon sink, and with the lowest residuals, is from observational data (CRU rather than reanalysis climate data and with land-cover categories that have more stringent criteria for forest cover (MODIS. Since 1998, an increasing positive trend in residual error from bottom-up accounting of global sinks and sources (from 0.03 (1989–2005 to 0.23 Pg C a−1 (1998–2005 suggests that either modeled drought sensitivity of carbon fluxes is too high, or that carbon emissions from net land-cover change is too large.

  16. Plate tectonics and planetary habitability: current status and future challenges.

    Science.gov (United States)

    Korenaga, Jun

    2012-07-01

    Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.

  17. Exploit and ignore the consequences: A mother of planetary issues.

    Science.gov (United States)

    Moustafa, Khaled

    2016-07-01

    Many environmental and planetary issues are due to an exploitation strategy based on exploit, consume and ignore the consequences. As many natural and environmental resources are limited in time and space, such exploitation approach causes important damages on earth, in the sea and maybe soon in the space. To sustain conditions under which humans and other living species can coexist in productive and dynamic harmony with their environments, terrestrial and space exploration programs may need to be based on 'scrutinize the consequences, prepare adequate solutions and then, only then, exploit'. Otherwise, the exploitation of planetary resources may put the environmental stability and sustainability at a higher risk than it is currently predicted. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Integrating Terrestrial Hydrology and Coastal Ecology: Understanding Cholera Dynamics using Remote Sensing Data

    Science.gov (United States)

    Islam, S.; Jutla, A. S.; Akanda, A. S.

    2009-12-01

    Cholera, an acute water-borne diarrheal illness, remains endemic in many regions of the world, specifically the coastal regions of South Asia, Sub-Saharan Africa, and Latin America. The disease has reemerged as a global killer with the world witnessing an unprecedented rise in cholera infection and transmission since the 1990s. In addition, global warming and natural disasters can contribute to outbreaks or occurrences of cholera in places where they normally do not pose a problem, including the US coastal areas. This study investigates relationship(s) between cholera incidences, coastal processes and terrestrial hydrology and explores the utility of using remote sensing data to track coastal plankton blooms and subsequent cholera outbreaks in vulnerable regions. Most of the studies over the last several decades have primarily focused on the microbiological and epidemiological understanding of cholera outbreaks, however, successful identification and mechanistic understanding of large scale hydrological, geophysical and coastal processes governing plankton-cholera relationships is important for developing any predictive model for disease outbreaks. The impact of climate change induced sea level rise on aquatic ecosystems and the altered spatial signature of coastal salinity distribution is likely to have significant impact on the composition of the plankton community and the production and growth of the cholera bacteria. Development of a holistic understanding of these processes requires long and reliable chlorophyll dataset, a surrogate for plankton abundance, which is now available through satellites. We will present a plausible pathway relating cholera, sea surface temperature, chlorophyll, and terrestrial hydrology through river discharge and satellite estimated coastal plankton abundance. Remote sensing, with its unprecedented spatial and temporal coverage, has capabilities to monitor coastal processes and track potential cholera outbreaks in endemic regions.

  19. Obliquity and Eccentricity Constraints for Terrestrial Exoplanets

    Science.gov (United States)

    Kane, Stephen R.; Torres, Stephanie M.

    2017-11-01

    Exoplanet discoveries over recent years have shown that terrestrial planets are exceptionally common. Many of these planets are in compact systems that result in complex orbital dynamics. A key step toward determining the surface conditions of these planets is understanding the latitudinally dependent flux incident at the top of the atmosphere as a function of orbital phase. The two main properties of a planet that influence the time-dependent nature of the flux are the obliquity and orbital eccentricity of the planet. We derive the criterion for which the flux variation due to obliquity is equivalent to the flux variation due to orbital eccentricity. This equivalence is computed for both the maximum and average flux scenarios, the latter of which includes the effects of the diurnal cycle. We apply these calculations to four known multi-planet systems (GJ 163, K2-3, Kepler-186, and Proxima Centauri), where we constrain the eccentricity of terrestrial planets using orbital dynamics considerations and model the effect of obliquity on incident flux. We discuss the implications of these simulations on climate models for terrestrial planets and outline detectable signatures of planetary obliquity.

  20. Prevalence of chaos in planetary systems formed through embryo accretion

    Science.gov (United States)

    Clement, Matthew S.; Kaib, Nathan A.

    2017-05-01

    The formation of the solar system's terrestrial planets has been numerically modeled in various works, and many other studies have been devoted to characterizing our modern planets' chaotic dynamical state. However, it is still not known whether our planets fragile chaotic state is an expected outcome of terrestrial planet accretion. We use a suite of numerical simulations to present a detailed analysis and characterization of the dynamical chaos in 145 different systems produced via terrestrial planet formation in Kaib and Cowan (2015). These systems were created in the presence of a fully formed Jupiter and Saturn, using a variety of different initial conditions. They are not meant to provide a detailed replication of the actual present solar system, but rather serve as a sample of similar systems for comparison and analysis. We find that dynamical chaos is prevalent in roughly half of the systems we form. We show that this chaos disappears in the majority of such systems when Jupiter is removed, implying that the largest source of chaos is perturbations from Jupiter. Chaos is most prevalent in systems that form 4 or 5 terrestrial planets. Additionally, an eccentric Jupiter and Saturn is shown to enhance the prevalence of chaos in systems. Furthermore, systems in our sample with a center of mass highly concentrated between ∼0.8-1.2 AU generally prove to be less chaotic than systems with more exotic mass distributions. Through the process of evolving systems to the current epoch, we show that late instabilities are quite common in our systems. Of greatest interest, many of the sources of chaos observed in our own solar system (such as the secularly driven chaos between Mercury and Jupiter) are shown to be common outcomes of terrestrial planetary formation. Thus, consistent with previous studies such as Laskar (1996), the solar system's marginally stable, chaotic state may naturally arise from the process of terrestrial planet formation.

  1. Digital Video Broadcast-Terrestrial (DVB-T) single frequency networks positioning in dynamic scenarios.

    Science.gov (United States)

    Huang, Jie; Lo Presti, Letizia; Garello, Roberto

    2013-08-09

    Since Global Navigation Satellite Systems (GNSS) show degraded performance in dense urban and indoor areas, a positioning sensor based on Digital Video Broadcast-Terrestrial (DVB-T) systems is presented in this paper. DVB-T signals can be considered as signals-of-opportunity for positioning, due to their good properties. One of the challenges to overcome is to distinguish the signals from different emitters. Here, we suppose that the user can first compute his position by GNSS during an initialization phase, which is used for solving all the ambiguities concerning DVB-T emitters. Starting from there, DVB-T signals can be used for aiding positioning when the user enters a GNSS-blocked area, up to a limit case, where all the GNSS satellites are not in view and only DVB-T signals are used for positioning. We tested this method by simulation, by adopting the Hata model for the emitter attenuations and the Rayleigh model for multipath. The obtained results show good performance if the receiver correctly associates the signal to the user's motion.

  2. How well does your model capture the terrestrial ecosystem dynamics of the Arctic-Boreal Region?

    Science.gov (United States)

    Stofferahn, E.; Fisher, J. B.; Hayes, D. J.; Huntzinger, D. N.; Schwalm, C.

    2016-12-01

    The Arctic-Boreal Region (ABR) is a major source of uncertainties for terrestrial biosphere model (TBM) simulations. These uncertainties are precipitated by a lack of observational data from the region, affecting the parameterizations of cold environment processes in the models. Addressing these uncertainties requires a coordinated effort of data collection and integration of the following key indicators of the ABR ecosystem: disturbance, flora / fauna and related ecosystem function, carbon pools and biogeochemistry, permafrost, and hydrology. We are developing a model-data integration framework for NASA's Arctic Boreal Vulnerability Experiment (ABoVE), wherein data collection for the key ABoVE indicators is driven by matching observations and model outputs to the ABoVE indicators. The data are used as reference datasets for a benchmarking system which evaluates TBM performance with respect to ABR processes. The benchmarking system utilizes performance metrics to identify intra-model and inter-model strengths and weaknesses, which in turn provides guidance to model development teams for reducing uncertainties in TBM simulations of the ABR. The system is directly connected to the International Land Model Benchmarking (ILaMB) system, as an ABR-focused application.

  3. Digital Video Broadcast-Terrestrial (DVB-T Single Frequency Networks Positioning in Dynamic Scenarios

    Directory of Open Access Journals (Sweden)

    Letizia Lo Presti

    2013-08-01

    Full Text Available Since Global Navigation Satellite Systems (GNSS show degraded performance in dense urban and indoor areas, a positioning sensor based on Digital Video Broadcast-Terrestrial (DVB-T systems is presented in this paper. DVB-T signals can be considered as signals-of-opportunity for positioning, due to their good properties. One of the challenges to overcome is to distinguish the signals from different emitters. Here, we suppose that the user can first compute his position by GNSS during an initialization phase, which is used for solving all the ambiguities concerning DVB-T emitters. Starting from there, DVB-T signals can be used for aiding positioning when the user enters a GNSS-blocked area, up to a limit case, where all the GNSS satellites are not in view and only DVB-T signals are used for positioning. We tested this method by simulation, by adopting the Hata model for the emitter attenuations and the Rayleigh model for multipath. The obtained results show good performance if the receiver correctly associates the signal to the user’s motion.

  4. Quantifying the effects of interacting nutrient cycles on terrestrial biosphere dynamics and their climate feedbacks (QUINCY)

    Science.gov (United States)

    Zaehle, Sönke; Caldararu, Silvia; Eder, Lucia; Engel, Jan; Kern, Melanie; Schrumpf, Marion; Weber, Enrico

    2017-04-01

    Nutrient availability plays a pivotal role in the response of terrestrial ecosystems to increasing atmospheric CO2 and climate change. The first generation of global nutrient-carbon cycle models shows strongly diverging estimates of the nutrient effect, resulting from lacking integration of ecosystem observations and fundamental uncertainties in the representation of governing processes. The two fundamental areas in which advances in modelling are required at i)the effects of nutrient availability on plant photosynthesis and respiration by explicitly taking the energy requirement of nutrient acquisition into account, and ii) the effects of vegetation-soil interactions, namely rhizosphere processes, on plant nutrient availability and soil C turnover. Here we present the methodology and first results of the QUINCY project, which addresses these important issues by an approach encompassing experimentation and model development. In particular, we outline a novel modelling approach to systematically link carbon, nutrient and water flows within the framework of a general land surface model at time-scales of minutes to decades, and illustrate, how (new) experimental data can (better) constrain this novel model.

  5. The excitation of a primordial cold asteroid belt as a natural outcome of the planetary instability

    Science.gov (United States)

    Deienno, Rogerio; Izidoro, André; Gomes, Rodney S.; Morbidelli, Alessandro; Nesvorny, David

    2017-10-01

    The initial dynamical state of the main asteroid belt (MB) always puzzled astronomers and it is still a hot subject under debate. For years, the currently well known Grand Tack model was considered to be the only capable of reconciling the formation of the terrestrial planets together with a well dynamically excited MB. This model, despite its success, is still not generally accepted given that it implies an invasion of Jupiter within the terrestrial region, passing through the MB twice. Other models for the terrestrial planet formation, on the other hand, always end up with a fully or partially cold MB formed. It was recently proposed that a chaotic evolution for Jupiter and Saturn before the planetary instability of the Solar System could excite an initially cold MB. However, hydrodynamical simulations predict that the orbits of those planets at the end of the gas disk phase should be characterized by resonant and regular motion. Therefore, the origin of this chaotic evolution is not fully understood. Here, assuming initial resonant and regular motion for Jupiter and Saturn, we propose a different mechanism capable of exciting a primordial cold MB during the planetary instability. For this, we assume that the planetary instability was of the jumping-Jupiter (JJ) type, and that it accounts for all the constraints already placed. Our results, which also possibly can explain the pathway to the chaotic evolution of Jupiter and Saturn, show that when Jupiter gets a temporary large enough level of excitation, both in eccentricity and inclination, it induces strong forced vectors of eccentricity and inclination within the MB region. Then, because in the JJ instability Jupiter is jumping around, such forced vectors keep changing both in magnitude and phase throughout the whole MB region. Thus, depending on the evolution of Jupiter during the JJ instability, the excitation of a primordial cold MB can indeed be achieved as a natural outcome of the planetary instability for

  6. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies

    Science.gov (United States)

    Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed

    2017-04-01

    Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary

  7. Analysis of postfire vegetation dynamics of Mediterranean shrub species based on terrestrial and NDVI data.

    Science.gov (United States)

    Hernández-Clemente, Rocío; Cerrillo, R M Navarro; Hernández-Bermejo, J E; Royo, S Escuin; Kasimis, N A

    2009-05-01

    The present study offers an analysis of regeneration patterns and diversity dynamics after a wildfire, which occurred in 1993 and affected about 7000 ha in southern Spain. The aim of the work was to analyze the rule in the succession of shrub species after fire, relating it to the changes registered in the Normalized Difference Vegetation Index (NDVI). Fractional vegetation cover was recorded from permanent plots in 2000 and 2005. NDVI data related to each time were obtained from Landsat images. Both data sets, from fieldwork and remote sensing, were analyzed through statistical and quantitative analyses and then correlated. Results have permitted the description of the change in plant cover and species composition on a global and plot scale. It can be affirmed that, from the seventh to the twelfth year after the fire, the floristic composition within the burned area remained unchanged at a global level. However, on a smaller scale (plot level), the major shrub species, Ulex parviflorus, Rosmarinus officinalis, and Cistus clusii, underwent significant changes. The regeneration dynamics established by these species conditioned plant species composition and, consequently, diversity indexes such as Shannon (H) and Simpson (D). The changes recorded in the NDVI values corresponding to the surveyed plots were highly correlated with those found in the regrowth of the main species. Areas dominated by U. parviflorus in a senile phase were related to a decrease in NDVI values and an increase in the number of species. This result describes the successional dynamics; the dryness of the main colonizer shrub species is allowing the regrowth and re-establishment of other species. Within the study area, NDVI shows sensitivity to postfire plant cover changes and indirectly expresses the diversity dynamics.

  8. Analysis of Postfire Vegetation Dynamics of Mediterranean Shrub Species Based on Terrestrial and NDVI Data

    Science.gov (United States)

    Hernández-Clemente, Rocío; Navarro Cerrillo, R. M.; Hernández-Bermejo, J. E.; Escuin Royo, S.; Kasimis, N. A.

    2009-05-01

    The present study offers an analysis of regeneration patterns and diversity dynamics after a wildfire, which occurred in 1993 and affected about 7000 ha in southern Spain. The aim of the work was to analyze the rule in the succession of shrub species after fire, relating it to the changes registered in the Normalized Difference Vegetation Index (NDVI). Fractional vegetation cover was recorded from permanent plots in 2000 and 2005. NDVI data related to each time were obtained from Landsat images. Both data sets, from fieldwork and remote sensing, were analyzed through statistical and quantitative analyses and then correlated. Results have permitted the description of the change in plant cover and species composition on a global and plot scale. It can be affirmed that, from the seventh to the twelfth year after the fire, the floristic composition within the burned area remained unchanged at a global level. However, on a smaller scale (plot level), the major shrub species, Ulex parviflorus, Rosmarinus officinalis, and Cistus clusii, underwent significant changes. The regeneration dynamics established by these species conditioned plant species composition and, consequently, diversity indexes such as Shannon (H) and Simpson (D). The changes recorded in the NDVI values corresponding to the surveyed plots were highly correlated with those found in the regrowth of the main species. Areas dominated by U. parviflorus in a senile phase were related to a decrease in NDVI values and an increase in the number of species. This result describes the successional dynamics; the dryness of the main colonizer shrub species is allowing the regrowth and re-establishment of other species. Within the study area, NDVI shows sensitivity to postfire plant cover changes and indirectly expresses the diversity dynamics.

  9. Planetary Geomorphology.

    Science.gov (United States)

    Baker, Victor R.

    1984-01-01

    Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…

  10. A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Benjamin; Wramneby, Anna (Dept. of Earth and Ecosystem Sciences, Lund Univ., Geocentrum II, Lund (Sweden)), e-mail: ben.smith.lu@gmail.com; Samuelsson, Patrick (Rossby Centre, Swedish Meteorological and Hydrological Inst., SE-60176, Norrkoeping (Sweden)); Rummukainen, Markku (Dept. of Earth and Ecosystem Sciences, Lund Univ., Geocentrum II, SE-22362, Lund (Sweden); Rossby Centre, Swedish Meteorological and Hydrological Inst., SE-60176, Norrkoeping (Sweden))

    2011-01-15

    Regional climate models (RCMs) primarily represent physical components of the climate system, omitting vegetation dynamics, ecosystem biogeochemistry and their associated feedbacks. To account for such feedbacks, we implemented a novel plant individual-based vegetation dynamics-ecosystem biogeochemistry scheme within the RCA3 RCM. Variations in leaf area index (LAI) of seven plant functional type (PFTs) in response to physical forcing and evolving vegetation state feed back to climate via adjustments in surface energy fluxes and surface properties. In an ERA-40-driven simulation over Europe, the model reproduces the recent past climate with comparable accuracy to the standard RCM. Large-scale patterns of LAI, net primary production and vegetation composition were comparable with observations, although winter LAI was systematically overestimated compared to satellite estimates. Analysis of the ERA-40 simulation and an A1B climate-change simulation revealed considerable covariation among dynamic variables of the physical climate and vegetation. At a Mediterranean site, periodic soil water limitation led to fluctuations in leaf cover and a likely positive feedback to near-surface temperature. At an alpine site, rising temperatures led to forest advance onto tundra areas, reducing albedo and effecting a likely positive feedback on temperature. Climate vegetation coupling was less pronounced but still apparent at intermediate temperate and boreal sites

  11. Possible Cretaceous Arctic terrestrial ecosystem dynamics based on a rich dinosaur record from Alaska

    Science.gov (United States)

    Fiorillo, A. R.; McCarthy, P. J.; Flaig, P. P.

    2010-12-01

    The widespread occurrence of large-bodied herbivores, specifically hadrosaurian and ceratopsian dinosaurs, in the Cretaceous of Alaska presents a proxy for understanding polar terrestrial ecosystem biological productivity in a warm Arctic world. These dinosaurs lived in Alaska at time when this region was at or near current latitudes. Thus these dinosaurs present a paradox. The warmer Cretaceous high-latitude climate, likely related to higher levels of CO2, may have increased plant productivity but the polar light regime fluctuations must have limited the available food during the winter months. The most detailed sedimentological data available regarding the paleoenvironments supporting these dinosaurs are from the Prince Creek Formation of northern Alaska and to a lesser extent the Cantwell Formation of the Alaska Range. The sediments of the Late Cretaceous Prince Creek Formation represent a continental succession deposited on a high-latitude, low-gradient, alluvial/coastal plain. The Prince Creek Formation records numerous paleosols that are consistent with seasonality and successional vegetative cover. Drab colors in fine-grained sediments, abundant carbonaceous plant material, and common siderite nodules and jarosite suggest widespread reducing conditions on poorly-drained floodplains influenced in more distal areas by marine waters. In addition, these rocks contain high levels of organic carbon and charcoal. Carbonaceous root-traces found ubiquitously within all distributary channels and most floodplain facies, along with common Fe-oxide mottles, indicate that the alluvial system likely experienced flashy, seasonal, or ephemeral flow and a fluctuating water table. The flashy nature of the alluvial system may have been driven by recurring episodes of vigorous seasonal snowmelt in the Brooks Range orogenic belt as a consequence of the high paleolatitude of northern Alaska in the Late Cretaceous. The presence of dinosaurian megaherbivores suggests that water was

  12. Space Robotics: Robotic Rovers for Planetary Exploration

    OpenAIRE

    Alex Ellery

    2004-01-01

    In this third of three short papers, I introduce some of the basic concepts of planetary rovers with an emphasis on some specific challenging areas of research that are peculiar to planetary robotics and not usually associated with terrestrial mobile robotics. The style of these short papers is pedagogical and this paper stresses the issue of rover-terrain interaction as an important consideration. Soil-vehicle interaction originates from military vehicle research but may be regarded as part ...

  13. Study nonlinear dynamics of stratospheric ozone concentration at Pakistan Terrestrial region

    Science.gov (United States)

    Jan, Bulbul; Zai, Muhammad Ayub Khan Yousuf; Afradi, Faisal Khan; Aziz, Zohaib

    2018-03-01

    This study investigates the nonlinear dynamics of the stratospheric ozone layer at Pakistan atmospheric region. Ozone considered now the most important issue in the world because of its diverse effects on earth biosphere, including human health, ecosystem, marine life, agriculture yield and climate change. Therefore, this paper deals with total monthly time series data of stratospheric ozone over the Pakistan atmospheric region from 1970 to 2013. Two approaches, basic statistical analysis and Fractal dimension (D) have adapted to study the nature of nonlinear dynamics of stratospheric ozone level. Results obtained from this research have shown that the Hurst exponent values of both methods of fractal dimension revealed an anti-persistent behavior (negatively correlated), i.e. decreasing trend for all lags and Rescaled range analysis is more appropriate as compared to Detrended fluctuation analysis. For seasonal time series all month follows an anti-persistent behavior except in the month of November which shown persistence behavior i.e. time series is an independent and increasing trend. The normality test statistics also confirmed the nonlinear behavior of ozone and the rejection of hypothesis indicates the strong evidence of the complexity of data. This study will be useful to the researchers working in the same field in the future to verify the complex nature of stratospheric ozone.

  14. Ent: A global dynamic terrestrial ecosystem model for climate interactions at seasonal to century time scales through coupled water, carbon, and nitrogen dynamics

    Science.gov (United States)

    Kiang, N. Y.; Koster, R. D.; Moorcroft, P. R.; Ni-Meister, W.; Rind, D. H.; Aleinov, I.; Kharecha, P.

    2006-12-01

    Ent is a dynamic global terrestrial ecosystem model (DGTEM) under development at the NASA GISS for coupling with atmospheric general circulation models (GCMs). Ent will be capable of predicting the fast time scale fluxes of water, carbon, nitrogen and energy between the land-surface and the atmosphere and the resulting diurnal surface fluxes, seasonal and inter-annual vegetation growth, and decadal to century scale alterations in vegetation structure and soil carbon and nitrogen. Canopy radiative transfer, biophysics, biogeochemistry, and ecological dynamics will be integrated in a consistent, prognostic, process-based manner, in a way that is both biologically realistic and computationally efficient, and suitable for two-way coupling and parallel computing in GCMs. Canopy radiative transfer is derived from the Geometric-Optical Radiative Transfer (GORT) model (Ni, et al., JGR, 102(D24): 9,555-29,566, 1997); biophysics combines the dynamic construction/destruction of the photosynthetic apparatus of Kull and Kruijt (Adv. Water Resources Res, 24:745-762, 1998) with stomatal conductance of Ball and Berry (Plant Phys., 77(Suppl. 4):91, 1985); dynamic allocation of plant carbon and nitrogen; CASA soil biogeochemistry with extended soil depth (Potter, et al., GBC, 7(4):811-841); and community dynamics of Moorcroft, et al. (Ecol. Monographs, 71(4):557-586, 2001). The model can be used for both assimilation of satellite data and with the GISS GCM for long-term climate studies. Ent will be a standalone set of modules that can be used by the climate modeling community to couple with land surface models and atmospheric GCMs for studies on seasonal weather evolution, vegetation phenology, the carbon budget, climate variability, paleoclimate, global change, vegetation-climate feedbacks, and astronomical biosignatures. Ent is envisioned as a tool for understanding the conditions and signatures of habitability of the Earth, ancient, modern, and future.

  15. Topology of sustainable management of dynamical systems with desirable states: from defining planetary boundaries to safe operating spaces in the Earth System

    Science.gov (United States)

    Heitzig, Jobst; Kittel, Tim; Donges, Jonathan; Molkenthin, Nora

    2016-04-01

    To keep the Earth System in a desirable region of its state space, such as defined by the recently suggested "tolerable environment and development window", "guardrails", "planetary boundaries", or "safe (and just) operating space for humanity", one not only needs to understand the quantitative internal dynamics of the system and the available options for influencing it (management), but also the structure of the system's state space with regard to certain qualitative differences. Important questions are: Which state space regions can be reached from which others with or without leaving the desirable region? Which regions are in a variety of senses "safe" to stay in when management options might break away, and which qualitative decision problems may occur as a consequence of this topological structure? In this work, we develop a mathematical theory of the qualitative topology of the state space of a dynamical system with management options and desirable states, as a complement to the existing literature on optimal control which is more focussed on quantitative optimization and is much applied in both the engineering and the integrated assessment literature. We suggest a certain terminology for the various resulting regions of the state space and perform a detailed formal classification of the possible states with respect to the possibility of avoiding or leaving the undesired region. Our results indicate that before performing some form of quantitative optimization such as of indicators of human well-being for achieving certain sustainable development goals, a sustainable and resilient management of the Earth System may require decisions of a more discrete type that come in the form of several dilemmas, e.g., choosing between eventual safety and uninterrupted desirability, or between uninterrupted safety and larger flexibility. We illustrate the concepts and dilemmas drawing on conceptual models from climate science, ecology, coevolutionary Earth System modeling

  16. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  17. Characterization of Terrestrial Water Dynamics in the Congo Basin Using GRACE and Satellite Radar Altimetry

    Science.gov (United States)

    Lee, Lyongki; Beighley, R. Edward; Alsdorf, Douglas; Jung, Hahn Chul; Shum, C. K.; Duan, Jianbin; Guo, Junyi; Yamazaki, Dai; Andreadis, Konstantinos

    2011-01-01

    The Congo Basin is the world's third largest in size (approximately 3.7 million km^2), and second only to the Amazon River in discharge (approximately 40,200 cms annual average). However, the hydrological dynamics of seasonally flooded wetlands and floodplains remains poorly quantified. Here, we separate the Congo wetland into four 3 degree x 3 degree regions, and use remote sensing measurements (i.e., GRACE, satellite radar altimeter, GPCP, JERS-1, SRTM, and MODIS) to estimate the amounts of water filling and draining from the Congo wetland, and to determine the source of the water. We find that the amount of water annually filling and draining the Congo wetlands is 111 km^3, which is about one-third the size of the water volumes found on the mainstem Amazon floodplain. Based on amplitude comparisons among the water volume changes and timing comparisons among their fluxes, we conclude that the local upland runoff is the main source of the Congo wetland water, not the fluvial process of river-floodplain water exchange as in the Amazon. Our hydraulic analysis using altimeter measurements also supports our conclusion by demonstrating that water surface elevations in the wetlands are consistently higher than the adjacent river water levels. Our research also highlights differences in the hydrology and hydrodynamics between the Congo wetland and the mainstem Amazon floodplain.

  18. Characterization of Terrestrial Water Dynamics in the Congo Basin Using GRACE and Satellite Radar Altimetry

    Science.gov (United States)

    Lee, Hyongki; Beighley, R. Edward; Alsdorf, Douglas; Jung, Hahn Chul; Shum, C. K.; Duan, Jianbin; Guo, Junyi; Yamazaki, Dai; Andreadis, Konstantinos

    2011-01-01

    The Congo Basin is the world's third largest in size (approx.3.7 million sq km), and second only to the Amazon River in discharge (approx.40,200 cu m/s annual average). However, the hydrological dynamics of seasonally flooded wetlands and floodplains remains poorly quantified. Here, we separate the Congo wetland into four 3deg 3deg regions, and use remote sensing measurements (i.e., GRACE, satellite radar altimeter, GPCP, JERS-1, SRTM, and MODIS) to estimate the amounts of water filling and draining from the Congo wetland, and to determine the source of the water. We find that the amount of water annually filling and draining the Congo wetlands is 111 cu km, which is about one-third the size of the water volumes found on the mainstem Amazon floodplain. Based on amplitude comparisons among the water volume changes and timing comparisons among their fluxes, we conclude that the local upland runoff is the main source of the Congo wetland water, not the fluvial process of river-floodplain water exchange as in the Amazon. Our hydraulic analysis using altimeter measurements also supports our conclusion by demonstrating that water surface elevations in the wetlands are consistently higher than the adjacent river water levels. Our research highlights differences in the hydrology and hydrodynamics between the Congo wetland and the mainstem Amazon floodplain.

  19. Formation of planetary embryos from planetesimals

    Science.gov (United States)

    Rafikov, Roman Ravilevich

    This thesis is devoted to studying some aspects of the formation of terrestrial planets. Although it is currently widely accepted that terrestrial planets form by agglomeration of a large number of rocky or icy bodies called planetesimals there is still a number of unresolved issues hindering our understanding of this process. I concentrate my research on the dynamical interaction of planetesimal disk with the planetary embryos—precursors of protoplanets. I investigate the development of nonuniformities in the planetesimal disk using analytical techniques employing the methods of statistical mechanics, which is justified by the huge number of planetesimals under consideration. This treatment self-consistently accounts for the evolution of the planetesimal kinematic properties, which is coupled to spatial redistribution of planetesimals in the disk. Planetesimal-planetesimal and embryo- planetesimal interactions are studied in two different velocity regimes: when the average approach velocities of interacting bodies are dominated by their epicyclic motion (dispersion-dominated regime) and when they are dominated by the differential shear in the disk (shear- dominated regime). The intermediate regime is modeled by interpolation. I show that the embryo always tries to repel planetesimals away and produce a depression in planetesimal surface density around its semimajor axis, while the planetesimal-planetesimal scattering acts as a source of effective viscosity which opposes this tendency and tries to smooth any inhomogeneities in the disk. The mutual gravitational interaction between planetesimals also increases their epicyclic motion throughout the disk. Embryo-planetesimal interaction leads to the same dynamical effect but localized spatially in the narrow zone around the embryo's orbit. The formation of inhomogeneities and excitation of planetesimal epicyclic motion in the disk nearby strongly affects the accretion rate of the embryo. I demonstrate that the

  20. Analysis of subglacial hydrodynamics and ice dynamics through combined terrestrial laser scanning and ground penetrating radar survey

    Science.gov (United States)

    Gabbud, Chrystelle; Rüttimann, Sébastien; Micheletti, Natan; Irving, James; Lane, Stuart

    2015-04-01

    This study shows how high resolution surveys of subglacial channel morphology combined with high resolution terrestrial laser scanner survey of an Alpine glacier help to understand subglacial hydrological forcing of ice dynamics. The study area is the Haut Glacier d'Arolla in Switzerland, an Alpine valley glacier for which subglacial drainage system has been well studied. A new generation of terrestrial laser scanners was used to investigate glacier surface ablation and other elements of glacial hydrodynamics at exceptionally high spatial and temporal resolution. The LiDAR RIEGL VZ-6000 scanner, with a laser 3B specifically designed for measurements of snow and ice cover surfaces, was tested at seasonal and daily scales. The data revealed spatial variations in the patterns of surface melt, controlled by both aspect and differential debris cover at the seasonal scale, and controlled by ogive-related differences in ice surface debris content at the daily scale. More tentatively, intra-daily scale measurements pointed to possible hydraulic jacking of the glacier associated with short-term water pressure rises at the downstream part of the glacier. A ground-penetrating radar (GPR) field campaign was conducted a year later in the location where possible hydraulic jacking had been detected previously. The aims of this campaign were (i) to assess GPR usage for subglacial channel detection; (ii) identify more precisely the channel morphology; and (iii) investigate further the hydraulic jacking hypothesis. 100 MHz antennas were used to map a 240 x 34 m area near the glacier snout where the ice thickness did not exceed 50 m. The corresponding data, after processing, allowed reconstruction of the bed topography and the morphology of subglacial channels in 3D, showing two of the latter in this area. One channel was followed for approximately 20 m upglacier and corresponding morphology estimates were performed. These data allowed for 3D reconstructions of both the bed

  1. Simulating dynamics of {delta}{sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of {delta}{sup 13}C and thus the global {delta}{sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to {delta}{sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of {delta}{sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The {delta}{sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on {delta}{sup 13}C of CO{sub 2} dynamics in PBL

  2. Simulating dynamics of (delta){sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of (delta){sup 13}C and thus the global (delta){sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to (delta){sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of (delta){sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The (delta){sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on (delta){sup 13}C of CO{sub 2} dynamics in PBL

  3. Trophic pathways supporting juvenile Chinook and Coho salmon in the glacial Susitna River, Alaska: patterns of freshwater, marine, and terrestrial resource use across a seasonally dynamic habitat mosaic

    Science.gov (United States)

    Rine, Kristin M.; Wipfli, Mark S.; Schoen, Erik R.; Nightengale, Timothy L.; Stricker, Craig A.

    2016-01-01

    Contributions of terrestrial-, freshwater-, and marine-derived prey resources to stream fishes vary over time and space, altering the energy pathways that regulate production. In this study, we determined large-scale use of these resources by juvenile Chinook and coho salmon (Oncorhynchus tshawytscha and Oncorhynchus kisutch, respectively) in the glacial Susitna River, Alaska. We resolved spatial and temporal trophic patterns among multiple macrohabitat types along a 97 km segment of the river corridor via stable isotope and stomach content analyses. Juvenile salmon were supported primarily by freshwater-derived resources and secondarily by marine and terrestrial sources. The relative contribution of marine-derived prey to rearing salmon was greatest in the fall within off-channel macrohabitats, whereas the contributions of terrestrial invertebrate prey were generally greatest during midsummer, across all macrohabitats. No longitudinal (upstream–downstream) diet pattern was discernable. These results highlight large-scale spatial and seasonal patterns of energy flow and the dynamic interplay of pulsed marine and terrestrial prey subsidies to juvenile Chinook and coho salmon in a large, complex, and relatively pristine glacial river.

  4. Implications of the TTV-detection of close-in terrestrial planets around M stars for their origin and dynamical evolution

    Directory of Open Access Journals (Sweden)

    Rastegar S.

    2011-02-01

    Full Text Available It has been shown that an Earth-size planet or a super-Earth, in resonance with a transiting Jupiter-like body around an M star, can create detectable TTV signals (Kirste & Haghighipour, 2011. Given the low masses of M stars and their circumstellar disks, it is expected that the transiting giant planet to have formed at large distances and migrated to its close-in orbit. That implies, the terrestrial planet has to form during the migration of the giant planet, be captured in resonances, and migrate with the giant body to short-period orbits. To determine the possibility of this scenario, we have studied the dynamics of a disk of protoplanetary embryos and the formation of terrestrial planets during the migration of a Jupiter-like planet around an M star. Results suggest that unless the terrestrial planet was also formed at large distances and carried to its close-in resonant orbit by the giant planet, it is unlikely for this object to form in small orbits. We present the details of our simulations and discuss the implication of the results for the origin of the terrestrial planet.

  5. Incorporation of planetary boundary layer dynamics in a numerical model of long-range air-pollutant transport

    Science.gov (United States)

    Syrakov, D.; Djolov, G.; Yordanov, D.

    1983-05-01

    A numerical model of long-range air-pollutant transport is developed, in which a simple planetary boundary layer (PBL) is incorporated. The pollution field results from the superposition of discrete ‘puffs’ of pollutants which are emitted periodically in different regions. The instantaneous sources in the different cells are approximated by rotational ellipsoids with Gaussian concentration distributions. The puff movement due to the external flow is followed by the displacement of the centroid. The expansion of the puff is modelled by nonisotropic Fickian diffusion. A simple barotropic PBL model is used to study the PBL influence. This model gives the flow velocity and the vertical turbulent exchange coefficient, which depend on the external parameters Ro and S — Rossby number and stratification parameter. The model performance is investigated by special test runs. The dependence of the pollution field on source height, stability conditions and vertical motions is shown.

  6. Spatial-temporal dynamics of NDVI and Chl-a concentration from 1998 to 2009 in the East coastal zone of China: integrating terrestrial and oceanic components.

    Science.gov (United States)

    Hou, Xiyong; Li, Mingjie; Gao, Meng; Yu, Liangju; Bi, Xiaoli

    2013-01-01

    Annual normalized difference vegetation index (NDVI) and chlorophyll-a (Chl-a) concentration are the most important large-scale indicators of terrestrial and oceanic ecosystem net primary productivity. In this paper, the Sea-viewing Wide Field-of-view Sensor level 3 standard mapped image annual products from 1998 to 2009 are used to study the spatial-temporal characters of terrestrial NDVI and oceanic Chl-a concentration on two sides of the coastline of China by using the methods of mean value (M), coefficient of variation (CV), the slope of unary linear regression model (Slope), and the Hurst index (H). In detail, we researched and analyzed the spatial-temporal dynamics, the longitudinal zonality and latitudinal zonality, the direction, intensity, and persistency of historical changes. The results showed that: (1) spatial patterns of M and CV between NDVI and Chl-a concentration from 1998 to 2009 were very different. The dynamic variation of terrestrial NDVI was much mild, while the variation of oceanic Chl-a concentration was relatively much larger; (2) distinct longitudinal zonality was found for Chl-a concentration and NDVI due to their hypersensitivity to the distance to shoreline, and strong latitudinal zonality existed for Chl-a concentration while terrestrial NDVI had a very weak latitudinal zonality; (3) overall, the NDVI showed a slight decreasing trend while the Chl-a concentration showed a significant increasing trend in the past 12 years, and both of them exhibit strong self-similarity and long-range dependence which indicates opposite future trends between land and ocean.

  7. Frontiers of the Physics of Dense Plasmas and Planetary Interiors: Experiment, Theory, Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fortney, J J; Glenzer, S H; Koenig, M; Brambrink, E; Militzer, B; Saumon, D; Valencia, D

    2008-09-12

    We review recent developments of dynamic x-ray characterization experiments of dense matter, with particular emphasis on conditions relevant to interiors of terrestrial and gas giant planets. These studies include characterization of compressed states of matter in light elements by x-ray scattering and imaging of shocked iron by radiography. We examine several applications of this work. These include the structure of massive 'Super Earth' terrestrial planets around other stars, the 40 known extrasolar gas giants with measured masses and radii, and Jupiter itself, which serves as our benchmark for giant planets. We are now in an era of dramatic improvement in our knowledge of the physics of materials at high density. For light elements, this theoretical and experimental work has many applications, including internal confinement fusion as well as the interiors of gas giant planets. For heavy elements, experiments on silicates and iron at high pressure are helping to better understand the Earth, as well as terrestrial planets as a class of objects. In particular, the discovery of rocky and gaseous planets in other planetary systems has opened our imaginations to planets not found in our own solar system. While the fields of experiments of matter at high densities, first principles calculations of equations of state (EOS), planetary science, and astronomy do progress independently of each other, it is important for there to be communication between fields. For instance, in the realm of planets, physicists can learn of key problems that exist in the area of planetary structure, and how advances in our understanding of input physics could shed new light in this area. Astronomers and planetary scientists can learn where breakthroughs in physics of materials under extreme conditions are occurring, and be ready to apply these findings within their fields.

  8. Zeppelin NT - Measurement Platform for the Exploration of Atmospheric Chemistry and Dynamics in the Planetary Boundary Layer

    Science.gov (United States)

    Hofzumahaus, Andreas; Holland, Frank; Oebel, Andreas; Rohrer, Franz; Mentel, Thomas; Kiendler-Scharr, Astrid; Wahner, Andreas; Brauchle, Artur; Steinlein, Klaus; Gritzbach, Robert

    2014-05-01

    The planetary boundary layer (PBL) is the chemically most active and complex part of the atmosphere where freshly emitted reactive trace gases, tropospheric radicals, atmospheric oxidation products and aerosols exhibit a large variability and spatial gradients. In order to investigate the chemical degradation of trace gases and the formation of secondary pollutants in the PBL, a commercial Zeppelin NT was modified to be used as an airborne measurement platform for chemical and physical observations with high spatial resolution. The Zeppelin NT was developed by Zeppelin Luftschifftechnik (ZLT) and is operated by Deutsche Zeppelin Reederei (DZR) in Friedrichshafen, Germany. The modification was performed in cooperation between Forschungszentrum Jülich and ZLT. The airship has a length of 75 m, can lift about 1 ton of scientific payload and can be manoeuvered with high precision by propeller engines. The modified Zeppelin can carry measurement instruments mounted on a platform on top of the Zeppelin, or inside the gondola beneath the airship. Three different instrument packages were developed to investigate a. gas-phase oxidation processes involving free radicals (OH, HO2) b. formation of secondary organic aerosols (SOA) c. new particle formation (nucleation) The presentation will describe the modified airship and provide an overview of its technical performance. Examples of its application during the recent PEGASOS flight campaigns in Europe will be given.

  9. Dynamics of the terrestrial biosphere, climate and atmospheric CO2 concentration during interglacials: a comparison between Eemian and Holocene

    Directory of Open Access Journals (Sweden)

    G. Schurgers

    2006-01-01

    Full Text Available A complex earth system model (atmosphere and ocean general circulation models, ocean biogeochemistry and terrestrial biosphere was used to perform transient simulations of two interglacial sections (Eemian, 128–113 ky B.P., and Holocene, 9 ky B.P.–present. The changes in terrestrial carbon storage during these interglacials were studied with respect to changes in the earth's orbit. The effects of different climate factors on changes in carbon storage were studied in offline experiments in which the vegetation model was forced only with temperature, hydrological parameters, radiation, or CO2 concentration from the transient runs. The largest anomalies in terrestrial carbon storage were caused by temperature changes. However, the increase in storage due to forest expansion and increased photosynthesis in the high latitudes was nearly balanced by the decrease due to increased respiration. Large positive effects on carbon storage were caused by an enhanced monsoon circulation in the subtropics between 128 and 121 ky B.P. and between 9 and 6 ky B.P., and by increases in incoming radiation during summer for 45° to 70° N compared to a control simulation with present-day insolation. Compared to this control simulation, the net effect of these changes was a positive carbon storage anomaly in the terrestrial biosphere of about 200 Pg C for 125 ky B.P. and 7 ky B.P., and a negative anomaly around 150 Pg C for 116 ky B.P. Although the net increases for Eemian and Holocene were rather similar, the magnitudes of the processes causing these effects were different. The decrease in terrestrial carbon storage during the experiments was the main driver of an increase in atmospheric CO2 concentration during both the Eemian and the Holocene.

  10. Planetary science: Flow of an alien ocean

    Science.gov (United States)

    Goodman, Jason

    2014-01-01

    Liquid water may lurk beneath the frozen surfaces of Jupiter's moon Europa and other icy worlds. Extending ocean science beyond Earth, planetary oceanographers are linking Europa's ocean dynamics to its enigmatic surface geology.

  11. An interdisciplinary approach to reconstructing hydrologically controlled terrestrial habitat dynamics during MIS 5 from sediments of Lake Ohrid (Albania, Macedonia)

    Science.gov (United States)

    Holtvoeth, Jens; Vogel, Hendrik; Rushworth, Danielle; Copsey, Harriet; Imeri, Alma; Valsecchi, Verushka; Cara, Magdalena; Schouten, Stefan; Wagner, Bernd; Wolff, George A.; Pancost, Richard D.

    2016-04-01

    We investigated sediments from a piston core (site Co1202) in the northeastern part of Lake Ohrid (Macedonia, Albania) that cover the period from 136 to 97 ka, i.e. most of marine isotope stage (MIS) 5 including Termination II and the peak warm period of MIS 5e (Eemian). The aim of the study was to reconstruct climatically controlled changes in the terrestrial habitat by combining data from elemental, lipid biomarker (alkyl lipids, glycerol dialkyl glycerol tetraethers/GDGTs) and compound-specific carbon isotope analyses with pollen data. Comparison of biomarker data from sediments and modern materials shows a close similarity between the average biomarker composition of sediments and soils. This is confirmed by statistical analyses, implying that a dominant proportion of the sedimentary alkyl lipids derives from soils while aquatic sources (macrophytes, phytoplankton) can be ruled out as a major source. The carbonate record of the Co1202 sediments and the GDGT-based proxy for lake surface water temperature (TEX86) closely follow climatic trends as they are known from the North Atlantic realm, including marine isotope sub-stage 5d and short-term climate events such as cold events C25, C24 and C23. By contrast, proxies based on alkyl lipid composition reveal an entirely different pattern. Episodes of slow, continuous change are disrupted by abrupt shifts. This suggests a threshold-controlled system, with supply of organic matter from specific sources being increased or suppressed by a sudden change of supply pathways. Such a mechanism is provided by lake level change that includes rapid flooding or exposure of extensive tectonic terraces in the vicinity of site Co1202 as documented by geophysical surveys. Both flooding and exposure change the areas that certain habitats occupy in the catchment of the site, e.g., the proportions of vegetation and soils on the surrounding mountain slopes relative to that on low-lying terrace surfaces. Several such abrupt changes can

  12. Mission Implementation Constraints on Planetary Muon Radiography

    Science.gov (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  13. Innovations at a European Planetary Simulation Facility

    Science.gov (United States)

    Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.

    2017-09-01

    This unique and recently improved planetary simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet 2020 RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2020 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.

  14. Terrestrial carbon dynamics. Case studies in the former Soviet Union, the conterminous United States, Mexico and Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, M.A.; Phillips, D.L. [Western Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Corvallis (United States); Winjum, J.K. [Western Ecology Division, National Health and Environmental Effects Research Laboratory, National Council for Air and Stream Improvement USEPA, Corvallis (United States); Kolchugina, T.P.; Vinson, T.S. [Department of Civil Engineering, Oregon State University, Corvallis (United States)

    1997-10-01

    This research assessed land-use impacts on C flux at a national level in four countries: former Soviet Union, United States, Mexico and Brazil, including biotic processes in terrestrial ecosystems (closed forests, woodlands, and croplands), harvest of trees for wood and paper products, and direct C emission from fires. The terrestrial ecosystems of the four countries contain approximately 40% of the world`s terrestrial biosphere C pool, with the FSU alone having 27% of the global total. Average phytomass C densities decreased from south to north while average soil C densities in all three vegetation types generally increased from south to north. The C flux from land cover conversion was divided into a biotic component and a land-use component. We estimate that the total net biotic flux (Tg/yr) was positive (uptake) in the FSU (631) and the U.S. (332), but negative in Mexico (-37) and Brazil (-16). In contrast, total flux from land use was negative (emissions) in all four countries (TgC/yr): FSU -342; U.S. -243; Mexico -35; and Brazil -235. The total net effect of the biotic and land-use factors was a C sink in the FSU and the U.S. and a C source in both Brazil and Mexico. 2 figs., 6 tabs., 97 refs.

  15. Overview study of the analytical analysis of the internal dynamics of nonlinear time heteronymous planetary differential systems

    Czech Academy of Sciences Publication Activity Database

    Hortel, Milan; Škuderová, Alena

    2016-01-01

    Roč. 821, č. 2016 (2016), s. 213-220 ISSN 1662-7482. [ Engineering Mechanics 2015. Svratka, 11.05.2015-14.05.2015] R&D Projects: GA TA ČR(CZ) TA04011656 Institutional support: RVO:61388998 Keywords : nonlinear dynamics * time heteronymous systems * damping in gear mesh Subject RIV: JT - Propulsion, Motors ; Fuels http://www.scientific.net/AMM.821.213

  16. Empirical Modeling of Planetary Boundary Layer Dynamics Under Multiple Precipitation Scenarios Using a Two-Layer Soil Moisture Approach: An Example From a Semiarid Shrubland

    Science.gov (United States)

    Sanchez-Mejia, Zulia Mayari; Papuga, Shirley A.

    2017-11-01

    In semiarid regions, where water resources are limited and precipitation dynamics are changing, understanding land surface-atmosphere interactions that regulate the coupled soil moisture-precipitation system is key for resource management and planning. We present a modeling approach to study soil moisture and albedo controls on planetary boundary layer height (PBLh). We used Santa Rita Creosote Ameriflux and Tucson Airport atmospheric sounding data to generate empirical relationships between soil moisture, albedo, and PBLh. Empirical relationships showed that ˜50% of the variation in PBLh can be explained by soil moisture and albedo with additional knowledge gained by dividing the soil profile into two layers. Therefore, we coupled these empirical relationships with soil moisture estimated using a two-layer bucket approach to model PBLh under six precipitation scenarios. Overall we observed that decreases in precipitation tend to limit the recovery of the PBL at the end of the wet season. However, increases in winter precipitation despite decreases in summer precipitation may provide opportunities for positive feedbacks that may further generate more winter precipitation. Our results highlight that the response of soil moisture, albedo, and the PBLh will depend not only on changes in annual precipitation, but also on the frequency and intensity of this change. We argue that because albedo and soil moisture data are readily available at multiple temporal and spatial scales, developing empirical relationships that can be used in land surface-atmosphere applications have great potential for exploring the consequences of climate change.

  17. Gazetteer of planetary nomenclature 1994

    Science.gov (United States)

    Batson, Raymond M.; Russell, Joel F.

    1995-01-01

    Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be easily located, described, and discussed. This volume contains detailed information about all names of topographic and albedo features on planets and satellites (and some planetary ring and ring-gap systems) that the International Astronomical Union has named and approved from its founding in 1919 through its triennial meeting in 1994.This edition of the Gazetteer of Planetary Nomenclature supersedes an earlier informal volume distributed by the U.S. Geological Survey in 1986 as Open-File Report 84-692 (Masursky and others, 1986). Named features are depicted on maps of the Moon published first by the U.S. Defense Mapping Agency or the Aeronautical Chart and Information Center and more recently by the U.S. Geological Survey; on maps of Mercury, Venus, Mars, and the satellites of Jupiter, Saturn, and Uranus published by the U.S. Geological Survey; and on maps of the Moon, Venus, and Mars produced by the U.S.S.R.Although we have attempted to check the accuracy of all data in this volume, we realize that some errors will remain in a work of this size. Readers noting errors or omissions are urged to communicate them to the U.S. Geological Survey, Branch of Astrogeology, Rm. 409, 2255 N. Gemini Drive, Flagstaff, AZ 86001.

  18. PASCAL - Planetary Atmospheres Spectral Catalog

    Science.gov (United States)

    Rothman, Laurence; Gordon, Iouli

    2010-05-01

    Spectroscopic observation of planetary atmospheres, stellar atmospheres, comets, and the interstellar medium is the most powerful tool for extracting detailed information concerning the properties of these objects. The HITRAN molecular spectroscopic database1 has traditionally served researchers involved with terrestrial atmospheric problems, such as remote-sensing of constituents in the atmosphere, pollution monitoring at the surface, identification of sources seen through the atmosphere, and numerous environmental issues. A new thrust of the HITRAN program is to extend this longstanding database to have capabilities for studying the above-mentioned planetary and astronomical systems. The new extension is called PASCAL (Planetary Atmospheres Spectral Catalog). The methodology and structure are basically identical to the construction of the HITRAN and HITEMP databases. We will acquire and assemble spectroscopic parameters for gases and spectral bands of molecules that are germane to the studies of planetary atmospheres. These parameters include the types of data that have already been considered for transmission and radiance algorithms, such as line position, intensity, broadening coefficients, lower-state energies, and temperature dependence values. Additional parameters beyond what is currently considered for the terrestrial atmosphere will be archived. Examples are collision-broadened halfwidths due to various foreign partners, collision-induced absorption, and temperature dependence factors. New molecules (and their isotopic variants), not currently included in the HITRAN database, will be incorporated. That includes hydrocarbons found on Titan but not archived in HITRAN (such as C3H4, C4H2, C3H8). Other examples include sulfur-bearing molecules such as SO and CS. A further consideration will be spectral bands that arise as opportunities to study exosolar planets. The task involves acquiring the best high-resolution data, both experimental and theoretical

  19. Possible climates on terrestrial exoplanets.

    Science.gov (United States)

    Forget, F; Leconte, J

    2014-04-28

    What kind of environment may exist on terrestrial planets around other stars? In spite of the lack of direct observations, it may not be premature to speculate on exoplanetary climates, for instance, to optimize future telescopic observations or to assess the probability of habitable worlds. To begin with, climate primarily depends on (i) the atmospheric composition and the volatile inventory; (ii) the incident stellar flux; and (iii) the tidal evolution of the planetary spin, which can notably lock a planet with a permanent night side. The atmospheric composition and mass depends on complex processes, which are difficult to model: origins of volatiles, atmospheric escape, geochemistry, photochemistry, etc. We discuss physical constraints, which can help us to speculate on the possible type of atmosphere, depending on the planet size, its final distance for its star and the star type. Assuming that the atmosphere is known, the possible climates can be explored using global climate models analogous to the ones developed to simulate the Earth as well as the other telluric atmospheres in the solar system. Our experience with Mars, Titan and Venus suggests that realistic climate simulators can be developed by combining components, such as a 'dynamical core', a radiative transfer solver, a parametrization of subgrid-scale turbulence and convection, a thermal ground model and a volatile phase change code. On this basis, we can aspire to build reliable climate predictors for exoplanets. However, whatever the accuracy of the models, predicting the actual climate regime on a specific planet will remain challenging because climate systems are affected by strong positive feedbacks. They can drive planets with very similar forcing and volatile inventory to completely different states. For instance, the coupling among temperature, volatile phase changes and radiative properties results in instabilities, such as runaway glaciations and runaway greenhouse effect.

  20. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  1. Apparent relations between planetary spin, orbit, and solar differential rotation

    Science.gov (United States)

    Tattersall, R.

    2013-12-01

    A correlation is found between changes in Earth's length of day [LOD] and the spatio-temporal disposition of the planetary masses in the solar system, characterised by the z axis displacement of the centre of mass of the solar system [CMSS] with respect to the solar equatorial plane smoothed over a bi-decadal period. To test whether this apparent relation is coincidental, other planetary axial rotation rates and orbital periods are compared, and spin-orbit relations are found. Earth's axial angular momentum moment of inertia, and internal dynamics are considered in relation to the temporal displacement between the potential stimulus and the terrestrial response. The differential rotation rate of the Sun is considered in relation to the rotational and orbital periods of the Earth-Moon system and Venus and Mercury, and harmonic ratios are found. These suggest a physical coupling between the bodies of an as yet undetermined nature. Additional evidence for a resonant coupling is found in the relation of total solar irradiance (TSI) and galactic cosmic ray (GCR) measurements to the resonant harmonic periods discovered.

  2. Reconfigurable Autonomy for Future Planetary Rovers

    Science.gov (United States)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  3. Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes

    Science.gov (United States)

    Amsellem, Elsa; Moynier, Frédéric; Pringle, Emily A.; Bouvier, Audrey; Chen, Heng; Day, James M. D.

    2017-07-01

    Understanding the composition of raw materials that formed the Earth is a crucial step towards understanding the formation of terrestrial planets and their bulk composition. Calcium is the fifth most abundant element in terrestrial planets and, therefore, is a key element with which to trace planetary composition. However, in order to use Ca isotopes as a tracer of Earth's accretion history, it is first necessary to understand the isotopic behavior of Ca during the earliest stages of planetary formation. Chondrites are some of the oldest materials of the Solar System, and the study of their isotopic composition enables understanding of how and in what conditions the Solar System formed. Here we present Ca isotope data for a suite of bulk chondrites as well as Allende (CV) chondrules. We show that most groups of carbonaceous chondrites (CV, CI, CR and CM) are significantly enriched in the lighter Ca isotopes (δ 44 / 40 Ca = + 0.1 to + 0.93 ‰) compared with bulk silicate Earth (δ 44 / 40 Ca = + 1.05 ± 0.04 ‰, Huang et al., 2010) or Mars, while enstatite chondrites are indistinguishable from Earth in Ca isotope composition (δ 44 / 40 Ca = + 0.91 to + 1.06 ‰). Chondrules from Allende are enriched in the heavier isotopes of Ca compared to the bulk and the matrix of the meteorite (δ 44 / 40 Ca = + 1.00 to + 1.21 ‰). This implies that Earth and Mars have Ca isotope compositions that are distinct from most carbonaceous chondrites but that may be like chondrules. This Ca isotopic similarity between Earth, Mars, and chondrules is permissive of recent dynamical models of planetary formation that propose a chondrule-rich accretion model for planetary embryos.

  4. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  5. Planetary climates (princeton primers in climate)

    CERN Document Server

    Ingersoll, Andrew

    2013-01-01

    This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

  6. Planetary Science Resource Data Model

    Science.gov (United States)

    Cecconi, B.; Berthier, J.; Bourrel, N.; Gangloff, M.; Erard, S.; Le Sidaner, P.; André, N.; Jacquey, C.; Lormant, N.

    2012-09-01

    One the goals of the Europlanet/IDIS project is the prototyping a Planetary Sciences Virtual Observatory (VO). Planetary sciences are covering several science thematics: atmospheres, surfaces, interiors, small bodies, orbital parameters, in situ exploration, plasma (waves, particle and fields), radio astronomy... They also include a large variety of data types: images, spectra, times series, movies, dynamic spectra, profiles, maps... and an even larger variety of physical parameters, including remote data, in-situ data, models, lab experiments, field analogs. The main challenge is thus to be able to homogeneously describe all the planetary science resources (dataset, files, services...). The skeleton of a such a description is the data model. The Planetary Science Resource Data Model (PSRDM) has been built using IVOA (International Virtual Observatory Alliance). We describe the content of Datasets and Granules (i.e., product, file, or the smallest granularity distributed by the service), not the access to the data. This description includes: Resource identification, Targets, Instruments (including hosting facility), Axis (including bounds, resolution, sampling, unit), Physical parameter (including UCD, unit).

  7. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    Directory of Open Access Journals (Sweden)

    M. Chen

    2011-09-01

    Full Text Available Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM, should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI, Land Surface Water Index (LSWI and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000–2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr−1 and net primary production (NPP ranges from 3.81 to 4.38 Pg C yr−1 and net ecosystem production (NEP varies within 0.08–0.73 Pg C yr−1 over the period 2000–2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr−1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  8. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Min; Zhuang, Qianlai; Cook, D.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken

    2011-08-31

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000-2005 at a 0.05-0.05 spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 PgC yr{sup -1} and net primary production (NPP) ranges from 3.81 to 4.38 Pg Cyr{sup -1} and net ecosystem production (NEP) varies within 0.08- 0.73 PgC yr{sup -1} over the period 2000-2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 PgC yr{sup -1} for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  9. Quantification of Terrestrial Ecosystem Carbon Dynamics in the Conterminous United States Combining a Process-Based Biogeochemical Model and MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Min; Zhuang, Qianlai; Cook, David R.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken

    2011-09-21

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial 24 ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical 25 models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate 26 quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution 27 Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index 28 (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary 29 production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the 30 changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and 31 verify the new version of TEM with eddy flux data. We then apply the model to the conterminous 32 United States over the period 2000-2005 at a 0.05o ×0.05o spatial resolution. We find that the new 33 version of TEM generally captured the expected temporal and spatial patterns of regional carbon 34 dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr-1 and net primary 35 production (NPP) ranges from 3.81 to 4.38 Pg C yr-1 and net ecosystem production (NEP) varies 36 within 0.08-0.73 Pg C yr-1 over the period 2000-2005 for the conterminous United States. The 37 uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr-1 for the regional estimates of GPP, 38 NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 39 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a 40 new independent and more adequate measure of carbon fluxes for the conterminous United States, 41 which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon 42 management and climate.

  10. Linking the terrestrial and aquatic system across scales: The role of connectivity, landscape organization and catchment size for the dynamics of DOC

    Science.gov (United States)

    Laudon, Hjalmar

    2014-05-01

    While the production and export of DOC - dissolved organic carbon - from the terrestrial landscape has been extensively studied during the past decades, mechanistic understanding of processes that control stream water quality at the soil/water interface, across different spatial scales, are still at its infancy. To improve the process description of DOC regulation, I use data and understanding from three decades of research that has been conducted within the interdisciplinary, multi-scale Krycklan Catchment Study (KCS) in northern Sweden (www.slu.se/Krycklan). KCS consists of 17 intensively long-term monitored catchments ranging over three orders of magnitude in size, from 3 ha to over 6780 ha, to elucidate the dominate hydrobiogeophysical processes regulating the concentration and export of nutrients, metals and organic pollutants. By combining the use of detailed catchment information with natural isotopes and the dynamics of stream biogeochemistry we can directly link variability in hydrological flow pathways, catchment characteristics and scale with the spatial and temporal dynamics of DOC. Our results suggest that the contrasting spatial variability in the flow pathways among the different landscape types has a first order control on the DOC. As a result, large variations in the dynamics of DOC and its quality are observed that varies with changes in hydrological connectivity, landscape organization and catchment size.

  11. The terrestrial silica pump.

    Directory of Open Access Journals (Sweden)

    Joanna C Carey

    Full Text Available Silicon (Si cycling controls atmospheric CO(2 concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr(-1, accounting for 43% of the total oceanic net primary production (NPP. However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr(-1 is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO(2 levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump.

  12. Terrestrial planet formation.

    Science.gov (United States)

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  13. Nature and Composition of Planetary Surficial Deposits and Their Relationship to Planetary Crusts

    Science.gov (United States)

    McLennan, S. M.

    2010-12-01

    Planetary soils constitute micron to meter sized debris blankets covering all or parts of the surfaces of many planetary bodies. Recent results from the Martian surface, by the MER rovers and Phoenix lander, the Huygens probe at Titan and perhaps even the NEAR mission to asteroid 433 Eros suggest a continuum between classic planetary soils, such as those on the Moon, and conventional sediments, such as those on Earth. Controls on this variation are governed by complex interactions related to (1) impact and volcanic history, (2) presence and nature of atmospheres (and thus climate), (3) occurrence, composition and physical state of near-surface volatiles (e.g., water, methane), and (4) presence and nature of crustal tectonics, crustal evolution, and so forth. The Moon represents one extreme where surficial deposits result almost exclusively from impact processes. Absence of water and air restrict further reworking or transport on a significant scale after initial deposition. Disruption and mixing of lunar soils takes place but is related to impact gardening operating on relatively local scales and largely in a vertical sense; alteration is restricted to space weathering. The effect is that lunar soils are compositionally variable and match the composition of the crust in the vicinity of where they form. Thus lunar soils in the highlands are fundamentally different in composition than those on maria. Earth provides the other extreme where the highly dynamic geochemical and geophysical nature of the surface precludes preservation of classic planetary soils, although analogs may exist in ejecta blankets and eolian loess. Instead, a complex suite of sedimentary deposits form in response to chemical and physical weathering, erosion, transport and deposition by a variety of mechanisms involving water, wind, ice and biology. Although there is substantial sedimentary lithological differentiation (e.g., shales, sands, carbonates, evaporites), greatly influenced by the

  14. Studies of Constraints from the Terrestrial Planets, Asteroid Belt and Giant Planet Obliquities on the Early Solar System Instability

    Science.gov (United States)

    Nesvorny, David

    The planetary instability has been invoked as a convenient way to explain several observables in the present Solar System. This theory, frequently referred to under a broad and somewhat ill-defined umbrella as the ‘Nice model’, postulates that at least one of the ice giants suffered scattering encounters with Jupiter and Saturn. This could explain several things, including the excitation of the proper eccentric mode in Jupiter's orbit, survival of the terrestrial planets during giant planet migration, and, if the instability was conveniently delayed, also the Late Heavy Bombardment of the Moon. These properties/events would be unexpected if the migration histories of the outer planets were ideally smooth (at least no comprehensive model has yet been fully developed to collectively explain them). Additional support for the planetary instability comes from the dynamical properties of the asteroid and Kuiper belts, Trojans, and planetary satellites. We created a large database of dynamical evolutions of the outer planets through and 100 Myr past the instability (Nesvorny and Morbidelli 2012. Many of these dynamical histories have been found to match constraints from the orbits of the outer planets themselves. We now propose to test these different scenarios using constraints from the terrestrial planets, asteroid belt and giant planet obliquities. As we explain in the proposal narrative, we will bring all these constraints together in an attempt to develop a comprehensive model of early Solar System's evolution. This will be a significant improvement over the past work, where different constraints were considered piecewise and in various approximations. Our work has the potential to generate support for the Nice-type instability, or to rule it out, which could help in sparking interest in developing better models. RELEVANCE The proposed research is fundamental to understanding the formation and early evolution of the Solar System. This is a central theme of NASA

  15. Handbook of the Solar-Terrestrial Environment

    CERN Document Server

    Kamide, Y

    2007-01-01

    The Handbook of the Solar-Terrestrial Environment is a unique compendium. Recognized international leaders in their field contribute chapters on basic topics of solar physics, space plasmas and the Earth's magnetosphere, and on applied topics like the aurora, magnetospheric storms, space weather, space climatology and planetary science. This book will be of highest value as a reference for researchers working in the area of planetary and space science. However, it is also written in a style accessible to graduate students majoring in those fields.

  16. Determining the geotechnical properties of planetary regolith using Low Velocity Penetrometers

    Science.gov (United States)

    Seweryn, K.; Skocki, K.; Banaszkiewicz, M.; Grygorczuk, J.; Kolano, M.; Kuciński, T.; Mazurek, J.; Morawski, M.; Białek, A.; Rickman, H.; Wawrzaszek, R.

    2014-09-01

    Measurements of mechanical and thermophysical properties of planetary surface allow determining many important parameters useful for planetologists. For example, effective heat conductivity or thermal inertia of the regolith can help to better understand the processes occurring in the bodies interior. Chemical and mineralogical composition gives us a chance to determine the origin and evolution of moons and satellites. Mechanical properties of the surface are one of the key factors needed by civil engineers for developing future bases on space bodies. Space missions to planetary bodies highly restrict the payload concerning its mass and power consumption. Therefore, it is quite impossible to use a standard terrestrial technique like the Load Plate Test or Direct Shear Tests to determine the geotechnical parameters of the planetary regolith. Even the Dynamic Cone Penetration (DCP) method, which is frequently used for field testing, does not fit well with the constraints imposed by a space mission. Nevertheless, its operation principle is very similar to that of at the Low Velocity Penetrators (LVP), several of them being currently on their way to planetary bodies (e.g. the MUPUS instrument) or which were developed in the last couple of years (e.g. the CHOMIK instrument or the KRET device). In this paper we present a comparison between DCP method and LVP operation which was observed during several tests campaigns during mole KRET and CHOMIK instrument development. The tests were performed in different planetary analogues: JSC-1A, Chenobi and AGK-2010, Phobos analogue, cometary analogues F1, F2 and F3 (SRC) and dry quartz sand. In the last part of the paper the concept of results' interpretation is presented.

  17. Dynamic Reconfiguration in Planetary Exploration

    DEFF Research Database (Denmark)

    Cohn, Marisa

    2014-01-01

    In taking into account the ways in which material and social realms are constitutively entangled within organizations, it is rhetorically tempting to say that technologies and social structures reconfigure each other. But what does it mean to reconfigure? How does one "figure" the other and how do...

  18. Terrestrial quarantine considerations for unmanned sample return missions

    Science.gov (United States)

    Hoffman, A. R.; Stavro, W.; Miller, L. W.; Taylor, D. M.

    1973-01-01

    For the purpose of understanding some of the possible implications of a terrestrial quarantine constraint on a mission and for developing a basic approach which can be used to demonstrate compliance beyond that developed for Apollo, a terrestrial quarantine study was performed. It is shown that some of the basic tools developed and used by the planetary quarantine community have applicability to terrestrial quarantine analysis. By using these tools, it is concluded that: (1) the method of biasing the earth aiming point when returning from the planet is necessary but, by itself, may not satisfy terrestrial quarantine constraints; and (2) spacecraft and container design significantly influence contamination transfer.

  19. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs

    Science.gov (United States)

    Pavlick, R.; Drewry, D. T.; Bohn, K.; Reu, B.; Kleidon, A.

    2013-06-01

    Terrestrial biosphere models typically abstract the immense diversity of vegetation forms and functioning into a relatively small set of predefined semi-empirical plant functional types (PFTs). There is growing evidence, however, from the field ecology community as well as from modelling studies that current PFT schemes may not adequately represent the observed variations in plant functional traits and their effect on ecosystem functioning. In this paper, we introduce the Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM) as a new approach to terrestrial biosphere modelling with a richer representation of functional diversity than traditional modelling approaches based on a small number of fixed PFTs. JeDi-DGVM simulates the performance of a large number of randomly generated plant growth strategies, each defined by a set of 15 trait parameters which characterize various aspects of plant functioning including carbon allocation, ecophysiology and phenology. Each trait parameter is involved in one or more functional trade-offs. These trade-offs ultimately determine whether a strategy is able to survive under the climatic conditions in a given model grid cell and its performance relative to the other strategies. The biogeochemical fluxes and land surface properties of the individual strategies are aggregated to the grid-cell scale using a mass-based weighting scheme. We evaluate the simulated global biogeochemical patterns against a variety of field and satellite-based observations following a protocol established by the Carbon-Land Model Intercomparison Project. The land surface fluxes and vegetation structural properties are reasonably well simulated by JeDi-DGVM, and compare favourably with other state-of-the-art global vegetation models. We also evaluate the simulated patterns of functional diversity and the sensitivity of the JeDi-DGVM modelling approach to the number of sampled strategies. Altogether, the results demonstrate the parsimonious and flexible

  20. Planetary geosciences, 1988

    Science.gov (United States)

    Zuber, Maria T. (Editor); Plescia, Jeff L. (Editor); James, Odette B. (Editor); Macpherson, Glenn (Editor)

    1989-01-01

    Research topics within the NASA Planetary Geosciences Program are presented. Activity in the fields of planetary geology, geophysics, materials, and geochemistry is covered. The investigator's current research efforts, the importance of that work in understanding a particular planetary geoscience problem, the context of that research, and the broader planetary geoscience effort is described. As an example, theoretical modelling of the stability of water ice within the Martian regolith, the applicability of that work to understanding Martian volatiles in general, and the geologic history of Mars is discussed.

  1. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    Directory of Open Access Journals (Sweden)

    Jungang Wang

    2013-01-01

    Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.

  2. From Planetary Intelligence to Planetary Wisdom

    Science.gov (United States)

    Moser, S. C.

    2016-12-01

    "Planetary intelligence" - when understood as an input into the processes of "managing" Earth - hints at an instrumental understanding of scientific information. At minimum it is a call for useful data of political (and even military) value; at best it speaks to an ability to collect, integrate and apply such information. In this sense, 21st century society has more "intelligence" than any generation of humans before, begging the question whether just more or better "planetary intelligence" will do anything at all to move us off the path of planetary destruction (i.e., beyond planetary boundaries) that it has been on for decades if not centuries. Social scientists have argued that there are at least four shortcomings in this way of thinking that - if addressed - could open up 1) what is being researched; 2) what is considered socially robust knowledge; 3) how science interacts with policy-makers and other "planet managers"; and 4) what is being done in practice with the "intelligence" given to those positioned at the levers of change. To the extent "planetary management" continues to be approached from a scientistic paradigm alone, there is little hope that Earth's future will remain in a safe operating space in this or coming centuries.

  3. Fourier transform spectroscopy for future planetary missions

    Science.gov (United States)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  4. Tectonic evolution of terrestrial planets

    Science.gov (United States)

    Head, J. W.; Solomon, S. C.

    1981-01-01

    The tectonic style of each terrestrial planet, referring to the thickness and division of its lithosphere, can be inferred from surface features and compared to models of planetary thermal history. Factors governing planetary tectonic evolution are planet diameter, chemistry, and external and internal heat sources, all of which determine how a planet generates and rids itself of heat. The earth is distinguished by its distinct, mobile plates, which are recycled into the mantle and show large-scale lateral movements, whereas the moon, Mars, and Mercury are single spherical shells, showing no evidence of destruction and renewal of the lithospheric plates over the latter 80% of their history. Their smaller volume to surface area results in a more rapid cooling, formation, and thickening of the lithosphere. Vertical tectonics, due to lithospheric loading, is controlled by the local thickness and rheology of the lithosphere. Further studies of Venus, which displays both the craterlike surface features of the one-plate planets, and the rifts and plateaus of earth, may indicate which factors are most important in controlling the tectonic evolution of terrestrial planets.

  5. Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning

    Science.gov (United States)

    McCoy, S.W.; Kean, J.W.; Coe, J.A.; Staley, D.M.; Wasklewicz, T.A.; Tucker, G.E.

    2010-01-01

    Many theoretical and laboratory studies have been undertaken to understand debris-flow processes and their associated hazards. However, complete and quantitative data sets from natural debris flows needed for confirmation of these results are limited. We used a novel combination of in situ measurements of debris-flow dynamics, video imagery, and pre- and postflow 2-cm-resolution digital terrain models to study a natural debris-flow event. Our field data constrain the initial and final reach morphology and key flow dynamics. The observed event consisted of multiple surges, each with clear variation of flow properties along the length of the surge. Steep, highly resistant, surge fronts of coarse-grained material without measurable pore-fluid pressure were pushed along by relatively fine-grained and water-rich tails that had a wide range of pore-fluid pressures (some two times greater than hydrostatic). Surges with larger nonequilibrium pore-fluid pressures had longer travel distances. A wide range of travel distances from different surges of similar size indicates that dynamic flow properties are of equal or greater importance than channel properties in determining where a particular surge will stop. Progressive vertical accretion of multiple surges generated the total thickness of mapped debris-flow deposits; nevertheless, deposits had massive, vertically unstratified sedimentological textures. ?? 2010 Geological Society of America.

  6. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes

    Science.gov (United States)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.

    2010-08-01

    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  7. Impact cratering – fundamental process in geoscience and planetary ...

    Indian Academy of Sciences (India)

    Any surface image of the Moon, Mars, or Mer- cury, those terrestrial planets that essentially lack a dense atmosphere and allow detailed surface exploration, demonstrates (figure 15) how dom- inant impact cratering has been as a surface- geological process, ever since the formation of earliest planetary crust more than 4.4 ...

  8. Chemical kinetics and modeling of planetary atmospheres

    Science.gov (United States)

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  9. Late veneer and late accretion to the terrestrial planets

    Science.gov (United States)

    Brasser, R.; Mojzsis, S. J.; Werner, S. C.; Matsumura, S.; Ida, S.

    2016-12-01

    It is generally accepted that silicate-metal ('rocky') planet formation relies on coagulation from a mixture of sub-Mars sized planetary embryos and (smaller) planetesimals that dynamically emerge from the evolving circum-solar disc in the first few million years of our Solar System. Once the planets have, for the most part, assembled after a giant impact phase, they continue to be bombarded by a multitude of planetesimals left over from accretion. Here we place limits on the mass and evolution of these planetesimals based on constraints from the highly siderophile element (HSE) budget of the Moon. Outcomes from a combination of N-body and Monte Carlo simulations of planet formation lead us to four key conclusions about the nature of this early epoch. First, matching the terrestrial to lunar HSE ratio requires either that the late veneer on Earth consisted of a single lunar-size impactor striking the Earth before 4.45 Ga, or that it originated from the impact that created the Moon. An added complication is that analysis of lunar samples indicates the Moon does not preserve convincing evidence for a late veneer like Earth. Second, the expected chondritic veneer component on Mars is 0.06 weight percent. Third, the flux of terrestrial impactors must have been low (≲10-6 M⊕ Myr-1) to avoid wholesale melting of Earth's crust after 4.4 Ga, and to simultaneously match the number of observed lunar basins. This conclusion leads to an Hadean eon which is more clement than assumed previously. Last, after the terrestrial planets had fully formed, the mass in remnant planetesimals was ∼10-3 M⊕, lower by at least an order of magnitude than most previous models suggest. Our dynamically and geochemically self-consistent scenario requires that future N-body simulations of rocky planet formation either directly incorporate collisional grinding or rely on pebble accretion.

  10. Reconsideration of the planetary boundary for phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Stephen R [Center for Limnology, University of Wisconsin, Madison, WI 53706 (United States); Bennett, Elena M, E-mail: srcarpen@wisc.edu, E-mail: Elena.Bennett@mcgill.ca [Department of Natural Resource Sciences and McGill School of Environment, McGill University, 21 111 Lakeshore Road, Ste-Anne de Bellevue, QC, H9X 3V9 (Canada)

    2011-01-15

    Phosphorus (P) is a critical factor for food production, yet surface freshwaters and some coastal waters are highly sensitive to eutrophication by excess P. A planetary boundary, or upper tolerable limit, for P discharge to the oceans is thought to be ten times the pre-industrial rate, or more than three times the current rate. However this boundary does not take account of freshwater eutrophication. We analyzed the global P cycle to estimate planetary boundaries for freshwater eutrophication. Planetary boundaries were computed for the input of P to freshwaters, the input of P to terrestrial soil, and the mass of P in soil. Each boundary was computed for two water quality targets, 24 mg P m{sup -3}, a typical target for lakes and reservoirs, and 160 mg m{sup -3}, the approximate pre-industrial P concentration in the world's rivers. Planetary boundaries were also computed using three published estimates of current P flow to the sea. Current conditions exceed all planetary boundaries for P. Substantial differences between current conditions and planetary boundaries demonstrate the contrast between large amounts of P needed for food production and the high sensitivity of freshwaters to pollution by P runoff. At the same time, some regions of the world are P-deficient, and there are some indications that a global P shortage is possible in coming decades. More efficient recycling and retention of P within agricultural ecosystems could maintain or increase food production while reducing P pollution and improving water quality. Spatial heterogeneity in the global P cycle suggests that recycling of P in regions of excess and transfer of P to regions of deficiency could mitigate eutrophication, increase agricultural yield, and delay or avoid global P shortage.

  11. Gigayear Instabilities in Planetary Systems

    Science.gov (United States)

    Fabrycky, Daniel

    One of the biggest modern discoveries about the Solar System is that it is chaotic (Laskar 1989, 1994). On million-year timescales, nearby trajectories exponentially diverge; on billion-year timescales, planets can develop large eccentricities and even collide. This is possible because our planets interact with enough energy and with the right (secular) timescales. This has the potential to put the planet Mercury on an unstable orbit in the future, before the Sun exhausts its fuel. Currently, as a standard step in the analysis, exoplanet observing teams check whether the planetary systems they are discovering are stable. This usually involves a few-Megayear numerical integration, and the system usually passes that test. However, the signatures of continuing instability have not been looked for in the exoplanet population, nor has its implications for planetary formation and evolution been fully recognized. We will study several specific evolutionary scenarios in which instability may manifest only on gigayear timescales, i.e. midway through the lives of the host stars. This is relevant to the solicitation in that it characterizes the dynamics of exoplanetary systems. In the first project, we will compare N-body, numerically-calculated secular, and Fourier-expansion secular theories to determine what essential ingredients go into the conclusion that a general planetary system is chaotic. We will apply these tools to specific realizations of Kepler-discovered close-in planetary systems consisting of three or more Neptunes or super-Earths, which is the most populous known exoplanet population. We will thus find the common ailments afflicting middle-age planetary systems. In the second project, we will consider how planets might get stranded in their Kuiper and Oort clouds during early system evolution, only to destabilize the inner system later on. Various investigators have wondered whether the Solar System is accompanied by a massive planetary companion, including a

  12. Fullerenes and the Nature of Planetary Gases

    Science.gov (United States)

    Becker, Luann; Poreda, Robert J.; Nuth, Joe

    2003-01-01

    Over the past several decades, two issues have dominated the discussion of planetary noble gas patterns: 1) the general resemblance of the noble gas abundances in carbonaceous chondrites to those measured in the Earth s atmosphere and; 2) atmospheric inventories of argon and neon that fall off significantly with increasing distance from the Sun. The recognition of the latter has led to the conclusion that the planetary component is not found on planets. In particular, the inability to explain the missing xenon reservoir, once thought to be sequestered in crustal rocks has been extremely troublesome. Some models have focused on various fractionations of solar wind rather than condensation as the process for the evolution of noble gases in the terrestrial planets. However, these models cannot explain the observed gradient of the gases, nor do they account for the similar Ne/Ar ratios and the dissimilar planetary Ar/Kr ratios. More recent studies have focused on hydrodynamic escape to explain the fractionation of gases, like neon, in the atmosphere and the mantle. Escape theory also seems to explain, in part, the isotopically heavy argon on Mars, however, it does not explain the discrepancies observed for the abundances of argon and neon on Venus and the Earth. This has led to the assumption that some combination of solar wind implantation, absorption and escape are needed to explain the nature of planetary noble gases.

  13. The Planetary Nebula Spectrograph : The green light for galaxy kinematics

    NARCIS (Netherlands)

    Douglas, NG; Arnaboldi, M; Freeman, KC; Kuijken, K; Merrifield, MR; Romanowsky, AJ; Taylor, K; Capaccioli, M; Axelrod, T; Gilmozzi, R; Hart, J; Bloxham, G; Jones, D

    2002-01-01

    Planetary nebulae (PNe) are now well established as probes of galaxy dynamics and as standard candles in distance determinations. Motivated by the need to improve the efficiency of planetary nebulae searches and the speed with which their radial velocities are determined, a dedicated instrument-the

  14. Finite Elements Contact Modelling of Planetary Gear Trains

    Science.gov (United States)

    Stoyanov, Svetlin; Dobrev, Vasko; Dobreva, Antoaneta

    2017-10-01

    The paper presents the application aspects of computer technologies concerning the process of creating theoretical contact models of planetary gear trains using Abaqus/Explicit. The necessary assumptions, constrains and specific features of these gear drives are discussed in details. The models created are appropriate and useful tools for computer simulation research of the dynamic behaviour of planetary gear trains.

  15. Observing and modeling dynamics in terrestrial gross primary productivity and phenology from remote sensing: An assessment using in-situ measurements

    Science.gov (United States)

    Verma, Manish K.

    Terrestrial gross primary productivity (GPP) is the largest and most variable component of the carbon cycle and is strongly influenced by phenology. Realistic characterization of spatio-temporal variation in GPP and phenology is therefore crucial for understanding dynamics in the global carbon cycle. In the last two decades, remote sensing has become a widely-used tool for this purpose. However, no study has comprehensively examined how well remote sensing models capture spatiotemporal patterns in GPP, and validation of remote sensing-based phenology models is limited. Using in-situ data from 144 eddy covariance towers located in all major biomes, I assessed the ability of 10 remote sensing-based methods to capture spatio-temporal variation in GPP at annual and seasonal scales. The models are based on different hypotheses regarding ecophysiological controls on GPP and span a range of structural and computational complexity. The results lead to four main conclusions: (i) at annual time scale, models were more successful capturing spatial variability than temporal variability; (ii) at seasonal scale, models were more successful in capturing average seasonal variability than interannual variability; (iii) simpler models performed as well or better than complex models; and (iv) models that were best at explaining seasonal variability in GPP were different from those that were best able to explain variability in annual scale GPP. Seasonal phenology of vegetation follows bounded growth and decay, and is widely modeled using growth functions. However, the specific form of the growth function affects how phenological dynamics are represented in ecosystem and remote sensing-base models. To examine this, four different growth functions (the logistic, Gompertz, Mirror-Gompertz and Richards function) were assessed using remotely sensed and in-situ data collected at several deciduous forest sites. All of the growth functions provided good statistical representation of in

  16. Space Weather: Terrestrial Perspective

    Directory of Open Access Journals (Sweden)

    Pulkkinen Tuija

    2007-05-01

    Full Text Available Space weather effects arise from the dynamic conditions in the Earth’s space environment driven by processes on the Sun. While some effects are influenced neither by the properties of nor the processes within the Earth’s magnetosphere, others are critically dependent on the interaction of the impinging solar wind with the terrestrial magnetic field and plasma environment. As the utilization of space has become part of our everyday lives, and as our lives have become increasingly dependent on technological systems vulnerable to space weather influences, understanding and predicting hazards posed by the active solar events has grown in importance. This review introduces key dynamic processes within the magnetosphere and discusses their relationship to space weather hazards.

  17. Water and the Interior Structure of Terrestrial Planets and Icy Bodies

    Science.gov (United States)

    Monteux, J.; Golabek, G. J.; Rubie, D. C.; Tobie, G.; Young, E. D.

    2018-02-01

    Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock-ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.

  18. Extra-terrestrial sprites: laboratory investigations in planetary gas mixtures

    NARCIS (Netherlands)

    D. Dubrovin; Y. Yair; C. Price; S. Nijdam (Sander); T.T.J. Clevis; E.M. van Veldhuizen; U. Ebert (Ute)

    2012-01-01

    textabstractWe investigate streamers in gas mixtures representing the atmospheres of Jupiter, Saturn (H2-He) and Venus (CO2-N2). Streamer diameters, velocities, radiance and overall morphology are investigated with fast ICCD camera images. We confirm experimentally the scaling of streamer diameters

  19. NASA Planetary Visualization Tool

    Science.gov (United States)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  20. Terrestrial ecosystems under warmer and drier climates

    Science.gov (United States)

    Pan, Y.

    2016-12-01

    Future warmer and drier climates will likely affect many of the world's terrestrial ecosystems. These changes will fundamentally reshape terrestrial systems through their components and across organization levels. However, it is unclear to what extent terrestrial ecosystems would be resilient enough to stay put to increased temperature and water stress by only adjusting carbon fluxes and water balances? And to what extent it would reach the thresholds at which terrestrial ecosystems were forced to alter species compositions and ecosystem structures for adapting to newer climates? The energy balance of terrestrial ecosystems link thermal and water conditions to defines terrestrial carbon processes and feedbacks to climate, which will inevitably change under warmer and drier climates. Recent theoretical studies provide a new framework, suggesting that terrestrial ecosystems were capable of balancing costs of carbon gain and water transport to achieve optimums for functioning and distribution. Such a paradigm is critical for understanding the dynamics of future terrestrial ecosystems under climate changes, and facilitate modeling terrestrial ecosystems which needs generalized principles for formulating ecosystem behaviors. This study aims to review some recent studies that explore responses of terrestrial ecosystems to rather novel climate conditions, such as heat-induced droughts, intending to provide better comprehension of complex carbon-water interactions through plants to an ecosystem, and relevant factors that may alleviate or worsen already deteriorated climates such as elevated CO2 and soil conditions.

  1. New Indivisible Planetary Science Paradigm: Consequence of Questioning Popular Paradigms

    Science.gov (United States)

    Marvin Herndon, J.

    2014-05-01

    removed, pressure began to build in the compressed rocky kernel of Earth and eventually the rigid crust began to crack. The major energy source for planetary decompression and for heat emplacement at the base of the crust is the stored energy of protoplanetary compression. In response to decompression-driven volume increases, cracks form to increase surface area and fold-mountain ranges form to accommodate changes in curvature. One of the most profound mysteries of modern planetary science is this: As the terrestrial planets are more-or-less of common chondritic composition, how does one account for the marked differences in their surface dynamics? Differences among the inner planets are principally due to the degree of compression experienced. Planetocentric georeactor nuclear fission, responsible for magnetic field generation and concomitant heat production, is applicable to compressed and non-compressed planets and large moons. The internal composition of Mercury is calculated based upon an analogy with the deep-Earth mass ratio relationships. The origin and implication of Mercurian hydrogen geysers is described. Besides Earth, only Venus appears to have sustained protoplanetary compression; the degree of which might eventually be estimated from understanding Venetian surface geology. A basis is provided for understanding that Mars essentially lacks a 'geothermal gradient' which implies potentially greater subsurface water reservoir capacity than previously expected. Resources at NuclearPlanet.com .

  2. Terrestrial ecosystems and climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, W.R. (Oak Ridge National Lab., TN (USA)); Schimel, D.S. (Colorado State Univ., Fort Collins, CO (USA). Natural Resources Ecology Lab.)

    1990-01-01

    The structure and function of terrestrial ecosystems depend on climate, and in turn, ecosystems influence atmospheric composition and climate. A comprehensive, global model of terrestrial ecosystem dynamics is needed. A hierarchical approach appears advisable given currently available concepts, data, and formalisms. The organization of models can be based on the temporal scales involved. A rapidly responding model describes the processes associated with photosynthesis, including carbon, moisture, and heat exchange with the atmosphere. An intermediate model handles subannual variations that are closely associated with allocation and seasonal changes in productivity and decomposition. A slow response model describes plant growth and succession with associated element cycling over decades and centuries. These three levels of terrestrial models are linked through common specifications of environmental conditions and constrain each other. 58 refs.

  3. Planetary Nebulae Beyond the Milky Way

    CERN Document Server

    Stanghellini, L; Douglas, N. G; Proceedings of the ESO Workshop held at Garching, Germany, 19-21 May, 2004

    2006-01-01

    In the last decade extra-galactic planetary nebulae (PNe) have gained increasing importance. Improved observational capabilities have allowed fainter and fainter PNe to be studied in galaxies well beyond the Milky Way. Planetary nebulae can be detected to at least 30Mpc. They are found in galaxies of all types and also between the galaxies in nearby galaxy clusters. They are valuable as probes, both for providing the velocity of their host stars and also the evolutionary status and relation to the stellar population from which they formed. This book contains the proceedings of a workshop held at ESO headquarters in Garching in 2004, the first meeting devoted entirely to Extra-galactic Planetary Nebulae. A wide range of topics is covered, from stellar and nebular astrophysics to galactic dynamics and galaxy clusters, making this volume a unique and timely reference of broad astrophysical interest.

  4. Fourier transform spectroscopy for future planetary missions

    Science.gov (United States)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  5. Tectonic evolution of the terrestrial planets.

    Science.gov (United States)

    Head, J W; Solomon, S C

    1981-07-03

    The style and evolution of tectonics on the terrestrial planets differ substantially. The style is related to the thickness of the lithosphere and to whether the lithosphere is divided into distinct, mobile plates that can be recycled into the mantle, as on Earth, or is a single spherical shell, as on the moon, Mars, and Mercury. The evolution of a planetary lithosphere and the development of plate tectonics appear to be influenced by several factors, including planetary size, chemistry, and external and internal heat sources. Vertical tectonic movement due to lithospheric loading or uplift is similar on all of the terrestrial planets and is controlled by the local thickness and rheology of the lithosphere. The surface of Venus, although known only at low resolution, displays features both similar to those on Earth (mountain belts, high plateaus) and similar to those on the smaller planets (possible impact basins). Improved understanding of the tectonic evolution of Venus will permit an evaluation of the relative roles of planetary size and chemistry in determining evolutionary style.

  6. The early evolution of the atmospheres of terrestrial planets

    CERN Document Server

    Raulin, François; Muller, Christian; Nixon, Conor; Astrophysics and Space Science Proceedings : Volume 35

    2013-01-01

    “The Early Evolution of the Atmospheres of Terrestrial Planets” presents the main processes participating in the atmospheric evolution of terrestrial planets. A group of experts in the different fields provide an update of our current knowledge on this topic. Several papers in this book discuss the key role of nitrogen in the atmospheric evolution of terrestrial planets. The earliest setting and evolution of planetary atmospheres of terrestrial planets is directly associated with accretion, chemical differentiation, outgassing, stochastic impacts, and extremely high energy fluxes from their host stars. This book provides an overview of the present knowledge of the initial atmospheric composition of the terrestrial planets. Additionally it includes some papers about the current exoplanet discoveries and provides additional clues to our understanding of Earth’s transition from a hot accretionary phase into a habitable world. All papers included were reviewed by experts in their respective fields. We are ...

  7. Topographic-driven instabilities in terrestrial bodies

    Science.gov (United States)

    Vantieghem, S.; Cebron, D.; Herreman, W.; Lacaze, L.

    2013-12-01

    Models of internal planetary fluid layers (core flows, subsurface oceans) commonly assume that these fluid envelopes have a spherical shape. This approximation however entails a serious restriction from the fluid dynamics point of view. Indeed, in the presence of mechanical forcings (precession, libration, nutation or tides) due to gravitational interaction with orbiting partners, boundary topography (e.g. of the core-mantle boundary) may excite flow instabilities and space-filling turbulence. These phenomena may affect heat transport and dissipation at the main order. Here, we focus on instabilities driven by longitudinal libration. Using a suite of theoretical tools and numerical simulations, we are able to discern a parameter range for which instability may be excited. We thereby consider deformations of different azimuthal order. This study gives the first numerical evidence of the tripolar instability. Furthermore, we explore the non-linear regime and investigate the amplitude as well as the dissipation of the saturated instability. Indeed, these two quantities control the torques on the solid layers and the thermal transport. Furthermore, based on this results, we address the issue of magnetic field generation associated with these flows (by induction or by dynamo process). This instability mechanism applies to both synchronized as non-synchronized bodies. As such, our results show that a tripolar instability might be present in various terrestrial bodies (Early Moon, Gallilean moons, asteroids, etc.), where it could participate in dynamo action. Simulation of a libration-driven tripolar instability in a deformed spherical fluid layer: snapshot of the velocity magnitude, where a complex 3D flow pattern is established.

  8. A Broadband Silicon Seismic Package for Planetary Exploration

    Science.gov (United States)

    Pike, W. Thomas; Standley, Ian; Calcutt, Simon; Kedar, Sharon

    2017-04-01

    The Silicon Seismic Package (SSP) is a compact, 0.3 ng/rtHz sensitivity silicon microseismometer based on the hardware successfully delivered to the InSight Mars 2018 mission. The SSP provides a sensitivity and dynamic range comparable to significantly more massive broadband terrestrial instruments in a robust, compact package. Combined with a high resolution radiation-hardened digitiser under development, the SSP offers high performance seismic monitoring under a range of planetary environments. The sensor is micromachined from single-crystal silicon by through-wafer deep reactive-ion etching to produce a non-magnetic suspension and proof mass. It is robust to high shock (> 1000 g) and vibration (> 30 grms). For qualification SP units have undergone the full thermal cycles of the InSight mission and has been noise tested down to 208K and up to 330K, with no degradation in the performance in both cases. In addition, the sensor has been tested as functional down to 77K. The total mass for the three-axis SP delivery is 635g while the power requirement is less than 400 mW. The SSP has particular advantages for a planetary deployment. All three axes deliver full performance over a tilt range of ±1 m/s2 which allows for operation without levelling. With no magnetic sensitivity and a temperature sensitivity below 2E-5 m/s^2, there is no need for magnetic field monitoring and the additional resources for thermal isolation are also much reduced. In terms of performance the SSP has fast initialisation, reaching a noise floor below 1 ng/√Hz in less than a minute from an untilted configuration. The noise floor is 0.3 ng/rtHz from 10 s to 10 Hz, with a long period noise below 10 ng/rtHz at 1000s. This allows tidal measurements as well as seismic monitoring for a number of proposed planetary missions.

  9. Numerical simulations for terrestrial planets formation

    Directory of Open Access Journals (Sweden)

    Ji J.

    2011-07-01

    Full Text Available We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about 60%–80%. In each simulation, 3–4 terrestrial planets are formed inside “Jupiter” with masses of 0.15–3.6 M⊕. In the 0.5–4 AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion may also happen a few times between two giant planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 108 yr.

  10. The Laboratory for Terrestrial Physics

    Science.gov (United States)

    2003-01-01

    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  11. Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk.

    Science.gov (United States)

    Eisner, J A

    2007-05-31

    Planetary systems (ours included) formed in disks of dust and gas around young stars. Disks are an integral part of the star and planet formation process, and knowledge of the distribution and temperature of inner-disk material is crucial for understanding terrestrial planet formation, giant planet migration, and accretion onto the central star. Although the inner regions of protoplanetary disks in nearby star-forming regions subtend only a few nano-radians, near-infrared interferometry has recently enabled the spatial resolution of these terrestrial zones. Most observations have probed only dust, which typically dominates the near-infrared emission. Here I report spectrally dispersed near-infrared interferometric observations that probe the gas (which dominates the mass and dynamics of the inner disk), in addition to the dust, within one astronomical unit (1 au, the Sun-Earth distance) of the young star MWC 480. I resolve gas, including water vapour and atomic hydrogen, interior to the edge of the dust disk; this contrasts with results of previous spectrally dispersed interferometry observations. Interactions of this accreting gas with migrating planets may lead to short-period exoplanets like those detected around main-sequence stars. The observed water vapour is probably produced by the sublimation of migrating icy bodies, and provides a potential reservoir of water for terrestrial planets.

  12. New Indivisible Planetary Science Paradigm

    CERN Document Server

    Herndon, J Marvin

    2013-01-01

    I present here a new, indivisible planetary science paradigm, a wholly self-consistent vision of the nature of matter in the Solar System, and dynamics and energy sources of planets. Massive-core planets formed by condensing and raining-out from within giant gaseous protoplanets at high pressures and high temperatures. Earth's complete condensation included a 300 Earth-mass gigantic gas/ice shell that compressed the rocky kernel to about 66% of Earth's present diameter. T-Tauri eruptions stripped the gases away from the inner planets and stripped a portion of Mercury's incompletely condensed protoplanet, and transported it to the region between Mars and Jupiter where it fused with in-falling oxidized condensate from the outer regions of the Solar System and formed the parent matter of ordinary chondrite meteorites, the main-Belt asteroids, and veneer for the inner planets, especially Mars. In response to decompression-driven planetary volume increases, cracks form to increase surface area and mountain ranges ...

  13. Mpo - the Bepicolombo Mercury Planetary Orbiter.

    Science.gov (United States)

    Benkhoff, J.

    2008-09-01

    so far. BepiColombo will also contribute to the understanding of the history and formation of the inner planets of the Solar System in general, including the Earth. The 'Mercury Planetary Orbiter' (MPO), under ESA's responsibility, will study the surface and the internal composition of the planet at different wavelengths and with different techniques. The Mercury Magnetospheric Orbiter (MMO), under the responsibility of the Japan Aerospace Exploration Agency (ISAS/JAXA), will study the magnetosphere, that is the region of space around the planet that is dominated by its magnetic field. Objectives BepiColombo will study and understand the composition, geophysics, atmosphere, magnetosphere and history of Mercury, the least explored planet in the inner Solar System. In particular, the mission objectives are: • markedly higher than that of all other terrestrial planets, Moon included • to understand if the core of Mercury is liquid or solid, and if the planet is still tectonically active today • to understand why such a small planet possesses an intrinsic magnetic field, while Venus, Mars and the Moon do not have any, and investigate if Mercury's magnetised environment is characterised by features reminiscent of the aurorae, radiation belts and magnetospheric substorms observed at Earth • to understand why spectroscopic observations not reveal the presence of any iron, while this element is supposedly the major constituent of the planet • to investigate if the permanently shadowed craters of the polar regions contain sulphur or water ice • to observe the yet unseen hemisphere of Mercury • to study the production mechanisms of the exosphere and to understand the interaction between planetary magnetic field and the solar wind in the absence of a ionosphere • to obtain new clues about the composition of the primordial solar nebula and about the formation of the solar system • to test general relativity with improved accuracy, taking advantage of the

  14. Orbital perturbations of the Galilean satellites during planetary encounters

    Energy Technology Data Exchange (ETDEWEB)

    Deienno, Rogerio; Nesvorný, David [Southwest Research Institute, Boulder, CO (United States); Vokrouhlický, David [Institute of Astronomy, Charles University, Prague (Czech Republic); Yokoyama, Tadashi, E-mail: rogerio.deienno@gmail.com [Universidade Estadual Paulista, Rio Claro, SP (Brazil)

    2014-08-01

    The Nice model of the dynamical instability and migration of the giant planets can explain many properties of the present solar system, and can be used to constrain its early architecture. In the jumping-Jupiter version of the Nice model, required from the terrestrial planet constraint and dynamical structure of the asteroid belt, Jupiter has encounters with an ice giant. Here, we study the survival of the Galilean satellites in the jumping-Jupiter model. This is an important concern because the ice-giant encounters, if deep enough, could dynamically perturb the orbits of the Galilean satellites and lead to implausible results. We performed numerical integrations where we tracked the effect of planetary encounters on the Galilean moons. We considered three instability cases from Nesvorný and Morbidelli that differed in the number and distribution of encounters. We found that in one case, where the number of close encounters was relatively small, the Galilean satellite orbits were not significantly affected. In the other two, the orbital eccentricities of all moons were excited by encounters, Callisto's semimajor axis changed, and, in a large fraction of trials, the Laplace resonance of the inner three moons was disrupted. The subsequent evolution by tides damps eccentricities and can recapture the moons in the Laplace resonance. A more important constraint is represented by the orbital inclinations of the moons, which can be excited during the encounters and not appreciably damped by tides. We find that one instability case taken from Nesvorný and Morbidelli clearly does not meet this constraint. This shows how the regular satellites of Jupiter can be used to set limits on the properties of encounters in the jumping-Jupiter model, and help us to better understand how the early solar system evolved.

  15. Planetary protection - some legal questions

    Science.gov (United States)

    Fasan, E.

    2004-01-01

    When we legally investigate the topic of Planetary Protection, we have to realise that there are primarily two very distinct parts of our juridical work: We have to study lexlata, theexistingapplicableLaw, especially Space Law, and also lexferenda, whatshouldbethe law . With this in mind, we have to deliberate the legal meaning of the notions "Planetary", and "Protection". About " Planetary": Our own Earth is our most important planet. At present only here do exist human beings, who are sensu strictu the only legal subjects. We make the law, we have to apply it, and we are to be protected as well as bound by it. But what is further meant by "Planetary"? Is it planets in an astronomical sense only, the nine planets which revolve around our fixed star, namely the sun, or is it also satellites, moving around most of these planets, as our own Moon circles Earth. "The Moon and other Celestial Bodies (C.B.)" are subject to Space Law, especially to International Treaties, Agreements, Resolutions of the UN, etc. I propose that they and not only the planets in an strictly astronomical sense are to be protected. But I do not think that the said notion also comprises asteroids, comets, meteorites, etc. although they too belong to our solar system. Our investigation comes to the result that such bodies have a different (lesser) legal quality. Also we have to ask Protectionfrom what ? From: Natural bodies - Meteorites, NEO Asteroids, Comets which could hit Earth or C.B.Artificial Objects: Space Debris threatening especially Earth and near Earth orbits.Terrestrial Life - no infection of other celestial bodies. Alien life forms which could bring about "harmful contamination" of Earth and the life, above all human life, there, etc. Here, astrobiological questions have to be discussed. Special realms on C.B. which should be protected from electronic "noise" such as craters SAHA or Deadalus on the Moon, also taking into account the "Common Heritage" Principle. Then, we have to

  16. Planetary space weather: scientific aspects and future perspectives

    Directory of Open Access Journals (Sweden)

    Plainaki Christina

    2016-01-01

    Full Text Available In this paper, we review the scientific aspects of planetary space weather at different regions of our Solar System, performing a comparative planetology analysis that includes a direct reference to the circum-terrestrial case. Through an interdisciplinary analysis of existing results based both on observational data and theoretical models, we review the nature of the interactions between the environment of a Solar System body other than the Earth and the impinging plasma/radiation, and we offer some considerations related to the planning of future space observations. We highlight the importance of such comparative studies for data interpretations in the context of future space missions (e.g. ESA JUICE; ESA/JAXA BEPI COLOMBO. Moreover, we discuss how the study of planetary space weather can provide feedback for better understanding the traditional circum-terrestrial space weather. Finally, a strategy for future global investigations related to this thematic is proposed.

  17. Heliophysics: Active Stars, their Astrospheres, and Impacts on Planetary Environments

    Science.gov (United States)

    Schrijver, C. J.; Bagenal, F.; Sojka, J. J.

    2016-04-01

    Preface; 1. Introduction Carolus J. Schrijver, Frances Bagenal and Jan J. Sojka; 2. Solar explosive activity throughout the evolution of the Solar System Rachel Osten; 3. Astrospheres, stellar winds, and the interstellar medium Brian Wood and Jeffrey L. Linsky; 4. Effects of stellar eruptions throughout astrospheres Ofer Cohen; 5. Characteristics of planetary systems Debra Fischer and Ji Wang; 6. Planetary dynamos: updates and new frontiers Sabine Stanley; 7. Climates of terrestrial planets David Brain; 8. Upper atmospheres of the giant planets Luke Moore, Tom Stallard and Marina Garland; 9. Aeronomy of terrestrial upper atmospheres David E. Siskind and Stephen W. Bougher; 10. Moons, asteroids, and comets interacting with their surroundings Margaret G. Kivelson; 11. Dusty plasmas Mihály Horányi; 12. Energetic-particle environments in the Solar System Norbert Krupp; 13. Heliophysics with radio scintillation and occultation Mario M. Bisi; Appendix 1. Authors and editors; List of illustrations; List of tables; References; Index.

  18. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina

    1998-01-01

    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  19. On Aryabhata's Planetary Constants

    OpenAIRE

    Kak, Subhash

    2001-01-01

    This paper examines the theory of a Babylonian origin of Aryabhata's planetary constants. It shows that Aryabhata's basic constant is closer to the Indian counterpart than to the Babylonian one. Sketching connections between Aryabhata's framework and earlier Indic astronomical ideas on yugas and cyclic calendar systems, it is argued that Aryabhata's system is an outgrowth of an earlier Indic tradition.

  20. Catalogues of planetary nebulae.

    Science.gov (United States)

    Acker, A.

    Firstly, the general requirements concerning catalogues are studied for planetary nebulae, in particular concerning the objects to be included in a catalogue of PN, their denominations, followed by reflexions about the afterlife and comuterized versions of a catalogue. Then, the basic elements constituting a catalogue of PN are analyzed, and the available data are looked at each time.

  1. Geology and Habitability of Terrestrial Planets

    CERN Document Server

    Fishbaugh, Kathryn E; Raulin, François; Marais, David J; Korablev, Oleg

    2007-01-01

    Given the fundamental importance of and universal interest in whether extraterrestrial life has developed or could eventually develop in our solar system and beyond, it is vital that an examination of planetary habitability goes beyond simple assumptions such as, "Where there is water, there is life." This book has resulted from a workshop at the International Space Science Institute (ISSI) in Bern, Switzerland (5-9 September 2005) that brought together planetary geologists, geophysicists, atmospheric scientists, and biologists to discuss the multi-faceted problem of how the habitability of a planet co-evolves with the geology of the surface and interior, the atmosphere, and the magnetosphere. Each of the six chapters has been written by authors with a range of expertise so that each chapter is itself multi-disciplinary, comprehensive, and accessible to scientists in all disciplines. These chapters delve into what life needs to exist and ultimately to thrive, the early environments of the young terrestrial pl...

  2. Effects of tree leaf litter, deer fecal pellets, and soil properties on growth of an introduced earthworm (Lumbricus terrestris): Implications for invasion dynamics

    Science.gov (United States)

    Kassidy N. Yatso; Erik A. Lilleskov

    2016-01-01

    Invasive earthworm communities are expanding into previously earthworm-free forests of North America, producing profound ecosystem changes. Lumbricus terrestris is an invasive anecic earthworm that consumes a large portion of the detritus on the soil surface, eliminating forest floor organic horizons and reducing soil organic matter. Two mesocosm...

  3. Absolute Navigation Information Estimation for Micro Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-03-01

    Full Text Available This paper provides algorithms to estimate absolute navigation information, e.g., absolute attitude and position, by using low power, weight and volume Microelectromechanical Systems-type (MEMS sensors that are suitable for micro planetary rovers. Planetary rovers appear to be easily navigable robots due to their extreme slow speed and rotation but, unfortunately, the sensor suites available for terrestrial robots are not always available for planetary rover navigation. This makes them difficult to navigate in a completely unexplored, harsh and complex environment. Whereas the relative attitude and position can be tracked in a similar way as for ground robots, absolute navigation information, unlike in terrestrial applications, is difficult to obtain for a remote celestial body, such as Mars or the Moon. In this paper, an algorithm called the EASI algorithm (Estimation of Attitude using Sun sensor and Inclinometer is presented to estimate the absolute attitude using a MEMS-type sun sensor and inclinometer, only. Moreover, the output of the EASI algorithm is fused with MEMS gyros to produce more accurate and reliable attitude estimates. An absolute position estimation algorithm has also been presented based on these on-board sensors. Experimental results demonstrate the viability of the proposed algorithms and the sensor suite for low-cost and low-weight micro planetary rovers.

  4. The complex planetary synchronization structure of the solar system

    Science.gov (United States)

    Scafetta, N.

    2014-01-01

    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772), which successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~ 11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research has further confirmed that (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g., within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~ 178.38 yr; and (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennial timescales. This short review concludes with an emphasis on the contribution of the author's research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that also synchronizes the Sun's activity and the Earth's climate. The special issue Pattern in solar variability, their planetary origin and terrestrial impacts (Mörner et al., 2013) further develops the ideas about the planetary-solar-terrestrial interaction with the personal contribution of 10

  5. The UK Virtual Observatory - Adding Planetary Data

    Science.gov (United States)

    Allan, Peter

    The UK has built a virtual observatory called AstroGrid. Using this facility, scientists can already get access to a wide range of data on traditional astronomy, the Sun and solar-terrestrial physics (STP). This paper describes the AstroGrid system and what would be involved in adding access to planetary data to those already on offer. In recent years, there have been activities in several countries to create what are known as virtual observatories. The idea is that you should be able to easily get to all of the astronomical data that exist from your desktop computer. You do not need to know that specific data exist and you do not need to know where these data reside. In order to make this possible, it is essential that data archives and software that accesses those archives is built around a set of internationally agreed standards. These standards have been developed by the International Virtual Observatory Alliance (IVOA). A data archive that adheres to these standards can publish data on the internet to registries of resources that client software can search. The AstroGrid software developed in the UK adheres to these standards and provides a comprehensive set of services for data archives to provide dataset access, registries of data holdings, virtual file stores, communities of users, workflow for execution of complex grid applications and an environment into which pre-existing data processing applications can be plugged. There is also client software for searching registries and remote data archives, accessing the remote data, and a basic set of tools for displaying and analysing those data. AstroGrid is unique amongst virtual observatories in that it includes major data sources on the Sun and solar-terrestrial physics as well as more traditional astronomy. The need to support these very different types of data has led to the development of tools that can handle very different coordinate systems and display data in a variety of ways. For example, we have a

  6. Mass transfer during ice particle collisions in planetary rings

    Science.gov (United States)

    Mcdonald, J. S. B.; Hatzes, A.; Bridges, F.; Lin, D. N. C.

    1989-01-01

    Experimental results are presented from laboratory environment simulations of the ice particle collisional properties defining the structure and dynamical evolution of planetary rings. It is inferred from these data that there is a dependence of the interacting volume on the impact velocity. Although the volume fraction exchanged during a collision is small, the net amount of material transferred can be substantially smaller. Attention is given to the implications of these determinations for planetary ring structure and evolution.

  7. How can periodic orbits puzzle out the coexistence of terrestrial planets with giant eccentric ones?

    Science.gov (United States)

    Antoniadou, K. I.; Libert, A.-S.

    2017-09-01

    Hitherto unprecedented detections of exoplanets have been triggered by missions and ground based telescopes. The quest of ``exo-Earths'' has become intriguing and the long-term stability of planetary orbits is a crucial factor for the biosphere to evolve. Planets in mean-motion resonances (MMRs) prompt the investigation of the dynamics in the framework of the three-body problem, where the families of stable periodic orbits constitute the backbone of stability domains in phase space. In this talk, we address the question of the possible coexistence of terrestrial planets with a giant companion on circular or eccentric orbit and explore the extent of the stability regions, when both the eccentricity of the outer giant planet and the semi-major axis of the inner terrestrial one vary, i.e. we investigate both non-resonant and resonant configurations. The families of periodic orbits in the restricted three-body problem are computed for the 3/2, 2/1, 5/2, 3/1, 4/1 and 5/1 MMRs. We then construct maps of dynamical stability (DS-maps) to identify the boundaries of the stability domains where such a coexistence is allowed. Guided by the periodic orbits, we delve into regular motion in phase space and propose the essential values of the orbital elements, in order for such configurations to survive long time spans and hence, for observations to be complemented or revised.

  8. Ocean circulation and terrestrial runoff dynamics in the Mesoamerican region from spectral optimization of SeaWiFS data and a high resolution simulation

    Science.gov (United States)

    Chérubin, L. M.; Kuchinke, C. P.; Paris, C. B.

    2008-09-01

    The evolution in time and space of terrestrial runoff in waters of the Mesoamerican region was examined using remote sensing techniques combined with river discharge and numerical ocean circulation models. Ocean color SeaWiFS images were processed using a new Spectral Optimization Algorithm for atmospheric correction and ocean property retrieval in Case-2 waters. A total of 157 SeaWiFS images were collected between 1997 and 2006 and processed to produce Colored Detrital Material images of the Mesoamerican waters. Monthly terrestrial runoff load and river discharge computed with a land-elevation model were used as input to a numerical model, which simulated the transport of buoyant matter from terrestrial runoff. Based on land cover for years 2003-2004, modeling results showed that the river discharge seasonality was correlated with the image averaged CDM, and the simulated plume reproduces the spatial patterns and temporal evolution of the observed CDM plume. River discharge peaked in August and CDM peaked from September to January. The buoyant matter concentration was high from October to January, and was at its lowest from March to April. Between October and December the plume was transported out of the Mesoamerican waters by a cyclonic gyre located north of Honduras. Part of the runoff from Honduras was transported towards Chinchorro Banks and the Yucatan Channel, part re-circulated into the Gulf of Honduras, and part taken toward the outside of the Mesoamerican Barrier Reef System. This study shows that all the reefs of the MBRS, including the most offshore atolls of the region, are under the influence of terrestrial runoff on a seasonal basis, with maximum effect during October to January, and minimum from March to April. Furthermore, what is seen as a giant plume in satellite images is in fact composed of runoffs of different ages.

  9. Galactic planetary science.

    Science.gov (United States)

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

  10. Characteristics of absorbing aerosols during winter foggy period over the National Capital Region of Delhi: Impact of planetary boundary layer dynamics and solar radiation flux

    Science.gov (United States)

    Tyagi, S.; Tiwari, S.; Mishra, A.; Singh, S.; Hopke, Philip K.; Singh, Surender; Attri, S. D.

    2017-05-01

    Severe air pollution in the northern India coupled with the formation of secondary pollutants results in severe fog conditions during the winter. Black carbon (BC) and particulate matter (PM2.5) play a vital role within the planetary boundary layer (PBL) to degrade atmospheric visibility. These species were continuously monitored during the winter of 2014 in the National Capital Region (NCR) of Delhi. The average BC concentration was 8.0 ± 3.1 μg/m3 with the January mean (11.1 ± 5.4 μg/m3) approximately two times higher than February (5.9 ± 2.1 μg/m3). The average PM2.5 concentration was 137 ± 67 μg/m3 with monthly area-average maximum and minima in December and February, respectively. Higher concentrations of BC at 10:00 local standard time LST (8.5 μg/m3) and 22:00 LST (9.7 μg/m3) were consistently observed and assigned to morning and evening rush-hour traffic across Delhi. Daily average solar fluxes, varied between 17.9 and 220.7 W/m2 and had a negative correlation (r = - 0.5) with BC during fog episodes. Ventilation coefficient (VC) reduced from 'no fog' to fog phase over Palam Airport (PLM) (0.49) times and Hindon Airport (HND) (0.28) times and from fog to prolonged fog (> 14 h) phase over PLM (0.35) times and HND (0.41) times, respectively, indicating high pollution over the NCR of Delhi. Ground measurements showed that daily mean aerosol optical depth at 500 nm (AOD500) varied between 0.32 and 1.18 with mean AOD500 nm being highest during the prolonged fog (> 14 h) episodes (0.98 ± 0.08) consistent with variations in PM2.5 and BC. Angstrom exponent (α) and Angstrom turbidity coefficient (β) were found to be > 1 and 0.2, respectively, during fog showing the dominance of fine mode particles in the atmosphere.

  11. Planetary geomorphology field studies: Washington and Alaska

    Science.gov (United States)

    Malin, M. C.

    1984-01-01

    Field studies of terrestrial landforms and the processes that shape them provide new directions to the study of planetary features. Investigations discussed address principally mudflow phenomena and drainage development. At the Valley of 10,000 Smokes (Katmai, AK) and Mount St. Helens, WA, studies of the development of erosional landforms (in particular, drainage) on fresh, new surfaces permitted analysis of the result of competition between geomorphic processes. Of specific interest is the development of stream pattern as a function of the competition between perennial seepage overland flow (from glacial or groundwater sources), ephemeral overland flow (from pluvial or seasonal melt sources), and ephemeral/perennial groundwater sapping, as a function of time since initial resurfacing, material properties, and seasonal/annual environmental conditions.

  12. Planetary geomorphology field studies: Iceland and Antarctica

    Science.gov (United States)

    Malin, M. C.

    1984-01-01

    Field studies of terrestrial landforms and the processes that shape them provide new directions to the study of planetary features. These studies, conducted in Iceland and in Antarctica, investigated physical and chemical weathering mechanisms and rates, eolitan processes, mudflow phenomena, drainage development, and catastrophic fluvial and volcanic phenomena. Continuing investigations in Iceland fall in three main catagories: (1) catastrophic floods of the Jokulsa a Fjollum, (2) lahars associated with explosive volcanic eruptions of Askja caldera, and (3) rates of eolian abrasion in cold, volcanic deserts. The ice-free valleys of Antarctica, in particular those in South Victoria Land, have much is common with the surface of Mars. In addition to providing independent support for the application of the Iceland findings to consideration of the martian erosional system, the Antarctic observations also provide analogies to other martian phenomena. For example, a family of sand dunes in Victoria Valley are stabilized by the incorporation of snow as beds.

  13. Planetary Dynamos from a Solar Perspective

    Science.gov (United States)

    Christensen, U. R.; Schmitt, D.; Rempel, M.

    2009-04-01

    Direct numerical simulations of the geodynamo and other planetary dynamos have been successful in reproducing the observed magnetic fields. We first give an overview on the fundamental properties of planetary magnetism. We review the concepts and main results of planetary dynamo modeling, contrasting them with the solar dynamo. In planetary dynamos the density stratification plays no major role and the magnetic Reynolds number is low enough to allow a direct simulation of the magnetic induction process using microscopic values of the magnetic diffusivity. The small-scale turbulence of the flow cannot be resolved and is suppressed by assuming a viscosity far in excess of the microscopic value. Systematic parameter studies lead to scaling laws for the magnetic field strength or the flow velocity that are independent of viscosity, indicating that the models are in the same dynamical regime as the flow in planetary cores. Helical flow in convection columns that are aligned with the rotation axis play an important role for magnetic field generation and forms the basis for a macroscopic α-effect. Depending on the importance of inertial forces relative to rotational forces, either dynamos with a dominant axial dipole or with a small-scale multipolar magnetic field are found. Earth is predicted to lie close to the transition point between both classes, which may explain why the dipole undergoes reversals. Some models fit the properties of the geomagnetic field in terms of spatial power spectra, magnetic field morphology and details of the reversal behavior remarkably well. Magnetic field strength in the dipolar dynamo regime is controlled by the available power and found to be independent of rotation rate. Predictions for the dipole moment agree well with the observed field strength of Earth and Jupiter and moderately well for other planets. Dedicated dynamo models for Mercury, Saturn, Uranus and Neptune, which assume stably stratified layers above or below the dynamo

  14. Terrestrial locomotion in arachnids.

    Science.gov (United States)

    Spagna, Joseph C; Peattie, Anne M

    2012-05-01

    In this review, we assess the current state of knowledge on terrestrial locomotion in Arachnida. Arachnids represent a single diverse (>100,000 species) clade containing well-defined subgroups (at both the order and subordinal levels) that vary morphologically around a basic body plan, yet exhibit highly disparate limb usage, running performance, and tarsal attachment mechanisms. Spiders (Araneae), scorpions (Scorpiones), and harvestmen (Opiliones) have received the most attention in the literature, while some orders have never been subject to rigorous mechanical characterization. Most well-characterized taxa move with gaits analogous to the alternating tripod gaits that characterize fast-moving Insecta - alternating tetrapods or alternating tripods (when one pair of legs is lifted from the ground for some other function). However, between taxa, there is considerable variation in the regularity of phasing between legs. Both large and small spiders appear to show a large amount of variation in the distribution of foot-ground contact, even between consecutive step-cycles of a single run. Mechanisms for attachment to vertical surfaces also vary, and may depend on tufts of adhesive hairs, fluid adhesives, silks, or a combination of these. We conclude that Arachnida, particularly with improvements in microelectronic force sensing technology, can serve as a powerful study system for understanding the kinematics, dynamics, and ecological correlates of sprawled-posture locomotion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Planetary Magnetic Fields: Planetary Interiors and Habitability W. M. Keck Institute for Space Studies Report

    Science.gov (United States)

    Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg

    2017-05-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck

  16. Universal planetary tectonics (supertectonics)

    Science.gov (United States)

    Kochemasov, G. G.

    2009-04-01

    Universal planetary tectonics (supertectonics) G. Kochemasov IGEM of the Russian Academy of Sciences, Moscow, Russia, kochem.36@mail.ru The wave planetology [1-3 & others] proceeds from the following: "planetary structures are made by orbits and rotations". A uniform reason makes uniform structures. Inertia-gravity waves arising in planetary bodies due to their movements in Keplerian elliptical orbits with periodically changing accelerations warp these bodies in such way that they acquire polyhedron shapes (after interference of standing waves of four directions). Strong Newtonian gravity makes bodies larger than ~400 to 500 km in diameter globular and polyhedra are rarely seen. Only geomorphologic, geologic and geophysical mapping can develop these hidden structures. But small bodies, normally less than ~ 300 to 400 km in diameter, often show parts of the polyhedra, rarely fully developed forms (the asteroid Steins and satellite Amalthea present rather perfect forms of "diamond"). Depending on warping wavelengths (they make harmonics) various Plato's figures superimposed on each other can be distinguished. The fundamental wave 1 produces a tetrahedron, intrinsically dichotomic figure in which a vertex (contraction) always is opposed to a face (expansion). From the recent examples the best is the saturnian northern hexagon (a face) opposed to the southern hurricane (a vertex). The first overtone wave 2 is responsible for creation of structural octahedra. Whole ‘diamonds" and their parts are known [4, 5]. Other overtones produce less developed (because of smaller wave amplitudes) planetary shapes complicating main forms. Thus, the first common structural peculiarity of planetary bodies is their polyhedron nature. Not less important is the second common structural peculiarity. As all globular or smaller more or less isometric bodies rotate, they have an angular momentum. It is inevitably different in tropic and extra-tropic belts having uneven radii or distances to

  17. Planetary Systems and the Origins of Life

    Science.gov (United States)

    Pudritz, Ralph; Higgs, Paul; Stone, Jonathon

    2013-01-01

    Preface; Part I. Planetary Systems and the Origins of Life: 1. Observations of extrasolar planetary systems Shay Zucker; 2. The atmospheres of extrasolar planets L. Jeremy Richardson and Sara Seager; 3. Terrestrial planet formation Edward Thommes; 4. Protoplanetary disks, amino acids and the genetic code Paul Higgs and Ralph Pudritz; 5. Emergent phenomena in biology: the origin of cellular life David Deamer; Part II. Life on Earth: 6. Extremophiles: defining the envelope for the search for life in the Universe Lynn Rothschild; 7. Hyperthermophilic life on Earth - and on Mars? Karl Stetter; 8. Phylogenomics: how far back in the past can we go? Henner Brinkmann, Denis Baurain and Hervé Philippe; 9. Horizontal gene transfer, gene histories and the root of the tree of life Olga Zhaxybayeva and J. Peter Gogarten; 10. Evolutionary innovation versus ecological incumbency Adolf Seilacher; 11. Gradual origins for the Metazoans Alexandra Pontefract and Jonathan Stone; Part III. Life in the Solar System?: 12. The search for life on Mars Chris McKay; 13. Life in the dark dune spots of Mars: a testable hypothesis Eörs Szathmary, Tibor Ganti, Tamas Pocs, Andras Horvath, Akos Kereszturi, Szaniszlo Berzci and Andras Sik; 14. Titan: a new astrobiological vision from the Cassini-Huygens data François Raulin; 15. Europa, the Ocean Moon: tides, permeable ice, and life Richard Greenberg; Index.

  18. The problem of scale in planetary geomorphology

    Science.gov (United States)

    Rossbacher, L. A.

    1985-01-01

    Recent planetary exploration has shown that specific landforms exhibit a significant range in size between planets. Similar features on Earth and Mars offer some of the best examples of this scale difference. The difference in heights of volcanic features between the two planets has been cited often; the Martian volcano Olympus Mons stands approximately 26 km high, but Mauna Loa rises only 11 km above the Pacific Ocean floor. Polygonally fractured ground in the northern plains of Mars has diameters up to 20 km across; the largest terrestrial polygons are only 500 m in diameter. Mars also has landslides, aeolian features, and apparent rift valleys larger than any known on Earth. No single factor can explain the variations in landform size between planets. Controls on variation on Earth, related to climate, lithology, or elevation, have seldom been considered in detail. The size differences between features on Earth and other planets seem to be caused by a complex group of interacting relationships. The major planetary parameters that may affect landform size are discussed.

  19. Dust in the planetary system: Dust interactions in space plasmas of the solar system

    Science.gov (United States)

    Mann, Ingrid; Meyer-Vernet, Nicole; Czechowski, Andrzej

    2014-03-01

    Cosmic dust particles are small solid objects observed in the solar planetary system and in many astronomical objects like the surrounding of stars, the interstellar and even the intergalactic medium. In the solar system the dust is best observed and most often found within the region of the orbits of terrestrial planets where the dust interactions and dynamics are observed directly from spacecraft. Dust is observed in space near Earth and also enters the atmosphere of the Earth where it takes part in physical and chemical processes. Hence space offers a laboratory to study dust-plasma interactions and dust dynamics. A recent example is the observation of nanodust of sizes smaller than 10 nm. We outline the theoretical considerations on which our knowledge of dust electric charges in space plasmas are founded. We discuss the dynamics of the dust particles and show how the small charged particles are accelerated by the solar wind that carries a magnetic field. Finally, as examples for the space observation of cosmic dust interactions, we describe the first detection of fast nanodust in the solar wind near Earth orbit and the first bi-static observations of PMSE, the radar echoes that are observed in the Earth ionosphere in the presence of charged dust.

  20. Planetary Web Resource Platform

    Science.gov (United States)

    Xing, Z.

    2016-12-01

    In this presentation, we would like to discuss our recent work ona web-based data platform, that can simplify the use of planetarymission products and unify the operation of key applications.This platform is extensible and flexible. Products and applicationscan be added to or removed from it in a distributed fashion.It is built on top of known and proven information technologiesfor data exposure and discovery. Live examples of the end-to-endweb services and in-browser clients for current planetary missionswill be demonstrated.

  1. Stochasticity and predictability in terrestrial planet formation

    Science.gov (United States)

    Hoffmann, Volker; Grimm, Simon L.; Moore, Ben; Stadel, Joachim

    2017-02-01

    Terrestrial planets are thought to be the result of a vast number of gravitational interactions and collisions between smaller bodies. We use numerical simulations to show that practically identical initial conditions result in a wide array of final planetary configurations. This is a result of the chaotic evolution of trajectories which are highly sensitive to minuscule displacements. We determine that differences between systems evolved from virtually identical initial conditions can be larger than the differences between systems evolved from very different initial conditions. This implies that individual simulations lack predictive power. For example, there is not a reproducible mapping between the initial and final surface density profiles. However, some key global properties can still be extracted if the statistical spread across many simulations is considered. Based on these spreads, we explore the collisional growth and orbital properties of terrestrial planets, which assemble from different initial conditions (we vary the initial planetesimal distribution, planetesimal masses, and giant planet orbits.). Confirming past work, we find that the resulting planetary systems are sculpted by sweeping secular resonances. Configurations with giant planets on eccentric orbits produce fewer and more massive terrestrial planets on tighter orbits than those with giants on circular orbits. This is further enhanced if the initial mass distribution is biased to the inner regions. In all cases, the outer edge of the system is set by the final location of the ν6 resonance and we find that the mass distribution peaks at the ν5 resonance. Using existing observations, we find that extrasolar systems follow similar trends. Although differences between our numerical modelling and exoplanetary systems remain, we suggest that CoRoT-7, HD 20003 and HD 20781 may host undetected giant planets.

  2. Planetary Sciences and Exploration Programme

    Indian Academy of Sciences (India)

    The Indian Space Research Organisation (ISRO) has taken a number of initiatives to plan for a National. Research Programme in the area of planetary science and exploration. This announcement solicits proposals in the field of planetary science. Universities, research and educational institutions may submit proposals ...

  3. Monitoring Australian Continental Land Cover Changes Using Landsat Imagery as a Component of Assessing the Role of Vegetation Dynamics on Terrestrial Carbon Cycling

    Science.gov (United States)

    Caccetta, P.; Waterworth, R.; Furby, S.; Richards, G.

    2010-12-01

    Land use and land use change are significant drivers of the interchange between atmospheric and terrestrial carbon pools. Agriculture and forestry are of particular interest. Changes can be both abrupt, through say clearing of forest for agriculture, or gradual, such as accumulation through growth or vegetation responses to changing climate conditions, such as the amount of rainfall. To quantify the emissions consequences of land use and land use change in Australia, the capability for continental monitoring using Landsat data has been developed through collaboration between the Australian Department of Climate Change and Energy Efficiency (DCCEE), the Commonwealth Scientific and Industrial Research Organisation (CSIRO), and other private and public sector partners. In this paper we provide an overview of this national program and some samples of the results.

  4. Chemistry of Planetary Atmospheres: Insights and Prospects

    Science.gov (United States)

    Yung, Yuk

    2015-11-01

    Using observations from the Mariners, Pioneers, Vikings, Voyagers, Pioneer Venus, Galileo, Venus Express, Curiosity, Cassini, New Horizons, and numerous observatories both in orbit of Earth and on the ground, I will give a survey of the major chemical processes that control the composition of planetary atmospheres. For the first time since the beginning of the space age, we understand the chemistry of planetary atmospheres ranging from the primitive atmospheres of the giant planets to the highly evolved atmospheres of terrestrial planets and small bodies. Our understanding can be distilled into three important ideas: (1) The stability of planetary atmospheres against escape of their constituents to space, (2) the role of equilibrium chemistry in determining the partitioning of chemical species, and (3) the role of disequilibrium chemistry, which produces drastic departures from equilibrium chemistry. To these three ideas we must also add a fourth: the role of biochemistry at Earth's surface, which makes its atmospheric chemistry unique in the cosmochemical environment. Only in the Earth's atmosphere do strong reducing and oxidizing species coexist to such a degree. For example, nitrogen species in the Earth's atmosphere span eight oxidation states from ammonia to nitric acid. Much of the Earth's atmospheric chemistry consists of reactions initiated by the degradation of biologically produced molecules. Life uses solar energy to drive chemical reactions that would otherwise not occur; it represents a kind of photochemistry that is special to Earth, at least within the Solar System. It remains to be seen how many worlds like Earth there are beyond the Solar System, especially as we are now exploring the exoplanets using Kepler, TESS, HST, Spitzer, soon to be launched missions such as JWST and WFIRST, and ground-based telescopes. The atmospheres of the Solar System provide a benchmark for studying exoplanets, which in turn serve to test and extend our current

  5. On the evolution of terrestrial planets: Bi-stability, stochastic effects, and the non-uniqueness of tectonic states

    Directory of Open Access Journals (Sweden)

    Matthew B. Weller

    2018-01-01

    Full Text Available The Earth is the only body in the solar system for which significant observational constraints are accessible to such a degree that they can be used to discriminate between competing models of Earth's tectonic evolution. It is a natural tendency to use observations of the Earth to inform more general models of planetary evolution. However, our understating of Earth's evolution is far from complete. In recent years, there has been growing geodynamic and geochemical evidence that suggests that plate tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain. Recently, the potential of tectonic bi-stability (multiple stable, energetically allowed solutions has been shown to be dynamically viable, both from analytical analysis and through numeric experiments in two and three dimensions. This indicates that multiple tectonic modes may operate on a single planetary body at different times within its temporal evolution. It also allows for the potential that feedback mechanisms between the internal dynamics and surface processes (e.g., surface temperature changes driven by long term climate evolution, acting at different thermal evolution times, can cause terrestrial worlds to alternate between multiple tectonic states over giga-year timescales. The implication within this framework is that terrestrial planets have the potential to migrate through tectonic regimes at similar ‘thermal evolution times’ (e.g., points were they have a similar bulk mantle temperature and energies, but at very different ‘temporal times’ (time since planetary formation. It can be further shown that identical planets at similar stages of their evolution may exhibit different tectonic regimes due to random variations. Here, we will discuss constraints on the tectonic evolution of the Earth and present a novel framework of planetary evolution that moves toward probabilistic arguments based on

  6. A barotropic planetary boundary layer

    Science.gov (United States)

    Yordanov, D.; Syrakov, D.; Djolov, G.

    1983-04-01

    The temperature and wind profiles in the planetary boundary layer (PBL) are investigated. Assuming stationary and homogeneous conditions, the turbulent state in the PBL is uniquely determined by the external Rossby number and the stratification parameters. In this study, a simple two-layer barotropic model is proposed. It consists of a surface (SL) and overlying Ekman-type layer. The system of dynamic and heat transfer equations is closed using K theory. In the SL, the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer, it is constant. Analytical solutions for the wind and temperature profiles in the PBL are obtained. The SL and thermal PBL heights are properly chosen functions of the stratification so that from the solutions for wind and temperature, the PBL resistance laws can be easily deduced. The internal PBL characteristics necessary for the calculation (friction velocity, angle between surface and geostrophic winds and internal stratification parameter) are presented in terms of the external parameters. Favorable agreement with experimental data and model results is demonstrated. The simplicity of the model allows it to be incorporated in large-scale weather prediction models as well as in the solution of various other meteorological problems.

  7. Rheology of planetary ices

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. [Lawrence Livermore National Lab., CA (United States); Kirby, S.H.; Stern, L.A. [Geological Survey, Menlo Park, CA (United States)

    1996-04-24

    The brittle and ductile rheology of ices of water, ammonia, methane, and other volatiles, in combination with rock particles and each other, have a primary influence of the evolution and ongoing tectonics of icy moons of the outer solar system. Laboratory experiments help constrain the rheology of solar system ices. Standard experimental techniques can be used because the physical conditions under which most solar system ices exist are within reach of conventional rock mechanics testing machines, adapted to the low subsolidus temperatures of the materials in question. The purpose of this review is to summarize the results of a decade-long experimental deformation program and to provide some background in deformation physics in order to lend some appreciation to the application of these measurements to the planetary setting.

  8. Modelling Planetary Magnetodiscs

    Science.gov (United States)

    Achilleos, N. A.; Arridge, C. S.; Guio, P.

    2012-12-01

    There have been two popular approaches in the literature to constructing models of giant planet magnetodiscs. The first assumes an analytical form of the ring current a priori,and computes the corresponding magnetic field structure. The second applies the condition of balance between centrifugal force, magnetic force and plasma pressure in order to acquire a self-consistent field and plasma distribution. In this talk, we shall explore the application of both types of model to observations of planetary fields and plasmas. In particular, we shall see that the force-balance formalism predicts a natural `transition distance' between regions dominated by centrifugal (inertial) currents and pressure-gradient currents. We shall also present this type of model for Jupiter's magnetodisc, and show how the parameters of the model can be used to predict the influence of major reconfigurations of the magnetosphere upon the morphology of the jovian auroral emissions.

  9. HUBBLE'S PLANETARY NEBULA GALLERY

    Science.gov (United States)

    2002-01-01

    [Top left] - IC 3568 lies in the constellation Camelopardalis at a distance of about 9,000 light-years, and has a diameter of about 0.4 light-years (or about 800 times the diameter of our solar system). It is an example of a round planetary nebula. Note the bright inner shell and fainter, smooth, circular outer envelope. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Top center] - NGC 6826's eye-like appearance is marred by two sets of blood-red 'fliers' that lie horizontally across the image. The surrounding faint green 'white' of the eye is believed to be gas that made up almost half of the star's mass for most of its life. The hot remnant star (in the center of the green oval) drives a fast wind into older material, forming a hot interior bubble which pushes the older gas ahead of it to form a bright rim. (The star is one of the brightest stars in any planetary.) NGC 6826 is 2,200 light- years away in the constellation Cygnus. The Hubble telescope observation was taken Jan. 27, 1996 with the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy) and NASA [Top right ] - NGC 3918 is in the constellation Centaurus and is about 3,000 light-years from us. Its diameter is about 0.3 light-year. It shows a roughly spherical outer envelope but an elongated inner balloon inflated by a fast wind from the hot central star, which is starting to break out of the spherical envelope at the top and bottom of the image. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Bottom left] - Hubble 5 is a striking example of a 'butterfly' or bipolar (two-lobed) nebula. The heat generated by fast winds causes

  10. Introduced Terrestrial Species (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted future potential distributions of terrestrial plants, animals, and pathogens non-native to the Middle-Atlantic region. These data are...

  11. Using slitless spectroscopy to study the kinematics of the planetary nebula population in M94

    NARCIS (Netherlands)

    Douglas, NG; Gerssen, J; Kuijken, K; Merrifield, MR

    2000-01-01

    The planetary nebula populations of relatively nearby galaxies can be easily observed and provide both a distance estimate and a tool with which dynamical information can be obtained. Usually the requisite radial velocities are obtained by multi-object spectroscopy once the planetary nebulae have

  12. Large-Scale Structures of Planetary Systems

    Science.gov (United States)

    Murray-Clay, Ruth; Rogers, Leslie A.

    2015-12-01

    A class of solar system analogs has yet to be identified among the large crop of planetary systems now observed. However, since most observed worlds are more easily detectable than direct analogs of the Sun's planets, the frequency of systems with structures similar to our own remains unknown. Identifying the range of possible planetary system architectures is complicated by the large number of physical processes that affect the formation and dynamical evolution of planets. I will present two ways of organizing planetary system structures. First, I will suggest that relatively few physical parameters are likely to differentiate the qualitative architectures of different systems. Solid mass in a protoplanetary disk is perhaps the most obvious possible controlling parameter, and I will give predictions for correlations between planetary system properties that we would expect to be present if this is the case. In particular, I will suggest that the solar system's structure is representative of low-metallicity systems that nevertheless host giant planets. Second, the disk structures produced as young stars are fed by their host clouds may play a crucial role. Using the observed distribution of RV giant planets as a function of stellar mass, I will demonstrate that invoking ice lines to determine where gas giants can form requires fine tuning. I will suggest that instead, disk structures built during early accretion have lasting impacts on giant planet distributions, and disk clean-up differentially affects the orbital distributions of giant and lower-mass planets. These two organizational hypotheses have different implications for the solar system's context, and I will suggest observational tests that may allow them to be validated or falsified.

  13. Selection of sterilization methods for planetary return missions

    Science.gov (United States)

    Trofimov, V. I.; Victorov, A.; Ivanov, M.

    1996-01-01

    Two tasks must be accomplished to provide planetary protection for Mars return missions: (1) sterilization of the scientific module to be landed on Mars and (2) reliable sterilization of all material returned to Earth, while ensuring the scientific integrity of martian samples. This paper examines similarity and differences between these two tasks, and includes a discussion of technological implementation conditions and the nature of terrestrial and hypothesized martian microflora. The feasibility of a number of chemical and physical (ultraviolet and ionizing radiation and heating) methods of sterilization for use on the ground and onboard are discussed and compared. A combination of different methods will probably be selected as the most appropriate for ensuring planetary protection on the return mission.

  14. An Analysis of Nitrogen Controls on Terrestrial Carbon and Energy Dynamics Using the Carbon-Nitrogen Coupled CLASS-CTEMN+ Model

    Science.gov (United States)

    Arain, M. A.; Huang, S.; Bartlett, P. A.; Windeler, B. M.

    2015-12-01

    The advent of biophysical land surface schemes, in which photosynthesis and the structure of plant functional types is modelled explicitly, allows detailed carbon budgets to be simulated in Earth System Models (ESMs), including the response of ecosystems to increasing atmospheric CO2. Projections of future carbon balances are often viewed in terms of enhanced photosynthesis in response to increased atmospheric CO2, the so-called 'CO2 fertilization effect', versus increased respiration caused by warming. However, most ESMs do not represent nutrient cycles, most notably nitrogen (N), the availability of which can act as a strong constraint on photosynthesis, and carbon turnover in the soil.In the Canadian ESM (CanESM), surface processes are represented by the Canadian Land Surface Scheme (CLASS), which models surface energy and water exchanges, coupled with the Canadian Terrestrial Ecosystem Model (CTEM), which models carbon-related processes. We present global and site-level results from incorporating a nitrogen cycle (C-N coupled) into CLASS coupled with CTEM. Flux, forcing and initializing data sets developed by the North American Carbon Program (NACP) and NACP- Multi-Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) were used.The C-N coupled model yielded global annual estimates (over 1980-2010) of 122.7 Pg C yr-1 for gross ecosystem production (GEP), and 62.7 Pg C yr-1 for net primary productivity (NPP). Ecosystem respiration (Re) was 119.1 Pg C yr-1 which is about 25% larger than observed, and results in a low estimate of 3.64 Pg C yr-1 for net ecosystem productivity (NEP = GEP - Re). On regional and site-level scales, larger differences were seen between the C-only and C-N coupled model, especially at high latitudes during summer months where N is limiting. Analysis of the long-term annual variations over 1901-2010 also showed different responses to evolving climate, CO2 and N deposition. For 1970-2010, the C-N coupled model indicated a

  15. The evolution of planetary nebulae. VII. Modelling planetary nebulae of distant stellar systems

    Science.gov (United States)

    Schönberner, D.; Jacob, R.; Sandin, C.; Steffen, M.

    2010-11-01

    Aims: By means of hydrodynamical models we do the first investigations of how the properties of planetary nebulae are affected by their metal content and what can be learned from spatially unresolved spectrograms of planetary nebulae in distant stellar systems. Methods: We computed a new series of 1D radiation-hydrodynamics planetary nebulae model sequences with central stars of 0.595 M⊙ surrounded by initial envelope structures that differ only by their metal content. At selected phases along the evolutionary path, the hydrodynamic terms were switched off, allowing the models to relax for fixed radial structure and radiation field into their equilibrium state with respect to energy and ionisation. The analyses of the line spectra emitted from both the dynamical and static models enabled us to systematically study the influence of hydrodynamics as a function of metallicity and evolution. We also recomputed selected sequences already used in previous publications, but now with different metal abundances. These sequences were used to study the expansion properties of planetary nebulae close to the bright cut-off of the planetary nebula luminosity function. Results: Our simulations show that the metal content strongly influences the expansion of planetary nebulae: the lower the metal content, the weaker the pressure of the stellar wind bubble, but the faster the expansion of the outer shell because of the higher electron temperature. This is in variance with the predictions of the interacting-stellar-winds model (or its variants) according to which only the central-star wind is thought to be responsible for driving the expansion of a planetary nebula. Metal-poor objects around slowly evolving central stars become very dilute and are prone to depart from thermal equilibrium because then adiabatic expansion contributes to gas cooling. We find indications that photoheating and line cooling are not fully balanced in the evolved planetary nebulae of the Galactic halo

  16. Trends and variability of planetary wave activity in the stratosphere in a changing climate

    Science.gov (United States)

    Küchelbacher, Lisa; Wüst, Sabine; Bittner, Michael

    2017-04-01

    Planetary waves are global scale waves in the lower and middle atmosphere which lead to a more or less periodic change of weather patterns in the middle latitudes. This already indicates that planetary waves couple atmospheric layers and can lead to extreme weather events. Climate change is supposed cause changes of planetary wave activity. The question is whether the planetary wave activity has already changed during the last 40 years and -if so - if this can be attributed to a possible weakening of the meridional temperature gradient. To check this we calculated a dynamical activity index (DAI) that serves as a measure for the planetary wave activity based on total ozone column measurements and ERA-Interim temperatures. We found that the DAI based on total ozone column measurements is not reliable for quantifying long term changes in planetary wave activity. Despite we found the ERA-DAI trustworthy. The planetary wave activity has already changed, but significantly only in the stratosphere. The change of the planetary wave activity with highest wavenumbers turned out to be strongest. We also found that also multi-decadal periodic oscillations might have an impact on the wave activity. We especially looked into the consequences of a changing planetary activity into the occurrence of stratospheric warmings and we found evidence that the observed change in the temporal occurrence of stratospheric warmings might be coupled to the detected change in planetary wave activity.

  17. Spatial Query for Planetary Data

    Science.gov (United States)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  18. Interplanetary laser ranging : Analysis for implementation in planetary science missions

    NARCIS (Netherlands)

    Dirkx, D.

    2015-01-01

    Measurements of the motion of natural (and artificial) bodies in the solar system provide key input on their interior structre and properties. Currently, the most accurate measurements of solar system dynamics are performed using radiometric tracking systems on planetary missions, providing range

  19. Magnetic Helicity and Planetary Dynamos

    Science.gov (United States)

    Shebalin, John V.

    2012-01-01

    A model planetary dynamo based on the Boussinesq approximation along with homogeneous boundary conditions is considered. A statistical theory describing a large-scale MHD dynamo is found, in which magnetic helicity is the critical parameter

  20. Gene Expression Dynamics in Major Endocrine Regulatory Pathways along the Transition from Solitary to Social Life in a Bumblebee, Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Pavel Jedlička

    2016-11-01

    Full Text Available Understanding the social evolution leading to insect eusociality requires, among other, a detailed insight into endocrine regulatory mechanisms that have been co-opted from solitary ancestors to play new roles in the complex life histories of eusocial species. Bumblebees represent well-suited models of a relatively primitive social organization standing on the mid-way to highly advanced eusociality and their queens undergo both, a solitary and a social phase, separated by winter diapause.In the present paper, we characterize the gene expression levels of major endocrine regulatory pathways across tissues, sexes, and life-stages of the buff-tailed bumblebee, Bombus terrestris, with special emphasis on critical stages of the queen’s transition from solitary to social life. We focused on fundamental genes of three pathways: (1 Forkhead box protein O and insulin/insulin-like signaling, (2 Juvenile hormone signaling, and (3 Adipokinetic hormone signaling. Virgin queens were distinguished by higher expression of forkhead box protein O and downregulated insulin-like peptides and juvenile hormone (JH signaling, indicated by low expression of methyl farnesoate epoxidase (MFE and transcription factor Krüppel homolog 1 (Kr-h1. Diapausing queens showed the expected downregulation of JH signaling in terms of low MFE and vitellogenin (Vg expressions, but an unexpectedly high expression of Kr-h1. By contrast, reproducing queens revealed an upregulation of MFE and Vg together with insulin signaling. Surprisingly, the insulin growth factor 1 (IGF-1 turned out to be a queen-specific hormone. Workers exhibited an expression pattern of MFE and Vg similar to that of reproducing queens. Males were characterized by high Kr-h1 expression and low Vg level. The tissue comparison unveiled an unexpected resemblance between the fat body and hypopharyngeal glands across all investigated genes, sexes, and life stages.

  1. Effects of flow dynamics on the aquatic-terrestrial transition zone (ATTZ) of lower Missouri river sandbars with implications for selected biota

    Science.gov (United States)

    Tracy-Smith, Emily; Galat, David L.; Jacobson, Robert B.

    2012-01-01

    Sandbars are an important aquatic terrestrial transition zone (ATTZ) in the active channel of rivers that provide a variety of habitat conditions for riverine biota. Channelization and flow regulation in many large rivers have diminished sandbar habitats and their rehabilitation is a priority. We developed sandbar-specific models of discharge-area relationships to determine how changes in flow regime affect the area of different habitat types within the submerged sandbar ATTZ (depth) and exposed sandbar ATTZ (elevation) for a representative sample of Lower Missouri River sandbars. We defined six different structural habitat types within the sandbar ATTZ based on depth or exposed elevation ranges that are important to different biota during at least part of their annual cycle for either survival or reproduction. Scenarios included the modelled natural flow regime, current managed flow regime and two environmental flow options, all modelled within the contemporary river active channel. Thirteen point and wing-dike sandbars were evaluated under four different flow scenarios to explore the effects of flow regime on seasonal habitat availability for foraging of migratory shorebirds and wading birds, nesting of softshell turtles and nursery of riverine fishes. Managed flows provided more foraging habitat for shorebirds and wading birds and more nursery habitat for riverine fishes within the channelized reach sandbar ATTZ than the natural flow regime or modelled environmental flows. Reduced summer flows occurring under natural and environmental flow alternatives increased exposed sandbar nesting habitat for softshell turtle hatchling emergence. Results reveal how management of channelized and flow regulated large rivers could benefit from a modelling framework that couples hydrologic and geomorphic characteristics to predict habitat conditions for a variety of biota.

  2. Gene Expression Dynamics in Major Endocrine Regulatory Pathways along the Transition from Solitary to Social Life in a Bumblebee, Bombus terrestris.

    Science.gov (United States)

    Jedlička, Pavel; Ernst, Ulrich R; Votavová, Alena; Hanus, Robert; Valterová, Irena

    2016-01-01

    Understanding the social evolution leading to insect eusociality requires, among other, a detailed insight into endocrine regulatory mechanisms that have been co-opted from solitary ancestors to play new roles in the complex life histories of eusocial species. Bumblebees represent well-suited models of a relatively primitive social organization standing on the mid-way to highly advanced eusociality and their queens undergo both, a solitary and a social phase, separated by winter diapause. In the present paper, we characterize the gene expression levels of major endocrine regulatory pathways across tissues, sexes, and life-stages of the buff-tailed bumblebee, Bombus terrestris, with special emphasis on critical stages of the queen's transition from solitary to social life. We focused on fundamental genes of three pathways: (1) Forkhead box protein O and insulin/insulin-like signaling, (2) Juvenile hormone (JH) signaling, and (3) Adipokinetic hormone signaling. Virgin queens were distinguished by higher expression of forkhead box protein O and downregulated insulin-like peptides and JH signaling, indicated by low expression of methyl farnesoate epoxidase (MFE) and transcription factor Krüppel homolog 1 (Kr-h1). Diapausing queens showed the expected downregulation of JH signaling in terms of low MFE and vitellogenin (Vg) expressions, but an unexpectedly high expression of Kr-h1. By contrast, reproducing queens revealed an upregulation of MFE and Vg together with insulin signaling. Surprisingly, the insulin growth factor 1 (IGF-1) turned out to be a queen-specific hormone. Workers exhibited an expression pattern of MFE and Vg similar to that of reproducing queens. Males were characterized by high Kr-h1 expression and low Vg level. The tissue comparison unveiled an unexpected resemblance between the fat body and hypopharyngeal glands across all investigated genes, sexes, and life stages.

  3. Planetary Vital Signs

    Science.gov (United States)

    Kennel, Charles; Briggs, Stephen; Victor, David

    2016-07-01

    The climate is beginning to behave in unusual ways. The global temperature reached unprecedented highs in 2015 and 2016, which led climatologists to predict an enormous El Nino that would cure California's record drought. It did not happen the way they expected. That tells us just how unreliable temperature has become as an indicator of important aspects of climate change. The world needs to go beyond global temperature to a set of planetary vital signs. Politicians should not over focus policy on one indicator. They need to look at the balance of evidence. A coalition of scientists and policy makers should start to develop vital signs at once, since they should be ready at the entry into force of the Paris Agreement in 2020. But vital signs are only the beginning. The world needs to learn how to use the vast knowledge we will be acquiring about climate change and its impacts. Is it not time to use all the tools at hand- observations from space and ground networks; demographic, economic and societal measures; big data statistical techniques; and numerical models-to inform politicians, managers, and the public of the evolving risks of climate change at global, regional, and local scales? Should we not think in advance of an always-on social and information network that provides decision-ready knowledge to those who hold the responsibility to act, wherever they are, at times of their choosing?

  4. Dust in planetary nebulae

    Science.gov (United States)

    Sloan, G. C.

    2017-10-01

    Infrared spectra from the Spitzer Space Telescope trace the evolution of carbon-rich dust from the asymptotic giant branch (AGB) to young planetary nebulae (PNe). On the AGB, amorphous carbon dominates the dust, but SiC and MgS also appear. In more evolved systems with warmer central stars, the spectra reveal the unidentified 21 μm feature, features from aliphatic hydrocarbons, and spectra from polycyclic aromatic hydrocarbons (PAHs), often with shifted feature positions indicative of the presence of aliphatics. More evolved systems with hot central stars show more typical PAH spectra, along with fullerenes and/or an emission feature known as the big-11 feature at ~11 μm. This features arises from a combination of SiC and PAHs, and it is usually accompanied by a shoulder at 18 μm, which while unidentified might be from cool silicate grains. The strong emission from MgS and SiC in young PNe probably arises from coatings on carbonaceous grains.

  5. Grouped frequent sequential patterns derived from terrestrial image time series to monitor landslide behaviour - Application to the dynamics of the Sanières/Roche Plombée rockslide.

    Science.gov (United States)

    Péricault, Youen; Pothier, Catherine; Méger, Nicolas; Trouvé, Emmanuel; Vernier, Flavien; Rigotti, Christophe; Malet, Jean-Philippe

    2016-04-01

    Image time series acquired with remote sensing methods based on optical terrestrial photogrammetry have great potential for understanding and monitoring the Earth surface dynamics at local scale, and are particularly interesting for landslide monitoring. Image correlation techniques can be applied to calculate the displacement fields, in either the image geometry or the terrain geometry if orthorectification procedures are applied. The resulting products are times series of displacement vectors for each epoch in which knowledge extraction techniques can be applied to discover relevant movement patterns in space and time. We used an unsupervised method (Grouped Frequent Sequential patterns / GFS-patterns) based on the mining of the displacement field. The method was originally developed for the analysis of time series of satellite images. It involves the extraction of trends / sub-trends affecting each pixel covering at least a minimum surface area and sufficiently connected to each other. The results of the mining are presented in spatio-temporal location maps (STL-map) of each GFS-pattern. In these maps, the spatial information is given by the pixel locations and the time information is displayed using a color ramp. The method is tested on a time series of 36 optical terrestrial images of the Sanières/Roche Plombée rockslide (South East French Alps) from 28 of July to 1 September 2014. From this series 35 2D displacement fields were calculated for epochs of three days, and the time series of vector magnitude and direction were analysed with GFS-patterns / STL-map. The method allowed identifying several patterns corresponding to different kinematical behaviour of the rockslide (long-term creep at the top of the slope, surficial movement of the debris at the base of the slope). The unsupervised knowledge extraction method GFS-pattern / STL-map, originally developed to analyse time series of satellite images showed in this study real possibilities of use for

  6. Scientific field training for human planetary exploration

    Science.gov (United States)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  7. Lunar and Planetary Science XXXVI, Part 16

    Science.gov (United States)

    2005-01-01

    Contents include the folowing: Experimental Study of Fe-, Co- and Ni-partitioning Between Forsterite and low-Co Fe,Ni-Alloys: Implications for Formation of Olivine Condensates in Equilibrium with Primitive Metal. Channels and Fan-like Features on Titan Surface Imaged by the Cassini RADAR. The Oxygen Isotope Similarity of the Earth and Moon: Source Region or Formation Process? The Mn-53-Cr-53 System in CAIs: An Update. Comparative Planetary Mineralogy: Valence State Partitioning of Cr, Fe, Ti, and V Among Crystallographic Sites in Olivine, Pyroxene, and Spinel from Planetary Basalts. CAI Thermal History Constraints from Spinel: Ti Zoning Profiles and Melilite Boundary Clinopyroxenes. Noble Gas Study of New Enstatite SaU 290 with High Solar Gases. A Marine Origin for the Meridiani Planum Landing Site? A Mechanism for the Formation and Evolution of Tharsis as a Consequence of Mantle Overturn: Large Scale Lateral Heterogeneity in a Stably Stratified Mantle. Endolithic Colonization of Fluid Inclusion Trails in Mineral Grains. Microbial Preservation in Sulfates in the Haughton Impact Structure Suggests Target in Search for Life on Mars. Ascraeus Mons Fan-shaped Deposit, Mars: Geological History and Volcano-Ice Interactions of a Cold-based Glacier. Weathering Pits in the Antarctic Dry Valleys: Insolation-induced Heating and Melting, and Applications to Mars. Mineralogy and Petrography of Lunar Mare Regolith Breccia Meteorite MET 01-210. Geological Mapping of Ganymede. A Quantitative Analysis of Plate Motion on Europa: Implications for the Role of Rigid vs. Nonrigid Behavior of the Lithosphere. Comparison of Terrestrial Morphology, Ejecta, and Sediment Transport of Small Craters: Volcanic and Impact Analogs to Mars. An Integrated Study of OMEGA-Identified Mineral Deposits in Eastern Hebes Chasma, Mars. Global Spectral and Compositional Diversity of Mars: A Test of CRISM Global Mapping with Mars Express OMEGA Data. On Origin of Sedna. Processing ISS Images of Titan s

  8. PLATO : PLAnetary Transits and Oscillations of stars

    Energy Technology Data Exchange (ETDEWEB)

    Catala, Claude [Observatoire de Paris, LESIA, 5 place Jules Janssen, Meudon (France); Appourchaux, Thierry, E-mail: claude.catala@obspm.fr, E-mail: thierry.appourchaux@ias.u-psud.fr [Institut d' Astrophysique Spatiale, Universite Paris-Sud, Orsay (France)

    2011-01-01

    PLATO is a M-class candidate in the ESA Cosmic Vision program. PLATO's objective is to characterize exoplanets and their host stars in the solar neighbourhood. While it builds on the heritage from CoRoT and Kepler, the major breakthrough will come from its strong focus on bright targets (m{sub V} {<=} 11). The PLATO targets will also include a large number of very bright (m{sub V} {<=} 8) and nearby stars. The prime science goals of PLATO are: (i) the detection and characterization of exoplanetary systems of all kinds, including both the planets and their host stars, reaching down to small, terrestrial planets in the habitable zone; (ii) the identification of suitable targets for future, more detailed characterization, including a spectroscopic search for bio-markers in nearby habitable exoplanets. These ambitious goals will be reached by ultra-high precision, long (few years), uninterrupted photometric monitoring in the visible of very large samples of bright stars, which can only be done from space. The resulting high quality light curves will be used on the one hand to detect planetary transits, as well as to measure their characteristics, and on the other hand to provide a seismic analysis of the host stars of the detected planets, from which precise measurements of their radii, masses, and ages will be derived. The PLATO space-based data will be complemented by ground-based follow-up observations, in particular very precise radial velocity monitoring, which will be used to confirm the planetary nature of the detected events and to measure the planet masses. The full set of parameters of exoplanetary systems will thus be measured, including all characteristics of the host stars and the orbits, radii, masses, and ages of the planets, allowing us to derive planet mean densities, and estimate their temperature and radiation environment. Finally, the knowledge of the age of the exoplanetary systems will allow us to put them in an evolutionary perspective.

  9. Rheological evolution of planetary basalts during cooling and crystallization

    Science.gov (United States)

    Sehlke, Alexander

    Basaltic lavas cover large portions of the surface of the Earth and other planets and moons. Planetary basalts are compositionally different from terrestrial basalts, and show a variety of unique large-scale lava flow morphologies unobserved on Earth. They are usually assumed to be much more fluid than basalts on Earth, such as Hawaiian basalt, but their rheology is largely unknown. I synthesized several synthetic silicate melts representing igneous rock compositions of Mars, Mercury, the Moon, Io and Vesta. I measured their viscosity, as well as several terrestrial lavas including Hawaiian basalt, by concentric cylinder and parallel plate viscometry. Planetary melts cover a wide range of viscosity at their liquidus, overlapping with terrestrial basaltic melts. I derived a new viscosity model that is based on the Adam-Gibbs theory of structural relaxation, predicting these viscosities much more accurately than previously published viscosity models. During crystallization, the rheological behavior changes from Newtonian to pseudoplastic. Combining rheology experiments with field observations, the rheological conditions of the pahoehoe to `a`a morphological transition for Hawaiian basalt were determined in strain rate-viscosity space. This transition occurs at temperatures around 1185+/-15°C. For Mercurian lavas, this transition is predicted to occur at higher temperatures around 1250+/-30°C. We find that the rheology of these lavas is broadly similar to terrestrial ones, suggesting that the large smooth volcanic plains observed on Mercury's northern hemisphere are due to flood basalt volcanism rather than unusually fluid lavas. We also show that KREEP lavas, a type of basalt associated with sinuous rilles on the lunar surface, is more likely to form rilles through levee construction, as the high and rapidly increasing viscosity prohibits sufficient thermo-mechanical erosion.

  10. Permo-Carboniferous sedimentary basins related to the distribution of planetary cryptoblemes

    Science.gov (United States)

    Windolph, J.F.

    1997-01-01

    Massive/high velocity solar, galactic, and cosmic debris impacting the Earths surface may account for the enormous energy required for the formation of Permo-Carboniferous sedimentary basins and related mountain building orogenies. Analysis of satellite immagry, sea floor sonar, geophysical data, and geotectonic fabrics show a strong correlation throughout geologic time between sedimentary basin origin and planetary cryptoblemes. Cryptoblemes are subtile, multi-ringed, radial centric impact shock signatures covering the entire terrestrial surface and ocean floors, having a geometry and distribution strikingly similar to the surfaces of the lunar planetary bodies in the solar system. Investigations of Permo-Carboniferous basins show an intensely overprinted pattern of cryptoblemes coinciding with partial obliteration and elliptical compression of pre-existing basins and accompanying shock patterns. Large distorted cryptoblemes may incorporate thin skin deformation, localized sediment diagenesis, regional metamorphism, and juxtaposed exotic terrains. These data, related to basin morphogenic symmetry, suggest that large episodic impact events are the primary cause of tectonogenic features, geologic boundary formation and mass extinction episodes on the planet Earth. Plate tectonics may be only a slow moving, low energy secondary effect defined and set in motion by megacosmic accretion events. Permo-Carboniferous sediments of note are preserved or accumulated in relatively small rectangular to arcuate rift valleys and synclinal down warps, such as the Narraganset basin of Massachusetts, USA, and Paganzo basin in Argentina, S.A. These deposits and depocenters may originate from dynamic reinforcement/cancellation impact effects, as can be seen in the Basin Range of Nevada and Utah, USA. Large circular to oval sedimentary basins commonly include internal ring structures indicating post depositional subsidence and rebound adjustments with growth faulting, notable in the

  11. Modeling Approaches in Planetary Seismology

    Science.gov (United States)

    Weber, Renee; Knapmeyer, Martin; Panning, Mark; Schmerr, Nick

    2014-01-01

    Of the many geophysical means that can be used to probe a planet's interior, seismology remains the most direct. Given that the seismic data gathered on the Moon over 40 years ago revolutionized our understanding of the Moon and are still being used today to produce new insight into the state of the lunar interior, it is no wonder that many future missions, both real and conceptual, plan to take seismometers to other planets. To best facilitate the return of high-quality data from these instruments, as well as to further our understanding of the dynamic processes that modify a planet's interior, various modeling approaches are used to quantify parameters such as the amount and distribution of seismicity, tidal deformation, and seismic structure on and of the terrestrial planets. In addition, recent advances in wavefield modeling have permitted a renewed look at seismic energy transmission and the effects of attenuation and scattering, as well as the presence and effect of a core, on recorded seismograms. In this chapter, we will review these approaches.

  12. Dynamics and Structure of Planetary Rings

    Science.gov (United States)

    French, Richard G.

    2002-01-01

    We developed a novel technique to determine the macroscopic particle size distribution of Saturn's rings by exploiting diffraction effects during stellar occultations. This was a major undertaking, and resulted in two publications now in press. In the latter paper, we derived power-law particle size distributions for each of Saturn's main ring regions, using observations of the 3 July 1989 stellar occultation of 28 Sgr from Palomar, McDonald, and Lick Observatories. We used the Voyager PPS delta Sco optical depth profile to estimate and then remove the directly transmitted signal from the 28 Sgr observations, leaving high SNR scattered light profiles at wavelengths of 3.9, 2.1, and 0.9 micrometers. The angular distribution of this diffracted signal depends on the ring particle size distribution: the sharpness of the forward lobe is set by the largest particles, while the overall breadth and amplitude of the scattered signal reflects the abundance of smaller, cm-sized particles. We developed both a simple one-dimensional scattering model and a more realistic 2-D model. We assumed for simplicity a single power law particle size distribution for each major ring region, and determined the index q and lower and upper size cutoffs amin and amax that provide the best match to all three data sets in each region. Our results in the A and C Rings are fairly consistent with values of q and amax derived from Voyager radio occultation (RSS) measurements. We extended their results by determining lower limits to the particle size distributions and by probing the B Ring. This technique is applicable to imaging observations of the rings during the Cassini mission.

  13. Dynamics and Structure of Planetary Rings

    Science.gov (United States)

    French, Richard G.

    2002-01-01

    We developed a novel technique to determine the macroscopic particle size distribution of Saturn's rings by exploiting diffraction effects during stellar occultations. This was a major undertaking, and resulted in two publications now in press. In the latter paper, we derived power-law particle size distributions for each of Saturn's main ring regions, using observations of the 3 July 1989 stellar occultation of 28 Sgr from Palomar, McDonald, and Lick Observatories. We used the Voyager PPS delta Sco optical depth profile to estimate and then remove the directly transmitted signal from the 28 Sgr observations, leaving high SNR scattered light profiles at wavelengths of 3.9, 2.1, and 0.9 micrometers. The angular distribution of this diffracted signal depends on the ring particle size distribution: the sharpness of the forward lobe is set by the largest particles, while the overall breadth and amplitude of the scattered signal reflects the abundance of smaller, cm-sized particles. We developed both a simple one-dimensional scattering model and a more realistic 2-D model. We assumed for simplicity a single power law particle size distribution for each major ring region, and determined the index q and lower and upper size cutoffs a(sub min) and a(sub max) that provide the best match to all three data sets in each region. Our results in the A and C Rings are fairly consistent with values of q and a(sub max) derived from Voyager radio occultation (RSS) measurements. We extended their results by determining lower limits to the particle size distributions and by probing the B Ring. This technique is applicable to imaging observations of the rings during the Cassini mission.

  14. Terrestrial and extraterrestrial fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science

    2003-07-01

    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  15. Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna

    Directory of Open Access Journals (Sweden)

    Victor Onyango Odipo

    2016-11-01

    Full Text Available The use of optical remote sensing data for savanna vegetation structure mapping is hindered by sparse and heterogeneous distribution of vegetation canopy, leading to near-similar spectral signatures among lifeforms. An additional challenge to optical sensors is the high cloud cover and unpredictable weather conditions. Longwave microwave data, with its low sensitivity to clouds addresses some of these problems, but many space borne studies are still limited by low quality structural reference data. Terrestrial laser scanning (TLS derived canopy cover and height metrics can improve aboveground biomass (AGB prediction at both plot and landscape level. To date, few studies have explored the strength of TLS for vegetation structural mapping, and particularly few focusing on savannas. In this study, we evaluate the potential of high resolution TLS-derived canopy cover and height metrics to estimate plot-level aboveground biomass, and to extrapolate to a landscape-wide biomass estimation using multi-temporal L-band Synthetic Aperture Radar (SAR within a 9 km2 area savanna in Kruger National Park (KNP. We inventoried 42 field plots in the wet season and computed AGB for each plot using site-specific allometry. Canopy cover, canopy height, and their product were regressed with plot-level AGB over the TLS-footprint, while SAR backscatter was used to model dry season biomass for the years 2007, 2008, 2009, and 2010 for the study area. The results from model validation showed a significant linear relationship between TLS-derived predictors with field biomass, p < 0.05 and adjusted R2 ranging between 0.56 for SAR to 0.93 for the TLS-derived canopy cover and height. Log-transformed AGB yielded lower errors with TLS metrics compared with non-transformed AGB. An assessment of the backscatter based on root mean square error (RMSE showed better AGB prediction with cross-polarized (RMSE = 6.6 t/ha as opposed to co-polarized data (RMSE = 6.7 t/ha, attributed to

  16. The Delivery of Water During Terrestrial Planet Formation

    Science.gov (United States)

    O'Brien, David P.; Izidoro, Andre; Jacobson, Seth A.; Raymond, Sean N.; Rubie, David C.

    2018-02-01

    The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. Here we review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.

  17. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-Like Worlds

    Science.gov (United States)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; hide

    2016-01-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar systems longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to

  18. The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds

    Science.gov (United States)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; Fassett, C. I.; Fischer, W. W.; Fraeman, A. A.; Golombek, M. P.; Hamilton, V. E.; Hayes, A. G.; Herd, C. D. K.; Horgan, B.; Hu, R.; Jakosky, B. M.; Johnson, J. R.; Kasting, J. F.; Kerber, L.; Kinch, K. M.; Kite, E. S.; Knutson, H. A.; Lunine, J. I.; Mahaffy, P. R.; Mangold, N.; McCubbin, F. M.; Mustard, J. F.; Niles, P. B.; Quantin-Nataf, C.; Rice, M. S.; Stack, K. M.; Stevenson, D. J.; Stewart, S. T.; Toplis, M. J.; Usui, T.; Weiss, B. P.; Werner, S. C.; Wordsworth, R. D.; Wray, J. J.; Yingst, R. A.; Yung, Y. L.; Zahnle, K. J.

    2016-10-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar system's longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to

  19. Quantitative Outline-based Shape Analysis and Classification of Planetary Craterforms using Supervised Learning Models

    Science.gov (United States)

    Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric

    2017-10-01

    The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.

  20. A Guided Tour of Planetary Interiors

    CERN Document Server

    Klotz, Alexander R

    2015-01-01

    We explore the gravitational dynamics of falling through planetary interiors. Two trajectory classes are considered: a straight cord between two surface points, and the brachistochrone path that minimizes the falling time between two points. The times taken to fall along these paths, and the shapes of the brachistochrone paths, are examined for the Moon, Mars, Earth, Saturn, and the Sun, based on models of their interiors. A toy model of the internal structure, a power-law gravitational field, characterizes the dynamics with one parameter, the exponent of the power-law, with values from -2 for a point-mass to +1 for a uniform sphere. Smaller celestial bodies behave like a uniform sphere, while larger bodies begin to approximate point-masses, consistent with an effective exponent describing their interior gravity.

  1. Consumer Control of Terrestrial Ecosystems

    Science.gov (United States)

    Frank, D.

    2012-12-01

    More than half of the earth's terrestrial surface is grazed by large herbivores and their effects on plant and soil carbon and nitrogen processes are large and widespread. Yet the large effects of these animals on terrestrial processes have largely been ignored in global change models. This presentation will explore the many pathways that consumers affect short and long time-scale terrestrial nitrogen and carbon processes. Large herbivores influence the quality of soil organic matter and the size of the active (i.e., labile) pool of soil carbon and nitrogen in several ways. Herbivory leads to greater abundance of species producing low quality material in forest and dry grassland, via feeding preferentially on high quality forage, and high quality material in mesic grassland habitat, via the high quality of material that regrows after a plant is grazed. Defoliation stimulates the rate of root exudation that enhances rhizospheric processes and the availability of nitrogen in the plant rhizosphere. Herbivores also change the species composition of mycorrhizae fungal associates that influence plant growth and affect soil structure and the turnover rate of soil carbon. Recent radiocarbon measurements have revealed that herbivores also markedly affect the turnover dynamics of the large pool of old soil carbon. In Yellowstone Park, ungulates slow the mean turnover of the relatively old (i.e., slow and passive) 0 - 20 cm deep soil organic carbon by 350 years in upland, dry grassland and speed up that rate in slope-bottom, mesic grassland by 300 years. This represents a 650 year swing in the turnover period of old soil carbon across the Yellowstone landscape. By comparison, mean turnover time for the old pool of 0 - 10 cm deep soil organic carbon shifts by about 300 years across the steep climatic gradient that includes tropical, temperate, and northern hardwood forest, and tallgrass, shortgrass and desert grassland. This large body of evidence suggests consumers play a

  2. Batteries for terrestrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Kulin, T.M.

    1998-07-01

    Extensive research has been conducted in the design and manufacture of very long life vented and sealed maintenance free nickel-cadmium aircraft batteries. These batteries have also been used in a number of terrestrial applications with good success. This study presents an overview of the Ni-Cd chemistry and technology as well as detailed analysis of the advantages and disadvantages of the Ni-Cd couple for terrestrial applications. The performance characteristics of both sealed and vented Ni-Cd's are presented. Various charge algorithms are examined and evaluated for effectiveness and ease of implementation. Hardware requirements for charging are also presented and evaluated. The discharge characteristics of vented and sealed Ni-Cd's are presented and compared to other battery chemistries. The performance of Ni-Cd's under extreme environmental conditions is also compared to other battery chemistries. The history of various terrestrial applications is reviewed and some of the lessons learned are presented. Applications discussed include the NASA Middeck Payload Battery, Raytheon Aegis Missile System Battery, THAAD Launcher battery, and the Titan IV battery. The suitability of the Ni-Cd chemistry for other terrestrial applications such as electric vehicles and Uninterruptible Power Supply is discussed.

  3. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1990-01-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  4. Editorial Introduction: Fourth Planetary Dunes Workshop Special Issue

    Science.gov (United States)

    Chojnacki, Matthew; Telfer, Matt W.

    2017-06-01

    The Fourth International Planetary Dunes Workshop: Integrating Models, Remote Sensing, and Field Data was held May 19-22, 2015 in Boise, Idaho (see Final Announcement). More than 60 researchers and students participated in two and a half days of presentations and lively discussion, plus a full day field trip to Bruneau Dunes State Park. The workshop focused on the many landforms and deposits created by the dynamic interactions between granular material and airflow (aeolian processes). These processes are known to occur on several planetary bodies, including Earth, Mars, Titan, Venus, and possibly, cometary surfaces. The overarching purpose of this workshop was to provide a forum for discussion and the exchange of new ideas and approaches to gaining new insights into planetary aeolian processes. Meeting programs, abstracts, and E-Posters are all available at the workshop website (http://www.hou.usra.edu/meetings/dunes2015/)

  5. Equations of State: Gateway to Planetary Origin and Evolution (Invited)

    Science.gov (United States)

    Melosh, J.

    2013-12-01

    Research over the past decades has shown that collisions between solid bodies govern many crucial phases of planetary origin and evolution. The accretion of the terrestrial planets was punctuated by planetary-scale impacts that generated deep magma oceans, ejected primary atmospheres and probably created the moons of Earth and Pluto. Several extrasolar planetary systems are filled with silicate vapor and condensed 'tektites', probably attesting to recent giant collisions. Even now, long after the solar system settled down from its violent birth, a large asteroid impact wiped out the dinosaurs, while other impacts may have played a role in the origin of life on Earth and perhaps Mars, while maintaining a steady exchange of small meteorites between the terrestrial planets and our moon. Most of these events are beyond the scale at which experiments are possible, so that our main research tool is computer simulation, constrained by the laws of physics and the behavior of materials during high-speed impact. Typical solar system impact velocities range from a few km/s in the outer solar system to 10s of km/s in the inner system. Extrasolar planetary systems expand that range to 100s of km/sec typical of the tightly clustered planetary systems now observed. Although computer codes themselves are currently reaching a high degree of sophistication, we still rely on experimental studies to determine the Equations of State (EoS) of materials critical for the correct simulation of impact processes. The recent expansion of the range of pressures available for study, from a few 100 GPa accessible with light gas guns up to a few TPa from current high energy accelerators now opens experimental access to the full velocity range of interest in our solar system. The results are a surprise: several groups in both the USA and Japan have found that silicates and even iron melt and vaporize much more easily in an impact than previously anticipated. The importance of these findings is

  6. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  7. The fragility of planetary systems

    Science.gov (United States)

    Portegies Zwart, S. F.; Jílková, Lucie

    2015-07-01

    We specify the range to which perturbations penetrate a planetesimal system. Such perturbations can originate from massive planets or from encounters with other stars. The latter can have an origin in the star cluster in which the planetary system was born, or from random encounters once the planetary system has escaped its parental cluster. The probability of a random encounter, either in a star cluster or in the Galactic field depends on the local stellar density, the velocity dispersion and the time spend in that environment. By adopting order of magnitude estimates, we argue that the majority of planetary systems born in open clusters will have a Parking zone, in which planetesimals are affected by encounters in their parental star cluster but remain unperturbed after the star has left the cluster. Objects found in this range of semimajor axis and eccentricity preserve the memory of the encounter that last affected their orbits, and they can therefore be used to reconstruct this encounter. Planetary systems born in a denser environment, such as in a globular cluster are unlikely to have a Parking zone. We further argue that some planetary systems may have a Frozen zone, in which orbits are not affected either by the more inner massive planets or by external influences. Objects discovered in this zone will have preserved information about their formation in their orbital parameters.

  8. Polyamorphic Transformations in Fe-Ni-C Liquids: Implications for Chemical Evolution of Terrestrial Planets: Fe-Ni-C liquid structural change

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Xiaojing [Department of Geology and Geophysics, University of Hawai‘i at Mānoa, Honolulu HI USA; Hawaii Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu HI USA; Chen, Bin [Hawaii Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu HI USA; Wang, Jianwei [Department of Geology and Geophysics, Center for Computation and Technology, Louisiana State University, Baton Rouge LA USA; Kono, Yoshio [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne IL USA; Zhu, Feng [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor MI USA

    2017-12-01

    During the formation of the Earth's core, the segregation of metallic liquids from silicate mantle should have left behind evident geochemical imprints on both the mantle and the core. Some distinctive geochemical signatures of the mantle-derived rocks likely own their origin to the metal-silicate differentiation of the primitive Earth, setting our planet apart from undifferentiated meteorites as well as terrestrial planets or moons isotopically and compositionally. Understanding the chemical evolution of terrestrial planetary bodies requires knowledge on properties of both liquid iron alloys and silicates equilibrating under physicochemical conditions pertinent to the deep magma ocean. Here we report experimental and computational results on the pressure-induced structural evolution of iron-nickel liquids alloyed with carbon. Our X-ray diffraction experiments up to 7.3 gigapascals (GPa) demonstrate that Fe-Ni (Fe90Ni10) liquids alloyed with 3 and 5 wt % carbon undergo a polyamorphic liquid structure transition at approximately 5 GPa. Corroborating the experimental observations, our first-principles molecular dynamic calculations reveal that the structural transitions result from the marked prevalence of three-atom face-sharing polyhedral connections in the liquids at >5 GPa. The structure and polyamorphic transitions of liquid iron-nickel-carbon alloys govern their physical and chemical properties and may thus cast fresh light on the chemical evolution of terrestrial planets and moons.

  9. Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo.

    Science.gov (United States)

    Dauphas, N; Pourmand, A

    2011-05-26

    Terrestrial planets are thought to have formed through collisions between large planetary embryos of diameter ∼1,000-5,000 km. For Earth, the last of these collisions involved an impact by a Mars-size embryo that formed the Moon 50-150 million years (Myr) after the birth of the Solar System. Although model simulations of the growth of terrestrial planets can reproduce the mass and dynamical parameters of the Earth and Venus, they fall short of explaining the small size of Mars. One possibility is that Mars was a planetary embryo that escaped collision and merging with other embryos. To assess this idea, it is crucial to know Mars' accretion timescale, which can be investigated using the (182)Hf-(182)W decay system in shergottite-nakhlite-chassignite meteorites. Nevertheless, this timescale remains poorly constrained owing to a large uncertainty associated with the Hf/W ratio of the Martian mantle and as a result, contradicting timescales have been reported that range between 0 and 15 Myr (refs 6-10). Here we show that Mars accreted very rapidly and reached about half of its present size in only 1.8(+0.9)(-1.0) Myr or less, which is consistent with a stranded planetary embryo origin. We have found a well-defined correlation between the Th/Hf and (176)Hf/(177)Hf ratios in chondrites that reflects remobilization of Lu and Th during parent-body processes. Using this relationship, we estimate the Hf/W ratio in Mars' mantle to be 3.51 ± 0.45. This value is much more precise than previous estimates, which ranged between 2.6 and 5.0 (ref. 6), and lifts the large uncertainty that plagued previous estimates of the age of Mars. Our results also demonstrate that Mars grew before dissipation of the nebular gas when ∼100-km planetesimals, such as the parent bodies of chondrites, were still being formed. Mars' accretion occurred early enough to allow establishment of a magma ocean powered by decay of (26)Al.

  10. Planetary vistas the landscapes of other worlds

    CERN Document Server

    Murdin, Paul

    2015-01-01

    The word “landscape” can mean picture as well as natural scenery. Recent advances in space exploration imaging have allowed us to now have landscapes never before possible, and this book collects some of the greatest views and vistas of Mars, Venus’s Titan, Io and more in their full glory, with background information to put into context the foreign landforms of our Solar System. Here, literally, are 'other-worldly' visions of strange new scenes, all captured by the latest technology by landing and roving vehicles or by very low-flying spacecraft.   There is more than scientific interest in these views. They are also aesthetically beautiful and intriguing, and Dr. Murdin in a final chapter compares them to terrestrial landscapes in fine art.   Planetary Vistas is a science book and a travel book across the planets and moons of the Solar System for armchair space explorers who want to be amazed and informed. This book shows what future space explorers will experience, because these are the landscapes th...

  11. Robotic vehicles for planetary exploration

    Science.gov (United States)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  12. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  13. Solar-Terrestrial Interactions

    Science.gov (United States)

    2008-01-01

    satellite for polar cap passes during large SEP events to determine the experimental geographic cutoff latitudes for the two energy ranges. 9 These...E. Lamanna, Societa Italiana di Fisica , Bologna, Italy, 1997.) Shea, M.A., and D.F. Smart, Overview of the Effects of Solar Terrestrial Phenomena...Conference, Invited, Rapporteurs, & Highlight Papers, edited by N. Iucci and E. Lamanna, Societa Italiana di Fisica , Bologna, Italy, 1997.) 27

  14. Workshop on Oxygen in the Terrestrial Planets

    Science.gov (United States)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in

  15. Planetary Nomenclature: An Overview and Update

    Science.gov (United States)

    Gaither, T.; Hayward, R. K.; Blue, J.; Gaddis, L.; Schulz, R.; Aksnes, K.; Burba, G.; Consolmagno, G.; Lopes, R. M. C.; Masson, P.; Sheehan, W.; Smith, B. A.; Williams, G.; Wood, C.

    2017-06-01

    This contribution is an update for the planetary science community on the status of planetary nomenclature, its purpose and rules, the process for submitting name requests, and the IAU approval process.

  16. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The

  17. Earth's magnetic field, preservation of the hydrosphere and planetary habitability (Petrus Peregrinus Medal Lecture)

    Science.gov (United States)

    Tarduno, John

    2017-04-01

    The geodynamo appears to have been remarkably continuous since its inception, which probably occurred shortly after the lunar-forming impact. Here, I will discuss the history of the geodynamo in the context of planetary habitability, as well as what might be gleaned from the terrestrial record to understand other solar system bodies and exoplanets. The ''habitable zone'' is classically defined as that distance from a star where liquid water can exist. However, even given birth of a planet in this zone, there is no assurance that a habitable planet will evolve because an atmosphere and the associated planetary hydrosphere can be stripped from a planet by intense stellar winds streaming from rapidly rotating young stars. Magnetic shielding is a key factor that might determine whether a terrestrial-like planet will retain its water. Salient variables include the time of onset and duration of the dynamo. These variables are in turn related to the efficiency of heat removal from the core, governed by the mantle, and/or exsolution processes that might drive core convection. The magnetic field has competing effects with respect to atmospheric retention (and ultimately water survival). For example, an increased magnetic field provides more pressure to abate the solar wind dynamic pressure and increase the magnetopause radius. However, the larger magnetopause also implies a larger collecting area for solar wind flux during phases of magnetic reconnection. This ordered field provides the magnetic topology for recapturing this mass in the opposite hemisphere such that the net global atmospheric mass loss might not be greatly affected. I will argue that available data support the net protective role of dynamo magnetic fields for atmospheres that are relevant to habitability (i.e., those that envelope a hydrosphere). Paleomagnetism, utilizing the single silicate crystal approach, defines a relatively strong field some 3.45 billion years ago (the Paleoarchean), but with a

  18. Impact processes, permafrost dynamics, and climate and environmental variability in the terrestrial Arctic as inferred from the unique 3.6 Myr record of Lake El'gygytgyn, Far East Russia - A review

    Science.gov (United States)

    Wennrich, Volker; Andreev, Andrei A.; Tarasov, Pavel E.; Fedorov, Grigory; Zhao, Wenwei; Gebhardt, Catalina A.; Meyer-Jacob, Carsten; Snyder, Jeffrey A.; Nowaczyk, Norbert R.; Schwamborn, Georg; Chapligin, Bernhard; Anderson, Patricia M.; Lozhkin, Anatoly V.; Minyuk, Pavel S.; Koeberl, Christian; Melles, Martin

    2016-09-01

    Lake El'gygytgyn in Far East Russia is a 3.6 Myr old impact crater lake. Located in an area that has never been affected by Cenozoic glaciations nor desiccation, the unique sediment record of the lake represents the longest continuous sediment archive of the terrestrial Arctic. The surrounding crater is the only impact structure on Earth developed in mostly acid volcanic rocks. Recent studies on the impactite, permafrost, and sediment sequences recovered within the framework of the ICDP "El'gygytgyn Drilling Project" and multiple pre-site surveys yielded new insight into the bedrock origin and cratering processes as well as permafrost dynamics and the climate and environmental history of the terrestrial Arctic back to the mid-Pliocene. Results from the impact rock section recovered during the deep drilling clearly confirm the impact genesis of the El'gygytgyn crater, but indicate an only very reduced fallback impactite sequence without larger coherent melt bodies. Isotope and element data of impact melt samples indicate a F-type asteroid of mixed composition or an ordinary chondrite as the likely impactor. The impact event caused a long-lasting hydrothermal activity in the crater that is assumed to have persisted for c. 300 kyr. Geochemical and microbial analyses of the permafrost core indicate a subaquatic formation of the lower part during lake-level highstand, but a subaerial genesis of the upper part after a lake-level drop after the Allerød. The isotope signal and ion compositions of ground ice is overprinted by several thaw-freeze cycles due to variations in the talik underneath the lake. Modeling results suggest a modern permafrost thickness in the crater of c. 340 m, and further confirm a pervasive character of the talik below Lake El'gygytgyn. The lake sediment sequences shed new leight into the Pliocene and Pleistocene climate and environmental evolution of the Arctic. During the mid-Pliocene, significantly warmer and wetter climatic conditions in

  19. Virtual reality and planetary exploration

    Science.gov (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  20. Signals for invisible matter from solar - terrestrial observations

    Directory of Open Access Journals (Sweden)

    Bertolucci Sergio

    2017-01-01

    Full Text Available Gravitational lensing of invisible streaming matter towards the Sun or the Earth could be the explanation of puzzling solar/terrestrial phenomena. We have analyzed solar flares, EUV emission and also the global ionization content of the Earth atmosphere. Assuming that this invisible matter has some form of interaction with normal matter and that there exist preferred directions in its flow, then one would expect an enhanced activity at certain planetary longitudes, which is also observed. The broad velocity spectrum of the assumed constituents makes it difficult at this stage to identify the origin of the stream(s or the nature of its constituents.

  1. Planetary imaging with amateur astronomical instruments

    Science.gov (United States)

    Papathanasopoulos, k.; Giannaris, G.

    2017-09-01

    Planetary imaging can be varied by the types and size of instruments and processing. With basic amateur telescopes and software, can be captured images of our planetary system, mainly Jupiter, Saturn and Mars, but also solar eclipses, solar flares, and many more. Planetary photos can be useful for professional astronomers, and how amateur astronomers can play a role on that field.

  2. Characterization of potentially habitable planets: Retrieval of atmospheric and planetary properties from emission spectra

    OpenAIRE

    von Paris, P.; P. Hedelt; Selsis, F.; F. Schreier; Trautmann, T.

    2013-01-01

    An increasing number of potentially habitable terrestrial planets and planet candidates are found by ongoing planet search programs. The search for atmospheric signatures to establish planetary habitability and the presence of life might be possible in the future. We want to quantify the accuracy of retrieved atmospheric parameters which might be obtained from infrared emission spectroscopy. We use synthetic observations of hypothetical habitable planets, constructed with a parametrized atmos...

  3. A Planetary Park system for the Moon and beyond

    Science.gov (United States)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  4. Introducing PLIA: Planetary Laboratory for Image Analysis

    Science.gov (United States)

    Peralta, J.; Hueso, R.; Barrado, N.; Sánchez-Lavega, A.

    2005-08-01

    We present a graphical software tool developed under IDL software to navigate, process and analyze planetary images. The software has a complete Graphical User Interface and is cross-platform. It can also run under the IDL Virtual Machine without the need to own an IDL license. The set of tools included allow image navigation (orientation, centring and automatic limb determination), dynamical and photometric atmospheric measurements (winds and cloud albedos), cylindrical and polar projections, as well as image treatment under several procedures. Being written in IDL, it is modular and easy to modify and grow for adding new capabilities. We show several examples of the software capabilities with Galileo-Venus observations: Image navigation, photometrical corrections, wind profiles obtained by cloud tracking, cylindrical projections and cloud photometric measurements. Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.

  5. Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis

    Directory of Open Access Journals (Sweden)

    Affan Shaukat

    2016-11-01

    Full Text Available In recent decades, terrain modelling and reconstruction techniques have increased research interest in precise short and long distance autonomous navigation, localisation and mapping within field robotics. One of the most challenging applications is in relation to autonomous planetary exploration using mobile robots. Rovers deployed to explore extraterrestrial surfaces are required to perceive and model the environment with little or no intervention from the ground station. Up to date, stereopsis represents the state-of-the art method and can achieve short-distance planetary surface modelling. However, future space missions will require scene reconstruction at greater distance, fidelity and feature complexity, potentially using other sensors like Light Detection And Ranging (LIDAR. LIDAR has been extensively exploited for target detection, identification, and depth estimation in terrestrial robotics, but is still under development to become a viable technology for space robotics. This paper will first review current methods for scene reconstruction and terrain modelling using cameras in planetary robotics and LIDARs in terrestrial robotics; then we will propose camera-LIDAR fusion as a feasible technique to overcome the limitations of either of these individual sensors for planetary exploration. A comprehensive analysis will be presented to demonstrate the advantages of camera-LIDAR fusion in terms of range, fidelity, accuracy and computation.

  6. Instrumentation development for In Situ 40Ar/39Ar planetary geochronology

    Science.gov (United States)

    Morgan, Leah; Munk, Madicken; Davidheiser-Kroll, Brett; Warner, Nicholas H.; Gupta, Sanjeev; Slaybaugh, Rachel; Harkness, Patrick; Mark, Darren

    2017-01-01

    The chronology of the Solar System, particularly the timing of formation of extra-terrestrial bodies and their features, is an outstanding problem in planetary science. Although various chronological methods for in situ geochronology have been proposed (e.g., Rb-Sr, K-Ar), and even applied (K-Ar), the reliability, accuracy, and applicability of the 40Ar/39Ar method makes it by far the most desirable chronometer for dating extra-terrestrial bodies. The method however relies on the neutron irradiation of samples, and thus a neutron source. Herein, we discuss the challenges and feasibility of deploying a passive neutron source to planetary surfaces for the in situ application of the 40Ar/39Ar chronometer. Requirements in generating and shielding neutrons, as well as analysing samples are described, along with an exploration of limitations such as mass, power and cost. Two potential solutions for the in situ extra-terrestrial deployment of the 40Ar/39Ar method are presented. Although this represents a challenging task, developing the technology to apply the 40Ar/39Ar method on planetary surfaces would represent a major advance towards constraining the timescale of solar system formation and evolution.

  7. Terrestrial Steering Group. 2014. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Aastrup, Peter; Aronsson, Mora; Barry, Tom

    implementation of the Arctic Terrestrial Biodiversity Monitoring Plan for the next two years. Identify expert networks required for successful implementation of the plan. Identify key gaps and opportunities for the TSG related to plan implementation and identify near-term next steps to address gaps.......The Terrestrial Steering Group (TSG), has initiated the implementation phase of the CBMP Terrestrial Plan. The CBMP Terrestrial Steering Group, along with a set of invited experts (see Appendix A for a participants list), met in Iceland from February 25-27th to develop a three year work plan...... to guide implementation of the CBMP-Terrestrial Plan. This report describes the outcome of that workshop. The aim of the workshop was to develop a three year work plan to guide implementation of the CBMP-Terrestrial Plan. The participants were tasked with devising an approach to both (a) determine what...

  8. Halogens in chondritic meteorites and terrestrial accretion

    Science.gov (United States)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.

    2017-11-01

    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track

  9. Planetary volatile history - Principles and practice

    Science.gov (United States)

    Fanale, F. P.

    1986-01-01

    The history and evolution of planetary volatile inventories are considered. Planetary bulk volatile inventories are greatly affected by the distance from the preplanetary nebula center at which material accreted, with volatile contents increasing with increasing distance from the nebula center. Other significant factors include: planetary energetics and internal thermal history, planetary volatile sinks (including space), and operation of external variables such as solar energy on the transient, steady-state array of surface volatiles. The net result of all these processes is a volatile history that is itself a controlling factor in overall planetary history.

  10. The Anthropocene: A Planetary Perspective

    Science.gov (United States)

    Anbar, A. D.; Hartnett, H. E.; York, A.; Selin, C.

    2016-12-01

    The Anthropocene is a new planetary epoch defined by the emergence of human activity as one of the most important driving forces on Earth, rivaling and also stressing the other systems that govern the planet's habitability. Public discussions and debates about the challenges of this epoch tend to be polarized. One extreme denies that humans have a planetary-scale impact, while the other wishes that this impact could disappear. The tension between these perspectives is often paralyzing. Effective adaptation and mitigation requires a new perspective that reframes the conversation. We propose a planetary perspective according to which this epoch is the result of a recent major innovation in the 4 ­billion ­year history of life on Earth: the emergence of an energy-intensive planetary civilization. The rate of human energy use is already within an order of magnitude of that of the rest of the biosphere, and rising rapidly, and so this innovation is second only to the evolution of photosynthesis in terms of energy capture and utilization by living systems. Such energy use has and will continue to affect Earth at planetary scale. This reality cannot be denied nor wished away. From this pragmatic perspective, the Anthropocene is not an unnatural event that can be reversed, as though humanity is separate from the Earth systems with which we are co-evolving. Rather, it is an evolutionary transition to be managed. This is the challenge of turning a carelessly altered planet into a carefully designed and managed world, maintaining a "safe operating space" for human civilization (Steffen et al., 2011). To do so, we need an integrated approach to Earth systems science that considers humans as a natural and integral component of Earth's systems. Insights drawn from the humanities and the social sciences must be integrated with the natural sciences in order to thrive in this new epoch. This type of integrated perspective is relatively uncontroversial on personal, local, and even

  11. Technological innovations for human outposts on planetary bodies

    Science.gov (United States)

    Clark, Benton C.

    1988-01-01

    Technology developments which have applications for establishing man-tended outposts on the moon and Mars are reviewed. The development of pressurized rovers and computer-aided control, repair, and manufacturing is discussed. The possibility of utilizing aerodynamic drag by optimizing dynamic pressure to accomplish the necessary spacecraft velocity reduction for planetary orbital capture is considered and research in the development of artificial gravity is examined.

  12. Taking into Account Planetary Perturbations in Lunar Theory

    Science.gov (United States)

    Ivanova, T. V.

    long-period perturbations are determined by solving a secular system in Laplace-type variables describing the secular motions of the lunar perigee and node and taking into account the secular planetary inequalities. All analytical calculations are performed by the specialized Poisson series processor PSP (T. V. Ivanova, in: Dynamics, Ephemerides and Astrometry of the Solar System --- eds. S. Ferraz-Mello, B. Morando and J.-E. Arlot --- Kluwer, 1996, p. 283).

  13. Microstructure of terrestrial catastrophism

    Energy Technology Data Exchange (ETDEWEB)

    Clube, S.V.M. (Oxford Univ. (UK). Dept. of Astrophysics); Napier, W.M. (Royal Observatory, Edinburgh (UK))

    1984-12-15

    The theory of evolution involving episodic terrestrial catastrophism predicts that the Oort cloud is disturbed by close encounters with massive nebulae. Each disturbance generates bombardment pulses of a few million years duration, the pulse frequencies being determined by the Sun's passage through the spiral arms and central plane of the Galaxy where nebulae concentrate. The structure within a pulse is shown here to be dominated by a series of 'spikes' of approx. 0.01-0.1 Myr duration separated by approx. 0.1-1.0 Myr, each caused by the arrival in circumterrestrial space of the largest comets followed by their disintegration into short-lived Apollo asteroids. Evidence is presented that a bombardment pulse was induced 3-5 Myr ago and that a 'spike' in the form of debris from a Chiron-like progenitor of Encke's comet has dominated the terrestrial environment for the last 0.02 Myr.

  14. Computing Needs for Astrobiology: Models of Planetary Formation

    Science.gov (United States)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Theories of planet formation indicate that a diverse range of physical and chemical processes determine the characteristics of a planetary system. Extensive numerical modeling is required to understand how planetary systems form, and to make quantitative assessments of the factors which determine the masses, spacings and volatile compound inventories of planets and small bodies within a planetary system. Fluid flow problems associated with the formation and evolution of protoplanetary disks include specific local calculations to provide physical insight, which are best performed on workstations, and large multifaceted simulations which require supercomputers with large memories. Formation and early growth of planetesimals display a similar range of computational requirements. Modeling the late stages of planetary accumulation is very CPU intensive, as it requires following a simple system of approx. hundreds of bodies for millions of dynamical (orbital) times. These varied computational needs could be met in the most cost-effective manner by a diverse set of computers, including workstations for individual PI's and dedicated time on various types of supercomputers which are specialized for differing tasks.

  15. Teaching, Learning, and Planetary Exploration

    Science.gov (United States)

    Brown, Robert A.

    2002-01-01

    This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

  16. Terrestrial Plume Impingement Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Masten Space Systems proposes to create a terrestrial plume impingement testbed for generating novel datasets for extraterrestrial robotic missions. This testbed...

  17. Repercussions of thermal atmospheric tides on the rotation of terrestrial planets in the habitable zone

    Science.gov (United States)

    Auclair-Desrotour, P.; Mathis, S.; Laskar, J.

    2017-12-01

    Semidiurnal atmospheric thermal tides are important for terrestrial exoplanets in the habitable zone of their host stars. With solid tides, they torque these planets, thus contributing to determine their rotation states as well as their climate. Given the complex dynamics of thermal tides, analytical models are essential to understand its dependence on the structure and rotation of planetary atmospheres and the tidal frequency. In this context, the state of the art model proposed in the 60’s by Lindzen and Chapman explains well the properties of thermal tides in the asymptotic regime of Earth-like rapid rotators but predicts a non-physical diverging tidal torque in the vicinity of the spin-orbit synchronization. In this work, we present a new model that addresses this issue by taking into account dissipative processes through a Newtonian cooling. First, we recover the tidal torque recently obtained with numerical simulations using General Circulation Models (GCM). Second, we show that the tidal response is very sensitive to the atmospheric structure, particularly to the stability with respect to convection. A strong stable stratification is able to annihilate the atmospheric tidal torque, leading to synchronization, while a convective atmosphere will be submitted to a strong torque, leading to a non-synchronized rotation state.

  18. Planetary deep interiors, geodesy, and habitability

    Science.gov (United States)

    Dehant, Veronique

    2014-05-01

    The evolution of planets is driven by the composition, structure, and thermal state of their internal core, mantle, lithosphere, crust, and by interactions with possible ocean and atmosphere. This presentation puts in perspective the fundamental understanding of the relationships and interactions between those different planetary reservoirs and their evolution through time. It emphasizes on the deep interior part of terrestrial planets and moons. The core of a planet, when composed of liquid iron alloy, may provide magnetic field and further interaction with the magnetosphere, ingredients believed to be important for the evolution of an atmosphere and of a planet in general. The deep interior is believed to be of high importance for its habitability. Lander and orbiter, even rover at the surface of planets or moons of the solar system help in determining their interior properties. First of all orbiters feel the gravity of the planet and its variations. In particular, the tidal mass redistribution induces changes in the acceleration of the spacecraft orbiting around a planet. The Love number k2 has been determined for Venus, Mars, and the Earth, as well as for Titan and will be deduced for Mercury and for some of the Galilean satellites from new missions such as JUICE (Jupiter Icy satellite Explorer). The properties of the interior can also be determined from the observation of the rotation of the celestial body. Radar observation from the Earth ground stations of Mercury has allowed Margo et al. (2012, JGR) to determine the moments of inertia of Mercury with an unprecedented accuracy. Rovers such as the MERs (Mars Exploration Rovers) allow as well to obtain the precession and nutation of Mars from which the moments of inertia of the planet and its core can be deduced. Future missions such as the InSIGHT (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport) NASA mission will further help in the determination of Mars interior and evolution

  19. Iron isotope systematics in planetary reservoirs

    Science.gov (United States)

    Sossi, Paolo A.; Nebel, Oliver; Foden, John

    2016-10-01

    Iron is the only polyvalent major element, and controls reduction-oxidation (redox) reactions in a host of geologic processes and reservoirs, from the mineral- to planetary-scale, on Earth and in space. Mass transfer of Fe is often accompanied by changes in bonding environment, meaning the resultant variation in bond-strength in crystals, liquids and gases induces stable isotope fractionation, even at high temperatures. In the absence of iron exchange, electron transfer can also affect iron's valence state and calculated oxygen fugacity (fO2), however its isotope composition remains unchanged. Thus, iron isotopes are a powerful tool to investigate processes that involve mass transfer, redox reactions and changes in bonding environment in planetary systems. Primitive chondritic meteorites show remarkable isotopic homogeneity, δ57 Fe = - 0.01 ± 0.01 ‰ (2SE), over a wide range of Fe/Mg vs Ni/Mg, a proxy for fO2 in the solar nebula. In chondrites, there are iron isotope differences between metal and silicates that become more pronounced at higher metamorphic grades. However, on a planetary scale, Mars and Vesta overlap with chondrites, preserving no trace of core formation or volatile depletion on these bodies. Upon assessment of pristine lherzolites, the Bulk Silicate Earth is heavier than chondrites (δ57 Fe = + 0.05 ± 0.01 ‰; 2SE), and similar to or slightly lighter than the Moon. That the mantles of some differentiated inner solar system bodies extend to heavier compositions (+ 0.2 ‰) than chondrites may principally result from volatile depletion either at a nebular or late accretion stage. Within terrestrial silicate reservoirs, iron isotopes provide insight into petrogenetic and geodynamic processes. Partial melting of the upper mantle produces basalts that are heavier than their sources, scaling with degree of melting and driving the increasingly refractory peridotite to lighter compositions. Mid-Ocean Ridge Basalts (MORBs) are homogeneous to δ57 Fe

  20. Terrestrial Carbon Cycle Variability.

    Science.gov (United States)

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2 , temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y -1 ) with respect to a large and uncertain background (123 +/- 4 Pg-C y -1 ), and

  1. How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximizing exocomets, scattered discs

    Science.gov (United States)

    Wyatt, M. C.; Bonsor, A.; Jackson, A. P.; Marino, S.; Shannon, A.

    2017-01-01

    This paper considers the dynamics of the scattering of planetesimals or planetary embryos by a planet on a circumstellar orbit. We classify six regions in the planet's mass versus semimajor axis parameter space according to the dominant outcome for scattered objects: ejected, accreted, remaining, escaping, Oort Cloud, and depleted Oort Cloud. We use these outcomes to consider which planetary system architectures maximize the observability of specific signatures, given that signatures should be detected first around systems with optimal architectures (if such systems exist in nature). Giant impact debris is most readily detectable for 0.1-10 M⊕ planets at 1-5 au, depending on the detection method and spectral type. While A stars have putative giant impact debris at 4-6 au consistent with this sweet spot, that of FGK stars is typically ≪1 au contrary to expectations; an absence of 1-3 au giant impact debris could indicate a low frequency of terrestrial planets there. Three principles maximize the cometary influx from exo-Kuiper belts: a chain of closely separated planets interior to the belt, none of which is a Jupiter-like ejector; planet masses not increasing strongly with distance (for a net inward torque on comets); and ongoing replenishment of comets, possibly by embedded low-mass planets. A high Oort Cloud comet influx requires no ejectors and architectures that maximize the Oort Cloud population. Cold debris discs are usually considered classical Kuiper belt analogues. Here we consider the possibility of detecting scattered disc analogues, which could be betrayed by a broad radial profile and lack of small grains, as well as spherical 100-1000 au mini-Oort Clouds. Some implications for escaping planets around young stars, detached planets akin to Sedna, and the formation of super-Earths are also discussed.

  2. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature......, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH4 in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. Hence, scaling up of aerobic CH4 emission needs to take...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  3. Planetary gear profile modification design based on load sharing modelling

    Science.gov (United States)

    Iglesias, Miguel; Fernández Del Rincón, Alfonso; De-Juan, Ana Magdalena; Garcia, Pablo; Diez, Alberto; Viadero, Fernando

    2015-07-01

    In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.

  4. Structured Light-Based Hazard Detection For Planetary Surface Navigation

    Science.gov (United States)

    Nefian, Ara; Wong, Uland Y.; Dille, Michael; Bouyssounouse, Xavier; Edwards, Laurence; To, Vinh; Deans, Matthew; Fong, Terry

    2017-01-01

    This paper describes a structured light-based sensor for hazard avoidance in planetary environments. The system presented here can also be used in terrestrial applications constrained by reduced onboard power and computational complexity and low illumination conditions. The sensor is on a calibrated camera and laser dot projector system. The onboard hazard avoidance system determines the position of the projected dots in the image and through a triangulation process detects potential hazards. The paper presents the design parameters for this sensor and describes the image based solution for hazard avoidance. The system presented here was tested extensively in day and night conditions in Lunar analogue environments. The current system achieves over 97 detection rate with 1.7 false alarms over 2000 images.

  5. On the origin of planetary-scale tipping points.

    Science.gov (United States)

    Lenton, Timothy M; Williams, Hywel T P

    2013-07-01

    Tipping points are recognised in many systems, including ecosystems and elements of the climate system. But can the biosphere as a whole tip and, if so, how? Past global tipping points were rare and occurred in the coupled planetary-scale dynamics of the Earth system, not in the local-scale dynamics of its weakly interacting component ecosystems. Yet, evolutionary innovations have triggered past global transformations, suggesting that tipping point theory needs to go beyond bifurcations and networks to include evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Franklin Lecture: Lightning in Planetary Atmospheres

    Science.gov (United States)

    Gurnett, D. A.

    2006-12-01

    A broad overview is given of lightning in planetary atmospheres. Searches for lightning using spacecraft-borne instrumentation have now been conducted at almost all of the planets in the solar system, the exceptions being Mercury, which has no appreciable atmosphere, and Pluto which has not yet been visited by a spacecraft. The techniques used include (1) imaging observations to detect optical flashes produced by lightning; (2) high-frequency radio measurements to detect the impulsive broadband radio bursts, called spherics, produced by lightning discharges; and (3) low-frequency plasma wave measurements to detect the whistling tones, called whistlers, produced by lightning. Using these techniques, lightning has been reported at five planets other than Earth. These are: Venus, Jupiter, Saturn, Uranus, and Neptune. Of these, the existence of lightning at Venus is doubtful, and the evidence of lightning at Neptune is at best marginal. Jupiter and Saturn have by far the most intense and well documented lightning activity. During the Voyager 1 flyby of Jupiter, whistlers and intense optical flashes, comparable to those from terrestrial superbolts, were observed by the plasma wave and optical imaging instruments. However, no impulsive high-frequency radio bursts were observed. Two factors may be responsible for the absence of high-frequency radio signals: (1) the very strong magnetic field of Jupiter, which blocks the escape of the extra-ordinary mode; and (2) the relatively high electron collision frequency in the ionosphere, which increases the absorption of radio waves. During the Voyager 1 and 2 flybys of Saturn many very strong high-frequency radio bursts, called Saturn Electrostatic Discharges (SEDs), were detected. Although the origin of these impulsive radio bursts was initially uncertain, strong evidence now exists that SEDs are produced by lightning. Recent optical imaging and radio measurements from the Cassini spacecraft clearly show that SEDs originate from

  7. Using Sandia's Z Machine and Density Functional Theory Simulations to Understand Planetary Materials

    Science.gov (United States)

    Root, Seth

    2017-06-01

    The use of Z, NIF, and Omega have produced many breakthrough results in high pressure physics. One area that has greatly benefited from these facilities is the planetary sciences. The high pressure behavior of planetary materials has implications for numerous geophysical and planetary processes. The continuing discovery of exosolar super-Earths demonstrates the need for accurate equation of state data to better inform our models of their interior structures. Planetary collision processes, such as the moon-forming giant impact, require understanding planetary materials over a wide-range of pressures and temperatures. Using Z, we examined the shock compression response of some common planetary materials: MgO, Mg2SiO4, and Fe2O3 (hematite). We compare the experimental shock compression measurements with density functional theory (DFT) based quantum molecular dynamics (QMD) simulations. The combination of experiment and theory provides clearer understanding of planetary materials properties at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Teaching Planetary Science as Part of the Search for Extraterrestrial Intelligence (SETI)

    Science.gov (United States)

    Margot, Jean-Luc; Greenberg, Adam H.

    2017-10-01

    In Spring 2016 and 2017, UCLA offered a course titled "EPSS C179/279 - Search for Extraterrestrial Intelligence: Theory and Applications". The course is designed for advanced undergraduate students and graduate students in the science, technical, engineering, and mathematical fields. Each year, students designed an observing sequence for the Green Bank telescope, observed known planetary systems remotely, wrote a sophisticated and modular data processing pipeline, analyzed the data, and presented their results. In 2016, 15 students participated in the course (9U, 5G; 11M, 3F) and observed 14 planetary systems in the Kepler field. In 2017, 17 students participated (15U, 2G; 10M, 7F) and observed 10 planetary systems in the Kepler field, TRAPPIST-1, and LHS 1140. In order to select suitable targets, students learned about planetary systems, planetary habitability, and planetary dynamics. In addition to planetary science fundamentals, students learned radio astronomy fundamentals, collaborative software development, signal processing techniques, and statistics. Evaluations indicate that the course is challenging but that students are eager to learn because of the engrossing nature of SETI. Students particularly value the teamwork approach, the observing experience, and working with their own data. The next offering of the course will be in Spring 2018. Additional information about our SETI work is available at seti.ucla.edu.

  9. The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community

    Science.gov (United States)

    Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.

    2014-11-01

    NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge

  10. Small Innovative Missions for Planetary Exploration (SIMPLEx)

    Science.gov (United States)

    Daou, D.

    2017-09-01

    The Small Innovative Missions for Planetary Exploration (SIMPLEx) supports the formulation and development of science investigations that require a spaceflight mission that can be accomplished using small spacecraft. SIMPLEx is responsive to the goals of the Planetary Science Division, as described in the 2014 NASA Science Plan. This presentation will discuss the NASA Planetary Science Divisions SIMPLEx initiative and provide a status update on the first cadre of selected investigations.

  11. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    Science.gov (United States)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  12. Europlanet Research Infrastructure: Planetary Sample Analysis Facilities

    Science.gov (United States)

    Cloquet, C.; Mason, N. J.; Davies, G. R.; Marty, B.

    2008-09-01

    individual organic compounds in complex mixtures. One of only a few instruments of this type worldwide primarily dedicated to the analysis of extra-terrestrial materials. Supported by fully equipped sample preparation laboratories and GC-Mass Spectrometers required to develop the exact methodology necessary for optimal analysis of each sample. A number of different sample introduction injection and pyrolysis systems are available. Open University is one of the leading laboratories in the world for compound specific isotopic measurements of extra-terrestrial organics and this is one of a very few instruments of this type in the world largely dedicated to extra-terrestrial materials. Conclusion Currently planetary research is limited to meteorites and lunar samples but future return missions will provide enough material from comets and asteroids. A major focus of research in the next 5-10 years will be comparative planetology to understand the types of geochemical processes that can be expected on the (former) water rich regions of Mars to be sure that the detection of past life is unambiguous. The aim of this infrastructure is to provide a structured access to state of the art analytical facilities for European users.

  13. Hypervelocity impacts and the evolution of planetary surfaces and interiors

    Science.gov (United States)

    Watters, Wesley Andres

    2009-06-01

    The thesis consists of five studies relating impact processes to the evolution of planetary interiors as well as impact structures on planetary surfaces. Chapter 2 is concerned with developing methods for estimating the amount of heat deposited deep in terrestrial mantles by large impacts. Chapter 3 makes use of these results to compute the consequences of impact-related thermal buoyancy perturbations in numerical models of subsolidus convection. Among the important results of this work is a relation for the time-scale on which a buoyancy anomaly flattens and spreads before it is halted by convective downflows, as well as a condition that indicates for what perturbation magnitudes and Rayleigh numbers the flow is significantly slowed at a global scale. Chapter 4 describes a structural model of Endurance Crater in Meridiani Planum on Mars, which is constrained by observations gathered by the MER- B Opportunity rover. These results reveal new insights about the planform shape of the crater excavation flow, as well as the connection between crater shape and pre-existing structures in target materials. The study presented in chapter 5 relates the planimetric shape of simple impact craters on Mars ( D Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  14. IRS View of a Planetary Collision in the Pleiades

    Science.gov (United States)

    Song, Inseok; Lisse, Carey; Rhee, Joseph; Zuckerman, Ben

    2008-03-01

    Recently, we identified a sun-like Pleiades member, HD 23514, hosting a huge quantity of warm dust grains. Next to BD+20 307 (a field sun-like star), HD 23514 is currently the second dustiest, adolescent-age, star known with warm excess IR emission. Very short removal timescales of warm dust grains and adolescent ages of these two stars (>~100 Myr) indicate that the very dusty, warm excess, phenomenon is a transient event. A catastrophic collision between planetary embryos or planets is the most plausible origin of so much warm dust and such a collision mimics the postulated Moon-creation event in our terrestrial system. But the N-band spectra of BD+20 307 and HD 23514 appear very different, with peculiar emission at HD 23514 peaking at ~9 microns, a peak wavelength hardly seen among young stars and other main sequence excess stars. The strange N-band spectrum may point to an extra-ordinary condition around HD 23514 such as a very thick crust of a planet, a freakish chemical composition, or shocked silicates from a planetary collision. An IRS spectrum covering the 5-35um spectral range, rather than the highly restricted ground-based N-band spectrum will provide much stronger and clearer constraints on the dusty environment of HD 23514. We propose IRS observations with all four low resolution modules to obtain a diagnostic mid-IR spectrum of this rare, fascinating star.

  15. Planetary Drilling and Resources at the Moon and Mars

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    Drilling on the Moon and Mars is an important capability for both scientific and resource exploration. The unique requirements of spaceflight and planetary environments drive drills to different design approaches than established terrestrial technologies. A partnership between NASA and Baker Hughes Inc. developed a novel approach for a dry rotary coring wireline drill capable of acquiring continuous core samples at multi-meter depths for low power and mass. The 8.5 kg Bottom Hole Assembly operated at 100 We and without need for traditional drilling mud or pipe. The technology was field tested in the Canadian Arctic in sandstone, ice and frozen gumbo. Planetary resources could play an important role in future space exploration. Lunar regolith contains oxygen and metals, and water ice has recently been confirmed in a shadowed crater at the Moon.s south pole. Mars possesses a CO2 atmosphere, frozen water ice at the poles, and indications of subsurface aquifers. Such resources could provide water, oxygen and propellants that could greatly simplify the cost and complexity of exploration and survival. NASA/JSC/EP/JAG

  16. Robotic Tool Changer for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions will require compact, lightweight robotic manipulators for handling a variety of tools & instruments without increasing the...

  17. Sealed Planetary Return Canister (SPRC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  18. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  19. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    Science.gov (United States)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  20. PSUP: A Planetary SUrface Portal

    Science.gov (United States)

    Poulet, F.; Quantin-Nataf, C.; Ballans, H.; Dassas, K.; Audouard, J.; Carter, J.; Gondet, B.; Lozac'h, L.; Malapert, J.-C.; Marmo, C.; Riu, L.; Séjourné, A.

    2018-01-01

    The large size and complexity of planetary data acquired by spacecraft during the last two decades create a demand within the planetary community for access to the archives of raw and high level data and for the tools necessary to analyze these data. Among the different targets of the Solar System, Mars is unique as the combined datasets from the Viking, Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions provide a tremendous wealth of information that can be used to study the surface of Mars. The number and the size of the datasets require an information system to process, manage and distribute data. The Observatories of Paris Sud (OSUPS) and Lyon (OSUL) have developed a portal, called PSUP (Planetary SUrface Portal), for providing users with efficient and easy access to data products dedicated to the Martian surface. The objectives of the portal are: 1) to allow processing and downloading of data via a specific application called MarsSI (Martian surface data processing Information System); 2) to provide the visualization and merging of high level (image, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu), and 3) to distribute some of these specific high level data with an emphasis on products issued by the science teams of OSUPS and OSUL. As the MarsSI service is extensively described in a companion paper (Quantin-Nataf et al., companion paper, submitted to this special issue), the present paper focus on the general architecture and the functionalities of the web-based user interface MarsVisu. This service provides access to many data products for Mars: albedo, mineral and thermal inertia global maps from spectrometers; mosaics from imagers; image footprints and rasters from the MarsSI tool; high level specific products (defined as catalogs or vectors). MarsVisu can be used to quickly assess the visualized processed data and maps as well as identify areas that have not been mapped yet

  1. Planetary Radars Operating Centre PROC

    Science.gov (United States)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  2. Aquatic and Terrestrial Environment 2004

    DEFF Research Database (Denmark)

    Andersen, J. M.; Boutrup, S.; Bijl, L. van der

    This report presents the 2004 results of the Danish National Monitoring and Assess-ment Programme for the Aquatic and Terrestrial Environments (NOVANA). 2004 was the first year in which terrestrial nature was included in the monitoring pro-gramme. The report reviews the state of the groundwater......, watercourses, lakes and marine waters and the pressures upon them and reviews the monitoring of terrestrial natural habitats and selected plants and animals. The report is based on the annual reports prepared for each subprogramme by the Topic Centres. The latter reports are mainly based on data collected...

  3. The Planetary Virtual Observatory and Laboratory (PVOL) and its integration into the Virtual European Solar and Planetary Access (VESPA)

    Science.gov (United States)

    Hueso, R.; Juaristi, J.; Legarreta, J.; Sánchez-Lavega, A.; Rojas, J. F.; Erard, S.; Cecconi, B.; Le Sidaner, Pierre

    2018-01-01

    Since 2003 the Planetary Virtual Observatory and Laboratory (PVOL) has been storing and serving publicly through its web site a large database of amateur observations of the Giant Planets (Hueso et al., 2010a). These images are used for scientific research of the atmospheric dynamics and cloud structure on these planets and constitute a powerful resource to address time variable phenomena in their atmospheres. Advances over the last decade in observation techniques, and a wider recognition by professional astronomers of the quality of amateur observations, have resulted in the need to upgrade this database. We here present major advances in the PVOL database, which has evolved into a full virtual planetary observatory encompassing also observations of Mercury, Venus, Mars, the Moon and the Galilean satellites. Besides the new objects, the images can be tagged and the database allows simple and complex searches over the data. The new web service: PVOL2 is available online in http://pvol2.ehu.eus/.

  4. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  5. Theory of Planetary System Formation

    Science.gov (United States)

    Cassen, Patrick

    1996-01-01

    Observations and theoretical considerations support the idea that the Solar System formed by the collapse of tenuous interstellar matter to a disk of gas and dust (the primitive solar nebula), from which the Sun and other components separated under the action of dissipative forces and by the coagulation of solid material. Thus, planets are understood to be contemporaneous byproducts of star formation. Because the circumstellar disks of new stars are easier to observe than mature planetary systems, the possibility arises that the nature and variety of planets might be studied from observations of the conditions of their birth. A useful theory of planetary system formation would therefore relate the properties of circumstellar disks both to the initial conditions of star formation and to the consequent properties of planets to those of the disk. Although the broad outlines of such a theory are in place, many aspects are either untested, controversial, or otherwise unresolved; even the degree to which such a comprehensive theory is possible remains unknown.

  6. Molecular studies of Planetary Nebulae

    Science.gov (United States)

    Zhang, Yong

    2017-10-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition of PNe is rather different from those of AGB and PPNe, suggesting that the molecules synthesized in PN progenitors have been heavily processed by strong ultraviolet radiation from the central star. Intriguingly, fullerenes and complex organic compounds having aromatic and aliphatic structures can be rapidly formed and largely survive during the PPN/PN evolution. The similar molecular compositions in PNe and diffuse clouds as well as the detection of C60 + in the ISM reinforce the view that the mass-loss from PNe can significantly enrich the ISM with molecular species, some of which may be responsible for the diffuse interstellar bands. In this contribution, I briefly summarize some recent observations of molecules in PNe, with emphasis on their implications on circumstellar chemistry.

  7. Mantles of terrestrial planets immediately following magma ocean solidification

    Science.gov (United States)

    Scheinberg, A. L.; Elkins-Tanton, L. T.; Zhong, S.; Parmentier, E.

    2010-12-01

    Energy of accretion in terrestrial planets is expected to create liquid silicate magma oceans. Their solidification processes create silicate differentiation and set the initial mantle structure for the planet. Solidification results in a compositionally unstable density profile, leading to cumulate Rayleigh-Taylor overturn in the early stages of planetary history. The pattern and timescale of overturn, in which cold, dense surface material sinks to the core mantle boundary, has implications for core dynamo production, volatile escape and fundamental differences between differently-sized bodies. Our fully spherical mantle models reaffirm previous work suggesting harmonic degree of overturn is dependent on viscosity contrast and layer thickness. We then explore the dependence of overturn morphology in the early mantles of Mars, Earth, Mercury and the Moon on these parameters and on the respective planets’ characteristics using a composition- and temperature-dependent viscosity model. Initial results indicate that fractional solidification and overturn in terrestrial planets always creates some radius range in which the mantle is azimuthally compositionally heterogeneous. After overturn, compositional stability in the mantle suppresses the onset of thermal convection; the broad conclusions of this work indicate that the earliest solid mantle of terrestrial planets is compositionally differentiated and stable.

  8. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    Science.gov (United States)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  9. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    Science.gov (United States)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-12-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary COSPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  10. Improvements to the PDS Planetary Image Locator Tool (PILOT)

    Science.gov (United States)

    Bailen, M. S.; Akins, S. W.; Sucharski, B.; Gaddis, L.; Hare, T. M.; Raub, R.

    2011-03-01

    The Planetary Image Locator Tool (PILOT) is a web-based portal and map interface that provides a robust search engine for several Planetary Data System (PDS) image catalogs available from the Unified Planetary Coordinates (UPC) database.

  11. Thermal Convection in a Fluid Layer Heated From Below and From Within - Implication for Planetary Evolution

    Science.gov (United States)

    Choblet, G.; Parmentier, M.; Sotin, C.

    2002-12-01

    Solid-state thermal convection in terrestrial planets interiors is generated by both volumetric heating (radiogenic elements, secular cooling) and heating from below (cooling of the metallic core). However, the relative importance of plumes emanating from both boundary layers and their interaction is still poorly understood. The aim of the present study is to propose a precise scaling for heat transfer in this heating configuration. Our initial numerical experiments have examined an isoviscous fluid in a Cartesian geometry (both 2D and 3D), since this allows well resolved results to be obtained with modest-scale computation. A relationship assuming that the top and bottom boundary layers are of equal thickness so that the ratio of temperature differences across them varies in a simple way with the fraction of heating from below produces a correct first order scaling. This leads to the prediction that the temperature of the well mixed interior does not vary with the fraction of heat supplied from below. However, in our numerical experiments, horizontally averaged temperature within the well mixed interior for a given amount of heat sources (basal plus internal) varies with the way heat is distributed between the bottom surface and the interior of the layer by an amount that can be significant on scales of interest for planetary evolution. In addition, systematic differences are observed between 2D and 3D numerical experiments ; other variations appear according on the basal heating mode (either flux or temperature can be prescribed). This reflects the dynamics of the interaction of plumes with thermal boundary layers and with each other. We thus propose a more complete scaling based on the influence of a plume on both the boundary layer where it forms and the opposite boundary layer where it produces a stagnation point. This leads to a scaling which predicts that the two boundary layers are of different thickness and allows a more accurate description of temperature

  12. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Science.gov (United States)

    Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David. Kicklighter

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...

  13. The Formation of a Planetary Nebula.

    Science.gov (United States)

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  14. Visualization of Kepler's Laws of Planetary Motion

    Science.gov (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-01-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  15. Interoperability in the Planetary Science Archive (PSA)

    Science.gov (United States)

    Rios Diaz, C.

    2017-09-01

    The protocols and standards currently being supported by the recently released new version of the Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet- Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. We explore these protocols in more detail providing scientifically useful examples of their usage within the PSA.

  16. Optical observations of southern planetary nebula candidates

    NARCIS (Netherlands)

    VandeSteene, GC; Sahu, KC; Pottasch, [No Value

    1996-01-01

    We present H alpha+[NII] images and low resolution spectra of 16 IRAS-selected, southern planetary nebula candidates previously detected in the radio continuum. The H alpha+[NII] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images

  17. Connecting kinematic and dynamic reference frames by D-VLBI

    Science.gov (United States)

    Schuh, Harald; Plank, Lucia; Madzak, Matthias; Böhm, Johannes

    2012-08-01

    In geodetic and astrometric practice, terrestrial station coordinates are usually provided in the kinematic International Terrestrial Reference Frame (ITRF) and radio source coordinates in the International Celestial Reference Frame (ICRF), whereas measurements of space probes such as satellites and spacecrafts, or planetary ephemerides rest upon dynamical theories. To avoid inconsistencies and errors during measurement and calculation procedures, exact frame ties between quasi - inertial, kinematic and dynamic reference frames have to be secured. While the Earth Orientation Parameters (EOP), e.g. measured by VLBI, link the ITRF to the ICRF, the ties with the dynamic frames can be established with the differential Very Long Baseline Interferometry (D - VLBI) method. By observing space probes alternately t o radio sources, the relative position of the targets to each other on the sky can be determined with high accuracy. While D - VLBI is a common technique in astrophysics (source imaging) and deep space navigation, just recently there have been several effort s to use it for geodetic purposes. We present investigations concerning possible VLBI observations to satellites. This includes the potential usage of available GNNS satellites as well as specifically designed missions, as e.g. the GRASP mission proposed b y JPL/NASA and an international consortium, where the aspect of co - location in space of various techniques (VLBI, SLR, GNSS, DORIS) is the main focus.

  18. Expanding the Planetary Analog Test Sites in Hawaii - Planetary Basalt Manipulation

    Science.gov (United States)

    Kelso, R.

    2013-12-01

    The Pacific International Space Center for Exploration Systems (PISCES) is one of the very few planetary surface research test sites in the country that is totally funded by the state legislature. In recent expansions, PISCES is broadening its work in planetary test sites to include much more R&D work in the planetary surface systems, and the manipulation of basalt materials. This is to include laser 3D printing of basalt, 'lunar-concrete' construction in state projects for Hawaii, renewable energy, and adding lava tubes/skylights to their mix of high-quality planetary analog test sites. PISCES Executive Director, Rob Kelso, will be providing program updates on the interest of the Hawaii State Legislature in planetary surface systems, new applied research initiatives in planetary basalts and interests in planetary construction.

  19. Planetary Ices and the Linear Mixing Approximation

    Science.gov (United States)

    Bethkenhagen, M.; Meyer, E. R.; Hamel, S.; Nettelmann, N.; French, M.; Scheibe, L.; Ticknor, C.; Collins, L. A.; Kress, J. D.; Fortney, J. J.; Redmer, R.

    2017-10-01

    The validity of the widely used linear mixing approximation (LMA) for the equations of state (EOSs) of planetary ices is investigated at pressure-temperature conditions typical for the interiors of Uranus and Neptune. The basis of this study is ab initio data ranging up to 1000 GPa and 20,000 K, calculated via density functional theory molecular dynamics simulations. In particular, we determine a new EOS for methane and EOS data for the 1:1 binary mixtures of methane, ammonia, and water, as well as their 2:1:4 ternary mixture. Additionally, the self-diffusion coefficients in the ternary mixture are calculated along three different Uranus interior profiles and compared to the values of the pure compounds. We find that deviations of the LMA from the results of the real mixture are generally small; for the thermal EOSs they amount to 4% or less. The diffusion coefficients in the mixture agree with those of the pure compounds within 20% or better. Finally, a new adiabatic model of Uranus with an inner layer of almost pure ices is developed. The model is consistent with the gravity field data and results in a rather cold interior ({T}{core}˜ 4000 K).

  20. Molecular Dications in Planetary Atmospheric Escape

    Directory of Open Access Journals (Sweden)

    Stefano Falcinelli

    2016-08-01

    Full Text Available Fundamental properties of multiply charged molecular ions, such as energetics, structure, stability, lifetime and fragmentation dynamics, are relevant to understand and model the behavior of gaseous plasmas as well as ionosphere and astrophysical environments. Experimental determinations of the Kinetic Energy Released (KER for ions originating from dissociations reactions, induced by Coulomb explosion of doubly charged molecular ions (molecular dications produced by double photoionization of CO2, N2O and C2H2 molecules of interest in planetary atmospheres, are reported. The KER measurement as a function of the ultraviolet (UV photon energy in the range of 28–65 eV was extracted from the electron-ion-ion coincidence spectra obtained by using tunable synchrotron radiation coupled with ion imaging techniques at the ELETTRA Synchrotron Light Laboratory Trieste, Italy. These experiments, coupled with a computational analysis based on a Monte Carlo trajectory simulation, allow assessing the probability of escape for simple ionic species in the upper atmosphere of Mars, Venus and Titan. The measured KER in the case of H+, C+, CH+, CH2+, N+, O+, CO+, N2+ and NO+ fragment ions range between 1.0 and 5.5 eV, being large enough to allow these ionic species to participate in the atmospheric escape from such planets into space. In the case of Mars, we suggest a possible explanation for the observed behavior of the O+ and CO22+ ion density profiles.

  1. Visualization Tools for Planetary Data

    Science.gov (United States)

    DeWolfe, Alexandria; Larsen, Kristopher; Brain, David; Chaffin, Michael; Harter, Bryan; Putnam, Brian

    2017-04-01

    We have developed a set of software tools for displaying and analyzing data from the MAVEN and MMS missions. In order to better visualize the science data and models, we have constructed 3D visualizations of MAVEN orbiting Mars and MMS orbiting Earth using the CesiumJS library. These visualizations allow viewing of not only spacecraft orientation and position over time, but also scientific data from the spacecraft, and atmospheric models as well. We have also developed a Python toolkit which replicates the functionality of the widely-used IDL "tplot" toolkit for analyzing planetary atmospheric data. We use the bokeh and matplotlib libraries to generate interactive line plots and spectrograms, providing additional functionality beyond the capabilities of IDL graphics. These Python tools are generalized to work with missions beyond MAVEN, and our open-source software is available on Github.

  2. Lunar and Planetary Science XXXVI, Part 19

    Science.gov (United States)

    2005-01-01

    The topics include: 1) The abundances of Iron-60 in Pyroxene Chondrules from Unequilibrated Ordinary Chondrites; 2) LL-Ordinary Chondrite Impact on the Moon: Results from the 3.9 Ga Impact Melt at the Landing Site of Appolo 17; 3) Evaluation of Chemical Methods for Projectile Identification in Terrestrial and Lunar Impactites; 4) Impact Cratering Experiments in Microgravity Environment; 5) New Achondrites with High-Calcium Pyroxene and Its implication for Igneous Differentiation of Asteroids; 6) Climate History of the Polar Regions of Mars Deduced form Geologic Mapping Results; 7) The crater Production Function for Mars: A-2 Cumulative Power-Law Slope for Pristine Craters Greater than 5 km in Diameter Based on Crater Distribution for Northern Plains Materials; 8) High Resolution Al-26 Chronology: Resolved Time Interval Between Rim and Interior of a Highly Fractionated Compact Type a CAI from Efremovka; 9) Assessing Aqueous Alteration on Mars Using Global Distributions of K and Th; 10) FeNi Metal Grains in LaPaz Mare Basalt Meteorites and Appolo 12 Basalts; 11) Unique Properties of Lunar Soil for In Situ Resource Utilization on the Moon; 12) U-Pb Systematics of Phosphates in Nakhlites; 13) Measurements of Sound Speed in Granular Materials Simulated Regolith; 14) The Effects of Oxygen, Sulphur and Silicon on the Dihedral Angles Between Fe-rich Liquid Metal and Olivine, Ringwoodite and Silicate Perovskite: Implications for Planetary Core Formation; 15) Seismic Shaking Removal of Craters 0.2-0.5 km in Diameter on Asteroid 433 Eros; 16) Focused Ion Beam Microscoopy of ALH84001 Carbonate Disks; 17) Simulating Micro-Gravity in the Laboratory; 18) Mars Atmospheric Sample Return Instrument Development; 19) Combined Remote LIBS and Raman Spectroscopy Measurements; 20) Unusual Radar Backscatter Properties Along the Northern Rim of Imbrium Basin; 21) The Mars Express/NASAS Project at JPL; 22) The Geology of the Viking 2 Lander Site Revisited; 23) An Impact Genesis for Loki

  3. Can Terrestrial Microbes Grow on Mars?

    Science.gov (United States)

    Rothschild, Lynn

    2012-01-01

    The theme for AbSciCon 2012 is "Exploring Life: Past and Present, Near and Far." The conference will address our current understanding of life - from processes at the molecular level to those which operate at planetary scales. Studying these aspects of life on Earth provides an essential platform from which to examine the potential for life on other worlds, both within our solar system and beyond. Mars exhibits a variety of extreme environments characterized by high UV and ionizing radiation flux, low pressure anoxic atmosphere, scarce or absent liquid water, extreme low temperatures, etc. The ability of terrestrial microorganisms to survive and adapt to the Mars environment has profound implications for astrobiology, planetary protection, and Mars life detection missions. At the NASA Ames Synthetic Biology Initiative, we believe that synthetic biology has the potential to revolutionize human space exploration. As such, the initiative is dedicated to applying the tools and techniques of synthetic biology to space exploration and astrobiology. Biological solutions will be invaluable for space exploration because they are not resource intensive, and they are versatile and self-renewing. An understanding of how to work with DNA in an unfavorable environment is paramount to utilizing biological tools on space missions. Furthermore, the ability to adjust life to the parameters of Mars is vital both to discovering what life on Mars might look like, and to using biological tools under such conditions. As a first step, we need an energy-efficient, low cost means of transporting, storing, and protecting genomic DNA, DNA parts, and whole microbial strains. Our goal is to develop and demonstrate viable and superior alternatives to standard DNA storage methods, which can be optimized to the conditions of space exploration, using synthetic biology as a tool. This includes protocols and kit designs for easy and repeatable DNA and strain recovery from protective storage

  4. The origin of methane and biomolecules from a CO2 cycle on terrestrial planets

    Science.gov (United States)

    Civiš, Svatopluk; Knížek, Antonín; Ivanek, Ondřej; Kubelík, Petr; Zukalová, Markéta; Kavan, Ladislav; Ferus, Martin

    2017-10-01

    Understanding the chemical evolution of newly formed terrestrial planets involves uncertainties in atmospheric chemical composition and assessing the plausibility of biomolecule synthesis. In this study, an original scenario for the origin of methane on Mars and terrestrial planets is suggested. Carbon dioxide in Martian and other planetary atmospheres can be abiotically converted into a mixture of methane and carbon monoxide by `methanogenesis' on porous mineral photoactive surfaces under soft ultraviolet irradiation. On young planets exposed to heavy bombardment by interplanetary matter, this process can be followed by biomolecule synthesis through the reprocessing of reactive reducing atmospheres by impact-induced shock waves. The proposed mechanism of methanogenesis may help to answer the question concerning the formation of methane and carbon monoxide by photochemical processes, the formation of biomolecules on early Earth and other terrestrial planets, and the source and seasonal variation of methane concentrations on Mars.

  5. Planetary dynamos driven by helical waves - II

    Science.gov (United States)

    Davidson, P. A.; Ranjan, A.

    2015-09-01

    In most numerical simulations of the Earth's core the dynamo resides outside the tangent cylinder and may be crudely classified as being of the α2 type. In this region the flow comprises a sea of thin columnar vortices aligned with the rotation axis, taking the form of alternating cyclones and anticyclones. The dynamo is thought to be driven by these columnar vortices within which the flow is observed to be highly helical, helicity being a crucial ingredient of planetary dynamos. As noted in Davidson, one of the mysteries of this dynamo cartoon is the origin of the helicity, which is observed to be positive in the south and negative in the north. While Ekman pumping at the mantle can induce helicity in some of the overly viscous numerical simulations, it is extremely unlikely to be a significant source within planets. In this paper we return to the suggestion of Davidson that the helicity observed in the less viscous simulations owes its existence to helical wave packets, launched in and around the equatorial plane where the buoyancy flux is observed to be strong. Here we show that such wave packets act as a potent source of planetary helicity, constituting a simple, robust mechanism that yields the correct sign for h north and south of the equator. Since such a mechanism does not rely on the presence of a mantle, it can operate within both the Earth and the gas giants. Moreover, our numerical simulations show that helical wave packets dispersing from the equator produce a random sea of thin, columnar cyclone/anticyclone pairs, very like those observed in the more strongly forced dynamo simulations. We examine the local dynamics of helical wave packets dispersing from the equatorial regions, as well as the overall nature of an α2-dynamo driven by such wave packets. Our local analysis predicts the mean emf induced by helical waves, an analysis that rests on a number of simple approximations which are consistent with our numerical experiments, while our global

  6. Watching Young Planetary Nebulae Grow: The Movie

    Science.gov (United States)

    Balick, Bruce

    2009-07-01

    The development of magneto-hydro gas dynamical models is the key to the understanding of both the physics {processes} and astronomy {initial conditions} of astrophysical nebulae of all sorts. The models are reaching their highest degree of accuracy when applied to and compared against pre Planetary Nebulae {pPNe} thanks to the simplicity, relative lack of extinction, and the detail of the imaging and kinematic data that have bcome available for these objects. The primary barrier to progress is inadequate kinematic data of pPNe against which the predictions models can be tested. Unlike PNe, pPNe do not emit emission lines for detailed Doppler measurements. Therefore it is essential to find another way to monitor the morphological evolution. Only HST can uncover the dynamics of the growth patterns by subtracting multi-epoch images spanning a decade or more. We have selected four pPNe with highly collimated outflows in different evolutionary stages for which high-quality first-epoch images were obtained from 1996 to 2002. All of them display regularly shaped thin rims, sharp edges, and symmetric pairs of knots or bowshocks that are ideal for our purposes. We will closely mimic many of the earlier exposures using ACS and to monitor changes in structures. The morphology and its evolution will be compared to 3-D MHD models with adaptive grids in order to build a far clearer picture of the nuclear geometry which shaped the outflows and constrained their propagation to the present. We shall also obtain R, J, and H images for use with a 3-D dust radiative transfer code LELUYA to model the dust distribution deep into the nuclear zones.

  7. Planetary Protection and Mars Special Regions--A Suggestion for Updating the Definition.

    Science.gov (United States)

    Rettberg, Petra; Anesio, Alexandre M; Baker, Victor R; Baross, John A; Cady, Sherry L; Detsis, Emmanouil; Foreman, Christine M; Hauber, Ernst; Ori, Gian Gabriele; Pearce, David A; Renno, Nilton O; Ruvkun, Gary; Sattler, Birgit; Saunders, Mark P; Smith, David H; Wagner, Dirk; Westall, Frances

    2016-02-01

    We highlight the role of COSPAR and the scientific community in defining and updating the framework of planetary protection. Specifically, we focus on Mars "Special Regions," areas where strict planetary protection measures have to be applied before a spacecraft can explore them, given the existence of environmental conditions that may be conducive to terrestrial microbial growth. We outline the history of the concept of Special Regions and inform on recent developments regarding the COSPAR policy, namely, the MEPAG SR-SAG2 review and the Academies and ESF joint committee report on Mars Special Regions. We present some new issues that necessitate the update of the current policy and provide suggestions for new definitions of Special Regions. We conclude with the current major scientific questions that remain unanswered regarding Mars Special Regions.

  8. Terrestrial Planet Formation: Constraining the Formation of Mercury

    Science.gov (United States)

    Lykawka, Patryk Sofia; Ito, Takashi

    2017-04-01

    How the four terrestrial planets of the solar system formed is one of the most fundamental questions in the planetary sciences. Particularly, the formation of Mercury remains poorly understood. We investigated terrestrial planet formation by performing 110 high-resolution N-body simulation runs using more than 100 embryos and 6000 disk planetesimals representing a primordial protoplanetary disk. To investigate the formation of Mercury, these simulations considered an inner region of the disk at 0.2-0.5 au (the Mercury region) and disks with and without mass enhancements beyond the ice line location, a IL, in the disk, where a IL = 1.5, 2.25, and 3.0 au were tested. Although Venus and Earth analogs (considering both orbits and masses) successfully formed in the majority of the runs, Mercury analogs were obtained in only nine runs. Mars analogs were also similarly scarce. Our Mercury analogs concentrated at orbits with a ˜ 0.27-0.34 au, relatively small eccentricities/inclinations, and median mass m ˜ 0.2 {M}\\oplus . In addition, we found that our Mercury analogs acquired most of their final masses from embryos/planetesimals initially located between 0.2 and ˜1-1.5 au within 10 Myr, while the remaining mass came from a wider region up to ˜3 au at later times. Although the ice line was negligible in the formation of planets located in the Mercury region, it enriched all terrestrial planets with water. Indeed, Mercury analogs showed a wide range of water mass fractions at the end of terrestrial planet formation.

  9. Where Do Messy Planetary Nebulae Come From?

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a

  10. The Functionally-Assembled Terrestrial Ecosystem Simulator Version 1

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-02

    The Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) is a vegetation model for use in Earth system models (ESMs). The model includes a size- and age-structured representation of tree dynamics, competition between functionally diverse plant functional types, and the biophysics underpinning plant growth, competition, mortality, as well as the carbon, water, and energy exchange with the atmosphere. The FATES model is designed as a modular vegetation model that can be integrated within a host land model for inclusion in ESMs. The model is designed for use in global change studies to understand and project the responses and feedbacks between terrestrial ecosystems and the Earth system under changing climate and other forcings.

  11. Planetary Data Archiving Plan at JAXA

    Science.gov (United States)

    Shinohara, Iku; Kasaba, Yasumasa; Yamamoto, Yukio; Abe, Masanao; Okada, Tatsuaki; Imamura, Takeshi; Sobue, Shinichi; Takashima, Takeshi; Terazono, Jun-Ya

    After the successful rendezvous of Hayabusa with the small-body planet Itokawa, and the successful launch of Kaguya to the moon, Japanese planetary community has gotten their own and full-scale data. However, at this moment, these datasets are only available from the data sites managed by each mission team. The databases are individually constructed in the different formats, and the user interface of these data sites is not compatible with foreign databases. To improve the usability of the planetary archives at JAXA and to enable the international data exchange smooth, we are investigating to make a new planetary database. Within a coming decade, Japan will have fruitful datasets in the planetary science field, Venus (Planet-C), Mercury (BepiColombo), and several missions in planning phase (small-bodies). In order to strongly assist the international scientific collaboration using these mission archive data, the planned planetary data archive at JAXA should be managed in an unified manner and the database should be constructed in the international planetary database standard style. In this presentation, we will show the current status and future plans of the planetary data archiving at JAXA.

  12. The fate of exomoons in white dwarf planetary systems

    Science.gov (United States)

    Payne, Matthew J.; Veras, Dimitri; Gänsicke, Boris T.; Holman, Matthew J.

    2017-01-01

    Roughly 1000 white dwarfs are known to be polluted with planetary material, and the progenitors of this material are typically assumed to be asteroids. The dynamical architectures which perturb asteroids into white dwarfs are still unknown, but may be crucially dependent on moons liberated from parent planets during post-main-sequence gravitational scattering. Here, we trace the fate of these exomoons, and show that they more easily achieve deep radial incursions towards the white dwarf than do scattered planets. Consequently, moons are likely to play a significant role in white dwarf pollution, and in some cases may be the progenitors of the pollution itself.

  13. Planetary Nebulae as Probes of Dark Matter in NGC 3384

    OpenAIRE

    Tremblay, Benoit; Merritt, David; Williams, T. B.

    1995-01-01

    We have obtained radial velocities of 68 planetary nebulae surrounding the SB0 galaxy NGC 3384 in the Leo I group, using the CTIO 4 m telescope and the Rutgers Fabry-Perot interferometer. The PN system exhibits a well-ordered rotation field aligned with the photometric axes of the galaxy. The rotation curve is flat from about 2 kpc until at least 7 kpc. Our results imply that at least a third of the dynamical mass of the NGC 3379/3384 system may be accounted for in the two bright galaxies.

  14. GIS-based Conceptual Database Model for Planetary Geoscientific Mapping

    Science.gov (United States)

    van Gasselt, Stephan; Nass, Andrea; Neukum, Gerhard

    2010-05-01

    concerning, e.g., map products (product and cartograpic representation), sensor-data products, stratigraphy definitions for each planet (facies, formation, ...), and mapping units. Domains and subtypes as well as a set of two dozens relationships define their interaction and allow a high level of constraints that aid to limit errors by domain- and topologic boundary conditions without limiting the abilitiy of the mapper to perform his/her task. The geodatabase model is part of a data model currently under development and design in the context of providing tools and definitions for mapping, cartographic representations and data exploitation. The database model as an integral part is designed for portability with respect to geoscientific mapping tasks in general and can be applied to every GIS project dealing with terrestrial planetary objects. It will be accompanied by definitions and representations on the cartographic level as well as tools and utilities for providing easy accessible workflows focussing on query, organization, maintainance, integration of planetary data and meta information. The data model's layout is modularized with individual components dealing with symbol representations (geology and geomorphology), metadata accessibility and modification, definition of stratigraphic entitites and their relationships as well as attribute domains, extensions for planetary mapping and analysis tasks as well as integration of data information on the level of vector representations for easy accessible querying, data processing in connection with ISIS/GDAL and data integration.

  15. An online planetary exploration tool: ;Country Movers;

    Science.gov (United States)

    Gede, Mátyás; Hargitai, Henrik

    2017-08-01

    Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.

  16. A Microseismometer for Terrestrial and Extraterrestrial Applications

    Science.gov (United States)

    Banerdt, W.; Kaiser, W.; Vanzandt, T.

    1993-01-01

    The scientific and technical requirements of extraterrestrial seismology place severe demands on instrumentation. Performance in terms of sensitivity, stability, and frequency band must match that of the best terrestrial instruments, at a fraction of the size, mass, and power. In addition, this performance must be realized without operator intervention in harsh temperature, shock, and radiation environments. These constraints have forced us to examine some fundamental limits of accelerometer design in order to produce a small, rugged, sensitive seismometer. Silicon micromachined sensor technology offers techniques for the fabrication of monolithic, robust, compact, low-power and -mass accelerometers. However, currently available sensors offer inadequate sensitivity and bandwidth. Our implementation of an advanced silicon micro machined seismometer is based on principles developed at JPL for high-sensitivity position sensor technology. The use of silicon micro machining technology with these new principles should enable the fabrication of a 10(exp -11) g sensitivity seismometer with a bandwidth of at least 0.01 to 20 Hz. The low Q properties of pure single-crystal silicon are essential in order to minimize the Brownian thermal noise limitations generally characteristic of seismometers with small proof masses. A seismometer consists of a spring-supported proof mass and a transducer for measuring its motion. For long period motion a position sensor is generally used, for which the displacement is proportional to the ground acceleration. The mechanical sensitivity can be increased either by increasing the proof mass or decreasing the spring stiffness, neither of which is desirable for planetary applications. Our approach has been to use an ultra sensitive capacitive position sensor with a sensitivity of better than 10(exp -13) m/Hz(exp 1/2). This allows the use of a stiffer suspension and a smaller proof mass. We have built several prototypes using these principles

  17. ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Wordsworth, Robin; Pierrehumbert, Raymond [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60622 (United States)

    2014-04-20

    Detection of life on other planets requires identification of biosignatures, i.e., observable planetary properties that robustly indicate the presence of a biosphere. One of the most widely accepted biosignatures for an Earth-like planet is an atmosphere where oxygen is a major constituent. Here we show that lifeless habitable zone terrestrial planets around any star type may develop oxygen-dominated atmospheres as a result of water photolysis, because the cold trap mechanism that protects H{sub 2}O on Earth is ineffective when the atmospheric inventory of non-condensing gases (e.g., N{sub 2}, Ar) is low. Hence the spectral features of O{sub 2} and O{sub 3} alone cannot be regarded as robust signs of extraterrestrial life.

  18. Planetary protection - assaying new methods

    Science.gov (United States)

    Nellen, J.; Rettberg, P.; Horneck, G.

    Space age began in 1957 when the USSR launched the first satellite into earth orbit. In response to this new challenge the International Council for Science, formerly know as International Council of Scientific Unions (ICSU), established the Committee on Space Research (COSPAR) in 1958. The role of COSPAR was to channel the international scientific research in space and establish an international forum. Through COSPAR the scientific community agreed on the need for screening interplanetary probes for forward (contamination of foreign planets) and backward (contamination of earth by returned samples/probes) contamination. To prevent both forms of contamination a set of rules, as a guideline was established. Nowadays the standard implementation of the planetary protection rules is based on the experience gained during NASA's Viking project in 1975/76. Since then the evaluation-methods for microbial contamination of spacecrafts have been changed or updated just slowly. In this study the standard method of sample taking will be evaluated. New methods for examination of those samples, based on the identification of life on the molecular level, will be reviewed and checked for their feasibility as microbial detection systems. The methods will be examined for their qualitative (detection and verification of different organisms) and quantitative (detection limit and concentration verification) qualities. Amongst the methods analyzed will be i.e. real-time / PCR (poly-chain-reaction), using specific primer-sets for the amplification of highly conserved rRNA or DNA regions. Measurement of intrinsic fluorescence, i.e ATP using luciferin-luciferase reagents. The use of FAME (fatty acid methyl esters) and microchips for microbial identification purposes. The methods will be chosen to give a good overall coverage of different possible molecular markers and approaches. The most promising methods shall then be lab-tested and evaluated for their use under spacecraft assembly

  19. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  20. Cold Noise Testing of a Microseismometer for Planetary and Terrestrial Applications

    Science.gov (United States)

    Warren, T.; Pike, W. T.; Calcutt, S. B.; Bowles, N. E.; Temple, J.

    2016-12-01

    As part of the seismic payload for the Insight mission to Mars, a three axis set of microseismometers, known as SP, have been successfully integrated into the seismometer package. A set of performance tests on each flight sensor has been performed at the University of Oxford prior to integration. These tests demonstrate the minimum noise performance of the sensor is below 0.5ng/rtHz over a wide range of tilt angles at room temperature. Recently a flight spare sensor has been used to show the minimum noise performance is still below 0.5ng/rtHz over the range of expected temperatures on the Martian surface (from the expected Mars minimum of -60C to a maximum of +60C). Direct measurements of cold noise performance are difficult because of seismic noise from the cooling system, however a novel cold noise setup has been developed that allows for the direct measurement of performance at low temperatures.

  1. Impact delivery and erosion of planetary oceans in the early inner solar system

    Science.gov (United States)

    Chyba, Christopher F.

    1990-01-01

    The terrestrial planets may have acquired oceans of water (and other surface volatiles) as a late-accreting veneer from impacts of comets and carbonaceous asteroids during the period of heavy bombardment 4.5 to 3.5 Gyr ago. On any given body, the efficiency of this mechanism depended on a competition between impact delivery of new volatiles and impact erosion of those already present. For the larger worlds of the inner Solar System, this competition strongly favored the net accumulation of planetary oceans.

  2. Is SDSSJ195750.83+340404.4 accreting a planetary core?

    Science.gov (United States)

    Melis, Carl

    2017-08-01

    White dwarf stars are now known to regularly accrete material from their extant planetary systems. We have identified a new polluted white dwarf star that is accreting extremely iron-rich material, suggesting that it is being polluted by the core of a massive, differentiated rocky body. We propose COS FUV spectroscopic observations of SDSSJ1957+3404 that will allow us to peer into the heart of Earth-like rocky exoplanets. These observations will address questions pertaining to terrestrial planet structure and formation processes and the question of what mixture of elements is responsible for Earth's under-dense outer core.

  3. Extension of Einstein's Planetary Theory Based on Generalized ...

    African Journals Online (AJOL)

    In this article, the generalized Einstein's radial equation of motion in the equatorial plane of the Sun is transformed to obtain additional correction terms to all order of C2 to Einstein's planetary equation of motion and hence to the planetary parameters. Keywords: Radial Equation; Planetary Equation; Planetary parameters ...

  4. Planetary science: Haze cools Pluto's atmosphere

    Science.gov (United States)

    West, Robert A.

    2017-11-01

    Modelling suggests that Pluto's atmospheric temperature is regulated by haze, unlike the other planetary bodies in the Solar System. The finding has implications for our understanding of exoplanetary atmospheres. See Letter p.352

  5. Low-energy Planetary Excavator (LPE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC is developing an innovative Low-energy Planetary Excavator (LPE) to excavate in situ regolith, ice-regolith mixes, and a variety of other geologic materials...

  6. Low-energy Planetary Excavator (LPE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop an innovative Low-energy Planetary Excavator (LPE) to excavate in situ regolith, ice-regolith mixes, and a variety of other geologic...

  7. Sensor Array Analyzer for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions such as those planned by NASA and other space agencies over the next few decades require advanced chemical and biological...

  8. The Soil of Mars - Planetary Geology

    Science.gov (United States)

    Bullock, Mark A.

    1994-09-01

    What would it be like to walk on Mars, to let martian dirt run through your fingers? Planetary geologists, aided by amateur astronomers, are slowly figuring out what Mars is like. With a sidebar by Jack D. Farmer.

  9. An ecological compass for planetary engineering.

    Science.gov (United States)

    Haqq-Misra, Jacob

    2012-10-01

    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  10. Modes of planetary-scale Fe isotope fractionation

    Science.gov (United States)

    Schoenberg, Ronny; von Blanckenburg, Friedhelm

    2006-12-01

    A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the

  11. Artificial Intelligence in planetary spectroscopy

    Science.gov (United States)

    Waldmann, Ingo

    2017-10-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.

  12. Astronomic Bioethics: Terraforming X Planetary protection

    OpenAIRE

    Palhares, Dario; Santos, Íris Almeida dos

    2017-01-01

    A hard difficulty in Astrobiology is the precise definition of what life is. All living beings have a cellular structure, so it is not possible to have a broader concept of life hence the search for extraterrestrial life is restricted to extraterrestrial cells. Earth is an astronomical rarity because it is difficult for a planet to present liquid water on the surface. Two antagonistic bioethical principles arise: planetary protection and terraforming. Planetary protection is based on the fear...

  13. Spin of Planetary Probes in Atmospheric Flight

    Science.gov (United States)

    Lorenz, R. D.

    Probes that enter planetary atmospheres are often spun during entry or descent for a variety of reasons. Their spin rate histories are influenced by often subtle effects. The spin requirements, control methods and flight experience from planetary and earth entry missions are reviewed. An interaction of the probe aerodynamic wake with a drogue parachute, observed in Gemini wind tunnel tests, is discussed in connection with the anomalous spin behaviour of the Huygens probe.

  14. Extra-terrestrial construction processes - Advancements, opportunities and challenges

    Science.gov (United States)

    Lim, Sungwoo; Prabhu, Vibha Levin; Anand, Mahesh; Taylor, Lawrence A.

    2017-10-01

    Government space agencies, including NASA and ESA, are conducting preliminary studies on building alternative space-habitat systems for deep-space exploration. Such studies include development of advanced technologies for planetary surface exploration, including an in-depth understanding of the use of local resources. Currently, NASA plans to land humans on Mars in the 2030s. Similarly, other space agencies from Europe (ESA), Canada (CSA), Russia (Roscosmos), India (ISRO), Japan (JAXA) and China (CNSA) have already initiated or announced their plans for launching a series of lunar missions over the next decade, ranging from orbiters, landers and rovers for extended stays on the lunar surface. As the Space Odyssey is one of humanity's oldest dreams, there has been a series of research works for establishing temporary or permanent settlement on other planetary bodies, including the Moon and Mars. This paper reviews current projects developing extra-terrestrial construction, broadly categorised as: (i) ISRU-based construction materials; (ii) fabrication methods; and (iii) construction processes. It also discusses four categories of challenges to developing an appropriate construction process: (i) lunar simulants; (ii) material fabrication and curing; (iii) microwave-sintering based fabrication; and (iv) fully autonomous and scaled-up construction processes.

  15. Wide-Field Ultraviolet Spectrometer for Planetary Exospheres and Thermospheres

    Science.gov (United States)

    Fillingim, M. O.; Wishnow, E. H.; Miller, T.; Edelstein, J.; Lillis, R. J.; Korpela, E.; England, S.; Shourt, W. V.; Siegmund, O.; McPhate, J.; Courtade, S.; Curtis, D. W.; Deighan, J.; Chaffin, M.; Harmoul, A.; Almatroushi, H. R.

    2016-12-01

    Understanding the composition, structure, and variability of a planet's upper atmosphere - the exosphere and thermosphere - is essential for understanding how the upper atmosphere is coupled to the lower atmosphere, magnetosphere and near-space environment, and the Sun. Ultraviolet spectroscopy can directly observe emissions from constituents in the exosphere and thermosphere. From such observations, the structure, composition, and variability can be determined.We will present the preliminary design for a wide field ultraviolet imaging spectrometer for remote sensing of planetary atmospheres. The imaging spectrometer achieves an extremely large instantaneous 110 degree field of view with no moving scanning mirror. The imaging resolution is very appropriate for extended atmospheric emission studies, with a resolution of better than 0.3 degrees at the center to 0.4 degrees at the edges of the field. The spectral range covers 120 - 170 nm, encompassing emissions from H, O, C, N, CO, and N2, with an average spectral resolution of 1.5 nm. The instrument is composed of a 2-element wide-field telescope, a 3-element Offner spectrometer, and a sealed MCP detector system contained within a compact volume of about 40 x 25 x 20 cm. We will present the optical and mechanical design as well as the predicted optical performance.The wide instantaneous FOV simplifies instrument and spacecraft operations by removing the need for multiple scans (either from a scan mirror or spacecraft slews) to cover the regions of interest. This instrumentation can allow for two-dimensional spectral information to be built up with simple spacecraft operation or just using spacecraft motion. Applications to the terrestrial geocorona and thermosphere will be addressed as well as applications to the upper atmospheres of other planetary objects.

  16. Planetary habitability: is Earth commonplace in the Milky Way?

    Science.gov (United States)

    Franck, S; Block, A; von Bloh, W; Bounama, C; Garrido, I; Schellnhuber, H J

    2001-10-01

    Is there life beyond planet Earth? This is one of the grand enigmas which humankind tries to solve through scientific research. Recent progress in astronomical measurement techniques has confirmed the existence of a multitude of extra-solar planets. On the other hand, enormous efforts are being made to assess the possibility of life on Mars. All these activities have stimulated several investigations about the habitability of cosmic bodies. The habitable zone (HZ) around a given central star is defined as the region within which an Earth-like planet might enjoy the moderate surface temperatures required for advanced life forms. At present, there are several models determining the HZ. One class of models utilises climate constraints for the existence of liquid water on a planetary surface. Another approach is based on an integrated Earth system analysis that relates the boundaries of the HZ to the limits of photosynthetic processes. Within the latter approach, the evolution of the HZ for our solar system over geological time scales is calculated straightforwardly, and a convenient filter can be constructed that picks the candidates for photosynthesis-based life from all the extra-solar planets discovered by novel observational methods. These results can then be used to determine the average number of planets per planetary system that are within the HZ. With the help of a segment of the Drake equation, the number of "Gaias" (i.e. extra-solar terrestrial planets with a globally acting biosphere) is estimated. This leads to the thoroughly educated guess that there should exist half a million Gaias in the Milky Way.

  17. Using Planetary Nebulae to Teach Physics

    Science.gov (United States)

    Kwitter, Karen B.

    2011-05-01

    We have developed an interactive website, "Gallery of Planetary Nebula Spectra," (www.williams.edu/Astronomy/research/PN/nebulae/) that contains high-quality optical-to-near-infrared spectra, atlas information, and bibliographic references for more than 160 planetary nebulae that we have observed in the Milky Way Galaxy. To make the material more accessible to students, I have created three undergraduate-level exercises that explore physics-related aspects of planetary nebulae. "Emission Lines and Central Star Temperature” uses the presence or absence of emission lines from species with different ionization potentials to rank the temperatures of the exciting stars in a selection of nebulae. "Interstellar Reddening” uses the observed Balmer decrement in a sample of planetary nebulae at different Galactic latitudes to infer the distribution of interstellar dust in the Milky Way. Finally, "Determining the Gas Density in Planetary Nebulae,” which I will focus on here, uses the observed intensity ratio of the 6717 Å and 6731 Å emission lines from singly ionized sulfur to determine the electron density in the nebular gas. These exercises demonstrate that planetary nebula spectra are useful real-world examples illustrating a variety of physical principles, including the behavior of blackbodies, wavelength-dependent particle scattering, recombination-line ratios, atomic physics, and statistical mechanics.

  18. Automatic Feature Extraction from Planetary Images

    Science.gov (United States)

    Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.

    2010-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.

  19. Planetary Gearbox Fault Diagnosis Using Envelope Manifold Demodulation

    OpenAIRE

    Weigang Wen; Gao, Robert X.; Weidong Cheng

    2016-01-01

    The important issue in planetary gear fault diagnosis is to extract the dependable fault characteristics from the noisy vibration signal of planetary gearbox. To address this critical problem, an envelope manifold demodulation method is proposed for planetary gear fault detection in the paper. This method combines complex wavelet, manifold learning, and frequency spectrogram to implement planetary gear fault characteristic extraction. The vibration signal of planetary gear is demodulated by w...

  20. Abiotic nitrogen fixation on terrestrial planets: reduction of NO to ammonia by FeS.

    Science.gov (United States)

    Summers, David P; Basa, Ranor C B; Khare, Bishun; Rodoni, David

    2012-02-01

    Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO₂ and N₂O. The NO₂ is then converted to ammonia, while the N₂O is released back in the gas phase, which provides an abiotic source of nitrous oxide.

  1. Terrestrial ecosystems and their change

    Science.gov (United States)

    Anatoly Z. Shvidenko; Eric Gustafson; A. David McGuire; Vjacheslav I. Kharuk; Dmitry G. Schepaschenko; Herman H. Shugart; Nadezhda M. Tchebakova; Natalia N. Vygodskaya; Alexander A. Onuchin; Daniel J. Hayes; Ian McCallum; Shamil Maksyutov; Ludmila V. Mukhortova; Amber J. Soja; Luca Belelli-Marchesini; Julia A. Kurbatova; Alexander V. Oltchev; Elena I. Parfenova; Jacquelyn K. Shuman

    2012-01-01

    This chapter considers the current state of Siberian terrestrial ecosystems, their spatial distribution, and major biometric characteristics. Ongoing climate change and the dramatic increase of accompanying anthropogenic pressure provide different but mostly negative impacts on Siberian ecosystems. Future climates of the region may lead to substantial drying on large...

  2. Updated symbol catalogue for geologic and geomorphologic mapping in Planetary Scinces

    Science.gov (United States)

    Nass, Andrea; Fortezzo, Corey; Skinner, James, Jr.; Hunter, Marc; Hare, Trent

    2017-04-01

    Maps are one of the most powerful communication tools for spatial data. This is true for terrestrial data, as well as the many types of planetary data. Geologic and/or geomorphologic maps of planetary surfaces, in particular those of the Moon, Mars, and Venus, are standardized products and often prepared as a part of hypothesis-driven science investigations. The NASA-funded Planetary Geologic Mapping program, coordinated by the USGS Astrogeology Science Center (ASC), produces high-quality, standardized, and refereed geologic maps and digital databases of planetary bodies. In this context, 242 geologic, geomorphologic, and thematic map sheets and map series have been published since the 1962. However, outside of this program, numerous non-USGS published maps are created as result of scientific investigations and published, e.g. as figures or supplemental materials within a peer-reviewed journal article. Due to the complexity of planetary surfaces, diversity between different planet surfaces, and the varied resolution of the data, geomorphologic and geologic mapping is a challenging task. Because of these limiting conditions, the mapping process is a highly interpretative work and is mostly limited to remotely sensed satellite data - with a few expetions from rover data. Uniform and an unambiguous data are fundamental to make quality observations that lead to unbiased and supported interpretations, especially when there is no current groundtruthing. To allow for correlation between different map products (digital or analog), the most commonly used spatial objects are predefined cartographic symbols. The Federal Geographic Data Committee (FGDC) Digital Cartographic Standard for Geologic Map Symbolization (DCSGMS) defines the most commonly used symbols, colors, and hatch patterns in one comprehensive document. Chapter 25 of the DCSGMS defines the Planetary Geology Features based on the symbols defined in the Venus Mapper's Handbook. After reviewing the 242 planetary

  3. Cornice Monitoring with a Terrestrial Laser Scanner

    Science.gov (United States)

    Prokop, Alexander; Hancock, Holt

    2017-04-01

    Cornice failure poses a threat to infrastructure and human life in central Svalbard, where cornice fall avalanches comprise a significant portion of all observed avalanche activity. Cornice accretion occurs seasonally on the plateau edges of the mountains that border Longyearbyen - Svalbard's primary settlement - where snow entrained over the long fetches of the plateau summits is deposited by the prevailing winds. Here, we present the preliminary results from our first season regularly monitoring these cornice systems with the Riegl VZ-6000 terrestrial laser scanner. We demonstrate the applicability of TLS data acquisition for monitoring cornice system dynamics and discuss the utility of such measurements for hazard management purposes. Finally, we show how this unique high spatial resolution data will act as a reference dataset for modeling exercises to improve the process understanding of cornice development and failure - in arctic environments and throughout the world.

  4. A Planetary Geophysicist Does EPO: Lessons Learned Along the Way

    Science.gov (United States)

    Kiefer, W. S.

    2011-12-01

    My "day job" is numerical modeling of the interiors of the terrestrial planets, but I have also done EPO projects for the last 17 years while at the Lunar and Planetary Institute. These range from single, hour long talks in classrooms or astronomy clubs, to week-long summer workshops for teachers and librarians, and even semester-long programs, along with a number of curriculum development projects. EPO projects are a great way to help develop both the next generation of scientists and, more importantly, of scientifically literate citizens and taxpayers. Here are a few lessons learned along the way in the school of hard knocks. (1) An engaging delivery style is even more important in EPO presentations than it is in college lectures or conference presentations. Emphasize a few key concepts rather than numerous facts, and keep the jargon out. Good analogies can go a long way towards explaining a concept to any age group. I teach the role of size in planetary cooling by first asking students how long it takes to cook food of various sizes (a hamburger, roast beef, turkey). (2) If you will be working with a group of students for more than one class period, classroom friendly activities strengthen the learning process. Such activities do not need to be elaborate - when teaching about the Moon, I sometimes assign students to take their parents outside at night and show them how to find lava flows on the Moon. Teachers usually need to have classroom activities that are aligned to state or national teaching standards. Fortunately, many effective, standards-aligned activities already exist, so you don't need to reinvent the wheel. For a useful listing of planetary science and astronomy activities, see the LPI website www.lpi.usra.edu/education/resources/ (3) Although EPO work can be personally rewarding, it is not always well rewarded in a professional context, and it can be difficult to find the time and financial resources to sustain major projects. We sometimes use a

  5. Inclusive Planetary Science Outreach and Education: a Pioneering European Experience

    Science.gov (United States)

    Galvez, A.; Ballesteros, F.; García-Frank, A.; Gil, S.; Gil-Ortiz, A.; Gómez-Heras, M.; Martínez-Frías, J.; Parro, L. M.; Parro, V.; Pérez-Montero(, E.; Raposo, V.; Vaquerizo, J. A.

    2017-09-01

    Abstract Universal access to space science and exploration for researchers, students and the public, regardless of physical abilities or condition, is the main objective of work by the Space Inclusive Network (SpaceIn). The purpose of SpaceIn is to conduct educational and communication activities on Space Science in an inclusive and accessible way, so that physical disability is not an impediment for participating. SpaceIn members aim to enlarge the network also by raising awareness among individuals such as undergraduate students, secondary school teachers, and members of the public with an interest and basic knowledge on science and astronomy. As part of a pilot experience, current activities are focused on education and outreach in the field of comparative Planetary Science and Astrobiology. Themes include the similarities and differences between terrestrial planets, the role of water and its interaction with minerals on their surfaces, the importance of internal thermal energy in shaping planets and moons and the implications for the appearance of life, as we know it, in our planet and, possibly, in other places in our Solar System and beyond. The topics also include how scientific research and space missions can shed light on these fundamental issues, such as how life appears on a planet, and thus, why planetary missions are important in our society, as a source of knowledge and inspiration. The tools that are used to communicate the concepts include talks with support of multimedia and multi-sensorial material (video, audio, tactile, taste, smell) and field trips to planetary analogue sites that are accessible to most members of the public, including people with some kind of disability. The field trips help illustrate scientific concepts in geology e.g. lava formations, folds, impact features, gullies, salt plains; biology, e.g. extremophiles, halophites; and exploration technology, e.g. navigation in an unknown environment, hazard and obstacle avoidance

  6. Geophysics of Small Planetary Bodies

    Science.gov (United States)

    Asphaug, Erik I.

    1998-01-01

    As a SETI Institute PI from 1996-1998, Erik Asphaug studied impact and tidal physics and other geophysical processes associated with small (low-gravity) planetary bodies. This work included: a numerical impact simulation linking basaltic achondrite meteorites to asteroid 4 Vesta (Asphaug 1997), which laid the groundwork for an ongoing study of Martian meteorite ejection; cratering and catastrophic evolution of small bodies (with implications for their internal structure; Asphaug et al. 1996); genesis of grooved and degraded terrains in response to impact; maturation of regolith (Asphaug et al. 1997a); and the variation of crater outcome with impact angle, speed, and target structure. Research of impacts into porous, layered and prefractured targets (Asphaug et al. 1997b, 1998a) showed how shape, rheology and structure dramatically affects sizes and velocities of ejecta, and the survivability and impact-modification of comets and asteroids (Asphaug et al. 1998a). As an affiliate of the Galileo SSI Team, the PI studied problems related to cratering, tectonics, and regolith evolution, including an estimate of the impactor flux around Jupiter and the effect of impact on local and regional tectonics (Asphaug et al. 1998b). Other research included tidal breakup modeling (Asphaug and Benz 1996; Schenk et al. 1996), which is leading to a general understanding of the role of tides in planetesimal evolution. As a Guest Computational Investigator for NASA's BPCC/ESS supercomputer testbed, helped graft SPH3D onto an existing tree code tuned for the massively parallel Cray T3E (Olson and Asphaug, in preparation), obtaining a factor xIO00 speedup in code execution time (on 512 cpus). Runs which once took months are now completed in hours.

  7. Planetary Systems and the Formation of Habitable Planets

    Science.gov (United States)

    Dvorak, Rudolf; Maindl, Thomas I.; Burger, Christoph; Schäfer, Christoph; Speith, Roland

    2015-09-01

    As part of a national scientific network 'Pathways to Habitability' the formation of planets and the delivery of water onto these planets is a key question as water is essential for the development of life. In the first part of the paper we summarize the state of the art of planet formation - which is still under debate in the astronomical community - before we show our results on this topic. The outcome of our numerical simulations depends a lot on the choice of the initial distribution of planetesimals and planetary embryos after gas disappeared in the protoplanetary disk. We also take into account that some of these planetesimals of sizes in the order of the mass of the Moon already contained water; the quantity depends on the distance from the Sun - close-by bodies are dry, but starting from a distance of about 2 AU they can contain substantial amounts of water. We assume that the gas giants and terrestrial planets are already formed when we check the collisions of the small bodies containing water (in the order of a few percent) with the terrestrial planets. We thus are able to give an estimate of the respective contribution to the actual water content (of some Earth-oceans) in the mantle, in the crust and on the surface of Earth. In the second part we discuss in more detail how the formation of larger bodies after a collision may happen as the outcome depends on parameters like collision velocity, impact angle, and the materials involved. We present results obtained by SPH (Smooth Particle Hydrodynamics) simulations. We briefly describe this method and show different scenarios with respect to the formed bodies, possible fragmentation and the water content before and after the collision. In an appendix we discuss detection methods for extrasolar planets (close to 2000 such objects have been discovered so far).

  8. Unique Spectroscopy and Imaging of Terrestrial Planets with JWST

    Science.gov (United States)

    Villanueva, Geronimo Luis; JWST Mars Team

    2017-06-01

    In this talk, I will present the main capabilities of the James Webb Space Telescope (JWST) for performing observations of terrestrial planets, using Mars as a test case. The distinctive vantage point of JWST at the Sun-Earth Lagrange point (L2) will allow sampling the full observable disk, permitting the study of short-term phenomena, diurnal processes (across the East-West axis) and latitudinal processes between the hemispheres (including seasonal effects) with excellent spatial resolutions (0.07 arcsec at 2 um). Spectroscopic observations will be achievable in the 0.7-5 um spectral region with NIRSpec at a maximum resolving power of 2700, and with 8000 in the 1-1.25 um range. Imaging will be attainable with NIRCam at 4.3 um and with two narrow filters near 2 um, while the nightside will be accessible with several filters in the 0.5 to 2 um. Such a powerful suite of instruments will be a major asset for the exploration and characterization of Mars, and terrestrial planets in general. Some science cases include the mapping of the water D/H ratio, investigations of the Martian mesosphere via the characterization of the non-LTE CO2 emission at 4.3 um, studies of chemical transport via observations of the O2 nightglow at 1.27 um, high cadence mapping of the variability dust and water ice clouds, and sensitive searches for trace species and hydrated features on the planetary surface.

  9. Mars Ascent Vehicle Test Requirements and Terrestrial Validation

    Science.gov (United States)

    Dankanich, John W.; Cathey, Henry M.; Smith, David A.

    2011-01-01

    The Mars robotic sample return mission has been a potential flagship mission for NASA s science mission directorate for decades. The Mars Exploration Program and the planetary science decadal survey have highlighted both the science return of the Mars Sample Return mission, but also the need for risk reduction through technology development. One of the critical elements of the MSR mission is the Mars Ascent Vehicle, which must launch the sample from the surface of Mars and place it into low Mars orbit. The MAV has significant challenges to overcome due to the Martian environments and the Entry Descent and Landing system constraints. Launch vehicles typically have a relatively low success probability for early flights, and a thorough system level validation is warranted. The MAV flight environments are challenging and in some cases impossible to replicate terrestrially. The expected MAV environments have been evaluated and a first look of potential system test options has been explored. The terrestrial flight requirements and potential validation options are presented herein.

  10. FOREVER ALONE? TESTING SINGLE ECCENTRIC PLANETARY SYSTEMS FOR MULTIPLE COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.; Bailey, J.; Salter, G. S.; Wright, D. [Department of Astrophysics, School of Physics, Faculty of Science, The University of New South Wales, Sydney, NSW 2052 (Australia); Wang Songhu; Zhou Jilin [Department of Astronomy and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210093 (China); Butler, R. P. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Jones, H. R. A. [University of Hertfordshire, Centre for Astrophysics Research, Science and Technology Research Institute, College Lane, AL10 9AB Hatfield (United Kingdom); O' Toole, S. J. [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Carter, B. D., E-mail: rob@phys.unsw.edu.au [Faculty of Sciences, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia)

    2013-09-15

    Determining the orbital eccentricity of an extrasolar planet is critically important for understanding the system's dynamical environment and history. However, eccentricity is often poorly determined or entirely mischaracterized due to poor observational sampling, low signal-to-noise, and/or degeneracies with other planetary signals. Some systems previously thought to contain a single, moderate-eccentricity planet have been shown, after further monitoring, to host two planets on nearly circular orbits. We investigate published apparent single-planet systems to see if the available data can be better fit by two lower-eccentricity planets. We identify nine promising candidate systems and perform detailed dynamical tests to confirm the stability of the potential new multiple-planet systems. Finally, we compare the expected orbits of the single- and double-planet scenarios to better inform future observations of these interesting systems.

  11. Turning Planetary Theory Upside Down

    Science.gov (United States)

    2010-04-01

    The discovery of nine new transiting exoplanets is announced today at the RAS National Astronomy Meeting (NAM2010). When these new results were combined with earlier observations of transiting exoplanets astronomers were surprised to find that six out of a larger sample of 27 were found to be orbiting in the opposite direction to the rotation of their host star - the exact reverse of what is seen in our own Solar System. The new discoveries provide an unexpected and serious challenge to current theories of planet formation. They also suggest that systems with exoplanets of the type known as hot Jupiters are unlikely to contain Earth-like planets. "This is a real bomb we are dropping into the field of exoplanets," says Amaury Triaud, a PhD student at the Geneva Observatory who, with Andrew Cameron and Didier Queloz, leads a major part of the observational campaign. Planets are thought to form in the disc of gas and dust encircling a young star. This proto-planetary disc rotates in the same direction as the star itself, and up to now it was expected that planets that form from the disc would all orbit in more or less the same plane, and that they would move along their orbits in the same direction as the star's rotation. This is the case for the planets in the Solar System. After the initial detection of the nine new exoplanets [1] with the Wide Angle Search for Planets (WASP, [2]), the team of astronomers used the HARPS spectrograph on the 3.6-metre ESO telescope at the La Silla observatory in Chile, along with data from the Swiss Euler telescope, also at La Silla, and data from other telescopes to confirm the discoveries and characterise the transiting exoplanets [3] found in both the new and older surveys. Surprisingly, when the team combined the new data with older observations they found that more than half of all the hot Jupiters [4] studied have orbits that are misaligned with the rotation axis of their parent stars. They even found that six exoplanets in this

  12. Laser-based mass spectrometry for in situ chemical composition analysis of planetary surfaces

    Science.gov (United States)

    Frey, Samira; Neuland, Maike B.; Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-04-01

    Mass spectrometry is an important analytical technique in space research. The chemical composition of planetary surface material is a key scientific question on every space mission to a planet, moon or asteroid. Chemical composition measurements of rocky material on the surface are of great importance to understand the origin and evolution of the planetary body.[1] A miniature laser ablation/ionisation reflectron- type time-of-flight mass spectrometer (instrument name LMS) was designed and built at the University of Bern for planetary research.[2] Despite its small size and light weight, the LMS instrument still maintains the same capabilities as large laboratory systems, which makes it suitable for its application on planetary space missions.[3-5] The high dynamic range of about eight orders of magnitude, high lateral (μm-level) and vertical (sub-nm level) resolution and high detection sensitivity for almost all elements (10 ppb, atomic fraction) make LMS a versatile instrument for various applications. LMS is a suitable instrument for in situ measurements of elemental and isotope composition with high precision and accuracy. Measurements of Pb- isotope abundances can be used for dating of planetary material. Measurements of bio-relevant elements allow searching for past or present life on a planetary surface. The high spatial resolution, both in lateral and vertical direction, is of considerable interest, e.g. for analysis of inhomogeneous, extraterrestrial samples as well as weathering processes of planetary material. References [1] P. Wurz, D. Abplanalp, M. Tulej, M. Iakovleva, V.A. Fernandes, A. Chumikov, and G. Managadze, "Mass Spectrometric Analysis in Planetary Science: Investigation of the Surface and the Atmosphere", Sol. Sys. Res., 2012, 46, 408. [2] U. Rohner, J.A. Whitby, P. Wurz, "A miniature laser ablation time of flight mass spectrometer for in situ planetary exploration" Meas. Sci. Tch., 2003, 14, 2159. [3] M. Tulej, A. Riedo, M.B. Neuland, S

  13. Long-Period Planets in Open Clusters and the Evolution of Planetary Systems

    Science.gov (United States)

    Quinn, Samuel N.; White, Russel; Latham, David W.; Stefanik, Robert

    2018-01-01

    Recent discoveries of giant planets in open clusters confirm that they do form and migrate in relatively dense stellar groups, though overall occurrence rates are not yet well constrained because the small sample of giant planets discovered thus far predominantly have short periods. Moreover, planet formation rates and the architectures of planetary systems in clusters may vary significantly -- e.g., due to intercluster differences in the chemical properties that regulate the growth of planetary embryos or in the stellar space density and binary populations, which can influence the dynamical evolution of planetary systems. Constraints on the population of long-period Jovian planets -- those representing the reservoir from which many hot Jupiters likely form, and which are most vulnerable to intracluster dynamical interactions -- can help quantify how the birth environment affects formation and evolution, particularly through comparison of populations possessing a range of ages and chemical and dynamical properties. From our ongoing RV survey of open clusters, we present the discovery of several long-period planets and candidate substellar companions in the Praesepe, Coma Berenices, and Hyades open clusters. From these discoveries, we improve estimates of giant planet occurrence rates in clusters, and we note that high eccentricities in several of these systems support the prediction that the birth environment helps shape planetary system architectures.

  14. Terrestrial hyperspectral image shadow restoration through fusion with terrestrial lidar

    Science.gov (United States)

    Hartzell, Preston J.; Glennie, Craig L.; Finnegan, David C.; Hauser, Darren L.

    2017-05-01

    Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from exclusively airborne observations to include terrestrial modalities. In contrast to airborne collection geometry, hyperspectral imagery captured from terrestrial cameras is prone to extensive solar shadowing on vertical surfaces leading to reductions in pixel classification accuracies or outright removal of shadowed areas from subsequent analysis tasks. We demonstrate the use of lidar spatial information for sub-pixel HSI shadow detection and the restoration of shadowed pixel spectra via empirical methods that utilize sunlit and shadowed pixels of similar material composition. We examine the effectiveness of radiometrically calibrated lidar intensity in identifying these similar materials in sun and shade conditions and further evaluate a restoration technique that leverages ratios derived from the overlapping lidar laser and HSI wavelengths. Simulations of multiple lidar wavelengths, i.e., multispectral lidar, indicate the potential for HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance of shadowed HSI pixels is quantified for imagery of a geologic outcrop through improvements in spectral shape, spectral scale, and HSI band correlation.

  15. Planetary Protection Bioburden Analysis Program

    Science.gov (United States)

    Beaudet, Robert A.

    2013-01-01

    is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks. This work was done by Shannon Ryan of the USRA Lunar and Planetary Institute for Johnson Space Center. Further information is contained in a TSP (see page 1). MSC- 24582-1 Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program Lyndon B. Johnson Space Center, Houston, Texas Commercially, because it is so generic, Enigma can be used for almost any project that requires engineering visualization, model building, or animation. Models in Enigma can be exported to many other formats for use in other applications as well. Educationally, Enigma is being used to allow university students to visualize robotic algorithms in a simulation mode before using them with actual hardware. This work was done by David Shores and Sharon P. Goza of Johnson Space Center; Cheyenne McKeegan, Rick Easley, Janet Way, and Shonn Everett of MEI Technologies; Mark Manning of PTI; and Mark Guerra, Ray Kraesig, and William Leu of Tietronix Software, Inc. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809. MSC-24211-1 Spitzer Telemetry Processing System NASA's Jet Propulsion Laboratory, Pasadena, California The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real

  16. Access to the Online Planetary Research Literature

    Science.gov (United States)

    Henneken, E. A.; Accomazzi, A.; Kurtz, M. J.; Grant, C. S.; Thompson, D.; Di Milia, G.; Bohlen, E.; Murray, S. S.

    2009-12-01

    The SAO/NASA Astrophysics Data System (ADS) provides various free services for finding, accessing, and managing bibliographic data, including a basic search form, the myADS notification service, and private library capabilities (a useful tool for building bibliographies), plus access to scanned pages of published articles. The ADS also provides powerful search capabilities, allowing users to find e.g. the most instructive or most important articles on a given subject . For the Planetary Sciences, the citation statistics of the ADS have improved considerably with the inclusion of the references from Elsevier journals, including Icarus, Planetary and Space Science, and Earth and Planetary Science Letters. We currently have about 78 journals convering the planetary and space sciences (Advances in Space Research, Icarus, Solar Physics, Astrophusics and Space Science, JGRE, Meteoritics, to name a few). Currently, this set of journals represents about 180,000 articles and 1.1 million references. Penetration into the Solar Physics, Planetary Sciences and Geophysics community has increased significantly. During the period 2004-2008, user access to JGR and Icarus increased by a factor of 4.4, while e.g. access to the Astrophysical Journal "only" increased by a factor of 1.8.

  17. Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Science.gov (United States)

    Cezzar, Ruknet; Sen, Ranjan K.

    1989-01-01

    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified.

  18. Dynamics

    CERN Document Server

    Goodman, Lawrence E

    2001-01-01

    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  19. NASA's Space Lidar Measurements of Earth and Planetary Surfaces

    Science.gov (United States)

    Abshire, James B.

    2010-01-01

    A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.

  20. Mars : a small terrestrial planet

    OpenAIRE

    Mangold, N.; Baratoux, David; Witasse, O.; Encrenaz, T.; Sotin, C.

    2016-01-01

    Mars is characterized by geological landforms familiar to terrestrial geologists. It has a tenuous atmosphere that evolved differently from that of Earth and Venus and a differentiated inner structure. Our knowledge of the structure and evolution of Mars has strongly improved thanks to a huge amount of data of various types (visible and infrared imagery, altimetry, radar, chemistry, etc) acquired by a dozen of missions over the last two decades. In situ data have provided ground truth for rem...

  1. Lunar and Planetary Science XXXV: Mars Volcanology and Tectonics

    Science.gov (United States)

    2004-01-01

    Reports from the session, "Mars Volcanology and Tectonics" include:Martian Shield Volcanoes; Estimating the Rheology of Basaltic Lava Flows; A Model for Variable Levee Formation Rates in an Active Lava Flow; Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region: Indicators of Post-Flow Tectonic Motion; Fractal Variation with Changing Line Length: A Potential Problem for Planetary Lava Flow Identification; Burfellshraun:A Terrestrial Analogue to Recent Volcanism on Mars; Lava Domes of the Arcadia Region of Mars; Comparison of Plains Volcanism in the Tempe Terra Region of Mars to the Eastern Snake River Plains, Idaho with Implications for Geochemical Constraints; Vent Geology of Low-Shield Volcanoes from the Central Snake River Plain, Idaho: Lessons for Mars and the Moon; Field and Geochemical Study of Table Legs Butte and Quaking Aspen Butte, Eastern Snake River Plain, Idaho: An Analog to the Morphology of Small Shield Volcanoes on Mars; Variability in Morphology and Thermophysical Properties of Pitted Cones in Acidalia Planitia and Cydonia Mensae; A Volcano Composed of Light-colored Layered Deposits on the Floor of Valles Marineris; Analysis of Alba Patera Flows: A Comparison of Similarities and Differences Geomorphologic Studies of a Very Long Lava Flow in Tharsis, Mars; Radar Backscatter Characteristics of Basaltic Flow Fields: Results for Mauna Ulu, Kilauea Volcano, Hawaii;and Preliminary Lava Tube-fed Flow Abundance Mapping on Olympus Mons.

  2. Planetary health: protecting human health on a rapidly changing planet.

    Science.gov (United States)

    Myers, Samuel S

    2018-12-23

    The impact of human activities on our planet's natural systems has been intensifying rapidly in the past several decades, leading to disruption and transformation of most natural systems. These disruptions in the atmosphere, oceans, and across the terrestrial land surface are not only driving species to extinction, they pose serious threats to human health and wellbeing. Characterising and addressing these threats requires a paradigm shift. In a lecture delivered to the Academy of Medical Sciences on Nov 13, 2017, I describe the scale of human impacts on natural systems and the extensive associated health effects across nearly every dimension of human health. I highlight several overarching themes that emerge from planetary health and suggest advances in the way we train, reward, promote, and fund the generation of health scientists who will be tasked with breaking out of their disciplinary silos to address this urgent constellation of health threats. I propose that protecting the health of future generations requires taking better care of Earth's natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Isotopic enrichment of forming planetary systems from supernova pollution

    Science.gov (United States)

    Lichtenberg, Tim; Parker, Richard J.; Meyer, Michael R.

    2016-11-01

    Heating by short-lived radioisotopes (SLRs) such as 26Al and 60Fe fundamentally shaped the thermal history and interior structure of Solar system planetesimals during the early stages of planetary formation. The subsequent thermo-mechanical evolution, such as internal differentiation or rapid volatile degassing, yields important implications for the final structure, composition and evolution of terrestrial planets. SLR-driven heating in the Solar system is sensitive to the absolute abundance and homogeneity of SLRs within the protoplanetary disc present during the condensation of the first solids. In order to explain the diverse compositions found for extrasolar planets, it is important to understand the distribution of SLRs in active planet formation regions (star clusters) during their first few Myr of evolution. By constraining the range of possible effects, we show how the imprint of SLRs can be extrapolated to exoplanetary systems and derive statistical predictions for the distribution of 26Al and 60Fe based on N-body simulations of typical to large clusters (103-104 stars) with a range of initial conditions. We quantify the pollution of protoplanetary discs by supernova ejecta and show that the likelihood of enrichment levels similar to or higher than the Solar system can vary considerably, depending on the cluster morphology. Furthermore, many enriched systems show an excess in radiogenic heating compared to Solar system levels, which implies that the formation and evolution of planetesimals could vary significantly depending on the birth environment of their host stars.

  4. Cryogenic Reflectance Spectroscopy in Support of Planetary Missions

    Science.gov (United States)

    Dalton, J. B.

    2002-11-01

    Present understanding of planetary composition is based primarily on remotely-sensed data, and in particular upon ultraviolet, visible, and infrared spectroscopy. Spectra acquired by telescopic and spacecraft instruments are compared to laboratory measurements of pure materials in order to identify surface components based on characteristic absorption features. Cryogenic spectral measurements are necessary for the study of worlds beyond the Earth's orbit. While some materials exhibit only small spectral changes as a function of temperature (Roush and Dalton 2002), many others are strongly temperature-dependent (Dalton and Clark 1998; Grundy and Schmitt 1998). For example, hydrated salts exhibit different spectral behavior under conditions appropriate to Europa (Dalton 2000) than at terrestrial temperatures (Crowley 1991) . The icy satellites of the outer solar system contain significant quantities of volatile ices (Roush 2001) which do not even exist at standard temperature and pressure (STP). A comprehensive spectral database of ices and minerals covering a wide temperature range will have applications ranging from the study of comets and Kniper Belt objects to outer planet satellites and the polar regions of Mars. Efforts are presently underway at NASA-Ames to develop capabilities which will contribute to such a database. As spacecraft instruments feature increasing spatial and spectral resolution, appropriate laboratory reference spectra become increasingly critical to accurate interpretation of the spacecraft data.

  5. Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT)

    Science.gov (United States)

    Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.

    2017-01-01

    Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.

  6. Magnetic investigations for studying planetary interiors

    Directory of Open Access Journals (Sweden)

    A. De Santis

    1994-06-01

    Full Text Available Most of the magnetic methods used for investigating planetary interiors are based on the reasonable hypothesis that the mechanism for the origin of the field is an Earth-like hydromagnetic dynamo: in this case the planet has an electrically conducting fluid shell within it as in the case of the Earth's core. The present paper describes several techniques of planetary magnetic investigation which give important clues on the internal constitution of planets. Some considerations on the possible mechanisms for maintaining a dynamo and simple concepts with the help of a few non-dimensional numbers are also introduced and discussed. Then some fundamental relationships are given in order to relate the planetary magnetism to other physical parameters, such as angular rotation, core dimensions etc. It finally summarizes some results available for the planets of the Solar System.

  7. VOEvent for Solar and Planetary Sciences

    Science.gov (United States)

    Cecconi, B.; Le Sidaner, P.; André, N.; Marmo, C.

    2017-09-01

    With its Planetary Space Weather Service (PSWS), the Europlanet-H2020 Research Insfrastructure (EPN2020RI) project is proposing a compelling set of databases and tools to that provides Space Weather forecasting throughout the Solar System. We present here the selected event transfer system (VOEvent). We describe the user requirements, develop the way to implement event alerts, and chain those to the 1) planetary event and 2) planetary space weather predictions. The service of alerts is developed with the objective to facilitate discovery or prediction announcements within the PSWS user community in order to watch or warn against specific events. The ultimate objective is to set up dedicated amateur and/or professional observation campaigns, diffuse contextual information for science data analysis, and enable safety operations of planet-orbiting spacecraft against the risks of impacts from meteors or solar wind disturbances.

  8. Miniaturisation of imaging spectrometer for planetary exploration

    Science.gov (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel

    2017-11-01

    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  9. Non-chondritic iron isotope ratios in planetary mantles as a result of core formation

    Science.gov (United States)

    Elardo, Stephen M.; Shahar, Anat

    2017-02-01

    Information about the materials and conditions involved in planetary formation and differentiation in the early Solar System is recorded in iron isotope ratios. Samples from Earth, the Moon, Mars and the asteroid Vesta reveal significant variations in iron isotope ratios, but the sources of these variations remain uncertain. Here we present experiments that demonstrate that under the conditions of planetary core formation expected for the Moon, Mars and Vesta, iron isotopes fractionate between metal and silicate due to the presence of nickel, and enrich the bodies' mantles in isotopically light iron. However, the effect of nickel diminishes at higher temperatures: under conditions expected for Earth's core formation, we infer little fractionation of iron isotopes. From our experimental results and existing conceptual models of magma ocean crystallization and mantle partial melting, we find that nickel-induced fractionation can explain iron isotope variability found in planetary samples without invoking nebular or accretionary processes. We suggest that near-chondritic iron isotope ratios of basalts from Mars and Vesta, as well as the most primitive lunar basalts, were achieved by melting of isotopically light mantles, whereas the heavy iron isotope ratios of terrestrial ocean floor basalts are the result of melting of near-chondritic Earth mantle.

  10. Accurate Treatment of Collisions and Water-Delivery in Models of Terrestrial Planet Formation

    Science.gov (United States)

    Haghighipour, Nader; Maindl, Thomas; Schaefer, Christoph

    2017-10-01

    It is widely accepted that collisions among solid bodies, ignited by their interactions with planetary embryos is the key process in the formation of terrestrial planets and transport of volatiles and chemical compounds to their accretion zones. Unfortunately, due to computational complexities, these collisions are often treated in a rudimentary way. Impacts are considered to be perfectly inelastic and volatiles are considered to be fully transferred from one object to the other. This perfect-merging assumption has profound effects on the mass and composition of final planetary bodies as it grossly overestimates the masses of these objects and the amounts of volatiles and chemical elements transferred to them. It also entirely neglects collisional-loss of volatiles (e.g., water) and draws an unrealistic connection between these properties and the chemical structure of the protoplanetary disk (i.e., the location of their original carriers). We have developed a new and comprehensive methodology to simulate growth of embryos to planetary bodies where we use a combination of SPH and N-body codes to accurately model collisions as well as the transport/transfer of chemical compounds. Our methodology accounts for the loss of volatiles (e.g., ice sublimation) during the orbital evolution of their careers and accurately tracks their transfer from one body to another. Results of our simulations show that traditional N-body modeling of terrestrial planet formation overestimates the amount of the mass and water contents of the final planets by over 60% implying that not only the amount of water they suggest is far from being realistic, small planets such as Mars can also form in these simulations when collisions are treated properly. We will present details of our methodology and discuss its implications for terrestrial planet formation and water delivery to Earth.

  11. Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set

    NARCIS (Netherlands)

    Verma, M.; Friedl, M.A.; Richardson, A.D.; Kiely, G.; Cescatti, A.; Law, B.E.; Wohlfahrt, G.; Gielen, G.; Roupsard, O.; Moors, E.J.

    2014-01-01

    Gross primary productivity (GPP) is the largest and most variable component of the global terrestrial carbon cycle. Repeatable and accurate monitoring of terrestrial GPP is therefore critical for quantifying dynamics in regional-to-global carbon budgets. Remote sensing provides high frequency

  12. Technology for NASA's Planetary Science Vision 2050.

    Science.gov (United States)

    Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.

    2017-01-01

    NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.

  13. MExLab Planetary Geoportal: 3D-access to planetary images and results of spatial data analysis

    Science.gov (United States)

    Karachevtseva, I.; Garov, A.

    2015-10-01

    MExLab Planetary Geoportal was developed as Geodesy and Cartography Node which provide access to results of study of celestial bodies such as DEM and orthoimages, as well as basemaps, crater catalogues and derivative products: slope, roughness, crater density (http://cartsrv.mexlab.ru/geoportal). The main feature of designed Geoportal is the ability of spatial queries and access to the contents selecting from the list of available data set (Phobos, Mercury, Moon, including Lunokhod's archive data). Prior version of Geoportal has been developed using Flash technology. Now we are developing new version which will use 3D-API (OpenGL, WebGL) based on shaders not only for standard 3D-functionality, but for 2D-mapping as well. Users can obtain quantitative and qualitative characteristics of the objects in graphical, tabular and 3D-forms. It will bring the advantages of unification of code and speed of processing and provide a number of functional advantages based on GIS-tools such as: - possibility of dynamic raster transform for needed map projection; - effective implementation of the co-registration of planetary images by combining spatial data geometries; - presentation in 3D-form different types of data, including planetary atmospheric measurements, subsurface radar data, ect. The system will be created with a new software architecture, which has a potential for development and flexibility in reconfiguration based on cross platform solution: - an application for the three types of platforms: desktop (Windows, Linux, OSX), web platform (any HTML5 browser), and mobile application (Android, iOS); - a single codebase shared between platforms (using cross compilation for Web); - a new telecommunication solution to connect between modules and external system like PROVIDE WebGIS (http://www.provide-space.eu/progis/). The research leading to these result was partly supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n

  14. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-05-01

    Full Text Available This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF and Unscented Kalman filter (UKF were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.

  15. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    Science.gov (United States)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  16. Geochemical Evidence for a Terrestrial Magma Ocean

    Science.gov (United States)

    Agee, Carl B.

    1999-01-01

    The aftermath of phase separation and crystal-liquid fractionation in a magma ocean should leave a planet geochemically differentiated. Subsequent convective and other mixing processes may operate over time to obscure geochemical evidence of magma ocean differentiation. On the other hand, core formation is probably the most permanent, irreversible part of planetary differentiation. Hence the geochemical traces of core separation should be the most distinct remnants left behind in the mantle and crust, In the case of the Earth, core formation apparently coincided with a magma ocean that extended to a depth of approximately 1000 km. Evidence for this is found in high pressure element partitioning behavior of Ni and Co between liquid silicate and liquid iron alloy, and with the Ni-Co ratio and the abundance of Ni and Co in the Earth's upper mantle. A terrestrial magma ocean with a depth of 1000 km will solidify from the bottom up and first crystallize in the perovskite stability field. The largest effect of perovskite fractionation on major element distribution is to decrease the Si-Mg ratio in the silicate liquid and increase the Si-Mg ratio in the crystalline cumulate. Therefore, if a magma ocean with perovskite fractionation existed, then one could expect to observe an upper mantle with a lower than chondritic Si-Mg ratio. This is indeed observed in modern upper mantle peridotites. Although more experimental work is needed to fully understand the high-pressure behavior of trace element partitioning, it is likely that Hf is more compatible than Lu in perovskite-silicate liquid pairs. Thus, perovskite fractionation produces a molten mantle with a higher than chondritic Lu-Hf ratio. Arndt and Blichert-Toft measured Hf isotope compositions of Barberton komatiites that seem to require a source region with a long-lived, high Lu-Hf ratio. It is plausible that that these Barberton komatiites were generated within the majorite stability field by remelting a perovskite

  17. Principles of dynamics

    CERN Document Server

    Hill, Rodney

    2013-01-01

    Principles of Dynamics presents classical dynamics primarily as an exemplar of scientific theory and method. This book is divided into three major parts concerned with gravitational theory of planetary systems; general principles of the foundations of mechanics; and general motion of a rigid body. Some of the specific topics covered are Keplerian Laws of Planetary Motion; gravitational potential and potential energy; and fields of axisymmetric bodies. The principles of work and energy, fictitious body-forces, and inertial mass are also looked into. Other specific topics examined are kinematics

  18. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  19. Patterns of taxonomic diversity among terrestrial isopods

    Directory of Open Access Journals (Sweden)

    Spyros Sfendourakis

    2015-07-01

    Full Text Available The publication of the world catalog of terrestrial isopods some ten years ago by Schmalfuss has facilitated research on isopod diversity patterns at a global scale. Furthermore, even though we still lack a comprehensive and robust phylogeny of Oniscidea, we do have some useful approaches to phylogenetic relationships among major clades which can offer additional insights into isopod evolutionary dynamics. Taxonomic diversity is one of many approaches to biodiversity and, despite its sensitiveness to biases in taxonomic practice, has proved useful in exploring diversification dynamics of various taxa. In the present work, we attempt an analysis of taxonomic diversity patterns among Oniscidea based on an updated world list of species containing 3,710 species belonging to 527 genera and 37 families (data till April 2014. The analysis explores species diversity at the genus and family level, as well as the relationships between species per genera, species per families, and genera per families. In addition, we consider the structure of isopod taxonomic system under the fractal perspective that has been proposed as a measure of a taxon’s diversification. Finally, we check whether there is any phylogenetic signal behind taxonomic diversity patterns. The results can be useful in a more detailed elaboration of Oniscidea systematics.

  20. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    Science.gov (United States)

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

  1. Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening?

    Science.gov (United States)

    Yulong Zhang; Conghe Song; Lawrence E. Band; Ge Sun; Junxiang Li

    2017-01-01

    Accurately monitoring global vegetation dynamics with modern remote sensing is critical for understanding the functions and processes of the biosphere and its interactions with the planetary climate. The MODerate resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) product has been a primary data source for this purpose. To date, theMODIS teamhad released...

  2. DECIPHERING THERMAL PHASE CURVES OF DRY, TIDALLY LOCKED TERRESTRIAL PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Koll, Daniel D. B.; Abbot, Dorian S., E-mail: dkoll@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States)

    2015-03-20

    Next-generation space telescopes will allow us to characterize terrestrial exoplanets. To do so effectively it will be crucial to make use of all available data. We investigate which atmospheric properties can, and cannot, be inferred from the broadband thermal phase curve of a dry and tidally locked terrestrial planet. First, we use dimensional analysis to show that phase curves are controlled by six nondimensional parameters. Second, we use an idealized general circulation model to explore the relative sensitivity of phase curves to these parameters. We find that the feature of phase curves most sensitive to atmospheric parameters is the peak-to-trough amplitude. Moreover, except for hot and rapidly rotating planets, the phase amplitude is primarily sensitive to only two nondimensional parameters: (1) the ratio of dynamical to radiative timescales and (2) the longwave optical depth at the surface. As an application of this technique, we show how phase curve measurements can be combined with transit or emission spectroscopy to yield a new constraint for the surface pressure and atmospheric mass of terrestrial planets. We estimate that a single broadband phase curve, measured over half an orbit with the James Webb Space Telescope, could meaningfully constrain the atmospheric mass of a nearby super-Earth. Such constraints will be important for studying the atmospheric evolution of terrestrial exoplanets as well as characterizing the surface conditions on potentially habitable planets.

  3. The Source of Planetary Period Oscillations in Saturn's Magnetosphere

    Science.gov (United States)

    Khurana, Krishan K.; Mitchell, Jonathan L.; Mueller, Ingo C. F.

    2017-04-01

    atmosphere generates the observed plasma and magnetic field periodicities. This breakthrough in our understanding of an important planetary physics problem has immediate and extensive applications in fields as diverse as theoretical fluid dynamics, planetary angular momentum loss, maintenance of corotation in planetary magnetospheres, astrophysical magneto-braking and future telescopic observations of planets and exoplanets.

  4. Insights and issues with simulating terrestrial DOC loading of Arctic river networks

    Science.gov (United States)

    Kicklighter, David W.; Hayes, Daniel J.; McClelland, James W.; Peterson, Bruce J.; McGuire, A. David; Melillo, Jerry M.

    2013-01-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

  5. Spectropolarimeter for planetary exploration (SPEX) : Performance measurements with a prototype

    NARCIS (Netherlands)

    Voors, R.; Moon, S.G.; Hannemann, S.; Rietjens, J.H.H.; Harten, G. van; Snik, F.; Smit, M.; Stam, D.M.; Keller, C.U.; Laan, E.C.; Verlaan, A.L.; Vliegenthart, W.A.; Horst, R. ter; Navarro, R.; Wielinga, K.

    2011-01-01

    SPEX (Spectropolarimeter for Planetary Exploration) was developed in close cooperation between scientific institutes and space technological industries in the Netherlands. It is used for measuring microphysical properties of aerosols and cloud particles in planetary atmospheres. SPEX utilizes a

  6. SMALL PLANETARY SATELLITE COLORS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include published colors of small planetary satellites published up through December 2003. Small planetary satellites are defined as all...

  7. Planetary Protection Technology Definition Team: Tasks, Status, and Feedback

    Science.gov (United States)

    Meyer, M. A.; Rummel, J. D.

    2016-10-01

    A Planetary Protection and Technology Definition Team will assess challenges to meeting planetary protection requirements to instruments and will suggest technological solutions. Status and initial findings will be reported.

  8. Plastic deformation of FeSi at high pressures: implications for planetary cores

    Science.gov (United States)

    Kupenko, Ilya; Merkel, Sébastien; Achorner, Melissa; Plückthun, Christian; Liermann, Hanns-Peter; Sanchez-Valle, Carmen

    2017-04-01

    The cores of terrestrial planets is mostly comprised of a Fe-Ni alloy, but it should additionally contain some light element(s) in order to explain the observed core density. Silicon has long been considered as a likely candidate because of geochemical and cosmochemical arguments: the Mg/Si and Fe/Si ratios of the Earth does not match those of the chondrites. Since silicon preferentially partition into iron-nickel metal, having 'missing' silicon in the core would solve this problem. Moreover, the evidence of present (e.g. Mercury) or ancient (e.g. Mars) magnetic fields on the terrestrial planets is a good indicator of (at least partially) liquid cores. The estimated temperature profiles of these planets, however, lay below iron melting curve. The addition of light elements in their metal cores could allow reducing their core-alloy melting temperature and, hence, the generation of a magnetic field. Although the effect of light elements on the stability and elasticity of Fe-Ni alloys has been widely investigated, their effect on the plasticity of core materials remains largely unknown. Yet, this information is crucial for understanding how planetary cores deform. Here we investigate the plastic deformation of ɛ-FeSi up to 50 GPa at room temperature employing a technique of radial x-ray diffraction in diamond anvil cells. Stoichiometric FeSi endmember is a good first-order approximation of the Fe-FeSi system and a good starting material to develop new experimental perspectives. In this work, we focused on the low-pressure polymorph of FeSi that would be the stable phase in the cores of small terrestrial planets. We will present the analysis of measured data and discuss their potential application to constrain plastic deformation in planetary cores.

  9. Resource subsidies between stream and terrestrial ecosystems under global change

    Science.gov (United States)

    Larsen, Stefano; Muehlbauer, Jeffrey D.; Marti Roca, Maria Eugenia

    2016-01-01

    Streams and adjacent terrestrial ecosystems are characterized by permeable boundaries that are crossed by resource subsidies. Although the importance of these subsidies for riverine ecosystems is increasingly recognized, little is known about how they may be influenced by global environmental change. Drawing from available evidence, in this review we propose a conceptual framework to evaluate the effects of global change on the quality and spatiotemporal dynamics of stream–terrestrial subsidies. We illustrate how changes to hydrological and temperature regimes, atmospheric CO2 concentration, land use and the distribution of nonindigenous species can influence subsidy fluxes by affecting the biology and ecology of donor and recipient systems and the physical characteristics of stream–riparian boundaries. Climate-driven changes in the physiology and phenology of organisms with complex life cycles will influence their development time, body size and emergence patterns, with consequences for adjacent terrestrial consumers. Also, novel species interactions can modify subsidy dynamics via complex bottom-up and top-down effects. Given the seasonality and pulsed nature of subsidies, alterations of the temporal and spatial synchrony of resource availability to consumers across ecosystems are likely to result in ecological mismatches that can scale up from individual responses, to communities, to ecosystems. Similarly, altered hydrology, temperature, CO2 concentration and land use will modify the recruitment and quality of riparian vegetation, the timing of leaf abscission and the establishment of invasive riparian species. Along with morphological changes to stream–terrestrial boundaries, these will alter the use and fluxes of allochthonous subsidies associated with stream ecosystems. Future research should aim to understand how subsidy dynamics will be affected by key drivers of global change, including agricultural intensification, increasing water use and biotic

  10. A quadrupole ion trap mass spectrometer for in-situ UHV analyses on Earth and other planetary environments

    Science.gov (United States)

    Cox, S. E.; Madzunkov, S. M.; Simcic, J.; Farley, K. A.

    2014-12-01

    The JPL quadrupole ion trap mass spectrometer presents an exceptional opportunity for combining cutting edge terrestrial geochemical research with the next generation of extraterrestrial science. The QIT is a small mass spectrometer that filters particles of different mass by electron ionization and subsequent separation with a quadrupole RF field. The latest version is capable of achieving very high resolution (R > 1000) without an increase in power consumption through the addition of a dipole RF to augment the primary quadrupole field. Crucially, we demonstrate the ability to achieve this resolution with high sensitivity (> 1014 cps/Torr), and at UHV without the addition of a cooling gas. In this mode, the high sensitivity and extremely low background allow the measurement of a large number of species in very small samples. Most laboratory instruments are too heavy, large, and energy-intensive to fly on spacecraft in their optimal forms. As a result, instruments for spaceflight have traditionally been heavily-modified versions of terrestrial instruments, designed to be lighter, smaller, and more efficient than their terrestrial counterparts, at the expense of analytical capabilities. The JPL QIT, in contrast, weighs less than 1 kg, is only a few cm in size, and consumes less than 30W. Only the accompanying UHV system and supporting electronics must be extensively redesigned for spaceflight, and NASA already possesses pumps capable of fulfilling this need. The opportunity for parallel development for terrestrial and extraterrestrial labs and the capability of direct comparison between planetary science and terrestrial geochemistry will benefit both fields.

  11. XANES Measurements of Cr Valence in Olivine and their Applications to Planetary Basalts (Invited)

    Science.gov (United States)

    Bell, A. S.; Burger, P.; Le, L.; Shearer, C. K.; Papike, J.; Sutton, S. R.; Newville, M.; Jones, J. H.

    2013-12-01

    The oxidation state and partitioning behavior of trace Cr in terrestrial and planetary basaltic magmas has long been a subject of petrologic inquiry. We have performed a series of experiments designed to examine the relationship between oxygen fugacity and the ratio of divalent to trivalent Cr present in olivine crystals grown from a basaltic liquid. The experimental olivine crystals were grown at fO2 values ranging from IW-1 to IW+3.4. The melt composition used in this work was modeled after the bulk composition of the primitive, basaltic martian meteorite Yamato 980459 (Y-98). Chromium valence in the olivine crystals was measured with X-ray-Absorption-Near-Edge-Spectroscopy (XANES) at the Advanced Photon Source, Argonne National Laboratory. Chromium K-edge XANES data were acquired with the x-ray microprobe of GSECARS beamline 13-ID-E. Beam focusing was accomplished with dynamically-figured Kirkpatrick-Baez focusing mirrors; this configuration yielded a beam focused to a final spot size of ~ 4 μm2. Results from the XANES measurements indicate that the ratio of divalent to trivalent Cr in the olivine is systematically correlated with fO2 in a manner that is consistent with the expected redox systematics for Cr2+- Cr3+ in the melt. In this way, measurements of the Cr2+/Cr3+ in olivine phenocrysts can indirectly reveal information about the Cr valence ratio and fO2 the liquid from which it grew even in the absence of a quenched melt phase. Although the results from the experiments presented in this work specifically apply to the Yamato 98 parental liquid, the concepts and XANES analytical techniques used in this study present a novel, generalized methodology that may be applicable to any olivine-bearing basalt. Furthermore, the XANES based measurements are made on a micron-scale, thus potential changes of the Cr2+/Cr3+ in the melt occurring during crystallization may be recorded in detail.

  12. SPEX: the Spectropolarimeter for Planetary Exploration

    Science.gov (United States)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.

    2017-11-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  13. Detection of transient events on planetary bodies .

    Science.gov (United States)

    Di Martino, M.; Carbognani, A.

    Transient phenomena on planetary bodies are defined as luminous events of different intensities, which occur in planetary atmospheres and surfaces, their duration spans from about 0.1 s to some hours. They consist of meteors, bolides, lightning, impact flashes on solid surfaces, auroras, etc. So far, the study of these phenomena has been very limited, due to the lack of an ad hoc instrumentation, and their detection has been performed mainly on a serendipitous basis. Recently, ESA has issued an announcement of opportunity for the development of systems devoted to the detection of transient events in the Earth atmosphere and/or on the dark side of other planetary objects. One of such a detector as been designed and a prototype (\\textit{Smart Panoramic Optical Sensor Head}, SPOSH) has been constructed at Galileo Avionica S.p.A (Florence, Italy). For sake of clarity, in what follows, we classify the transient phenomena in ``Earth phenomena'' and ``Planetary phenomena'', even though some of them originate in a similar physical context.

  14. Planetary sciences and exploration: An Indian perspective

    Indian Academy of Sciences (India)

    the last two decades and a future perspective, including those for planetary exploration. 1. Introduction. The solar system consists ... and suitable chemical etching of mineral grains in meteorites. The high track density near the grain .... samples provide the integrated exposure ages of these samples to cosmic rays in space ...

  15. Abundances of planetary nebula NGC2392

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.; Roellig, T. L.

    The spectra of the planetary nebula NGC2392 is reanalysed using spectral measurements made in the mid-infrared with the Spitzer Space Telescope. The aim is to determine the chemical composition of this object. We also make use of IUE and ground based spectra. Abundances determined from the

  16. Abundances in planetary nebulae : NGC 2792

    NARCIS (Netherlands)

    Pottasch, S. R.; Surendiranath, R.; Bernard-Salas, J.; Roellig, T. L.

    The mid-infrared spectrum of the rather circular planetary nebula NGC2792 taken with the Spitzer Space Telescope is presented. This spectrum is combined with the ultraviolet IUE spectrum and with the spectrum in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The

  17. Keplerian planetary orbits in multidimensional Euclidian spaces ...

    African Journals Online (AJOL)

    Newton's laws of motion are three physical laws that together, laid the foundation for classical three dimensional mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. Kepler's laws of planetary motion are also three scientific laws describing the ...

  18. Transiting planetary system WASP-17 (Southworth+, 2012)

    DEFF Research Database (Denmark)

    Southworth, J.; Hinse, T. C.; Dominik, M.

    2013-01-01

    A light curve of four transits of the extrasolar planetary system WASP-17 is presented. The data were obtained using the Danish 1.5m telescope and DFOSC camera at ESO La Silla in 2012, with substantial telescope defocussing in order to improve the photometric precision of the observations. A Cous...

  19. Equations Governing Kepler's Laws of Planetary Motion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Equations Governing Kepler's Laws of Planetary Motion. Renuka Ravindran. General Article Volume 14 Issue 12 December 2009 pp 1166-1170. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. 1. Why Planetary Orbits are Closed

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 12. Planetary Orbits as Simple Harmonic Motion. Bikram Phookun. Classroom Volume 8 Issue 12 December 2003 pp 83-91. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/12/0083-0091 ...

  1. Multiscale regime shifts and planetary boundaries

    NARCIS (Netherlands)

    Hughes, T.P.; Carpenter, S.; Rockstrom, J.; Scheffer, M.; Walker, B.

    2013-01-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a

  2. Planetary boundaries : Governing emerging risks and opportunities

    NARCIS (Netherlands)

    Galaz, V.; de Zeeuw, Aart; Shiroyama, Hideaki; Tripley, Debbie

    The climate, ecosystems and species, ozone layer, acidity of the oceans, the flow of energy and elements through nature, landscape change, freshwater systems, aerosols, and toxins—these constitute the planetary boundaries within which humanity must find a safe way to live and prosper. These are

  3. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  4. Planetary Sciences Literature - Access and Discovery

    Science.gov (United States)

    Henneken, Edwin A.; ADS Team

    2017-10-01

    The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (https://ui.adsabs.harvard.edu), it may very well answer questions you didn't know you had! While the classic ADS (http://ads.harvard.edu) focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA

  5. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  6. Baroclinic Planetary Boundary Layer Model: Neutral and Stable Stratification Conditions

    Science.gov (United States)

    Yordanov, D.; Djolov, G.; Syrakov, D.

    1998-01-01

    The temperature and wind profiles in a baroclinic Planetary Boundary Layer (PBL) are investigated. Assuming stationarity, the turbulent state in the PBL at stable and neutral conditions is uniquely determined by the Rossby number, the external stratification parameter and two external baroclinic parameters. A simple two-layer baroclinic model is developed. It consists of a Surface Layer (SL) and overlying Ekman type layer. The system of dynamic and heat transfer equations is close using the K-theory. In SL the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer it is constant. The universal functions in the resistance, heat and humidity transfer laws can be deduced from the model. The internal PBL characteristics, necessary for the model calculations, are presented in terms of the external parameters. Favourable agreement of model results with experimental data is demonstrated.

  7. Radiative transfer in a polluted urban planetary boundary layer

    Science.gov (United States)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  8. Planetary nebulae as kinematic tracers of galaxy stellar halos

    Science.gov (United States)

    Coccato, Lodovico

    2017-10-01

    The kinematic and dynamical properties of galaxy stellar halos are difficult to measure because of the faint surface brightness that characterizes these regions. Spiral galaxies can be probed using the radio Hi emission; on the contrary, early-type galaxies contain less gas, therefore alternative kinematic tracers need to be used. Planetary nebulae (PNe) can be easily detected far out in the halo thanks to their bright emission lines. It is therefore possible to map the halo kinematics also in early-type galaxies, typically out to 5 effective radii or beyond. Thanks to the recent spectroscopic surveys targeting extra-galactic PNe, we can now rely on a few tens of galaxies where the kinematics of the stellar halos are measured. Here, I will review the main results obtained in this field in the last decades.

  9. Landmark-based autonomous navigation for pinpoint planetary landing

    Science.gov (United States)

    Xu, Chao; Wang, Dayi; Huang, Xiangyu

    2016-12-01

    A landmark-based autonomous navigation scheme is presented for pinpoint planetary landing. The dynamic model is built on the basis of measurements from Inertial Measurement Unit. Measurement models of landmarks with known coordinates and landmarks with unknown coordinates extracted from sequential descent images are developed and used to calculated the state corrections in Extend Kalman Filter, respectively. Then, the corrections are fused by a covariance intersection fusion algorithm to perform state updates. The tight coupling of the two types of landmark observations yields accurate and robust state estimates. Extensive simulations are performed, which confirm the validity of the proposed navigation scheme and analyze the effects of factors, such as the horizonal position errors and the densities of landmarks with known coordinates and the roughness of the landing surface, on the navigation accuracy.

  10. ANALYSIS OF TERRESTRIAL PLANET FORMATION BY THE GRAND TACK MODEL: SYSTEM ARCHITECTURE AND TACK LOCATION

    Energy Technology Data Exchange (ETDEWEB)

    Brasser, R.; Ida, S. [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550 (Japan); Matsumura, S. [School of Science and Engineering, Division of Physics, Fulton Building, University of Dundee, Dundee DD1 4HN (United Kingdom); Mojzsis, S. J. [Collaborative for Research in Origins (CRiO), Department of Geological Sciences, University of Colorado, UCB 399, 2200 Colorado Avenue, Boulder, Colorado 80309-0399 (United States); Werner, S. C. [The Centre for Earth Evolution and Dynamics, University of Oslo, Sem Saelandsvei 24, NO-0371 Oslo (Norway)

    2016-04-20

    The Grand Tack model of terrestrial planet formation has emerged in recent years as the premier scenario used to account for several observed features of the inner solar system. It relies on the early migration of the giant planets to gravitationally sculpt and mix the planetesimal disk down to ∼1 au, after which the terrestrial planets accrete from material remaining in a narrow circumsolar annulus. Here, we investigate how the model fares under a range of initial conditions and migration course-change (“tack”) locations. We run a large number of N-body simulations with tack locations of 1.5 and 2 au and test initial conditions using equal-mass planetary embryos and a semi-analytical approach to oligarchic growth. We make use of a recent model of the protosolar disk that takes into account viscous heating, includes the full effect of type 1 migration, and employs a realistic mass–radius relation for the growing terrestrial planets. Our results show that the canonical tack location of Jupiter at 1.5 au is inconsistent with the most massive planet residing at 1 au at greater than 95% confidence. This favors a tack farther out at 2 au for the disk model and parameters employed. Of the different initial conditions, we find that the oligarchic case is capable of statistically reproducing the orbital architecture and mass distribution of the terrestrial planets, while the equal-mass embryo case is not.

  11. Improving accessibility and discovery of ESA planetary data through the new planetary science archive

    Science.gov (United States)

    Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.

    2018-01-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at http://psa.esa.int. Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.

  12. Planetary Protection for LIFE-Sample Return from Enceladus

    Science.gov (United States)

    Tsou, Peter; Yano, Hajime; Takano, Yoshinori; McKay, David; Takai, Ken; Anbar, Ariel; Baross, J.

    Introduction: We are seeking a balanced approach to returning Enceladus plume samples to state-of-the-art terrestrial laboratories to search for signs of life. NASA, ESA, JAXA and other space agencies are seeking habitable worlds and life beyond Earth. Enceladus, an icy moon of Saturn, is the first known body in the Solar System besides Earth to emit liquid water from its interior. Enceladus is the most accessible body in our Solar System for a low cost flyby sample return mission to capture aqueous based samples, to determine its state of life development, and shed light on how life can originate on wet planets/moons. LIFE combines the unique capabilities of teams of international exploration expertise. These returned Enceladus plume samples will determine if this habitable body is in fact inhabited [McKay et al, 2014]. This paper describes an approach for the LIFE mission to capture and return samples from Enceladus while meeting NASA and COSPAR planetary protection requirements. Forward planetary protection requirements for spacecraft missions to icy solar system bodies have been defined, however planetary protection requirements specific to an Earth return of samples collected from Enceladus or other Outer Planet Icy Moons, have yet to be defined. Background: From the first half century of space exploration, we have returned samples only from the Moon, comet Wild 2, the Solar Wind and the asteroid Itokawa. The in-depth analyses of these samples in terrestrial laboratories have yielded detailed chemical information that could not have been obtained otherwise. While obtaining samples from Solar System bodies is trans-formative science, it is rarely performed due to cost and complexity. The discovery by Cassini of geysers on Enceladus and organic materials in the ejected plume indicates that there is an exceptional opportunity and strong scientific rationale for LIFE. The earliest low-cost possible flight opportunity is the next Discovery Mission [Tsou et al 2012

  13. Lunar and Planetary Science Conference, 11th, Houston, TX, March 17-21, 1980, Proceedings. Volume 3 - Physical processes

    Science.gov (United States)

    Merrill, R. B.

    1980-01-01

    Geophysical investigations are discussed, taking into account laboratory measurements, planetary measurements, and structural implications and models. Impact processes are also examined. Experimental studies are considered along with aspects of crater morphology and frequency, and models theory. Volcanic-tectonic processes are investigated and topics related to the study of planetary atmospheres are examined. Attention is given to shallow moonquakes, the focal mechanism of deep moonquakes, lunar polar wandering, the search for an intrinsic magnetic field of Venus, the early global melting of the terrestrial planets, the first few hundred years of evolution of a moon of fission origin, the control of crater morphology by gravity and target type, crater peaks in Mercurian craters, lunar cold traps and their influence on argon-40, and solar wind sputtering effects in the atmospheres of Mars and Venus.

  14. Riparian vegetation in the alpine connectome: Terrestrial-aquatic and terrestrial-terrestrial interactions.

    Science.gov (United States)

    Zaharescu, Dragos G; Palanca-Soler, Antonio; Hooda, Peter S; Tanase, Catalin; Burghelea, Carmen I; Lester, Richard N

    2017-12-01

    Alpine regions are under increased attention worldwide for their critical role in early biogeochemical cycles, their high sensitivity to environmental change, and as repositories of natural resources of high quality. Their riparian ecosystems, at the interface between aquatic and terrestrial environments, play important geochemical functions in the watershed and are biodiversity hotspots, despite a harsh climate and topographic setting. With climate change rapidly affecting the alpine biome, we still lack a comprehensive understanding of the extent of interactions between riparian surface, lake and catchment environments. A total of 189 glacial - origin lakes were surveyed in the Central Pyrenees to test how key elements of the lake and terrestrial environments interact at different scales to shape riparian plant composition. Secondly, we evaluated how underlying ecotope features drive the formation of natural communities potentially sensitive to environmental change and assessed their habitat distribution. At the macroscale, vegetation composition responded to pan-climatic gradients altitude and latitude, which captured in a narrow geographic area the transition between large European climatic zones. Hydrodynamics was the main catchment-scale factor connecting riparian vegetation with major water fluxes, followed by topography and geomorphology. Lake sediment Mg and Pb, and water Mn and Fe contents reflected local influences from mafic bedrock and soil water saturation. Community analysis identified four keystone ecosystems: (i) damp ecotone, (ii) snow bed-silicate bedrock, (iii) wet heath, and (iv) calcareous substrate. These communities and their connections with ecotope elements could be at risk from a number of environmental change factors including warmer seasons, snow line and lowland species advancement, increased nutrient/metal input and water level fluctuations. The results imply important natural terrestrial-aquatic linkages in the riparian environment

  15. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we