WorldWideScience

Sample records for terrestrial biological carbon

  1. Terrestrial biological carbon sequestration: science for enhancement and implementation

    Science.gov (United States)

    Wilfred M. Post; James E. Amonette; Richard Birdsey; Charles T. Jr. Garten; R. Cesar Izaurralde; Philip Jardine; Julie Jastrow; Rattan Lal; Gregg. Marland

    2009-01-01

    The purpose of this chapter is to review terrestrial biological carbon sequestration and evaluate the potential carbon storage capacity if present and new techniques are more aggressively utilized. Photosynthetic CO2 capture from the atmosphere and storage of the C in aboveground and belowground biomass and in soil organic and inorganic forms can...

  2. Biological control of the terrestrial carbon sink

    Science.gov (United States)

    Schulze, E.-D.

    2006-03-01

    This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in plant growth has

  3. Biological control of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    E.-D. Schulze

    2006-01-01

    Full Text Available This lecture reviews the past (since 1964 when the International Biological Program began and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in

  4. Parallel Computing for Terrestrial Ecosystem Carbon Modeling

    International Nuclear Information System (INIS)

    Wang, Dali; Post, Wilfred M.; Ricciuto, Daniel M.; Berry, Michael

    2011-01-01

    Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO 2 . The influence of terrestrial ecosystems on atmospheric CO 2 can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO 2 concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO 2 uptake and respiratory CO 2 release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change

  5. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of research needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.

  6. Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake

    Science.gov (United States)

    Oschlies, A.

    2009-08-01

    The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIP models (Friedlingstein et al., 2006). For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not from the atmosphere

  7. The decadal state of the terrestrial carbon cycle : Global retrievals of terrestrial carbon allocation, pools, and residence times

    NARCIS (Netherlands)

    Bloom, A Anthony; Exbrayat, Jean-François; van der Velde, Ivar R; Feng, Liang; Williams, Mathew

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle

  8. Ancient Terrestrial Carbon: Lost and Found

    Science.gov (United States)

    Freeman, K. H.

    2017-12-01

    Carbon fluxes in terrestrial environments dominate the global carbon cycle. The fluxes of terrestrial carbon are strongly tied to regional climate due to the influences of temperature, water, and nutrient dynamics on plant productivity. However, climate also influences the destruction of terrestrial organic matter, through weathering, erosion, and biomass loss via fire and oxidative microbial processes. Organic geochemical methods enable us to interrogate past terrestrial carbon dynamics and learn how continental processes might accelerate, or mitigate carbon transfer to the atmosphere, and the associated greenhouse warming. Terrestrial soil systems represent the weathering rind of the continents, and are inherently non-depositional and erosive. The production, transport, and depositional processes affecting organics in continental settings each impart their own biases on the amount and characteristics of preserved carbon. Typically, the best archives for biomarker records are sediments in ancient lakes or subaqueous fans, which represents a preservation bias that tends to favor wetter environments. Paleosols, or ancient soils, formed under depositional conditions that, for one reason or another, truncated soil ablation, erosion, or other loss processes. In modern soils, widely ranging organic carbon abundances are almost always substantially greater than the trace amounts of carbon left behind in ancient soils. Even so, measureable amounts of organic biomarkers persist in paleosols. We have been investigating processes that preserve soil organic carbon on geologic timescales, and how these mechanisms may be sensitive to past climate change. Climate-linked changes in temperature, moisture, pH, and weathering processes can impact carbon preservation via organo-mineral sorption, soil biogeochemistry, and stability based on the physical and chemical properties of organic compounds. These will be discussed and illustrated with examples from our studies of Cenozoic

  9. The decadal state of the terrestrial carbon cycle

    NARCIS (Netherlands)

    Velde, van der I.R.; Bloom, J.; Exbrayat, J.; Feng, L.; Williams, M.

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle

  10. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    Science.gov (United States)

    Zaehle, S

    2013-07-05

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  11. Terrestrial carbon storage dynamics: Chasing a moving target

    Science.gov (United States)

    Luo, Y.; Shi, Z.; Jiang, L.; Xia, J.; Wang, Y.; Kc, M.; Liang, J.; Lu, X.; Niu, S.; Ahlström, A.; Hararuk, O.; Hastings, A.; Hoffman, F. M.; Medlyn, B. E.; Rasmussen, M.; Smith, M. J.; Todd-Brown, K. E.; Wang, Y.

    2015-12-01

    Terrestrial ecosystems have been estimated to absorb roughly 30% of anthropogenic CO2 emissions. Past studies have identified myriad drivers of terrestrial carbon storage changes, such as fire, climate change, and land use changes. Those drivers influence the carbon storage change via diverse mechanisms, which have not been unified into a general theory so as to identify what control the direction and rate of terrestrial carbon storage dynamics. Here we propose a theoretical framework to quantitatively determine the response of terrestrial carbon storage to different exogenous drivers. With a combination of conceptual reasoning, mathematical analysis, and numeric experiments, we demonstrated that the maximal capacity of an ecosystem to store carbon is time-dependent and equals carbon input (i.e., net primary production, NPP) multiplying by residence time. The capacity is a moving target toward which carbon storage approaches (i.e., the direction of carbon storage change) but usually does not attain. The difference between the capacity and the carbon storage at a given time t is the unrealized carbon storage potential. The rate of the storage change is proportional to the magnitude of the unrealized potential. We also demonstrated that a parameter space of NPP, residence time, and carbon storage potential can well characterize carbon storage dynamics quantified at six sites ranging from tropical forests to tundra and simulated by two versions (carbon-only and coupled carbon-nitrogen) of the Australian Community Atmosphere-Biosphere Land Ecosystem (CABLE) Model under three climate change scenarios (CO2 rising only, climate warming only, and RCP8.5). Overall this study reveals the unified mechanism unerlying terrestrial carbon storage dynamics to guide transient traceability analysis of global land models and synthesis of empirical studies.

  12. Potential Applications of Gosat Based Carbon Budget Products to Refine Terrestrial Ecosystem Model

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2011-12-01

    Estimation of carbon exchange in terrestrial ecosystem associates with difficulties due to complex entanglement of physical and biological processes: thus, the net ecosystem productivity (NEP) estimated from simulation often differs among process-based terrestrial ecosystem models. In addition to complexity of the system, validation can only be conducted in a point scale since reliable observation is only available from ground observations. With a lack of large spatial data, extension of model simulation to a global scale results in significant uncertainty in the future carbon balance and climate change. Greenhouse gases Observing SATellite (GOSAT), launched by the Japanese space agency (JAXA) in January, 2009, is the 1st operational satellite promised to deliver the net land-atmosphere carbon budget to the terrestrial biosphere research community. Using that information, the model reproducibility of carbon budget is expected to improve: hence, gives a better estimation of the future climate change. This initial analysis is to seek and evaluate the potential applications of GOSAT observation toward the sophistication of terrestrial ecosystem model. The present study was conducted in two processes: site-based analysis using eddy covariance observation data to assess the potential use of terrestrial carbon fluxes (GPP, RE, and NEP) to refine the model, and extension of the point scale analysis to spatial using Carbon Tracker product as a prototype of GOSAT product. In the first phase of the experiment, it was verified that an optimization routine adapted to a terrestrial model, Biome-BGC, yielded the improved result with respect to eddy covariance observation data from AsiaFlux Network. Spatial data sets used in the second phase were consists of GPP from empirical algorithm (e.g. support vector machine), NEP from Carbon Tracker, and RE from the combination of these. These spatial carbon flux estimations was used to refine the model applying the exactly same

  13. Terrestrial carbon turnover time constraints on future carbon cycle-climate feedback

    Science.gov (United States)

    Fan, N.; Carvalhais, N.; Reichstein, M.

    2017-12-01

    Understanding the terrestrial carbon cycle-climate feedback is essential to reduce the uncertainties resulting from the between model spread in prognostic simulations (Friedlingstein et al., 2006). One perspective is to investigate which factors control the variability of the mean residence times of carbon in the land surface, and how these may change in the future, consequently affecting the response of the terrestrial ecosystems to changes in climate as well as other environmental conditions. Carbon turnover time of the whole ecosystem is a dynamic parameter that represents how fast the carbon cycle circulates. Turnover time τ is an essential property for understanding the carbon exchange between the land and the atmosphere. Although current Earth System Models (ESMs), supported by GVMs for the description of the land surface, show a strong convergence in GPP estimates, but tend to show a wide range of simulated turnover times (Carvalhais, 2014). Thus, there is an emergent need of constraints on the projected response of the balance between terrestrial carbon fluxes and carbon stock which will give us more certainty in response of carbon cycle to climate change. However, the difficulty of obtaining such a constraint is partly due to lack of observational data on temporal change of terrestrial carbon stock. Since more new datasets of carbon stocks such as SoilGrid (Hengl, et al., 2017) and fluxes such as GPP (Jung, et al., 2017) are available, improvement in estimating turnover time can be achieved. In addition, previous study ignored certain aspects such as the relationship between τ and nutrients, fires, etc. We would like to investigate τ and its role in carbon cycle by combining observatinoal derived datasets and state-of-the-art model simulations.

  14. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting.

    Science.gov (United States)

    Butman, David; Stackpoole, Sarah; Stets, Edward; McDonald, Cory P; Clow, David W; Striegl, Robert G

    2016-01-05

    Inland water ecosystems dynamically process, transport, and sequester carbon. However, the transport of carbon through aquatic environments has not been quantitatively integrated in the context of terrestrial ecosystems. Here, we present the first integrated assessment, to our knowledge, of freshwater carbon fluxes for the conterminous United States, where 106 (range: 71-149) teragrams of carbon per year (TgC⋅y(-1)) is exported downstream or emitted to the atmosphere and sedimentation stores 21 (range: 9-65) TgC⋅y(-1) in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant flux at 69 (range: 36-110) TgC⋅y(-1) or 65% of the total aquatic carbon flux for the conterminous United States. Comparing our results with the output of a suite of terrestrial biosphere models (TBMs), we suggest that within the current modeling framework, calculations of net ecosystem production (NEP) defined as terrestrial only may be overestimated by as much as 27%. However, the internal production and mineralization of carbon in freshwaters remain to be quantified and would reduce the effect of including aquatic carbon fluxes within calculations of terrestrial NEP. Reconciliation of carbon mass-flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional research and modeling capacity.

  15. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting

    Science.gov (United States)

    Butman, David; Stackpoole, Sarah; Stets, Edward; McDonald, Cory P.; Clow, David W.; Striegl, Robert G.

    2016-01-01

    Inland water ecosystems dynamically process, transport, and sequester carbon. However, the transport of carbon through aquatic environments has not been quantitatively integrated in the context of terrestrial ecosystems. Here, we present the first integrated assessment, to our knowledge, of freshwater carbon fluxes for the conterminous United States, where 106 (range: 71–149) teragrams of carbon per year (TgC⋅y−1) is exported downstream or emitted to the atmosphere and sedimentation stores 21 (range: 9–65) TgC⋅y−1 in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant flux at 69 (range: 36–110) TgC⋅y−1 or 65% of the total aquatic carbon flux for the conterminous United States. Comparing our results with the output of a suite of terrestrial biosphere models (TBMs), we suggest that within the current modeling framework, calculations of net ecosystem production (NEP) defined as terrestrial only may be overestimated by as much as 27%. However, the internal production and mineralization of carbon in freshwaters remain to be quantified and would reduce the effect of including aquatic carbon fluxes within calculations of terrestrial NEP. Reconciliation of carbon mass–flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional research and modeling capacity. PMID:26699473

  16. How do persistent organic pollutants be coupled with biogeochemical cycles of carbon and nutrients in terrestrial ecosystems under global climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Ying [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Xu, Zhihong; Reverchon, Frederique [Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Luo, Yongming [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation

    2012-03-15

    Global climate change (GCC), especially global warming, has affected the material cycling (e.g., carbon, nutrients, and organic chemicals) and the energy flows of terrestrial ecosystems. Persistent organic pollutants (POPs) were regarded as anthropogenic organic carbon (OC) source, and be coupled with the natural carbon (C) and nutrient biogeochemical cycling in ecosystems. The objective of this work was to review the current literature and explore potential coupling processes and mechanisms between POPs and biogeochemical cycles of C and nutrients in terrestrial ecosystems induced by global warming. Global warming has caused many physical, chemical, and biological changes in terrestrial ecosystems. POPs environmental fate in these ecosystems is controlled mainly by temperature and biogeochemical processes. Global warming may accelerate the re-emissions and redistribution of POPs among environmental compartments via soil-air exchange. Soil-air exchange is a key process controlling the fate and transportation of POPs and terrestrial ecosystem C at regional and global scales. Soil respiration is one of the largest terrestrial C flux induced by microbe and plant metabolism, which can affect POPs biotransformation in terrestrial ecosystems. Carbon flow through food web structure also may have important consequences for the biomagnification of POPs in the ecosystems and further lead to biodiversity loss induced by climate change and POPs pollution stress. Moreover, the integrated techniques and biological adaptation strategy help to fully explore the coupling mechanisms, functioning and trends of POPs and C and nutrient biogeochemical cycling processes in terrestrial ecosystems. There is increasing evidence that the environmental fate of POPs has been linked with biogeochemical cycles of C and nutrients in terrestrial ecosystems under GCC. However, the relationships between POPs and the biogeochemical cycles of C and nutrients are still not well understood. Further

  17. Climate control of terrestrial carbon exchange across biomes and continents

    Science.gov (United States)

    Chuixiang Yi; Daniel Ricciuto; Runze Li; John Wolbeck; Xiyan Xu; Mats Nilsson; John Frank; William J. Massman

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes...

  18. Soil and terrestrial biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Soil and terrestrial biology studies focused on developing an understanding of the uptake of gaseous substances from the atmosphere by plants, biodegradation of oil, and the movement of Pu in the terrestrial ecosystems of the southeastern United States. Mathematical models were developed for SO 2 and tritium uptake from the atmosphere by plants; the uptake of tritium by soil microorganisms was measured; and the relationships among the Pu content of soil, plants, and animals of the Savannah River Plant area were studied. Preliminary results are reported for studies on the biodegradation of waste oil on soil surfaces

  19. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.

    Science.gov (United States)

    Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H

    2012-09-13

    Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.

  20. Equilibration of the terrestrial water, nitrogen, and carbon cycles

    OpenAIRE

    Schimel, David S.; Braswell, B. H.; Parton, W. J.

    1997-01-01

    Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that l...

  1. The carbon balance of terrestrial ecosystems of China

    Directory of Open Access Journals (Sweden)

    Pilli R

    2009-05-01

    Full Text Available A comment is made on a recent letter published on Nature, in which different methodologies are applied to estimate the carbon balance of terrestrial ecosystems of China. A global carbon sink of 0.19-0.26 Pg per year is estimated during the 1980s and 1990s, and it is estimated that in 2006 terrestrial ecosystems have absorbed 28-37 per cent of global carbon emissions in China. Most of the carbon absorption is attributed to large-scale plantation made since the 1980s and shrub recovery. These results will certainly be valuable in the frame of the so-called “REDD” (Reducing Emissions from Deforestation forest Degradation in developing countries mechanism (UN convention on climate change UNFCCC.

  2. Global variation of carbon use efficiency in terrestrial ecosystems

    Science.gov (United States)

    Tang, Xiaolu; Carvalhais, Nuno; Moura, Catarina; Reichstein, Markus

    2017-04-01

    Carbon use efficiency (CUE), defined as the ratio between net primary production (NPP) and gross primary production (GPP), is an emergent property of vegetation that describes its effectiveness in storing carbon (C) and is of significance for understanding C biosphere-atmosphere exchange dynamics. A constant CUE value of 0.5 has been widely used in terrestrial C-cycle models, such as the Carnegie-Ames-Stanford-Approach model, or the Marine Biological Laboratory/Soil Plant-Atmosphere Canopy Model, for regional or global modeling purposes. However, increasing evidence argues that CUE is not constant, but varies with ecosystem types, site fertility, climate, site management and forest age. Hence, the assumption of a constant CUE of 0.5 can produce great uncertainty in estimating global carbon dynamics between terrestrial ecosystems and the atmosphere. Here, in order to analyze the global variations in CUE and understand how CUE varies with environmental variables, a global database was constructed based on published data for crops, forests, grasslands, wetlands and tundra ecosystems. In addition to CUE data, were also collected: GPP and NPP; site variables (e.g. climate zone, site management and plant function type); climate variables (e.g. temperature and precipitation); additional carbon fluxes (e.g. soil respiration, autotrophic respiration and heterotrophic respiration); and carbon pools (e.g. stem, leaf and root biomass). Different climate metrics were derived to diagnose seasonal temperature (mean annual temperature, MAT, and maximum temperature, Tmax) and water availability proxies (mean annual precipitation, MAP, and Palmer Drought Severity Index), in order to improve the local representation of environmental variables. Additionally were also included vegetation phenology dynamics as observed by different vegetation indices from the MODIS satellite. The mean CUE of all terrestrial ecosystems was 0.45, 10% lower than the previous assumed constant CUE of 0

  3. Data-driven diagnostics of terrestrial carbon dynamics over North America

    Science.gov (United States)

    Jingfeng Xiao; Scott V. Ollinger; Steve Frolking; George C. Hurtt; David Y. Hollinger; Kenneth J. Davis; Yude Pan; Xiaoyang Zhang; Feng Deng; Jiquan Chen; Dennis D. Baldocchi; Bevery E. Law; M. Altaf Arain; Ankur R. Desai; Andrew D. Richardson; Ge Sun; Brian Amiro; Hank Margolis; Lianhong Gu; Russell L. Scott; Peter D. Blanken; Andrew E. Suyker

    2014-01-01

    The exchange of carbon dioxide is a key measure of ecosystem metabolism and a critical intersection between the terrestrial biosphere and the Earth's climate. Despite the general agreement that the terrestrial ecosystems in North America provide a sizeable carbon sink, the size and distribution of the sink remain uncertain. We use a data-driven approach to upscale...

  4. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    Science.gov (United States)

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  5. Current and future impacts of ultraviolet radiation on the terrestrial carbon balance

    Institute of Scientific and Technical Information of China (English)

    W. Kolby SMITH; Wei GAO; Heidi STELTZER

    2009-01-01

    One of the most documented effects of human activity on our environment is the reduction of stratospheric ozone resulting in an increase of biologically harmful ultraviolet (UV) radiation. In a less predictable manner, UV radiation incident at the surface of the earth is expected to be further modified in the future as a result of altered cloud condition, atmospheric aerosol concentration, and snow cover. Although UV radiation comprises only a small fraction of the total solar radiation that is incident at the earth's surface, it has the greatest energy per unit wavelength and, thus, the greatest potential to damage the biosphere. Recent investigations have highlighted numerous ways that UV radiation could potentially affect a variety of ecological processes, including nutrient cycling and the terrestrial carbon cycle. The objectives of the following literature review are to summarize and synthesize the available information relevant to the effects of UV radiation and other climate change factors on the terrestrial carbon balance in an effort to highlight current gaps in knowledge and future research directions for UV radiation research.

  6. 1km Global Terrestrial Carbon Flux: Estimations and Evaluations

    Science.gov (United States)

    Murakami, K.; Sasai, T.; Kato, S.; Saito, M.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.

    2017-12-01

    Estimating global scale of the terrestrial carbon flux change with high accuracy and high resolution is important to understand global environmental changes. Furthermore the estimations of the global spatiotemporal distribution may contribute to the political and social activities such as REDD+. In order to reveal the current state of terrestrial carbon fluxes covering all over the world and a decadal scale. The satellite-based diagnostic biosphere model is suitable for achieving this purpose owing to observing on the present global land surface condition uniformly at some time interval. In this study, we estimated the global terrestrial carbon fluxes with 1km grids by using the terrestrial biosphere model (BEAMS). And we evaluated our new carbon flux estimations on various spatial scales and showed the transition of forest carbon stocks in some regions. Because BEAMS required high resolution meteorological data and satellite data as input data, we made 1km interpolated data using a kriging method. The data used in this study were JRA-55, GPCP, GOSAT L4B atmospheric CO2 data as meteorological data, and MODIS land product as land surface satellite data. Interpolating process was performed on the meteorological data because of insufficient resolution, but not on MODIS data. We evaluated our new carbon flux estimations using the flux tower measurement (FLUXNET2015 Datasets) in a point scale. We used 166 sites data for evaluating our model results. These flux sites are classified following vegetation type (DBF, EBF, ENF, mixed forests, grass lands, croplands, shrub lands, Savannas, wetlands). In global scale, the BEAMS estimations was underestimated compared to the flux measurements in the case of carbon uptake and release. The monthly variations of NEP showed relatively high correlations in DBF and mixed forests, but the correlation coefficients of EBF, ENF, and grass lands were less than 0.5. In the meteorological factors, air temperature and solar radiation showed

  7. Simultaneous reproduction of global carbon exchange and storage of terrestrial forest ecosystems

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2012-12-01

    Understanding the mechanism of the terrestrial carbon cycle is essential for assessing the impact of climate change. Quantification of both carbon exchange and storage is the key to the understanding, but it often associates with difficulties due to complex entanglement of environmental and physiological factors. Terrestrial ecosystem models have been the major tools to assess the terrestrial carbon budget for decades. Because of its strong association with climate change, carbon exchange has been more rigorously investigated by the terrestrial biosphere modeling community. Seeming success of model based assessment of carbon budge often accompanies with the ill effect, substantial misrepresentation of storage. In practice, a number of model based analyses have paid attention solely on terrestrial carbon fluxes and often neglected carbon storage such as forest biomass. Thus, resulting model parameters are inevitably oriented to carbon fluxes. This approach is insufficient to fully reduce uncertainties about future terrestrial carbon cycles and climate change because it does not take into account the role of biomass, which is equivalently important as carbon fluxes in the system of carbon cycle. To overcome this issue, a robust methodology for improving the global assessment of both carbon budget and storage is needed. One potentially effective approach to identify a suitable balance of carbon allocation proportions for each individual ecosystem. Carbon allocations can influence the plant growth by controlling the amount of investment acquired from photosynthesis, as well as carbon fluxes by controlling the carbon content of leaves and litter, both are active media for photosynthesis and decomposition. Considering those aspects, there may exist the suitable balance of allocation proportions enabling the simultaneous reproduction of carbon budget and storage. The present study explored the existence of such suitable balances of allocation proportions, and examines the

  8. Nonautonomous linear system of the terrestrial carbon cycle

    Science.gov (United States)

    Luo, Y.

    2012-12-01

    Carbon cycle has been studied by uses of observation through various networks, field and laboratory experiments, and simulation models. Much less has been done on theoretical thinking and analysis to understand fundament properties of carbon cycle and then guide observatory, experimental, and modeling research. This presentation is to explore what would be the theoretical properties of terrestrial carbon cycle and how those properties can be used to make observatory, experimental, and modeling research more effective. Thousands of published data sets from litter decomposition and soil incubation studies almost all indicate that decay processes of litter and soil organic carbon can be well described by first order differential equations with one or more pools. Carbon pool dynamics in plants and soil after disturbances (e.g., wildfire, clear-cut of forests, and plows of soil for cropping) and during natural recovery or ecosystem restoration also exhibit characteristics of first-order linear systems. Thus, numerous lines of empirical evidence indicate that the terrestrial carbon cycle can be adequately described as a nonautonomous linear system. The linearity reflects the nature of the carbon cycle that carbon, once fixed by photosynthesis, is linearly transferred among pools within an ecosystem. The linear carbon transfer, however, is modified by nonlinear functions of external forcing variables. In addition, photosynthetic carbon influx is also nonlinearly influenced by external variables. This nonautonomous linear system can be mathematically expressed by a first-order linear ordinary matrix equation. We have recently used this theoretical property of terrestrial carbon cycle to develop a semi-analytic solution of spinup. The new methods have been applied to five global land models, including NCAR's CLM and CABLE models and can computationally accelerate spinup by two orders of magnitude. We also use this theoretical property to develop an analytic framework to

  9. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications

    Science.gov (United States)

    Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many

  10. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Science.gov (United States)

    Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David. Kicklighter

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...

  11. Influence of multiple global change drivers on terrestrial carbon storage

    DEFF Research Database (Denmark)

    Yue, Kai; Fornara, Dario A; Yang, Wanqin

    2017-01-01

    The interactive effects of multiple global change drivers on terrestrial carbon (C) storage remain poorly understood. Here, we synthesise data from 633 published studies to show how the interactive effects of multiple drivers are generally additive (i.e. not differing from the sum of their indivi......The interactive effects of multiple global change drivers on terrestrial carbon (C) storage remain poorly understood. Here, we synthesise data from 633 published studies to show how the interactive effects of multiple drivers are generally additive (i.e. not differing from the sum...... additive effects of multiple global change drivers into future assessments of the C storage ability of terrestrial ecosystems....

  12. Climate control of terrestrial carbon exchange across biomes and continents

    DEFF Research Database (Denmark)

    Yi, Chuixiang; Ricciuto, Daniel; Li, Runze

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships betwe...

  13. Climate control of terrestrial carbon exchange across biomes and continents

    NARCIS (Netherlands)

    Yi, C.; Ricciuto, D.; Li, R.; Hendriks, D.M.D.; Moors, E.J.; Valentini, R.

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between

  14. Climate control of terrestrial carbon exchange across biomes and continents

    NARCIS (Netherlands)

    Yi, C.; Jacobs, C.M.J.; Moors, E.J.; Elbers, J.A.

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships between

  15. Exploring global carbon turnover and radiocarbon cycling in terrestrial biosphere models

    Science.gov (United States)

    Graven, H. D.; Warren, H.

    2017-12-01

    The uptake of carbon into terrestrial ecosystems through net primary productivity (NPP) and the turnover of that carbon through various pathways are the fundamental drivers of changing carbon stocks on land, in addition to human-induced and natural disturbances. Terrestrial biosphere models use different formulations for carbon uptake and release, resulting in a range of values in NPP of 40-70 PgC/yr and biomass turnover times of about 25-40 years for the preindustrial period in current-generation models from CMIP5. Biases in carbon uptake and turnover impact simulated carbon uptake and storage in the historical period and later in the century under changing climate and CO2 concentration, however evaluating global-scale NPP and carbon turnover is challenging. Scaling up of plot-scale measurements involves uncertainty due to the large heterogeneity across ecosystems and biomass types, some of which are not well-observed. We are developing the modelling of radiocarbon in terrestrial biosphere models, with a particular focus on decadal 14C dynamics after the nuclear weapons testing in the 1950s-60s, including the impact of carbon flux trends and variability on 14C cycling. We use an estimate of the total inventory of excess 14C in the biosphere constructed by Naegler and Levin (2009) using a 14C budget approach incorporating estimates of total 14C produced by the weapons tests and atmospheric and oceanic 14C observations. By simulating radiocarbon in simple biosphere box models using carbon fluxes from the CMIP5 models, we find that carbon turnover is too rapid in many of the simple models - the models appear to take up too much 14C and release it too quickly. Therefore many CMIP5 models may also simulate carbon turnover that is too rapid. A caveat is that the simple box models we use may not adequately represent carbon dynamics in the full-scale models. Explicit simulation of radiocarbon in terrestrial biosphere models would allow more robust evaluation of biosphere

  16. Multi-factor controls on terrestrial carbon dynamics in urbanized areas

    Science.gov (United States)

    Zhang, C.; Tian, H.; Pan, S.; Lockaby, G.; Chappelka, A.

    2014-12-01

    As urban land expands rapidly across the globe, much concern has been raised that urbanization may alter the terrestrial carbon cycle. Urbanization involves complex changes in land structure and multiple environmental factors. Little is known about the relative contribution of these individual factors and their interactions to the terrestrial carbon dynamics, however, which is essential for assessing the effectiveness of carbon sequestration policies focusing on urban development. This study developed a comprehensive analysis framework for quantifying relative contribution of individual factors (and their interactions) to terrestrial carbon dynamics in urbanized areas. We identified 15 factors belonging to five categories, and we applied a newly developed factorial analysis scheme to the southern United States (SUS), a rapidly urbanizing region. In all, 24 numeric experiments were designed to systematically isolate and quantify the relative contribution of individual factors. We found that the impact of land conversion was far larger than other factors. Urban managements and the overall interactive effects among major factors, however, created a carbon sink that compensated for 42% of the carbon loss in land conversion. Our findings provide valuable information for regional carbon management in the SUS: (1) it is preferable to preserve pre-urban carbon pools than to rely on the carbon sinks in urban ecosystems to compensate for the carbon loss in land conversion. (2) In forested areas, it is recommendable to improve landscape design (e.g., by arranging green spaces close to the city center) to maximize the urbanization-induced environmental change effect on carbon sequestration. Urbanization-induced environmental change will be less effective in shrubland regions. (3) Urban carbon sequestration can be significantly improved through changes in management practices, such as increased irrigation and fertilizer and targeted use of vehicles and machinery with least

  17. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls

    Science.gov (United States)

    Feng, Xiaojuan; Gustafsson, Örjan; Holmes, R. Max; Vonk, Jorien E.; van Dongen, Bart E.; Semiletov, Igor P.; Dudarev, Oleg V.; Yunker, Mark B.; Macdonald, Robie W.; Wacker, Lukas; Montluçon, Daniel B.; Eglinton, Timothy I.

    2015-11-01

    Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these "old" terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.

  18. Accelerator mass analyses of meteorites - carbon-14 terrestrial ages

    International Nuclear Information System (INIS)

    Miura, Y.; Rucklidge, J.; Beukens, R.; Fireman, E.

    1988-01-01

    Carbon-14 terrestrial ages of ten Antarctic meteorites have been measured by the IsoTrace accelerator mass spectrometry (AMS). The 14 C terrestrial age of 1 gram sample was determined from 14 C concentrations collected at melt and re-melt temperatures, compared with the 14 C concentration of the known Bruderheim chondrite. Yamato-790448 (LL3) chondrite was found to be the oldest terrestrial age of 3x10 4 years in the nine Yamato chondrites, whereas Yamato-791630 (L4) chondrite is considered to be the youngest chondrites less than thousand years. Allan Hills chondrite of ALH-77231 (L6) shows older terrestrial age than the nine Yamato chondrites. New accelerator data of the terrestrial age show higher accuracy with smaller sample than the previous counting method. (author)

  19. Do ENSO and Coastal Development Enhance Coastal Burial of Terrestrial Carbon?

    Science.gov (United States)

    Macreadie, Peter I; Rolph, Timothy C; Boyd, Ron; Schröder-Adams, Claudia J; Skilbeck, Charles G

    2015-01-01

    Carbon cycling on the east coast of Australia has the potential to be strongly affected by El Niño-Southern Oscillation (ENSO) intensification and coastal development (industrialization and urbanization). We performed paleoreconstructions of estuarine sediments from a seagrass-dominated estuary on the east coast of Australia (Tuggerah Lake, New South Wales) to test the hypothesis that millennial-scale ENSO intensification and European settlement in Australia have increased the transfer of organic carbon from land into coastal waters. Our data show that carbon accumulation rates within coastal sediments increased significantly during periods of maximum millennial-scale ENSO intensity ("super-ENSO") and coastal development. We suggest that ENSO and coastal development destabilize and liberate terrestrial soil carbon, which, during rainfall events (e.g., La Niña), washes into estuaries and becomes trapped and buried by coastal vegetation (seagrass in this case). Indeed, periods of high carbon burial were generally characterized as having rapid sedimentation rates, higher content of fine-grained sediments, and increased content of wood and charcoal fragments. These results, though preliminary, suggest that coastal development and ENSO intensification--both of which are predicted to increase over the coming century--can enhance capture and burial of terrestrial carbon by coastal ecosystems. These findings have important relevance for current efforts to build an understanding of terrestrial-marine carbon connectivity into global carbon budgets.

  20. Intercomparison of terrestrial carbon fluxes and carbon use efficiency simulated by CMIP5 Earth System Models

    Science.gov (United States)

    Kim, Dongmin; Lee, Myong-In; Jeong, Su-Jong; Im, Jungho; Cha, Dong Hyun; Lee, Sanggyun

    2017-12-01

    This study compares historical simulations of the terrestrial carbon cycle produced by 10 Earth System Models (ESMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Using MODIS satellite estimates, this study validates the simulation of gross primary production (GPP), net primary production (NPP), and carbon use efficiency (CUE), which depend on plant function types (PFTs). The models show noticeable deficiencies compared to the MODIS data in the simulation of the spatial patterns of GPP and NPP and large differences among the simulations, although the multi-model ensemble (MME) mean provides a realistic global mean value and spatial distributions. The larger model spreads in GPP and NPP compared to those of surface temperature and precipitation suggest that the differences among simulations in terms of the terrestrial carbon cycle are largely due to uncertainties in the parameterization of terrestrial carbon fluxes by vegetation. The models also exhibit large spatial differences in their simulated CUE values and at locations where the dominant PFT changes, primarily due to differences in the parameterizations. While the MME-simulated CUE values show a strong dependence on surface temperatures, the observed CUE values from MODIS show greater complexity, as well as non-linear sensitivity. This leads to the overall underestimation of CUE using most of the PFTs incorporated into current ESMs. The results of this comparison suggest that more careful and extensive validation is needed to improve the terrestrial carbon cycle in terms of ecosystem-level processes.

  1. Radionuclide biological half-life values for terrestrial and aquatic wildlife

    International Nuclear Information System (INIS)

    Beresford, N.A.; Beaugelin-Seiller, K.; Burgos, J.; Cujic, M.; Fesenko, S.; Kryshev, A.; Pachal, N.; Real, A.; Su, B.S.; Tagami, K.; Vives i Batlle, J.; Vives-Lynch, S.; Wells, C.; Wood, M.D.

    2015-01-01

    The equilibrium concentration ratio is typically the parameter used to estimate organism activity concentrations within wildlife dose assessment tools. Whilst this is assumed to be fit for purpose, there are scenarios such as accidental or irregular, fluctuating, releases from licensed facilities when this might not be the case. In such circumstances, the concentration ratio approach may under- or over-estimate radiation exposure depending upon the time since the release. To carrying out assessments for such releases, a dynamic approach is needed. The simplest and most practical option is representing the uptake and turnover processes by first-order kinetics, for which organism- and element-specific biological half-life data are required. In this paper we describe the development of a freely available international database of radionuclide biological half-life values. The database includes 1907 entries for terrestrial, freshwater, riparian and marine organisms. Biological half-life values are reported for 52 elements across a range of wildlife groups (marine = 9, freshwater = 10, terrestrial = 7 and riparian = 3 groups). Potential applications and limitations of the database are discussed. - Highlights: • 1907 biological half-life values have been collated for wildlife species. • Data cover 52 elements. • 27 marine, freshwater, riparian and terrestrial organisms are included.

  2. The Global Influence of Cloud Optical Thickness on Terrestrial Carbon Uptake

    Science.gov (United States)

    Zhu, P.; Cheng, S. J.; Keppel-Aleks, G.; Butterfield, Z.; Steiner, A. L.

    2016-12-01

    Clouds play a critical role in regulating Earth's climate. One important way is by changing the type and intensity of solar radiation reaching the Earth's surface, which impacts plant photosynthesis. Specifically, the presence of clouds modifies photosynthesis rates by influencing the amount of diffuse radiation as well as the spectral distribution of solar radiation. Satellite-derived cloud optical thickness (COT) may provide the observational constraint necessary to assess the role of clouds on ecosystems and terrestrial carbon uptake across the globe. Previous studies using ground-based observations at individual sites suggest that below a COT of 7, there is a greater increase in light use efficiency than at higher COT values, providing evidence for higher carbon uptake rates than expected given the reduction in radiation by clouds. However, the strength of the COT-terrestrial carbon uptake correlation across the globe remains unknown. In this study, we investigate the influence of COT on terrestrial carbon uptake on a global scale, which may provide insights into cloud conditions favorable for plant photosynthesis and improve our estimates of the land carbon sink. Global satellite-derived MODIS data show that tropical and subtropical regions tend to have COT values around or below the threshold during growing seasons. We find weak correlations between COT and GPP with Fluxnet MTE global GPP data, which may be due to the uncertainty of upscaling GPP from individual site measurements. Analysis with solar-induced fluorescence (SIF) as a proxy for GPP is also evaluated. Overall, this work constructs a global picture of the role of COT on terrestrial carbon uptake, including its temporal and spatial variations.

  3. Carbon Sequestration in Terrestrial Ecosystems: A Status Report on R and D Progress

    International Nuclear Information System (INIS)

    Jacobs, G.K.

    2001-01-01

    Sequestration of carbon in terrestrial ecosystems is a low-cost option that may be available in the near-term to mitigate increasing atmospheric CO(sub 2) concentrations, while providing additional benefits. Storing carbon in terrestrial ecosystems can be achieved through maintenance of standing aboveground biomass, utilization of aboveground biomass in long-lived products, or protection of carbon (organic and inorganic) compounds present in soils. There are potential co-benefits from efforts to sequester carbon in terrestrial ecosystems. For example, long-lived valuable products (wood) are produced, erosion would be reduced, soil productivity could be improved through increased capacity to retain water and nutrients, and marginal lands could be improved and riparian ecosystems restored. Another unique feature of the terrestrial sequestration option is that it is the only option that is ''reversible'' should it become desirable or permissible. For example, forests that are created are thus investments which could be harvested should CO(sub 2) emissions be reduced in other ways to acceptable levels 50-100 years from now

  4. Carbon Fluxes and Transport Along the Terrestrial Aquatic Continuum

    Science.gov (United States)

    Butman, D. E.; Kolka, R.; Fennel, K.; Stackpoole, S. M.; Trettin, C.; Windham-Myers, L.

    2017-12-01

    Terrestrial wetlands, inland surface waters, tidal wetlands and estuaries, and the coastal ocean are distinct aquatic ecosystems that integrate carbon (C) fluxes and processing among the major earth system components: the continents, oceans, and atmosphere. The development of the 2nd State of the Carbon Cycle Report (SOCCR2) noted that incorporating the C cycle dynamics for these ecosystems was necessary to reconcile some of the gaps associated with the North American C budget. We present major C stocks and fluxes for Canada, Mexico and the United States. North America contains nearly 42% of the global terrestrial wetland area. Terrestrial wetlands, defined as soils that are seasonally or permanently inundated or saturated, contain significant C stocks equivalent to 174,000 Tg C in the top 40 cm of soil. While terrestrial wetlands are a C sink of approximately 64 Tg C yr-1, they also emit 21 Tg of CH4 yr-1. Inland waters are defined as lakes, reservoirs, rivers, and streams. Carbon fluxes, which include lateral C export to the coast, riverine and lacustrine CO2 emissions, and C burial in lakes and reservoirs are estimated at 507 Tg yr-1. Estuaries and tidal wetlands assimilate C and nutrients from uplands and rivers, and their total C stock is 1,323 Tg C in the top 1 m of soils and sediment. Accounting for soil accretion, lateral C flux, and CO2 assimilation and emission, tidal wetlands and estuaries are net sinks with a total flux equal to 6 Tg C yr-1. The coastal ocean and sea shelfs, defined as non-estuarine waters within 200 nautical miles (370 km) of the coast, function as net sinks, with the air-sea exchange of CO2 estimated at 150 Tg C yr-1. In total, fluxes from these four aquatic ecosystems are equal to a loss of 302 Tg C yr-1. Including these four discrete fluxes in this assessment demonstrates the importance of linking hydrology and biogeochemical cycling to evaluate the impacts of climate change and human activities on carbon fluxes across the

  5. Estimating Terrestrial Wood Biomass from Observed Concentrations of Atmospheric Carbon Dioxide

    NARCIS (Netherlands)

    Schaefer, K. M.; Peters, W.; Carvalhais, N.; van der Werf, G.; Miller, J.

    2008-01-01

    We estimate terrestrial disequilibrium state and wood biomass from observed concentrations of atmospheric CO2 using the CarbonTracker system coupled to the SiBCASA biophysical model. Starting with a priori estimates of carbon flux from the land, ocean, and fossil fuels, CarbonTracker estimates net

  6. Climate control of terrestrial carbon exchange across biomes and continents

    Czech Academy of Sciences Publication Activity Database

    Yi, C.; Ricciuto, D.; Marek, Michal V.

    2010-01-01

    Roč. 5, č. 3 (2010), s. 034007 ISSN 1748-9326 Institutional research plan: CEZ:AV0Z60870520 Keywords : NEE * climate control * terrestrial carbon sequestration * temperature * dryness * eddy flux * biomes * photosynthesis * respiration * global carbon cycle Subject RIV: EH - Ecology, Behaviour Impact factor: 3.049, year: 2010

  7. Ignoring detailed fast-changing dynamics of land use overestimates regional terrestrial carbon sequestration

    Directory of Open Access Journals (Sweden)

    S. Q. Zhao

    2009-08-01

    Full Text Available Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS, along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively, to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at the local to global scales.

  8. Multi-model analysis of terrestrial carbon cycles in Japan: reducing uncertainties in model outputs among different terrestrial biosphere models using flux observations

    Science.gov (United States)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2009-08-01

    Terrestrial biosphere models show large uncertainties when simulating carbon and water cycles, and reducing these uncertainties is a priority for developing more accurate estimates of both terrestrial ecosystem statuses and future climate changes. To reduce uncertainties and improve the understanding of these carbon budgets, we investigated the ability of flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine-based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and an improved model (based on calibration using flux observations). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using flux observations (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs, and model calibration using flux observations significantly improved the model outputs. These results show that to reduce uncertainties among terrestrial biosphere models, we need to conduct careful validation and calibration with available flux observations. Flux observation data significantly improved terrestrial biosphere models, not only on a point scale but also on spatial scales.

  9. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems.

    Science.gov (United States)

    Austin, Amy T; Méndez, M Soledad; Ballaré, Carlos L

    2016-04-19

    A mechanistic understanding of the controls on carbon storage and losses is essential for our capacity to predict and mitigate human impacts on the global carbon cycle. Plant litter decomposition is an important first step for carbon and nutrient turnover, and litter inputs and losses are essential in determining soil organic matter pools and the carbon balance in terrestrial ecosystems. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in arid lands; however, the global significance of this process as a control on carbon cycling in terrestrial ecosystems is not known. Here we show that, across a wide range of plant species, photodegradation enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility to plant litter carbohydrates for microbial enzymes. Photodegradation of plant litter, driven by UV radiation, and especially visible (blue-green) light, reduced the structural and chemical bottleneck imposed by lignin in secondary cell walls. In leaf litter from woody species, specific interactions with UV radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized effect of sunlight exposure on subsequent microbial activity, mediated by increased accessibility to cell wall polysaccharides, suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release, and the carbon balance in a broad range of terrestrial ecosystems.

  10. Terrestrial carbon cycle affected by non-uniform climate warming

    International Nuclear Information System (INIS)

    Jianyang Xia; Yiqi Luo; Jiquan Chen; Shilong Piao; Ciais, Philippe; Shiqiang Wan

    2014-01-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30 degrees and 90 degrees N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research. (authors)

  11. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China

    Directory of Open Access Journals (Sweden)

    F. Jiang

    2013-08-01

    Full Text Available In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO. The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002–2008 are −3.20 ± 0.63 and −0.28 ± 0.18 PgC yr−1, respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs and from the import of wood and food, we further estimate that China's land sink is about −0.31 PgC yr−1.

  12. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    Science.gov (United States)

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal

  13. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea

    Science.gov (United States)

    Keskitalo, Kirsi; Tesi, Tommaso; Bröder, Lisa; Andersson, August; Pearce, Christof; Sköld, Martin; Semiletov, Igor P.; Dudarev, Oleg V.; Gustafsson, Örjan

    2017-09-01

    Thawing of permafrost carbon (PF-C) due to climate warming can remobilise considerable amounts of terrestrial carbon from its long-term storage to the marine environment. PF-C can be then be buried in sediments or remineralised to CO2 with implications for the carbon-climate feedback. Studying historical sediment records during past natural climate changes can help us to understand the response of permafrost to current climate warming. In this study, two sediment cores collected from the East Siberian Sea were used to study terrestrial organic carbon sources, composition and degradation during the past ˜ 9500 cal yrs BP. CuO-derived lignin and cutin products (i.e., compounds solely biosynthesised in terrestrial plants) combined with δ13C suggest that there was a higher input of terrestrial organic carbon to the East Siberian Sea between ˜ 9500 and 8200 cal yrs BP than in all later periods. This high input was likely caused by marine transgression and permafrost destabilisation in the early Holocene climatic optimum. Based on source apportionment modelling using dual-carbon isotope (Δ14C, δ13C) data, coastal erosion releasing old Pleistocene permafrost carbon was identified as a significant source of organic matter translocated to the East Siberian Sea during the Holocene.

  14. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    Science.gov (United States)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  15. Determination of the isotopic (C-13/C-12) discrimination by terrestrial biology from a global network of observations

    International Nuclear Information System (INIS)

    Bakwin, P.S.; Tans, P.P.; White, J.W.C.; Andres, R.J.

    1998-01-01

    Data from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network are analysed in order to extract the signatures of isotopic (C-13/C-12) discrimination by the terrestrial iota and of fossil fuel combustion for the regions surrounding the sampling sites. Measurements of carbon monoxide (CO) are used to give an estimate of the contribution of fossil fuel combustion to the short-term variability of carbon dioxide. In general, variations of CO 2 are more strongly dominated by biological exchange, so the isotopic signature of fossil fuel combustion, while consistent with inventory estimates, is not well constrained by the observations. Conversely, results for isotope discrimination by the terrestrial biosphere are not strongly dependent on assumptions about fossil fuel combustion. The analysis appears valid primarily for stations fairly near continental source/sink regions, particularly for midlatitude regions of the northern hemisphere. For these stations a mean discrimination of -16.8 per mil (%) is derived, with site-to-site variability of 0.8% and with little or no consistent latitudinal gradient

  16. Simulation of carbon isotope discrimination of the terrestrial biosphere

    Science.gov (United States)

    Suits, N. S.; Denning, A. S.; Berry, J. A.; Still, C. J.; Kaduk, J.; Miller, J. B.; Baker, I. T.

    2005-03-01

    We introduce a multistage model of carbon isotope discrimination during C3 photosynthesis and global maps of C3/C4 plant ratios to an ecophysiological model of the terrestrial biosphere (SiB2) in order to predict the carbon isotope ratios of terrestrial plant carbon globally at a 1° resolution. The model is driven by observed meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF), constrained by satellite-derived Normalized Difference Vegetation Index (NDVI) and run for the years 1983-1993. Modeled mean annual C3 discrimination during this period is 19.2‰; total mean annual discrimination by the terrestrial biosphere (C3 and C4 plants) is 15.9‰. We test simulation results in three ways. First, we compare the modeled response of C3 discrimination to changes in physiological stress, including daily variations in vapor pressure deficit (vpd) and monthly variations in precipitation, to observed changes in discrimination inferred from Keeling plot intercepts. Second, we compare mean δ13C ratios from selected biomes (Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal) to the observed values from Keeling plots at these biomes. Third, we compare simulated zonal δ13C ratios in the Northern Hemisphere (20°N to 60°N) to values predicted from high-frequency variations in measured atmospheric CO2 and δ13C from terrestrially dominated sites within the NOAA-Globalview flask network. The modeled response to changes in vapor pressure deficit compares favorably to observations. Simulated discrimination in tropical forests of the Amazon basin is less sensitive to changes in monthly precipitation than is suggested by some observations. Mean model δ13C ratios for Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal biomes compare well with the few measurements available; however, there is more variability in observations than in the simulation, and modeled δ13C values for tropical forests are heavy relative to observations

  17. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  18. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling

    Science.gov (United States)

    Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.

  19. A tree-ring perspective on the terrestrial carbon cycle

    International Nuclear Information System (INIS)

    Babst, F.; Alexander, M.R.; Szejner, P.; Trouet, V.; Alexander, M.R.; Moore, D.J.P.; Bouriaud, O.; Klesse, S.; Frank, D.; Roden, J.; Ciais, P.; Poulter, B.

    2014-01-01

    Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is also apparent that considerable unexplored potential exists for tree rings to refine assessments of terrestrial carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and variability, (3) CO 2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between observational and computational forest productivity estimates. We encourage the integration of tree-ring data: with eddy-covariance measurements to investigate carbon allocation patterns and water-use efficiency; with remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest inventories to develop continuous, annually resolved and long-term carbon budgets. In addition, we note the potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest carbon cycling and place current developments into a long-term perspective. (authors)

  20. The role of forest disturbance in global forest mortality and terrestrial carbon fluxes

    Science.gov (United States)

    Pugh, Thomas; Arneth, Almut; Smith, Benjamin; Poulter, Benjamin

    2017-04-01

    Large-scale forest disturbance dynamics such as insect outbreaks, wind-throw and fires, along with anthropogenic disturbances such as logging, have been shown to turn forests from carbon sinks into intermittent sources, often quite dramatically so. There is also increasing evidence that disturbance regimes in many regions are changing as a result of climatic change and human land-management practices. But how these landscape-scale events fit into the wider picture of global tree mortality is not well understood. Do such events dominate global carbon turnover, or are their effects highly regional? How sensitive is global terrestrial carbon exchange to realistic changes in the occurrence rate of such disturbances? Here, we combine recent advances in global satellite observations of stand-replacing forest disturbances and in compilations of forest inventory data, with a global terrestrial ecosystem model which incorporates an explicit representation of the role of disturbance in forest dynamics. We find that stand-replacing disturbances account for a fraction of wood carbon turnover that varies spatially from less than 5% in the tropical rainforest to ca. 50% in the mid latitudes, and as much as 90% in some heavily-managed regions. We contrast the size of the land-atmosphere carbon flux due to this disturbance with other components of the terrestrial carbon budget. In terms of sensitivity, we find a quasi log-linear relationship of disturbance rate to total carbon storage. Relatively small changes in disturbance rates at all latitudes have marked effects on vegetation carbon storage, with potentially very substantial implications for the global terrestrial carbon sink. Our results suggest a surprisingly small effect of disturbance type on large-scale forest vegetation dynamics and carbon storage, with limited evidence of widespread increases in nitrogen limitation as a result of increasing future disturbance. However, the influence of disturbance type on soil carbon

  1. Impacts of large-scale climatic disturbances on the terrestrial carbon cycle

    Directory of Open Access Journals (Sweden)

    Lucht Wolfgang

    2006-07-01

    Full Text Available Abstract Background The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO2 growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical model of the terrestrial biosphere to differentiate the effects of temperature and precipitation on net primary production (NPP and heterotrophic respiration (Rh during the two largest anomalies in atmospheric CO2 increase during the last 25 years. One of these, the smallest atmospheric year-to-year increase (largest land carbon uptake in that period, was caused by global cooling in 1992/93 after the Pinatubo volcanic eruption. The other, the largest atmospheric increase on record (largest land carbon release, was caused by the strong El Niño event of 1997/98. Results We find that the LPJ model correctly simulates the magnitude of terrestrial modulation of atmospheric carbon anomalies for these two extreme disturbances. The response of soil respiration to changes in temperature and precipitation explains most of the modelled anomalous CO2 flux. Conclusion Observed and modelled NEE anomalies are in good agreement, therefore we suggest that the temporal variability of heterotrophic respiration produced by our model is reasonably realistic. We therefore conclude that during the last 25 years the two largest disturbances of the global carbon cycle were strongly controlled by soil processes rather then the response of vegetation to these large-scale climatic events.

  2. Climate control of terrestrial carbon exchange across biomes and continents

    Energy Technology Data Exchange (ETDEWEB)

    Yi Chuixiang; Wolbeck, John; Xu Xiyan [School of Earth and Environmental Sciences, Queens College, City University of New York, NY 11367 (United States); Ricciuto, Daniel [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Li Runze [Department of Statistics, Pennsylvania State University, University Park, PA 16802 (United States); Nilsson, Mats [Department of Forest Ecology, Swedish University of Agricultural Sciences, SE-901 83 Umeaa (Sweden); Aires, Luis [CESAM and Department of Environmental Engineering, School of Technology and Management, Polytechnic Institute of Leiria (Portugal); Albertson, John D [Department of Civil and Environmental Engineering, Duke University, Durham, NC 22708-0287 (United States); Ammann, Christof [Federal Research Station Agroscope Reckenholz-Taenikon, Reckenholzstrasse 191, 8046 Zuerich (Switzerland); Arain, M Altaf [School of Geography and Earth Sciences, McMaster University, Hamilton, ON, L8S 4K1 (Canada); De Araujo, Alessandro C [Instituto Nacional de Pesquisas da Amazonia, Programa LBA, Campus-II, Manaus-Amazonas 69060 (Brazil); Aubinet, Marc [University of Liege, Gembloux Agro-Bio Tech, Unit of Biosystem Physics, 2 Passage des Deportes, 5030 Gembloux (Belgium); Aurela, Mika [Finnish Meteorological Institute, Climate Change Research, FI-00101 Helsinki (Finland); Barcza, Zoltan [Department of Meteorology, Eoetvoes Lorand University, H-1117 Budapest, Pazmany setany 1/A (Hungary); Barr, Alan [Climate Research Division, Environment Canada, Saskatoon, SK, S7N 3H5 (Canada); Berbigier, Paul [INRA, UR1263 EPHYSE, Villenave d' Ornon F-33883 (France); Beringer, Jason [School of Geography and Environmental Science, Monash University, Clayton, Victoria 3800 (Australia); Bernhofer, Christian [Institute of Hydrology and Meteorology, Dresden University of Technology, Pienner Strasse 23, D-01737, Tharandt (Germany)

    2010-07-15

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO{sub 2} exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 deg. N). The sensitivity of NEE to mean annual temperature breaks down at {approx} 16 deg. C (a threshold value of mean annual temperature), above which no further increase of CO{sub 2} uptake with temperature was observed and dryness influence overrules temperature influence.

  3. Climate control of terrestrial carbon exchange across biomes and continents

    International Nuclear Information System (INIS)

    Yi Chuixiang; Wolbeck, John; Xu Xiyan; Ricciuto, Daniel; Li Runze; Nilsson, Mats; Aires, Luis; Albertson, John D; Ammann, Christof; Arain, M Altaf; De Araujo, Alessandro C; Aubinet, Marc; Aurela, Mika; Barcza, Zoltan; Barr, Alan; Berbigier, Paul; Beringer, Jason; Bernhofer, Christian

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO 2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 deg. N). The sensitivity of NEE to mean annual temperature breaks down at ∼ 16 deg. C (a threshold value of mean annual temperature), above which no further increase of CO 2 uptake with temperature was observed and dryness influence overrules temperature influence.

  4. Terrestrial Carbon Cycle Variability [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Dennis Baldocchi

    2016-09-01

    Full Text Available A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions. The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y-1 with respect to a large and uncertain background (123 +/- 4 Pg-C y-1

  5. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    Directory of Open Access Journals (Sweden)

    X. Yang

    2010-10-01

    Full Text Available We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades

  6. Environmental forcing of terrestrial carbon isotope excursion amplification across five Eocene hyperthermals

    Science.gov (United States)

    Bowen, G. J.; Abels, H.

    2015-12-01

    Abrupt changes in the isotope composition of exogenic carbon pools accompany many major episodes of global change in the geologic record. The global expression of this change in substrates that reflect multiple carbon pools provides important evidence that many events reflect persistent, global redistribution of carbon between reduced and oxidized stocks. As the diversity of records documenting any event grows, however, discrepancies in the expression of carbon isotope change among substrates are almost always revealed. These differences in magnitude, pace, and pattern of change can complicate interpretations of global carbon redistribution, but under ideal circumstances can also provide additional information on changes in specific environmental and biogeochemical systems that accompanied the global events. Here we evaluate possible environmental influences on new terrestrial records of the negative carbon isotope excursions (CIEs) associated with multiple hyperthermals of the Early Eocene, which show a common pattern of amplified carbon isotope change in terrestrial paleosol carbonate records relative to that recorded in marine substrates. Scaling relationships between climate and carbon-cycle proxies suggest that that the climatic (temperature) impact of each event scaled proportionally with the magnitude of its marine CIE, likely implying that all events involved release of reduced carbon with a similar isotopic composition. Amplification of the terrestrial CIEs, however, does not scale with event magnitude, being proportionally less for the first, largest event (the PETM). We conduct a sensitivity test of a coupled plant-soil carbon isotope model to identify conditions that could account for the observed CIE scaling. At least two possibilities consistent with independent lines of evidence emerge: first, varying effects of pCO2 change on photosynthetic carbon isotope discrimination under changing background pCO2, and second, contrasting changes in regional

  7. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    Science.gov (United States)

    Adloff, Markus; Reick, Christian H.; Claussen, Martin

    2018-04-01

    In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm) in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP)-type simulations starting from climates representing the Last Glacial Maximum (LGM) and pre-industrial times (PI). In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon-climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon-climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon-climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment as in the PI experiment

  8. The importance of terrestrial carbon in supporting molluscs in the wetlands of Poyang Lake

    Science.gov (United States)

    Zhang, Huan; Yu, Xiubo; Wang, Yuyu; Xu, Jun

    2017-07-01

    Allochthonous organic matter plays an important role in nutrient cycling and energy mobilization in freshwater ecosystems. However, the subsidies of this carbon source in floodplain ecosystems have not yet well understood. We used a Bayesian mixing model and stable isotopes (δ13C and δ15N) of primary food resources and dominant molluscs species, to estimate the relative importance of allochthonous carbon sources for consumers in a representative sub-lake of Poyang Lake during a prolonged dry season. Our study inferred that terrestrial-derived carbon from Carex spp. could be the primary contributor to snails and mussels in Dahuchi Lake. The mean percentage of allochthonous food resources accounted for 35%-50% of the C incorporated by these consumers. Seston was another important energy sources for benthic consumers. However, during the winter and low water-level period, benthic algae and submerged vegetation contributed less carbon to benthic consumers. Our data highlighted the importance of terrestrial organic carbon to benthic consumers in the wetlands of Poyang Lake during the prolonged dry period. Further, our results provided a perspective that linkages between terrestrial and aquatic ecosystems might be facilitated by wintering geese via their droppings.

  9. Asia-MIP: Multi Model-data Synthesis of Terrestrial Carbon Cycles in Asia

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ito, A.; Kang, M.; Sasai, T.; SATO, H.; Ueyama, M.; Kobayashi, H.; Saigusa, N.; Kim, J.

    2013-12-01

    Asia, which is characterized by monsoon climate and intense human activities, is one of the prominent understudied regions in terms of terrestrial carbon budgets and mechanisms of carbon exchange. To better understand terrestrial carbon cycle in Asia, we initiated multi-model and data intercomparison project in Asia (Asia-MIP). We analyzed outputs from multiple approaches: satellite-based observations (AVHRR and MODIS) and related products, empirically upscaled estimations (Support Vector Regression) using eddy-covariance observation network in Asia (AsiaFlux, CarboEastAsia, FLUXNET), ~10 terrestrial biosphere models (e.g. BEAMS, Biome-BGC, LPJ, SEIB-DGVM, TRIFFID, VISIT models), and atmospheric inversion analysis (e.g. TransCom models). We focused on the two difference temporal coverage: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2010; data intensive period) scales. The regions of covering Siberia, Far East Asia, East Asia, Southeast Asia and South Asia (60-80E, 10S-80N), was analyzed in this study for assessing the magnitudes, interannual variability, and key driving factors of carbon cycles. We will report the progress of synthesis effort to quantify terrestrial carbon budget in Asia. First, we analyzed the recent trends in Gross Primary Productivities (GPP) using satellite-based observation (AVHRR) and multiple terrestrial biosphere models. We found both model outputs and satellite-based observation consistently show an increasing trend in GPP in most of the regions in Asia. Mechanisms of the GPP increase were analyzed using models, and changes in temperature and precipitation play dominant roles in GPP increase in boreal and temperate regions, whereas changes in atmospheric CO2 and precipitation are important in tropical regions. However, their relative contributions were different. Second, in the decadal analysis (2001-2010), we found that the negative GPP and carbon uptake anomalies in 2003 summer in Far East Asia is one of the largest

  10. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    Directory of Open Access Journals (Sweden)

    M. Adloff

    2018-04-01

    Full Text Available In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP-type simulations starting from climates representing the Last Glacial Maximum (LGM and pre-industrial times (PI. In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon–climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon–climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon–climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment

  11. The limits to global-warming mitigation by terrestrial carbon removal

    OpenAIRE

    Boysen, L.; Lucht, W.; Gerten, D.; Heck, V.; Lenton, T.; Schellnhuber, H.

    2017-01-01

    Massive near-term greenhouse gas emissions reduction is a precondition for staying "well below 2°C" global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature "overshoot" in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to "repair" delayed or insufficient emissions redu...

  12. What Drives Carbon Isotope Fractionation by the Terrestrial Biosphere?

    Science.gov (United States)

    Still, Christopher; Rastogi, Bharat

    2017-11-01

    During photosynthesis, terrestrial plants preferentially assimilate the lighter and much more abundant form of carbon, 12C, which accounts for roughly 99% of naturally occurring forms of this element. This photosynthetic preference for lighter carbon is driven principally by differences in molecular diffusion of carbon dioxide with differing 13C/12C across stomatal pores on leaves, followed by differences in carboxylation rates by the Rubisco enzyme that is central to the process of photosynthesis. As a result of these slight preferences, which work out to about a 2% difference in the fixation rates of 12CO2 versus 13CO2 by C3 vegetation, plant tissues are depleted in the heavier form of carbon (13C) relative to atmospheric CO2. This difference has been exploited in a wide range of scientific applications, as the photosynthetic isotope signature is passed to ecosystem carbon pools and through ecological food webs. What is less appreciated is the signature that terrestrial carbon exchanges leave on atmospheric CO2, as the net uptake of carbon by land plants during their growing season not only draws down the local CO2 concentration, it also leaves behind relatively more CO2 molecules containing 13C. The converse happens outside the growing season, when autotrophic and heterotrophic respiration predominate. During these periods, atmospheric CO2 concentration increases and its corresponding carbon isotope composition becomes relatively depleted in 13C as the products of photosynthesis are respired, along with some small isotope fractionation that happen downstream of the initial photosynthetic assimilation. Similar phenomena were first observed at shorter time scales by the eminent carbon cycle scientist, Charles (Dave) Keeling. Keeling collected samples of air in glass flasks from sites along the Big Sur coast that he later measured for CO2 concentration and carbon isotope composition (δ13C) in his lab (Keeling, 1998). From these samples, Keeling observed increasing

  13. The terrestrial carbon cycle on the regional and global scale : modeling, uncertainties and policy relevance

    NARCIS (Netherlands)

    Minnen, van J.G.

    2008-01-01

    Contains the chapters: The importance of three centuries of climate and land-use change for the global and regional terrestrial carbon cycle; and The terrestrial C cycle and its role in the climate change policy

  14. Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems

    Science.gov (United States)

    We tested the hypothesis that diurnal changes in terrestrial CO2 exchange are driven exclusively by the direct effect of the physical environment on plant physiology. We failed to corroborate this assumption, finding instead large diurnal fluctuations in whole ecosystem carbon assimilation across a ...

  15. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    Science.gov (United States)

    Tian, H.; Melillo, J. M.; Kicklighter, D. W.; McGuire, A. D.; Helfrich, J.

    1999-04-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900 1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2Pg C) and soil organic carbon decreasing by 1.9% (1.1Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17.7Pg C

  16. Understanding of Coupled Terrestrial Carbon, Nitrogen and Water Dynamics—An Overview

    Directory of Open Access Journals (Sweden)

    Nicholas C. Coops

    2009-10-01

    Full Text Available Coupled terrestrial carbon (C, nitrogen (N and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc. and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO2 mixing ratio towers and chambers.

  17. Understanding of coupled terrestrial carbon, nitrogen and water dynamics-an overview.

    Science.gov (United States)

    Chen, Baozhang; Coops, Nicholas C

    2009-01-01

    Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i) Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii) there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO(2) mixing ratio towers and chambers.

  18. Terrestrial carbon losses from mountaintop coal mining offset regional forest carbon sequestration in the 21st century

    International Nuclear Information System (INIS)

    Elliott Campbell, J; Fox, James F; Acton, Peter M

    2012-01-01

    Studies that quantify the spatial and temporal variability of carbon sources and sinks provide process-level information for the prediction of future levels of atmospheric carbon dioxide as well as verification of current emission agreements. Assessments of carbon sources and sinks for North America that compare top-down atmospheric constraints with bottom-up inventories find particularly large carbon sinks in the southeastern US. However, this southeastern US sink may be impacted by extreme land-use disturbance events due to mountaintop coal mining (MCM). Here we apply ecosystem modeling and field experiment data to quantify the potential impact of future mountaintop coal mining on the carbon budget of the southern Appalachian forest region. For projections based on historical mining rates, grassland reclamation, and the continued regrowth of un-mined forests, we find that the southern Appalachian forests switch from a net carbon sink to a net carbon source by year 2025–33 with a 30%–35% loss in terrestrial carbon stocks relative to a scenario with no future mining by the year 2100. Alternatively, scenarios of forest sequestration due to the effect of CO 2 fertilization result in a 15%–24% loss in terrestrial carbon stocks by the year 2100 for mining scenarios relative to scenarios with no future mining. These results suggest that while power plant stack emissions are the dominant life-cycle stage in coal-fired electricity, accounting for mountaintop coal mining in bottom-up inventories may be a critical component of regional carbon budgets. (letter)

  19. Terrestrial Carbon[Environmental Pollution: Part I, Special Issue, March 2002, Part II, Special Issue Supplement to 116/3, 2002

    International Nuclear Information System (INIS)

    Mickler, Robert; McNulty, Steven

    2002-01-01

    These issues contain a total of forty-four peer reviewed science papers on terrestrial carbon presented at the Advances in Terrestrial Ecosystem Carbon Inventory, Measurements, and Monitoring Conference held in Raleigh, N.C., in October 2000

  20. Terrestrial Carbon [Environmental Pollution: Part I, Special Issue, March 2002; Part II, Special Issue Supplement to 116/3, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Mickler, Robert (ed.); McNulty, Steven (ed.)

    2002-03-01

    These issues contain a total of forty-four peer reviewed science papers on terrestrial carbon presented at the Advances in Terrestrial Ecosystem Carbon Inventory, Measurements, and Monitoring Conference held in Raleigh, N.C., in October 2000.

  1. A terrestrial Eocene stack: tying terrestrial lake ecology to marine carbon cycling through the Early Eocene Climatic Optimum

    Science.gov (United States)

    Grogan, D. S.; Whiteside, J. H.; Musher, D.; Rosengard, S. Z.; Vankeuren, M. A.; Pancost, R. D.

    2010-12-01

    The lacustrine Green River Formation is known to span ≥15 million years through the early-middle Eocene, and recent work on radioisotopic dating has provided a framework on which to build ties to the orbitally-tuned marine Eocene record. Here we present a spliced stack of Fischer assay data from drilled cores of the Green River Formation that span both an East-West and a North-South transect of the Uinta Basin of Utah. Detailed work on two cores demonstrate that Fischer assay measurements covary with total organic carbon and bulk carbon isotopes, allowing us to use Fisher assay results as a representative carbon cycling proxy throughout the stack. We provide an age model for this core record by combining radioisotopic dates of tuff layers with frequency analysis of Fischer assay measurements. Identification of orbital frequencies tied directly to magnetochrons through radioisotopic dates allows for a direct comparison of the terrestrial to the marine Eocene record. Our analysis indicates that the marker beds used to correlate the stack cores represent periods of enhanced lake productivity and extreme carbon burial; however, unlike the hyperthermal events that are clearly marked in the marine Eocene record, the hydrocarbon-rich "Mahogany Bed" period of burial does not correspond to a clear carbon isotope excursion. This suggests that the terrestrial realm may have experienced extreme ecological responses to relatively small perturbations in the carbon cycle during the Early Eocene Climatic Optimum. To investigate the ecological responses to carbon cycle perturbations through the hydrocarbon rich beds, we analyzed a suite of microbial biomarkers, finding evidence for cyanobacteria, dinoflagellates, and potentially green sulfur bacteria. These taxa indicate fluctuating oxic/anoxic conditions in the lake during abrupt intervals of carbon burial, suggesting a lake biogeochemical regime with no modern analogues.

  2. Origin and evolution of life on terrestrial planets.

    Science.gov (United States)

    Brack, A; Horneck, G; Cockell, C S; Bérces, A; Belisheva, N K; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Liseau, Réne; Lammer, Helmut; Selsis, Franck; Beichman, Charles; Danchi, William; Fridlund, Malcolm; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H(2)O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment.

  3. Quantifying terrestrial ecosystem carbon dynamics in the Jinsha watershed, Upper Yangtze, China from 1975 to 2000

    Science.gov (United States)

    Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo

    2010-01-01

    Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.

  4. Deposition and Burial Efficiency of Terrestrial Organic Carbon Exported from Small Mountainous Rivers to the Continental Margin, Southwest of Taiwan

    Science.gov (United States)

    Hsu, F.; Lin, S.; Wang, C.; Huh, C.

    2007-12-01

    Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.

  5. Status and potential of terrestrial carbon sequestration in West Virginia

    Science.gov (United States)

    Benktesh D. Sharma; Jingxin. Wang

    2011-01-01

    Terrestrial ecosystem management offers cost-effective ways to enhance carbon (C) sequestration. This study utilized C stock and C sequestration in forest and agricultural lands, abandoned mine lands, and harvested wood products to estimate the net current annual C sequestration in West Virginia. Several management options within these components were simulated using a...

  6. Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990-2100

    International Nuclear Information System (INIS)

    Zaehle, S.; Bondeau, A.; Cramer, W.; Erhard, M.; Sitch, S.; Smith, P.C.; Zaehle, S.; Smith, P.C.; Carter, T.R.; Erhard, M.; Prentice, C.; Prentice, C.; Reginster, I.; Rounsevell, M.D.A.; Sitch, S.; Smith, B.; Sykes, M

    2007-01-01

    Changes in climate and land use, caused by socio-economic changes, greenhouse gas emissions, agricultural policies and other factors, are known to affect both natural and managed ecosystems, and will likely impact on the European terrestrial carbon balance during the coming decades. This study presents a comprehensive European Union wide (EU15 plus Norway and Switzerland, EU*) assessment of potential future changes in terrestrial carbon storage considering these effects based on four illustrative IPCC-SRES story-lines (A1FI, A2, B1, B2). A process-based land vegetation model (LPJ-DGVM), adapted to include a generic representation of managed ecosystems, is forced with changing fields of land-use patterns from 1901 to 2100 to assess the effect of land-use and cover changes on the terrestrial carbon balance of Europe. The uncertainty in the future carbon balance associated with the choice of a climate change scenario is assessed by forcing LPJ-DGVM with output from four different climate models (GCMs: CGCM2, CSIRO2, HadCM3, PCM2) for the same SRES story-line. Decrease in agricultural areas and afforestation leads to simulated carbon sequestration for all land-use change scenarios with an average net uptake of 17-38 Tg C/year between 1990 and 2100, corresponding to 1.9-2.9% of the EU*s CO 2 emissions over the same period. Soil carbon losses resulting from climate warming reduce or even offset carbon sequestration resulting from growth enhancement induced by climate change and increasing atmospheric CO 2 concentrations in the second half of the twenty-first century. Differences in future climate change projections among GCMs are the main cause for uncertainty in the cumulative European terrestrial carbon uptake of 4.4-10.1 Pg C between 1990 and 2100. (authors)

  7. Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks

    Science.gov (United States)

    Lapierre, J.-F.; del Giorgio, P. A.

    2014-10-01

    Despite the rapidly increasing volume of research on the biological and photochemical degradation of DOC (dissolved organic carbon) in aquatic environments, little is known of the large-scale patterns in biologically and photochemically degradable DOC (BDOC and PDOC, respectively) in continental watersheds, and on the links that exist between these two key properties that greatly influence the flow of carbon from continents to oceans. Here we explored the patterns in the concentrations and proportions of BDOC and PDOC across hundreds of boreal lakes, rivers and wetlands spanning a large range of system trophic status and terrestrial influence, and compared the drivers of these two reactive pools of DOC at the landscape level. Using standardized incubations of natural waters, we found that the concentrations of BDOC and PDOC covaried across all systems studied but were nevertheless related to different pools of dissolved organic matter (DOM; identified by fluorescence analyses) in ambient waters. Concentrations of nutrients and protein-like fluorescent DOM (FDOM) explained nearly half of the variation in BDOC, whereas PDOC was exclusively predicted by DOM optical properties, consistent with the photochemical degradability of specific FDOM pools that we experimentally determined. The concentrations of colored DOM (CDOM), which we use here as a proxy of terrestrial influence, almost entirely accounted for the observed relationship between FDOM and the concentrations of both BDOC and PDOC. The concentrations of CDOM and of the putative biolabile fluorescence component shifted from complete decoupling in clear-water environments to strong coupling in darker streams and wetlands. This suggests a baseline autochthonous BDOC pool fueled by internal production that is gradually overwhelmed by land-derived BDOC as terrestrial influence increases across landscape gradients. The importance of land as a major source of both biologically and photochemically degradable DOC for

  8. Opportunities and Challenges for Terrestrial Carbon Offsetting and Marketing, with Some Implications for Forestry in the UK

    Directory of Open Access Journals (Sweden)

    Maria Nijnik

    2010-12-01

    Full Text Available Background and Purpose: Climate change and its mitigation have become increasingly high profile issues since the late 1990s, with the potential of forestry in carbon sequestration a particular focus. The purpose of this paper is to outline the importance of socio-economic considerations in this area. Opportunities for forestry to sequester carbon and the role of terrestrial carbon uptake credits in climate change negotiations are addressed, together with the feasibility of bringing terrestrial carbon offsets into the regulatory emission trading scheme. The paper discusses whether or not significant carbon offsetting and trading will occur on a large scale in the UK or internationally. Material and Methods: The paper reviews the literature on the socio-economic aspects of climate change mitigation via forestry (including the authors’ research on this topic to assess the potential for carbon offsetting and trading, and the likely scale of action. Results and Conclusion: We conclude that the development of appropriate socio-economic framework conditions (e.g. policies, tenure rights, including forest carbon ownership, and markets and incentives for creating and trading terrestrial carbon credits are important in mitigating climate change through forestry projects, and we make suggestions for future research that would be required to support such developments.

  9. Evaluation of Terrestrial Carbon Cycle with the Land Use Harmonization Dataset

    Science.gov (United States)

    Sasai, T.; Nemani, R. R.

    2017-12-01

    CO2 emission by land use and land use change (LULUC) has still had a large uncertainty (±50%). We need to more accurately reveal a role of each LULUC process on terrestrial carbon cycle, and to develop more complicated land cover change model, leading to improve our understanding of the mechanism of global warming. The existing biosphere model studies do not necessarily have enough major LULUC process in the model description (e.g., clear cutting and residual soil carbon). The issue has the potential for causing an underestimation of the effect of LULUC on the global carbon exchange. In this study, the terrestrial biosphere model was modified with several LULUC processes according to the land use harmonization data set. The global mean LULUC emission from the year 1850 to 2000 was 137.2 (PgC 151year-1), and we found the noticeable trend in tropical region. As with the case of primary production in the existing studies, our results emphasized the role of tropical forest on wood productization and residual soil organic carbon by cutting. Global mean NEP was decreased by LULUC. NEP is largely affected by decreasing leaf biomass (photosynthesis) by deforestation process and increasing plant growth rate by regrowth process. We suggested that the model description related to deforestation, residual soil decomposition, wood productization and plant regrowth is important to develop a biosphere model for estimating long-term global carbon cycle.

  10. Carbon Cycling and Biosequestration Integrating Biology and Climate Through Systems Science Report from the March 2008 Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Graber, J.; Amthor, J.; Dahlman, R.; Drell, D.; Weatherwax, S.

    2008-12-01

    One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biological components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.

  11. Status of biological control projects on terrestrial invasive alien weeds in California

    Science.gov (United States)

    In cooperation with foreign scientists, we are currently developing new classical biological control agents for five species of invasive alien terrestrial weeds. Cape-Ivy. A gall-forming fly, Parafreutreta regalis, and a stem-boring moth, Digitivalva delaireae, have been favorably reviewed by TAG...

  12. Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration

    Science.gov (United States)

    E. M. Stacy; S. C. Hart; C. T. Hunsaker; D. W. Johnson; A. A. Berhe

    2015-01-01

    Lateral movement of organic matter (OM) due to erosion is now considered an important flux term in terrestrial carbon (C) and nitrogen (N) budgets, yet most published studies on the role of erosion focus on agricultural or grassland ecosystems. To date, little information is available on the rate and nature of OM eroded from forest ecosystems. We present annual...

  13. Terrestrial gross carbon dioxide uptake : Global distribution and covariation with climate

    NARCIS (Netherlands)

    Beer, Christian; Reichstein, Markus; Tomelleri, Enrico; Ciais, Philippe; Jung, Martin; Carvalhais, Nuno; Rödenbeck, Christian; Arain, M. Altaf; Baldocchi, Dennis D.; Bonan, Gordon B.; Bondeau, Alberte; Cescatti, Alessandro; Lasslop, Gitta; Lindroth, Anders; Lomas, Mark; Luyssaert, Sebastiaan; Margolis, Hank; Oleson, Keith W.; Roupsard, Olivier; Veenendaal, Elmar; Viovy, Nicolas; Williams, Christopher M.; Woodward, F. Ian; Papale, Dario

    2010-01-01

    Terrestrial gross primary production (GPP) is the largest global CO 2 flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 ± 8 petagrams of carbon per year (Pg C year-1) using eddy covariance flux data and various diagnostic models. Tropical forests

  14. Terrestrial biosphere carbon storage under alternative climate projections

    Energy Technology Data Exchange (ETDEWEB)

    Schaphoff, S.; Lucht, W.; Gerten, D.; Sitch, S.; Cramer, W. [Potsdam Institute for Climate Impact Research, P.O. Box 601203, D-14412 Potsdam (Germany); Prentice, I.C. [QUEST, Department of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol, BS8 1RJ (United Kingdom)

    2006-01-15

    This study investigates commonalities and differences in projected land biosphere carbon storage among climate change projections derived from one emission scenario by five different general circulation models (GCMs). Carbon storage is studied using a global biogeochemical process model of vegetation and soil that includes dynamic treatment of changes in vegetation composition, a recently enhanced version of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Uncertainty in future terrestrial carbon storage due to differences in the climate projections is large. Changes by the end of the century range from -106 to +201 PgC, thus, even the sign of the response whether source or sink, is uncertain. Three out of five climate projections produce a land carbon source by the year 2100, one is approximately neutral and one a sink. A regional breakdown shows some robust qualitative features. Large areas of the boreal forest are shown as a future CO2 source, while a sink appears in the arctic. The sign of the response in tropical and sub-tropical ecosystems differs among models, due to the large variations in simulated precipitation patterns. The largest uncertainty is in the response of tropical rainforests of South America and Central Africa.

  15. Terrestrial biosphere carbon storage under alternative climate projections

    International Nuclear Information System (INIS)

    Schaphoff, S.; Lucht, W.; Gerten, D.; Sitch, S.; Cramer, W.; Prentice, I.C.

    2006-01-01

    This study investigates commonalities and differences in projected land biosphere carbon storage among climate change projections derived from one emission scenario by five different general circulation models (GCMs). Carbon storage is studied using a global biogeochemical process model of vegetation and soil that includes dynamic treatment of changes in vegetation composition, a recently enhanced version of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Uncertainty in future terrestrial carbon storage due to differences in the climate projections is large. Changes by the end of the century range from -106 to +201 PgC, thus, even the sign of the response whether source or sink, is uncertain. Three out of five climate projections produce a land carbon source by the year 2100, one is approximately neutral and one a sink. A regional breakdown shows some robust qualitative features. Large areas of the boreal forest are shown as a future CO2 source, while a sink appears in the arctic. The sign of the response in tropical and sub-tropical ecosystems differs among models, due to the large variations in simulated precipitation patterns. The largest uncertainty is in the response of tropical rainforests of South America and Central Africa

  16. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Science.gov (United States)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  17. Importance of vegetation dynamics for future terrestrial carbon cycling

    International Nuclear Information System (INIS)

    Ahlström, Anders; Smith, Benjamin; Xia, Jianyang; Luo, Yiqi; Arneth, Almut

    2015-01-01

    Terrestrial ecosystems currently sequester about one third of anthropogenic CO 2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO 2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand

  18. Carbon-isotope stratigraphy from terrestrial organic matter through the Monterey event, Miocene, New Jersey margin (IODP Expedition 313)

    DEFF Research Database (Denmark)

    Fang, Linhao; Bjerrum, Christian J.; Hesselbo, Stephen P.

    2013-01-01

    documented from oceanic settings (i.e., lack of positive excursion of carbon-isotope values in terrestrial organic matter through the Langhian Stage). Factors that may potentially bias local terrestrial carbon-isotope records include reworking from older deposits, degradation and diagenesis, as well....../or reworking of older woody phytoclasts, but where such processes have occurred they do not readily explain the observed carbon-isotope values. It is concluded that the overall carbon-isotope signature for the exchangeable carbon reservoir is distorted, to the extent that the Monterey event excursion...... is not easily identifiable. The most likely explanation is that phytoclast reworking has indeed occurred in clinoform toe-of-slope facies, but the reason for the resulting relatively heavy carbon-isotope values in the Burdigalian remains obscure....

  19. Final Report: Fundamental Research on the Fractionation of Carbon Isotopes during Photosynthesis, New Interpretations of Terrestrial Organic Carbon within Geologic Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jahren, A. Hope [Univ. of Hawaii, Honolulu, HI (United States); Schubert, Brian A. [Univ. of Louisiana, Lafayette, LA (United States)

    2017-08-02

    The goal for the current grant period (2013 – 2016) was to quantify the effect of changing atmospheric carbon dioxide concentration (pCO2) on published terrestrial carbon isotope excursion events. This work supported four scientists across multiple career stages, and resulted in 5 published papers.

  20. Patterns and controls of inter-annual variability in the terrestrial carbon budget

    Science.gov (United States)

    Marcolla, Barbara; Rödenbeck, Christian; Cescatti, Alessandro

    2017-08-01

    The terrestrial carbon fluxes show the largest variability among the components of the global carbon cycle and drive most of the temporal variations in the growth rate of atmospheric CO2. Understanding the environmental controls and trends of the terrestrial carbon budget is therefore essential to predict the future trajectories of the CO2 airborne fraction and atmospheric concentrations. In the present work, patterns and controls of the inter-annual variability (IAV) of carbon net ecosystem exchange (NEE) have been analysed using three different data streams: ecosystem-level observations from the FLUXNET database (La Thuile and 2015 releases), the MPI-MTE (model tree ensemble) bottom-up product resulting from the global upscaling of site-level fluxes, and the Jena CarboScope Inversion, a top-down estimate of surface fluxes obtained from observed CO2 concentrations and an atmospheric transport model. Consistencies and discrepancies in the temporal and spatial patterns and in the climatic and physiological controls of IAV were investigated between the three data sources. Results show that the global average of IAV at FLUXNET sites, quantified as the standard deviation of annual NEE, peaks in arid ecosystems and amounts to ˜ 120 gC m-2 y-1, almost 6 times more than the values calculated from the two global products (15 and 20 gC m-2 y-1 for MPI-MTE and the Jena Inversion, respectively). Most of the temporal variability observed in the last three decades of the MPI-MTE and Jena Inversion products is due to yearly anomalies, whereas the temporal trends explain only about 15 and 20 % of the variability, respectively. Both at the site level and on a global scale, the IAV of NEE is driven by the gross primary productivity and in particular by the cumulative carbon flux during the months when land acts as a sink. Altogether these results offer a broad view on the magnitude, spatial patterns and environmental drivers of IAV from a variety of data sources that can be

  1. Comparing Terrestrial Organic Carbon Cycle Dynamics in Interglacial and Glacial Climates in the South American Tropics

    Science.gov (United States)

    Fornace, K. L.; Galy, V.; Hughen, K. A.

    2014-12-01

    The application of compound-specific radiocarbon dating to molecular biomarkers has allowed for tracking of specific organic carbon pools as they move through the environment, providing insight into complex processes within the global carbon cycle. Here we use this technique to investigate links between glacial-interglacial climate change and terrestrial organic carbon cycling in the catchments of Cariaco Basin and Lake Titicaca, two tropical South American sites with well-characterized climate histories since the last glacial period. By comparing radiocarbon ages of terrestrial biomarkers (leaf wax compounds) with deposition ages in late glacial and Holocene sediments, we are able to gauge the storage time of these compounds in the catchments in soils, floodplains, etc. before transport to marine or lacustrine sediments. We are also able to probe the effects of temperature and hydrologic change individually by taking advantage of opposite hydrologic trends at the two sites: while both were colder during the last glacial period, precipitation at Titicaca decreased from the last glacial period to the Holocene, but the late glacial was marked by drier conditions at Cariaco. Preliminary data from both sites show a wide range of apparent ages of long-chain n-fatty acids (within error of 0 to >10,000 years older than sediment), with the majority showing ages on the order of several millennia at time of deposition and age generally increasing with chain length. While late glacial leaf waxes appear to be older relative to sediment than those deposited in the Holocene at both sites, at Cariaco we find a ~2-3 times larger glacial-interglacial age difference than at Titicaca. We hypothesize that at Titicaca the competing influences of wetter and colder conditions during the last glacial period, which respectively tend to increase and decrease the rate of organic carbon turnover on land, served to minimize the contrast between glacial and interglacial leaf wax storage time

  2. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, Ted A.; Burdett, Jim; Whelan, Joseph F.; Paull, Charles K.

    1997-02-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO 2/O 2 ratios appear to be the major controlling variable. Atmospheric CO 2/O 2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO 2 in the course of obtaining 0 2. Tissue CO 2 therefore, does not isotopically equilibrate with environmental CO 2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO 2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO 2 uptake is several times faster than respiratory CO 2 release. Photosynthesis, therefore, affects skeletal δ13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects.

  3. Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL, May 6-8, 2008

    Science.gov (United States)

    Robbins, L.L.; Coble, P.G.; Clayton, T.D.; Cai, W.J.

    2009-01-01

    Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. In May 2008, the Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico was held in St. Petersburg, FL, to address the information gaps of carbon fluxes associated with the Gulf of Mexico and to offer recommendations to guide future research. The meeting was attended by over 90 participants from over 50 U.S. and Mexican institutions and agencies. The Ocean Carbon and Biogeochemistry program (OCB; http://www.us-ocb.org/) sponsored this workshop with support from the National Science Foundation, the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the U.S. Geological Survey, and the University of South Florida. The goal of

  4. Final Technical Report: Fundamental Research on the Fractionation of Carbon Isotopes during Photosynthesis, New Interpretations of Terrestrial Organic Carbon within Geologic Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Brian [Univ. of Louisiana, Lafayette (United States); Jahren, A. Hope [Univ. of Louisiana, Lafayette (United States)

    2017-11-30

    The goal for the current grant period (2013 – 2016) was to quantify the effect of changing atmospheric carbon dioxide concentration (pCO2) on published terrestrial carbon isotope excursion events. This work supported four scientists across multiple career stages, and resulted in 5 published papers.

  5. Carbon nanotubes for biological and biomedical applications

    International Nuclear Information System (INIS)

    Yang Wenrong; Thordarson, Pall; Gooding, J Justin; Ringer, Simon P; Braet, Filip

    2007-01-01

    Ever since the discovery of carbon nanotubes, researchers have been exploring their potential in biological and biomedical applications. The recent expansion and availability of chemical modification and bio-functionalization methods have made it possible to generate a new class of bioactive carbon nanotubes which are conjugated with proteins, carbohydrates, or nucleic acids. The modification of a carbon nanotube on a molecular level using biological molecules is essentially an example of the 'bottom-up' fabrication principle of bionanotechnology. The availability of these biomodified carbon nanotube constructs opens up an entire new and exciting research direction in the field of chemical biology, finally aiming to target and to alter the cell's behaviour at the subcellular or molecular level. This review covers the latest advances of bio-functionalized carbon nanotubes with an emphasis on the development of functional biological nano-interfaces. Topics that are discussed herewith include methods for biomodification of carbon nanotubes, the development of hybrid systems of carbon nanotubes and biomolecules for bioelectronics, and carbon nanotubes as transporters for a specific delivery of peptides and/or genetic material to cells. All of these current research topics aim at translating these biotechnology modified nanotubes into potential novel therapeutic approaches. (topical review)

  6. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    Directory of Open Access Journals (Sweden)

    Thomas Larsen

    Full Text Available Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13C patterns among amino acids (δ(13CAA could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13CAA patterns in contrast to bulk δ(13C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs.

  7. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    Science.gov (United States)

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O'Brien, Diane M; Piatkowski, Uwe; McCarthy, Matthew D

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13)C patterns among amino acids (δ(13)CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13)CAA patterns in contrast to bulk δ(13)C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13)CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13)C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13)C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs.

  8. The Natural Terrestrial Carbon Sequestration Potential of Rocky Mountain Soils Derived From Volcanic Bedrock

    Science.gov (United States)

    Yager, D. B.; Burchell, A.; Johnson, R. H.

    2008-12-01

    The possible economic and environmental ramifications of climate change have stimulated a range of atmospheric carbon mitigation actions, as well as, studies to understand and quantify potential carbon sinks. However, current carbon management strategies for reducing atmospheric emissions underestimate a critical component. Soils represent between 18 - 30% of the terrestrial carbon sink needed to prevent atmospheric doubling of CO2 by 2050 and a crucial element in mitigating climate change, natural terrestrial sequestration (NTS), is required. NTS includes all naturally occurring, cumulative, biologic and geologic processes that either remove CO2 from the atmosphere or prevent net CO2 emissions through photosynthesis and microbial fixation, soil formation, weathering and adsorption or chemical reactions involving principally alumino- ferromagnesium minerals, volcanic glass and clays. Additionally, NTS supports ecosystem services by improving soil productivity, moisture retention, water purification and reducing erosion. Thus, 'global climate triage' must include the protection of high NTS areas, purposeful enhancement of NTS processes and reclamation of disturbed and mined lands. To better understand NTS, we analyzed soil-cores from Colorado, Rocky Mountain Cordillera sites. North-facing, high-plains to alpine sites in non-wetland environments were selected to represent temperate soils that may be less susceptible to carbon pool declines due to global warming than soils in warmer regions. Undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global TOSC averages (4 - 5 Wt. %). Forest soils derived from weathering of intermediate to mafic volcanic bedrock have the highest C (34.15 Wt. %), C:N (43) and arylsulfatase (ave. 278, high 461 μg p-nitrophenol/g/h). Intermediate TOSC was identified in soils derived from Cretaceous shale (7.2 Wt. %) and Precambrian, felsic gneiss (6.2 Wt. %). Unreclaimed mine-sites have the lowest C (0

  9. Sub-grid scale representation of vegetation in global land surface schemes: implications for estimation of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    J. R. Melton

    2014-02-01

    Full Text Available Terrestrial ecosystem models commonly represent vegetation in terms of plant functional types (PFTs and use their vegetation attributes in calculations of the energy and water balance as well as to investigate the terrestrial carbon cycle. Sub-grid scale variability of PFTs in these models is represented using different approaches with the "composite" and "mosaic" approaches being the two end-members. The impact of these two approaches on the global carbon balance has been investigated with the Canadian Terrestrial Ecosystem Model (CTEM v 1.2 coupled to the Canadian Land Surface Scheme (CLASS v 3.6. In the composite (single-tile approach, the vegetation attributes of different PFTs present in a grid cell are aggregated and used in calculations to determine the resulting physical environmental conditions (soil moisture, soil temperature, etc. that are common to all PFTs. In the mosaic (multi-tile approach, energy and water balance calculations are performed separately for each PFT tile and each tile's physical land surface environmental conditions evolve independently. Pre-industrial equilibrium CLASS-CTEM simulations yield global totals of vegetation biomass, net primary productivity, and soil carbon that compare reasonably well with observation-based estimates and differ by less than 5% between the mosaic and composite configurations. However, on a regional scale the two approaches can differ by > 30%, especially in areas with high heterogeneity in land cover. Simulations over the historical period (1959–2005 show different responses to evolving climate and carbon dioxide concentrations from the two approaches. The cumulative global terrestrial carbon sink estimated over the 1959–2005 period (excluding land use change (LUC effects differs by around 5% between the two approaches (96.3 and 101.3 Pg, for the mosaic and composite approaches, respectively and compares well with the observation-based estimate of 82.2 ± 35 Pg C over the same

  10. New era of satellite chlorophyll fluorescence and soil moisture observations leads to advances in the predictive understanding of global terrestrial coupled carbon-water cycles

    Science.gov (United States)

    Qiu, B.; Xue, Y.; Fisher, J.; Guo, W.

    2017-12-01

    The terrestrial carbon cycle and water cycle are coupled through a multitude of connected processes among soil, roots, leaves, and the atmosphere. The strength and sensitivity of these couplings are not yet well known at the global scale, which contributes to uncertainty in predicting the terrestrial water and carbon budgets. For the first time, we now have synchronous, high fidelity, global-scale satellite observations of critical terrestrial carbon and water cycle components: sun-induced chlorophyll fluorescence (SIF) and soil moisture. We used these observations within the framework of a well-established global terrestrial biosphere model (Simplified Simple Biosphere Model version 2.0, SSiB2) to investigate carbon-water coupling processes. We updated SSiB2 to include a mechanistic representation of SIF and tested the sensitivity of model parameters to improve the simulation of both SIF and soil moisture with the ultimate objective of improving the first-order terrestrial carbon component, gross primary production (GPP). Although several vegetation parameters, such as leaf area index (LAI) and green leaf fraction, improved the simulated SIF, and several soil parameters, such as hydraulic conductivity, improved simulated soil moisture, their effects were mainly limited to their respective cycles. One parameter emerged as the key coupler between the carbon and water cycles: the wilting point. Updates to the wilting point significantly improved the simulations for both soil moisture and SIF, as well as GPP. This study demonstrates the value of synchronous global measurements of the terrestrial carbon and water cycles in improving the understanding of coupled carbon-water cycles.

  11. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Monique Y. [The University of Georgia Research Foundation, Athens, GA (United States)

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  12. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  13. Partial coupling and differential regulation of biologically and photo-chemically labile dissolved organic carbon across boreal aquatic networks

    Science.gov (United States)

    Lapierre, J.-F.; del Giorgio, P. A.

    2014-05-01

    Despite the rapidly increasing volume of research on the biological and photochemical degradation of DOC in aquatic environments, little is known on the large-scale patterns in biologically and photo-chemically degradable DOC (Bd-DOC and Pd-DOC, respectively) in continental watersheds, and on the links that exist between these two key properties that greatly influence the flow of carbon from continents to oceans. Here we explore the patterns of Bd- and Pd-DOC across hundreds of boreal lakes, rivers and wetlands spanning a large range of system trophy and terrestrial influence, and compared the drivers of these two reactive pools of DOC at the landscape level. Using standardized incubations of natural waters, we found that the concentrations of Bd- and Pd-DOC co-varied across all systems studied but were nevertheless related to different pools of dissolved organic matter (DOM, identified by fluorescence analyses) in ambient waters. A combination of nutrients and protein-like DOM explained nearly half of the variation in Bd-DOC, whereas Pd-DOC was exclusively predicted by DOM optical properties, consistent with the photochemical degradability of specific fluorescent DOM (FDOM) pools that we experimentally determined. The concentrations of colored DOM (CDOM), a proxy of terrestrial influence, almost entirely accounted for the observed relationship between FDOM and the concentrations of both Bd- and Pd-DOC. The concentrations of CDOM and of the putative bio-labile fluorescence component shifted from complete decoupling in clear-water environments to strong coupling in browner streams and wetlands. This suggests a baseline autochthonous Bd-DOC pool fuelled by internal production that is gradually overwhelmed by land-derived Bd-DOC as terrestrial influence increases across landscape gradients. The importance of land as a major source of both biologically and photo-chemically degradable DOC for continental watersheds resulted in a partial coupling of those carbon pools in

  14. Land use related silica dynamics in terrestrial ecosystems.

    OpenAIRE

    Clymans, Wim

    2012-01-01

    Silicon (Si) provides the base component for well-balanced food-webs in aquatic systems. Here, together with nitrogen and phosphorous Si determines phytoplankton composition, and plays a major role in eutrophication problems and carbon sequestration. Rivers are the primary source of Si for the oceans, and is ultimately derived from mineral weathering. However there is growing evidence illustrating the importance of biological Si cycling in terrestrial ecosystems. Riverine Si fluxes will be af...

  15. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    Science.gov (United States)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-12-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global scale, we apply a Markov Chain Monte Carlo based model-data-fusion approach into the CArbon DAta-MOdel fraMework (CARDAMOM). We assimilate MODIS LAI and burned area, plant-trait data, and use the Harmonized World Soil Database (HWSD) and maps of above ground biomass as prior knowledge for initial conditions. We optimize model parameters based on (a) globally spanning observations and (b) ecological and dynamic constraints that force single parameter values and parameter inter-dependencies to be representative of real world processes. We determine the spatial and temporal dynamics of major terrestrial C fluxes and model parameter values on a global scale (GPP = 123 +/- 8 Pg C yr-1 & NEE = -1.8 +/- 2.7 Pg C yr-1). We further show that the incorporation of disturbance fluxes, and accounting for their instantaneous or delayed effect, is of critical importance in constraining global C cycle dynamics, particularly in the tropics. In a higher resolution case study centred on the Amazon Basin we show how fires not only trigger large instantaneous emissions of burned matter, but also how they are responsible for a sustained reduction of up to 50% in plant uptake following the depletion of biomass stocks. The combination of these two fire-induced effects leads to a 1 g C m-2 d-1reduction in the strength of the net terrestrial carbon sink. Through our simulations at regional and global scale, we advocate the need to assimilate disturbance metrics in global terrestrial carbon cycle models to bridge the gap between globally spanning terrestrial carbon cycle data and the full dynamics of the ecosystem C cycle. Disturbances are especially important because their quick occurrence may have

  16. Carbon nanomaterials in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pu Chun Ke [Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Qiao Rui [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 (United States)

    2007-09-19

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  17. Carbon nanomaterials in biological systems

    International Nuclear Information System (INIS)

    Pu Chun Ke; Qiao Rui

    2007-01-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  18. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere

    Directory of Open Access Journals (Sweden)

    Y. P. Wang

    2010-07-01

    Full Text Available Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N and phosphorus (P, in addition to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at the global scale have not been quantified. Here we have developed a global model of carbon (C, nitrogen (N and phosphorus (P cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2767 Gt C, and the C fractions in plant, litter and soil organic matter are 19%, 4% and 77%. The total amount of N is 135 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization. The total amount of P (plant biomass, litter and soil excluding occluded P in soil is 17 Gt P in the terrestrial biosphere, 33% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 31 Gt P with 67% in soil organic matter otherwise.

    This model was used to derive the global distribution and uncertainty of N or P limitation on the productivity of terrestrial ecosystems at steady state under present conditions. Our model estimates that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions.

  19. Changes of global terrestrial carbon budget and major drivers in recent 30 years simulated using the remote sensing driven BEPS model

    Science.gov (United States)

    Ju, W.; Chen, J.; Liu, R.; Liu, Y.

    2013-12-01

    The process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with spatially distributed leaf area index (LAI), land cover, soil, and climate data to simulate the carbon budget of global terrestrial ecosystems during the period from 1981 to 2008. The BEPS model was first calibrated and validated using gross primary productivity (GPP), net primary productivity (NPP), and net ecosystem productivity (NEP) measured in different ecosystems across the word. Then, four global simulations were conducted at daily time steps and a spatial resolution of 8 km to quantify the global terrestrial carbon budget and to identify the relative contributions of changes in climate, atmospheric CO2 concentration, and LAI to the global terrestrial carbon sink. The long term LAI data used to drive the model was generated through fusing Moderate Resolution Imaging Spectroradiometer (MODIS) and historical Advanced Very High Resolution Radiometer (AVHRR) data pixel by pixel. The meteorological fields were interpolated from the 0.5° global daily meteorological dataset produced by the land surface hydrological research group at Princeton University. The results show that the BEPS model was able to simulate carbon fluxes in different ecosystems. Simulated GPP, NPP, and NEP values and their temporal trends exhibited distinguishable spatial patterns. During the period from 1981 to 2008, global terrestrial ecosystems acted as a carbon sink. The averaged global totals of GPP NPP, and NEP were 122.70 Pg C yr-1, 56.89 Pg C yr-1, and 2.76 Pg C yr-1, respectively. The global totals of GPP and NPP increased greatly, at rates of 0.43 Pg C yr-2 (R2=0.728) and 0.26 Pg C yr-2 (R2=0.709), respectively. Global total NEP did not show an apparent increasing trend (R2= 0.036), averaged 2.26 Pg C yr-1, 3.21 Pg C yr-1, and 2.72 Pg C yr-1 for the periods from 1981 to 1989, from 1990 to 1999, and from 2000 to 2008, respectively. The magnitude and temporal trend of global

  20. Biological activation of carbon filters.

    Science.gov (United States)

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.

  1. Patterns and controls of inter-annual variability in the terrestrial carbon budget

    Directory of Open Access Journals (Sweden)

    B. Marcolla

    2017-08-01

    Full Text Available The terrestrial carbon fluxes show the largest variability among the components of the global carbon cycle and drive most of the temporal variations in the growth rate of atmospheric CO2. Understanding the environmental controls and trends of the terrestrial carbon budget is therefore essential to predict the future trajectories of the CO2 airborne fraction and atmospheric concentrations. In the present work, patterns and controls of the inter-annual variability (IAV of carbon net ecosystem exchange (NEE have been analysed using three different data streams: ecosystem-level observations from the FLUXNET database (La Thuile and 2015 releases, the MPI-MTE (model tree ensemble bottom–up product resulting from the global upscaling of site-level fluxes, and the Jena CarboScope Inversion, a top–down estimate of surface fluxes obtained from observed CO2 concentrations and an atmospheric transport model. Consistencies and discrepancies in the temporal and spatial patterns and in the climatic and physiological controls of IAV were investigated between the three data sources. Results show that the global average of IAV at FLUXNET sites, quantified as the standard deviation of annual NEE, peaks in arid ecosystems and amounts to  ∼  120 gC m−2 y−1, almost 6 times more than the values calculated from the two global products (15 and 20 gC m−2 y−1 for MPI-MTE and the Jena Inversion, respectively. Most of the temporal variability observed in the last three decades of the MPI-MTE and Jena Inversion products is due to yearly anomalies, whereas the temporal trends explain only about 15 and 20 % of the variability, respectively. Both at the site level and on a global scale, the IAV of NEE is driven by the gross primary productivity and in particular by the cumulative carbon flux during the months when land acts as a sink. Altogether these results offer a broad view on the magnitude, spatial patterns and environmental drivers of IAV

  2. Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems

    Science.gov (United States)

    Scholze, Marko; Buchwitz, Michael; Dorigo, Wouter; Guanter, Luis; Quegan, Shaun

    2017-07-01

    The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations.

  3. Terrestrial Carbon Sequestration in National Parks: Values for the Conterminous United States

    Science.gov (United States)

    Richardson, Leslie A.; Huber, Christopher; Zhu, Zhi-Liang; Koontz, Lynne

    2015-01-01

    Lands managed by the National Park Service (NPS) provide a wide range of beneficial services to the American public. This study quantifies the ecosystem service value of carbon sequestration in terrestrial ecosystems within NPS units in the conterminous United States for which data were available. Combining annual net carbon balance data with spatially explicit NPS land unit boundaries and social cost of carbon estimates, this study calculates the net metric tons of carbon dioxide sequestered annually by park unit under baseline conditions, as well as the associated economic value to society. Results show that, in aggregate, NPS lands in the conterminous United States are a net carbon sink, sequestering more than 14.8 million metric tons of carbon dioxide annually. The associated societal value of this service is estimated at approximately $582.5 million per year. While this analysis provides a broad overview of the annual value of carbon sequestration on NPS lands averaged over a five year baseline period, it should be noted that carbon fluxes fluctuate from year to year, and there can be considerable variation in net carbon balance and its associated value within a given park unit. Future research could look in-depth at the spatial heterogeneity of carbon flux within specific NPS land units.

  4. Carbon budgets of biological soil crusts at micro-, meso-, and global scales

    Science.gov (United States)

    Sancho, Leopoldo G; Belnap, Jayne; Colesie, Claudia; Raggio, Jose; Weber, Bettina

    2016-01-01

    The importance of biocrusts in the ecology of arid lands across all continents is widely recognized. In spite of this broad distribution, contributions of biocrusts to the global biogeochemical cycles have only recently been considered. While these studies opened a new view on the global role of biocrusts, they also clearly revealed the lack of data for many habitats and of overall standards for measurements and analysis. In order to understand carbon cycling in biocrusts and the progress which has been made during the last 15 years, we offer a multi-scale approach covering different climatic regions. We also include a discussion on available measurement techniques at each scale: A micro-scale section focuses on the individual organism level, including modeling based on the combination of field and lab data. The meso-scale section addresses the CO2 exchange of a complete ecosystem or at the community level. Finally, we consider the contribution of biocrusts at a global scale, giving a general perspective of the most relevant findings regarding the role of biological soil crusts in the global terrestrial carbon cycle.

  5. Terrestrial water fluxes dominated by transpiration.

    Science.gov (United States)

    Jasechko, Scott; Sharp, Zachary D; Gibson, John J; Birks, S Jean; Yi, Yi; Fawcett, Peter J

    2013-04-18

    Renewable fresh water over continents has input from precipitation and losses to the atmosphere through evaporation and transpiration. Global-scale estimates of transpiration from climate models are poorly constrained owing to large uncertainties in stomatal conductance and the lack of catchment-scale measurements required for model calibration, resulting in a range of predictions spanning 20 to 65 per cent of total terrestrial evapotranspiration (14,000 to 41,000 km(3) per year) (refs 1, 2, 3, 4, 5). Here we use the distinct isotope effects of transpiration and evaporation to show that transpiration is by far the largest water flux from Earth's continents, representing 80 to 90 per cent of terrestrial evapotranspiration. On the basis of our analysis of a global data set of large lakes and rivers, we conclude that transpiration recycles 62,000 ± 8,000 km(3) of water per year to the atmosphere, using half of all solar energy absorbed by land surfaces in the process. We also calculate CO2 uptake by terrestrial vegetation by connecting transpiration losses to carbon assimilation using water-use efficiency ratios of plants, and show the global gross primary productivity to be 129 ± 32 gigatonnes of carbon per year, which agrees, within the uncertainty, with previous estimates. The dominance of transpiration water fluxes in continental evapotranspiration suggests that, from the point of view of water resource forecasting, climate model development should prioritize improvements in simulations of biological fluxes rather than physical (evaporation) fluxes.

  6. Carbon Nanomaterials in Biological Studies and Biomedicine.

    Science.gov (United States)

    Teradal, Nagappa L; Jelinek, Raz

    2017-09-01

    The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes

    International Nuclear Information System (INIS)

    Miller, John B.; Tans, Pieter P.; Conway, Thomas J.; White, James W.C.; Vaughn, Bruce W.

    2003-01-01

    The 13 C/ 12 C ratio in atmospheric carbon dioxide has been measured in samples taken in the NOAA/CMDL network since 1991. By examining the relationship between weekly anomalies in 13 C and CO 2 at continental sites in the network, we infer temporal and spatial values for the isotopic signature of terrestrial CO 2 fluxes. We can convert these isotopic signatures to values of discrimination if we assume the atmospheric starting point for photosynthesis. The average discrimination in the Northern Hemisphere between 30 and 50 deg N is calculated to be 16.6 ± 0.2 per mil. In contrast to some earlier modeling studies, we find no strong latitudinal gradient in discrimination. However, we do observe that discrimination in Eurasia is larger than in North America, which is consistent with two modeling studies. We also observe a possible trend in the North American average of discrimination toward less discrimination. There is no apparent trend in the Eurasian average or at any individual sites. However, there is interannual variability on the order of 2 per mil at several sites and regions. Finally, we calculate the northern temperate terrestrial CO 2 flux replacing our previous discrimination values of about 18 per mil with the average value of 16.6 calculated in this study. We find this enhances the terrestrial sink by about 0.4 GtC/yr

  8. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis.

    Science.gov (United States)

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-27

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition.

  9. Scale-dependent performances of CMIP5 earth system models in simulating terrestrial vegetation carbon

    Science.gov (United States)

    Jiang, L.; Luo, Y.; Yan, Y.; Hararuk, O.

    2013-12-01

    Mitigation of global changes will depend on reliable projection for the future situation. As the major tools to predict future climate, Earth System Models (ESMs) used in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the IPCC Fifth Assessment Report have incorporated carbon cycle components, which account for the important fluxes of carbon between the ocean, atmosphere, and terrestrial biosphere carbon reservoirs; and therefore are expected to provide more detailed and more certain projections. However, ESMs are never perfect; and evaluating the ESMs can help us to identify uncertainties in prediction and give the priorities for model development. In this study, we benchmarked carbon in live vegetation in the terrestrial ecosystems simulated by 19 ESMs models from CMIP5 with an observationally estimated data set of global carbon vegetation pool 'Olson's Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product' by Gibbs (2006). Our aim is to evaluate the ability of ESMs to reproduce the global vegetation carbon pool at different scales and what are the possible causes for the bias. We found that the performance CMIP5 ESMs is very scale-dependent. While CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM, and NorESM1-M and NorESM1-ME (they share the same model structure) have very similar global sums with the observation data but they usually perform poorly at grid cell and biome scale. In contrast, MIROC-ESM and MIROC-ESM-CHEM simulate the best on at grid cell and biome scale but have larger differences in global sums than others. Our results will help improve CMIP5 ESMs for more reliable prediction.

  10. A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters

    Science.gov (United States)

    Engel, Fabian; Farrell, Kaitlin J.; McCullough, Ian M.; Scordo, Facundo; Denfeld, Blaize A.; Dugan, Hilary A.; de Eyto, Elvira; Hanson, Paul C.; McClure, Ryan P.; Nõges, Peeter; Nõges, Tiina; Ryder, Elizabeth; Weathers, Kathleen C.; Weyhenmeyer, Gesa A.

    2018-04-01

    The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of {0.70}_{-0.31}^{+0.27} to {1.52}_{-0.90}^{+1.09} Pg C yr-1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.

  11. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    Directory of Open Access Journals (Sweden)

    K. Ichii

    2010-07-01

    Full Text Available Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine – based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID, we conducted two simulations: (1 point simulations at four eddy flux sites in Japan and (2 spatial simulations for Japan with a default model (based on original settings and a modified model (based on model parameter tuning using eddy flux data. Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP, most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  12. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    Science.gov (United States)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  13. Competitiveness of terrestrial greenhouse gas offsets. Are they a bridge to the future?

    International Nuclear Information System (INIS)

    McCarl, B.A.; Sands, R.D.

    2007-01-01

    Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration predominantly utilize currently known, readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from a dynamic and multiple strategy viewpoint. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower CO2 prices and in the near term, soil carbon and other agricultural/forestry options can be important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher CO2 prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system and biofuels provide an increasing share of potential reductions in total US greenhouse gas emissions

  14. Observing the continental-scale carbon balance: assessment of sampling complementarity and redundancy in a terrestrial assimilation system by means of quantitative network design

    OpenAIRE

    Kaminski, T.; Rayner, P. J.; Vossbeck, M.; Scholze, M.; Koffi, E.

    2012-01-01

    This paper investigates the relationship between the heterogeneity of the terrestrial carbon cycle and the optimal design of observing networks to constrain it. We combine the methods of quantitative network design and carbon-cycle data assimilation to a hierarchy of increasingly heterogeneous descriptions of the European terrestrial biosphere as indicated by increasing diversity of plant functional types. We employ three types of observat...

  15. Is litter decomposition 'primed' by primary producer-release of labile carbon in terrestrial and aquatic experimental systems?

    Science.gov (United States)

    Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes

    2015-04-01

    It is possible that recalcitrant organic matter (ROM) can be 'activated' by inputs of labile organic matter (LOM) through the priming effect (PE). Investigating the PE is of major importance to fully understand the microbial use of ROM and its role on carbon (C) and nutrient cycling in both aquatic and terrestrial ecosystems. In aquatic ecosystems it is thought that the PE is triggered by periphytic algae release of LOM. Analogously, in terrestrial systems it is hypothesized that the LOM released in plant rhizospheres, or from the green crusts on the surface of agricultural soils, stimulate the activity and growth of ROM decomposers. Most previous studies on PE have utilised pulse additions of single substrates at high concentrations. However, to achieve an assessment of the true importance of the PE, it is important to simulate a realistic delivery of LOM. We investigated, in a series of 2-week laboratory experiments, how primary producer (PP)-release of LOM influence litter degradation in terrestrial and aquatic experimental systems. We used soil (terrestrial) and pond water (aquatic) microbial communities to which litter was added under light and dark conditions. In addition, glucose was added at PP delivery rates in dark treatments to test if the putative PE in light systems could be reproduced. We observed an initial peak of bacterial growth rate followed by an overall decrease over time with no treatment differences. In light treatments, periphytic algae growth and increased fungal production was stimulated when bacterial growth declined. In contrast, both fungal growth and algal production were negligible in dark treatments. This reveals a direct positive influence of photosynthesis on fungal growth. To investigate if PP LOM supplements, and the associated fungal growth, translate into a modulated litter decomposition, we are using stable isotopes to track the use of litter and algal-derived carbon by determining the δ13C in produced CO2. Fungi and bacteria

  16. Multiple Observation Types Jointly Constrain Terrestrial Carbon and Water Cycles

    Science.gov (United States)

    Raupach, M. R.; Haverd, V.; Briggs, P. R.; Canadell, J.; Davis, S. J.; Isaac, P. R.; Law, R.; Meyer, M.; Peters, G. P.; Pickett Heaps, C.; Roxburgh, S. H.; Sherman, B.; van Gorsel, E.; Viscarra Rossel, R.; Wang, Z.

    2012-12-01

    Information about the carbon cycle potentially constrains the water cycle, and vice versa. This paper explores the utility of multiple observation sets to constrain carbon and water fluxes and stores in a land surface model, and a resulting determination of the Australian terrestrial carbon budget. Observations include streamflow from 416 gauged catchments, measurements of evapotranspiration (ET) and net ecosystem production (NEP) from 12 eddy-flux sites, litterfall data, and data on carbon pools. The model is a version of CABLE (the Community Atmosphere-Biosphere-Land Exchange model), coupled with CASAcnp (a biogeochemical model) and SLI (Soil-Litter-Iso, a soil hydrology model including liquid and vapour water fluxes and the effects of litter). By projecting observation-prediction residuals onto model uncertainty, we find that eddy flux measurements provide a significantly tighter constraint on Australian continental net primary production (NPP) than the other data types. However, simultaneous constraint by multiple data types is important for mitigating bias from any single type. Results emerging from the multiply-constrained model are as follows (with all values applying over 1990-2011 and all ranges denoting ±1 standard error): (1) on the Australian continent, a predominantly semi-arid region, over half (0.64±0.05) of the water loss through ET occurs through soil evaporation and bypasses plants entirely; (2) mean Australian NPP is 2200±400 TgC/y, making the NPP/precipitation ratio about the same for Australia as the global land average; (3) annually cyclic ("grassy") vegetation and persistent ("woody") vegetation respectively account for 0.56±0.14 and 0.43±0.14 of NPP across Australia; (4) the average interannual variability of Australia's NEP (±180 TgC/y) is larger than Australia's total anthropogenic greenhouse gas emissions in 2011 (149 TgCeq/y), and is dominated by variability in desert and savannah regions. The mean carbon budget over 1990

  17. Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2012-01-01

    This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

  18. Impacts of land use and cover change on terrestrial carbon stocks and the micro-climate over urban surface: a case study in Shanghai, China

    Science.gov (United States)

    Zhang, F.; Zhan, J.; Bai, Y.

    2016-12-01

    Land use and cover change is the key factor affecting terrestrial carbon stocks and micro-climate, and their dynamics not only in regional ecosystems but also in urbanized areas. Using the typical fast-growing city of Shanghai, China as a case study, this paper explored the relationships between terrestrial carbon stocks, micro-climate and land cover within an urbanized area. The main objectives were to assess variation in soil carbon stocks and local climate conditions across terrestrial land covers with different intensities of urban development, and quantify spatial distribution and dynamic variation of carbon stocks and microclimate in response to urban land use and cover change. On the basis of accurate spatial datasets derived from a series of Landsat TM images during the years 1988 to 2010 and reliable estimates of urban climate and soil carbon stocks using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, our results showed that carbon stocks per unit area in terrestrial land covers decreased and urban temperature increased with increasing intensity of urban development. Urban land use and cover change and sealing of the soil surface created hotspots for losses in carbon stocks. Total carbon stocks in Shanghai decreased by about 30%-35%, representing a 1.5% average annual decrease, and the temperature increased by about 0.23-0.4°/10a during the past 20 years. We suggested potential policy measures to mitigate negative effects of land use and cover change on carbon stocks and microclimate in urbanized areas.

  19. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems

    Science.gov (United States)

    Vitousek, Peter M.; Menge, Duncan N.L.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)—greatly expanding our appreciation of the diversity and ubiquity of N fixers—but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing anthropogenic changes to the N cycle in context, and to understanding, predicting and managing many aspects of global environmental change. Here, we estimate terrestrial BNF for a pre-industrial world by combining information on N fluxes with 15N relative abundance data for terrestrial ecosystems. Our estimate is that pre-industrial N fixation was 58 (range of 40–100) Tg N fixed yr−1; adding conservative assumptions for geological N reduces our best estimate to 44 Tg N yr−1. This approach yields substantially lower estimates than most recent calculations; it suggests that the magnitude of human alternation of the N cycle is substantially larger than has been assumed.

  20. Evaluation of Site and Continental Terrestrial Carbon Cycle Simulations with North American Flux Tower Observations

    Science.gov (United States)

    Raczka, B. M.; Davis, K. J.; Regional-Interim Synthesis Participants, N.; Site Level Interim Synthesis, N.; Regional/Continental Interim Synthesis Team

    2010-12-01

    Terrestrial carbon models are widely used to diagnose past ecosystem-atmosphere carbon flux responses to climate variability, and are a critical component of coupled climate-carbon model used to predict global climate change. The North American Carbon Program (NACP) Interim Regional and Site Interim Synthesis activities collected a broad sampling of terrestrial carbon model results run at both regional and site level. The Regional Interim Synthesis Activity aims to determine our current knowledge of the carbon balance of North America by comparing the flux estimates provided by the various terrestrial carbon cycle models. Moving beyond model-model comparison is challenging, however, because no continental-scale reference values exist to validate modeled fluxes. This paper presents an effort to evaluate the continental-scale flux estimates of these models using North American flux tower observations brought together by the Site Interim Synthesis Activity. Flux towers present a standard for evaluation of the modeled fluxes, though this evaluation is challenging because of the mismatch in spatial scales between the spatial resolution of continental-scale model runs and the size of a flux tower footprint. We compare model performance with flux tower observations at monthly and annual integrals using the statistical criteria of normalized standard deviation, correlation coefficient, centered root mean square deviation and chi-squared. Models are evaluated individually and according to common model characteristics including spatial resolution, photosynthesis, soil carbon decomposition and phenology. In general all regional models are positively biased for GPP, Re and NEE at both annual and monthly time scales. Further analysis links this result to a positive bias in many solar radiation reanalyses. Positively biased carbon fluxes are also observed for enzyme-kinetic models and models using no nitrogen limitation for soil carbon decomposition. While the former result is

  1. Progress towards the Conventionon Biological Diversity terrestrial2010 and marine 2012 targets forprotected area coverage

    DEFF Research Database (Denmark)

    Coad, Lauren; Burgess, Neil David; Fish, Lucy

    2010-01-01

    coverage targets. National protected areas data from the WDPA have been used to measure progress in protected areas coverage at global, regional and national scale. The mean protected area coverage per nation was 12.2% for terrestrial area, and only 5.1% for near-shore marine area. Variation in protected......Protected area coverage targets set by the Convention on Biological Diversity (CBD) for both terrestrial and marine environments provide a major incentive for governments to review and upgrade their protected area systems. Assessing progress towards these targets will form an important component...... of the work of the Xth CBD Conference of Parties meeting to be held in Japan in 2010. The World Database on Protected Areas (WDPA) is the largest assembly of data on the world's terrestrial and marine protected areas and, as such, represents a fundamental tool in tracking progress towards protected area...

  2. The effects of land cover and land use change on the contemporary carbon balance of the arctic and boreal terrestrial ecosystems of northern Eurasia

    Science.gov (United States)

    Hayes, Daniel J.; McGuire, A. David; Kicklighter, David W.; Burnside , Todd J.; Melillo, Jerry M.

    2010-01-01

    Recent changes in climate, disturbance regimes and land use and management systems in Northern Eurasia have the potential to disrupt the terrestrial sink of atmospheric CO2 in a way that accelerates global climate change. To determine the recent trends in the carbon balance of the arctic and boreal ecosystems of this region, we performed a retrospective analysis of terrestrial carbon dynamics across northern Eurasia over a recent 10-year period using a terrestrial biogeochemical process model. The results of the simulations suggest a shift in direction of the net flux from the terrestrial sink of earlier decades to a net source on the order of 45 Tg C year−1between 1997 and 2006. The simulation framework and subsequent analyses presented in this study attribute this shift to a large loss of carbon from boreal forest ecosystems, which experienced a trend of decreasing precipitation and a large area burned during this time period.

  3. Dynamics of carbon 14 in soils: a review

    International Nuclear Information System (INIS)

    Tamponnet, C.

    2004-01-01

    In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial eco-sphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. (author)

  4. Consequences of simulating terrestrial N dynamics for projecting future terrestrial C storage

    Science.gov (United States)

    Zaehle, S.; Friend, A. D.; Friedlingstein, P.

    2009-04-01

    We present results of a new land surface model, O-CN, which includes a process-based coupling between the terrestrial cycling of energy, water, carbon, and nitrogen. The model represents the controls of the terrestrial nitrogen (N) cycling on carbon (C) pools and fluxes through photosynthesis, respiration, changes in allocation patterns, as well as soil organic matter decomposition, and explicitly accounts for N leaching and gaseous losses. O-CN has been shown to give realistic results in comparison to observations at a wide range of scales, including in situ flux measurements, productivity databases, and atmospheric CO2 concentration data. Notably, O-CN simulates realistic responses of net primary productivity, foliage area, and foliage N content to elevated atmospheric [CO2] as evidenced at free air carbon dioxide enrichment (FACE) sites (Duke, Oak Ridge). We re-examine earlier model-based assessments of the terrestrial C sequestration potential using a global transient O-CN simulation driven by increases in atmospheric [CO2], N deposition and climatic changes over the 21st century. We find that accounting for terrestrial N cycling about halves the potential to store C in response to increases in atmospheric CO2 concentrations; mainly due to a reduction of the net C uptake in temperate and boreal forests. Nitrogen deposition partially alleviates the effect of N limitation, but is by far not sufficient to compensate for the effect completely. These findings underline the importance of an accurate representation of nutrient limitations in future projections of the terrestrial net CO2 exchanges and therefore land-climate feedback studies.

  5. Detecting robust signals of interannual variability of gross primary productivity in Asia from multiple terrestrial carbon cycle models and long-term satellite-based vegetation data

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ueyama, M.; Kato, T.; Ito, A.; Sasai, T.; Sato, H.; Kobayashi, H.; Saigusa, N.

    2014-12-01

    Long term record of satellite-based terrestrial vegetation are important to evaluate terrestrial carbon cycle models. In this study, we demonstrate how multiple satellite observation can be used for evaluating past changes in gross primary productivity (GPP) and detecting robust anomalies in terrestrial carbon cycle in Asia through our model-data synthesis analysis, Asia-MIP. We focused on the two different temporal coverages: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2011; data intensive period) scales. We used a NOAA/AVHRR NDVI record for long-term analysis and multiple satellite data and products (e.g. Terra-MODIS, SPOT-VEGETATION) as historical satellite data, and multiple terrestrial carbon cycle models (e.g. BEAMS, Biome-BGC, ORCHIDEE, SEIB-DGVM, and VISIT). As a results of long-term (30 years) trend analysis, satellite-based time-series data showed that approximately 40% of the area has experienced a significant increase in the NDVI, while only a few areas have experienced a significant decreasing trend over the last 30 years. The increases in the NDVI were dominant in the sub-continental regions of Siberia, East Asia, and India. Simulations using the terrestrial biosphere models also showed significant increases in GPP, similar to the results for the NDVI, in boreal and temperate regions. A modeled sensitivity analysis showed that the increases in GPP are explained by increased temperature and precipitation in Siberia. Precipitation, solar radiation, CO2fertilization and land cover changes are important factors in the tropical regions. However, the relative contributions of each factor to GPP changes are different among the models. Year-to-year variations of terrestrial GPP were overall consistently captured by the satellite data and terrestrial carbon cycle models if the anomalies are large (e.g. 2003 summer GPP anomalies in East Asia and 2002 spring GPP anomalies in mid to high latitudes). The behind mechanisms can be consistently

  6. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

    Science.gov (United States)

    Frank, Dorothea; Reichstein, Markus; Bahn, Michael; Thonicke, Kirsten; Frank, David; Mahecha, Miguel D; Smith, Pete; van der Velde, Marijn; Vicca, Sara; Babst, Flurin; Beer, Christian; Buchmann, Nina; Canadell, Josep G; Ciais, Philippe; Cramer, Wolfgang; Ibrom, Andreas; Miglietta, Franco; Poulter, Ben; Rammig, Anja; Seneviratne, Sonia I; Walz, Ariane; Wattenbach, Martin; Zavala, Miguel A; Zscheischler, Jakob

    2015-01-01

    Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global

  7. Using satellite-derived optical thickness to assess the influence of clouds on terrestrial carbon uptake

    Science.gov (United States)

    S.J. Cheng; A.L. Steiner; D.Y. Hollinger; G. Bohrer; K.J. Nadelhoffer

    2016-01-01

    Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect...

  8. The fate of eroded soil organic carbon along a European transect – controls after deposition in terrestrial and aquatic systems

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    that the turnover of deposited C is significantly affected by soil and organic matter properties, and whether deposition occurs in terrestrial or aquatic environments. We sampled topsoils from 10 agricultural sites along a European transect, spanning a wide range of SOC and soil characteristics (e.g. texture......The potential fate of eroded soil organic carbon (SOC) after deposition is key to understand carbon cycling in eroding landscapes. Globally, large quantities of sediments and SOC are redistributed by soil erosion on agricul-tural land, particularly after heavy precipitation events. Deposition......, aggregation, C content, etc.). Turnover of SOC was determined for terrestrial and aquatic depositional conditions in a 10-week incubation study. Moreover, we studied the impact of labile carbon inputs (‘priming’) on SOC stability using 13C labelled cellulose. We evaluated potentially important controls...

  9. A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere

    DEFF Research Database (Denmark)

    Parmentier, Frans-Jan W; Christensen, Torben R; Rysgaard, Søren

    2017-01-01

    The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often...

  10. Multiple Observation Types Jointly Constrain Australian Terrestrial Carbon and Water Cycles

    Science.gov (United States)

    Haverd, Vanessa; Raupach, Michael; Briggs, Peter; Canadell, Pep; Davis, Steven; Isaac, Peter; Law, Rachel; Meyer, Mick; Peters, Glenn; Pickett-Heaps, Christopher; Roxburgh, Stephen; Sherman, Bradford; van Gorsel, Eva; Viscarra Rossel, Raphael; Wang, Ziyuan

    2013-04-01

    Information about the carbon cycle potentially constrains the water cycle, and vice versa. This paper explores the utility of multiple observation sets to constrain carbon and water fluxes and stores in a land surface model, and a resulting determination of the Australian terrestrial carbon budget. Observations include streamflow from 416 gauged catchments, measurements of evapotranspiration (ET) and net ecosystem production (NEP) from 12 eddy-flux sites, litterfall data, and data on carbon pools. The model is a version of CABLE (the Community Atmosphere-Biosphere-Land Exchange model), coupled with CASAcnp (a biogeochemical model) and SLI (Soil-Litter-Iso, a soil hydrology model including liquid and vapour water fluxes and the effects of litter). By projecting observation-prediction residuals onto model uncertainty, we find that eddy flux measurements provide a significantly tighter constraint on Australian continental net primary production (NPP) than the other data types. However, simultaneous constraint by multiple data types is important for mitigating bias from any single type. Results emerging from the multiply-constrained model are as follows (with all values applying over 1990-2011 and all ranges denoting ±1 standard error): (1) on the Australian continent, a predominantly semi-arid region, over half (0.64±0.05) of the water loss through ET occurs through soil evaporation and bypasses plants entirely; (2) mean Australian NPP is 2200±400 TgC/y, making the NPP/precipitation ratio about the same for Australia as the global land average; (3) annually cyclic ("grassy") vegetation and persistent ("woody") vegetation respectively account for 0.56±0.14 and 0.43±0.14 of NPP across Australia; (4) the average interannual variability of Australia's NEP (±180 TgC/y) is larger than Australia's total anthropogenic greenhouse gas emissions in 2011 (149 TgCeq/y), and is dominated by variability in desert and savannah regions. The mean carbon budget over 1990

  11. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  12. Insights into deep-time terrestrial carbon cycle processes from modern plant isotope ecology

    Science.gov (United States)

    Sheldon, N. D.; Smith, S. Y.

    2012-12-01

    While the terrestrial biosphere and soils contain much of the readily exchangeable carbon on Earth, how those reservoirs function on long time scales and at times of higher atmospheric CO2 and higher temperatures is poorly understood, which limits our ability to make accurate future predictions of their response to anthropogenic change. Recent data compilation efforts have outlined the response of plant carbon isotope compositions to a variety of environmental factors including precipitation amount and timing, elevation, and latitude. The compilations involve numerous types of plants, typically only found at a limited number of climatic conditions. Here, we expand on those efforts by examining the isotopic response of specific plant groups found both globally and across environmental gradients including: 1) ginkgo, 2) conifers, and 3) C4 grasses. Ginkgo is presently widely distributed as a cultivated plant and the ginkgoalean fossil record spans from the Permian to the present, making it an ideal model organism to understand climatic influence on carbon cycling both in modern and ancient settings. Ginkgo leaves have been obtained from a range of precipitation conditions (400-2200 mm yr-1), including dense sampling from individuals and populations in both Mediterranean and temperate climate areas and samples of different organs and developmental stages. Ginkgo carbon isotope results plot on the global C3 plant array, are consistent among trees at single sites, among plant organs, and among development stages, making ginkgo a robust recorder of both climatic conditions and atmospheric δ13C. In contrast, a climate-carbon isotope transect in Arizona highlights that conifers (specifically, pine and juniper) record large variability between organs and have a very different δ13C slope as a function of climate than the global C3 plant array, while C4 plants have a slope with the opposite sign as a function of climate. This has a number of implications for paleo

  13. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    NARCIS (Netherlands)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-01-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global

  14. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Science.gov (United States)

    O'ishi, R.; Abe-Ouchi, A.

    2013-07-01

    When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  15. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    R. O'ishi

    2013-07-01

    Full Text Available When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm. In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ. The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM. Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  16. Traceable components of terrestrial carbon storage capacity in biogeochemical models.

    Science.gov (United States)

    Xia, Jianyang; Luo, Yiqi; Wang, Ying-Ping; Hararuk, Oleksandra

    2013-07-01

    Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss ) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE ). The latter τE can be further traced to (ii) baseline carbon residence times (τ'E ), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm(-2) ). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm(-2) ). The longest τE in deciduous needle leaf forest was ascribed to its longest τ'E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., -12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ'E (e.g., -26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon

  17. Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle

    Science.gov (United States)

    Quesada, Benjamin; Arneth, Almut; Robertson, Eddy; de Noblet-Ducoudré, Nathalie

    2018-06-01

    Anthropogenic land-use and land cover changes (LULCC) affect global climate and global terrestrial carbon (C) cycle. However, relatively few studies have quantified the impacts of future LULCC on terrestrial carbon cycle. Here, using Earth system model simulations performed with and without future LULCC, under the RCP8.5 scenario, we find that in response to future LULCC, the carbon cycle is substantially weakened: browning, lower ecosystem C stocks, higher C loss by disturbances and higher C turnover rates are simulated. Projected global greening and land C storage are dampened, in all models, by 22% and 24% on average and projected C loss by disturbances enhanced by ~49% when LULCC are taken into account. By contrast, global net primary productivity is found to be only slightly affected by LULCC (robust +4% relative enhancement compared to all forcings, on average). LULCC is projected to be a predominant driver of future C changes in regions like South America and the southern part of Africa. LULCC even cause some regional reversals of projected increased C sinks and greening, particularly at the edges of the Amazon and African rainforests. Finally, in most carbon cycle responses, direct removal of C dominates over the indirect CO2 fertilization due to LULCC. In consequence, projections of land C sequestration potential and Earth’s greening could be substantially overestimated just because of not fully accounting for LULCC.

  18. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Pr...

  19. A New Global LAI Product and Its Use for Terrestrial Carbon Cycle Estimation

    Science.gov (United States)

    Chen, J. M.; Liu, R.; Ju, W.; Liu, Y.

    2014-12-01

    For improving the estimation of the spatio-temporal dynamics of the terrestrial carbon cycle, a new time series of the leaf area index (LAI) is generated for the global land surface at 8 km resolution from 1981 to 2012 by combining AVHRR and MODIS satellite data. This product differs from existing LAI products in the following two aspects: (1) the non-random spatial distribution of leaves with the canopy is considered, and (2) the seasonal variation of the vegetation background is included. The non-randomness of the leaf spatial distribution in the canopy is considered using the second vegetation structural parameter named clumping index (CI), which quantifies the deviation of the leaf spatial distribution from the random case. Using the MODIS Bidirectional Reflectance Distribution Function product, a global map of CI is produced at 500 m resolution. In our LAI algorithm, CI is used to convert the effective LAI obtained from mono-angle remote sensing into the true LAI, otherwise LAI would be considerably underestimated. The vegetation background is soil in crop, grass and shrub but includes soil, grass, moss, and litter in forests. Through processing a large volume of MISR data from 2000 to 2010, monthly red and near-infrared reflectances of the vegetation background is mapped globally at 1 km resolution. This new LAI product has been validated extensively using ground-based LAI measurements distributed globally. In carbon cycle modeling, the use of CI in addition to LAI allows for accurate separation of sunlit and shaded leaves as an important step in terrestrial photosynthesis and respiration modeling. Carbon flux measurements over 100 sites over the globe are used to validate an ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS). The validated model is run globally at 8 km resolution for the period from 1981 to 2012 using the LAI product and other spatial datasets. The modeled results suggest that changes in vegetation structure as quantified

  20. Studies of the terrestrial O2 and carbon cycles in sand dune gases and in biosphere 2

    Energy Technology Data Exchange (ETDEWEB)

    Severinghaus, Jeffrey Peck [Columbia Univ., New York, NY (United States)

    1995-01-01

    Molecular oxygen in the atmosphere is coupled tightly to the terrestrial carbon cycle by the processes of photosynthesis, respiration, and burning. This dissertation examines different aspects of this coupling in four chapters. Chapter 1 explores the feasibility of using air from sand dunes to reconstruct atmospheric O2 composition centuries ago. Such a record would reveal changes in the mass of the terrestrial biosphere, after correction for known fossil fuel combustion, and constrain the fate of anthropogenic CO2.

  1. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China

    DEFF Research Database (Denmark)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere Abdisa

    2015-01-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling...... and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle....

  2. Organic carbon burial in fjords: Terrestrial versus marine inputs

    Science.gov (United States)

    Cui, Xingqian; Bianchi, Thomas S.; Savage, Candida; Smith, Richard W.

    2016-10-01

    Fjords have been identified as sites of enhanced organic carbon (OC) burial and may play an important role in regulating climate change on glacial-interglacial timescales. Understanding sediment processes and sources of sedimentary OC are necessary to better constrain OC burial in fjords. In this study, we use Fiordland, New Zealand, as a case study and present data on surface sediments, sediment down-cores and terrestrial end-members to examine dynamics of sediments and the sources of OC in fjord sediments. Sediment cores showed evidence of multiple particle sources, frequent bioturbation and mass-wasting events. A multi-proxy approach (stable isotopes, lignin-phenols and fatty acids) allowed for separation of marine, soil and vascular plant OC in surface sediments. The relationship between mass accumulation rate (MAR) and OC contents in fjord surface sediments suggested that mineral dilution is important in controlling OC content on a global scale, but is less important for specific regions (e.g., New Zealand). The inconsistency of OC budgets calculated by using MAR weighted %OC and OC accumulation rates (AR; 6 vs 21-31 Tg OC yr-1) suggested that sediment flux in fjords was likely underestimated. By using end-member models, we propose that 55% to 62% of total OC buried in fjords is terrestrially derived, and accounts for 17 ± 12% of the OCterr buried in all marine sediments. The strong correlation between MAR and OC AR indicated that OC flux will likely decrease in fjords in the future with global warming due to decrease in sediment flux caused by glacier denudation.

  3. Carbon dioxide efficiency of terrestrial enhanced weathering

    OpenAIRE

    Moosdorf, Nils; Renforth, Philip; Hartmann, Jens

    2014-01-01

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimi...

  4. Insights and issues with simulating terrestrial DOC loading of Arctic river networks.

    Science.gov (United States)

    Kicklighter, David W; Hayes, Daniel J; McClelland, James W; Peterson, Bruce J; McGuire, A David; Melillo, Jerry M

    2013-12-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

  5. Insights and issues with simulating terrestrial DOC loading of Arctic river networks

    Science.gov (United States)

    Kicklighter, David W.; Hayes, Daniel J.; McClelland, James W.; Peterson, Bruce J.; McGuire, A. David; Melillo, Jerry M.

    2013-01-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

  6. Louisiana ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for terrestrial mammals in Louisiana. Vector polygons in this data set represent terrestrial mammal...

  7. MODIS-derived terrestrial primary production [chapter 28

    Science.gov (United States)

    Maosheng Zhao; Steven Running; Faith Ann Heinsch; Ramakrishna Nemani

    2011-01-01

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of...

  8. Modeling Carbon Turnover in Five Terrestrial Ecosystems in the Boreal Zone Using Multiple Criteria of Acceptance

    International Nuclear Information System (INIS)

    Karlberg, Louise; Gustafsson, David; Jansson, Per-Erik

    2006-01-01

    Estimates of carbon fluxes and turnover in ecosystems are key elements in the understanding of climate change and in predicting the accumulation of trace elements in the biosphere. In this paper we present estimates of carbon fluxes and turnover times for five terrestrial ecosystems using a modeling approach. Multiple criteria of acceptance were used to parameterize the model, thus incorporating large amounts of multi-faceted empirical data in the simulations in a standardized manner. Mean turnover times of carbon were found to be rather similar between systems with a few exceptions, even though the size of both the pools and the fluxes varied substantially. Depending on the route of the carbon through the ecosystem, turnover times varied from less than one year to more than one hundred, which may be of importance when considering trace element transport and retention. The parameterization method was useful both in the estimation of unknown parameters, and to identify variability in carbon turnover in the selected ecosystems

  9. Contrasting terrestrial carbon cycle responses to the 1997/98 and 2015/16 extreme El Niño events

    Science.gov (United States)

    Wang, Jun; Zeng, Ning; Wang, Meirong; Jiang, Fei; Wang, Hengmao; Jiang, Ziqiang

    2018-01-01

    Large interannual atmospheric CO2 variability is dominated by the response of the terrestrial biosphere to El Niño-Southern Oscillation (ENSO). However, the behavior of terrestrial ecosystems differs during different El Niños in terms of patterns and biological processes. Here, we comprehensively compare two extreme El Niños (2015/16 and 1997/98) in the context of a multi-event composite El Niño. We find large differences in the terrestrial carbon cycle responses, even though the two events were of similar magnitude.More specifically, we find that the global-scale land-atmosphere carbon flux (FTA) anomaly during the 1997/98 El Niño was 1.64 Pg C yr-1, but half that quantity during the 2015/16 El Niño (at 0.73 Pg C yr-1). Moreover, FTA showed no obvious lagged response during the 2015/16 El Niño, in contrast to that during 1997/98. Separating the global flux by geographical regions, we find that the fluxes in the tropics and extratropical Northern Hemisphere were 1.70 and -0.05 Pg C yr-1 during 1997/98, respectively. During 2015/16, they were 1.12 and -0.52 Pg C yr-1, respectively. Analysis of the mechanism shows that, in the tropics, the widespread drier and warmer conditions caused a decrease in gross primary productivity (GPP; -0.73 Pg C yr-1) and an increase in terrestrial ecosystem respiration (TER; 0.62 Pg C yr-1) during the 1997/98 El Niño. In contrast, anomalously wet conditions occurred in the Sahel and East Africa during 2015/16, which caused an increase in GPP, compensating for its reduction in other tropical regions. As a result, the total 2015/16 tropical GPP and TER anomalies were -0.03 and 0.95 Pg C yr-1. GPP dominance during 1997/98 and TER dominance during 2015/16 accounted for the phase difference in their FTA. In the extratropical Northern Hemisphere, the large difference occurred because temperatures over Eurasia were warmer during the 2015/16, as compared with the cooling seen during the 1997/98 and the composite El Niño. These warmer

  10. Reciprocal subsidies and food web pathways leading to chum salmon fry in a temperate marine-terrestrial ecotone.

    Science.gov (United States)

    Romanuk, Tamara N; Levings, Colin D

    2010-04-08

    Stable isotope analysis was used to determine the relative proportions of terrestrial and marine subsidies of carbon to invertebrates along a tidal gradient (low-intertidal, mid-intertidal, high-intertidal, supralittoral) and to determine the relative importance of terrestrial carbon in food web pathways leading to chum salmon fry Oncorhynchus keta (Walbaum) in Howe Sound, British Columbia. We found a clear gradient in the proportion of terrestrially derived carbon along the tidal gradient ranging from 68% across all invertebrate taxa in the supralittoral to 25% in the high-intertidal, 20% in the mid-intertidal, and 12% in the low-intertidal. Stable isotope values of chum salmon fry indicated carbon contributions from both terrestrial and marine sources, with terrestrially derived carbon ranging from 12.8 to 61.5% in the muscle tissue of chum salmon fry (mean 30%). Our results provide evidence for reciprocal subsidies of marine and terrestrially derived carbon on beaches in the estuary and suggest that the vegetated supralittoral is an important trophic link in supplying terrestrial carbon to nearshore food webs.

  11. Implications of land use change on the national terrestrial carbon budget of Georgia

    Directory of Open Access Journals (Sweden)

    Olofsson Pontus

    2010-09-01

    Full Text Available Abstract Background Globally, the loss of forests now contributes almost 20% of carbon dioxide emissions to the atmosphere. There is an immediate need to reduce the current rates of forest loss, and the associated release of carbon dioxide, but for many areas of the world these rates are largely unknown. The Soviet Union contained a substantial part of the world's forests and the fate of those forests and their effect on carbon dynamics remain unknown for many areas of the former Eastern Bloc. For Georgia, the political and economic transitions following independence in 1991 have been dramatic. In this paper we quantify rates of land use changes and their effect on the terrestrial carbon budget for Georgia. A carbon book-keeping model traces changes in carbon stocks using historical and current rates of land use change. Landsat satellite images acquired circa 1990 and 2000 were analyzed to detect changes in forest cover since 1990. Results The remote sensing analysis showed that a modest forest loss occurred, with approximately 0.8% of the forest cover having disappeared after 1990. Nevertheless, growth of Georgian forests still contribute a current national sink of about 0.3 Tg of carbon per year, which corresponds to 31% of the country anthropogenic carbon emissions. Conclusions We assume that the observed forest loss is mainly a result of illegal logging, but we have not found any evidence of large-scale clear-cutting. Instead local harvesting of timber for household use is likely to be the underlying driver of the observed logging. The Georgian forests are a currently a carbon sink and will remain as such until about 2040 if the current rate of deforestation persists. Forest protection efforts, combined with economic growth, are essential for reducing the rate of deforestation and protecting the carbon sink provided by Georgian forests.

  12. Implications of land use change on the national terrestrial carbon budget of Georgia.

    Science.gov (United States)

    Olofsson, Pontus; Torchinava, Paata; Woodcock, Curtis E; Baccini, Alessandro; Houghton, Richard A; Ozdogan, Mutlu; Zhao, Feng; Yang, Xiaoyuan

    2010-09-13

    Globally, the loss of forests now contributes almost 20% of carbon dioxide emissions to the atmosphere. There is an immediate need to reduce the current rates of forest loss, and the associated release of carbon dioxide, but for many areas of the world these rates are largely unknown. The Soviet Union contained a substantial part of the world's forests and the fate of those forests and their effect on carbon dynamics remain unknown for many areas of the former Eastern Bloc. For Georgia, the political and economic transitions following independence in 1991 have been dramatic. In this paper we quantify rates of land use changes and their effect on the terrestrial carbon budget for Georgia. A carbon book-keeping model traces changes in carbon stocks using historical and current rates of land use change. Landsat satellite images acquired circa 1990 and 2000 were analyzed to detect changes in forest cover since 1990. The remote sensing analysis showed that a modest forest loss occurred, with approximately 0.8% of the forest cover having disappeared after 1990. Nevertheless, growth of Georgian forests still contribute a current national sink of about 0.3 Tg of carbon per year, which corresponds to 31% of the country anthropogenic carbon emissions. We assume that the observed forest loss is mainly a result of illegal logging, but we have not found any evidence of large-scale clear-cutting. Instead local harvesting of timber for household use is likely to be the underlying driver of the observed logging. The Georgian forests are a currently a carbon sink and will remain as such until about 2040 if the current rate of deforestation persists. Forest protection efforts, combined with economic growth, are essential for reducing the rate of deforestation and protecting the carbon sink provided by Georgian forests.

  13. Quantifying Fast and Slow Responses of Terrestrial Carbon Exchange across a Water Availability Gradient in North American Flux Sites

    Science.gov (United States)

    Biederman, J. A.; Scott, R. L.; Goulden, M.

    2014-12-01

    Climate change is predicted to increase the frequency and severity of water limitation, altering terrestrial ecosystems and their carbon exchange with the atmosphere. Here we compare site-level temporal sensitivity of annual carbon fluxes to interannual variations in water availability against cross-site spatial patterns over a network of 19 eddy covariance flux sites. This network represents one order of magnitude in mean annual productivity and includes western North American desert shrublands and grasslands, savannahs, woodlands, and forests with continuous records of 4 to 12 years. Our analysis reveals site-specific patterns not identifiable in prior syntheses that pooled sites. We interpret temporal variability as an indicator of ecosystem response to annual water availability due to fast-changing factors such as leaf stomatal response and microbial activity, while cross-site spatial patterns are used to infer ecosystem adjustment to climatic water availability through slow-changing factors such as plant community and organic carbon pools. Using variance decomposition, we directly quantify how terrestrial carbon balance depends on slow- and fast-changing components of gross ecosystem production (GEP) and total ecosystem respiration (TER). Slow factors explain the majority of variance in annual net ecosystem production (NEP) across the dataset, and their relative importance is greater at wetter, forest sites than desert ecosystems. Site-specific offsets from spatial patterns of GEP and TER explain one third of NEP variance, likely due to slow-changing factors not directly linked to water, such as disturbance. TER and GEP are correlated across sites as previously shown, but our site-level analysis reveals surprisingly consistent linear relationships between these fluxes in deserts and savannahs, indicating fast coupling of TER and GEP in more arid ecosystems. Based on the uncertainty associated with slow and fast factors, we suggest a framework for improved

  14. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals

    International Nuclear Information System (INIS)

    Schoeninger, M.J.; DeNiro, M.J.

    1984-01-01

    The stable nitrogen and carbon isotope ratios of bone collagen prepared from more than 100 animals representing 66 species of birds, fish, and mammals are presented. The delta 15 N values of bone collagen from animals that fed exclusively in the marine environment are, on average, 9 per mille more positive than those from animals that fed exclusively in the terrestrial environment: ranges for the two groups overlap by less than 1 per mille. Bone collagen delta 15 N values also serve to separate marine fish from the small number of freshwater fish we analyzed. The bone collagen delta 15 N values of birds and fish that spent part of their life cycles feeding in the marine environment and part in the freshwater environment are intermediate between those of animals that fed exclusively in one or the other system. Further, animals that fed at successive trophic levels in the marine and terrestrial environment are separated, on average, by a 3 per mille difference in the delta 15 N values of their bone collagen. Results are given and discussed. (author)

  15. Function of Wildfire-Deposited Pyrogenic Carbon in Terrestrial Ecosystems

    Directory of Open Access Journals (Sweden)

    Melissa R. A. Pingree

    2017-08-01

    Full Text Available Fire is an important driver of change in most forest, savannah, and prairie ecosystems and fire-altered organic matter, or pyrogenic carbon (PyC, conveys numerous functions in soils of fire-maintained terrestrial ecosystems. Although an exceptional number of recent review articles and books have addressed agricultural soil application of charcoal or biochar, few reviews have addressed the functional role of naturally formed PyC in fire-maintained ecosystems. Recent advances in molecular spectroscopic techniques have helped strengthen our understanding of PyC as a ubiquitous, complex material that is capable of altering soil chemical, physical, and biological properties and processes. The uniquely recalcitrant nature of PyC in soils is partly a result of its stable C = C double-bonded, graphene-like structure and C-rich, N-poor composition. This attribute allows it to persist in soils for hundreds to thousands of years and represent net ecosystem C sequestration in fire-maintained ecosystems. The rapid formation of PyC during wildfire or anthropogenic fire events short-circuits the normally tortuous pathway of recalcitrant soil C formation. Existing literature also suggests that PyC provides an essential role in the cycling of certain nutrients, greatly extending the timeframe by which fires influence soil processes and facilitating recovery in ecosystems where organic matter inputs are low and post-fire surface soil bacterial and fungal activity is reduced. The high surface area of PyC allows for the adsorption a broad spectrum of organic compounds that directly or indirectly influence microbial processes after fire events. Adsorption capacity and microsite conditions created by PyC yields a “charosphere” effect in soil with heightened microbial activity in the vicinity of PyC. In this mini-review, we explore the function of PyC in natural and semi-natural settings, provide a mechanistic approach to understanding these functions, and examine

  16. Testing the ``Wildfire Hypothesis:'' Terrestrial Organic Carbon Burning as the Cause of the Paleocene-Eocene Boundary Carbon Isotope Excursion

    Science.gov (United States)

    Moore, E. A.; Kurtz, A. C.

    2005-12-01

    The 3‰ negative carbon isotope excursion (CIE) at the Paleocene-Eocene boundary has generally been attributed to dissociation of seafloor methane hydrates. We are testing the alternative hypothesis that the carbon cycle perturbation resulted from wildfires affecting the extensive peatlands and coal swamps formed in the Paleocene. Accounting for the CIE with terrestrial organic carbon rather than methane requires a significantly larger net release of fossil carbon to the ocean-atmosphere, which may be more consistent with the extreme global warming and ocean acidification characteristic of the Paleocene-Eocene Thermal Maximum (PETM). While other researchers have noted evidence of fires at the Paleocene-Eocene boundary in individual locations, the research presented here is designed to test the "wildfire hypothesis" for the Paleocene-Eocene boundary by examining marine sediments for evidence of a global increase in wildfire activity. Such fires would produce massive amounts of soot, widely distributed by wind and well preserved in marine sediments as refractory black carbon. We expect that global wildfires occurring at the Paleocene-Eocene boundary would produce a peak in black carbon abundance at the PETM horizon. We are using the method of Gelinas et al. (2001) to produce high-resolution concentration profiles of black carbon across the Paleocene-Eocene boundary using seafloor sediments from ODP cores, beginning with the Bass River core from ODP leg 174AX and site 1209 from ODP leg 198. This method involves the chemical and thermal extraction of non-refractory carbon followed by combustion of the residual black carbon and measurement as CO2. Measurement of the δ 13C of the black carbon will put additional constraints on the source of the organic material combusted, and will allow us to determine if this organic material was formed prior to or during the CIE.

  17. Terrestrial dissolved organic matter distribution in the North Sea.

    Science.gov (United States)

    Painter, Stuart C; Lapworth, Dan J; Woodward, E Malcolm S; Kroeger, Silke; Evans, Chris D; Mayor, Daniel J; Sanders, Richard J

    2018-07-15

    The flow of terrestrial carbon to rivers and inland waters is a major term in the global carbon cycle. The organic fraction of this flux may be buried, remineralized or ultimately stored in the deep ocean. The latter can only occur if terrestrial organic carbon can pass through the coastal and estuarine filter, a process of unknown efficiency. Here, data are presented on the spatial distribution of terrestrial fluorescent and chromophoric dissolved organic matter (FDOM and CDOM, respectively) throughout the North Sea, which receives organic matter from multiple distinct sources. We use FDOM and CDOM as proxies for terrestrial dissolved organic matter (tDOM) to test the hypothesis that tDOM is quantitatively transferred through the North Sea to the open North Atlantic Ocean. Excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) revealed a single terrestrial humic-like class of compounds whose distribution was restricted to the coastal margins and, via an inverse salinity relationship, to major riverine inputs. Two distinct sources of fluorescent humic-like material were observed associated with the combined outflows of the Rhine, Weser and Elbe rivers in the south-eastern North Sea and the Baltic Sea outflow to the eastern central North Sea. The flux of tDOM from the North Sea to the Atlantic Ocean appears insignificant, although tDOM export may occur through Norwegian coastal waters unsampled in our study. Our analysis suggests that the bulk of tDOM exported from the Northwest European and Scandinavian landmasses is buried or remineralized internally, with potential losses to the atmosphere. This interpretation implies that the residence time in estuarine and coastal systems exerts an important control over the fate of tDOM and needs to be considered when evaluating the role of terrestrial carbon losses in the global carbon cycle. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Multi model and data analysis of terrestrial carbon cycle in Asia: From 2001 to 2006

    Science.gov (United States)

    Ichii, K.; Takahashi, K.; Suzuki, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.

    2009-12-01

    Accurate monitoring and modeling of the current status and their causes of interannual variations in terrestrial carbon cycle are important. Recently, many studies analyze using multiple methods (e.g. satellite data and ecosystem models) to clarify the underlain mechanisms and recent trend since each single methodology contains its own biases. The multi-model and data ensemble approach is a powerful method to clarify the current status and their underlain mechanisms. So far, many studies using multiple sources of data and models are conducted in North America, Europe, Africa, Amazon, and Japan, however, studies in monsoon Asia are lacking. In this study, we analyzed interannual variations in terrestrial carbon cycles in monsoon Asia, and evaluated current capability of remote sensing and ecosystem model to capture them based on multiple model and data sources; flux observations, remote sensing (e.g. MODIS, AVHRR, and VGT), and ecosystem models (e.g. SVM, BEAMS, CASA, Biome-BGC, LPJ, and TRIFFID). The satellite observation and ecosystem models show clear characteristics in interannual variabilities in satellite-based NDVI and model-based GPP. These are characterized by (1) spring NDVI and modeled GPP anomalies related to temperature anomaly in mid and high latitudinal areas (positive anomalies in 2002 and 2005 and negative one in 2006), (2) NDVI and GPP anomalies in southeastern and central Asia related to precipitation (e.g. India from 2003-2006), and (3) summer NDVI and GPP anomalies in 2003 related to strong anomalies in solar radiations. NDVI anomalies related to radiation ones (2003 summer) were not accurately captured by terrestrial ecosystem models. For example, LPJ model rather shows GPP positive anomalies in Far East Asia regions probably caused by positive precipitation anomalies. Further analysis requires improvement of models to reproduce more consistent spatial patterns in NDVI anomaly, and longer term analysis (e.g. after 1982).

  19. Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy

    OpenAIRE

    McCartt, A. Daniel; Ognibene, Ted J.; Bench, Graham; Turteltaub, Kenneth W.

    2016-01-01

    A cavity ring-down spectroscopy (CRDS) instrument was developed using mature, robust hardware for the measurement of carbon-14 in biological studies. The system was characterized using carbon-14 elevated glucose samples and returned a linear response up to 387 times contemporary carbon-14 concentrations. Carbon-14 free and contemporary carbon-14 samples with varying carbon-13 concentrations were used to assess the method detection limit of approximately one-third contemporary carbon-14 levels...

  20. Biological interactions of carbon-based nanomaterials: From coronation to degradation.

    Science.gov (United States)

    Bhattacharya, Kunal; Mukherjee, Sourav P; Gallud, Audrey; Burkert, Seth C; Bistarelli, Silvia; Bellucci, Stefano; Bottini, Massimo; Star, Alexander; Fadeel, Bengt

    2016-02-01

    Carbon-based nanomaterials including carbon nanotubes, graphene oxide, fullerenes and nanodiamonds are potential candidates for various applications in medicine such as drug delivery and imaging. However, the successful translation of nanomaterials for biomedical applications is predicated on a detailed understanding of the biological interactions of these materials. Indeed, the potential impact of the so-called bio-corona of proteins, lipids, and other biomolecules on the fate of nanomaterials in the body should not be ignored. Enzymatic degradation of carbon-based nanomaterials by immune-competent cells serves as a special case of bio-corona interactions with important implications for the medical use of such nanomaterials. In the present review, we highlight emerging biomedical applications of carbon-based nanomaterials. We also discuss recent studies on nanomaterial 'coronation' and how this impacts on biodistribution and targeting along with studies on the enzymatic degradation of carbon-based nanomaterials, and the role of surface modification of nanomaterials for these biological interactions. Advances in technology have produced many carbon-based nanomaterials. These are increasingly being investigated for the use in diagnostics and therapeutics. Nonetheless, there remains a knowledge gap in terms of the understanding of the biological interactions of these materials. In this paper, the authors provided a comprehensive review on the recent biomedical applications and the interactions of various carbon-based nanomaterials. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. EUD-based biological optimization for carbon ion therapy

    International Nuclear Information System (INIS)

    Brüningk, Sarah C.; Kamp, Florian; Wilkens, Jan J.

    2015-01-01

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  2. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency.

    Science.gov (United States)

    Taipale, Sami J; Galloway, Aaron W E; Aalto, Sanni L; Kahilainen, Kimmo K; Strandberg, Ursula; Kankaala, Paula

    2016-08-11

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terrestrial-origin carbohydrates for energy and sparing essential fatty acids and amino acids for somatic growth and reproduction. Assimilated terrestrial-origin fatty acids from shoreline reed particles exceeded available diet, indicating that Daphnia may convert a part of their dietary carbohydrates to saturated fatty acids. This conversion was not observed with birch leaf diets, which had lower carbohydrate content. Subsequent analysis of 21 boreal and subarctic lakes showed that diet of herbivorous zooplankton is mainly based on high-quality phytoplankton rich in essential polyunsaturated fatty acids. The proportion of low-quality diets (bacteria and terrestrial particulate organic matter) was <28% of the assimilated carbon. Taken collectively, the incorporation of terrestrial carbon into zooplankton was not directly related to the concentration of terrestrial organic matter in experiments or lakes, but rather to the low availability of phytoplankton.

  3. Impacts of droughts on carbon sequestration by China's terrestrial ecosystems from 2000 to 2011

    Science.gov (United States)

    Liu, Y.; Zhou, Y.; Ju, W.; Wang, S.; Wu, X.; He, M.; Zhu, G.

    2014-05-01

    In recent years, China's terrestrial ecosystems have experienced frequent droughts. How these droughts have affected carbon sequestration by the terrestrial ecosystems is still unclear. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model, driven by remotely sensed vegetation parameters, was employed to assess the effects of droughts on net ecosystem productivity (NEP) of terrestrial ecosystems in China from 2000 to 2011. Droughts of differing severity, as indicated by a standard precipitation index (SPI), hit terrestrial ecosystems in China extensively in 2001, 2006, 2009, and 2011. The national total annual NEP exhibited the slight decline of -11.3 Tg C yr-2 during the aforementioned years of extensive droughts. The NEP reduction ranged from 61.1 Tg C yr-1 to 168.8 Tg C yr-1. National and regional total NEP anomalies were correlated with the annual mean SPI, especially in Northwest China, North China, Central China, and Southwest China. The reductions in annual NEP in 2001 and 2011 might have been caused by a larger decrease in annual gross primary productivity (GPP) than in annual ecosystem respiration (ER). The reductions experienced in 2009 might be due to a decrease in annual GPP and an increase in annual ER, while reductions in 2006 could stem from a larger increase in ER than in GPP. The effects of droughts on NEP lagged up to 3-6 months, due to different responses of GPP and ER. In eastern China, where is humid and warm, droughts have predominant and short-term lagged influences on NEP. In western regions, cold and arid, the drought effects on NEP were relatively weaker but prone to lasting longer.

  4. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: Model description

    International Nuclear Information System (INIS)

    Nikolov, Ned; Zeller, Karl F.

    2003-01-01

    A new biophysical model (FORFLUX) is presented to link ozone deposition with carbon and water cycles in terrestrial ecosystems. - A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO 2 - transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3 model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO 2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems

  5. How does soil erosion influence the terrestrial carbon cycle and the impacts of land use and land cover change?

    Science.gov (United States)

    Naipal, V.; Wang, Y.; Ciais, P.; Guenet, B.; Lauerwald, R.

    2017-12-01

    The onset of agriculture has accelerated soil erosion rates significantly, mobilizing vast quantities of soil organic carbon (SOC) globally. Studies show that at timescales of decennia to millennia this mobilized SOC can significantly alter previously estimated carbon emissions from land use and land cover change (LULCC). However, a full understanding of the impact of soil erosion on land-atmosphere carbon exchange is still missing. The aim of our study is to better constrain the terrestrial carbon fluxes by developing methods, which are compatible with earth system models (ESMs), and explicitly represent the links between soil erosion and carbon dynamics. For this we use an emulator that represents the carbon cycle of ORCHIDEE, which is the land component of the IPSL ESM, in combination with an adjusted version of the Revised Universal Soil Loss Equation (RUSLE) model. We applied this modeling framework at the global scale to evaluate how soil erosion influenced the terrestrial carbon cycle in the presence of elevated CO2, regional climate change and land use change. Here, we focus on the effects of soil detachment by erosion only and do not consider sediment transport and deposition. We found that including soil erosion in the SOC dynamics-scheme resulted in two times more SOC being lost during the historical period (1850-2005 AD). LULCC is the main contributor to this SOC loss, whose impact on the SOC stocks is significantly amplified by erosion. Regionally, the influence of soil erosion varies significantly, depending on the magnitude of the perturbations to the carbon cycle and the effects of LULCC and climate change on soil erosion rates. We conclude that it is necessary to include soil erosion in assessments of LULCC, and to explicitly consider the effects of elevated CO2 and climate change on the carbon cycle and on soil erosion, for better quantification of past, present, and future LULCC carbon emissions.

  6. Removal of terrestrial DOC in aquatic ecosystems of a temperate river network

    Science.gov (United States)

    Wollheim, W.M.; Stewart, R. J.; Aiken, George R.; Butler, Kenna D.; Morse, Nathaniel B.; Salisbury, J.

    2015-01-01

    Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones.

  7. Biological regeneration of para-nitrophenol loaded activated carbon

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.; Martin, R.J.

    1997-01-01

    Biological regeneration is one of several methods that may be used to restore the adsorptive capacity of exhausted granular activated carbon (GAC). This study deals with in-situ biological regeneration on a pilot scale. The principal objective of this research was to ascertain whether biological regeneration of GAC could occur under conditions typical of water treatment. The important parameters which may have the greatest impact on bio regeneration of a given adsorbate were studied. The research investigated the extent of bio regeneration for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in the total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in he total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated with a mixed culture of bacteria, and lastly the carbon was re-saturated. In the totally exhausted GAC system, the bio regeneration was enhanced by increasing the during of regeneration for a fixed initial biomass content of the bioreactor. The bio regeneration efficiency of the totally exhausted (with PNP) GAC the empty bed contact time (EBCT) and the initial concentration of the substrate had a profound effect on the bio regeneration efficiency. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. (author)

  8. Biological regeneration of phenol-loaded activated carbon (up flow system)

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.J.; Mirajuddin; Martin, R.J.

    1995-01-01

    This paper represents the report on the biological regeneration of totally activated carbon following the experimental studies carried out at the University of Birmingham, U.K. Biological regeneration is one of several methods that may be used to restore the adsorptive capacity of exhausted granular activated carbon. This study deals with in situ biological regeneration on a pilot scale. The principal objective of this research was to ascertain whether biological regeneration of GAC could occur under conditions typical of water treatment. The important parameters which may have the greatest impact on bio regeneration for a given adsorbate were studied. The research investigated the extent of bio regeneration for phenol of concentration 50 mg/l. Bio regeneration in the total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initialing exhausted with an adsorbate; it was then bio regenerated with a mixed culture of bacteria, and lastly the carbon was saturated. In the totally exhausted GAC system, the bio regeneration was enhanced by increasing the duration of regeneration for a fixed initial biomass content of the bioreactor. The regenerated phenol loaded GAC bed had nearly gained its original adsorption after the 5-day period of regeneration. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. (author)

  9. Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO2

    International Nuclear Information System (INIS)

    Cao, Mingkui; Tao, B.; Li, Kerang; Prince, Stephen D.; Small, J.

    2005-01-01

    Atmospheric measurements indicate that the terrestrial carbon sink increased substantially from the 1980s to the 1990s, but which factors and regions were responsible for the increase are not well identified yet. Using process- and remote sensing-based ecosystem models, we show that changes in climate and atmospheric CO 2 in the period 1981-2000 enhanced net ecosystem production (NEP) and caused major geographical changes in the global distribution of NEP. In the 1980s the Americas accounted for almost all of the global NEP, but in the 1990s NEP in Eurasia and Africa became higher than that of the Americas. The year-to-year variation in global NEP was up to 2.5 Pg C (1 Pg = 10 15 g), in which 1.4 Pg C was attributable to the El Nino Southern Oscillation cycle (ENSO). NEP clearly decreased in El Nino and increased in La Nina in South America and Africa, but the response in North America and Eurasia was mixed. The estimated NEP increases accounted for only 30% of the global terrestrial carbon sink but can explain almost all of the increase from the 1980s to the 1990s. Because a large part of the increase in NEP was driven by the long-term trend of climate and atmospheric CO 2 , the increase in the global terrestrial carbon sink from the 1980s to the 1990s was a continuation of the trend since the middle of the twentieth century, rather than merely a consequence of short-time climate variability

  10. Stable carbon isotope ratios: implications for the source of sediment carbon and for phytoplankton carbon assimilation in Lake Memphremagog, Quebec

    International Nuclear Information System (INIS)

    LaZerte, B.D.

    1983-01-01

    The stable carbon isotope (SCI) ratio of the sediment of Lake Memphremagog, Quebec is compared with that ot terrestrial sources and the phytoplankton to determine the relative proportion of allochthonous carbon incorporated into the sediments. Approximately 40-50% of the organic carbon in the main basins' pelagic sediment was terrestrial in origin, whereas up to 100% was terrestrial in littoral areas. The SCI method of determining the organic carbon source of sediments appears more reliable than the C/N method. A comparison of the SCI fractionation of the phytoplankton with laboratory cultures under different degrees of carbon limitation indicates that the phytoplankton of Lake Memphremagog are not carbon limited and fix carbon primarily by the C 3 pathway

  11. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming

    Science.gov (United States)

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V.

    2016-08-01

    Soils - constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter - specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change.

  12. A comparison of molecular biology mechanism of Shewanella putrefaciens between fresh and terrestrial sewage wastewater

    Directory of Open Access Journals (Sweden)

    Jiajie Xu

    2016-11-01

    Full Text Available Municipal and industrial wastewater is often discharged into the environment without appropriate treatment, especially in developing countries. As a result, many rivers and oceans are contaminated. It is urgent to control and administer treatments to these contaminated rivers and oceans. However, most mechanisms of bacterial colonization in contaminated rivers and oceans were unknown, especially in sewage outlets. We found Shewanella putrefaciens to be the primary bacteria in the terrestrial sewage wastewater outlets around Ningbo City, China. Therefore, in this study, we applied a combination of differential proteomics, metabolomics, and real-time fluorescent quantitative PCR techniques to identify bacteria intracellular metabolites. We found S. putrefaciens had 12 different proteins differentially expressed in freshwater culture than when grown in wastewater, referring to the formation of biological membranes (Omp35, OmpW, energy metabolism (SOD, deoxyribose-phosphate pyrophosphokinase, fatty acid metabolism (beta-ketoacyl synthase, secondary metabolism, TCA cycle, lysine degradation (2-oxoglutarate reductase, and propionic acid metabolism (succinyl coenzyme A synthetase. The sequences of these 12 differentially expressed proteins were aligned with sequences downloaded from NCBI. There are also 27 differentially concentrated metabolites detected by NMR, including alcohols (ethanol, isopropanol, amines (dimethylamine, ethanolamine, amino acids (alanine, leucine, amine compounds (bilinerurine, nucleic acid compounds (nucleosides, inosines, organic acids (formate, acetate. Formate and ethanolamine show significant difference between the two environments and are possibly involved in energy metabolism, glycerophospholipid and ether lipids metabolism to provide energy supply and material basis for engraftment in sewage. Because understanding S. putrefaciens’s biological mechanism of colonization (protein, gene express and metabolites in

  13. European-wide simulations of present cropland phenology, productivity and carbon fluxes using an improved terrestrial biosphere model

    Science.gov (United States)

    Smith, P. C.; Ciais, P.; de Noblet, N.; Peylin, P.; Viovy, N.; Bondeau, A.

    2009-04-01

    Aiming at producing improved estimates of carbon source/sink spatial and interannual patterns across Europe (35% croplands), this work combines the terrestrial biosphere model ORCHIDEE (for vegetation productivity, water balance, soil carbon dynamics) and the generic crop model STICS (for phenology, irrigation, nitrogen balance, harvest). The ORCHIDEE-STICS model, relying on three plant functional types for the representation of temperate agriculture, is evaluated over the last few decades at various spatial and temporal resolutions. The simulated Leaf Area Index seasonal cycle is largely improved relative to the original ORCHIDEE simulating grasslands, and compares favourably with remote-sensing observations (the Figure of Merit in Time doubles over Europe). Crop yield is derived from annual Net Primary Productivity and compared with wheat and grain maize harvest data for five European countries. Discrepancies between 30-year mean simulated and reported yields remain large in Mediterranean countries. Interannual variability amplitude expressed relative to the mean is reduced towards the observed variability (~10%) when using ORCHIDEE-STICS. The simulated 2003 anomalous carbon source from European ecosystems to the atmosphere due to the 2003 summer heat wave is in good agreement with atmospheric inversions (~0.2 GtC, from May to October). The anomaly is twice as large in the ORCHIDEE alone simulation, owing to the unrealistically high exposure of herbaceous plants to the extreme summer conditions. Overall, this study highlights the importance of accounting for the specific phonologies of crops sown both in winter and in spring and for irrigation applied to summer crops in regional/global models of the terrestrial carbon cycle. Limitations suggest accounting for temporal and spatial variability in agricultural practices for further simulation improvement.

  14. AFM imaging of functionalized carbon nanotubes on biological membranes

    International Nuclear Information System (INIS)

    Lamprecht, C; Danzberger, J; Rangl, M; Gruber, H J; Hinterdorfer, P; Kienberger, F; Ebner, A; Liashkovich, I; Neves, V; Heister, E; Coley, H M; McFadden, J; Flahaut, E

    2009-01-01

    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging.

  15. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis.

    Science.gov (United States)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere A; Yu, Guirui; Li, Linghao; Zhang, Wei; Fang, Huajun; Mo, Jiangming

    2015-11-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Investigations in space-related molecular biology. [cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens

    Science.gov (United States)

    Fernandez-Moran, H.; Pritzker, A. N.

    1974-01-01

    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed

  17. Optimal Plant Carbon Allocation Implies a Biological Control on Nitrogen Availability

    Science.gov (United States)

    Prentice, I. C.; Stocker, B. D.

    2015-12-01

    The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C exudation into the soil (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. Thus, N availability is under biological control, but incurs a C cost. In spite of clear observational support, this concept is left unaccounted for in Earth system models. We develop a model for the coupled cycles of C and N in terrestrial ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We assume that Cex is proportional to root mass, and that the ratio of N uptake (Nup) to Cex is proportional to inorganic N concentration in the soil solution. We further assume that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. Our analysis thereby accounts for the feedbacks between ecosystem C and N cycling and stoichiometry. We address the question of how the plant C economy will adjust under rising atmospheric CO2 and what this implies for the ecosystem C balance and the degree of N limitation.

  18. Terrestrial and extraterrestrial fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science

    2003-07-01

    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  19. Biological cellular response to carbon nanoparticle toxicity

    International Nuclear Information System (INIS)

    Panessa-Warren, B J; Warren, J B; Wong, S S; Misewich, J A

    2006-01-01

    Recent advances in nanotechnology have increased the development and production of many new nanomaterials with unique characteristics for industrial and biomedical uses. The size of these new nanoparticles (<100 nm) with their high surface area and unusual surface chemistry and reactivity poses unique problems for biological cells and the environment. This paper reviews the current research on the reactivity and interactions of carbon nanoparticles with biological cells in vivo and in vitro, with ultrastructural images demonstrating evidence of human cell cytotoxicity to carbon nanoparticles characteristic of lipid membrane peroxidation, gene down regulation of adhesive proteins, and increased cell death (necrosis, apoptosis), as well as images of nontoxic carbon nanoparticle interactions with human cells. Although it is imperative that nanomaterials be systematically tested for their biocompatibility and safety for industrial and biomedical use, there are now ways to develop and redesign these materials to be less cytotoxic, and even benign to cell systems. With this new opportunity to utilize the unique properties of nanoparticles for research, industry and medicine, there is a responsibility to test and optimize these new nanomaterials early during the development process, to eliminate or ameliorate identified toxic characteristics

  20. Biological intercomparison using gut crypt survivals for proton and carbon ions

    International Nuclear Information System (INIS)

    Uzawa, Akiko; Ando, Koichi; Furusawa, Yoshiya

    2006-01-01

    Charged particle therapy depends on biological information for the dose prescription. Relative biological effectiveness or relative biological effectiveness (RBE) for this requirement could basically be provided by experimental data. As RBE values of protons and carbon ions depend on several factors such as cell/tissue type, endpoint, dose and fractionation schedule, a single RBE value could not function as a master key to open all rooms filled with guests of different radiosensitivities. However, any biological model with accurate reproducibility is useful for comparing biological effectiveness between different facilities. We used mouse gut crypt survivals as endpoint, and compared the cell killing efficiency of proton beams at three Japanese facilities. Three Linac X-ray machines with 4 and 6 MeV were used as reference beams, and there was only a small variation (coefficient of variance <2%) in biological effectiveness among them. The RBE values of protons relative to Linac X-rays ranged from 1.0 to 1.11 at the middle of a 6-cm SOBP (spread-out Bragg peak) and from 0.96 to 1.01 at the entrance plateau. The coefficient of variance for protons ranged between 4.0 and 5.1%. The biological comparison of carbon ions showed fairly good agreement in that the difference in biological effectiveness between National Institute of Radiological Sciences (NIRS)/Heavy Ion Medical Accelerator in Chiba (HIMAC) and Gesellschaft fur Schwerionenforschung (GSI)/Heavy Ion Synchrotron (SIS) was 1% for three positions within the 6-cm SOBP. The coefficient of variance was <1.7, <0.6 and <1.6% for proximal, middle and distal SOBP, respectively. We conclude that the inter-institutional variation of biological effectiveness is smaller for carbon ions than protons, and that beam-spreading methods of carbon ions do not critically influence gut crypt survival. (author)

  1. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    Science.gov (United States)

    Lin, L.; Gettelman, A.; Xu, Y.; Fu, Q.

    2016-01-01

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.

  2. Direct Comparison of Biologically Optimized Spread-out Bragg Peaks for Protons and Carbon Ions

    International Nuclear Information System (INIS)

    Wilkens, Jan J.; Oelfke, Uwe

    2008-01-01

    Purpose: In radiotherapy with hadrons, it is anticipated that carbon ions are superior to protons, mainly because of their biological properties: the relative biological effectiveness (RBE) for carbon ions is supposedly higher in the target than in the surrounding normal tissue, leading to a therapeutic advantage over protons. The purpose of this report is to investigate this effect by using biological model calculations. Methods and Materials: We compared spread-out Bragg peaks for protons and carbon ions by using physical and biological optimization. The RBE for protons and carbon ions was calculated according to published biological models. These models predict increased RBE values in regions of high linear energy transfer (LET) and an inverse dependency of the RBE on dose. Results: For pure physical optimization, protons yield a better dose distribution along the central axis. In biologically optimized plans, RBE variations for protons were relatively small. For carbon ions, high RBE values were found in the high-LET target region, as well as in the low-dose region outside the target. This means that the LET dependency and dose dependency of the RBE can cancel each other. We show this for radioresistant tissues treated with two opposing beams, for which the predicted carbon RBE within the target volume was lower than outside. Conclusions: For tissue parameters used in this study, the model used does not predict a biologic advantage of carbon ions. More reliable model parameters and clinical trials are necessary to explore the true potential of radiotherapy with carbon ions

  3. The Biological carbon pump in the North Atlantic

    DEFF Research Database (Denmark)

    Sanders, Richard; Henson, Stephanie A.; Koski, Marja

    2014-01-01

    Mediated principally by the sinking of organic rich particles from the upper ocean, the Biological Carbon Pump (BCP) is a significant component of the global carbon cycle. It transfers roughly 11 Gt C yr−1 into the ocean’s interior and maintains atmospheric carbon dioxide at significantly lower......, including both the magnitude of the downward flux and the ecological, chemical and physical processes by which it is sustained and controlled. Our lack of detailed mechanistic understanding has also hindered modelling attempts to quantify and predict changes to the BCP. In this paper, we assess current...

  4. Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks

    International Nuclear Information System (INIS)

    House, J.I.; Prentice, I.C.; Heimann, M.; Ramankutty, N.

    2003-01-01

    The magnitude and location of terrestrial carbon sources and sinks remains subject to large uncertainties. Estimates of terrestrial CO 2 fluxes from ground-based inventory measurements typically find less carbon uptake than inverse model calculations based on atmospheric CO 2 measurements, while a wide range of results have been obtained using models of different types. However, when full account is taken of the processes, pools, time scales and geographic areas being measured, the different approaches can be understood as complementary rather than inconsistent, and can provide insight as to the contribution of various processes to the terrestrial carbon budget. For example, quantitative differences between atmospheric inversion model estimates and forest inventory estimates in northern extratropical regions suggest that carbon fluxes to soils (often not accounted for in inventories), and into non-forest vegetation, may account for about half of the terrestrial uptake. A consensus of inventory and inverse methods indicates that, in the 1980s, northern extratropical land regions were a large net sink of carbon, and the tropics were approximately neutral (albeit with high uncertainty around the central estimate of zero net flux). The terrestrial flux in southern extratropical regions was small. Book-keeping model studies of the impacts of land-use change indicated a large source in the tropics and almost zero net flux for most northern extratropical regions; similar land use change impacts were also recently obtained using process-based models. The difference between book-keeping land-use change model studies and inversions or inventories was previously interpreted as a 'missing' terrestrial carbon uptake. Land-use change studies do not account for environmental or many management effects (which are implicitly included in inventory and inversion methods). Process-based model studies have quantified the impacts of CO 2 fertilisation and climate change in addition to

  5. Pilot Studies of Geologic and Terrestrial Carbon Sequestration in the Big Sky Region, USA, and Opportunities for Commercial Scale Deployment of New Technologies

    Science.gov (United States)

    Waggoner, L. A.; Capalbo, S. M.; Talbott, J.

    2007-05-01

    Within the Big Sky region, including Montana, Idaho, South Dakota, Wyoming and the Pacific Northwest, industry is developing new coal-fired power plants using the abundant coal and other fossil-based resources. Of crucial importance to future development programs are robust carbon mitigation plans that include a technical and economic assessment of regional carbon sequestration opportunities. The objective of the Big Sky Carbon Sequestration Partnership (BSCSP) is to promote the development of a regional framework and infrastructure required to validate and deploy carbon sequestration technologies. Initial work compiled sources and potential sinks for carbon dioxide (CO2) in the Big Sky Region and developed the online Carbon Atlas. Current efforts couple geologic and terrestrial field validation tests with market assessments, economic analysis and regulatory and public outreach. The primary geological efforts are in the demonstration of carbon storage in mafic/basalt formations, a geology not yet well characterized but with significant long-term storage potential in the region and other parts of the world; and in the Madison Formation, a large carbonate aquifer in Wyoming and Montana. Terrestrial sequestration relies on management practices and technologies to remove atmospheric CO2 to storage in trees, plants, and soil. This indirect sequestration method can be implemented today and is on the front-line of voluntary, market-based approaches to reduce CO2 emissions. Details of pilot projects are presented including: new technologies, challenges and successes of projects and potential for commercial-scale deployment.

  6. How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system?

    Science.gov (United States)

    Watanabe, Kenta; Kuwae, Tomohiro

    2015-04-16

    Carbon captured by marine organisms helps sequester atmospheric CO 2 , especially in shallow coastal ecosystems, where rates of primary production and burial of organic carbon (OC) from multiple sources are high. However, linkages between the dynamics of OC derived from multiple sources and carbon sequestration are poorly understood. We investigated the origin (terrestrial, phytobenthos derived, and phytoplankton derived) of particulate OC (POC) and dissolved OC (DOC) in the water column and sedimentary OC using elemental, isotopic, and optical signatures in Furen Lagoon, Japan. Based on these data analysis, we explored how OC from multiple sources contributes to sequestration via storage in sediments, water column sequestration, and air-sea CO 2 exchanges, and analyzed how the contributions vary with salinity in a shallow seagrass meadow as well. The relative contribution of terrestrial POC in the water column decreased with increasing salinity, whereas autochthonous POC increased in the salinity range 10-30. Phytoplankton-derived POC dominated the water column POC (65-95%) within this salinity range; however, it was minor in the sediments (3-29%). In contrast, terrestrial and phytobenthos-derived POC were relatively minor contributors in the water column but were major contributors in the sediments (49-78% and 19-36%, respectively), indicating that terrestrial and phytobenthos-derived POC were selectively stored in the sediments. Autochthonous DOC, part of which can contribute to long-term carbon sequestration in the water column, accounted for >25% of the total water column DOC pool in the salinity range 15-30. Autochthonous OC production decreased the concentration of dissolved inorganic carbon in the water column and thereby contributed to atmospheric CO 2 uptake, except in the low-salinity zone. Our results indicate that shallow coastal ecosystems function not only as transition zones between land and ocean but also as carbon sequestration filters. They

  7. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event

    Science.gov (United States)

    Bianchi, Thomas S.; Garcia-Tigreros, Fenix; Yvon-Lewis, Shari A.; Shields, Michael; Mills, Heath J.; Butman, David; Osburn, Christopher; Raymond, Peter A.; Shank, G. Christopher; DiMarco, Steven F.; Walker, Nan; Kiel Reese, Brandi; Mullins-Perry, Ruth; Quigg, Antonietta; Aiken, George R.; Grossman, Ethan L.

    2013-01-01

    Rising CO2 concentration in the atmosphere, global climate change, and the sustainability of the Earth's biosphere are great societal concerns for the 21st century. Global climate change has, in part, resulted in a higher frequency of flooding events, which allow for greater exchange between soil/plant litter and aquatic carbon pools. Here we demonstrate that the summer 2011 flood in the Mississippi River basin, caused by extreme precipitation events, resulted in a “flushing” of terrestrially derived dissolved organic carbon (TDOC) to the northern Gulf of Mexico. Data from the lower Atchafalaya and Mississippi rivers showed that the DOC flux to the northern Gulf of Mexico during this flood was significantly higher than in previous years. We also show that consumption of radiocarbon-modern TDOC by bacteria in floodwaters in the lower Atchafalaya River and along the adjacent shelf contributed to northern Gulf shelf waters changing from a net sink to a net source of CO2 to the atmosphere in June and August 2011. This work shows that enhanced flooding, which may or may not be caused by climate change, can result in rapid losses of stored carbon in soils to the atmosphere via processes in aquatic ecosystems.

  8. The limits to global-warming mitigation by terrestrial carbon removal

    Science.gov (United States)

    Boysen, Lena R.; Lucht, Wolfgang; Gerten, Dieter; Heck, Vera; Lenton, Timothy M.; Schellnhuber, Hans Joachim

    2017-05-01

    Massive near-term greenhouse gas emissions reduction is a precondition for staying "well below 2°C" global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature "overshoot" in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to "repair" delayed or insufficient emissions reduction policies unable to prevent global mean temperature rise of 2.5°C or even 4.5°C above pre-industrial level. Our results show that those tCDR measures are unable to counteract "business-as-usual" emissions without eliminating virtually all natural ecosystems. Even if considerable (Representative Concentration Pathway 4.5 [RCP4.5]) emissions reductions are assumed, tCDR with 50% storage efficiency requires >1.1 Gha of the most productive agricultural areas or the elimination of >50% of natural forests. In addition, >100 MtN/yr fertilizers would be needed to remove the roughly 320 GtC foreseen in these scenarios. Such interventions would severely compromise food production and/or biosphere functioning. Second, we reanalyze the requirements for achieving the 160-190 GtC tCDR that would complement strong mitigation action (RCP2.6) in order to avoid 2°C overshoot anytime. We find that a combination of high irrigation water input and/or more efficient conversion to stored carbon is necessary. In the face of severe trade-offs with society and the biosphere, we conclude that large-scale tCDR is not a viable alternative to aggressive emissions reduction. However, we argue that tCDR might serve as a valuable "supporting actor" for strong mitigation if sustainable schemes are established immediately.

  9. Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States

    Science.gov (United States)

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul; Loveland, Thomas R.

    2018-01-01

    Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr−1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr−1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr−1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.

  10. Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States

    Science.gov (United States)

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul C.; Loveland, Thomas R.

    2018-04-01

    Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr‑1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr‑1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr‑1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.

  11. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    Science.gov (United States)

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-11-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of "self-rewetting fluids", i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59-61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20-100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  12. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    International Nuclear Information System (INIS)

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-01-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of “self-rewetting fluids”, i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59–61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20–100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  13. Subsidy or subtraction: how do terrestrial inputs influence consumer production in lakes?

    Science.gov (United States)

    Jones, Stuart E.; Solomon, Christopher T.; Weidel, Brian C.

    2012-01-01

    Cross-ecosystem fluxes are ubiquitous in food webs and are generally thought of as subsidies to consumer populations. Yet external or allochthonous inputs may in fact have complex and habitat-specific effects on recipient ecosystems. In lakes, terrestrial inputs of organic carbon contribute to basal resource availability, but can also reduce resource availability via shading effects on phytoplankton and periphyton. Terrestrial inputs might therefore either subsidise or subtract from consumer production. We developed and parameterised a simple model to explore this idea. The model estimates basal resource supply and consumer production given lake-level characteristics including total phosphorus (TP) and dissolved organic carbon (DOC) concentration, and consumer-level characteristics including resource preferences and growth efficiencies. Terrestrial inputs diminished primary production and total basal resource supply at the whole-lake level, except in ultra-oligotrophic systems. However, this system-level generalisation masked complex habitat-specific effects. In the pelagic zone, dissolved and particulate terrestrial carbon inputs were available to zooplankton via several food web pathways. Consequently, zooplankton production usually increased with terrestrial inputs, even as total whole-lake resource availability decreased. In contrast, in the benthic zone the dominant, dissolved portion of the terrestrial carbon load had predominantly negative effects on resource availability via shading of periphyton. Consequently, terrestrial inputs always decreased zoobenthic production except under extreme and unrealistic parameterisations of the model. Appreciating the complex and habitat-specific effects of allochthonous inputs may be essential for resolving the effects of cross-habitat fluxes on consumers in lakes and other food webs.

  14. The missing biology in land carbon models (Invited)

    Science.gov (United States)

    Prentice, I. C.; Cornwell, W.; Dong, N.; Maire, V.; Wang, H.; Wright, I.

    2013-12-01

    Models of terrestrial carbon cycling give divergent results, and recent developments - notably the inclusion of nitrogen-carbon cycle coupling - have apparently made matters worse. More extensive benchmarking of models would be highly desirable, but is not a panacea. Problems with current models include overparameterization (assigning separate sets of parameter values for each plant functional type can easily obscure more fundamental model limitations), and the widespread persistence of incorrect paradigms to describe plant responses to environment. Next-generation models require a more sound basis in observations and theory. A possible way forward will be outlined. It will be shown how the principle of optimization by natural selection can yield testable, general hypotheses about plant function. A specific optimality hypothesis about the control of CO2 drawdown versus water loss by leaves will be shown to yield global and quantitatively verifable predictions of plant behaviour as demonstrated in field gas-exchange measurements across species from different environments, and in the global pattern of stable carbon isotope discrimination by plants. Combined with the co-limitation hypothesis for the control of photosynthetic capacity and an economic approach to the costs of nutrient acquisition, this hypothesis provides a potential foundation for a comprehensive predictive understanding of the controls of primary production on land.

  15. Linking Biological Responses of Terrestrial N Eutrophication to the Final Ecosystem Goods and Services Classification System

    Science.gov (United States)

    Bell, M. D.; Clark, C.; Blett, T.

    2015-12-01

    The response of a biological indicator to N deposition can indicate that an ecosystem has surpassed a critical load and is at risk of significant change. The importance of this exceedance is often difficult to digest by policy makers and public audiences if the change is not linked to a familiar ecosystem endpoint. A workshop was held to bring together scientists, resource managers, and policy makers with expertise in ecosystem functioning, critical loads, and economics in an effort to identify the ecosystem services impacted by air pollution. This was completed within the framework of the Final Ecosystem Goods and Services (FEGS) Classification System to produce a product that identified distinct interactions between society and the effects of nitrogen pollution. From each change in a biological indicator, we created multiple ecological production functions to identify the cascading effects of the change to a measureable ecosystem service that a user interacts with either by enjoying, consuming, or appreciating the good or service, or using it as an input in the human economy. This FEGS metric was then linked to a beneficiary group that interacts with the service. Chains detailing the links from the biological indicator to the beneficiary group were created for aquatic and terrestrial acidification and eutrophication at the workshop, and here we present a subset of the workshop results by highlighting for 9 different ecosystems affected by terrestrial eutrophication. A total of 213 chains that linked to 37 unique FEGS metrics and impacted 15 beneficiary groups were identified based on nitrogen deposition mediated changes to biological indicators. The chains within each ecosystem were combined in flow charts to show the complex, overlapping relationships among biological indicators, ecosystem services, and beneficiary groups. Strength of relationship values were calculated for each chain based on support for the link in the scientific literature. We produced the

  16. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    Directory of Open Access Journals (Sweden)

    M. Chen

    2011-09-01

    Full Text Available Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM, should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI, Land Surface Water Index (LSWI and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000–2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr−1 and net primary production (NPP ranges from 3.81 to 4.38 Pg C yr−1 and net ecosystem production (NEP varies within 0.08–0.73 Pg C yr−1 over the period 2000–2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr−1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  17. The role of hydrology in annual organic carbon loads and terrestrial organic matter export from a midwestern agricultural watershed

    Science.gov (United States)

    Dalzell, Brent J.; Filley, Timothy R.; Harbor, Jon M.

    2007-03-01

    Defining the control that hydrology exerts on organic carbon (OC) export at the watershed scale is important for understanding how the source and quantity of OC in streams and rivers is influenced by climate change or by landscape drainage. To this end, molecular (lignin phenol), stable carbon isotope, and dissolved organic carbon (DOC) data were collected over a range of flow conditions to examine the influence of hydrology on annual OC export from an 850 km 2 Midwestern United States agricultural watershed located in west central Indiana. In years 2002 and 2003, modeled annual DOC loads were 19.5 and 14.1 kg ha -1yr -1, while 71% and 85%, respectively, of the total annual OC was exported in flow events occurring during less than 20% of that time. These results highlight the importance of short-duration, high-discharge events (common in smaller watersheds) in controlling annual OC export. Based on reported increases in annual stream discharge coupled with current estimates of DOC export, annual DOC loads in this watershed may have increased by up to 40% over the past 50 years. Molecular (lignin phenol) characterization of quantity and relative degradation state of terrestrial OC shows as much temporal variability of lignin parameters (in high molecular weight dissolved organic carbon) in this one watershed as that demonstrated in previously published studies of dissolved organic matter in the Mississippi and Amazon Rivers. These results suggest that hydrologic variability is at least as important in determining the nature and extent of OC export as geographic variability. Moreover, molecular and bulk stable carbon isotope data from high molecular weight dissolved organic carbon and colloidal organic carbon showed that increased stream flow from the study watershed was responsible for increased export of agriculturally derived OC. When considered in the context of results from other studies that show the importance of flood events and in-stream processing of

  18. Biological effects of accelerated boron, carbon, and neon ions

    International Nuclear Information System (INIS)

    Grigoryev, Yu.G.; Ryzhov, N.I.; Popov, V.I.

    1975-01-01

    The biological effects of accelerated boron, carbon, and neon ions on various biological materials were determined. The accelerated ions included 10 B, 11 B, 12 C, 20 Ne, 22 Ne, and 40 Ar. Gamma radiation and x radiation were used as references in the experiments. Among the biological materials used were mammalian cells and tissues, yeasts, unicellular algae (chlorella), and hydrogen bacteria. The results of the investigation are given and the biophysical aspects of the problem are discussed

  19. Mechanistic controls on diverse fates of terrestrial organic components in the East China Sea

    NARCIS (Netherlands)

    Zhu, C.; Wagner, T.; Talbot, H.M.; Weijers, J.W.H.; Pan, J.-M.; Pancost, R.D.

    2013-01-01

    Terrestrial carbon transferred from the land to sea is a critical component of the global carbon cycle. A range of geochemical proxies has been developed to fingerprint the fate of terrestrial organic matter (TOM) in marine sediments. However, discrepancies among different proxies limit our ability

  20. Terrestrial N Cycling And C Storage: Some Insights From A Process-based Land Surface Model

    Science.gov (United States)

    Zaehle, S.; Friend, A. D.; Friedlingstein, P.

    2008-12-01

    We present results of a new land surface model, O-CN, which includes a process-based coupling between the terrestrial cycling of energy, water, carbon, and nitrogen. The model represents the controls of the terrestrial nitrogen (N) cycling on carbon (C) pools and fluxes through photosynthesis, respiration, changes in allocation, and soil organic matter decomposition, and explicitly accounts for N leaching and gaseous losses. O-CN has been shown to give realistic results in comparison to observations at a wide range of scales, including in situ flux measurements, productivity databases, and atmospheric CO2 concentration data. O-CN is run for three free air carbon dioxide enrichment (FACE) sites (Duke, Oak Ridge, Aspen), and reproduces observed magnitudes of changes in net primary productivity, foliage area and foliage N content. Several alternative hypotheses concerning the control of N on vegetation growth and decomposition, including effects of diluting foliage N concentrations, down-regulation of photosynthesis and respiration, acclimation of C allocation patterns and biological N fixation, are tested with respect to their effect on long- term C sequestration estimate. Differences in initial N availability, small transient changes in N inputs and the assumed plasticity of C:N stoichiometry can lead to substantial differences in the simulated long-term changes in productivity and C sequestration. We discuss the capacity of observations obtained at FACE sites to evaluate these alternative hypotheses, and investigate implications of a transient versus instantaneous increase in atmospheric carbon dioxide for the magnitude of the simulated limiting effect of N on C cycling. Finally, we re-examine earlier model-based assessments of the terrestrial C sequestration potential using a global transient O-CN simulation driven by increases in atmospheric CO2, N deposition and climatic changes over the 21st century.

  1. Terrestrial and marine trophic pathways support young-of-year growth in a nearshore Arctic fish

    Science.gov (United States)

    von Biela, Vanessa R.; Zimmerman, Christian E.; Cohn, Brian R.; Welker, Jeffrey M.

    2013-01-01

    River discharge supplies nearshore communities with a terrestrial carbon source that is often reflected in invertebrate and fish consumers. Recent studies in the Beaufort Sea have documented widespread terrestrial carbon use among invertebrates, but only limited use among nearshore fish consumers. Here, we examine the carbon source and diet of rapidly growing young-of-year Arctic cisco (Coregonus autumnalis) using stable isotope values (δ13C and δ15N) from muscle and diet analysis (stomach contents) during a critical and previously unsampled life stage. Stable isotope values (δ15N and δ13C) may differentiate between terrestrial and marine sources and integrate over longer time frames (weeks). Diet analysis provides species-specific information, but only from recent foraging (days). Average δ13C for all individuals was −25.7 ‰, with the smallest individuals possessing significantly depleted δ13C values indicative of a stronger reliance of terrestrial carbon sources as compared to larger individuals. Average δ15N for all individuals was 10.4 ‰, with little variation among individuals. As fish length increased, the proportion of offshore Calanus prey and neritic Mysis prey increased. Rapid young-of-year growth in Arctic cisco appears to use terrestrial carbon sources obtained by consuming a mixture of neritic and offshore zooplankton. Shifts in the magnitude or phenology of river discharge and the delivery of terrestrial carbon may alter the ecology of nearshore fish consumers.

  2. Biological intercomparison using gut crypt survivals for proton and carbon-ion beams

    International Nuclear Information System (INIS)

    Uzawa, Akiko; Ando, Koichi; Furusawa, Yoshiya

    2007-01-01

    Charged particle therapy depends on biological information for the dose prescription. Relative biological effectiveness or RBE for this requirement could basically be provided by experimental data. As RBE values of protons and carbon ions depend on several factors such as cell/tissue type, biological endpoint, dose and fractionation schedule, a single RBE value could not deal with all different radiosensitivities. However, any biological model with accurate reproducibility is useful for comparing biological effectiveness between different facilities. We used mouse gut crypt survivals as endpoint, and compared the cell killing efficiency of proton beams at three Japanese facilities. Three Linac X-ray machines with 4 and 6 MeV were used as reference beams, and there was only a small variation (coefficient of variance<2%) in biological effectiveness among them. The RBE values of protons relative to Linac X-rays ranged from 1.0 to 1.11 at the middle of a 6-cm SOBP (spread-out Bragg peak) and from 0.96 to 1.01 at the entrance plateau. The coefficient of variance for protons ranged between 4.0 and 5.1%. The biological comparison of carbon ions showed fairly good agreement in that the difference in biological effectiveness between National Institute of Radiological Sciences (NIRS)/ Heavy Ion Medical Accelerator in Chiba (HIMAC) and Gesellschaft fur Schwerionenforschung (GSI)/Heavy Ion Synchrotron (SIS) was 1% for three positions within the 6-cm SOBP. The coefficient of variance was <1.7, <0.6 and <1.6% for proximal, middle and distal SOBP, respectively. We conclude that the inter-institutional variation of biological effectiveness is smaller for carbon ions than protons, and that beam-spreading methods of carbon ions do not critically influence gut crypt survival. (author)

  3. Using the CARDAMOM framework to retrieve global terrestrial ecosystem functioning properties

    Science.gov (United States)

    Exbrayat, Jean-François; Bloom, A. Anthony; Smallman, T. Luke; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew

    2016-04-01

    Terrestrial ecosystems act as a sink for anthropogenic emissions of fossil-fuel and thereby partially offset the ongoing global warming. However, recent model benchmarking and intercomparison studies have highlighted the non-trivial uncertainties that exist in our understanding of key ecosystem properties like plant carbon allocation and residence times. It leads to worrisome differences in terrestrial carbon stocks simulated by Earth system models, and their evolution in a warming future. In this presentation we attempt to provide global insights on these properties by merging an ecosystem model with remotely-sensed global observations of leaf area and biomass through a data-assimilation system: the CARbon Data MOdel fraMework (CARDAMOM). CARDAMOM relies on a Markov Chain Monte Carlo algorithm to retrieve confidence intervals of model parameters that regulate ecosystem properties independently of any prior land-cover information. The MCMC method thereby enables an explicit representation of the uncertainty in land-atmosphere fluxes and the evolution of terrestrial carbon stocks through time. Global experiments are performed for the first decade of the 21st century using a 1°×1° spatial resolution. Relationships emerge globally between key ecosystem properties. For example, our analyses indicate that leaf lifespan and leaf mass per area are highly correlated. Furthermore, there exists a latitudinal gradient in allocation patterns: high latitude ecosystems allocate more carbon to photosynthetic carbon (leaves) while plants invest more carbon in their structural parts (wood and root) in the wet tropics. Overall, the spatial distribution of these ecosystem properties does not correspond to usual land-cover maps and are also partially correlated with disturbance regimes. For example, fire-prone ecosystems present statistically significant higher values of carbon use efficiency than less disturbed ecosystems experiencing similar climatic conditions. These results

  4. Implications of Uncertainty in Fossil Fuel Emissions for Terrestrial Ecosystem Modeling

    Science.gov (United States)

    King, A. W.; Ricciuto, D. M.; Mao, J.; Andres, R. J.

    2017-12-01

    Given observations of the increase in atmospheric CO2, estimates of anthropogenic emissions and models of oceanic CO2 uptake, one can estimate net global CO2 exchange between the atmosphere and terrestrial ecosystems as the residual of the balanced global carbon budget. Estimates from the Global Carbon Project 2016 show that terrestrial ecosystems are a growing sink for atmospheric CO2 (averaging 2.12 Gt C y-1 for the period 1959-2015 with a growth rate of 0.03 Gt C y-1 per year) but with considerable year-to-year variability (standard deviation of 1.07 Gt C y-1). Within the uncertainty of the observations, emissions estimates and ocean modeling, this residual calculation is a robust estimate of a global terrestrial sink for CO2. A task of terrestrial ecosystem science is to explain the trend and variability in this estimate. However, "within the uncertainty" is an important caveat. The uncertainty (2σ; 95% confidence interval) in fossil fuel emissions is 8.4% (±0.8 Gt C in 2015). Combined with uncertainty in other carbon budget components, the 2σ uncertainty surrounding the global net terrestrial ecosystem CO2 exchange is ±1.6 Gt C y-1. Ignoring the uncertainty, the estimate of a general terrestrial sink includes 2 years (1987 and 1998) in which terrestrial ecosystems are a small source of CO2 to the atmosphere. However, with 2σ uncertainty, terrestrial ecosystems may have been a source in as many as 18 years. We examine how well global terrestrial biosphere models simulate the trend and interannual variability of the global-budget estimate of the terrestrial sink within the context of this uncertainty (e.g., which models fall outside the 2σ uncertainty and in what years). Models are generally capable of reproducing the trend in net terrestrial exchange, but are less able to capture interannual variability and often fall outside the 2σ uncertainty. The trend in the residual carbon budget estimate is primarily associated with the increase in atmospheric CO2

  5. Mechanistic controls on diverse fates of terrestrial organic components in the East China Sea

    Science.gov (United States)

    Zhu, Chun; Wagner, Thomas; Talbot, Helen M.; Weijers, Johan W. H.; Pan, Jian-Ming; Pancost, Richard D.

    2013-09-01

    Terrestrial carbon transferred from the land to sea is a critical component of the global carbon cycle. A range of geochemical proxies has been developed to fingerprint the fate of terrestrial organic matter (TOM) in marine sediments. However, discrepancies among different proxies limit our ability to quantify and interpret the terrestrial signals in marine sediments, with consequences for the investigation of both the modern carbon cycle and past environmental change. To mechanistically understand these discrepancies, we examined the distributions of a range of terrestrial proxies and their aquatic counterparts (i.e. marine proxies) in the Yangtze river-East China Sea (YR-ECS) shelf system, where TOM experiences extensive modification during transport and burial. TOM proxies in the YR-ECS system collectively fit a power-law model but with distinct attenuation rates (the a∗ values) for individual molecular proxy groups. Among a range of TOM proxies, the modeled a∗ values decrease in the order: soil-marker BHPs > triterpenols > lignin > HMW n-alkanols > branched GDGTs > HMW n-alkanes for biomarkers; and Rsoil > BIT > %TOMiso for proxies tracing %TOM. Rapid loss of TOM components through dissociation in the narrow estuary, followed by oxidation over the wide open shelf, are best described by power curves. Inherent chemical reactivity (i.e. the number of functional groups), responses to hydraulic sorting, and in situ production regulate the individual attenuation rates. Of them, chemical reactivity plays the most important role on proxy behavior, supported by a strong correlation between a∗ values and standard molal Gibbs energies. Both, physical protection and chemical reactivity fundamentally control the overall behavior of TOM components, with the relative importance being setting-dependant: The former is relatively important in the estuary, whereas the later is the primary control over the open shelf. Moreover, regional variation of different marine

  6. Assessment of the Effects of Urban Expansion on Terrestrial Carbon Storage: A Case Study in Xuzhou City, China

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2018-02-01

    Full Text Available Carbon storage is closely connected to the productivities and climate regulation capacities of ecosystems. Assessing the effects of urban expansion on carbon storage has become increasingly important for achieving urban sustainability. This study analyzed the effects of urban expansion on terrestrial carbon storage in Xuzhou City, China during 2000–2025. The cellular automata (CA model was developed to simulate future urban expansion under three scenarios, namely, the business as usual (BAU, ecological protection (ECO, and planning strengthened (PLS scenarios. The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST model was further applied to explore the consequences of urban expansion on carbon storage. The results show that urban expansion resulted in 6.099 Tg of carbon storage loss from 2000–2015. Moreover, significant differences in the effects of the urban expansion scenarios on carbon storage were identified in terms of both magnitude and spatial pattern from 2015–2025. Compared with the other scenarios, the PLS scenario could be considered as a good option that would allow future development to achieve the objectives of the lowest carbon storage losses. The findings improve the understanding of the effects of urban expansion on carbon storage and may be used to support urban planning and management.

  7. The Role of Terrestrial Inputs of Organic Matter in Arctic Lagoons: Comparative Studies from Open-Water and Ice-Covered Periods

    Science.gov (United States)

    Dunton, K. H.; McClelland, J. W.; Connelly, T.; Linn, S.; Khosh, M.

    2012-12-01

    Coastal ecosystems of the Arctic receive extraordinarily large quantities of terrestrial organic matter through river discharge and shoreline erosion. This organic matter, both in dissolved and particulate form, may provide an important carbon and energy subsidy that supports and maintains heterotrophic activity and food webs in coastal waters, especially in the lagoons. Recent food web studies using stable isotopes confirm the significant assimilation of terrestrial organic matter, based on the depletion in both 13C and 15N content of invertebrate and vertebrate consumers collected in eastern Beaufort Sea lagoons vs. offshore waters. Our current work specifically focuses on a set of 12 field sites along the eastern Alaskan Beaufort Sea coast, from Barter Island to Demarcation Bay. To examine linkages between biological communities and organic matter inputs from land, we compared sites ranging from lagoons to open coastal systems that receive differing amounts of freshwater runoff and also differ markedly in their exchange characteristics with shelf waters. Our temporal and spatial effort included field sampling during the ice covered period in a number of lagoons characterized by differences in their exchange characteristics with the nearshore shelf. Our preliminary chemical and biological measurements, the first of their kind in arctic coastal lagoons, reveal that lagoon benthos can become hypersaline (43) and net heterotrophic (values to 30% oxygen saturation) during winter, before rebounding during the period of ice break-up to net autotrophic (>100% saturation) under continued hypersaline conditions. Measurements of water and sediment chemistry, benthic and water column community characteristics, and natural abundance isotopic tracers promise to reveal the dynamic nature of these productive lagoon ecosystems under different hydrologic conditions. The possible role of terrestrially derived carbon to arctic estuarine food webs is especially important in view of

  8. Variations and trends of terrestrial NPP and its relation to climate ...

    Indian Academy of Sciences (India)

    Using global terrestrial ecosystem net primary productivity (NPP) data, we validated the simulated multi-model ensemble ..... tion on the solar radiation at six Canadian stations; Solar ... balance have enhanced the terrestrial carbon sink in the.

  9. Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Stephen C; Keeling, Ralph F

    2012-01-03

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

  10. Terrestrial ecosystems in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Canadell, J.G. [CSIRO Marine and Atmospheric Research, Canberra, ACT (Australia). Global Carbon Project; Pataki, D.E. [California Univ., Irvine, CA (United States). Dept. of Earth System Science]|[California Univ., Irvine, CA (United States). Dept. of Ecology and Evolutionary Biology; Pitelka, L.F. (eds.) [Maryland Univ., Frostburg, MD (United States). Appalachian Lab.

    2007-07-01

    Over 100 authors present 25 contributions on the impacts of global change on terrestrial ecosystems including: * key processes of the earth system such as the CO2 fertilization effect, shifts in disturbances and biome distribution, the saturation of the terrestrial carbon sink, and changes in functional biodiversity, * ecosystem services such the production of wheat, pest control, and carbon storage in croplands, and * sensitive regions in the world threaten by rapid changes in climate and land use such as high latitudes ecosystems, tropical forest in Southeast Asia, and ecosystems dominated by Monsoon climate. The book also explores new research developments on spatial thresholds and nonlinearities, the key role of urban development in global biogeochemical processes, and the integration of natural and social sciences to address complex problems of the human-environment system. (orig.)

  11. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments

    Science.gov (United States)

    Shields, Michael R.; Bianchi, Thomas S.; Gélinas, Yves; Allison, Mead A.; Twilley, Robert R.

    2016-02-01

    We examined the role of reactive iron (FeR) in preserving organic carbon (OC) across a subaerial chronosequence of the Wax Lake Delta, a prograding delta within the Mississippi River Delta complex. We found that ~15.0% of the OC was bound to FeR, and the dominant binding mechanisms varied from adsorption in the youngest subaerial region to coprecipitation at the older, vegetated sites. The δ13C of the iron-associated OC was more negative than the total OC (mean = -2.6‰), indicating greater preference for terrestrial material and/or compounds with more negative δ13C values. However, only the adsorbed OC displayed preferential binding of lignin phenols. We estimate that ~8% of the OC initially deposited in deltaic systems is bound to FeR (equivalent to 6 × 1012 gC yr-1), and this percentage increases postdepositionally, as coprecipitation of FeR and OC allows for an even greater amount of OC to be bound to FeR.

  12. Monitoring terrestrial dissolved organic carbon export at land-water interfaces using remote sensing

    Science.gov (United States)

    Yu, Q.; Li, J.; Tian, Y. Q.

    2017-12-01

    Carbon flux from land to oceans and lakes is a crucial component of carbon cycling. However, this lateral carbon flow at land-water interface is often neglected in the terrestrial carbon cycle budget, mainly because observations of the carbon dynamics are very limited. Monitoring CDOM/DOC dynamics using remote sensing and assessing DOC export from land to water remains a challenge. Current CDOM retrieval algorithms in the field of ocean color are not simply applicable to inland aquatic ecosystems since they were developed for coarse resolution ocean-viewing imagery and less complex water types in open-sea. We developed a new semi-analytical algorithm, called SBOP (Shallow water Bio-Optical Properties algorithm) to adapt to shallow inland waters. SBOP was first developed and calibrated based on in situ hyperspectral radiometer data. Then we applied it to the Landsat-8 OLI images and evaluated the effectiveness of the multispectral images on inversion of CDOM absorption based on our field sampling at the Saginaw Bay in the Lake Huron. The algorithm performances (RMSE = 0.17 and R2 = 0.87 in the Saginaw Bay; R2 = 0.80 in the northeastern US lakes) is promising and we conclude the CDOM absorption can be derived from Landsat-8 OLI image in both optically deep and optically shallow waters with high accuracy. Our method addressed challenges on employing appropriate atmospheric correction, determining bottom reflectance influence for shallow waters, and improving for bio-optical properties retrieval, as well as adapting to both hyperspectral and the multispectral remote sensing imagery. Over 100 Landsat-8 images in Lake Huron, northeastern US lakes, and the Arctic major rivers were processed to understand the CDOM spatio-temporal dynamics and its associated driving factors.

  13. The provenance, formation, and implications of reduced carbon phases in Martian meteorites

    Science.gov (United States)

    Steele, Andrew; McCubbin, Francis M.; Fries, Marc D.

    2016-11-01

    This review is intended to summarize the current observations of reduced carbon in Martian meteorites, differentiating between terrestrial contamination and carbon that is indigenous to Mars. Indeed, the identification of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade, including the Mars Science Laboratory and Mars 2020. Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance; however, not all forms of reduced carbon are conducive to biological systems. This paper discusses the significance of reduced organic carbon (including methane) in Martian geological and astrobiological systems. Specifically, it summarizes current thinking on the nature, sources, and sinks of Martian organic carbon, a key component to Martian habitability. Based on this compilation, reduced organic carbon on Mars, including detections of methane in the Martian atmosphere, is best described through a combination of abiotic organic synthesis on Mars and infall of extraterrestrial carbonaceous material. Although conclusive signs of Martian life have yet to be revealed, we have developed a strategy for life detection on Mars that can be utilized in future life-detection studies.

  14. Carbon footprint of aerobic biological treatment of winery wastewater.

    Science.gov (United States)

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.

  15. Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors.

    Science.gov (United States)

    Hu, PingAn; Zhang, Jia; Li, Le; Wang, Zhenlong; O'Neill, William; Estrela, Pedro

    2010-01-01

    Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.

  16. Rivers of Carbon: Carbon Fluxes in a Watershed Context

    Science.gov (United States)

    Wohl, E.; Tom, B.; Hovius, N.

    2017-12-01

    Research within the past decade has identified the roles of diverse terrestrial processes in mobilizing terrestrial carbon from bedrock, soil, and vegetation and in redistributing this carbon among the atmosphere, biota, geosphere, and oceans. Rivers are central to carbon redistribution, serving as the primary initial receptor of mobilized terrestrial carbon, as well as governing the proportions of carbon sequestered within sediment, transported to oceans, or released to the atmosphere. We use a riverine carbon budget to examine how key questions regarding carbon dynamics can be addressed across diverse spatial and temporal scales from sub-meter areas over a few hours on a single gravel bar to thousands of square kilometers over millions of years across an entire large river network. The portion of the budget applying to the active channel(s) takes the form of ,in which Cs is organic carbon storage over time t. Inputs are surface and subsurface fluxes from uplands (CIupl) and the floodplain (CIfp), including fossil, soil, and biospheric organic carbon; surface and subsurface fluxes of carbon dioxide to the channel (CICO2); and net primary productivity in the channel (CINPP). Outputs occur via respiration within the channel and carbon dioxide emissions (COgas) and fluxes of dissolved and particulate organic carbon to the floodplain and downstream portions of the river network (COriver). The analogous budget for the floodplain portion of a river corridor is .

  17. Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers

    KAUST Repository

    Serag, Maged F.; Kaji, Noritada; Habuchi, Satoshi; Bianco, Alberto; Baba, Yoshinobu

    2013-01-01

    For years, nanotechnology has shown great promise in the fields of biomedical and biotechnological sciences and medical research. In this review, we demonstrate its versatility and applicability in plant cell biology studies. Specifically, we discuss the ability of functionalized carbon nanotubes to penetrate the plant cell wall, target specific organelles, probe protein-carrier activity and induce organelle recycling in plant cells. We also, shed light on prospective applications of carbon nanomaterials in cell biology and plant cell transformation. © 2013 The Royal Society of Chemistry.

  18. A terrestrial ecosystem model (SOLVEG) coupled with atmospheric gas and aerosol exchange processes

    International Nuclear Information System (INIS)

    Katata, Genki; Ota, Masakazu

    2017-01-01

    In order to predict the impact of atmospheric pollutants (gases and aerosols) to the terrestrial ecosystem, new schemes for calculating the processes of dry deposition of gases and aerosols, and water and carbon cycles in terrestrial ecosystems were implemented in the one-dimensional atmosphere-SOiL-VEGetation model, SOLVEG. We made performance tests at various vegetation areas to validate the newly developed schemes. In this report, the detail in each modeled process is described with an instruction how to use the modified SOLVEG. The framework of 'terrestrial ecosystem model' was developed for investigation of a change in water, energy, and carbon cycles associated with global warming and air pollution and its impact on terrestrial ecosystems. (author)

  19. Temporal Patterns in Dissolved Organic Carbon Composition in an Urban Lake

    Science.gov (United States)

    Hartnett, H. E.; Palta, M. M.; Grimm, N. B.; Ruhi, A.; van Shaijik, M.

    2017-12-01

    Tempe Town Lake (TTL) is a hydrologically-regulated reservoir in Tempe, Arizona. The lake has high primary production and receives dissolved organic carbon (DOC) from rainfall, storm flow, and upstream river discharge. We applied an ARIMA time-series model to a three-year period for which we have high-frequency chemistry, meteorology, and streamflow data and analyzed external (rainfall, stream flow) and internal (dissolved O2) drivers of DOC content and composition. DOC composition was represented by fluorescence-based indices (fluorescence index, humification index, freshness) related to DOC source (microbially- vs. terrestrially-derived) and reactivity DOC. Patterns in DOC concentration and composition suggest carbon cycling in the lake responds to both meteorological events and to anthropogenic activity. The fluorescence-derived DOC composition is consistent with seasonally-distinct inputs of algal- and terrestrially-derived carbon. For example, Tempe Town Lake is supersaturated in O2 over 70% of the time, suggesting the system is autotrophic and primary productivity (i.e., O2 saturation state) was the strongest driver of DOC concentration. In contrast, external drivers (rainfall pattern, streamflow) were the strongest determinants of DOC composition. Biological processes (e.g., algal growth) generate carbon in the lake during spring and summer, and high Fluorescence Index and Freshness values at this time are indicative of algal-derived material; these parameters generally decrease with rain or flow suggesting algal-derived carbon is diluted by external water inputs. During dry periods, carbon builds up on the land surface and subsequent rainfall events deliver terrestrial carbon to the lake. Further evidence that rain and streamflow deliver land-derived material are increases in the Humification Index (an indicator of terrestrial material) following rain/flow events. Our results indicate that Tempe Town Lake generates autochthonous carbon and has the capacity

  20. The Australian terrestrial carbon budget

    Directory of Open Access Journals (Sweden)

    V. Haverd

    2013-02-01

    Full Text Available This paper reports a study of the full carbon (C-CO2 budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes project, as one of numerous regional studies. In constructing the budget, we estimate the following component carbon fluxes: net primary production (NPP; net ecosystem production (NEP; fire; land use change (LUC; riverine export; dust export; harvest (wood, crop and livestock and fossil fuel emissions (both territorial and non-territorial. Major biospheric fluxes were derived using BIOS2 (Haverd et al., 2012, a fine-spatial-resolution (0.05° offline modelling environment in which predictions of CABLE (Wang et al., 2011, a sophisticated land surface model with carbon cycle, are constrained by multiple observation types. The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 24 (1σ error on mean and 68 ± 15 TgC yr−1, respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes, which caused net losses of 26 ± 4 TgC yr−1 and 18 ± 7 TgC yr−1, respectively. The resultant net biome production (NBP is 36 ± 29 TgC yr−1, in which the largest contributions to uncertainty are NEP, fire and LUC. This NBP offset fossil fuel emissions (95 ± 6 TgC yr−1 by 38 ± 30%. The interannual variability (IAV in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.

  1. Voltammetric detection of biological molecules using chopped carbon fiber.

    Science.gov (United States)

    Sugawara, Kazuharu; Yugami, Asako; Kojima, Akira

    2010-01-01

    Voltammetric detection of biological molecules was carried out using chopped carbon fibers produced from carbon fiber reinforced plastics that are biocompatible and inexpensive. Because chopped carbon fibers normally are covered with a sizing agent, they are difficult to use as an electrode. However, when the surface of a chopped carbon fiber was treated with ethanol and hydrochloric acid, it became conductive. To evaluate the functioning of chopped carbon fibers, voltammetric measurements of [Fe(CN)(6)](3-) were carried out. Redoxes of FAD, ascorbic acid and NADH as biomolecules were recorded using cyclic voltammetry. The sizing agents used to bundle the fibers were epoxy, polyamide and polyurethane resins. The peak currents were the greatest when using the chopped carbon fibers that were created with epoxy resins. When the electrode response of the chopped carbon fibers was compared with that of a glassy carbon electrode, the peak currents and the reversibility of the electrode reaction were sufficient. Therefore, the chopped carbon fibers will be useful as disposable electrodes for the sensing of biomolecules.

  2. Autonomous observations of the ocean biological carbon pump

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, James K.B.

    2009-03-01

    Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

  3. Towards 250 m mapping of terrestrial primary productivity over Canada

    Science.gov (United States)

    Gonsamo, A.; Chen, J. M.

    2011-12-01

    Terrestrial ecosystems are an important part of the climate and global change systems. Their role in climate change and in the global carbon cycle is yet to be well understood. Dataset from satellite earth observation, coupled with numerical models provide the unique tools for monitoring the spatial and temporal dynamics of territorial carbon cycle. The Boreal Ecosystems Productivity Simulator (BEPS) is a remote sensing based approach to quantifying the terrestrial carbon cycle by that gross and net primary productivity (GPP and NPP) and terrestrial carbon sinks and sources expressed as net ecosystem productivity (NEP). We have currently implemented a scheme to map the GPP, NPP and NEP at 250 m for first time over Canada using BEPS model. This is supplemented by improved mapping of land cover and leaf area index (LAI) at 250 m over Canada from MODIS satellite dataset. The results from BEPS are compared with MODIS GPP product and further evaluated with estimated LAI from various sources to evaluate if the results capture the trend in amount of photosynthetic biomass distributions. Final evaluation will be to validate both BEPS and MODIS primary productivity estimates over the Fluxnet sites over Canada. The primary evaluation indicate that BEPS GPP estimates capture the over storey LAI variations over Canada very well compared to MODIS GPP estimates. There is a large offset of MODIS GPP, over-estimating the lower GPP value compared to BEPS GPP estimates. These variations will further be validated based on the measured values from the Fluxnet tower measurements over Canadian. The high resolution GPP (NPP) products at 250 m will further be used to scale the outputs between different ecosystem productivity models, in our case the Canadian carbon budget model of Canadian forest sector CBM-CFS) and the Integrated Terrestrial Ecosystem Carbon model (InTEC).

  4. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems

    Science.gov (United States)

    Cardano, Francesca; Frasconi, Marco; Giordani, Silvia

    2018-01-01

    Photo-responsive multifunctional nanomaterials are receiving considerable attention for biological applications because of their unique properties. The functionalization of the surface of carbon nanotubes (CNTs) and graphene, among other carbon based nanomaterials, with molecular switches that exhibit reversible transformations between two or more isomers in response to different kind of external stimuli, such as electromagnetic radiation, temperature and pH, has allowed the control of the optical and electrical properties of the nanomaterial. Light-controlled molecular switches, such as azobenzene and spiropyran, have attracted a lot of attention for nanomaterial's functionalization because of the remote modulation of their physicochemical properties using light stimulus. The enhanced properties of the hybrid materials obtained from the coupling of carbon based nanomaterials with light-responsive switches has enabled the fabrication of smart devices for various biological applications, including drug delivery, bioimaging and nanobiosensors. In this review, we highlight the properties of photo-responsive carbon nanomaterials obtained by the conjugation of CNTs and graphene with azobenzenes and spiropyrans molecules to investigate biological systems, devising possible future directions in the field. PMID:29707534

  5. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems

    Science.gov (United States)

    Cardano, Francesca; Frasconi, Marco; Giordani, Silvia

    2018-04-01

    Photo-responsive multifunctional nanomaterials are receiving considerable attention for biological applications because of their unique properties. The functionalization of the surface of carbon nanotubes (CNTs) and graphene, among other carbon based nanomaterials, with molecular switches that exhibit reversible transformations between two or more isomers in response to different kind of external stimuli, such as electromagnetic radiation, temperature and pH, has allowed the control of the optical and electrical properties of the nanomaterial. Light-controlled molecular switches, such as azobenzene and spiropyran, have attracted a lot of attention for nanomaterial’s functionalization because of the remote modulation of their physicochemical properties using light stimulus. The enhanced properties of the hybrid materials obtained from the coupling of carbon based nanomaterials with light-responsive switches has enabled the fabrication of smart devices for various biological applications, including drug delivery, bioimaging and nanobiosensors. In this review, we highlight the properties of photo-responsive carbon nanomaterials obtained by the conjugation of CNTs and graphene with azobenzenes and spiropyrans molecules to investigate biological systems, devising possible future directions in the field.

  6. Mitigation of greenhouse gases emissions impact and their influence on terrestrial ecosystem.

    Science.gov (United States)

    Wójcik Oliveira, K.; Niedbała, G.

    2018-05-01

    Nowadays, one of the most important challenges faced by the humanity in the current century is the increasing temperature on Earth, caused by a growing emission of greenhouse gases into the atmosphere. Terrestrial ecosystems, as an important component of the carbon cycle, play an important role in the sequestration of carbon, which is a chance to improve the balance of greenhouse gases. Increasing CO2 absorption by terrestrial ecosystems is one way to reduce the atmospheric CO2 emissions. Sequestration of CO2 by terrestrial ecosystems is not yet fully utilized method of mitigating CO2 emission to the atmosphere. Terrestrial ecosystems, especially forests, are essential for the regulation of CO2 content in the atmosphere and more attention should be paid to seeking the natural processes of CO2 sequestration.

  7. Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea

    NARCIS (Netherlands)

    Karlsson, E. S.; Charkin, A. N.; Dudarev, O.; Semiletov, I.; Vonk, J. E.; Sánchez-García, L.; Andersson, A.

    2011-01-01

    The world's largest continental shelf, the East Siberian Shelf Sea, receives substantial input of terrestrial organic carbon (terr-OC) from both large rivers and erosion of its coastline. Degradation of organic matter from thawing permafrost in the Arctic is likely to increase, potentially creating

  8. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    Science.gov (United States)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  9. Uncertainties in carbon residence time and NPP-driven carbon uptake in terrestrial ecosystems of the conterminous USA: a Bayesian approach

    Directory of Open Access Journals (Sweden)

    Xuhui Zhou

    2012-10-01

    Full Text Available Carbon (C residence time is one of the key factors that determine the capacity of ecosystem C storage. However, its uncertainties have not been well quantified, especially at regional scales. Assessing uncertainties of C residence time is thus crucial for an improved understanding of terrestrial C sequestration. In this study, the Bayesian inversion and Markov Chain Monte Carlo (MCMC technique were applied to a regional terrestrial ecosystem (TECO-R model to quantify C residence times and net primary productivity (NPP-driven ecosystem C uptake and assess their uncertainties in the conterminous USA. The uncertainty was represented by coefficient of variation (CV. The 13 spatially distributed data sets of C pools and fluxes have been used to constrain TECO-R model for each biome (totally eight biomes. Our results showed that estimated ecosystem C residence times ranged from 16.6±1.8 (cropland to 85.9±15.3 yr (evergreen needleleaf forest with an average of 56.8±8.8 yr in the conterminous USA. The ecosystem C residence times and their CV were spatially heterogeneous and varied with vegetation types and climate conditions. Large uncertainties appeared in the southern and eastern USA. Driven by NPP changes from 1982 to 1998, terrestrial ecosystems in the conterminous USA would absorb 0.20±0.06 Pg C yr−1. Their spatial pattern was closely related to the greenness map in the summer with larger uptake in central and southeast regions. The lack of data or timescale mismatching between the available data and the estimated parameters lead to uncertainties in the estimated C residence times, which together with initial NPP resulted in the uncertainties in the estimated NPP-driven C uptake. The Bayesian approach with MCMC inversion provides an effective tool to estimate spatially distributed C residence time and assess their uncertainties in the conterminous USA.

  10. Biodiversity of Terrestrial Vegetation during Past Warm Periods

    Science.gov (United States)

    Davies-Barnard, T.; Valdes, P. J.; Ridgwell, A.

    2016-12-01

    Previous modelling studies of vegetation have generally used a small number of plant functional types to understand how the terrestrial biosphere responds to climate changes. Whilst being useful for understanding first order climate feedbacks, this climate-envelope approach makes a lot of assumptions about past vegetation being very similar to modern. A trait-based method has the advantage for paleo modelling in that there are substantially less assumptions made. In a novel use of the trait-based dynamic vegetation model JeDi, forced with output from climate model HadCM3, we explore past biodiversity and vegetation carbon changes. We use JeDi to model an optimal 2000 combinations of fifteen different traits to enable assessment of the overall level of biodiversity as well as individual growth strategies. We assess the vegetation shifts and biodiversity changes in past greenhouse periods to better understand the impact on the terrestrial biosphere. This work provides original insights into the response of vegetation and terrestrial carbon to climate and hydrological changes in high carbon dioxide climates over time, including during the Late Permian and Cretaceous. We evaluate how the location of biodiversity hotspots and species richness in past greenhouse climates is different to the present day.

  11. Carbonate stable isotope constraints on sources of arsenic contamination in Neogene tufas and travertines of Attica, Greece

    Science.gov (United States)

    Kampouroglou, Evdokia E.; Tsikos, Harilaos; Economou-Eliopoulos, Maria

    2017-11-01

    We presented new C and O isotope data of rockforming calcite in terrestrial carbonate deposits from Neogene basins of Attica (Greece), coupled with standard mineralogical and bulk geochemical results. Whereas both isotope datasets [δ18O from -8.99 to -3.20‰(VPDB); δ13C from -8.17 to +1.40‰(VPDB)] could be interpreted in principle as indicative of a meteoric origin, the clear lack of a statistical correlation between them suggests diverse sources for the isotopic variation of the two elements. On the basis of broad correlations between lower carbon isotope data with increasing Fe and bulk organic carbon, we interpreted the light carbon isotope signatures and As enrichments as both derived mainly from a depositional process involving increased supply of metals and organic carbon to the original basins. Periodically augmented biological production and aerobic cycling of organic matter in the ambient lake waters, would have led to the precipitation of isotopically light calcite in concert with elevated fluxes of As-bearing iron oxy-hydroxide and organic matter to the initial terrestrial carbonate sediment. The terrestrial carbonate deposits of Attica therefore represented effective secondary storage reservoirs of elevated As from the adjacent mineralized hinterland; hence these and similar deposits in the region ought to be regarded as key geological candidates for anomalous supply of As to local soils, groundwater and related human activities.

  12. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks

    Energy Technology Data Exchange (ETDEWEB)

    Canadell, J.G. [Global Carbon Project, CSIRO Marine and Atmospheric Research, GPO Box 3023, Canberra, ACT 2601 (Australia); Kirschbaum, M.U.F. [Environmental Biology Group, RSBS, Australian National University, GPO Box 475, Canberra, ACT 2601 (Australia); Kurz, W.A. [Natural Resources Canada, Canadian Forest Service, 506 West Burnside Road, Victoria, BC V8Z 1M5 (Canada); Sanz, M.J. [Fundacion CEAM, Parque Tecnologico, Charles H. Darwin 14, 46980 Paterna, Valencia (Spain); Schlamadinger, B. [Joanneum Research, Elisabethstrasse 11, Graz A-8010 (Austria); Yamagata, Y. [Center for Global Environmental Research, National Institute of Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506 (Japan)

    2007-06-15

    The capacity to partition natural, indirect, and direct human-induced effects on terrestrial carbon (C) sources and sinks is necessary to be able to predict future terrestrial C dynamics and thus their influence on atmospheric CO2 growth. However, it will take a number of years before we can better attribute quantitative estimates of the contribution of various C processes to the net C balance. In a policy context, factoring out natural and indirect human-induced effects on C sources and sinks from the direct human-induced influences, is seen as a requirement of a C accounting approach that establishes a clear and unambiguous connection between human activities and the assignment of C credits and debits. We present options for factoring out various groups of influences including climate variability, CO2 and N fertilization, and legacies from forest management. These are: (1) selecting longer accounting or measurement periods to reduce the effects of inter-annual variability; (2) correction of national inventories for inter-annual variability; (3) use of activity-based accounting and C response curves; (4) use of baseline scenarios or benchmarks at the national level; (5) stratification of the landscape into units with distinct average C stocks. Other, more sophisticated modeling approaches (e.g., demographic models in combination with forest inventories; process-based models) are possible options for future C accounting systems but their complexity and data requirements make their present adoption more difficult in an inclusive international C accounting system.

  13. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks

    International Nuclear Information System (INIS)

    Canadell, J.G.; Kirschbaum, M.U.F.; Kurz, W.A.; Sanz, M.J.; Schlamadinger, B.; Yamagata, Y.

    2007-01-01

    The capacity to partition natural, indirect, and direct human-induced effects on terrestrial carbon (C) sources and sinks is necessary to be able to predict future terrestrial C dynamics and thus their influence on atmospheric CO2 growth. However, it will take a number of years before we can better attribute quantitative estimates of the contribution of various C processes to the net C balance. In a policy context, factoring out natural and indirect human-induced effects on C sources and sinks from the direct human-induced influences, is seen as a requirement of a C accounting approach that establishes a clear and unambiguous connection between human activities and the assignment of C credits and debits. We present options for factoring out various groups of influences including climate variability, CO2 and N fertilization, and legacies from forest management. These are: (1) selecting longer accounting or measurement periods to reduce the effects of inter-annual variability; (2) correction of national inventories for inter-annual variability; (3) use of activity-based accounting and C response curves; (4) use of baseline scenarios or benchmarks at the national level; (5) stratification of the landscape into units with distinct average C stocks. Other, more sophisticated modeling approaches (e.g., demographic models in combination with forest inventories; process-based models) are possible options for future C accounting systems but their complexity and data requirements make their present adoption more difficult in an inclusive international C accounting system

  14. Non-terrestrial food source for Fiordland brachiopods

    International Nuclear Information System (INIS)

    Lyon, G.L.; Richardson, Joyce

    1983-05-01

    Carbon-13 analyses were determined for brachiopods and particulate organic matter from Fiordland waters. Brachiopod delta 13 $ 0 C are about -18 per mille which is significantly enriched in 13 C relative to the particulate matter (about -23 per mille) and different from local terrestrial matter (about -28 per mille). There is no carbon-13 evidence for non-marine food in the diet of brachiopods

  15. Modeling Carbon Exchange

    Science.gov (United States)

    Sellers, Piers

    2012-01-01

    Model results will be reviewed to assess different methods for bounding the terrestrial role in the global carbon cycle. It is proposed that a series of climate model runs could be scoped that would tighten the limits on the "missing sink" of terrestrial carbon and could also direct future satellite image analyses to search for its geographical location and understand its seasonal dynamics.

  16. Nutrient availability limits biological production in Arctic sea ice melt ponds

    DEFF Research Database (Denmark)

    Sørensen, Heidi Louise; Thamdrup, Bo; Jeppesen, Erik

    2017-01-01

    nutrient limitation in melt ponds. We also document that the addition of nutrients, although at relative high concentrations, can stimulate biological productivity at several trophic levels. Given the projected increase in first-year ice, increased melt pond coverage during the Arctic spring and potential......Every spring and summer melt ponds form at the surface of polar sea ice and become habitats where biological production may take place. Previous studies report a large variability in the productivity, but the causes are unknown. We investigated if nutrients limit the productivity in these first...... additional nutrient supply from, e.g. terrestrial sources imply that biological activity of melt ponds may become increasingly important for the sympagic carbon cycling in the future Arctic....

  17. Multi-Model Assessment of Trends and Variability in Terrestrial Carbon Uptake in India

    Science.gov (United States)

    Rao, A. S.; Bala, G.; Ravindranath, N. H.

    2015-12-01

    Indian terrestrial ecosystem exhibits large temporal and spatial variability in carbon sources and sinks due to its monsoon based climate system, diverse land use and land cover distribution and cultural practices. In this study, a multi-model based assessment is made to study the trends and variability in the land carbon uptake for India over the 20th century. Data from nine models which are a part of a recent land surface model intercomparison project called TRENDY is used for the study. These models are driven with common forcing data over the period of 1901-2010. Model output variables assessed include: gross primary production (GPP), heterotrophic respiration (Rh), autotrophic respiration (Ra) and net primary production (NPP). The net ecosystem productivity (NEP) for the Indian region was calculated as a difference of NPP and Rh and it was found that NEP for the region indicates an estimated increase in uptake over the century by -0.6 TgC/year per year. NPP for India also shows an increasing trend of 2.03% per decade from 1901-2010. Seasonal variation in the multimodel mean NPP is maximum during the southwest monsoon period (JJA) followed by the post monsoon period (SON) and is attributed to the maximum in rainfall for the region during the months of JJA. To attribute the changes seen in the land carbon variables, influence of climatic drivers such as precipitation, temperature and remote influences of large scale phenomenon such as ENSO on the land carbon of the region are also estimated in the study. It is found that although changes in precipitation shows a good correlation to the changes seen in NEP, remote drivers like ENSO do not have much effect on them. The Net Ecosystem Exchange is calculated with the inclusion of the land use change flux and fire flux from the models. NEE suggests that the region behaves as a small sink for carbon with an net uptake of 5 GtC over the past hundred years.

  18. Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models

    Science.gov (United States)

    Sun, Yan; Peng, Shushi; Goll, Daniel S.; Ciais, Philippe; Guenet, Bertrand; Guimberteau, Matthieu; Hinsinger, Philippe; Janssens, Ivan A.; Peñuelas, Josep; Piao, Shilong; Poulter, Benjamin; Violette, Aurélie; Yang, Xiaojuan; Yin, Yi; Zeng, Hui

    2017-07-01

    Most of the Earth System Models (ESMs) project increases in net primary productivity (NPP) and terrestrial carbon (C) storage during the 21st century. Despite empirical evidence that limited availability of phosphorus (P) may limit the response of NPP to increasing atmospheric CO2, none of the ESMs used in the previous Intergovernmental Panel on Climate Change assessment accounted for P limitation. We diagnosed from ESM simulations the amount of P need to support increases in carbon uptake by natural ecosystems using two approaches: the demand derived from (1) changes in C stocks and (2) changes in NPP. The C stock-based additional P demand was estimated to range between -31 and 193 Tg P and between -89 and 262 Tg P for Representative Concentration Pathway (RCP) 2.6 and RCP8.5, respectively, with negative values indicating a P surplus. The NPP-based demand, which takes ecosystem P recycling into account, results in a significantly higher P demand of 648-1606 Tg P for RCP2.6 and 924-2110 Tg P for RCP8.5. We found that the P demand is sensitive to the turnover of P in decomposing plant material, explaining the large differences between the NPP-based demand and C stock-based demand. The discrepancy between diagnosed P demand and actual P availability (potential P deficit) depends mainly on the assumptions about availability of the different soil P forms. Overall, future P limitation strongly depends on both soil P availability and P recycling on ecosystem scale.

  19. Sources and Reactivity of Terrestrial Organic Carbon to the Colville River Delta, Beaufort Sea, Alaska

    Science.gov (United States)

    Schreiner, K. M.; Bianchi, T. S.; Rosenheim, B. E.

    2014-12-01

    Terrestrial particulate organic carbon (tPOC) delivery to nearshore deltaic regions is an important mechanism of OC storage and burial, and continental margins worldwide account for approximately 90% of the carbon burial in the ocean. Increasing warming in the Arctic is leading to an acceleration of the hydrologic cycle, warming of permafrost, and broad shifts in vegetation. All of these changes are likely to affect the delivery, reactivity, and burial of tPOC in nearshore Arctic regions, making the Arctic an ideal place to study the effects of climate change on tPOC delivery. However, to date, most studies of tPOC delivery from North America to the Arctic Ocean have focused on large Arctic rivers like the Mackenzie and Yukon, and a significant portion of those watersheds lie in sub-Arctic latitudes, meaning that their tPOC delivery is likely not uniquely representative of the high Arctic tundra. Here, we focus on tPOC delivery by the Colville River, the largest North American river with a watershed that does not include sub-Arctic latitudes. Sediment samples from the river delta and nearby Simpson's Lagoon were taken in August of 2010 and subsequently fractionated by density, in order to study the delivery of both discrete and sediment-sorbed tPOC. Samples were analyzed for stable carbon isotopes, bulk radiocarbon, terrestrial biomarkers (including lignin-phenols, and other CuO reaction products), and aquatic biomarkers (algal pigments), and additionally a subset of the samples were analyzed by ramped pyrolysis-14C. Results show that tPOC delivery near the river mouth is sourced from coastal plain tundra, with additional delivery of tPOC from peat released into the lagoon from the seaward limit of the tundra by coastal erosion. Ramped pyrolysis-14C analysis also shows a clear differentiation between tPOC delivered by the river and tPOC delivered by coastal retreat in the lagoon. Additionally, a significant portion of the OC released by the Colville River is

  20. Inter-trading permanent emissions credits and rented temporary carbon emissions offsets. Some issues and alternatives

    International Nuclear Information System (INIS)

    Sedjo, Roger A.; Marland, Gregg

    2003-01-01

    Permit trading among polluting parties is now firmly established as a policy tool in a range of environmental policy areas. The Kyoto Protocol accepts the principle that sequestration of carbon in the terrestrial biosphere can be used to offset emissions of carbon from fossil fuel combustion and outlines mechanisms. Although the lack of guaranteed permanence of biological offsets is often viewed as a defect, this paper argues that the absence of guaranteed permanence need not be a fundamental problem. We view carbon emissions as a liability issue. One purpose of an emissions credit system is to provide the emitter with a means to satisfy the carbon liability associated with her firm's (or country's) release of carbon into the atmosphere. We have developed and here expand on a rental approach, in which sequestered carbon is explicitly treated as temporary: the emitter temporarily satisfies his liability by temporarily 'parking' his liability, for a fee, in a terrestrial carbon reservoir, or 'sink,' such as a forest or agricultural soil. Finally, the paper relates the value of permanent and temporary sequestration and argues that both instruments are tradable and have a high degree of substitutability that allows them to interact in markets

  1. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis

    International Nuclear Information System (INIS)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere A.; Yu, Guirui; Li, Linghao; Zhang, Wei; Fang, Huajun; Mo, Jiangming

    2015-01-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle. - Highlights: • Meta-analysis was used to address the effects of N addition on C cycle. • N addition caused an large decease in belowground plant C pool. • N-rich and N-limited ecosystems had different responses to N addition. - N addition caused a large decrease in below-ground plant C pool.

  2. Amazon River carbon dioxide outgassing fuelled by wetlands

    NARCIS (Netherlands)

    Abril, G.; Martinez, J.M.; Artigas, L.F.; Moreira-Turcq, P.; Benedetti, M.F.; Vidal, L.; Meziane, T.; Kim, J.-H.; Bernardes, M.C.; Savoye, N.; Deborde, J.; Souza, E.L.; Alberic, P.; de Souza, M.F.L.; Roland, F.

    2014-01-01

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle(1). A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial

  3. Carbon 14

    International Nuclear Information System (INIS)

    2002-03-01

    Carbon 14 is one of the most abundant radionuclides of natural and artificial origin in the environment. The aim of this conference day organized by the French society of radioprotection (SFRP) was to take stock of our knowledge about this radionuclide (origins, production, measurement, management, effects on health..): state-of-the-art of 14 C metrology; dating use of 14 C; 14 C management and monitoring of the Hague site environment; Electricite de France (EdF) and 14 C; radiological and sanitary impact of 14 C contamination at the Ganagobie site (Haute-Provence, France); metabolism and biological effects of 14 C; 14 C behaviour in the marine environment near Cogema-La Hague plant; distribution of 14 C activities in waters, mud and sediments of the Loire river estuary; dynamical modeling of transfers in the aquatic and terrestrial environment of 14 C released by nuclear power plants in normal operation: human dose calculation using the Calvados model and application to the Loire river; 14 C distribution in continents; modeling of 14 C transfers in the terrestrial environment from atmospheric sources. (J.S.)

  4. How costly are carbon offsets : a meta-analysis of forest carbon sinks

    International Nuclear Information System (INIS)

    Van Kooten, G.C.; Eagle, A.J.; Manley, J.; Smolak, T.M.

    2004-01-01

    Carbon terrestrial sinks are one of the many proposed mitigation responses to climate change. Carbon sinks are considered to be a low-cost alternative to fuel switching and reduced fossil fuel consumption for reducing atmospheric carbon dioxide emissions. This study examined the costs of sequestering carbon in terrestrial ecosystems via forestry activities. A meta-regression analysis was used to determine which factors influence the costs of carbon sequestration via forest activities. Important concerns about how the Kyoto Protocol may be implemented were also addressed. The meta-regression analysis was used to examine 981 estimates from 55 studies on the cost of creating carbon offsets using forestry. Baseline cost estimates are US$46.62 to 260.29 per tC. Tree planting and agroforestry increases costs by more than 200 per cent. Costs are lowest when post-harvest storage of carbon in wood products is considered, or when biomass is substituted for fossil fuels in energy production. The meta-analysis also considered land use, land-use change and forestry (LULUCF) policies that increase the carbon sink functions of terrestrial ecosystems. The main motive for using sinks in the accounting process is that they avoid the use of expensive controls for the emission of carbon dioxide and other greenhouse gases. refs., tabs

  5. Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens

    1995-01-01

    The paper investigates the effect of adding an external carbon source on the rate of denitrification in an alternating activated sludge process including biological P removal. Two carbon sources were examined, acetate and hydrolysate derived from biologically hydrolyzed sludge. Preliminary batch ...

  6. Carbon dioxide efficiency of terrestrial enhanced weathering.

    Science.gov (United States)

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-06

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  7. Biological treatment of textile mill wastewater in the. presence of activated carbon

    International Nuclear Information System (INIS)

    Liaquat, F.; Hassan, M.; Mahboob, S.; Rehman, A.; Liaquat, S.; Khalid, Z.M.

    2005-01-01

    The main goal of this study was to find out effectiveness of biological treatment for the reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD) of the textile processing industrial wastewater in the absence and presence of granular activated carbon (GAC) in shake flask experiment. To check the pollution level, physio-chemical analysis of effluent from Amtex industry (Faisalabad) was carried out. The outlet effluent contained high value of COD (1100 mg/l), BOD (309 mg/l) with pH 9.2, electrical conductivity (Ec) 3.7 mS/m, total dissolved solids (TDS) (2640 mg/l), total solids (TS) (3060 mg/l), total suspended solids (TSS) (420 19/l) and phenol (.34 mg/l). After initial period of activated sludge adaptation to wastewater, shake flask batch cultures (with and without activated carbon) were operated on lab scale. The COD and BOD were noted after very 12 hours for 3 days. The maximum reduction in COD (82%) and BOD (90%) was observed biological treatment in presence of activated carbon at retention time of 72 hours. (author)

  8. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hopmans, E.C.; Weijers, J.W.H.; Schefuß, E.; Herfort, L.; Schouten, S.

    2004-01-01

    We propose a novel tracer for terrestrial organic carbon in sediments based on the analysis of tetraether lipids using high-performance liquid chromatography/mass spectrometry (HPLC/MS). Analysis of terrestrial soil and peats shows that branched tetraether lipids are predominant in terrestrial

  9. Influence of diatom diversity on the ocean biological carbon pump

    Science.gov (United States)

    Tréguer, Paul; Bowler, Chris; Moriceau, Brivaela; Dutkiewicz, Stephanie; Gehlen, Marion; Aumont, Olivier; Bittner, Lucie; Dugdale, Richard; Finkel, Zoe; Iudicone, Daniele; Jahn, Oliver; Guidi, Lionel; Lasbleiz, Marine; Leblanc, Karine; Levy, Marina; Pondaven, Philippe

    2018-01-01

    Diatoms sustain the marine food web and contribute to the export of carbon from the surface ocean to depth. They account for about 40% of marine primary productivity and particulate carbon exported to depth as part of the biological pump. Diatoms have long been known to be abundant in turbulent, nutrient-rich waters, but observations and simulations indicate that they are dominant also in meso- and submesoscale structures such as fronts and filaments, and in the deep chlorophyll maximum. Diatoms vary widely in size, morphology and elemental composition, all of which control the quality, quantity and sinking speed of biogenic matter to depth. In particular, their silica shells provide ballast to marine snow and faecal pellets, and can help transport carbon to both the mesopelagic layer and deep ocean. Herein we show that the extent to which diatoms contribute to the export of carbon varies by diatom type, with carbon transfer modulated by the Si/C ratio of diatom cells, the thickness of the shells and their life strategies; for instance, the tendency to form aggregates or resting spores. Model simulations project a decline in the contribution of diatoms to primary production everywhere outside of the Southern Ocean. We argue that we need to understand changes in diatom diversity, life cycle and plankton interactions in a warmer and more acidic ocean in much more detail to fully assess any changes in their contribution to the biological pump.

  10. Changes in terrestrial CO2 budget in Siberia in the past three decades

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ueyama, M.; Ito, A.; Kobayashi, H.; Maksyutov, S. S.; Maki, T.; Nakamura, T.; Niwa, Y.; Patra, P. K.; Saeki, T.; Sato, H.; Sasai, T.; Saigusa, N.; Tian, H.; Yanagi, Y.; Zhang, B.

    2015-12-01

    Siberia is one of the regions where significant warming is proceeding, and the warming might cause changes in terrestrial carbon cycle. We analyzed interannual and decadal changes in terrestrial CO2 fluxes in the regions using multiple data sets, such as empirically estimated carbon fluxes based on multiple eddy-covariance sites (empirical upscaling; Support Vector Regression with AsiaFlux data), satellite-based vegetation index data, multiple terrestrial carbon cycle models from Asia-MIP (e.g. BEAMS, Biome-BGC, SEIB-DGVM, and VISIT), and atmospheric inverse models (e.g. ACTM, JMA, NICAM-TM) for the past 3 decades (1980s, 1990s, and 2000s). First, we checked the consistency in interannual variation of net carbon exchange between empirical upscaling and Asia-MIP model for 2001-2011 period, and found these two estimations show overall consistent interannual variation. Second, we analyzed net carbon exchange form Asia-MIP models and atmospheric inversions for the past three decades, and found persistent increases in terrestrial CO2 sink from two estimates. Magnitudes of estimated terrestrial CO2 sinks are also consistent (e.g. Asia-MIP: 0.2 PgC yr-1 in 1980s and 0.3 PgC yr-1 in 2000s and Inversions: 0.2 PgC yr-1 in 1980s and 0.5 PgC/yr in 2000s). We further analyzed the cause of persistent increases in CO2 uptake in the region using Asia-MIP model outputs, and climate changes (both warming and increases in water availability) and CO2 fertilization plays almost equivalent roles in sink increases. In addition, both gross primary productivity (GPP) and ecosystem respiration (RE) were increased, but increase in GPP was larger than that in RE.

  11. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis

  12. Research Needs for Carbon Management in Agriculture, Forestry and Other Land Uses

    Science.gov (United States)

    Negra, C.; Lovejoy, T.; Ojima, D. S.; Ashton, R.; Havemann, T.; Eaton, J.

    2009-12-01

    Improved management of terrestrial carbon in agriculture, forestry, and other land use sectors is a necessary part of climate change mitigation. It is likely that governments will agree in Copenhagen in December 2009 to incentives for improved management of some forms of terrestrial carbon, including maintaining existing terrestrial carbon (e.g., avoiding deforestation) and creating new terrestrial carbon (e.g., afforestation, soil management). To translate incentives into changes in land management and terrestrial carbon stocks, a robust technical and scientific information base is required. All terrestrial carbon pools (and other greenhouse gases from the terrestrial system) that interact with the atmosphere at timescales less than centuries, and all land uses, have documented mitigation potential, however, most activity has focused on above-ground forest biomass. Despite research advances in understanding emissions reduction and sequestration associated with different land management techniques, there has not yet been broad-scale implementation of land-based mitigation activity in croplands, peatlands, grasslands and other land uses. To maximize long-term global terrestrial carbon volumes, further development of relevant data, methodologies and technologies are needed to complement policy and financial incentives. The Terrestrial Carbon Group, in partnership with UN-REDD agencies, the World Bank and CGIAR institutions, is reviewing literature, convening leading experts and surveying key research institutions to develop a Roadmap for Terrestrial Carbon: Research Needs for Implementation of Carbon Management in Agriculture, Forestry and Other Land Uses. This work will summarize the existing knowledge base for emissions reductions and sequestration through land management as well as the current availability of tools and methods for measurement and monitoring of terrestrial carbon. Preliminary findings indicate a number of areas for future work. Enhanced information

  13. Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set

    NARCIS (Netherlands)

    Verma, M.; Friedl, M.A.; Richardson, A.D.; Kiely, G.; Cescatti, A.; Law, B.E.; Wohlfahrt, G.; Gielen, G.; Roupsard, O.; Moors, E.J.

    2014-01-01

    Gross primary productivity (GPP) is the largest and most variable component of the global terrestrial carbon cycle. Repeatable and accurate monitoring of terrestrial GPP is therefore critical for quantifying dynamics in regional-to-global carbon budgets. Remote sensing provides high frequency

  14. Radiocarbon in particulate matter from the eastern sub-arctic Pacific Ocean: evidence of source of terrestrial carbon to the deep sea

    International Nuclear Information System (INIS)

    Druffel, E.R.M.; Honjo, S.; Griffin, S.; Wong, C.S.

    1986-01-01

    Carbon isotope ratios were measured in organic and inorganic carbon of settling particulate matter collected with a sediment trap at Ocean Station P in the Gulf of Alaska from March to October, 1983. Dissolved inorganic carbon (DIC) in surface sea water collected during two different seasons in 1984 were analyzed using large gas proportional counters and revealed a minimum seasonal Δ 14 C variation of 14 per thousand. Results show that the Δ 14 C of calcium carbonate sedimenting to the deep sea is the same as that measured in surface water DIC. In contrast, particulate organic carbon (POC) had significantly higher Δ 14 C values (by 25-70 per thousand) than that in surface water DIC. Also, the Δ 13 C of the POC was markedly lower than previously reported values from other trap stations and marine particulate matter in general. Results from this study suggest that a significant amount of the POC settling to the deep sea at this pelagic station is of terrestrial origin, not strictly of marine origin as had previously been believed

  15. Distinguishing Terrestrial Organic Carbon in Marginal Sediments of East China Sea and Northern South China Sea

    Science.gov (United States)

    Kandasamy, Selvaraj; Lin, Baozhi; Wang, Huawei; Liu, Qianqian; Liu, Zhifei; Lou, Jiann-Yuh; Chen, Chen-Tung Arthur; Mayer, Lawrence M.

    2016-04-01

    Knowledge about the sources, transport pathways and behavior of terrestrial organic carbon in continental margins adjoining to large rivers has improved in recent decades, but uncertainties and complications still exist with human-influenced coastal regions in densely populated wet tropics and subtropics. In these regions, the monsoon and other episodic weather events exert strong climatic control on mineral and particulate organic matter delivery to the marginal seas. Here we investigate elemental (TOC, TN and bromine-Br) and stable carbon isotopic (δ13C) compositions of organic matter (OM) in surface sediments and short cores collected from active (SW Taiwan) and passive margin (East China Sea) settings to understand the sources of OM that buried in these settings. We used sedimentary bromine to total organic carbon (Br/TOC) ratios to apportion terrigenous from marine organic matter, and find that Br/TOC may serve as an additional, reliable proxy for sedimentary provenance in both settings. Variations in Br/TOC are consistent with other provenance indicators in responding to short-lived terrigenous inputs. Because diagenetic alteration of Br is insignificant on shorter time scales, applying Br/TOC ratios as a proxy to identify organic matter source along with carbon isotope mixing models may provide additional constraints on the quantity and transformation of terrigenous organics in continental margins. We apply this combination of approaches to land-derived organic matter in different depositional environments of East Asian marginal seas.

  16. Anthropogenic Impacts on Biological Carbon Sequestration in the Coastal Waters

    Science.gov (United States)

    Jiao, N.

    2016-02-01

    The well-known biological mechanism for carbon sequestration in the ocean is the biological pump (BP) which is driven by primary production initially in the surface water and then dependent on particulate organic carbon sinking process in the water column. In contrast microbial carbon pump (MCP) depends on microbial transformation of dissolved organic carbon (DOC) to refractory DOC (RDOC).Although the BP and the MCP are distinct mechanisms, they are intertwined. Both mechanisms should be considered regarding maximum sequestration of carbon in the ocean. Recent studies have showed that excess nutrients could facilitate the uptake of DOC and enhance both bacterial production and respiration. Bacterial growth efficiency increases with increasing nitrogen concentration to certain levels and then decreases thereafter, while the remaining DOC in the water usually decreases with increasing nitrogen concentration, suggesting that excess nitrogen could simulate uptake of DOC in the environment and thus have negative impacts on the ocean DOC storage.This is somehow against the case of the BP which is known to increase with increasing availability of nutrients. Another responsible factor is the nature of algal products. If it is labile, the organic carbon cannot be preserved in the environment.On top of that, labile organic carbon has priming effects for river discharged semi-labile DOC for bacterial respiration.That is, labile organic matter will become the incubator for bacteria. While bacteria respire DOC into CO2, they consume oxygen, and finally result in hypoxia. Under anoxic condition, anaerobic bacteria successively work on the rest of the organic carbon and produce harmful gasses such as methane and H2S. Such story did have happened during geological events in the history of the earth. The above processes not only result in ecological disasters but also reduce the capacity of carbon sequestration in the ocean. To achieve maximum carbon sinks, both BP and MCP should

  17. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    A.W. King; R.J. Andres; K J. Davis; M. Hafer; D.J. Hayes; D.N. Huntzinger; B. de Jong; W.A. Kurz; A.D. McGuire; R. Vargas; Y. Wei; T.O. West; C.W. Woodall

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net...

  18. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    International Nuclear Information System (INIS)

    Brinza, Loredana; Schofield, Paul F.; Hodson, Mark E.; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W.

    2014-01-01

    A new experimental set-up enabling microfocus fluorescence XANES mapping and microfocus XRD mapping on the same sample at beamline I18 at Diamond Light Source is described. To demonstrate this set-up the heterogeneous mineralogy in calcium carbonate granules excreted by the earthworm Lumbricus terrestris has been analysed. Data analysis methods have been developed which enable µXRD and µXANES two-dimensional maps to be compared. The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced

  19. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Brinza, Loredana [Diamond Light Source, Harwell Campus, Didcot, Oxon OX11 0DE (United Kingdom); Schofield, Paul F. [Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Hodson, Mark E. [University of York, York YO10 5DD (United Kingdom); Weller, Sophie [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W., E-mail: fred.mosselmans@diamond.ac.uk [Diamond Light Source, Harwell Campus, Didcot, Oxon OX11 0DE (United Kingdom)

    2014-01-01

    A new experimental set-up enabling microfocus fluorescence XANES mapping and microfocus XRD mapping on the same sample at beamline I18 at Diamond Light Source is described. To demonstrate this set-up the heterogeneous mineralogy in calcium carbonate granules excreted by the earthworm Lumbricus terrestris has been analysed. Data analysis methods have been developed which enable µXRD and µXANES two-dimensional maps to be compared. The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced.

  20. Integrating terrestrial through aquatic processing of water, carbon and nitrogen over hot, cold and lukewarm moments in mixed land use catchments

    Science.gov (United States)

    Band, L. E.; Lin, L.; Duncan, J. M.

    2017-12-01

    A major challenge in understanding and managing freshwater volumes and quality in mixed land use catchments is the detailed heterogeneity of topography, soils, canopy, and inputs of water and biogeochemicals. The short space and time scale dynamics of sources, transport and processing of water, carbon and nitrogen in natural and built environments can have a strong influence on the timing and magnitude of watershed runoff and nutrient production, ecosystem cycling and export. Hydroclimate variability induces a functional interchange of terrestrial and aquatic environments across their transition zone with the temporal and spatial expansion and contraction of soil wetness, standing and flowing water over seasonal, diurnal and storm event time scales. Variation in sources and retention of nutrients at these scales need to be understood and represented to design optimal mitigation strategies. This paper discusses the conceptual framework used to design both simulation and measurement approaches, and explores these dynamics using an integrated terrestrial-aquatic watershed model of coupled water-carbon-nitrogen processes at resolutions necessary to resolve "hot spot/hot moment" phenomena in two well studied catchments in Long Term Ecological Research sites. The potential utility of this approach for design and assessment of urban green infrastructure and stream restoration strategies is illustrated.

  1. The origin of methane and biomolecules from a CO2 cycle on terrestrial planets

    Science.gov (United States)

    Civiš, Svatopluk; Knížek, Antonín; Ivanek, Ondřej; Kubelík, Petr; Zukalová, Markéta; Kavan, Ladislav; Ferus, Martin

    2017-10-01

    Understanding the chemical evolution of newly formed terrestrial planets involves uncertainties in atmospheric chemical composition and assessing the plausibility of biomolecule synthesis. In this study, an original scenario for the origin of methane on Mars and terrestrial planets is suggested. Carbon dioxide in Martian and other planetary atmospheres can be abiotically converted into a mixture of methane and carbon monoxide by `methanogenesis' on porous mineral photoactive surfaces under soft ultraviolet irradiation. On young planets exposed to heavy bombardment by interplanetary matter, this process can be followed by biomolecule synthesis through the reprocessing of reactive reducing atmospheres by impact-induced shock waves. The proposed mechanism of methanogenesis may help to answer the question concerning the formation of methane and carbon monoxide by photochemical processes, the formation of biomolecules on early Earth and other terrestrial planets, and the source and seasonal variation of methane concentrations on Mars.

  2. Water extraction of coals - potential for estimating low molecular weight organic acids as carbon feedstock for the deep terrestrial biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vieth, A.; Mangelsdorf, K.; Sykes, R.; Horsfield, B. [Geoforschungszentrum Potsdam, Potsdam (Germany)

    2008-08-15

    With the recent increasing interest in the deep biosphere, the question arises as to where the carbon sources that support deep microbial communities are derived from. Our research was focussed on the water-soluble, low molecular weight (LMW) organic acids that are potentially available from different sedimentary lithologies to serve as a carbon source to feed the deep biosphere. A series of Eocene-Pleistocene coals, mudstones and sandstones of varying rank (maturity) and total organic carbon (TOC) content from the Waikato Basin, New Zealand, has been Soxhlet-extracted using water. The combined concentration of recovered formate, acetate and oxalate range from 366 to 2499 {mu} g/g sediment and appear to be dependent on rank, organofacies and TOC. The yields indicate the potential of carbonaceous sediments to feed the local deep terrestrial biosphere over geological periods of time. The existence of living microbial organisms in the mudstones and sandstones was proved by the identification of intact phospholipids (PLs).

  3. Coastal niches for terrestrial predators: a stable isotope study

    Energy Technology Data Exchange (ETDEWEB)

    Mellbrand, K.; Hamback, P.A., E-mail: peter.hamback@botan.su.se [Stockholm Univ., Dept. of Botany, Stockholm (Sweden)

    2010-12-15

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  4. Coastal niches for terrestrial predators: a stable isotope study

    International Nuclear Information System (INIS)

    Mellbrand, K.; Hamback, P.A.

    2010-01-01

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  5. The biological carbon pump in the ocean: Reviewing model representations and its feedbacks on climate perturbations.

    Science.gov (United States)

    Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie

    2016-04-01

    The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate

  6. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Peng, Tsung-Hung; Takahashi, Taro

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0 2 include carbon chemistry, distribution of alkalinity, pCO 2 and total concentration of dissolved C0 2 , sea-air pCO 2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0 2 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0 2 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0 2 fertilization is a potential candidate for such missing carbon sinks

  7. NACP Site: Terrestrial Biosphere Model Output Data in Original Format

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the original model output data submissions from the 24 terrestrial biosphere models (TBM) that participated in the North American Carbon...

  8. Unifying Dynamic Prognostic Phenology, Heterogeneous Soil and Vegetation Fluxes, and Ecosystem Biomass and Carbon Stocks To Predict the Terrestrial Carbon Cycle and Land-Atmosphere Exchanges in the Simple Biosphere Model (SiB4)

    Science.gov (United States)

    Haynes, K. D.; Baker, I. T.; Denning, S.

    2016-12-01

    Future climate projections require process-based models that incorporate the mechanisms and feedbacks controlling the carbon cycle. Over the past three decades, land surface models have been key contributors to Earth system models, evolving from predicting latent (LE) and sensible (SH) heat fluxes to energy and water budgets, momentum transfer, and terrestrial carbon exchange and storage. This study presents the latest version of the Simple Biosphere Model (SiB4), which builds on a compilation of previous versions and adds a new mechanistic-based scheme that fully predicts the terrestrial carbon cycle. The main SiB4 updates can be summarized as follows: (i) Incorporation of carbon pools that use new respiration and transfer methods, (ii) Creation of a new dynamic phenology scheme that uses mechanistic-based seasonal stages, and (iii) Unification of carbon pools, phenology and disturbance to close the carbon cycle. SiB4 removes the dependence on satellite-based vegetation indices, and instead uses a single mathematical framework to prognose self-consistent land-atmosphere exchanges of carbon, water, energy, radiation, and momentum, as well as carbon storage. Since grasslands cover 30% of land and are highly seasonal, we investigated forty grass sites. Diurnal cycles of gross primary productivity (GPP), ecosystem respiration (RE), net ecosystem exchange (NEE), LE and SH have third-quartile root mean squared (RMS) errors less than 2.0 µmol m-2 s-1, 1.9 µmol m-2 s-1, 2.0 µmol m-2 s-1, 42 W m-2, and 78 W m-2, respectively. On the synoptic timeframe, all sites have significant LE correlation coefficients of non-seasonal daily data; and all but one have significant SH correlations. Mean seasonal cycles for leaf area index (LAI), GPP, RE, LE, and SH have third-quartile normalized RMS errors less than 32%, 25%, 28%, 16%, and 48%, respectively. On multi-year timescales, daily correlations of LAI, GPP, RE, and LE are all statistically significant, with third-quartile RMS

  9. Biome-BGC: Terrestrial Ecosystem Process Model, Version 4.1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — Biome-BGC is a computer program that estimates fluxes and storage of energy, water, carbon, and nitrogen for the vegetation and soil components of terrestrial...

  10. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential.

    Science.gov (United States)

    Boysen, Lena R; Lucht, Wolfgang; Gerten, Dieter

    2017-10-01

    Large-scale biomass plantations (BPs) are a common factor in climate mitigation scenarios as they promise double benefits: extracting carbon from the atmosphere and providing a renewable energy source. However, their terrestrial carbon dioxide removal (tCDR) potentials depend on important factors such as land availability, efficiency of capturing biomass-derived carbon and the timing of operation. Land availability is restricted by the demands of future food production depending on yield increases and population growth, by requirements for nature conservation and, with respect to climate mitigation, avoiding unfavourable albedo changes. We integrate these factors in one spatially explicit biogeochemical simulation framework to explore the tCDR opportunity space on land available after these constraints are taken into account, starting either in 2020 or 2050, and lasting until 2100. We find that assumed future needs for nature protection and food production strongly limit tCDR potentials. BPs on abandoned crop and pasture areas (~1,300 Mha in scenarios of either 8.0 billion people and yield gap reductions of 25% until 2020 or 9.5 billion people and yield gap reductions of 50% until 2050) could, theoretically, sequester ~100 GtC in land carbon stocks and biomass harvest by 2100. However, this potential would be ~80% lower if only cropland was available or ~50% lower if albedo decreases were considered as a factor restricting land availability. Converting instead natural forest, shrubland or grassland into BPs could result in much larger tCDR potentials ̶ but at high environmental costs (e.g. biodiversity loss). The most promising avenue for effective tCDR seems to be improvement of efficient carbon utilization pathways, changes in dietary trends or the restoration of marginal lands for the implementation of tCDR. © 2017 John Wiley & Sons Ltd.

  11. Terrestrial ecosystems: an ecological content for radionuclide research

    International Nuclear Information System (INIS)

    Heal, O.W.; Horrill, A.D.

    1983-01-01

    The distribution and retention of radionuclides within terrestrial ecosystems varies greatly with both the radionuclide and the environmental conditions. Physico-chemical conditions, particularly those of the soil, strongly influence element retention but superimposed and interacting with these conditions are the biological processes which control the dynamics of the labile fraction of most elements. Net ecosystem production expresses the complementary biological processes of primary production and decomposition which control the internal element dynamics and the balance of inputs to and outputs from terrestrial ecosystems. Analysis of ecosystem structure and function has shown that although research often concentrates on relatively stable stages of ecosystem development, element retention is high during the early stages of ecosystem succession through the accumulation of plant biomass and dead organic matter. Element output tends to increase with time reaching a balance with inputs in mature ecosystems. Following disturbance, plant uptake tends to be reduced and decomposition stimulated, resulting in increased output until secondary succession and accumulation is re-established. Research on element dynamics in ecosystems indicates that major factors influencing the mobility of radionuclides in terrestrial systems will be the successional state of the ecosystem and intensity of disturbance. (author)

  12. FeedbackBetweenHumanActivitiesAndTerrestrialCarbonCyclesInSystemsOfShadeCoffeePro ductionInMexico

    Science.gov (United States)

    Pena Del Valle, A. E.; Perez-Samayoa, I. A.

    2007-12-01

    Coffee production in Mexico is carried out within a strong natural context. Coffee is grown under a canopy of several native and introduced tree species. This fact ensures a greater diversity of natural resources and environmental services available for local inhabitants to sustain their livelihoods. However, the lack of opportunities for coffee farmers is increasing the demand over the remaining forest areas by exacerbating non- sustainable timber extraction practices and promoting conversion of forests to pasture lands. This situation hampers the landscapes equilibrium and threatens the wellbeing of rural livelihoods. To understand the interactions between human activities and ecological functions associated with shaded coffee systems, this research has explored the extent to which socio-economic and cultural factors have influenced the use and management of natural resources sustaining coffee livelihoods. At the same time, it examines how customary patterns of resource use have induced changes in the terrestrial carbon cycle at the local level. The empirical study was carried out in a coffee-growing region in Mexico. It involved substantial fieldwork, use of satellite imagery, and participatory research methods in order to gauge a variety of biophysical and socio- economic factors, including forest cover, land use, and carbon balances, as well as, farming practices and off- farming strategies. In addition, a livelihood perspective was applied to approach the linkages between the management of natural resources, the environmental goods and services, and the socio-economic conditions in the coffee-growing region. The empirical evidence from the research marks out shade coffee systems as important supporters for broader natural systems as suppliers of environmental services. However, it also suggests that non-climatic factors might have significant impacts on the local environment and therefore on the terrestrial carbon cycle. According to the research estimations

  13. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals.

    Science.gov (United States)

    Hawkins, Aaron S; McTernan, Patrick M; Lian, Hong; Kelly, Robert M; Adams, Michael W W

    2013-06-01

    Non-photosynthetic routes for biological fixation of carbon dioxide into valuable industrial chemical precursors and fuels are moving from concept to reality. The development of 'electrofuel'-producing microorganisms leverages techniques in synthetic biology, genetic and metabolic engineering, as well as systems-level multi-omic analysis, directed evolution, and in silico modeling. Electrofuel processes are being developed for a range of microorganisms and energy sources (e.g. hydrogen, formate, electricity) to produce a variety of target molecules (e.g. alcohols, terpenes, alkenes). This review examines the current landscape of electrofuel projects with a focus on hydrogen-utilizing organisms covering the biochemistry of hydrogenases and carbonic anhydrases, kinetic and energetic analyses of the known carbon fixation pathways, and the state of genetic systems for current and prospective electrofuel-producing microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications

    Directory of Open Access Journals (Sweden)

    Christian Galasso

    2017-11-01

    Full Text Available As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein, which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i the biological functions of carotenoids and their benefits for human health, (ii the most common carotenoids from marine organisms and (iii carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production.

  15. The carbonate-silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets.

    Science.gov (United States)

    Edson, Adam R; Kasting, James F; Pollard, David; Lee, Sukyoung; Bannon, Peter R

    2012-06-01

    Atmospheric gaseous constituents play an important role in determining the surface temperatures and habitability of a planet. Using a global climate model and a parameterization of the carbonate-silicate cycle, we explored the effect of the location of the substellar point on the atmospheric CO(2) concentration and temperatures of a tidally locked terrestrial planet, using the present Earth continental distribution as an example. We found that the substellar point's location relative to the continents is an important factor in determining weathering and the equilibrium atmospheric CO(2) level. Placing the substellar point over the Atlantic Ocean results in an atmospheric CO(2) concentration of 7 ppmv and a global mean surface air temperature of 247 K, making ∼30% of the planet's surface habitable, whereas placing it over the Pacific Ocean results in a CO(2) concentration of 60,311 ppmv and a global temperature of 282 K, making ∼55% of the surface habitable.

  16. Global Carbon Budget 2017

    NARCIS (Netherlands)

    Le Quere, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre; Sitch, Stephen; Pongratz, Julia; Manning, Andrew C.; Korsbakken, Jan Ivar; Peters, Glen P.; Canadell, Josep G.; Jackson, Robert B.; Boden, Thomas A.; Tans, Pieter P.; Andrews, Oliver D.; Arora, Vivek K.; Bakker, Dorothee C. E.; Barbero, Leticia; Becker, Meike; Betts, Richard A.; Bopp, Laurent; Chevallier, Frederic; Chini, Louise P.; Ciais, Philippe; Cosca, Catherine E.; Cross, Jessica; Currie, Kim; Gasser, Thomas; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Houghton, Richard A.; Hunt, Christopher W.; Hurtt, George; Ilyina, Tatiana; Jain, Atul K.; Kato, Etsushi; Kautz, Markus; Keeling, Ralph F.; Goldewijk, Kees Klein; Koertzinger, Arne; Landschuetzer, Peter; Lefevre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lima, Ivan; Lombardozzi, Danica; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; Nojiri, Yukihiro; Padin, X. Antonio; Peregon, Anna; Pfeil, Benjamin; Pierrot, Denis; Poulter, Benjamin; Rehder, Gregor; Reimer, Janet; Roedenbeck, Christian; Schwinger, Jorg; Seferian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Tian, Hanqin; Tilbrook, Bronte; Tubiello, Francesco N.; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; van Heuven, Steven; Viovy, Nicolas; Vuichard, Nicolas; Walker, Anthony P.; Watson, Andrew J.; Wiltshire, Andrew J.; Zaehle, Soenke; Zhu, Dan

    2018-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project

  17. Global Carbon Budget 2016

    NARCIS (Netherlands)

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Ivar Korsbakken, Jan; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian A; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M S; Munro, David R.; Nabel, Julia E M S; Nakaoka, Shin Ichiro; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; Van Der Laan-Luijkx, Ingrid T.; Van Der Werf, Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere-the "global carbon budget"-is important to better understand the global carbon cycle, support the development of climate policies, and project future

  18. A new threat to bees? Entomopathogenic nematodes used in biological pest control cause rapid mortality in Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Alexandrea Dutka

    2015-11-01

    Full Text Available There is currently a great deal of concern about population declines in pollinating insects. Many potential threats have been identified which may adversely affect the behaviour and health of both honey bees and bumble bees: these include pesticide exposure, and parasites and pathogens. Whether biological pest control agents adversely affect bees has been much less well studied: it is generally assumed that biological agents are safer for wildlife than chemical pesticides. The aim of this study was to test whether entomopathogenic nematodes sold as biological pest control products could potentially have adverse effects on the bumble bee Bombus terrestris. One product was a broad spectrum pest control agent containing both Heterorhabditis sp. and Steinernema sp., the other product was specifically for weevil control and contained only Steinernema kraussei. Both nematode products caused ≥80% mortality within the 96 h test period when bees were exposed to soil containing entomopathogenic nematodes at the recommended field concentration of 50 nematodes per cm2 soil. Of particular concern is the fact that nematodes from the broad spectrum product could proliferate in the carcasses of dead bees, and therefore potentially infect a whole bee colony or spread to the wider environment.

  19. Global Carbon Budget 2016

    NARCIS (Netherlands)

    Quéré, Le Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M.S.; Munro, David R.; Nabel, Julia E.M.S.; Nakaoka, S.; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; Laan-Luijkx, van der Ingrid T.; Werf, van der Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project

  20. Solar radiation uncorks the lignin bottleneck on plant litter decomposition in terrestrial ecosystems

    Science.gov (United States)

    Austin, A.; Ballare, C. L.; Méndez, M. S.

    2015-12-01

    Plant litter decomposition is an essential process in the first stages of carbon and nutrient turnover in terrestrial ecosystems, and together with soil microbial biomass, provide the principal inputs of carbon for the formation of soil organic matter. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in low rainfall ecosystems; however, the generality of this process as a control on carbon cycling in terrestrial ecosystems is not known, and the indirect effects of photodegradation on biotic stimulation of carbon turnover have been debated in recent studies. We demonstrate that in a wide range of plant species, previous exposure to solar radiation, and visible light in particular, enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility for microbial enzymes to plant litter carbohydrates due to a reduction in lignin content. Photodegradation of plant litter reduces the structural and chemical bottleneck imposed by lignin in secondary cell walls. In litter from woody plant species, specific interactions with ultraviolet radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized positive effect of solar radiation exposure on subsequent microbial activity is mediated by increased accessibility to cell wall polysaccharides, which suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release and the carbon balance in a broad range of terrestrial ecosystems.

  1. Isotopic tracers for net primary productivity for a terrestrial ecosystem: a case study of the Volta River basin

    International Nuclear Information System (INIS)

    Hayford, E.K.; Odamtten, G.T.; Enu-Kwesi, L.

    2006-01-01

    The coupling effect of vapour release and CO2 uptake during photosynthesis plays an important role in the carbon and hydrologic cycles. The water use efficiency (WUE) for transpiration was used in calculating the net primary productivity (NPP) for terrestrial ecosystem. Three parameters were used in calculating the water and carbon balance of the River Volta watershed. These are 1) stable isotopes of hydrogen and oxygen, 2) long-term data on precipitation and evapotranspiration, and 3) stoichiometric relations of water and carbon. Results indicate that soils in the watershed annually respire 0.199 Pg C, and that the NPP is +0.029 Pg C yr-1. This implies an annual change in CO2 to the atmosphere within the watershed. Annually, River Volta watershed receives about 380 km3 of rainfall; approximately 50 per cent of which is returned to the atmosphere through plant transpiration. Associated with annual transpiration flux is a carbon flux of 0.170 x 1015 g C yr-1 or 428 g C m-2 yr-1 from the terrestrial ecosystem. Modeled estimates of heterotrophic soil respiration exceeds slightly the estimated NPP values, implying that carbon flux to and from the Volta river watershed is close to being in balance. In other words, the watershed releases annually more carbon dioxide to the atmosphere than it takes. Apart from the terrestrial carbon flux, the balance of photosynthesis and respiration in the Volta lake was also examined. The lake was found to release carbon dioxide to the atmosphere although the magnitude of the flux is smaller than that of the terrestrial ecosystem. (au)

  2. Synthesis of hydroxyapatite with the use of calcium carbonate as of the biological precursor

    International Nuclear Information System (INIS)

    Aguilar, M.S.; Di Lello, B.C.; Queiroz, F.; Campos, N.C.; Campos, J.B.

    2014-01-01

    This work describes the synthesis of hydroxyapatite from calcium from biological materials such as shells carbonate. In the syntheses performed, the calcium carbonate of biological origin was used as the precursor and through a precipitation reaction with phosphoric acid, was converted into calcium hydroxide. Sequentially, the precipitate was aged, filtered, washed, dried and calcined, and then transformed into hydroxyapatite. The characterization of the powders was performed by X-DR (X-ray diffraction) and SEM (scanning electron microscopy). DR-X as determined hydroxyapatite calcium phosphate phase calcium. SEM revealed a morphology of finely divided particles. The method B.E.T. showed values of specific area and volume of micropores consistent with the literature. The results of the characterizations proved feasible to use for obtaining biological hydroxyapatite materials used in the reaction conditions.(author)

  3. The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration.

    Science.gov (United States)

    Song, Zhaoliang; Liu, Hongyan; Li, Beilei; Yang, Xiaomin

    2013-09-01

    The persistent terrestrial carbon sink regulates long-term climate change, but its size, location, and mechanisms remain uncertain. One of the most promising terrestrial biogeochemical carbon sequestration mechanisms is the occlusion of carbon within phytoliths, the silicified features that deposit within plant tissues. Using phytolith content-biogenic silica content transfer function obtained from our investigation, in combination with published silica content and aboveground net primary productivity (ANPP) data of leaf litter and herb layer in China's forests, we estimated the production of phytolith-occluded carbon (PhytOC) in China's forests. The present annual phytolith carbon sink in China's forests is 1.7 ± 0.4 Tg CO2  yr(-1) , 30% of which is contributed by bamboo because the production flux of PhytOC through tree leaf litter for bamboo is 3-80 times higher than that of other forest types. As a result of national and international bamboo afforestation and reforestation, the potential of phytolith carbon sink for China's forests and world's bamboo can reach 6.8 ± 1.5 and 27.0 ± 6.1 Tg CO2  yr(-1) , respectively. Forest management practices such as bamboo afforestation and reforestation may significantly enhance the long-term terrestrial carbon sink and contribute to mitigation of global climate warming. © 2013 John Wiley & Sons Ltd.

  4. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    Science.gov (United States)

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration

    International Nuclear Information System (INIS)

    Steiner, Allison L.; Chameides, W.L.

    2005-01-01

    Previous studies suggest that the radiative effects of atmospheric aerosols (reducing total radiation while increasing the diffuse fraction) can enhance terrestrial productivity. Here, simulations using a regional climate/terrestrial biosphere model suggest that atmospheric aerosols could also enhance terrestrial photosynthesis and transpiration through an interaction between solar radiation, leaf temperature and stomatal conductance. During midday, clear-sky conditions, sunlit-leaf temperatures can exceed the optimum for photosynthesis, depressing both photosynthesis and transpiration. Aerosols decrease surface solar radiation, thereby reducing leaf temperatures and enhancing sunlit-leaf photosynthesis and transpiration. This modelling study finds that, under certain conditions, this thermal response of aerosols can have a greater impact on photosynthesis and transpiration than the radiative response. This implies that a full understanding of the impact of aerosols on climate and the global carbon cycle requires consideration of the biophysical responses of terrestrial vegetation as well as atmospheric radiative and thermodynamic effects

  6. ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Kronrad

    2002-12-01

    The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that

  7. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions.

    Science.gov (United States)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N; Schwalm, Christopher R; Michalak, Anna M; Cook, Robert; Ciais, Philippe; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul K; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, Wilfred M; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-01

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO 2 ) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long (1901-2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10 15  g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr -1 with a median value of 51 Pg C yr -1 during 2001-2010. The largest uncertainty in SOC stocks exists in the 40-65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901-2010 ranges from -70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO 2 and nitrogen deposition over intact ecosystems increased SOC stocks-even though the responses varied

  8. Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, C.; Wullschleger, S.D.; Kalluri, U.C.; Tuskan, G.A.

    2010-07-15

    Photosynthetic assimilation of atmospheric carbon dioxide by land plants offers the underpinnings for terrestrial carbon (C) sequestration. A proportion of the C captured in plant biomass is partitioned to roots, where it enters the pools of soil organic C and soil inorganic C and can be sequestered for millennia. Bioenergy crops serve the dual role of providing biofuel that offsets fossil-fuel greenhouse gas (GHG) emissions and sequestering C in the soil through extensive root systems. Carbon captured in plant biomass can also contribute to C sequestration through the deliberate addition of biochar to soil, wood burial, or the use of durable plant products. Increasing our understanding of plant, microbial, and soil biology, and harnessing the benefits of traditional genetics and genetic engineering, will help us fully realize the GHG mitigation potential of phytosequestration.

  9. Comparision of the Martian Gullies With Terrestrial Ones

    Science.gov (United States)

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    2005-12-01

    Some of the geomorphological features in Mars are the gullies. Some theories developed tried to explained its origin, either by liquid water, liquid carbon dioxide or flows of dry granular material. We made a comparative analysis of the Martian gullies with the terrestrial ones. We present the characteristics of some terrestrial gullies formed at cold enviroment, sited at the Nevado de Toluca volcanoe near Toluca City, Mexico. We compare them with Martian gullies, choisen from four different areas, to recognize possible processes evolved in its formation. Also, we measured the lenghts of those Martian gullies and their range was from 24 m 1775 m.

  10. Working group 4: Terrestrial

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A working group at a Canada/USA symposium on climate change and the Arctic identified major concerns and issues related to terrestrial resources. The group examined the need for, and the means of, involving resource managers and users at local and territorial levels in the process of identifying and examining the impacts and consequences of climatic change. Climatic change will be important to the Arctic because of the magnitude of the change projected for northern latitudes; the apparent sensitivity of its terrestrial ecosystems, natural resources, and human support systems; and the dependence of the social, cultural, and economic welfare of Arctic communities, businesses, and industries on the health and quality of their environment. Impacts of climatic change on the physical, biological, and associated socio-economic environment are outlined. Gaps in knowledge needed to quantify these impacts are listed along with their relationships with resource management. Finally, potential actions for response and adaptation are presented

  11. Diagnosing and Assessing Uncertainties of the Carbon Cycle in Terrestrial Ecosystem Models from a Multi-Model Ensemble Experiment

    Science.gov (United States)

    Wang, W.; Dungan, J. L.; Hashimoto, H.; Michaelis, A.; Milesi, C.; Ichii, K.; Nemani, R. R.

    2009-12-01

    We are conducting an ensemble modeling exercise using the Terrestrial Observation and Prediction System (TOPS) to characterize structural uncertainty in carbon fluxes and stocks estimates from different ecosystem models. The experiment uses public-domain versions of Biome-BGC, LPJ, TOPS-BGC, and CASA, driven by a consistent set of climate fields for North America at 8km resolution and daily/monthly time steps over the period of 1982-2006. A set of diagnostics is developed to characterize the behavior of the models in the climate (temperature-precipitation) space, and to evaluate the simulated carbon cycle in an integrated way. The key findings of this study include that: (relative) optimal primary production is generally found in climate regions where the relationship between annual temperature (T, oC) and precipitation (P, mm) is defined by P = 50*T+500; the ratios between NPP and GPP are close to 50% on average, yet can vary between models and in different climate regions; the allocation of carbon to leaf growth represents a positive feedback to the primary production, and different approaches to constrain this process have significant impacts on the simulated carbon cycle; substantial differences in biomass stocks may be induced by small differences in the tissue turnover rate and the plant mortality; the mean residence time of soil carbon pools is strongly influenced by schemes of temperature regulations; non-respiratory disturbances (e.g., fires) are the main driver for NEP, yet its magnitudes vary between models. Overall, these findings indicate that although the structures of the models are similar, the uncertainties among them can be large, highlighting the problem inherent in relying on only one modeling approach to map surface carbon fluxes or to assess vegetation-climate interactions.

  12. Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach. II. The Atmospheric constraint

    International Nuclear Information System (INIS)

    Ying Ping Wang; McGregor, John L.

    2003-01-01

    Bayesian synthesis inversion was applied to in-situ hourly CO 2 concentrations measured at Cape Grim, Australia to refine the estimates of monthly mean gross photosynthesis, total ecosystem respiration and net ecosystem production by the CSIRO Biospheric Model (CBM) for eight regions in Australia for the period 1990-1998. It was found that in-situ measurements of hourly CO 2 concentrations at Cape Grim could provide significant information about the carbon fluxes from Tasmania, central-south and south-east Australia only. The process-based model, CBM, overestimates the ecosystem respiration during summer in south-east Australia, but underestimates ecosystem respiration in Tasmania and central-south Australia. It was concluded that the respiration sub model of CBM should be improved to account for the seasonal variation in the plant and soil respiration parameters in south-east Australia. For the whole period of 1990 to 1998, the mean net ecosystem productions of terrestrial ecosystems in Tasmania, central-south Australia and south-east Australia were estimated to be, respectively, 6 ± 10, 7 ± 27 and 64 ± 18 Mt C/yr. The yearly uptake rate (being negative) of the terrestrial ecosystems in south-east Australia was smallest (42 ± 55 Mt C/yr) in 1998 and largest (91 ± 52 Mt C/yr) in 1992

  13. Historical Carbon Dioxide Emissions Caused by Land-Use Changes are Possibly Larger than Assumed

    Science.gov (United States)

    Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B. D.; Ciais, P.; Poulter, B.; Bayer, A. D.; Bondeau, A.; Calle, L.; Chini, L. P.; hide

    2017-01-01

    The terrestrial biosphere absorbs about 20% of fossil-fuel CO2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxes from land-use change andCO2 uptake by terrestrial ecosystems. Dynamic global vegetation model simulations suggest that CO2 emissions from land-use change have been substantially underestimated because processes such as tree harvesting and land clearing from shifting cultivation have not been considered. As the overall terrestrial sink is constrained, a larger net flux as a result of land-use change implies that terrestrial uptake of CO2 is also larger, and that terrestrial ecosystems might have greater potential to sequester carbon in the future. Consequently, reforestation projects and efforts to avoid further deforestation could represent important mitigation pathways, with co-benefits for biodiversity. It is unclear whether a larger land carbon sink can be reconciled with our current understanding of terrestrial carbon cycling. Our possible underestimation of the historical residual terrestrial carbon sink adds further uncertainty to our capacity to predict the future of terrestrial carbon uptake and losses.

  14. A comparison of simulation results from two terrestrial carbon cycle models using three climate data sets

    International Nuclear Information System (INIS)

    Ito, Akihiko; Sasai, Takahiro

    2006-01-01

    This study addressed how different climate data sets influence simulations of the global terrestrial carbon cycle. For the period 1982-2001, we compared the results of simulations based on three climate data sets (NCEP/NCAR, NCEP/DOE AMIP-II and ERA40) employed in meteorological, ecological and biogeochemical studies and two different models (BEAMS and Sim-CYCLE). The models differed in their parameterizations of photosynthetic and phenological processes but used the same surface climate (e.g. shortwave radiation, temperature and precipitation), vegetation, soil and topography data. The three data sets give different climatic conditions, especially for shortwave radiation, in terms of long-term means, linear trends and interannual variability. Consequently, the simulation results for global net primary productivity varied by 16%-43% only from differences in the climate data sets, especially in these regions where the shortwave radiation data differed markedly: differences in the climate data set can strongly influence simulation results. The differences among the climate data set and between the two models resulted in slightly different spatial distribution and interannual variability in the net ecosystem carbon budget. To minimize uncertainty, we should pay attention to the specific climate data used. We recommend developing an accurate standard climate data set for simulation studies

  15. Climate implications of including albedo effects in terrestrial carbon policy

    Science.gov (United States)

    Jones, A. D.; Collins, W.; Torn, M. S.; Calvin, K. V.

    2012-12-01

    Proposed strategies for managing terrestrial carbon in order to mitigate anthropogenic climate change, such as financial incentives for afforestation, soil carbon sequestration, or biofuel production, largely ignore the direct effects of land use change on climate via biophysical processes that alter surface energy and water budgets. Subsequent influences on temperature, hydrology, and atmospheric circulation at regional and global scales could potentially help or hinder climate stabilization efforts. Because these policies often rely on payments or credits expressed in units of CO2-equivalents, accounting for biophysical effects would require a metric for comparing the strength of biophysical climate perturbation from land use change to that of emitting CO2. One such candidate metric that has been suggested in the literature on land use impacts is radiative forcing, which underlies the global warming potential metric used to compare the climate effects of various greenhouse gases with one another. Expressing land use change in units of radiative forcing is possible because albedo change results in a net top-of-atmosphere radiative flux change. However, this approach has also been critiqued on theoretical grounds because not all climatic changes associated with land use change are principally radiative in nature, e.g. changes in hydrology or the vertical distribution of heat within the atmosphere, and because the spatial scale of land use change forcing differs from that of well-mixed greenhouse gases. To explore the potential magnitude of this discrepancy in the context of plausible scenarios of future land use change, we conduct three simulations with the Community Climate System Model 4 (CCSM4) utilizing a slab ocean model. Each simulation examines the effect of a stepwise change in forcing relative to a pre-industrial control simulation: 1) widespread conversion of forest land to crops resulting in approximately 1 W/m2 global-mean radiative forcing from albedo

  16. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.

    Science.gov (United States)

    Zhao, Maosheng; Running, Steven W

    2010-08-20

    Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

  17. Deep nitrogen acquisition in warming permafrost soils: Contributions of belowground plant traits and fungal symbioses in the permafrost carbon feedback to climate

    Science.gov (United States)

    Hartnett, H. E.; Palta, M. M.; Grimm, N. B.; Ruhi, A.; van Shaijik, M.

    2016-12-01

    Tempe Town Lake (TTL) is a hydrologically-regulated reservoir in Tempe, Arizona. The lake has high primary production and receives dissolved organic carbon (DOC) from rainfall, storm flow, and upstream river discharge. We applied an ARIMA time-series model to a three-year period for which we have high-frequency chemistry, meteorology, and streamflow data and analyzed external (rainfall, stream flow) and internal (dissolved O2) drivers of DOC content and composition. DOC composition was represented by fluorescence-based indices (fluorescence index, humification index, freshness) related to DOC source (microbially- vs. terrestrially-derived) and reactivity DOC. Patterns in DOC concentration and composition suggest carbon cycling in the lake responds to both meteorological events and to anthropogenic activity. The fluorescence-derived DOC composition is consistent with seasonally-distinct inputs of algal- and terrestrially-derived carbon. For example, Tempe Town Lake is supersaturated in O2 over 70% of the time, suggesting the system is autotrophic and primary productivity (i.e., O2 saturation state) was the strongest driver of DOC concentration. In contrast, external drivers (rainfall pattern, streamflow) were the strongest determinants of DOC composition. Biological processes (e.g., algal growth) generate carbon in the lake during spring and summer, and high Fluorescence Index and Freshness values at this time are indicative of algal-derived material; these parameters generally decrease with rain or flow suggesting algal-derived carbon is diluted by external water inputs. During dry periods, carbon builds up on the land surface and subsequent rainfall events deliver terrestrial carbon to the lake. Further evidence that rain and streamflow deliver land-derived material are increases in the Humification Index (an indicator of terrestrial material) following rain/flow events. Our results indicate that Tempe Town Lake generates autochthonous carbon and has the capacity

  18. Carbon Cycling in Wetland Forest Soils

    Science.gov (United States)

    Carl C. Trettin; Martin F. Jurgensen

    2003-01-01

    Wetlands comprise a small proportion (i.e., 2 to 3%) of earth's terrestrial surface, yet they contain a significant proportion of the terrestrial carbon (C) pool. Soils comprise the largest terrestrial C pool (ca. 1550 Pg C in upper 100 cm; Eswaran et al., 1993; Batjes, 1996), and wetlands contain the single largest component, with estimates ranging between 18...

  19. Role of a productive lake in carbon sequestration within a calcareous catchment

    International Nuclear Information System (INIS)

    Nõges, Peeter; Cremona, Fabien; Laas, Alo; Martma, Tõnu; Rõõm, Eva-Ingrid; Toming, Kaire; Viik, Malle; Vilbaste, Sirje; Nõges, Tiina

    2016-01-01

    For a long time, lakes were considered unimportant in the global carbon (C) cycle because of their small total area compared to the ocean. Over the last two decades, a number of studies have highlighted the important role of lakes in both sequestering atmospheric C and modifying the C flux from the catchment by degassing CO_2 and methane and burying calcite and organic matter in the sediment. Based on a full C mass balance, high frequency measurements of lake metabolism and stable isotope analysis of a large shallow eutrophic lake in Estonia, we assess the role alkaline lakes play in augmenting the strength of terrestrial carbonate weathering as a temporary CO_2 sink. We show that a large part of organic C buried in the sediments in this type of lakes originates from the catchment although a direct uptake from the atmosphere during periods of intensive phytoplankton growth in eutrophic conditions contributes to the carbon sink. - Highlights: • Terrestrial carbonate weathering is considered a temporary sink for CO_2_. • Alkaline lakes precipitate calcite reverting chemical weathering reactions. • Algal uptake increased δ"1"3C of dissolved inorganic C while passing through the lake. • 40–70% of sediment organic C originated from catchment alkalinity export. • Biological uptake of released CO_2 counteracts emissions from reversed weathering.

  20. Role of a productive lake in carbon sequestration within a calcareous catchment

    Energy Technology Data Exchange (ETDEWEB)

    Nõges, Peeter, E-mail: peeter.noges@emu.ee [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Cremona, Fabien; Laas, Alo [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Martma, Tõnu [Institute of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Rõõm, Eva-Ingrid [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Toming, Kaire [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn (Estonia); Viik, Malle; Vilbaste, Sirje; Nõges, Tiina [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia)

    2016-04-15

    For a long time, lakes were considered unimportant in the global carbon (C) cycle because of their small total area compared to the ocean. Over the last two decades, a number of studies have highlighted the important role of lakes in both sequestering atmospheric C and modifying the C flux from the catchment by degassing CO{sub 2} and methane and burying calcite and organic matter in the sediment. Based on a full C mass balance, high frequency measurements of lake metabolism and stable isotope analysis of a large shallow eutrophic lake in Estonia, we assess the role alkaline lakes play in augmenting the strength of terrestrial carbonate weathering as a temporary CO{sub 2} sink. We show that a large part of organic C buried in the sediments in this type of lakes originates from the catchment although a direct uptake from the atmosphere during periods of intensive phytoplankton growth in eutrophic conditions contributes to the carbon sink. - Highlights: • Terrestrial carbonate weathering is considered a temporary sink for CO{sub 2.} • Alkaline lakes precipitate calcite reverting chemical weathering reactions. • Algal uptake increased δ{sup 13}C of dissolved inorganic C while passing through the lake. • 40–70% of sediment organic C originated from catchment alkalinity export. • Biological uptake of released CO{sub 2} counteracts emissions from reversed weathering.

  1. Effects of ozonation and temperature on biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2010-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. Removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen

  2. Role of biology in the air–sea carbon flux in the Bay of Bengal

    Indian Academy of Sciences (India)

    Abstract. A physical-biological-chemical model (PBCM)is used for investigating the seasonal cycle of air –sea carbon flux and for assessing the effect of the biological processes on seasonal time scale in the Arabian Sea (AS)and Bay of Bengal (BoB),where the surface waters are subjected to contrasting physical conditions.

  3. Spatiotemporal distribution and national measurement of the global carbonate carbon sink.

    Science.gov (United States)

    Li, Huiwen; Wang, Shijie; Bai, Xiaoyong; Luo, Weijun; Tang, Hong; Cao, Yue; Wu, Luhua; Chen, Fei; Li, Qin; Zeng, Cheng; Wang, Mingming

    2018-06-21

    The magnitudes, spatial distributions and contributions to global carbon budget of the global carbonate carbon sink (CCS) still remain uncertain, allowing the problem of national measurement of CCS remain unresolved which will directly influence the fairness of global carbon markets and emission trading. Here, based on high spatiotemporal resolution ecological, meteorological raster data and chemical field monitoring data, combining highly reliable machine learning algorithm with the thermodynamic dissolution equilibrium model, we estimated the new CCS of 0.89 ± 0.23 petagrams of carbon per year (Pg C yr -1 ), amounting to 74.50% of global net forest sink and accounting for 28.75% of terrestrial sinks or 46.81% of the missing sink. Our measurement for 142 nations of CCS showed that Russia, Canada, China and the USA contribute over half of the global CCS. We also presented the first global fluxes maps of the CCS with spatial resolution of 0.05°, exhibiting two peaks in equatorial regions (10°S to 10°N) and low latitudes (10°N to 35°N) in Northern Hemisphere. By contrast, there are no peaks in Southern Hemisphere. The greatest average carbon sink flux (CCSF), i.e., 2.12 tC ha -1  yr -1 , for 2000 to 2014 was contributed by tropical rainforest climate near the equator, and the smallest average CCSF was presented in tropical arid zones, showing a magnitude of 0.26 tC ha -1  yr -1 . This research estimated the magnitudes, spatial distributions, variations and contributions to the global carbon budget of the CCS in a higher spatiotemporal representativeness and expandability way, which, via multiple mechanisms, introduced an important sink in the terrestrial carbon sink system and the global missing sink and that can help us further reveal and support our understanding of global rock weathering carbon sequestration, terrestrial carbon sink system and global carbon cycle dynamics which make our understanding of global change more comprehensive

  4. Pharmaceutical wastewater treatment by internal micro-electrolysis--coagulation, biological treatment and activated carbon adsorption.

    Science.gov (United States)

    Wang, Kangle; Liu, Suiqing; Zhang, Qiang; He, Yiliang

    2009-12-01

    Treatment of pharmaceutical wastewater by the combined process of internal micro-electrolysis and coagulation, biological treatment and activated carbon adsorption was studied. Internal micro-electrolysis and coagulation served as the pretreatment for the wastewater before biological treatment to reduce the contaminants' toxicity to microbes and improve the biodegradability of wastewater to guarantee the smooth operation of the biological process. Biological treatment was the main body of the whole process which took an unparalleled role in removing COD (chemical oxygen demand). Activated carbon adsorption was adopted as the post-treatment process to further remove the remaining non-biodegradable particles. Results showed that the removal rates of COD and S2- (sulphide ion) by pretreatment were 66.9% and 98.9%, respectively, and the biodegradability, as measured by the ratio of biodegradable COD to initial COD, of the wastewater was greatly improved from 0.16 +/- 0.02 to 0.41 +/- 0.02. The overall removal rate of COD in the wastewater achieved by this combined treatment process was up to 96%, and the effluent COD met the Chinese tertiary discharge standard (GB 8978-1996).

  5. Carbon Inputs From Riparian Vegetation Limit Oxidation of Physically Bound Organic Carbon Via Biochemical and Thermodynamic Processes: OC Oxidation Processes Across Vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Emily B. [Pacific Northwest National Laboratory, Richland WA USA; Tfaily, Malak M. [Environmental Molecular Sciences Laboratory, Richland WA USA; Crump, Alex R. [Pacific Northwest National Laboratory, Richland WA USA; Goldman, Amy E. [Pacific Northwest National Laboratory, Richland WA USA; Bramer, Lisa M. [Pacific Northwest National Laboratory, Richland WA USA; Arntzen, Evan [Pacific Northwest National Laboratory, Richland WA USA; Romero, Elvira [Pacific Northwest National Laboratory, Richland WA USA; Resch, C. Tom [Pacific Northwest National Laboratory, Richland WA USA; Kennedy, David W. [Pacific Northwest National Laboratory, Richland WA USA; Stegen, James C. [Pacific Northwest National Laboratory, Richland WA USA

    2017-12-01

    In light of increasing terrestrial carbon (C) transport across aquatic boundaries, the mechanisms governing organic carbon (OC) oxidation along terrestrial-aquatic interfaces are crucial to future climate predictions. Here, we investigate biochemistry, metabolic pathways, and thermodynamics corresponding to OC oxidation in the Columbia River corridor. We leverage natural vegetative differences to encompass variation in terrestrial C inputs. Our results suggest that decreases in terrestrial C deposition associated with diminished riparian vegetation induce oxidation of physically-bound (i.e., mineral and microbial) OC at terrestrial-aquatic interfaces. We also find that contrasting metabolic pathways oxidize OC in the presence and absence of vegetation and—in direct conflict with the concept of ‘priming’—that inputs of water-soluble and thermodynamically-favorable terrestrial OC protects bound-OC from oxidation. Based on our results, we propose a mechanistic conceptualization of OC oxidation along terrestrial-aquatic interfaces that can be used to model heterogeneous patterns of OC loss under changing land cover distributions.

  6. Biological regeneration of humic acid-loaded partially exhausted activated carbon (down flow system)

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.J.; Martin, R.J.; Khaliq, F.

    1995-01-01

    This paper represents the report on the biological regeneration of partially exhausted (down flow) activated carbon following the experimental studies carried out at the university of Birmingham, UK. The Research investigated the extent of bio regeneration of humic acid of concentration 100 mg/l. Bio regeneration in the partial exhaustion system (down flow) was evaluated in terms of substrate removal. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. The regeneration performance of the bio regeneration, partially exhausted (with humic acid) carbon increased during initial cycles, later on, it deteriorated significantly with each successive regeneration cycle. Microbial fouling of the carbon, especially at the bottom of the carbon bed was found to produce a substantial deterioration of the bio regeneration performance. (author)

  7. Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry

    Science.gov (United States)

    Roland, M.; Serrano-Ortiz, P.; Kowalski, A. S.; Goddéris, Y.; Sánchez-Cañete, E. P.; Ciais, P.; Domingo, F.; Cuezva, S.; Sanchez-Moral, S.; Longdoz, B.; Yakir, D.; Van Grieken, R.; Schott, J.; Cardell, C.; Janssens, I. A.

    2013-07-01

    CO2 exchange between terrestrial ecosystems and the atmosphere is key to understanding the feedbacks between climate change and the land surface. In regions with carbonaceous parent material, CO2 exchange patterns occur that cannot be explained by biological processes, such as disproportionate outgassing during the daytime or nighttime CO2 uptake during periods when all vegetation is senescent. Neither of these phenomena can be attributed to carbonate weathering reactions, since their CO2 exchange rates are too small. Soil ventilation induced by high atmospheric turbulence is found to explain atypical CO2 exchange between carbonaceous systems and the atmosphere. However, by strongly altering subsurface CO2 concentrations, ventilation can be expected to influence carbonate weathering rates. By imposing ventilation-driven CO2 outgassing in a carbonate weathering model, we show here that carbonate geochemistry is accelerated and does play a surprisingly large role in the observed CO2 exchange pattern of a semi-arid ecosystem. We found that by rapidly depleting soil CO2 during the daytime, ventilation disturbs soil carbonate equilibria and therefore strongly magnifies daytime carbonate precipitation and associated CO2 production. At night, ventilation ceases and the depleted CO2 concentrations increase steadily. Dissolution of carbonate is now enhanced, which consumes CO2 and largely compensates for the enhanced daytime carbonate precipitation. This is why only a relatively small effect on global carbonate weathering rates is to be expected. On the short term, however, ventilation has a drastic effect on synoptic carbonate weathering rates, resulting in a pronounced diel pattern that exacerbates the non-biological behavior of soil-atmosphere CO2 exchanges in dry regions with carbonate soils.

  8. Using remote-sensing and the Simple Biosphere model (SiB4) to analyze the seasonality and productivity of the terrestrial biosphere.

    Science.gov (United States)

    Cheeseman, M.; Denning, S.; Baker, I. T.

    2017-12-01

    Understanding the variability and seasonality of carbon fluxes from the terrestrial biosphere is integral to understanding the mechanisms and drivers of the global carbon cycle. However, there are many regions across the globe where in situ observations are sparse, such as the Amazon rainforest and the African Sahel. The latest version of the Simple-Biosphere model (SiB4) predicts a suite of biophysical variables such as terrestrial carbon flux (GPP), solar induced fluorescence (SIF), fraction of photosynthetically active radiation (FPAR), and leaf area index (LAI). By comparing modeled values to a suite of satellite and in situ observations we produce a robust analysis of the seasonality and productivity of the terrestrial biosphere in a variety of biome types across the globe.

  9. Beyond the principle of plentitude: a review of terrestrial planet habitability.

    Science.gov (United States)

    Gaidos, E; Deschenes, B; Dundon, L; Fagan, K; Menviel-Hessler, L; Moskovitz, N; Workman, M

    2005-04-01

    We review recent work that directly or indirectly addresses the habitability of terrestrial (rocky) planets like the Earth. Habitability has been traditionally defined in terms of an orbital semimajor axis within a range known as the habitable zone, but it is also well known that the habitability of Earth is due to many other astrophysical, geological, and geochemical factors. We focus this review on (1) recent refinements to habitable zone calculations; (2) the formation and orbital stability of terrestrial planets; (3) the tempo and mode of geologic activity (e.g., plate tectonics) on terrestrial planets; (4) the delivery of water to terrestrial planets in the habitable zone; and (5) the acquisition and loss of terrestrial planet carbon and nitrogen, elements that constitute important atmospheric gases responsible for habitable conditions on Earth's surface as well as being the building blocks of the biosphere itself. Finally, we consider recent work on evidence for the earliest habitable environments and the appearance of life itself on our planet. Such evidence provides us with an important, if nominal, calibration point for our search for other habitable worlds.

  10. Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries

    Science.gov (United States)

    Bianchi, Thomas S.; Wysocki, Laura A.; Stewart, Mike; Filley, Timothy R.; McKee, Brent A.

    2007-09-01

    In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries. A lack of correlation between POC and lignin phenol abundances ( Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ 13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C 4 in addition to C 3 source materials. A strong correlation between δ 13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C 3 and C 4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ 13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 10 8 kg y -1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 10 5 kg y -1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 10 9 kg y -1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 10 9 kg y -1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 10 11 kg).

  11. Effect of biological activated carbon pre-treatment to control organic fouling in the microfiltration of biologically treated secondary effluent.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2014-10-15

    Biological activated carbon (BAC) filtration was investigated as a pre-treatment for reducing the organic fouling of a microfiltration membrane (0.1 μm polyvinylidene fluoride) in the treatment of a biologically treated secondary effluent (BTSE) from a municipal wastewater treatment plant. BAC treatment of the BTSE resulted in a marked improvement in permeate flux, which was attributed to the effective removal of organic foulants and particulates. Although the BAC removed significantly less dissolved organic carbon than the granular activated carbon (GAC) treatment which was used as a control for comparison, it led to a markedly greater flux. This was attributed to the effective removal of the very high molecular weight substances such as biopolymers by the BAC through biodegradation and adsorption of those molecules on the biofilm. Size exclusion chromatography showed the BAC treatment led to approximately 30% reduction in these substances, whereas the GAC did not greatly remove these molecules. The BAC treatment led to a greater reduction of loosely-attached and firmly-attached membrane surface foulant, and this was confirmed by attenuated total reflection-fourier transform infrared spectroscopy analysis. This study demonstrated the potential of BAC pre-treatment for reducing organic fouling and thus improving flux for the microfiltration of BTSE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals

    Directory of Open Access Journals (Sweden)

    Ayman L. Hemasa

    2017-07-01

    Full Text Available Carbon nanotubes (CNTs possess unique mechanical, physical, electrical and absorbability properties coupled with their nanometer dimensional scale that renders them extremely valuable for applications in many fields including nanotechnology and chromatographic separation. The aim of this review is to provide an updated overview about the applications of CNTs in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Chiral single-walled carbon nanotubes (SWCNTs and multi-walled carbon nanotubes (MWCNTs have been directly applied for the enantioseparation of pharmaceuticals and biologicals by using them as stationary or pseudostationary phases in chromatographic separation techniques such as high-performance liquid chromatography (HPLC, capillary electrophoresis (CE and gas chromatography (GC. Achiral MWCNTs have been used for achiral separations as efficient sorbent objects in solid-phase extraction techniques of biochemicals and drugs. Achiral SWCNTs have been applied in achiral separation of biological samples. Achiral SWCNTs and MWCNTs have been also successfully used to separate achiral mixtures of pharmaceuticals and chemicals. Collectively, functionalized CNTs have been indirectly applied in separation science by enhancing the enantioseparation of different chiral selectors whereas non-functionalized CNTs have shown efficient capabilities for chiral separations by using techniques such as encapsulation or immobilization in polymer monolithic columns.

  13. A review on the role of organic inputs in maintaining the soil carbon pool of the terrestrial ecosystem.

    Science.gov (United States)

    Bhattacharya, Satya Sundar; Kim, Ki-Hyun; Das, Subhasish; Uchimiya, Minori; Jeon, Byong Hun; Kwon, Eilhann; Szulejko, Jan E

    2016-02-01

    Among the numerous sources of greenhouse gases, emissions of CO2 are considerably affected by changes in the extent and type of land use, e.g., intensive agriculture, deforestation, urbanization, soil erosion, or wetland drainage. As a feasible option to control emissions from the terrestrial ecosystems, the scientific community has explored the possibility of enhancing soil carbon (C) storage capacity. Thus, restoration of damaged lands through conservation tillage, crop rotation, cover cropping, reforestation, sub-soiling of compacted lands, sustainable water management practices, and organic manuring are the major antidotes against attenuation of soil organic C (SOC) stocks. In this research, we focused on the effect of various man-made activities on soil biotic organics (e.g., green-, farm-yard manure, and composts) to understand how C fluxes from various sources contribute to the establishment of a new equilibrium in the terrestrial ecosystems. Although such inputs substitute a portion of chemical fertilizers, they all undergo activities that augment the rate and extent of decay to deplete the SOC bank. Here, we provide perspectives on the balancing factors that control the mineralization rate of organic matter. Our arguments are placed in the background of different land use types and their impacts on forests, agriculture, urbanization, soil erosion, and wetland destruction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated carbon dioxide

    Science.gov (United States)

    A major goal of climate change research is to understand whether and how terrestrial ecosystems can sequester more carbon to mitigate rising atmospheric carbon dioxide (CO2) levels. The stimulation of arbuscular mycorrhizal fungi (AMF) by elevated atmospheric CO2 has been assumed to be a major mecha...

  15. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation modelORCHIDEE - Part 1: Simulating historical global burned area and fire regimes

    Science.gov (United States)

    C. Yue; P. Ciais; P. Cadule; K. Thonicke; S. Archibald; B. Poulter; W. M. Hao; S. Hantson; F. Mouillot; P. Friedlingstein; F. Maignan; N. Viovy

    2014-01-01

    Fire is an important global ecological process that influences the distribution of biomes, with consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately model the history and future of the terrestrial ecosystems and the climate system without including fire. This study incorporates the process-based prognostic fire module SPITFIRE...

  16. Evaluating vertical concentration profile of carbon source released from slow-releasing carbon source tablets and in situ biological nitrate denitrification activity

    Science.gov (United States)

    Yeum, Y.; HAN, K.; Yoon, J.; Lee, J. H.; Song, K.; Kang, J. H.; Park, C. W.; Kwon, S.; Kim, Y.

    2017-12-01

    Slow-releasing carbon source tablets were manufactured during the design of a small-scale in situ biological denitrification system to reduce high-strength nitrate (> 30 mg N/L) from a point source such as livestock complexes. Two types of slow-releasing tablets, precipitating tablet (PT, apparent density of 2.0 g/mL) and floating tablet (FT), were prepared to achieve a vertically even distribution of carbon source (CS) in a well and an aquifer. Hydroxypropyl methylcellulose (HPMC) was used to control the release rate, and microcrystalline cellulose pH 101 (MCC 101) was added as a binder. The #8 sand was used as a precipitation agent for the PTs, and the floating agents for the FTs were calcium carbonate and citric acid. FTs floated within 30 min. and remained in water because of the buoyance from carbon dioxide, which formed during the acid-base reaction between citric acid and calcium carbonate. The longevities of PTs with 300 mg of HPMC and FTs with 400 mg of HPMC were 25.4 days and 37.3 days, respectively. We assessed vertical CS profile in a continuous flowing physical aquifer model (release test, RT) and its efficiency on biological nitrate denitrification (denitrification test, DT). During the RT, PTs, FTs and a tracer (as 1 mg rhodamine B/L) were initially injected into a well of physical aquifer model (PAM). Concentrations of CS and the tracer were monitored along the streamline in the PAM to evaluate vertical profile of CS. During the DT, the same experiment was performed as RT, except continuous injection of solution containing 30 mg N/L into the PAM to evaluate biological denitrification activity. As a result of RT, temporal profiles of CS were similar at 3 different depths of monitoring wells. These results suggest that simultaneous addition of PT and FT be suitable for achieving a vertically even distribution of the CS in the injection well and an aquifer. In DT, similar profile of CS was detected in the injection well, and nitrate was biologically

  17. Diet induced differences in carbon isotope fractionation between sirenians and terrestrial ungulates

    Science.gov (United States)

    Clementz, M.T.; Koch, P.L.; Beck, C.A.

    2007-01-01

    Carbon isotope differences (??13C) between bioapatite and diet, collagen and diet, and bioapatite and collagen were calculated for four species of sirenians, Dugong dugon (Mu??ller), Trichechus manatus (Linnaeus), Trichechus inunguis (Natterer), and the extinct Hydrodamalis gigas (Zimmerman). Bone and tooth samples were taken from archived materials collected from populations during the mid eighteenth century (H. gigas), between 1978 and 1984 (T. manatus, T. inunguis), and between 1997 and 1999 (D. dugon). Mean ??13C values were compared with those for terrestrial ungulates, carnivores, and six species of carnivorous marine mammals (cetaceans = 1; pinnipeds = 4; mustelids = 1). Significant differences in mean ??13C values among species for all tissue types were detected that separated species or populations foraging on freshwater plants or attached marine macroalgae (??13C values -4???; ??13Cbioapatite-diet ???11???). Likewise, ??13Cbioapatite-collagen values for freshwater and algal-foraging species (???7???) were greater than those for seagrass-foraging species (???5???). Variation in ??13C values calculated between tissues and between tissues and diet among species may relate to the nutritional composition of a species' diet and the extent and type of microbial fermentation that occurs during digestion of different types of plants. These results highlight the complications that can arise when making dietary interpretations without having first determined species-specific ??13Ctissue-diet values. ?? 2007 Springer-Verlag.

  18. Effects of ozonation and temperature on the biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2011-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and

  19. In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes

    Science.gov (United States)

    Köhler, Stephan J.; Kothawala, Dolly; Futter, Martyn N.; Liungman, Olof; Tranvik, Lars

    2013-01-01

    Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales. PMID:23976946

  20. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    Science.gov (United States)

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  1. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    Directory of Open Access Journals (Sweden)

    Bal-Ram Adhikari

    2015-09-01

    Full Text Available Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs, reduced graphene oxide (rGO, SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH, and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  2. Assessment of Anthropogenic and Climatic Impacts on the Global Carbon Cycle Using a 3-D Model Constrained by Isotopic Carbon Measurements and Remote Sensing of Vegetation

    Science.gov (United States)

    Keeling, Charles D.; Piper, S. C.

    1998-01-01

    Our original proposal called for improved modeling of the terrestrial biospheric carbon cycle, specifically using biome-specific process models to account for both the energy and water budgets of plant growth, to facilitate investigations into recent changes in global atmospheric CO2 abundance and regional distribution. The carbon fluxes predicted by these models were to be incorporated into a global model of CO2 transport to establish large-scale regional fluxes of CO2 to and from the terrestrial biosphere subject to constraints imposed by direct measurements of atmospheric CO2 and its 13C/12C isotopic ratio. Our work was coordinated with a NASA project (NASA NAGW-3151) at the University of Montana under the direction of Steven Running, and was partially funded by the Electric Power Research Institute. The primary objective of this project was to develop and test the Biome-BGC model, a global biological process model with a daily time step which simulates the water, energy and carbon budgets of plant growth. The primary product, the unique global gridded daily land temperature, and the precipitation data set which was used to drive the process model is described. The Biome-BGC model was tested by comparison with a simpler biological model driven by satellite-derived (NDVI) Normalized Difference Vegetation Index and (PAR) Photosynthetically Active Radiation data and by comparison with atmospheric CO2 observations. The simple NDVI model is also described. To facilitate the comparison with atmospheric CO2 observations, a three-dimensional atmospheric transport model was used to produce predictions of atmospheric CO2 variations given CO2 fluxes owing to (NPP) Net Primary Productivity and heterotrophic respiration that were produced by the Biome-BGC model and by the NDVI model. The transport model that we used in this project, and errors associated with transport simulations, were characterized by a comparison of 12 transport models.

  3. [Kinetic simulation of enhanced biological phosphorus removal with fermentation broth as carbon source].

    Science.gov (United States)

    Zhang, Chao; Chen, Yin-Guang

    2013-07-01

    As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.

  4. Terrestrial ecology. Comprehensive study of the grassland biome

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Terrestrial ecology and grassland biome studies are designed to characterize the biota of the Hanford Reservation, elucidate seasonal dynamics of plant productivity, decomposition and mineral behavior patterns of important plant communities, and, to study the response of these communities to important natural environmental stresses, such as weather, wildfire and man-induced alterations of communities (influenced by grazing cattle and severe mechanical disturbance of the soil, such as affected by plowing or burial of waste materials or construction activities). A detailed account of the important findings of a 5-yr study is currently being prepared by the terrestrial ecology section staff for publication as a contribution to the International Biological Program Grassland Biome project

  5. How costly are carbon offsets? A meta-analysis of carbon forest sinks

    NARCIS (Netherlands)

    Kooten, van G.C.; Eagle, A.J.; Manley, J.; Smolak, T.

    2004-01-01

    Carbon terrestrial sinks are seen as a low-cost alternative to fuel switching and reduced fossil fuel use for lowering atmospheric CO2. As a result of agreements reached at Bonn and Marrakech, carbon offsets have taken on much greater importance in meeting Kyoto targets for the first commitment

  6. Dissolved Organic Carbon and Natural Terrestrial Sequestration Potential in Volcanic Terrain, San Juan Mountains, Colorado

    Science.gov (United States)

    Yager, D. B.; Burchell, A.; Johnson, R. H.; Kugel, M.; Aiken, G.; Dick, R.

    2009-12-01

    The need to reduce atmospheric CO2 levels has stimulated studies to understand and quantify carbon sinks and sources. Soils represent a potentially significant natural terrestrial carbon sequestration (NTS) reservoir. This project is part of a collaborative effort to characterize carbon (C) stability in temperate soils. To examine the potential for dissolved organic carbon (DOC) values as a qualitative indicator of C-stability, peak-flow (1500 ft3/s) and low-flow (200 ft3/s) samples from surface and ground waters were measured for DOC. DOC concentrations are generally low. Median peak-flow values from all sample sites (mg/L) were: streams (0.9); seeps (1.2); wells (0.45). Median low-flow values were: streams (0.7); seeps (0.75); wells (0.5). Median DOC values decrease between June and September 0.45 mg/L for seeps, and 0.2 mg/L for streams. Elevated DOC in some ground waters as compared to surface waters indicates increased contact time with soil organic matter. Elevated peak-flow DOC in areas with propylitically-altered bedrocks, composed of a secondary acid neutralizing assemblage of calcite-chlorite-epidote, reflects increased microbial and vegetation activity as compared to reduced organic matter accumulation in highly-altered terrain composed of an acid generating assemblage with abundant pyrite. Waters sampled in propylitically-altered bedrock terrain exhibit the lowest values during low-flow and suggest bedrock alteration type may influence DOC. Previous studies revealed undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global averages. Forest soils underlain by intermediate to mafic volcanic bedrock have the highest C (34.15 wt%), C: N (43) and arylsulfatase enzyme activity (ave. 278, high 461 µg p-nitrophenol/g/h). Unreclaimed mine sites have the lowest C (0 to 0.78 wt%), and arylsulfatase enzyme activity (0 to 41). Radiocarbon dates on charcoal collected from paleo-burn horizons illustrate Rocky Mountain soils may

  7. Carbon loaded Teflon (CLT): a power density meter for biological experiments using millimeter waves.

    Science.gov (United States)

    Allen, Stewart J; Ross, James A

    2007-01-01

    The standard technique for measurement of millimeter wave fields utilizes an open-ended waveguide attached to a HP power meter. The alignment of the waveguide with the propagation (K) vector is critical to making accurate measurements. Using this technique, it is difficult and time consuming to make a detailed map of average incident power density over areas of biological interest and the spatial resolution of this instrument does not allow accurate measurements in non-uniform fields. For biological experiments, it is important to know the center field average incident power density and the distribution over the exposed area. Two 4 ft x 4 ft x 1/32 inch sheets of carbon loaded Teflon (CLT) (one 15% carbon and one 25% carbon) were procured and a series of tests to determine the usefulness of CLT in defining fields in the millimeter wavelength range was initiated. Since the CLT was to be used both in the laboratory, where the environment was well controlled, and in the field, where the environment could not be controlled, tests were made to determine effects of change in environmental conditions on ability to use CLT as a millimeter wave dosimeter. The empirical results of this study indicate CLT to be an effective dosimeter for biological experiments both in the laboratory and in the field.

  8. Multi-factor controls on terrestrial carbon dynamics in urbanised areas

    Science.gov (United States)

    Zhang, C.; Tian, H.; Pan, S.; Lockaby, G.; Chappelka, A.

    2013-11-01

    As urban land cover and populations continue rapidly increasing across the globe, much concern has been raised that urbanization may significantly alter terrestrial carbon dynamics that affects atmospheric CO2 concentration and climate. Urbanization involves complex changes in land structure and multiple environmental factors. Relative contribution of these and their interactive effects need be quantified to better understand urbanization effects on regional C dynamics as well as assess the effectiveness of C sequestration policies focusing on urban green space development. In this study, we analyzed the factors that may control the urbanization effect on ecosystem C dynamics, and proposed a numeric experimental scheme, i.e. scenarios design, to conduct factorial analysis on the effects of different factors. Then as a case study, a dynamic land ecosystem model (DLEM) was applied to quantify the urbanization effect on the C dynamics of the Southern US (SUS) from 1945-2007, and to analyze the relative contributions from each environmental factor and their interactive effects. We found the effect of urban land conversion dominated the C dynamics in the SUS, resulting in about 0.37 Pg C lost from 1945-2007. However, urban ecosystem management and urban-induced environmental changes enhanced C sequestration by 0.12 Pg and 0.03 Pg, respectively. Their C sequestration effects, which amounted to 40% of the magnitude of land conversion effect, partially compensated for the C loss during urbanization. Numeric experiments and factorial analyses indicated complex interactive effects among different factors and between various land covers and environmental controls, findings need to be further confirmed by field studies. The proposed numeric experimental scheme provides a quantitative approach for understanding the complex mechanisms controlling C dynamics, and defining best development practices in urbanised areas.

  9. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion

    Directory of Open Access Journals (Sweden)

    I. P. Semiletov

    2011-09-01

    Full Text Available The Lena River integrates biogeochemical signals from its vast drainage basin, and the integrated signal reaches far out over the Arctic Ocean. Transformation of riverine organic carbon (OC into mineral carbon, and mineral carbon into the organic form in the Lena River watershed, can be considered to be quasi-steady-state processes. An increase in Lena discharge exerts opposite effects on total organic (TOC and total inorganic (TCO2 carbon: TOC concentration increases, while TCO2 concentration decreases. Significant inter-annual variability in mean values of TCO2, TOC, and their sum (total carbon, TC has been found. This variability is determined by changes in land hydrology which cause differences in the Lena River discharge. There is a negative correlation in the Lena River between TC in September and its mean discharge in August; a time shift of about one month is required for water to travel from Yakutsk to the Laptev Sea. Total carbon entering the sea with the Lena discharge is estimated to be almost 10 Tg C yr−1. The annual Lena River discharge of particulate organic carbon (POC can be as high as 0.38 Tg (moderate to high estimate. If we instead accept Lisytsin's (1994 statement that 85–95 % of total particulate matter (PM (and POC precipitates on the marginal "filter", then only about 0.03–0.04 Tg of Lena River POC reaches the Laptev Sea. The Lena's POC export would then be two orders of magnitude less than the annual input of eroded terrestrial carbon onto the shelf of the Laptev and East Siberian seas, which is estimated to be about 4 Tg. Observations support the hypothesis of a dominant role for coastal erosion (Semiletov, 1999a, b in East Siberian Arctic Shelf (ESAS sedimentation and the dynamics of the carbon/carbonate system. The Lena River is characterized by relatively high concentrations of the primary greenhouse gases, dissolved carbon dioxide (CO2 and methane (CH

  10. Chemistry in an evolving protoplanetary disk: Effects on terrestrial planet composition

    International Nuclear Information System (INIS)

    Moriarty, John; Fischer, Debra; Madhusudhan, Nikku

    2014-01-01

    The composition of planets is largely determined by the chemical and dynamical evolution of the disk during planetesimal formation and growth. To predict the diversity of exoplanet compositions, previous works modeled planetesimal composition as the equilibrium chemical composition of a protoplanetary disk at a single time. However, planetesimals form over an extended period of time, during which elements sequentially condense out of the gas as the disk cools and are accreted onto planetesimals. To account for the evolution of the disk during planetesimal formation, we couple models of disk chemistry and dynamics with a prescription for planetesimal formation. We then follow the growth of these planetesimals into terrestrial planets with N-body simulations of late-stage planet formation to evaluate the effect of sequential condensation on the bulk composition of planets. We find that our model produces results similar to those of earlier models for disks with C/O ratios close to the solar value (0.54). However, in disks with C/O ratios greater than 0.8, carbon-rich planetesimals form throughout a much larger radial range of the disk. Furthermore, our model produces carbon-rich planetesimals in disks with C/O ratios as low as ∼0.65, which is not possible in the static equilibrium chemistry case. These results suggest that (1) there may be a large population of short-period carbon-rich planets around moderately carbon-enhanced stars (0.65 < C/O < 0.8) and (2) carbon-rich planets can form throughout the terrestrial planet region around carbon-rich stars (C/O > 0.8).

  11. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrog...... implications for modelling the carbon sink-strength of temperate forests under global change.......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...

  12. Terrestrial Carbon Sequestration: Analysis of Terrestrial Carbon Sequestration at Three Contaminated Sites Remediated and Revitalized with Soil Amendments

    Science.gov (United States)

    This paper provides EPA's analysis of the data to determine carbon sequestration rates at three diverse sites that differ in geography/location, weather, soil properties, type of contamination, and age.

  13. Preservation of terrestrial plant biomarkers from Nachukui Formation sediments and their viability for stable isotope analysis

    Science.gov (United States)

    Kahle, E.; Uno, K. T.; Polissar, P. J.; Lepre, C. J.; deMenocal, P. B.

    2013-12-01

    Plio-Pleistocene sedimentary records from the Turkana Basin in eastern Africa provide a unique opportunity to compare a high-resolution record of climate and terrestrial vegetation with important changes in the record of human evolution. Molecular biomarkers from terrestrial vegetation can yield stable isotope ratios of hydrogen and carbon that reflect ancient climate and vegetation. However, the preservation of long-chain plant wax biomarkers in these paleosol, fluvial, and lacustrine sediments is not known, and this preservation must be studied to establish their utility for molecular stable isotope studies. We investigated leaf wax biomarkers in Nachukui Formation sediments deposited between 2.3 and 1.7 Ma to assess biomarker preservation. We analyzed n alkane and n alkanoic acid concentrations and, where suitable, molecular carbon and hydrogen isotope ratios. Molecular abundance distributions show a great deal of variance in biomarker preservation and plant-type source as indicated by the carbon preference index and average chain length. This variation suggests that some samples are suitable for isotopic analysis, while other samples lack primary terrestrial plant biomarker signatures. The biomarker signal in many samples contains significant additional material from unidentified sources. For example, the n-alkane distributions contain an unresolved complex mixture underlying the short and mid-chain n-alkanes. Samples from lacustrine intervals include long-chain diacids, hydroxy acids and (ω-1) ketoacids that suggest degradation of the original acids. Degradation of poorly preserved samples and the addition of non-terrestrial plant biomarkers may originate from a number of processes including forest fire or microbial alteration. Isotopic analysis of well-preserved terrestrial plant biomarkers will be presented along with examples where the original biomarker distribution has been altered.

  14. Reconciling biodiversity and carbon conservation.

    Science.gov (United States)

    Thomas, Chris D; Anderson, Barbara J; Moilanen, Atte; Eigenbrod, Felix; Heinemeyer, Andreas; Quaife, Tristan; Roy, David B; Gillings, Simon; Armsworth, Paul R; Gaston, Kevin J

    2013-05-01

    Climate change is leading to the development of land-based mitigation and adaptation strategies that are likely to have substantial impacts on global biodiversity. Of these, approaches to maintain carbon within existing natural ecosystems could have particularly large benefits for biodiversity. However, the geographical distributions of terrestrial carbon stocks and biodiversity differ. Using conservation planning analyses for the New World and Britain, we conclude that a carbon-only strategy would not be effective at conserving biodiversity, as have previous studies. Nonetheless, we find that a combined carbon-biodiversity strategy could simultaneously protect 90% of carbon stocks (relative to a carbon-only conservation strategy) and > 90% of the biodiversity (relative to a biodiversity-only strategy) in both regions. This combined approach encapsulates the principle of complementarity, whereby locations that contain different sets of species are prioritised, and hence disproportionately safeguard localised species that are not protected effectively by carbon-only strategies. It is efficient because localised species are concentrated into small parts of the terrestrial land surface, whereas carbon is somewhat more evenly distributed; and carbon stocks protected in one location are equivalent to those protected elsewhere. Efficient compromises can only be achieved when biodiversity and carbon are incorporated together within a spatial planning process. © 2012 John Wiley & Sons Ltd/CNRS.

  15. Carbon Inputs From Riparian Vegetation Limit Oxidation of Physically Bound Organic Carbon Via Biochemical and Thermodynamic Processes

    Science.gov (United States)

    Graham, Emily B.; Tfaily, Malak M.; Crump, Alex R.; Goldman, Amy E.; Bramer, Lisa M.; Arntzen, Evan; Romero, Elvira; Resch, C. Tom; Kennedy, David W.; Stegen, James C.

    2017-12-01

    In light of increasing terrestrial carbon (C) transport across aquatic boundaries, the mechanisms governing organic carbon (OC) oxidation along terrestrial-aquatic interfaces are crucial to future climate predictions. Here we investigate the biochemistry, metabolic pathways, and thermodynamics corresponding to OC oxidation in the Columbia River corridor using ultrahigh-resolution C characterization. We leverage natural vegetative differences to encompass variation in terrestrial C inputs. Our results suggest that decreases in terrestrial C deposition associated with diminished riparian vegetation induce oxidation of physically bound OC. We also find that contrasting metabolic pathways oxidize OC in the presence and absence of vegetation and—in direct conflict with the "priming" concept—that inputs of water-soluble and thermodynamically favorable terrestrial OC protect bound-OC from oxidation. In both environments, the most thermodynamically favorable compounds appear to be preferentially oxidized regardless of which OC pool microbiomes metabolize. In turn, we suggest that the extent of riparian vegetation causes sediment microbiomes to locally adapt to oxidize a particular pool of OC but that common thermodynamic principles govern the oxidation of each pool (i.e., water-soluble or physically bound). Finally, we propose a mechanistic conceptualization of OC oxidation along terrestrial-aquatic interfaces that can be used to model heterogeneous patterns of OC loss under changing land cover distributions.

  16. Investigating the Effect of Biological Crusts on Some Biological Properties of Soil (Case Study: Qare Qir Rangelands of Golestan Province

    Directory of Open Access Journals (Sweden)

    J. Kakeh

    2016-09-01

    Full Text Available Introduction: Physical and biological soil crusts are the principal types of soil crusts. Physical and biological soil crusts are distributed in arid, semi-arid and sub-humid regions which constitute over 40% of the earth terrestrial surface. Biological soil crusts (BSCs result from an intimate association between soil particles and cyanobacteria, algae, fungi, lichens and mosses in different proportions which live on the surface, or in the immediately uppermost millimeters of soil. Some of the functions that BSCs influences include: water absorption and retention, nutrient retention, Carbon and nitrogen fixation, biological activate and hydrologic Status. BSCs are important from the ecological view point and their effects on the environment, especially in rangeland, and desert ecosystems and this caused which researchers have a special attention to this component of the ecosystems more than before. Materials and Methods: This study carried out in the Qara Qir rangelands of Golestan province, northeast of Iran (37º15′ - 37º23′ N &54º33′ -54º39′ E, to investigate the effects of BSCs on some of soil biological properties. Four sites including with and without BSCs cover were selected. Soil biological properties such as microbial populations, soil respiration, microbial biomass carbon and nitrogen, as well as, other effective properties such asorganic carbon percent, total nitrogen, electrical conductivity, and available water content were measured in depths of 0-5 and 5-15 cm of soil with four replications. The gathered data were analyzed by nested plot, and the mean values were compared by Duncan test. Results and Discussion: The results showed that organic carbon and water content were higher at the surface under BSCs, followed by 5-15 cm soils under BSCs. Both soil depths of uncrusted soils showed substantially lower organic carbon and water content than the BSC-covered soils. Total nitrogen was far higher in BSC-encrusted surface

  17. Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model.

    Science.gov (United States)

    Kuribayashi, Masatoshi; Noh, Nam-Jin; Saitoh, Taku M; Ito, Akihiko; Wakazuki, Yasutaka; Muraoka, Hiroyuki

    2017-06-01

    Accurate projection of carbon budget in forest ecosystems under future climate and atmospheric carbon dioxide (CO 2 ) concentration is important to evaluate the function of terrestrial ecosystems, which serve as a major sink of atmospheric CO 2 . In this study, we examined the effects of spatial resolution of meteorological data on the accuracies of ecosystem model simulation for canopy phenology and carbon budget such as gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production (NEP) of a deciduous forest in Japan. Then, we simulated the future (around 2085) changes in canopy phenology and carbon budget of the forest by incorporating high-resolution meteorological data downscaled by a regional climate model. The ecosystem model overestimated GPP and ER when we inputted low-resolution data, which have warming biases over mountainous landscape. But, it reproduced canopy phenology and carbon budget well, when we inputted high-resolution data. Under the future climate, earlier leaf expansion and delayed leaf fall by about 10 days compared with the present state was simulated, and also, GPP, ER and NEP were estimated to increase by 25.2%, 23.7% and 35.4%, respectively. Sensitivity analysis showed that the increase of NEP in June and October would be mainly caused by rising temperature, whereas that in July and August would be largely attributable to CO 2 fertilization. This study suggests that the downscaling of future climate data enable us to project more reliable carbon budget of forest ecosystem in mountainous landscape than the low-resolution simulation due to the better predictions of leaf expansion and shedding.

  18. Sampling Terrestrial Environments for Bacterial Polyketides

    Directory of Open Access Journals (Sweden)

    Patrick Hill

    2017-04-01

    Full Text Available Bacterial polyketides are highly biologically active molecules that are frequently used as drugs, particularly as antibiotics and anticancer agents, thus the discovery of new polyketides is of major interest. Since the 1980s discovery of polyketides has slowed dramatically due in large part to the repeated rediscovery of known compounds. While recent scientific and technical advances have improved our ability to discover new polyketides, one key area has been under addressed, namely the distribution of polyketide-producing bacteria in the environment. Identifying environments where producing bacteria are abundant and diverse should improve our ability to discover (bioprospect new polyketides. This review summarizes for the bioprospector the state-of-the-field in terrestrial microbial ecology. It provides insight into the scientific and technical challenges limiting the application of microbial ecology discoveries for bioprospecting and summarizes key developments in the field that will enable more effective bioprospecting. The major recent efforts by researchers to sample new environments for polyketide discovery is also reviewed and key emerging environments such as insect associated bacteria, desert soils, disease suppressive soils, and caves are highlighted. Finally strategies for taking and characterizing terrestrial samples to help maximize discovery efforts are proposed and the inclusion of non-actinomycetal bacteria in any terrestrial discovery strategy is recommended.

  19. Environmental biology

    International Nuclear Information System (INIS)

    Tschumi, P.A.

    1981-01-01

    Environmental biology illustrates the functioning of ecosystems and the dynamics of populations with many examples from limnology and terrestrial ecology. On this basis, present environmental problems are analyzed. The present environmental crisis is seen as a result of the failure to observe ecological laws. (orig.) [de

  20. Puncturevine (Tribulus terrestris L.: noxious weed or powerful medical herb

    Directory of Open Access Journals (Sweden)

    Zvonko Pacanoski

    2014-03-01

    Full Text Available Tribulus terrestris L., an annual dicot species of the family Zygophyllaceae, is a common herb that is often found in disturbed habitats and agricultural areas in many parts of the temperate, tropical and desert regions of the world. T. terrestris is an aggressive species that has the potential to injure livestock, reduce hay and wool values, detour recreationists and reduces plant biodivesity. The species may become troublesome because of its weedy potential. It has been declared a weed in at least 37 countries and in at least 21 crops (cotton, maize, vineyards, orchards, etc.. It is adapted to a wide range of climatic conditions and grows on a wide variety of soil types. The management of T. terrestris can be achieved by herbicide application, mechanical (hand pulling, hoeing, mulching and biological control methods. Beside its invasive potential as a noxious and troublesome weed, T. terrestris is considered highly useful herb which is used for various purposes in folk and modern medicine and sport, as well.

  1. Characteristics of Nanoparticles in Drinking Water Treatment using Biological Activated Carbon

    Directory of Open Access Journals (Sweden)

    Desmiarti Reni

    2018-01-01

    Full Text Available Characteristics of nanoparticles in drinking water treatment were performed using five types of biological activated carbon (BAC columns (BAC1-BAC5 in continuous flow experiments. The BAC was created by covering granular activated carbon (GAC with attached microorganisms from water samples taken from the Nagara River in Japan. The total running time was about 2000 h. The characteristics of the nanoparticles were investigated based on size distribution and volume distribution measured by Zetasizer Nano. Total dissolved organic carbon (DOC and ultraviolet absorbance at 260 nm (UV260 were also studied. The important results in this study were that the detached nanoparticles in the effluent were within the size distribution ranges of 0.26~5.62 nm, 0.62~3.62 nm, 0.62~3.12 nm, 0.62~4.19 nm, and 0.62~6.50 for BAC 1, 2, 3, 4 and 5, respectively. The profile of peak size and peak number along the bed depth of the BAC columns was evaluated for better understanding the characteristics of the nanoparticles. This result is very important for improving drinking water treatment using granular activated carbon to remove microorganisms.

  2. Biological and ecological responses to carbon-based nanomaterials

    Science.gov (United States)

    Ratnikova, Tatsiana A.

    This dissertation examines the biological and ecological responses to carbon nanoparticles, a major class of nanomaterials which have been mass produced and extensively studied for their rich physical properties and commercial values. Chapter I of this dissertation offers a comprehensive review on the structures, properties, applications, and implications of carbon nanomaterials, especially related to the perspectives of biological and ecosystems. Given that there are many types of carbon nanomaterials available, this chapter is focused on three major types of carbon-based nanomaterials only, namely, fullerenes, single walled and multi-walled carbon nanotubes. On the whole organism level, specifically, Chapter II presents a first study on the fate of fullerenes and multiwalled carbon nanotubes in rice plants, which was facilitated by the self assembly of these nanomaterials with NOM. The aspects of fullerene uptake, translocation, biodistribution, and generational transfer in the plants were examined and quantified using bright field and electron microscopy, FT-Raman, and FTIR spectroscopy. The uptake and transport of fullerene in the plant vascular system were attributed to water transpiration, convection, capillary force, and the fullerene concentration gradient from the roots to the leaves of the plants. On the cellular level, Chapter III documents the differential uptake of hydrophilic C60(OH)20 vs. amphiphilic C70-NOM complex in Allium cepa plant cells and HT-29 colon carcinoma cells. This study was conducted using a plant cell viability assay, and complemented by bright field, fluorescence and electron microscopy imaging. In particular, C60(OH)20 and C70-NOM showed contrasting uptake in both the plant and mammalian cells, due to their significant differences in physicochemistry and the presence of an extra hydrophobic plant cell wall in the plant cells. Consequently, C60(OH)20 was found to induce toxicity in Allium cepa cells but not in HT-29 cells, while C70

  3. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Directory of Open Access Journals (Sweden)

    H. Graven

    2017-12-01

    Full Text Available The isotopic composition of carbon (Δ14C and δ13C in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850–2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6 for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  4. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Science.gov (United States)

    Graven, Heather; Allison, Colin E.; Etheridge, David M.; Hammer, Samuel; Keeling, Ralph F.; Levin, Ingeborg; Meijer, Harro A. J.; Rubino, Mauro; Tans, Pieter P.; Trudinger, Cathy M.; Vaughn, Bruce H.; White, James W. C.

    2017-12-01

    The isotopic composition of carbon (Δ14C and δ13C) in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs) present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850-2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6) for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  5. Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy

    International Nuclear Information System (INIS)

    Packer, Mike

    2009-01-01

    The use of algae to capture carbon dioxide as a method for greenhouse gas mitigation is discussed. A small fraction of the sunlight energy that bathes Earth is captured by photosynthesis and drives most living systems. Life on Earth is carbon-based and the energy is used to fix atmospheric carbon dioxide into biological material (biomass), indeed fossil fuels that we consume today are a legacy of mostly algal photosynthesis. Algae can be thought of as marine and freshwater plants that have higher photosynthetic efficiencies than terrestrial plants and are more efficient capturing carbon (Box 1). They have other favourable characteristics for this purpose. In the context of New Zealand energy strategy and policy I discuss progress in growing algae and seaweeds with emphasis on their application for exhaust flue carbon recycling for possible generation of useful biomass. I also introduce schemes utilising wild oceanic algae for carbon dioxide sequestration and the merits and possible adverse effects of using this approach. This paper is designed as an approachable review of the science and technology for policy makers and a summary of the New Zealand policy environment for those wishing to deploy biological carbon sequestration.

  6. Longevity of terrestrial Carbon sinks: effects of soil degradation on greenhouse gas emissions

    Science.gov (United States)

    Kuhn, Nikolaus J.; Berger, Samuel; Kuonen, Samuel

    2013-04-01

    productivity associated with erosion. Areas with high erosion rates and already erosion-induced damages to soil productivity were considered to be closing or closed landscape carbon sinks. The final global assessment indicates that severe soil degradation in Africa, the Americas and Asia carries the risk of closing terrestrial Carbon sinks that currently contribute to an unintended mitigation of greenhouse gas emissions.

  7. Optimization of Terrestrial Ecosystem Model Parameters Using Atmospheric CO2 Concentration Data With the Global Carbon Assimilation System (GCAS)

    Science.gov (United States)

    Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang

    2017-12-01

    The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.

  8. An Analysis of Terrestrial and Aquatic Environmental Controls of Riverine Dissolved Organic Carbon in the Conterminous United States

    Directory of Open Access Journals (Sweden)

    Qichun Yang

    2017-05-01

    Full Text Available Analyses of environmental controls on riverine carbon fluxes are critical for improved understanding of the mechanisms regulating carbon cycling along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC concentration data from 1402 United States Geological Survey (USGS gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S. surface waters. DOC concentrations exhibit high spatial variability in the U.S., with an average of 6.42 ± 6.47 mg C/L (Mean ± Standard Deviation. High DOC concentrations occur in the Upper Mississippi River basin and the southeastern U.S., while low concentrations are mainly distributed in the western U.S. Soil properties such as soil organic matter, soil water content, and soil sand content mainly show positive correlations with DOC concentrations; forest and shrub land have positive correlations with DOC concentrations, but urban area and cropland demonstrate negative impacts; and total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers. In sum, our results reveal that general multi-linear regression of twenty environmental factors can partially explain (56% the DOC concentration variability. This study also highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.

  9. Quantifying the influence of the terrestrial biosphere on glacial-interglacial climate dynamics

    Science.gov (United States)

    Davies-Barnard, Taraka; Ridgwell, Andy; Singarayer, Joy; Valdes, Paul

    2017-10-01

    The terrestrial biosphere is thought to be a key component in the climatic variability seen in the palaeo-record. It has a direct impact on surface temperature through changes in surface albedo and evapotranspiration (so-called biogeophysical effects) and, in addition, has an important indirect effect through changes in vegetation and soil carbon storage (biogeochemical effects) and hence modulates the concentrations of greenhouse gases in the atmosphere. The biogeochemical and biogeophysical effects generally have opposite signs, meaning that the terrestrial biosphere could potentially have played only a very minor role in the dynamics of the glacial-interglacial cycles of the late Quaternary. Here we use a fully coupled dynamic atmosphere-ocean-vegetation general circulation model (GCM) to generate a set of 62 equilibrium simulations spanning the last 120 kyr. The analysis of these simulations elucidates the relative importance of the biogeophysical versus biogeochemical terrestrial biosphere interactions with climate. We find that the biogeophysical effects of vegetation account for up to an additional -0.91 °C global mean cooling, with regional cooling as large as -5 °C, but with considerable variability across the glacial-interglacial cycle. By comparison, while opposite in sign, our model estimates of the biogeochemical impacts are substantially smaller in magnitude. Offline simulations show a maximum of +0.33 °C warming due to an increase of 25 ppm above our (pre-industrial) baseline atmospheric CO2 mixing ratio. In contrast to shorter (century) timescale projections of future terrestrial biosphere response where direct and indirect responses may at times cancel out, we find that the biogeophysical effects consistently and strongly dominate the biogeochemical effect over the inter-glacial cycle. On average across the period, the terrestrial biosphere has a -0.26 °C effect on temperature, with -0.58 °C at the Last Glacial Maximum. Depending on

  10. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics

    Directory of Open Access Journals (Sweden)

    T. Davies-Barnard

    2017-10-01

    Full Text Available The terrestrial biosphere is thought to be a key component in the climatic variability seen in the palaeo-record. It has a direct impact on surface temperature through changes in surface albedo and evapotranspiration (so-called biogeophysical effects and, in addition, has an important indirect effect through changes in vegetation and soil carbon storage (biogeochemical effects and hence modulates the concentrations of greenhouse gases in the atmosphere. The biogeochemical and biogeophysical effects generally have opposite signs, meaning that the terrestrial biosphere could potentially have played only a very minor role in the dynamics of the glacial–interglacial cycles of the late Quaternary. Here we use a fully coupled dynamic atmosphere–ocean–vegetation general circulation model (GCM to generate a set of 62 equilibrium simulations spanning the last 120 kyr. The analysis of these simulations elucidates the relative importance of the biogeophysical versus biogeochemical terrestrial biosphere interactions with climate. We find that the biogeophysical effects of vegetation account for up to an additional −0.91 °C global mean cooling, with regional cooling as large as −5 °C, but with considerable variability across the glacial–interglacial cycle. By comparison, while opposite in sign, our model estimates of the biogeochemical impacts are substantially smaller in magnitude. Offline simulations show a maximum of +0.33 °C warming due to an increase of 25 ppm above our (pre-industrial baseline atmospheric CO2 mixing ratio. In contrast to shorter (century timescale projections of future terrestrial biosphere response where direct and indirect responses may at times cancel out, we find that the biogeophysical effects consistently and strongly dominate the biogeochemical effect over the inter-glacial cycle. On average across the period, the terrestrial biosphere has a −0.26 °C effect on temperature, with −0.58 °C at the

  11. A diagnostic study of temperature controls on global terrestrial carbon exchange

    International Nuclear Information System (INIS)

    Vukicevic, Tomislava; Schimel, David

    2001-01-01

    The observed interannual variability of atmospheric CO 2 reflects short-term variability in sources and sinks of CO 2 . Analyses using 13 C and O 2 suggest that much of the observed interannual variability is due to changes in terrestrial CO 2 exchange. First principles, empirical correlations and process models suggest a link between climate variation and net ecosystem exchange, but the scaling of ecological process studies to the globe is notoriously difficult. We sought to identify a component of global CO 2 exchange that varied coherently with land temperature anomalies using an inverse modeling approach. We developed a family of simplified spatially aggregated ecosystem models (designated K-model versions) consisting of five compartments: atmospheric CO 2 , live vegetation, litter, and two soil pools that differ in turnover times. The pools represent cumulative differences from mean storage due to temperature variability and can thus have positive or negative values. Uptake and respiration of CO 2 are assumed to be linearly dependent on temperature. One model version includes a simple representation of the nitrogen cycle in which changes in the litter and soil carbon pools result in stoichiometric release of plant-available nitrogen, the other omits the nitrogen feedback. The model parameters were estimated by inversion of the model against global temperature and CO 2 anomaly data using the variational method. We found that the temperature sensitivity of carbon uptake (NPP) was less than that of respiration in all model versions. Analyses of model and data also showed that temperature anomalies trigger ecosystem changes on multiple, lagged time-scales. Other recent studies have suggested a more active land biosphere at Northern latitudes in response to warming and longer growing seasons. Our results indicate that warming should increase NPP, consistent with this theory, but that respiration should increase more than NPP, leading to decreased or negative NEP. A

  12. Energy transfer in the Congo deep-sea fan: From terrestrially-derived organic matter to chemosynthetic food webs

    Science.gov (United States)

    Pruski, A. M.; Decker, C.; Stetten, E.; Vétion, G.; Martinez, P.; Charlier, K.; Senyarich, C.; Olu, K.

    2017-08-01

    Large amounts of recent terrestrial organic matter (OM) from the African continent are delivered to the abyssal plain by turbidity currents and accumulate in the Congo deep-sea fan. In the recent lobe complex, large clusters of vesicomyid bivalves are found all along the active channel in areas of reduced sediment. These soft-sediment communities resemble those fuelled by chemoautotrophy in cold-seep settings. The aim of this study was to elucidate feeding strategies in these macrofaunal assemblages as part of a greater effort to understand the link between the inputs of terrestrially-derived OM and the chemosynthetic habitats. The biochemical composition of the sedimentary OM was first analysed in order to evaluate how nutritious the available particulate OM is for the benthic macrofauna. The terrestrial OM is already degraded when it reaches the final depositional area. However, high biopolymeric carbon contents (proteins, carbohydrates and lipids) are found in the channel of the recent lobe complex. In addition, about one to two thirds of the nitrogen can be assigned to peptide-like material. Even if this soil-derived OM is poorly digestible, turbiditic deposits contain such high amounts of organic carbon that there is enough biopolymeric carbon and proteacinous nitrogen to support dense benthic communities that contrast with the usual depauperate abyssal plains. Stable carbon and nitrogen isotopes and fatty acid biomarkers were then used to shed light on the feeding strategies allowing the energy transfer from the terrestrial OM brought by the turbidity currents to the abyssal food web. In the non-reduced sediment, surface detritivorous holothurians and suspension-feeding poriferans rely on detritic OM, thereby depending directly on the turbiditic deposits. The sulphur-oxidising symbiont bearing vesicomyids closely depend on the reprocessing of OM with methane and sulphide as final products. Their carbon and nitrogen isotopic signatures vary greatly among sites

  13. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings.

    Science.gov (United States)

    Saintilan, Neil; Rogers, Kerrylee

    2015-02-01

    A global trend of woody plant encroachment of terrestrial grasslands is co-incident with woody plant encroachment of wetland in freshwater and saline intertidal settings. There are several arguments for considering tree encroachment of wetlands in the context of woody shrub encroachment of grassland biomes. In both cases, delimitation of woody shrubs at regional scales is set by temperature thresholds for poleward extent, and by aridity within temperature limits. Latitudinal expansion has been observed for terrestrial woody shrubs and mangroves, following recent warming, but most expansion and thickening has been due to the occupation of previously water-limited grassland/saltmarsh environments. Increases in atmospheric CO₂, may facilitate the recruitment of trees in terrestrial and wetland settings. Improved water relations, a mechanism that would predict higher soil moisture in grasslands and saltmarshes, and also an enhanced capacity to survive arid conditions, reinforces local mechanisms of change. The expansion of woody shrubs and mangroves provides a negative feedback on elevated atmospheric CO₂ by increasing carbon sequestration in grassland and saltmarsh, and is a significant carbon sink globally. These broad-scale vegetation shifts may represent a new stable state, reinforced by positive feedbacks between global change drivers and endogenic mechanisms of persistence in the landscape.

  14. The global carbon cycle

    International Nuclear Information System (INIS)

    Maier-Reimer, E.

    1991-01-01

    Basic concepts of the global carbon cycle on earth are described; by careful analyses of isotopic ratios, emission history and oceanic ventilation rates are derived, which provide crucial tests for constraining and calibrating models. Effects of deforestation, fertilizing, fossil fuel burning, soil erosion, etc. are quantified and compared, and the oceanic carbon process is evaluated. Oceanic and terrestrial biosphere modifications are discussed and a carbon cycle model is proposed

  15. Large historical growth in global terrestrial gross primary production

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. E.; Berry, J. A.; Seibt, U.; Smith, S. J.; Montzka, S. A.; Launois, T.; Belviso, S.; Bopp, L.; Laine, M.

    2017-04-05

    Growth in terrestrial gross primary production (GPP) may provide a feedback for climate change, but there is still strong disagreement on the extent to which biogeochemical processes may suppress this GPP growth at the ecosystem to continental scales. The consequent uncertainty in modeling of future carbon storage by the terrestrial biosphere constitutes one of the largest unknowns in global climate projections for the next century. Here we provide a global, measurement-based estimate of historical GPP growth using long-term atmospheric carbonyl sulfide (COS) records derived from ice core, firn, and ambient air samples. We interpret these records using a model that relates changes in the COS concentration to changes in its sources and sinks, the largest of which is proportional to GPP. The COS history was most consistent with simulations that assume a large historical GPP growth. Carbon-climate models that assume little to no GPP growth predicted trajectories of COS concentration over the anthropogenic era that differ from those observed. Continued COS monitoring may be useful for detecting ongoing changes in GPP while extending the ice core record to glacial cycles could provide further opportunities to evaluate earth system models.

  16. Carbon Dioxide Variability in the Gulf of Trieste (GOT) in the Northern Adriatic Sea

    Science.gov (United States)

    Turk, D.; McGillis, W. R.; Malacic, V.; Degrandpre, M.

    2008-12-01

    Coastal marine regions such as the Gulf of Trieste GOT in the Northern Adriatic Sea serve as the link between carbon cycling on land and the ocean interior and potentially contribute large uncertainties in the estimate of anthropogenic CO2 uptake. This system may be either a sink or a source for atmospheric CO2. Understanding the sources and sinks as a result of biological and physical controls for air-sea carbon dioxide fluxes in coastal waters may substantially alter the current view of the global carbon budget for unique terrestrial and ocean regions such as the GOT. GOT is a semi-enclosed Mediterranean basin situated in the northern part of Adriatic Sea. It is one of the most productive regions in the Mediterranean and is affected by extreme fresh river input, phytoplankton blooms, and large changes of air-sea exchange during Bora high wind events. The unique combination of these environmental processes and relatively small size of the area makes the region an excellent study site for investigations of air-sea interaction, and changes in biology and carbon chemistry. However, there is a dearth of current data or information from the region. Here we present the first measurements of air and water CO2 flux in the GOT. The aqueous CO2 was measured at the Coastal Oceanographic buoy Piran, Slovenia using the SAMI CO2 sensor during spring and late summer and fall 2007. CO2 measurements were combined with hydrological and biological observations to evaluate the processes that control carbon cycling in the region.

  17. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  18. Terrestrial biogeochemical feedbacks in the climate system: from past to future

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J.; Feichter, J; Korhola, A; Kulmala, M; O' Donnell, D; Schurgers, G; Sorvari, S; Vesala, T

    2010-01-05

    The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.

  19. Joint control of terrestrial gross primary productivity by plant phenology and physiology

    NARCIS (Netherlands)

    Xia, J.; Niu, S.; Ciais, P.; Janssens, I.A.; Chen, J.; Ammann, C.; Arain, A.; Blanken, P.D.; Cescatti, A.; Moors, E.J.

    2015-01-01

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of

  20. Global Ocean Carbon and Biogeochemistry Coordination

    Science.gov (United States)

    Telszewski, Maciej; Tanhua, Toste; Palacz, Artur

    2016-04-01

    multidisciplinary global ocean observing system. Over the past 4-5 years IOCCP's long standing experience in coordinating biogeochemical observations and data flows globally, resulted in assuming a leadership role during the design and implementation of the biogeochemistry portion of the Framework for Ocean Observing (FOO, 2012). To optimize and enhance the global ocean observing system IOCCP started to implement major elements of the system's approach outlined in the FOO. Starting by setting of ocean observing requirements representing the needs of societal and scientific stakeholders, followed by development of a set of essential ocean variables (EOVs) with spatial and temporal resolution specifications to best meet current demands for data and information services given current and potential national capabilities. The IOCCP works directly with projects and programs programmatically connected to GOOS as well as the WMO-IOC JCOMM to integrate ocean carbon and biogeochemistry observation information into the plans of the Global Climate Observing System in support of the United Nations Framework Convention on Climate Change, the World Summit on Sustainable Development, the Group on Earth Observations, and other international and intergovernmental strategies. We would like to update our partners across disciplines and domains on our short- and long-term strategies as well as learn from their combined experience and knowledge so that our individual activities align more with those undertaken by our counterparts in biological and physical oceanography as well as in terrestrial and atmospheric domains.

  1. Dual role of lignin in plant litter decomposition in terrestrial ecosystems.

    Science.gov (United States)

    Austin, Amy T; Ballaré, Carlos L

    2010-03-09

    Plant litter decomposition is a critical step in the formation of soil organic matter, the mineralization of organic nutrients, and the carbon balance in terrestrial ecosystems. Biotic decomposition in mesic ecosystems is generally negatively correlated with the concentration of lignin, a group of complex aromatic polymers present in plant cell walls that is recalcitrant to enzymatic degradation and serves as a structural barrier impeding microbial access to labile carbon compounds. Although photochemical mineralization of carbon has recently been shown to be important in semiarid ecosystems, litter chemistry controls on photodegradative losses are not understood. We evaluated the importance of litter chemistry on photodegradation of grass litter and cellulose substrates with varying levels of lignin [cellulose-lignin (CL) substrates] under field conditions. Using wavelength-specific light attenuation filters, we found that light-driven mass loss was promoted by both UV and visible radiation. The spectral dependence of photodegradation correlated with the absorption spectrum of lignin but not of cellulose. Field incubations demonstrated that increasing lignin concentration reduced biotic decomposition, as expected, but linearly increased photodegradation. In addition, lignin content in CL substrates consistently decreased in photodegradative incubations. We conclude that lignin has a dual role affecting litter decomposition, depending on the dominant driver (biotic or abiotic) controlling carbon turnover. Under photodegradative conditions, lignin is preferentially degraded because it acts as an effective light-absorbing compound over a wide range of wavelengths. This mechanistic understanding of the role of lignin in plant litter decomposition will allow for more accurate predictions of carbon dynamics in terrestrial ecosystems.

  2. Rethinking Trade-Driven Extinction Risk in Marine and Terrestrial Megafauna.

    Science.gov (United States)

    McClenachan, Loren; Cooper, Andrew B; Dulvy, Nicholas K

    2016-06-20

    Large animals hunted for the high value of their parts (e.g., elephant ivory and shark fins) are at risk of extinction due to both intensive international trade pressure and intrinsic biological sensitivity. However, the relative role of trade, particularly in non-perishable products, and biological factors in driving extinction risk is not well understood [1-4]. Here we identify a taxonomically diverse group of >100 marine and terrestrial megafauna targeted for international luxury markets; estimate their value across three points of sale; test relationships among extinction risk, high value, and body size; and quantify the effects of two mitigating factors: poaching fines and geographic range size. We find that body size is the principal driver of risk for lower value species, but that this biological pattern is eliminated above a value threshold, meaning that the most valuable species face a high extinction risk regardless of size. For example, once mean product values exceed US$12,557 kg(-1), body size no longer drives risk. Total value scales with size for marine animals more strongly than for terrestrial animals, incentivizing the hunting of large marine individuals and species. Poaching fines currently have little effect on extinction risk; fines would need to be increased 10- to 100-fold to be effective. Large geographic ranges reduce risk for terrestrial, but not marine, species, whose ranges are ten times greater. Our results underscore both the evolutionary and ecosystem consequences of targeting large marine animals and the need to geographically scale up and prioritize conservation of high-value marine species to avoid extinction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  4. Characterisation of DOC and its relation to the deep terrestrial biosphere

    Science.gov (United States)

    Vieth, Andrea; Vetter, Alexandra; Sachse, Anke; Horsfield, Brian

    2010-05-01

    The deep subsurface is populated by a large number of microorganisms playing a pivotal role in the carbon cycling. The question arises as to the origin of the potential carbon sources that support deep microbial communities and their possible interactions within the deep subsurface. As the carbon sources need to be dissolved in formation fluids to become available to microorganisms, the dissolved organic carbon (DOC) needs further characterisation as regards concentration, structural as well as molecular composition and origin. The Malm carbonates in the Molasse basin of southern Germany are of large economic potential as they are targets for both hydrocarbon and geothermal exploration (ANDREWS et al., 1987). Five locations that differ in their depth of the Malm aquifer between 220 m and 3445 m below surface have been selected for fluid sampling. The concentration and the isotopic composition of the DOC have been determined. To get a better insight into the structural composition of the DOC, we also applied size exclusion chromatography and quantified the amount of low molecular weight organic acids (LMWOA) by ion chromatography. With increasing depth of the aquifer the formation fluids show increasing salinity as chloride concentrations increase from 2 to 300 mg/l and also the composition of the DOC changes. Water samples from greater depth (>3000 m) showed that the DOC mainly consists of LMWOA (max. 83 %) and low percentages of neutral compounds (alcohols, aldehyde, ketones, amino acids) as well as "building blocks". Building blocks have been described to be the oxidation intermediates from humic substances to LMWOA. With decreasing depth of the aquifer, the DOC of the fluid becomes increasingly dominated by neutral compounds and the percentage of building blocks increases to around 27%. The fluid sample from 220 m depth still contains a small amount of humic substances. The DOC of formation fluids in some terrestrial sediments may originate from organic

  5. Ages and transit times as important diagnostics of model performance for predicting carbon dynamics in terrestrial vegetation models

    Science.gov (United States)

    Ceballos-Núñez, Verónika; Richardson, Andrew D.; Sierra, Carlos A.

    2018-03-01

    The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. These dynamics, as well as processes such as the mixing of old and newly fixed carbon, have been studied using ecosystem models, but different assumptions regarding the carbon allocation strategies and other model structures may result in highly divergent model predictions. We assessed the influence of three different carbon allocation schemes on the C cycling in vegetation. First, we described each model with a set of ordinary differential equations. Second, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find suitable parameters for the different model structures. And third, we calculated C stocks, release fluxes, radiocarbon values (based on the bomb spike), ages, and transit times. We obtained model simulations in accordance with the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed, and reduce model equifinality. Although the simulated C stocks in ecosystem compartments were similar, the different model structures resulted in very different predictions of age and transit time distributions. In particular, the inclusion of two storage compartments resulted in the prediction of a system mean age that was 12-20 years older than in the models with one or no storage compartments. The age of carbon in the wood compartment of this model was also distributed towards older ages, whereas fast cycling compartments had an age distribution that did not exceed 5 years. As expected, models with C distributed towards older ages also had longer transit times. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure

  6. Textural and isotopic evidence for Ca-Mg carbonate pedogenesis

    Science.gov (United States)

    Diaz-Hernandez, J. L.; Sánchez-Navas, A.; Delgado, A.; Yepes, J.; Garcia-Casco, A.

    2018-02-01

    Models for evaluating the terrestrial carbon cycle must take into account not only soil organic carbon, represented by a mixture of plant and animal remains, but also soil inorganic carbon, contained in minerals, mainly in calcite and dolomite. Thick soil caliches derived from weathering of mafic and ultramafic rocks must be considered as sinks for carbon storage in soils. The formation of calcite and dolomite from pedogenic alteration of volcanic tephras under an aridic moisture regime is studied in an unusually thick 3-m soil profile on Gran Canaria island (Canary Islands, Spain). The biological activity of the pedogenic environment (soil respiration) releases CO2 incorporated as dissolved inorganic carbon (DIC) in waters. It drives the formation of low-magnesian calcite and calcian dolomite over basaltic substrates, with a δ13C negative signature (-8 to -6‰ vs. V-PDB). Precipitation of authigenic carbonates in the soil is accompanied by the formation of Mg-rich clay minerals and quartz after the weathering of basalts. Mineralogical, textural, compositional, and isotopic variations throughout the soil profile studied indicate that dolomite formed at greater depths and earlier than the calcite. The isotopic signatures of the surficial calcite and deeper dolomite crusts are primary and resulted from the dissolution-precipitation cycles that led to the formation of both types of caliches under different physicochemical conditions. Dolomite formed within a clay-rich matrix through diffusive transport of reactants. It is precipitated from water with more negative δ18O values (-1.5 to -3.5‰ vs. V-SMOW) in the subsoil compared to those of water in equilibrium with surficial calcite. Thus, calcite precipitated after dolomite, and directly from percolating solutions in equilibrium with vadose water enriched in δ18O (-0.5 to +1.5‰) due to the evaporation processes. The accumulation of inorganic carbon reaches 586.1 kg m-2 in the soil studied, which means that the

  7. Optically and biologically active mussel protein-coated double-walled carbon nanotubes.

    Science.gov (United States)

    Jung, Yong Chae; Muramatsu, Hiroyuki; Fujisawa, Kazunori; Kim, Jin Hee; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S

    2011-12-02

    A method of dispersing strongly bundled double-walled carbon nanotubes (DWNTs) via a homogeneous coating of mussel protein in an aqueous solution is presented. Optical activity, mechanical strength, as well as electrical conductivity coming from the nanotubes and the versatile biological activity from the mussel protein make mussel-coated DWNTs promising as a multifunctional scaffold and for anti-fouling materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes

    NARCIS (Netherlands)

    Van der Wal, A.; Geydan, T.D.; Kuyper, T.W.; De Boer, W.

    2013-01-01

    Filamentous fungi are critical to the decomposition of terrestrial organic matter and, consequently, in the global carbon cycle. In particular, their contribution to degradation of recalcitrant lignocellulose complexes has been widely studied. In this review, we focus on the functioning of

  9. Behaviors of tritium in terrestrial biological system

    International Nuclear Information System (INIS)

    Inomata, Tsuyako

    1983-01-01

    The in vivo behaviors of HTO- 3 H in food chain models in experimental animals were described. Of pregnant mice that had ingested HTO and drinking water alone for 19 days, the total 3 H content in the tissue/wet weight was greater by 20% in fetuses and newborns than in mothers, and the proportion of tissue-bound 3 H was 8-24% in mothers and 3% in fetuses. The mean 3 H concentration in the free water in tissues was about 36% of ingested HTO. When only 3 H foods were ingested for 18 days, the total 3 H content in the tissue/wet weight showed no marked difference among the mother, fetuses and newborns, nor did the bound 3 H level show great differences. With respect to the tissue distribution of 3 H, only the incorporation rate by the mother's brain from HTO was satisfactory, whereas in other organs, the mother, fetuses and newborns showed higher incorporation rates from 3 H foods. The ratio of specific radioactivity of soft tissue 3 H in mothers to HTO in drinking water exceeded 1 only for the spleen, but other tissues showed no biological concentration. Again, no biological concentration was observed with 3 H foods. Environmental HTO did not result in biological concentration of 3 H in mother mice that had ingested 3 H foods, but 3 H was rather diluted. Tissues other than the spleen showed similar values of 3 H ingestion from environmental HTO through all routes. However, the proportion of bound 3 H in the total 3 H in the soft tissue was about 1.4-1.6 times that on ingestion of HTO alone. (Chiba, N.)

  10. Changing global carbon cycle

    International Nuclear Information System (INIS)

    Canadell, Pep

    2007-01-01

    Full text: The increase in atmospheric carbon dioxide (C02) is the single largest human perturbation on the earth's radiative balance contributing to climate change. Its rate of change reflects the balance between anthropogenic carbon emissions and the dynamics of a number of terrestrial and ocean processes that remove or emit C02. It is the long term evolution of this balance that will determine to large extent the speed and magnitude of the human induced climate change and the mitigation requirements to stabilise atmospheric C02 concentrations at any given level. In this talk, we show new trends in global carbon sources and sinks, with particularly focus on major shifts occurring since 2000 when the growth rate of atmospheric C02 has reached its highest level on record. The acceleration in the C02 growth results from the combination of several changes in properties of the carbon cycle, including: acceleration of anthropogenic carbon emissions; increased carbon intensity of the global economy, and decreased efficiency of natural carbon sinks. We discuss in more detail some of the possible causes of the reduced efficiency of natural carbon sinks on land and oceans, such as the decreased net sink in the Southern Ocean and on terrestrial mid-latitudes due to world-wide occurrence of drought. All these changes reported here characterise a carbon cycle that is generating stronger than expected climate forcing, and sooner than expected

  11. Joint control of terrestrial gross primary productivity by plant phenology and physiology

    DEFF Research Database (Denmark)

    Xia, Jianyang; Niu, Shuli; Ciais, Philippe

    2015-01-01

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of b...

  12. Banking carbon: A review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems

    Science.gov (United States)

    Nicholas A. Sutfin; Ellen E. Wohl; Kathleen A. Dwire

    2016-01-01

    Rivers are dynamic components of the terrestrial carbon cycle and provide important functions in ecosystem processes. Although rivers act as conveyers of carbon to the oceans, rivers also retain carbon within riparian ecosystems along floodplains, with potential for long-term (> 102 years) storage. Research in ecosystem processing emphasizes the...

  13. The changing global carbon cycle: Linking plant-soil carbon dynamics to global consequences

    Science.gov (United States)

    Chapin, F. S.; McFarland, J.; McGuire, David A.; Euskirchen, E.S.; Ruess, Roger W.; Kielland, K.

    2009-01-01

    Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition).

  14. Potential effects of ongoing and proposed hydropower development on terrestrial biological diversity in the Indian Himalaya.

    Science.gov (United States)

    Pandit, Maharaj K; Grumbine, R Edward

    2012-12-01

    Indian Himalayan basins are earmarked for widespread dam building, but aggregate effects of these dams on terrestrial ecosystems are unknown. We mapped distribution of 292 dams (under construction and proposed) and projected effects of these dams on terrestrial ecosystems under different scenarios of land-cover loss. We analyzed land-cover data of the Himalayan valleys, where dams are located. We estimated dam density on fifth- through seventh-order rivers and compared these estimates with current global figures. We used a species-area relation model (SAR) to predict short- and long-term species extinctions driven by deforestation. We used scatter plots and correlation studies to analyze distribution patterns of species and dams and to reveal potential overlap between species-rich areas and dam sites. We investigated effects of disturbance on community structure of undisturbed forests. Nearly 90% of Indian Himalayan valleys would be affected by dam building and 27% of these dams would affect dense forests. Our model projected that 54,117 ha of forests would be submerged and 114,361 ha would be damaged by dam-related activities. A dam density of 0.3247/1000 km(2) would be nearly 62 times greater than current average global figures; the average of 1 dam for every 32 km of river channel would be 1.5 times higher than figures reported for U.S. rivers. Our results show that most dams would be located in species-rich areas of the Himalaya. The SAR model projected that by 2025, deforestation due to dam building would likely result in extinction of 22 angiosperm and 7 vertebrate taxa. Disturbance due to dam building would likely reduce tree species richness by 35%, tree density by 42%, and tree basal cover by 30% in dense forests. These results, combined with relatively weak national environmental impact assessment and implementation, point toward significant loss of species if all proposed dams in the Indian Himalaya are constructed. ©2012 Society for Conservation

  15. Vegetation change and terrestrial carbon storage in eastern Asia during the Last Glacial Maximum as indicated by a new pollen record from central Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Liew, P.M.; Kuo, C.M.; Huang, S.Y.; Tseng, M.H. [Geological Department, National Taiwan Univ. 245, Chou-shan Rd., Taipei (Taiwan, Province of China)

    1998-05-01

    Last Glacial Maximum (LGM) carbon storage in eastern Asia is a key issue for understanding the sinks and sources of paleocarbon. Palynological data with good time constraint for the LGM in a peat bog from a site at 650 m above mean sea level in central Taiwan, together with data from low-lying deltaic and basin deposits of Taiwan and South China, increase our understanding about vegetational evolution and possible terrestrial carbon storage in this area and probably eastern Asia. Contrasting to today`s Machilus-Castanopsis forest zone around the peat bog, the vegetation before the LGM was dominated by Alnus, a relatively xerophytic element in Taiwan. An increase in herbs and decrease in spores during the LGM is recognized when compared with Holocene and modern assemblages. A less humid interval dominated by herbs (>50%) occurred between 21 and 15.8 ka. Basin deposits in northern Taiwan and deltaic deposits in central Taiwan show that during the LGM Artemisia, Umbelliferae and Gramineae were the main components contrasting with the Pinus or Cyclobalanopsis-dominant assemblages in the rest of the last glacial. Thus, less humid conditions lasted about 5000 to 6000 years in the LGM even on this very humid island. This may also be true in eastern Asia where a large area of the widely exposed continental shelf may have been occupied by grasslands and the uplands of South China were occupied by less dense coniferous or temperate forests during the LGM in contrast to the modern subtropical forest. This scenario improves our understanding of the terrestrial paleocarbon storage

  16. Vegetation change and terrestrial carbon storage in eastern Asia during the Last Glacial Maximum as indicated by a new pollen record from central Taiwan

    Science.gov (United States)

    Liew, P. M.; Kuo, C. M.; Huang, S. Y.; Tseng, M. H.

    1998-05-01

    Last Glacial Maximum (LGM) carbon storage in eastern Asia is a key issue for understanding the sinks and sources of paleocarbon. Palynological data with good time constraint for the LGM in a peat bog from a site at 650 m above mean sea level in central Taiwan, together with data from low-lying deltaic and basin deposits of Taiwan and South China, increase our understanding about vegetational evolution and possible terrestrial carbon storage in this area and probably eastern Asia. Contrasting to today's Machilus-Castanopsis forest zone around the peat bog, the vegetation before the LGM was dominated by Alnus, a relatively xerophytic element in Taiwan. An increase in herbs and decrease in spores during the LGM is recognized when compared with Holocene and modern assemblages. A less humid interval dominated by herbs (>50%) occurred between 21 and 15.8 ka. Basin deposits in northern Taiwan and deltaic deposits in central Taiwan show that during the LGM Artemisia, Umbelliferae and Gramineae were the main components contrasting with the Pinus or Cyclobalanopsis-dominant assemblages in the rest of the last glacial. Thus, less humid conditions lasted about 5000 to 6000 years in the LGM even on this very humid island. This may also be true in eastern Asia where a large area of the widely exposed continental shelf may have been occupied by grasslands and the uplands of South China were occupied by less dense coniferous or temperate forests during the LGM in contrast to the modern subtropical forest. This scenario improves our understanding of the terrestrial paleocarbon storage.

  17. Comparison of Biological Effectiveness of Carbon-Ion Beams in Japan and Germany

    International Nuclear Information System (INIS)

    Uzawa, Akiko; Ando, Koichi; Koike, Sachiko; Furusawa, Yoshiya; Matsumoto, Yoshitaka; Takai, Nobuhiko; Hirayama, Ryoichi; Watanabe, Masahiko; Scholz, Michael; Elsaesser, Thilo; Peschke, Peter

    2009-01-01

    Purpose: To compare the biological effectiveness of 290 MeV/amu carbon-ion beams in Chiba, Japan and in Darmstadt, Germany, given that different methods for beam delivery are used for each. Methods and Materials: Murine small intestine and human salivary gland tumor (HSG) cells exponentially growing in vitro were irradiated with 6-cm width of spread-out Bragg peaks (SOBPs) adjusted to achieve nearly identical beam depth-dose profiles at the Heavy-Ion Medical Accelerator in Chiba, and the SchwerIonen Synchrotron in Darmstadt. Cell kill efficiencies of carbon ions were measured by colony formation for HSG cells and jejunum crypts survival in mice. Cobalt-60 γ rays were used as the reference radiation. Isoeffective doses at given survivals were used for relative biological effectiveness (RBE) calculations and interinstitutional comparisons. Results: Isoeffective D 10 doses (mean ± standard deviation) of HSG cells ranged from 2.37 ± 0.14 Gy to 3.47 ± 0.19 Gy for Chiba and from 2.31 ± 0.11 Gy to 3.66 ± 0.17 Gy for Darmstadt. Isoeffective D 10 doses of gut crypts after single doses ranged from 8.25 ± 0.17 Gy to 10.32 ± 0.14 Gy for Chiba and from 8.27 ± 0.10 Gy to 10.27 ± 0.27 Gy for Darmstadt, whereas isoeffective D 30 doses after three fractionated doses were 9.89 ± 0.17 Gy through 13.70 ± 0.54 Gy and 10.14 ± 0.20 Gy through 13.30 ± 0.41 Gy for Chiba and Darmstadt, respectively. Overall difference of RBE between the two facilities was 0-5% or 3-7% for gut crypt survival or HSG cell kill, respectively. Conclusion: The carbon-ion beams at the National Institute of Radiological Sciences in Chiba, Japan and the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany are biologically identical after single and daily fractionated irradiation.

  18. Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems

    Science.gov (United States)

    Victor Resco de Dios; Michael L. Goulden; Kiona Ogle; Andrew D. Richardson; David Y. Hollinger; Eric A. Davidson; Josu G. Alday; Greg A. Barron-Gafford; Arnaud Carrara; Andrew S. Kowalski; Walt C. Oechel; Borja R. Reverter; Russell L. Scott; Ruth K. Varner; Ruben Diaz-Sierra; Jose M. Moreno

    2012-01-01

    It is often assumed that daytime patterns of ecosystem carbon assimilation are mostly driven by direct physiological responses to exogenous environmental cues. Under limited environmental variability, little variation in carbon assimilation should thus be expected unless endogenous plant controls on carbon assimilation, which regulate photosynthesis in time, are active...

  19. The emergence and early evolution of biological carbon-fixation.

    Science.gov (United States)

    Braakman, Rogier; Smith, Eric

    2012-01-01

    The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more

  20. The emergence and early evolution of biological carbon-fixation.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology

  1. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices

    Directory of Open Access Journals (Sweden)

    Lee JA

    2015-03-01

    Full Text Available Jeong-A Lee,1,* Mi-Kyung Kim,1,* Hyoung-Mi Kim,2,* Jong Kwon Lee,3 Jayoung Jeong,4 Young-Rok Kim,5 Jae-Min Oh,2 Soo-Jin Choi1 1Department of Food Science and Technology, Seoul Women’s University, Seoul, Republic of Korea; 2Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Republic of Korea; 3Hazard Substances Analysis Division, Gwangju Regional Food and Drug Administration, Ministry of Food and Drug Safety, Gwangju, Republic of Korea; 4Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungcheongbuk-do, Republic of Korea; 5Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea *These authors contributed equally to this work Background: Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics.Methods: We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m2/g, respectively on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats.Results: N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen

  2. Environmental setting for biological variability at PTEPBN project of West Kalimantan

    International Nuclear Information System (INIS)

    Suwadji, E.; Endrawanto

    1995-01-01

    Biological variability was needed in the arrangement of environmental evaluation study on term of environmental impact assessment. The activity was carried out at PTEPBN project to find out and to predict the environmental setting of outgoing and ongoing project as well as the project operational after post construction. Methods to find out the environmental setting on biological variability were proposed. Based on the observation data on its terrestrial and aquatic flora and fauna, it can be concluded that terrestrial flora was found at fair to good value, terrestrial fauna at fair to good whereas aquatic flora and fauna at good. (author). 8 refs, 7 tabs, 1 fig

  3. Evaluation of carbon-14 (C14) levels of terrestrial and marine food products of the environment of the site of Cogema La Hague

    International Nuclear Information System (INIS)

    2006-04-01

    This evaluation has for object to inform about the levels in carbon 14 in the environment of the factories of La Hague. Two sectors were differentiated on one hand the terrestrial environment, and on the other hand the marine environment. The investigations concerned first and foremost food products stemming as the vegetable culture (vegetables) or individual breeding (milk, eggs) but also foodstuffs stemming from the local agriculture (cereal). In touch with the second sector, the marine environment, the sampling concerned the accessible products of the sea by all and those locally marketed (fishes, molluscs, shellfishes). The different results are presented in tables. (N.C.)

  4. Preparation and characterization of Tribulus terrestris-loaded nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Khanavi*

    2017-11-01

    Full Text Available Background and objectives: Tribulus terrestris is a flowering herb (Zygophyllaceae with several properties in folk medicine such as diuretic, tonic, aphrodisiac, analgesic, astringent, and stomachic-lithotripter activities. Although, some extracts and phytochemicals represent excellent bio-activity in vitro, less or no in vivo activity is observed due to their improper molecular size. The intend of this research was investigation of the feasibility of encapsulating T. terrestris into [poly (lactic-co-glycolic acid] PLGA nanoparticles. Methods: Aerial parts of the plant were extracted with aqueous ethanol 85% by percolation apparatus. The nanoparticles of T. terrestris-loaded were prepared using a modified simultaneous double-emulsion solvent evaporation/diffusion method. Elucidations were made on the basis of scanning electron microscopy (SEM and differential scanning calorimetry (DSC. The content of nanoparticles was analyzed by HPLC with indirect method. Results: The results stated that increasing the portion of plant extract could cause bigger size with no considerable increase in polydispersity index (PDI. The encapsulation efficiency of T. terrestris-loaded nanoparticles was 40.3 to 78.5 and the drug loadings were 0.806 to 6.104, with different ratios of extract. The overall pattern of the release in SDS 1% in dialysis bag in all formulations showed similar and biphasic release kinetic, an initial burst release in the first day followed by constant release over 10 days. Conclusion: An effective approach for the preparation of T. terrestris-loaded PLGA nanoparticles was performed. The controlled release profile showed that these biodegradable PLGA nanoparticles had great potential and should be given particular consideration in further biological researches.

  5. Plant functional traits and soil carbon sequestration in contrasting biomes.

    NARCIS (Netherlands)

    De Deyn, G.B.; Cornelissen, J.H.C.; Bardgett, R.D.

    2008-01-01

    Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its

  6. Mechanisms of carbon storage in mountainous headwater rivers

    Science.gov (United States)

    Ellen Wohl; Kathleen Dwire; Nicholas Sutfin; Lina Polvi; Roberto Bazan

    2012-01-01

    Published research emphasizes rapid downstream export of terrestrial carbon from mountainous headwater rivers, but little work focuses on mechanisms that create carbon storage along these rivers, or on the volume of carbon storage. Here we estimate organic carbon stored in diverse valley types of headwater rivers in Rocky Mountain National Park, CO, USA. We show that...

  7. Connecting the Mississippi River with Carbon Variability in the Gulf of Mexico

    Science.gov (United States)

    Xue, Z. G.; He, R.; Fennel, K.; Cai, W. J.; Lohrenz, S. E.; Huang, W. J.; Tian, H.; Ren, W.

    2016-02-01

    To understand the linkage between landuse/land-cover change within the Mississippi basin and the carbon dynamics in the Gulf of Mexico, a three-dimensional coupled physical-biogeochemical model was used to the examine temporal and spatial variability of surface ocean pCO2 in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and freshwater and terrestrial nutrient and carbon input from major rivers provided by the Dynamic Land Ecosystem Model (DLEM). A seven-year model hindcast (2004-2010) was performed and was validated against the recently updated Lamont-Doherty Earth Observatory global ocean carbon dataset. Model simulated seawater pCO2 and air-sea CO2 flux are in good agreement with in-situ measurements. An inorganic carbon budget was estimated based on the multi-year mean of the model results. Overall, the GoM is a sink of atmospheric CO2 with a flux of 0.92 × 1012 mol C yr-1, which, together with the enormous fluvial carbon input, is balanced by carbon export through the Loop Current. In a sensitivity experiment with all biological sources and sinks of carbon disabled surface pCO2 was elevated by 70 ppm, suggesting that biological uptake is the most important reason for the simulated CO2 sink. The impact from landuse and land-cover changes within the Mississippi River basin on coastal pCO2 dynamics is also discussed based on a scenario run driven by river conditions during the 1904-1910 provided by the DLEM model.

  8. Terrestrial ecology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The main effort of the Terrestrial Ecology Division has been redirected to a comprehensive study of the Espiritu Santo Drainage Basin located in northeastern Puerto Rico. The general objective are to provide baseline ecological data for future environmental assessment studies at the local and regional levels, and to provide through an ecosystem approach data for the development of management alternatives for the wise utilization of energy, water, and land resources. The interrelationships among climate, vegetation, soils, and man, and their combined influence upon the hydrologic cycle will be described and evaluated. Environmental management involves planning and decision making, and both require an adequate data base. At present, little is known about the interworkings of a complete, integrated system such as a drainage basin. A literature survey of the main research areas confirmed that, although many individual ecologically oriented studies have been carried out in a tropical environment, few if any provide the data base required for environmental management. In view of rapidly changing socio-economic conditions and natural resources limitations, management urgently requires data from these systems: physical (climatological), biological, and cultural. This integrated drainage basin study has been designed to provide such data. The scope of this program covers the hydrologic cycle as it is affected by the interactions of the physical, biological, and cultural systems

  9. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, D. J.; Cooley, S. R.; Alin, S. R.; Brown, M. E.; Butman, D. E.; French, N. H. F.; Johnson, Z. I.; Keppel-Aleks, G.; Lohrenz, S. E.; Ocko, I.; Shadwick, E. H.; Sutton, A. J.; Potter, C. S.; Yu, R. M. S.

    2016-12-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  10. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, David J.; Cooley, Sarah R.; Alin, Simone R.; Brown, Molly; Butman, David E.; French, Nancy H. F.; Johnson, Zackary I.; Keppel-Aleks; Lohrenz, Steven E.; Ocko, Ilissa; hide

    2016-01-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  11. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen

    Science.gov (United States)

    Cole, J.J.; Carpenter, S.R.; Kitchell, J.; Pace, M.L.; Solomon, C.T.; Weidel, B.

    2011-01-01

    Cross-ecosystem subsidies to food webs can alter metabolic balances in the receiving (subsidized) system and free the food web, or particular consumers, from the energetic constraints of local primary production. Although cross-ecosystem subsidies between terrestrial and aquatic systems have been well recognized for benthic organisms in streams, rivers, and the littoral zones of lakes, terrestrial subsidies to pelagic consumers are more difficult to demonstrate and remain controversial. Here, we adopt a unique approach by using stable isotopes of H, C, and N to estimate terrestrial support to zooplankton in two contrasting lakes. Zooplankton (Holopedium, Daphnia, and Leptodiaptomus) are comprised of ???20-40% of organic material of terrestrial origin. These estimates are as high as, or higher than, prior measures obtained by experimentally manipulating the inorganic 13C content of these lakes to augment the small, natural contrast in 13C between terrestrial and algal photosynthesis. Our study gives credence to a growing literature, which we review here, suggesting that significant terrestrial support of pelagic crustaceans (zooplankton) is widespread.

  12. Soil Organic Carbon assessment on two different forest management

    Science.gov (United States)

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón

    2017-04-01

    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  13. Potentials, consequences and trade-offs of terrestrial carbon dioxide removal. Strategies for climate engineering and their limitations

    Energy Technology Data Exchange (ETDEWEB)

    Boysen, Lena R.

    2017-01-17

    For hundreds of years, humans have engineered the planet to fulfil their need for increasing energy consumption and production. Since the industrial revolution, one consequence are rising global mean temperatures which could change by 2 C to 4.5 C until 2100 if mitigation enforcement of CO{sub 2} emissions fails.To counteract this projected global warming, climate engineering techniques aim at intendedly cooling Earth's climate for example through terrestrial carbon dioxide removal (tCDR) which is commonly perceived as environmentally friendly. Here, tCDR refers to the establishment of large-scale biomass plantations (BPs) in combination with the production of long-lasting carbon products such as bioenergy with carbon capture and storage or biochar. This thesis examines the potentials and possible consequences of tCDR by analysing land-use scenarios with different spatial and temporal scales of BPs using an advanced biosphere model forced by varying climate projections. These scenario simulations were evaluated with focus on their carbon sequestration potentials, trade-offs with food production and impacts on natural ecosystems and climate itself. Synthesised, the potential of tCDR to permanently extract CO{sub 2} out of the atmosphere is found to be small, regardless of the emission scenario, the point of onset or the spatial extent. On the contrary, the aforementioned trade-offs and impacts are shown to be unfavourable in most cases. In a high emission scenario with a late onset of BPs (i.e. around 2050), even unlimited area availability for tCDR could not reverse past emissions sufficiently, e.g. BPs covering 25% of all agricultural or natural land could delay 2100's carbon budget by no more than two or three decades (equivalent to ∼550 or 800 GtC tCDR), respectively. However, simultaneous emission reductions and an earlier establishment of BPs (i.e. around 2035) could result in strong carbon extractions reversing past emissions (e.g. six or eight

  14. Potentials, consequences and trade-offs of terrestrial carbon dioxide removal. Strategies for climate engineering and their limitations

    International Nuclear Information System (INIS)

    Boysen, Lena R.

    2017-01-01

    For hundreds of years, humans have engineered the planet to fulfil their need for increasing energy consumption and production. Since the industrial revolution, one consequence are rising global mean temperatures which could change by 2 C to 4.5 C until 2100 if mitigation enforcement of CO_2 emissions fails.To counteract this projected global warming, climate engineering techniques aim at intendedly cooling Earth's climate for example through terrestrial carbon dioxide removal (tCDR) which is commonly perceived as environmentally friendly. Here, tCDR refers to the establishment of large-scale biomass plantations (BPs) in combination with the production of long-lasting carbon products such as bioenergy with carbon capture and storage or biochar. This thesis examines the potentials and possible consequences of tCDR by analysing land-use scenarios with different spatial and temporal scales of BPs using an advanced biosphere model forced by varying climate projections. These scenario simulations were evaluated with focus on their carbon sequestration potentials, trade-offs with food production and impacts on natural ecosystems and climate itself. Synthesised, the potential of tCDR to permanently extract CO_2 out of the atmosphere is found to be small, regardless of the emission scenario, the point of onset or the spatial extent. On the contrary, the aforementioned trade-offs and impacts are shown to be unfavourable in most cases. In a high emission scenario with a late onset of BPs (i.e. around 2050), even unlimited area availability for tCDR could not reverse past emissions sufficiently, e.g. BPs covering 25% of all agricultural or natural land could delay 2100's carbon budget by no more than two or three decades (equivalent to ∼550 or 800 GtC tCDR), respectively. However, simultaneous emission reductions and an earlier establishment of BPs (i.e. around 2035) could result in strong carbon extractions reversing past emissions (e.g. six or eight decades or ∼500 or

  15. Quantifying Standing Dead Tree Volume and Structural Loss with Voxelized Terrestrial Lidar Data

    Science.gov (United States)

    Popescu, S. C.; Putman, E.

    2017-12-01

    Standing dead trees (SDTs) are an important forest component and impact a variety of ecosystem processes, yet the carbon pool dynamics of SDTs are poorly constrained in terrestrial carbon cycling models. The ability to model wood decay and carbon cycling in relation to detectable changes in tree structure and volume over time would greatly improve such models. The overall objective of this study was to provide automated aboveground volume estimates of SDTs and automated procedures to detect, quantify, and characterize structural losses over time with terrestrial lidar data. The specific objectives of this study were: 1) develop an automated SDT volume estimation algorithm providing accurate volume estimates for trees scanned in dense forests; 2) develop an automated change detection methodology to accurately detect and quantify SDT structural loss between subsequent terrestrial lidar observations; and 3) characterize the structural loss rates of pine and oak SDTs in southeastern Texas. A voxel-based volume estimation algorithm, "TreeVolX", was developed and incorporates several methods designed to robustly process point clouds of varying quality levels. The algorithm operates on horizontal voxel slices by segmenting the slice into distinct branch or stem sections then applying an adaptive contour interpolation and interior filling process to create solid reconstructed tree models (RTMs). TreeVolX estimated large and small branch volume with an RMSE of 7.3% and 13.8%, respectively. A voxel-based change detection methodology was developed to accurately detect and quantify structural losses and incorporated several methods to mitigate the challenges presented by shifting tree and branch positions as SDT decay progresses. The volume and structural loss of 29 SDTs, composed of Pinus taeda and Quercus stellata, were successfully estimated using multitemporal terrestrial lidar observations over elapsed times ranging from 71 - 753 days. Pine and oak structural loss rates

  16. Production of biodiesel from microalgae through biological carbon capture: a review.

    Science.gov (United States)

    Mondal, Madhumanti; Goswami, Shrayanti; Ghosh, Ashmita; Oinam, Gunapati; Tiwari, O N; Das, Papita; Gayen, K; Mandal, M K; Halder, G N

    2017-06-01

    Gradual increase in concentration of carbon dioxide (CO 2 ) in the atmosphere due to the various anthropogenic interventions leading to significant alteration in the global carbon cycle has been a subject of worldwide attention and matter of potential research over the last few decades. In these alarming scenario microalgae seems to be an attractive medium for capturing the excess CO 2 present in the atmosphere generated from different sources such as power plants, automobiles, volcanic eruption, decomposition of organic matters and forest fires. This captured CO 2 through microalgae could be used as potential carbon source to produce lipids for the generation of biofuel for replacing petroleum-derived transport fuel without affecting the supply of food and crops. This comprehensive review strives to provide a systematic account of recent developments in the field of biological carbon capture through microalgae for its utilization towards the generation of biodiesel highlighting the significance of certain key parameters such as selection of efficient strain, microalgal metabolism, cultivation systems (open and closed) and biomass production along with the national and international biodiesel specifications and properties. The potential use of photobioreactors for biodiesel production under the influence of various factors viz., light intensity, pH, time, temperature, CO 2 concentration and flow rate has been discussed. The review also provides an economic overview and future outlook on biodiesel production from microalgae.

  17. Pizza or Pancake? Formation Models of Gas Escape Biosignatures in Terrestrial and Martian Sediments

    Science.gov (United States)

    Bonaccorsi, R.; Fairen, A. G.; Baker, L.; McKay, C. P.; Willson, D.

    2016-05-01

    Fine-grained sedimentary hollowed structures were imaged in Gale Crater, but no biomarkers identified to support biology. Our observation-based (gas escape) terrestrial model could inform on possible martian paleoenvironments at time of formation.

  18. Shifts in nitrogen acquisition strategies enable enhanced terrestrial carbon storage under elevated CO2 in a global model

    Science.gov (United States)

    Sulman, B. N.; Brzostek, E. R.; Menge, D.; Malyshev, S.; Shevliakova, E.

    2017-12-01

    Earth System Model (ESM) projections of terrestrial carbon (C) uptake are critical to understanding the future of the global C cycle. Current ESMs include intricate representations of photosynthetic C fixation in plants, allowing them to simulate the stimulatory effect of increasing atmospheric CO2 levels on photosynthesis. However, they lack sophisticated representations of plant nutrient acquisition, calling into question their ability to project the future land C sink. We conducted simulations using a new model of terrestrial C and nitrogen (N) cycling within the Geophysical Fluid Dynamics Laboratory (GFDL) global land model LM4 that uses a return on investment framework to simulate global patterns of N acquisition via fixation of N2 from the atmosphere, scavenging of inorganic N from soil solution, and mining of organic N from soil organic matter (SOM). We show that these strategies drive divergent C cycle responses to elevated CO2 at the ecosystem scale, with the scavenging strategy leading to N limitation of plant growth and the mining strategy facilitating stimulation of plant biomass accumulation over decadal time scales. In global simulations, shifts in N acquisition from inorganic N scavenging to organic N mining along with increases in N fixation supported long-term acceleration of C uptake under elevated CO2. Our results indicate that the ability of the land C sink to mitigate atmospheric CO2 levels is tightly coupled to the functional diversity of ecosystems and their capacity to change their N acquisition strategies over time. Incorporation of these mechanisms into ESMs is necessary to improve confidence in model projections of the global C cycle.

  19. Studying Antarctic Ordinary Chondrite (OC) and Miller Range (MIL) Nakhlite Meteorites to Assess Carbonate Formation on Earth and Mars

    Science.gov (United States)

    Evans, Michael Ellis

    Carbonates are found in meteorites collected from Antarctica. The stable isotope composition of these carbonates records their formation environment on either Earth or Mars. The first research objective of this dissertation is to characterize the delta18O and delta 13C values of terrestrial carbonates formed on Ordinary Chondrites (OCs) collected in regions near known martian meteorites. The second objective is to characterize the delta18O and delta13C values of martian carbonates from Nakhlites collected from the Miller Range (MIL). The third objective is to assess environmental changes on Mars since the Noachian period. The OCs selected had no pre-terrestrial carbonates so any carbonates detected are presumed terrestrial in origin. The study methodology is stepped extraction of CO2 created from phosphoric acid reaction with meteorite carbonate. Stable isotope results show that two distinct terrestrial carbonate species (Ca-rich and Fe/Mg-rich) formed in Antarctica on OCs from a thin-film of meltwater containing dissolved CO2. Carbon isotope data suggests the terrestrial carbonates formed in equilibrium with atmospheric CO2 delta 13C = -7.5‰ at >15°C. The wide variation in delta 18O suggests the carbonates did not form in equilibrium with meteoric water alone, but possibly formed from an exchange of oxygen isotopes in both water and dissolved CO2. Antarctica provides a model for carbonate formation in a low water/rock ratio, near 0°C environment like modern Mars. Nakhlite parent basalt formed on Mars 1.3 billion years ago and the meteorites were ejected by a single impact approximately 11 million years ago. They traveled thru space before eventually falling to the Earth surface 10,000-40,000 years ago. Nakhlite samples for this research were all collected from the Miller Range (MIL) in Antarctica. The Nakhlite stable isotope results show two carbonate species (Ca-rich and Fe/Mg-rich) with a range of delta18O values that are similar to the terrestrial OC

  20. Update on terrestrial ecological classification in the highlands of West Virginia

    Science.gov (United States)

    James P. Vanderhorst

    2010-01-01

    The West Virginia Natural Heritage Program (WVNHP) maintains databases on the biological diversity of the state, including species and natural communities, to help focus conservation efforts by agencies and organizations. Information on terrestrial communities (also called vegetation, or habitat, depending on user or audience focus) is maintained in two databases. The...

  1. The effect of fibronectin on structural and biological properties of single walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mottaghitalab, Fatemeh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Farokhi, Mehdi [National cell bank of Iran, Pasteur Institute, Tehran (Iran, Islamic Republic of); Atyabi, Fatemeh [Department of Pharmaceutical Nanoechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Omidvar, Ramin [Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National cell bank of Iran, Pasteur Institute, Tehran (Iran, Islamic Republic of); Sadeghizadeh, Majid, E-mail: sadeghma@modares.ac.ir [Department Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2015-06-01

    Highlights: • Increasing the cytocompatibility of single walled carbon nanotube by loading fibronectin. • Enhancing the hydrophilicity and nanosurface roughness of single walled carbon nanotube after loading fibronectin. • Fibronectin makes the surface properties of single walled carbon nanotube more suitable for cell proliferation and growth. - Abstract: Despite the attractive properties of carbon nanotubes (CNTs), cytoxicity and hydrophobicity are two main considerable features which limit their application in biomedical fields. It was well established that treating CNTs with extracellular matrix components could reduce these unfavourable characteristics. In an attempt to address these issues, fibronectin (FN) with different concentrations was loaded on single walled carbon nanotubes (SWCNTs) substrate. Scanning electron microscope, atomic force microscopy (AFM), contact angles and X-ray photoelectron spectroscopy (XPS) were preformed in order to characterize FN loaded SWCNTs substrates. According to XPS and AFM results, FN could interact with SWCNTs and for this, the hydrophilicity of SWCNTs was improved. Additionally, SWCNT modified with FN showed less cytotoxicity compared with neat SWCNT. Finally, FN was shown to act as an interesting extracellular component for enhancing the biological properties of SWCNT.

  2. The effect of fibronectin on structural and biological properties of single walled carbon nanotube

    International Nuclear Information System (INIS)

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Atyabi, Fatemeh; Omidvar, Ramin; Shokrgozar, Mohammad Ali; Sadeghizadeh, Majid

    2015-01-01

    Highlights: • Increasing the cytocompatibility of single walled carbon nanotube by loading fibronectin. • Enhancing the hydrophilicity and nanosurface roughness of single walled carbon nanotube after loading fibronectin. • Fibronectin makes the surface properties of single walled carbon nanotube more suitable for cell proliferation and growth. - Abstract: Despite the attractive properties of carbon nanotubes (CNTs), cytoxicity and hydrophobicity are two main considerable features which limit their application in biomedical fields. It was well established that treating CNTs with extracellular matrix components could reduce these unfavourable characteristics. In an attempt to address these issues, fibronectin (FN) with different concentrations was loaded on single walled carbon nanotubes (SWCNTs) substrate. Scanning electron microscope, atomic force microscopy (AFM), contact angles and X-ray photoelectron spectroscopy (XPS) were preformed in order to characterize FN loaded SWCNTs substrates. According to XPS and AFM results, FN could interact with SWCNTs and for this, the hydrophilicity of SWCNTs was improved. Additionally, SWCNT modified with FN showed less cytotoxicity compared with neat SWCNT. Finally, FN was shown to act as an interesting extracellular component for enhancing the biological properties of SWCNT

  3. Mexican forest inventory expands continental carbon monitoring

    Science.gov (United States)

    Alberto Sandoval Uribe; Sean. P. Healey; Gretchen G. Moisen; Rigoberto Palafox Rivas; Enrique Gonzalez Aguilar; Carmen Lourdes Meneses Tovar; Ernesto S. Diaz Ponce Davalos; Vanessa Silva Mascorro

    2008-01-01

    The terrestrial ecosystems of the North American continent represent a large reservoir of carbon and a potential sink within the global carbon cycle. The recent State of the Carbon Cycle Report [U.S. Climate Change Science Program (CCSP), 2007] identified the critical role these systems may play in mitigating effects of greenhouse gases emitted from fossil fuel...

  4. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic

    KAUST Repository

    Al Rowaihi, Israa; Kick, Benjamin; Grö tzinger, Stefan W.; Burger, Christian; Karan, Ram; Weuster-Botz, Dirk; Eppinger, Jö rg; Arold, Stefan T.

    2018-01-01

    The fermentation of carbon dioxide (CO2) with hydrogen (H2) uses available low-cost gases to synthesis acetic acid. Here, we present a two-stage biological process that allows the gas to liquid transfer (Bio-GTL) of CO2 into the biopolymer

  5. Carbon Issues Task Force Report for the Idaho Strategic Energy Alliance

    Energy Technology Data Exchange (ETDEWEB)

    Travis L. Mcling

    2010-10-01

    The Carbon Issues Task Force has the responsibility to evaluate emissions reduction and carbon offset credit options, geologic carbon sequestration and carbon capture, terrestrial carbon sequestration on forest lands, and terrestrial carbon sequestration on agricultural lands. They have worked diligently to identify ways in which Idaho can position itself to benefit from potential carbon-related federal legislation, including identifying opportunities for Idaho to engage in carbon sequestration efforts, barriers to development of these options, and ways in which these barriers can be overcome. These are the experts to which we will turn when faced with federal greenhouse gas-related legislation and how we should best react to protect and provide for Idaho’s interests. Note that the conclusions and recommended options in this report are not intended to be exhaustive, but rather form a starting point for an informed dialogue regarding the way-forward in developing Idaho energy resources.

  6. The "Wow! signal" of the terrestrial genetic code

    Science.gov (United States)

    shCherbak, Vladimir I.; Makukov, Maxim A.

    2013-05-01

    It has been repeatedly proposed to expand the scope for SETI, and one of the suggested alternatives to radio is the biological media. Genomic DNA is already used on Earth to store non-biological information. Though smaller in capacity, but stronger in noise immunity is the genetic code. The code is a flexible mapping between codons and amino acids, and this flexibility allows modifying the code artificially. But once fixed, the code might stay unchanged over cosmological timescales; in fact, it is the most durable construct known. Therefore it represents an exceptionally reliable storage for an intelligent signature, if that conforms to biological and thermodynamic requirements. As the actual scenario for the origin of terrestrial life is far from being settled, the proposal that it might have been seeded intentionally cannot be ruled out. A statistically strong intelligent-like "signal" in the genetic code is then a testable consequence of such scenario. Here we show that the terrestrial code displays a thorough precision-type orderliness matching the criteria to be considered an informational signal. Simple arrangements of the code reveal an ensemble of arithmetical and ideographical patterns of the same symbolic language. Accurate and systematic, these underlying patterns appear as a product of precision logic and nontrivial computing rather than of stochastic processes (the null hypothesis that they are due to chance coupled with presumable evolutionary pathways is rejected with P-value < 10-13). The patterns are profound to the extent that the code mapping itself is uniquely deduced from their algebraic representation. The signal displays readily recognizable hallmarks of artificiality, among which are the symbol of zero, the privileged decimal syntax and semantical symmetries. Besides, extraction of the signal involves logically straightforward but abstract operations, making the patterns essentially irreducible to any natural origin. Plausible ways of

  7. Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater.

    Science.gov (United States)

    Sbardella, Luca; Comas, Joaquim; Fenu, Alessio; Rodriguez-Roda, Ignasi; Weemaes, Marjoleine

    2018-04-28

    Through their release of effluents, conventional wastewater treatment plants (WWTPs) represent a major pollution point sources for pharmaceutically active compounds (PhACs) in water bodies. The combination of a biological activated carbon (BAC) filter coupled with an ultrafiltration (UF) unit was evaluated as an advanced treatment for PhACs removal at pilot scale. The BAC-UF pilot plant was monitored for one year. The biological activity of the biofilm that developed on the granular activated carbon (GAC) particles and the contribution of this biofilm to the overall removal of PhACs were evaluated. Two different phases were observed during the long-term monitoring of PhACs removal. During the first 9200 bed volumes (BV; i.e., before GAC saturation), 89, 78, 83 and 79% of beta-blockers, psychiatric drugs, antibiotics and a mix of other therapeutic groups were removed, respectively. The second phase was characterized by deterioration of the overall performances during the period between 9200 and 13,800 BV. To quantify the respective contribution of adsorption and biodegradation, a lab-scale setup was operated for four months and highlighted the essential role played by GAC in biofiltration units. Physical adsorption was indeed the main removal mechanism. Nevertheless, a significant contribution due to biological activity was detected for some PhACs. The biofilm contributed to the removal of 22, 25, 30, 32 and 35% of ciprofloxacin, bezafibrate, ofloxacin, azithromycin and sulfamethoxazole, respectively. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  9. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.

    Science.gov (United States)

    Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M

    2015-01-01

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants

  10. Deposition and benthic mineralization of organic carbon

    DEFF Research Database (Denmark)

    Nordi, Gunnvor A.; Glud, Ronnie N.; Simonsen, Knud

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for b1%. On an annual basis the POC export fromthe euphotic...

  11. Carbon isotopic composition of deep carbon gases in an ombrogenous peatland, northwestern Ontario, Canada

    International Nuclear Information System (INIS)

    Aravena, R.; Dinel, H.

    1993-01-01

    Radiocarbon dating and carbon isotope analyses of deep peat and gases in a small ombrogenous peatland in northwestern Ontario reveals the presence of old gases at depth that are 1000-2000 yr younger than the enclosing peat. The authors suggest that the most likely explanation to account for this age discrepancy is the downward movement by advection of younger dissolved organic carbon for use by fermentation and methanogens bacteria. This study identifies a potentially large supply of old carbon gases in peatlands that should be considered in global carbon models of the terrestrial biosphere

  12. Terrestrial contributions to the aquatic food web in the middle Yangtze River.

    Science.gov (United States)

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.

  13. The response of the terrestrial biosphere to urbanization: land cover conversion, climate, and urban pollution

    Directory of Open Access Journals (Sweden)

    K. Trusilova

    2008-11-01

    Full Text Available Although urban areas occupy a relatively small fraction of land, they produce major disturbances of the carbon cycle through land use change, climate modification, and atmospheric pollution. In this study we quantify effects of urban areas on the carbon cycle in Europe. Among urbanization-driven environmental changes, which influence carbon sequestration in the terrestrial biosphere, we account for: (1 proportion of land covered by impervious materials, (2 local urban meteorological conditions, (3 urban high CO2 concentrations, and (4 elevated atmospheric nitrogen deposition. We use the terrestrial ecosystem model BIOME-BGC to estimate fluxes of carbon exchange between the biosphere and the atmosphere in response to these urban factors.

    We analysed four urbanization-driven changes individually, setting up our model in such a way that only one of the four was active at a time. From these model simulations we found that fertilization effects from the elevated CO2 and the atmospheric nitrogen deposition made the strongest positive contributions to the carbon uptake (0.023 Pg C year−1 and 0.039 Pg C year−1, respectively, whereas, the impervious urban land and local urban meteorological conditions resulted in a reduction of carbon uptake (−0.005 Pg C year−1 and −0.007 Pg C year−1, respectively. The synergetic effect of the four urbanization-induced changes was an increase of the carbon sequestration in Europe of 0.058 Pg C year−1.

  14. Global carbon sequestration in tidal, saline wetland soils

    Science.gov (United States)

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  15. A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater.

    Science.gov (United States)

    Hou, Baolin; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Jia, Shengyong; Li, Kun

    2015-11-01

    A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

    Science.gov (United States)

    Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.

    2012-01-01

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768

  17. Decadal trends in the seasonal-cycle amplitude of terrestrial CO2 exchange resulting from the ensemble of terrestrial biosphere models

    Directory of Open Access Journals (Sweden)

    Akihiko Ito

    2016-05-01

    Full Text Available The seasonal-cycle amplitude (SCA of the atmosphere–ecosystem carbon dioxide (CO2 exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP, we investigated how well the SCA of atmosphere–ecosystem CO2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO2, climate, land-use, and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr−1. In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their

  18. Assessing Historical and Projected Carbon Balance of Alaska: A Synthesis of Results and Policy/Management Implications.

    Science.gov (United States)

    McGuire, A David; Genet, Hélène; Lyu, Zhou; Pastick, Neal; Stackpoole, Sarah; Birdsey, Richard; D'Amore, David; He, Yujie; Rupp, T Scott; Striegl, Robert; Wylie, Bruce K; Zhou, Xiaoping; Zhuang, Qianlai; Zhu, Zhiliang

    2018-06-20

    We summarize the results of a recent interagency assessment of land carbon dynamics in Alaska, in which carbon dynamics were estimated for all major terrestrial and aquatic ecosystems for the historical period (1950-2009) and a projection period (2010-2099). Between 1950 and 2009, upland and wetland (i.e., terrestrial) ecosystems of the State gained 0.4 Tg C yr -1 (0.1% of net primary production, NPP), resulting in a cumulative greenhouse gas radiative forcing of 1.68 x 10 -3 W m -2 . The change in carbon storage is spatially variable with the region of the Northwest Boreal Landscape Conservation Cooperative (LCC) losing carbon because of fire disturbance. The combined carbon transport via various pathways through inland aquatic ecosystems of Alaska was estimated to be 41.3 Tg C yr -1 (17% of terrestrial NPP). During the projection period (2010-2099), carbon storage of terrestrial ecosystems of Alaska was projected to increase (22.5 to 70.0 Tg C yr -1 ), primarily because of NPP increases of 10 to 30% associated with responses to rising atmospheric CO 2 , increased nitrogen cycling, and longer growing seasons. Although carbon emissions to the atmosphere from wildfire and wetland CH 4 were projected to increase for all of the climate projections, the increases in NPP more than compensated for those losses at the statewide level. Carbon dynamics of terrestrial ecosystems continue to warm the climate for four of the six future projections, and cool the climate for only one of the projections. The attribution analyses we conducted indicated that the response of NPP in terrestrial ecosystems to rising atmospheric CO 2 (~5% per 100 ppmv CO 2 ) saturates as CO 2 increases (between approximately +150 and +450 ppmv among projections). This response, along with the expectation that permafrost thaw would be much greater and release large quantities of permafrost carbon after 2100, suggests that projected carbon gains in terrestrial ecosystems of Alaska may not be sustained

  19. Studying dissolved organic carbon export from the Penobscot Watershed in to Gulf of Maine using Regional Hydro-Ecological Simulation System (RHESSys)

    Science.gov (United States)

    Rouhani, S. F. B. B.; Schaaf, C.; Douglas, E. M.; Choate, J. S.; Yang, Y.; Kim, J.

    2014-12-01

    The movement of Dissolved Organic Carbon (DOC) from terrestrial system into aquatic system plays an important role for carbon sequestration in ecosystems and affects the formation of soil organic matters.Carbon cycling, storage, and transport to marine systems have become critical issues in global-change science, especially with regard to northern latitudes (Freeman et al., 2001; Benner et al., 2004). DOC, as an important composition of the carbon cycling, leaches from the terrestrial watersheds is a large source of marine DOC. The Penobscot River basin in north-central Maine is the second largest watershed in New England, which drains in to Gulf of Maine. Approximately 89% of the watershed is forested (Griffith and Alerich, 1996).Studying temporal and spatial changes in DOC export can help us to understand terrestrial carbon cycling and to detect any shifts from carbon sink to carbon source or visa versa in northern latitude forested ecosystems.Despite for the importance of understanding carbon cycling in terrestrial and aquatic biogeochemistry, the Doc export, especially the combination of DOC production from bio-system and DOC transportation from the terrestrial in to stream has been lightly discussed in most conceptual or numerical models. The Regional Hydro-Ecological Simulation System (RHESSys), which has been successfully applied in many study sites, is a physical process based terrestrial model that has the ability to simulate both the source and transportation of DOC by combining both hydrological and ecological processes. The focus of this study is on simulating the DOC concentration and flux from the land to the water using RHESSys in the Penobscot watershed. The simulated results will be compared with field measurement of DOC from the watershed to explore the spatial and temporal DOC export pattern. This study will also enhance our knowledge to select sampling locations properly and also improve our understanding on DOC production and transportation in

  20. The Method of Coating Fe₃O₄ with Carbon Nanoparticles to Modify Biological Properties of Oxide Measured in Vitro.

    Science.gov (United States)

    Niemiec, Tomasz; Dudek, Mariusz; Dziekan, Natalia; Jaworski, Sławomir; Przewozik, Aleksandra; Soszka, Emilia; Koperkiewicz, Anna; Koczoń, Piotr

    2017-07-01

    The coating of nanoparticles on materials for medical application [e.g., the coating of Fe3O4 nanopowder (IONP) with a carbon nanolayer] serves to protect and modify the selected biological, physical, and chemical properties of the coated material. Increases in chemical stability, changes in biocompatibility, and a modified surface structure are examples of the effects caused by the formation of carbon coatings. In the current study, Fe3O4 nanoparticles were coated with a carbon nanolayer (IONP@C) in a plasmochemical reactor (using radio-frequency plasma-enhanced chemical vapor deposition methods) under various experimental conditions. Based on data from X-ray diffraction, Raman, and IR spectroscopy, the best processing parameters were determined in order to produce a carbon coating that would not change the structure of the IONP. The materials with the best cover, i.e., a uniform carbon nanolayer, were used in cytotoxic tests to investigate their biological properties using the human HepG2 hepatocarcinoma cell line and chicken embryo red blood cells as an in vitro model. The obtained results proved the low cytotoxicity of Fe3O4 micropowder and IONP in contrast to IONP@C, which reduced cell viability, increased hemolysis, and generally was more toxic than bare Fe3O4.

  1. The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Thomas, David; Rysgaard, Søren

    2013-01-01

    Knowledge on the relative effects of biological activity and precipitation/dissolution of calcium carbonate (CaCO3) in influencing the air-ice CO2 exchange in sea-ice-covered season is currently lacking. Furthermore, the spatial and temporal occurrence of CaCO3 and other biogeochemical parameters...... in sea ice are still not well described. Here we investigated autotrophic and heterotrophic activity as well as the precipitation/dissolution of CaCO3 in subarctic sea ice in South West Greenland. Integrated over the entire ice season (71 days), the sea ice was net autotrophic with a net carbon fixation...... and CaCO3 precipitation. The net biological production could only explain 4 % of this sea-ice-driven CO2 uptake. Abiotic processes contributed to an air-sea CO2 uptake of 1.5 mmol m(-2) sea ice day(-1), and dissolution of CaCO3 increased the air-sea CO2 uptake by 36 % compared to a theoretical estimate...

  2. Ocean carbon sinks and international climate policy

    International Nuclear Information System (INIS)

    Rehdanz, Katrin; Tol, Richard S.J.; Wetzel, Patrick

    2006-01-01

    Terrestrial vegetation sinks have entered the Kyoto Protocol as offsets for anthropogenic greenhouse gas emissions, but ocean sinks have escaped attention. Ocean sinks are as unexplored and uncertain as were the terrestrial sinks at the time of negotiation of the Kyoto Protocol. It is not unlikely that certain countries will advocate the inclusion of ocean carbon sinks to reduce their emission reduction obligations in post-2012 negotiations. We use a simple model of the international market for carbon dioxide emissions to evaluate who would gain or loose from allowing for ocean carbon sinks. Our analysis is restricted to information on anthropogenic carbon sequestration within the exclusive economic zone of a country. We use information on the actual carbon flux and derive the human-induced uptake for the period from 1990 onwards. Like the carbon sequestration of business as usual forest management activities, natural ocean carbon sequestration applies at zero costs. The total amount of anthropogenic ocean carbon sequestration is large, also in the exclusive economic zones. As a consequence, it substantially alters the costs of emission reduction for most countries. Countries such as Australia, Denmark, France, Iceland, New Zealand, Norway and Portugal would gain substantially, and a large number of countries would benefit too. Current net exporters of carbon permits, particularly Russia, would gain less and oppose the inclusion of ocean carbon sinks

  3. Development and validation of a testing protocol for carbon sequestration using a controlled environment.

    Science.gov (United States)

    2012-05-01

    Carbon footprints, carbon credits and associated carbon sequestration techniques are rapidly becoming part : of how environmental mitigation business is conducted, not only in Texas but globally. Terrestrial carbon : sequestration is the general term...

  4. The Economics of Carbon Dioxide Removal: The Case against Free Disposal

    Science.gov (United States)

    Keller, D. P.; Rickels, W.; Quaas, M.; Oschlies, A.; Reith, F.

    2016-12-01

    Facing the challenge to keep the average global temperature increase below 2°C and to limit long-term climate change, removing carbon dioxide from the atmosphere (Carbon Dioxide Removal, CDR) and disposing of it in non-atmospheric carbon reservoirs is becoming increasingly necessary. The social cost of removing carbon into the terrestrial biosphere (e.g. by afforestation) or the ocean (e.g. by spreading olivine in coastal areas) arises from carbon-cycle feedbacks and saturation effects. Yet they are ignored in existing economic studies on CDR. Neglecting non-atmospheric social cost results in inconsistent estimates with regard to the share and timing of CDR measures in climate policy. Here, we use an intermediate-complexity earth system model, the University of Victoria (UVic) model, to calibrate a dynamic economic model, capturing the temperature feedback and saturation effect of terrestrial carbon uptake and the saturation effect of oceanic carbon uptake to obtain an improved understanding of the net social carbon value of terrestrial and oceanic CDR. We show that planning horizons beyond the year 2100 are required to properly reflect long-term scarcity issues of non-atmospheric carbon reservoirs in current carbon prices and that neglecting non-atmospheric social cost results in too low abatement efforts and in turn in too large and earlier application of CDR measures than if applied optimally. The figure shows the carbon prices for the different carbon reservoirs in the year 2100 in dependence of the planning horizon (for a climate policy aiming to limit global mean temperature increase to 2°C). The difference between the atmospheric and the non-atmospheric carbon prices indicates the benefits of the different CDR options.

  5. Microbial contributions to climate change through carbon cycle feedbacks.

    Science.gov (United States)

    Bardgett, Richard D; Freeman, Chris; Ostle, Nicholas J

    2008-08-01

    There is considerable interest in understanding the biological mechanisms that regulate carbon exchanges between the land and atmosphere, and how these exchanges respond to climate change. An understanding of soil microbial ecology is central to our ability to assess terrestrial carbon cycle-climate feedbacks, but the complexity of the soil microbial community and the many ways that it can be affected by climate and other global changes hampers our ability to draw firm conclusions on this topic. In this paper, we argue that to understand the potential negative and positive contributions of soil microbes to land-atmosphere carbon exchange and global warming requires explicit consideration of both direct and indirect impacts of climate change on microorganisms. Moreover, we argue that this requires consideration of complex interactions and feedbacks that occur between microbes, plants and their physical environment in the context of climate change, and the influence of other global changes which have the capacity to amplify climate-driven effects on soil microbes. Overall, we emphasize the urgent need for greater understanding of how soil microbial ecology contributes to land-atmosphere carbon exchange in the context of climate change, and identify some challenges for the future. In particular, we highlight the need for a multifactor experimental approach to understand how soil microbes and their activities respond to climate change and consequences for carbon cycle feedbacks.

  6. Studies on enhancing carbon sequestration in soils

    International Nuclear Information System (INIS)

    Marland, G.; Garten, C.T.; Post, W.M.; West, T.O.

    2004-01-01

    Studies of carbon and nitrogen dynamics in ecosystems are leading to an understanding of the factors and mechanisms that affect the inputs to and outputs from soils and how these might be manipulated to enhance C sequestration. Both the quantity and the quality of soil C inputs influence C storage and the potential for C sequestration. Changes in tillage intensity and crop rotations can also affect C sequestration by changing the soil physical and biological conditions and by changing the amounts and types of organic inputs to the soil. Analyses of changes in soil C and N balances are being supplemented with studies of the management practices needed to manage soil carbon and the implications for fossil-fuel use, emission of other greenhouse gases (such as N 2 O and CH 4 ), and impacts on agricultural productivity. The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE) was created in 1999 to perform fundamental research that will lead to methods to enhance C sequestration as one component of a C management strategy. Research to date at one member of this consortium, Oak Ridge National Laboratory, has focused on C sequestration in soils and we begin here to draw together some of the results

  7. Land to ocean transfer of erosion-related organic carbon, Waipaoa sedimentary system, East Coast, New Zealand

    International Nuclear Information System (INIS)

    Brackley, H.L.

    2006-01-01

    efficiency of the Waipaoa River in transferring terrestrial OC directly to the marine environment. Flood layers are preserved in the marine sedimentary record. Continental shelf sediments indicate that during Cyclone Bola (March 1988, a rainfall event with a >100 year return period), the extreme river discharge produced a hyperpycnal (negatively buoyant) plume, preserved as a ∼10 cm thick layer on the inner shelf and a ∼ 1 cm thick layer on the mid-shelf. The flood layer contains a significant amount of terrestrially-sourced OC (up to 86% of total OC in >25 mm fraction) which subsequently was rapidly buried by normal marine deposits (in which ∼ 60% of OC in >25 mm fraction is terrestrial), thereby preserving its strong terrestrial source signature. As sediments are physically and biologically processed at various depositional sites across the continental shelf and slope, they lose some of their modern terrestrial OC, and the concurrent addition of marine sourced OC results in the sediments gaining a stronger marine biogeochemical signature (δ 1 3C values increasing from -26.2 permille for floodplain sediments to -21.6 permille for upper continental slope sediments). Carbon loading (OC:SA) and 1 4C data revealed the contributions of kerogen, modern terrestrial OC and modern marine OC to the total OC of continental shelf and slope surface sediments. Sediments retain about 40% of their terrestrial OC following transport to the continental slope, of which a significant amount consists of kerogen. Because of high erosion rates within the catchment, kerogen associated with the particles escapes oxidation, and therefore makes up a large part of the POC flux. Kerogen is preserved across the margin to the mid-slope, where only 8% of the bulk sediment OC consists of modern terrestrial OC, 58% is modern marine OC and 34% is kerogen. Biomarker analyses of surface samples also support findings that terrestrial OC is being transferred across the continental margin, with plant

  8. High biolability of ancient permafrost carbon upon thaw

    NARCIS (Netherlands)

    Vonk, J.E.; Mann, P.J.; Davydov, S.; Davydova, A.; Spencer, R.G.M.; Schade, J.; Sobczak, W.V.; Zimov, S.; Bulygina, E.; Eglinton, T.I.; Holmes, R.M.

    2013-01-01

    Ongoing climate warming in the Arctic will thaw permafrost and remobilize substantial terrestrial organic carbon (OC) pools. Around a quarter of northern permafrost OC resides in Siberian Yedoma deposits, the oldest form of permafrost carbon. However, our understanding of the degradation and

  9. Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology

    Directory of Open Access Journals (Sweden)

    Zhigang Xie

    2014-01-01

    Full Text Available In order to improve adsorption of macromolecular contaminants and promote the growth of microorganisms, active carbon for biological wastewater treatment or follow-up processing requires abundant mesopore and good biophile ability. In this experiment, biophile mesopore active carbon is produced in one-step activation with orange peel as raw material, and zinc chloride as activator, and the adsorption characteristics of orange peel active carbon is studied by static adsorption method. BET specific surface area and pore volume reached 1477 m2/g and 2.090 m3/g, respectively. The surface functional groups were examined by Fourier transform infrared spectroscopy (FT-IR. The surface of the as-prepared activated carbon contained hydroxyl group, carbonyl group, and methoxy group. The analysis based on X-ray diffraction spectrogram (XRD and three-dimensional fluorescence spectrum indicated that the as-prepared activated carbon, with smaller microcrystalline diameter and microcrystalline thickness and enhanced reactivity, exhibited enhanced adsorption performance. This research has a deep influence in effectively controlling water pollution, improving area water quality, easing orange peel waste pollution, and promoting coordinated development among society, economy, and environment.

  10. European-wide simulations of croplands using an improved terrestrial biosphere model: Phenology and productivity

    Science.gov (United States)

    Smith, P. C.; de Noblet-Ducoudré, N.; Ciais, P.; Peylin, P.; Viovy, N.; Meurdesoif, Y.; Bondeau, A.

    2010-03-01

    Aiming at producing improved estimates of carbon source/sink spatial and interannual patterns across Europe (35% croplands), this work combines the terrestrial biosphere model Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE), for vegetation productivity, water balance, and soil carbon dynamics, and the generic crop model Simulateur Multidisciplinaire pour les Cultures Standard (STICS), for phenology, irrigation, nitrogen balance, and harvest. The ORCHIDEE-STICS model, relying on three plant functional types for the representation of temperate agriculture, is evaluated over the last few decades at various spatial and temporal resolutions. The simulated leaf area index seasonal cycle is largely improved relative to the original ORCHIDEE simulating grasslands, and compares favorably with remote-sensing observations (correlation doubles over Europe). Crop yield is derived from annual net primary productivity and compared with wheat and grain maize harvest data for five European countries. Discrepancies between 30 year mean simulated and reported yields are large in Mediterranean countries. Interannual variability amplitude expressed relative to the mean is reduced toward the observed variability (≈10%) when using ORCHIDEE-STICS. Overall, this study highlights the importance of accounting for the specific phenologies of crops sown both in winter and in spring and for irrigation applied to spring crops in regional/global models of the terrestrial carbon cycle. Limitations suggest to account for temporal and spatial variability in agricultural practices for further simulation improvement.

  11. Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment

    Directory of Open Access Journals (Sweden)

    V. Brüchert

    2018-01-01

    Full Text Available The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic-carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling; intact sediment core incubations; 35S-sulfate tracer experiments; pore-water dissolved inorganic carbon (DIC; δ13CDIC; and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope and allows us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 84 % of the depth-integrated carbon mineralization. Oxygen uptake rates and anaerobic carbon mineralization rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC ∕ NH4+ ratios in pore waters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end-member calculations, the terrestrial organic carbon contribution varied between 32 and 36 %, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using isotope end-member apportionment over the outer shelf of the Laptev and East Siberian seas suggests that about 16 Tg C yr−1 is respired in the outer shelf seafloor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3

  12. Wildland fire emissions, carbon, and climate: Seeing the forest and the trees - A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems

    Science.gov (United States)

    Rachel A. Loehman; Elizabeth Reinhardt; Karin L. Riley

    2014-01-01

    Wildfires are an important component of the terrestrial carbon cycle and one of the main pathways for movement of carbon from the land surface to the atmosphere. Fires have received much attention in recent years as potential catalysts for shifting landscapes from carbon sinks to carbon sources. Unless structural or functional ecosystem shifts occur, net carbon balance...

  13. Temperature acclimation of photosynthesis and respiration: A key uncertainty in the carbon cycle-climate feedback

    Science.gov (United States)

    Lombardozzi, Danica L.; Bonan, Gordon B.; Smith, Nicholas G.; Dukes, Jeffrey S.; Fisher, Rosie A.

    2015-10-01

    Earth System Models typically use static responses to temperature to calculate photosynthesis and respiration, but experimental evidence suggests that many plants acclimate to prevailing temperatures. We incorporated representations of photosynthetic and leaf respiratory temperature acclimation into the Community Land Model, the terrestrial component of the Community Earth System Model. These processes increased terrestrial carbon pools by 20 Pg C (22%) at the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) climate scenario. Including the less certain estimates of stem and root respiration acclimation increased terrestrial carbon pools by an additional 17 Pg C (~40% overall increase). High latitudes gained the most carbon with acclimation, and tropical carbon pools increased least. However, results from both of these regions remain uncertain; few relevant data exist for tropical and boreal plants or for extreme temperatures. Constraining these uncertainties will produce more realistic estimates of land carbon feedbacks throughout the 21st century.

  14. Application of a terrestrial ecosystem model (ORCHIDEE-STICS) in simulating energy and CO2 fluxes in Asian rice croplands

    Science.gov (United States)

    Wang, X.; Piao, S.; Ciais, P.; Vuichard, N.

    2012-12-01

    Process-based terrestrial ecosystem models have shown great potentials in predicting the response of managed ecosystems to environmental changes. However, the simulated water and carbon fluxes over rice ecosystems in tropical Asia are still subject to large uncertainties, partly due to poorly constrained parameters in the models. Here, a terrestrial ecosystem model incorporating a more realistic crop module (ORCHIDEE-STICS) was calibrated against in-situ flux data and observed and remotely sensed leaf area indexes over rice ecosystems in Asia. The key parameters adjusted include maximum photosynthetic carboxylation rate (Vcmax) and electron transport rate (Vjmax), temperature sensitivity of heterotrophic respiration (Q10) and a series of critical thresholds for different crop development stages. Compared with the observations, the calibrated model more realistically simulated the seasonal and year-to-year variation of the observed water and carbon fluxes with reductions in the root mean square difference and better timing in the crop development stages. Sensitivity tests further reveal that management practices like the timing of transplanting and draining could affect the seasonal and inter-annual variation of the net carbon exchange, suggesting that the absence of explicit accounting the change of management practices in the terrestrial ecosystem models may induce large uncertainties in predicting cropland ecosystem response to future climate change.

  15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for State and Federally threatened and endangered terrestrial mammals in [for] South Florida. Vector...

  16. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for rare/sensitive species occurrences of terrestrial mammals in Central California. Vector polygons in...

  17. Tracing the sources of organic carbon in freshwater systems

    Science.gov (United States)

    Glendell, Miriam; Meersmans, Jeroen; Barclay, Rachel; Yvon-Durocher, Gabriel; Barker, Sam; Jones, Richard; Hartley, Iain; Dungait, Jennifer; Quine, Timothy

    2016-04-01

    Quantifying the lateral fluxes of carbon from land to inland waters is critical for the understanding of the global carbon cycle and climate change mitigation. However, the crucial role of rivers in receiving, transporting and processing the equivalent of terrestrial net primary production in their watersheds has only recently been recognised. In addition, the fluxes of carbon from land to ocean, and the impact of anthropogenic perturbation, are poorly quantified. Therefore, a mechanistic understanding of the processes involved in the loss and preservation of C along the terrestrial-aquatic continuum is required to predict the present and future contribution of aquatic C fluxes to the global C budget. This pilot study examines the effect of land use on the fate of organic matter within two headwater catchments in Cornwall (UK) in order to develop a methodological framework for investigating C-cycling across the entire terrestrial-aquatic continuum. To this end, we aim to characterise the spatial heterogeneity of soil erosion driven lateral fluxes of SOC to identify areas of erosion and deposition using 137Cs radio-isotope and trace the terrestrial versus aquatic origin of C along the river reaches and in lake sediments at the catchment outlet. The 3D spatial distribution of SOC has been investigated by sampling three depth increments (i.e. 0-15cm, 15-30cm and 30-50cm) along 14 hillslope transects within two sub-catchments of ˜km2 each. In total, 80 terrestrial sites were monitored and analysed for total C and N, and bulk stable 13C/15N isotope values, while 137Cs was used to obtain a detailed understanding of the spatial - temporal variability in erosion driven lateral fluxes of SOC within the catchments. The relative contribution of terrestrial and aquatic C was examined along the river reaches as well as in lake sediments at the catchment outlet by considering n-alkane signatures. By linking the C accumulation rates in lake sediments over decadal timescales from

  18. High biolability of ancient permafrost carbon upon thaw

    NARCIS (Netherlands)

    Vonk, Jorien E.; Mann, Paul J.; Davydov, Sergey; Davydova, Anna; Spencer, Robert G. M.; Schade, John; Sobczak, William V.; Zimov, Nikita; Zimov, Sergei; Bulygina, Ekaterina; Eglinton, Timothy I.; Holmes, Robert M.

    2013-01-01

    Ongoing climate warming in the Arctic will thaw permafrost and remobilize substantial terrestrial organic carbon (OC) pools. Around a quarter of northern permafrost OC resides in Siberian Yedoma deposits, the oldest form of permafrost carbon. However, our understanding of the degradation and fate of

  19. Ecosystem carbon storage does not vary with increasing mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Paul Selmants; Creighton Litton; Christian P. Giardina; Greg P. Asner

    2014-01-01

    Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem...

  20. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations.

    Science.gov (United States)

    Wu, Xiaofen; Holmfeldt, Karin; Hubalek, Valerie; Lundin, Daniel; Åström, Mats; Bertilsson, Stefan; Dopson, Mark

    2016-05-01

    Microorganisms in the terrestrial deep biosphere host up to 20% of the earth's biomass and are suggested to be sustained by the gases hydrogen and carbon dioxide. A metagenome analysis of three deep subsurface water types of contrasting age (from 86% coverage. The populations were dominated by Proteobacteria, Candidate divisions, unclassified archaea and unclassified bacteria. The estimated genome sizes of the biosphere. The data were finally used to create a combined metabolic model of the deep terrestrial biosphere microbial community.

  1. Contaminant exposure in terrestrial vertebrates

    International Nuclear Information System (INIS)

    Smith, Philip N.; Cobb, George P.; Godard-Codding, Celine; Hoff, Dale; McMurry, Scott T.; Rainwater, Thomas R.; Reynolds, Kevin D.

    2007-01-01

    Here we review mechanisms and factors influencing contaminant exposure among terrestrial vertebrate wildlife. There exists a complex mixture of biotic and abiotic factors that dictate potential for contaminant exposure among terrestrial and semi-terrestrial vertebrates. Chemical fate and transport in the environment determine contaminant bioaccessibility. Species-specific natural history characteristics and behavioral traits then play significant roles in the likelihood that exposure pathways, from source to receptor, are complete. Detailed knowledge of natural history traits of receptors considered in conjunction with the knowledge of contaminant behavior and distribution on a site are critical when assessing and quantifying exposure. We review limitations in our understanding of elements of exposure and the unique aspects of exposure associated with terrestrial and semi-terrestrial taxa. We provide insight on taxa-specific traits that contribute, or limit exposure to, transport phenomenon that influence exposure throughout terrestrial systems, novel contaminants, bioavailability, exposure data analysis, and uncertainty associated with exposure in wildlife risk assessments. Lastly, we identify areas related to exposure among terrestrial and semi-terrestrial organisms that warrant additional research. - Both biotic and abiotic factors determine chemical exposure for terrestrial vertebrates

  2. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Southern California: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for rare and threatened/endangered terrestrial mammals in Southern California. Vector polygons in this data...

  3. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for small terrestrial mammals (woodrats, myotis, muskrat, mink) for the Hudson River. Vector polygons in...

  4. An effective hierarchical model for the biomolecular covalent bond: an approach integrating artificial chemistry and an actual terrestrial life system.

    Science.gov (United States)

    Oohashi, Tsutomu; Ueno, Osamu; Maekawa, Tadao; Kawai, Norie; Nishina, Emi; Honda, Manabu

    2009-01-01

    Under the AChem paradigm and the programmed self-decomposition (PSD) model, we propose a hierarchical model for the biomolecular covalent bond (HBCB model). This model assumes that terrestrial organisms arrange their biomolecules in a hierarchical structure according to the energy strength of their covalent bonds. It also assumes that they have evolutionarily selected the PSD mechanism of turning biological polymers (BPs) into biological monomers (BMs) as an efficient biomolecular recycling strategy We have examined the validity and effectiveness of the HBCB model by coordinating two complementary approaches: biological experiments using existent terrestrial life, and simulation experiments using an AChem system. Biological experiments have shown that terrestrial life possesses a PSD mechanism as an endergonic, genetically regulated process and that hydrolysis, which decomposes a BP into BMs, is one of the main processes of such a mechanism. In simulation experiments, we compared different virtual self-decomposition processes. The virtual species in which the self-decomposition process mainly involved covalent bond cleavage from a BP to BMs showed evolutionary superiority over other species in which the self-decomposition process involved cleavage from BP to classes lower than BM. These converging findings strongly support the existence of PSD and the validity and effectiveness of the HBCB model.

  5. The Limits of Acclimation of land plants in a Terrestrial Ecosystems Model

    Science.gov (United States)

    Kothavala, Zavareh

    2014-05-01

    In this study, we examine the role of the terrestrial carbon cycle and the ability of different plant types to acclimate to a changing climate at the centennial scale using a global ecosystems model with updated biogeochemical processes related to moisture, carbon, and nitrogen. Elevated level of atmospheric carbon dioxide (CO2) increases CO2 fertilization, resulting in more CO2 uptake by vegetation, whereas the concomitant warming increases autotrophic and heterotrophic respiration, releasing CO2 to the atmosphere. Additionally, warming will enhance photosynthesis if current temperatures are below the optimal temperature for plant growth, while it will reduce photosynthesis if current temperatures are above the optimal temperature for plant growth. We present a series of ensemble simulations to evaluate the ability of plants to acclimate to changing conditions over the last century and how this affects the terrestrial carbon sink. A set of experiments related to (a) the varying relationship between CO2 fertilization and the half saturation constant, (b) the factors related to gross primary productivity and maintenance respiration, and (c) the variables related to heterotrophic respiration, were conducted with thirteen plant functional types. The experiments were performed using the Terrestrial Ecosystem Model (TEM) with a present-day vegetation distribution without the effects of natural or human disturbance, and a closed Nitrogen cycle, at a half-degree resolution over the globe. The experiment design consisted of eight scenarios that are consistent with past and future ecosystem conditions, presented in other scientific studies. The significance of model trends related to runoff, soil moisture, soil carbon, Net Primary Productivity (NPP), crop yield, and Net Ecosystem Productivity (NEP) for different seasons, as well as surface temperature, precipitation, vapor pressure, and photosynthetically active radiation are analyzed for various ecosystems at the global

  6. Cadmium assimilation in the terrestrial isopod, Porcellio dilatatus - Is trophic transfer important?

    International Nuclear Information System (INIS)

    Calhoa, Carla Filipa; Soares, Amadeu M.V.M.; Mann, Reinier M.

    2006-01-01

    Terrestrial isopods have become important tools for the ecotoxicological assessment of metal-contaminated soils. Their value as an invertebrate model is partly because of their extraordinary capacity to bioaccumulate toxic metals from the environment. Replication of this accumulation process in the laboratory has in the past relied on the amendment of organic food substrates through the addition of inorganic metal salts. However, the bioavailability of the metals when presented through doping regimes may differ from the bioavailability of metals in nature, because over time metals become biologically compartmentalised and form complexes with organic molecules. This study examines the differential bioavailability of Cd to the terrestrial isopod, Porcellio dilatatus, when presented as either a Cd-amended diet or pre-incorporated biologically into lettuce (Lactuca sativa). Isopods were either provided with lettuce contaminated superficially with Cd(NO 3 ) 2 or lettuce grown hydroponically in growth media containing 100 μM Cd(NO 3 ) 2 . Assimilation efficiency of Cd was greater among isopods that were fed the amended diet (71%, S.E. = 7%), than among isopods feeding on biologically contaminated lettuce (52%, S.E. = 5%) and demonstrates that speciation of Cd is likely to influence the rate of Cd assimilation and accumulation in a laboratory test

  7. Cadmium assimilation in the terrestrial isopod, Porcellio dilatatus - Is trophic transfer important?

    Energy Technology Data Exchange (ETDEWEB)

    Calhoa, Carla Filipa [CESAM - Centro de Estudos de Ambiente e do Mar, Departamento de Biologia, Universidade de Aveiro, Aveiro 3810-193 (Portugal); Soares, Amadeu M.V.M. [CESAM - Centro de Estudos de Ambiente e do Mar, Departamento de Biologia, Universidade de Aveiro, Aveiro 3810-193 (Portugal); Mann, Reinier M. [CESAM - Centro de Estudos de Ambiente e do Mar, Departamento de Biologia, Universidade de Aveiro, Aveiro 3810-193 (Portugal)]. E-mail: rmann@bio.ua.pt

    2006-12-01

    Terrestrial isopods have become important tools for the ecotoxicological assessment of metal-contaminated soils. Their value as an invertebrate model is partly because of their extraordinary capacity to bioaccumulate toxic metals from the environment. Replication of this accumulation process in the laboratory has in the past relied on the amendment of organic food substrates through the addition of inorganic metal salts. However, the bioavailability of the metals when presented through doping regimes may differ from the bioavailability of metals in nature, because over time metals become biologically compartmentalised and form complexes with organic molecules. This study examines the differential bioavailability of Cd to the terrestrial isopod, Porcellio dilatatus, when presented as either a Cd-amended diet or pre-incorporated biologically into lettuce (Lactuca sativa). Isopods were either provided with lettuce contaminated superficially with Cd(NO{sub 3}){sub 2} or lettuce grown hydroponically in growth media containing 100 {mu}M Cd(NO{sub 3}){sub 2}. Assimilation efficiency of Cd was greater among isopods that were fed the amended diet (71%, S.E. = 7%), than among isopods feeding on biologically contaminated lettuce (52%, S.E. = 5%) and demonstrates that speciation of Cd is likely to influence the rate of Cd assimilation and accumulation in a laboratory test.

  8. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    OpenAIRE

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward ...

  9. Global status of and prospects for protection of terrestrial geophysical diversity.

    Science.gov (United States)

    Sanderson, Eric W; Segan, Daniel B; Watson, James E M

    2015-06-01

    Conservation of representative facets of geophysical diversity may help conserve biological diversity as the climate changes. We conducted a global classification of terrestrial geophysical diversity and analyzed how land protection varies across geophysical diversity types. Geophysical diversity was classified in terms of soil type, elevation, and biogeographic realm and then compared to the global distribution of protected areas in 2012. We found that 300 (45%) of 672 broad geophysical diversity types currently meet the Convention on Biological Diversity's Aichi Target 11 of 17% terrestrial areal protection, which suggested that efforts to implement geophysical diversity conservation have a substantive basis on which to build. However, current protected areas were heavily biased toward high elevation and low fertility soils. We assessed 3 scenarios of protected area expansion and found that protection focused on threatened species, if fully implemented, would also protect an additional 29% of geophysical diversity types, ecoregional-focused protection would protect an additional 24%, and a combined scenario would protect an additional 42%. Future efforts need to specifically target low-elevation sites with productive soils for protection and manage for connectivity among geophysical diversity types. These efforts may be hampered by the sheer number of geophysical diversity facets that the world contains, which makes clear target setting and prioritization an important next step. © 2015 Society for Conservation Biology.

  10. Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties

    Science.gov (United States)

    Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

    1987-12-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

  11. Increasing carbon storage in intact African tropical forests

    NARCIS (Netherlands)

    Lewis, S.L.; Lopez-Gonzalez, G.; Sonké, B.; Affum-Baffoe, K.; Ewango, C.E.N.

    2009-01-01

    The response of terrestrial vegetation to a globally changing environment is central to predictions of future levels of atmospheric carbon dioxide1, 2. The role of tropical forests is critical because they are carbon-dense and highly productive3, 4. Inventory plots across Amazonia show that

  12. The importance of rapid, disturbance-induced losses in carbon management and sequestration

    Science.gov (United States)

    Breshears, D.D.; Allen, Craig D.

    2002-01-01

    Management of terrestrial carbon fluxes is being proposed as a means of increasing the amount of carbon sequestered in the terrestrial biosphere. This approach is generally viewed only as an interim strategy for the coming decades while other longer-term strategies are developed and implemented — the most important being the direct reduction of carbon emissions. We are concerned that the potential for rapid, disturbance-induced losses may be much greater than is currently appreciated, especially by the decision-making community. Here we wish to: (1) highlight the complex and threshold-like nature of disturbances — such as fire and drought, as well as the erosion associated with each — that could lead to carbon losses; (2) note the global extent of ecosystems that are at risk of such disturbance-induced carbon losses; and (3) call for increased consideration of and research on the mechanisms by which large, rapid disturbance-induced losses of terrestrial carbon could occur. Our lack of ability as a scientific community to predict such ecosystem dynamics is precluding the effective consideration of these processes into strategies and policies related to carbon management and sequestration. Consequently, scientists need to do more to improve quantification of these potential losses and to integrate them into sound, sustainable policy options.

  13. The terrestrial biosphere in the SFR region

    Energy Technology Data Exchange (ETDEWEB)

    Jerling, L; Isaeus, M [Stockholm Univ. (Sweden). Dept. of Botany; Lanneck, J [Stockholm Univ. (Sweden). Dept. of Physical Geography; Lindborg, T; Schueldt, R [Danish Nature Council, Copenhagen (Denmark)

    2001-03-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1.SFR-1 is a facility for disposal of low and intermediate level radioactive waste, which is situated in bedrock beneath the Baltic Sea, one km off the coast near the Forsmark nuclear power plant in Northern Uppland. A part of the SAFE-analysis aims at analysing the transport of radionuclides in the ecosystems.To do so one has to build a model that includes a large amount of information concerning the biosphere.The first step is to collect and compile descriptions of the biosphere.This report is a first attempt to characterise the terrestrial environment of the SFR area of Forsmark. In the first part of the report the terrestrial environment, land class distribution and production of the area is described. The primary production in different terrestrial ecosystems is estimated for a model area in the Forsmark region. The estimations are based on the actual land class distribution and the values for the total primary production (d.w. above ground biomass)and the amount carbon produced, presented as g/m{sup 2} for each land class respectively. An important aspect of the biosphere is the vegetation and its development. The future development of vegetation is of interest since production,decomposition and thus storage of organic material, vary strongly among vegetation types and this has strong implications for the transport of radionuclides.Therefore an attempt to describe the development of terrestrial vegetation has been made in the second part. Any prediction of future vegetation is based on knowledge of the past together with premises for the future development.The predictions made, thus, becomes marred with errors enforced by the assumptions and incomplete information of the past. The assumptions made for the predictions in this report are crude and results in a

  14. The terrestrial biosphere in the SFR region

    International Nuclear Information System (INIS)

    Jerling, L.; Isaeus, M.

    2001-03-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1.SFR-1 is a facility for disposal of low and intermediate level radioactive waste, which is situated in bedrock beneath the Baltic Sea, one km off the coast near the Forsmark nuclear power plant in Northern Uppland. A part of the SAFE-analysis aims at analysing the transport of radionuclides in the ecosystems.To do so one has to build a model that includes a large amount of information concerning the biosphere.The first step is to collect and compile descriptions of the biosphere.This report is a first attempt to characterise the terrestrial environment of the SFR area of Forsmark. In the first part of the report the terrestrial environment, land class distribution and production of the area is described. The primary production in different terrestrial ecosystems is estimated for a model area in the Forsmark region. The estimations are based on the actual land class distribution and the values for the total primary production (d.w. above ground biomass)and the amount carbon produced, presented as g/m 2 for each land class respectively. An important aspect of the biosphere is the vegetation and its development. The future development of vegetation is of interest since production,decomposition and thus storage of organic material, vary strongly among vegetation types and this has strong implications for the transport of radionuclides.Therefore an attempt to describe the development of terrestrial vegetation has been made in the second part. Any prediction of future vegetation is based on knowledge of the past together with premises for the future development.The predictions made, thus, becomes marred with errors enforced by the assumptions and incomplete information of the past. The assumptions made for the predictions in this report are crude and results in a coarse

  15. The terrestrial biosphere in the SFR region

    Energy Technology Data Exchange (ETDEWEB)

    Jerling, L.; Isaeus, M. [Stockholm Univ. (Sweden). Dept. of Botany; Lanneck, J. [Stockholm Univ. (Sweden). Dept. of Physical Geography; Lindborg, T.; Schueldt, R. [Danish Nature Council, Copenhagen (Denmark)

    2001-03-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1.SFR-1 is a facility for disposal of low and intermediate level radioactive waste, which is situated in bedrock beneath the Baltic Sea, one km off the coast near the Forsmark nuclear power plant in Northern Uppland. A part of the SAFE-analysis aims at analysing the transport of radionuclides in the ecosystems.To do so one has to build a model that includes a large amount of information concerning the biosphere.The first step is to collect and compile descriptions of the biosphere.This report is a first attempt to characterise the terrestrial environment of the SFR area of Forsmark. In the first part of the report the terrestrial environment, land class distribution and production of the area is described. The primary production in different terrestrial ecosystems is estimated for a model area in the Forsmark region. The estimations are based on the actual land class distribution and the values for the total primary production (d.w. above ground biomass)and the amount carbon produced, presented as g/m{sup 2} for each land class respectively. An important aspect of the biosphere is the vegetation and its development. The future development of vegetation is of interest since production,decomposition and thus storage of organic material, vary strongly among vegetation types and this has strong implications for the transport of radionuclides.Therefore an attempt to describe the development of terrestrial vegetation has been made in the second part. Any prediction of future vegetation is based on knowledge of the past together with premises for the future development.The predictions made, thus, becomes marred with errors enforced by the assumptions and incomplete information of the past. The assumptions made for the predictions in this report are crude and results

  16. Riverine transport of terrestrial organic matter to the North Catalan margin, NW Mediterranean Sea

    Science.gov (United States)

    Sanchez-Vidal, Anna; Higueras, Marina; Martí, Eugènia; Liquete, Camino; Calafat, Antoni; Kerhervé, Philippe; Canals, Miquel

    2013-11-01

    Rivers are the primary pathway for organic matter transport from the terrestrial to the marine environment and, thus, river fluxes are critical in regulating the quantity of terrestrial organic matter that reaches the coastal ecosystems. Hydrodynamic processes typical of the coastal zone can lead to the transport of terrestrial organic matter across the continental shelf and beyond. Such organic matter can eventually reach the deep margin and basin ecosystems. Riverine inputs of organic matter to the sea can be a significant food source to marine ecosystems contributing to carbon cycling in these ecosystems. In order to assess the marine carbon cycle it is essential to know the biogeochemical characteristics and temporal dynamics of the fluvial organic matter input discharged by rivers to the coastal zone. In this study we present a one and a half year long (November 2008 to May 2010) assessment on organic carbon (OC) and nitrogen (N) inputs from the three main rivers discharging into the North Catalan margin (Tordera, Ter and Fluvià, from south to north). Furthermore, we investigate the characteristics of the particulate organic matter discharged by these rivers by means of stable isotopic (δ13C and δ15N) and grain size analyses. We found that the hydrological regime of the rivers is a relevant factor in regulating the quantity and mediating the quality of organic matter inputs to the North Catalan margin. Overall, the three main rivers discharging into the study area deliver 1266 and 159 tonnes of terrestrial OC and N per year, respectively, to the coastal zone. Most of the OC and N load is transported during floods, which indicates that the Mediterranean climate of the area, with a strong seasonal contrast in precipitation, determines the timing of the main inputs of OC and N to the sea. Therefore, the annual OC and N load experiences a high temporal variability associated to the number and magnitude of floods with in each hydrological year. In addition, we

  17. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    Science.gov (United States)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  18. Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model

    International Nuclear Information System (INIS)

    Govindasamy, B.; Thompson, S.; Mirin, A.; Wickett, M.; Caldeira, K.; Delire, C.

    2005-01-01

    Coupled climate and carbon cycle modelling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in greater warming. In this paper we investigate the sensitivity of this feedback for year 2100 global warming in the range of 0 to 8 K. Differing climate sensitivities to increased CO 2 content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA), the NCAR/DOE Parallel Climate Model coupled to the IBIS terrestrial biosphere model and a modified OCMIP ocean biogeochemistry model. In our integrated model, for scenarios with year 2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO 2 emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO 2 concentration increases are 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO 2 content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K

  19. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  20. Spatial patterns of carbon, biodiversity, deforestation threat, and REDD+ projects in Indonesia.

    Science.gov (United States)

    Murray, Josil P; Grenyer, Richard; Wunder, Sven; Raes, Niels; Jones, Julia P G

    2015-10-01

    There are concerns that Reduced Emissions from Deforestation and forest Degradation (REDD+) may fail to deliver potential biodiversity cobenefits if it is focused on high carbon areas. We explored the spatial overlaps between carbon stocks, biodiversity, projected deforestation threats, and the location of REDD+ projects in Indonesia, a tropical country at the forefront of REDD+ development. For biodiversity, we assembled data on the distribution of terrestrial vertebrates (ranges of amphibians, mammals, birds, reptiles) and plants (species distribution models for 8 families). We then investigated congruence between different measures of biodiversity richness and carbon stocks at the national and subnational scales. Finally, we mapped active REDD+ projects and investigated the carbon density and potential biodiversity richness and modeled deforestation pressures within these forests relative to protected areas and unprotected forests. There was little internal overlap among the different hotspots (richest 10% of cells) of species richness. There was also no consistent spatial congruence between carbon stocks and the biodiversity measures: a weak negative correlation at the national scale masked highly variable and nonlinear relationships island by island. Current REDD+ projects were preferentially located in areas with higher total species richness and threatened species richness but lower carbon densities than protected areas and unprotected forests. Although a quarter of the total area of these REDD+ projects is under relatively high deforestation pressure, the majority of the REDD+ area is not. In Indonesia at least, first-generation REDD+ projects are located where they are likely to deliver biodiversity benefits. However, if REDD+ is to deliver additional gains for climate and biodiversity, projects will need to focus on forests with the highest threat to deforestation, which will have cost implications for future REDD+ implementation. © 2015 The Authors

  1. The terrestrial phosphorus economy of mid-Pacific atolls: Implications for the future

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, K.A. [Auckland Univ. (New Zealand). Dept. of Geology

    1998-03-01

    Major subsystems of the terrestrial phosphorus cycle on the densely populated, 142 ha motu of Fogafale, are: carbonate substrate ({approx} 10{sup 3} g P t{sup -1}), groundwater ({approx} 0.4 g P t{sup -1}), terrestrial flora ({approx} 0.22 t P ha{sup -1}) and fauna ({approx} 18 kg P ha{sup -1}). Freshwater provides the principal medium for terrestrial geochemical atoll processes and is the central recycling plant for phosphorus from atmospheric fallout and decomposition of biotic waste. Present data cannot determine precise fluxes within and between all subsystems, but perturbations, resulting from increasing human populations and changing land use, may be estimated. Changes in Fogafale`s biotic phosphorus capitals and increasing phosphorus-containing imports have skewed fluxes and transfer routes of biogenic waste. Atolls are dynamic systems, able to recover from environmental disruptions, but the sustainability and effectiveness of underlying biogeochemical cycles require quantification, monitoring and nurturing. In particular, the integrity of Fogafale`s essential fresh groundwater needs to be ascertained and protected 40 refs, 7 figs, 2 tabs

  2. A Sedimentary Carbon Inventory for a Scottish Sea Loch

    Science.gov (United States)

    Smeaton, Craig; Austin, William; Davies, Althea; Baltzer, Agnes

    2015-04-01

    Coastal oceans are sites of biogeochemical cycling, as terrestrial, atmospheric, and marine carbon cycles interact. Important processes that affect the carbon cycle in the coastal ocean include upwelling, river input, air-sea gas exchange, primary production, respiration, sediment burial, export, and sea-ice dynamics. The magnitude and variability of many carbon fluxes are accordingly much higher in coastal oceans than in open ocean environments. Having high-quality observations of carbon stocks and fluxes in the coastal environment is important both for understanding coastal ocean carbon balance and for reconciling continent-scale carbon budgets. Despite the ecological, biological, and economic importance of coastal oceans, the magnitude and variability of many of the coastal carbon stocks are poorly quantified in most regions in comparison to terrestrial and deep ocean carbon stocks. The first stage in understanding the carbon dynamics in coastal waters is to quantify the existing carbon stocks. The coastal sediment potentially holds a significant volume of carbon; yet there has been no comprehensive attempt to quantitatively determine the volume of carbon held in those coastal sediments as echoed by Bauer et al., (2013) "the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood". We set out to create the first sedimentary carbon inventory for a sea loch (fjord); through a combination of geophysics and biogeochemistry. Two key questions must be answered to achieve this goal; how much sediment is held within the loch and what percentage of that sediment carbon? The restrictive geomorphology of sea lochs (fjords) provides the perfect area to develop this methodology and answer these fundamental questions. Loch Sunart the longest of the Scottish sea lochs is our initial test site due to existing geophysical data being available for analysis. Here we discuss the development of the joint geophysics and

  3. Trends and Future Challenges in Sampling the Deep Terrestrial Biosphere

    Directory of Open Access Journals (Sweden)

    Michael J Wilkins

    2014-09-01

    Full Text Available Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and metabolisms, biogeochemical cycling, and the impact of human activities on this ecosystem. As this interest continues to grow, it is important to ensure that when subsurface investigations are proposed, materials recovered from the subsurface are sampled and preserved in an appropriate manner to limit contamination and ensure preservation of accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014, a workshop on Trends and Future Challenges in Sampling The Deep Subsurface was coordinated in Columbus, Ohio by The Ohio State University and West Virginia University faculty, and sponsored by The Ohio State University and the Sloan Foundation’s Deep Carbon Observatory. The workshop aims were to identify and develop best practices for the collection, preservation, and analysis of terrestrial deep rock samples. This document summarizes the information shared during this workshop.

  4. Trends and future challenges in sampling the deep terrestrial biosphere.

    Science.gov (United States)

    Wilkins, Michael J; Daly, Rebecca A; Mouser, Paula J; Trexler, Ryan; Sharma, Shihka; Cole, David R; Wrighton, Kelly C; Biddle, Jennifer F; Denis, Elizabeth H; Fredrickson, Jim K; Kieft, Thomas L; Onstott, Tullis C; Peterson, Lee; Pfiffner, Susan M; Phelps, Tommy J; Schrenk, Matthew O

    2014-01-01

    Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and metabolisms, biogeochemical cycling, and the impact of human activities on this ecosystem. As this interest continues to grow, it is important to ensure that when subsurface investigations are proposed, materials recovered from the subsurface are sampled and preserved in an appropriate manner to limit contamination and ensure preservation of accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014, a workshop on "Trends and Future Challenges in Sampling The Deep Subsurface" was coordinated in Columbus, Ohio by The Ohio State University and West Virginia University faculty, and sponsored by The Ohio State University and the Sloan Foundation's Deep Carbon Observatory. The workshop aims were to identify and develop best practices for the collection, preservation, and analysis of terrestrial deep rock samples. This document summarizes the information shared during this workshop.

  5. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)

    NARCIS (Netherlands)

    Huerta Lwanga, Esperanza; Gertsen, H.F.; Gooren, H.; Peters, P.D.; Salanki, T.E.; Ploeg, van der M.J.C.; Besseling, E.; Koelmans, A.A.; Geissen, V.

    2016-01-01

    Plastic debris is widespread in the environment, but information on the effects of microplastics on terrestrial fauna is completely lacking. Here, we studied the survival and fitness of the earthworm Lumbricus terrestris (Oligochaeta, Lumbricidae) exposed to microplastics (Polyethylene, <150 μm)

  6. Diffusion-type model of the global carbon cycle for the estimation of dose to the world population from releases of carbon-14 to the atmosphere

    International Nuclear Information System (INIS)

    Killough, G.G.

    1977-05-01

    A nonlinear dynamic model of the exchange of carbon among the atmosphere, terrestrial biosphere, and ocean is described and applied to estimating the radiation dose to the world's population from the release of 14 C to the atmosphere from the nuclear power industry. A computer implementation of the model, written in the IBM Continuous System Modeling Program III (CSMP III) simulation language, is presented. The model treats the ocean as a diffusive medium with respect to vertical transport of carbon, and the nonlinear variation of CO 2 partial pressure with the total inorganic carbon concentration in surface waters is taken into account in calculating the transfer rate from ocean to atmosphere. Transfers between the atmosphere and terrestrial biosphere are represented by nonlinear equations which consider CO 2 fertilization and impose a constraint on the ultimate total carbon mass in the biosphere

  7. Radionuclide transfer in terrestrial animals

    International Nuclear Information System (INIS)

    DiGregorio, D.; Kitchings, T.; Van Voris, P.

    1978-01-01

    The analysis of dispersion of radionuclides in terrestrial food chains, generally, is a series of equations identifying the fractional input and outflow rates from trophic level to trophic level. Data that are prerequisite inputs for these food chain transport models include: (1) identification of specific transport pathway, (2) assimilation at each pathway link, and (3) the turnover rate or retention function by successive receptor species in the appropriate food chain. In this report, assimilation coefficients, biological half-lives, and excretion rates for a wide variety of vertebrate and invertebrate species and radionuclides have been compiled from an extensive search of the available literature. Using the information accumulated from the literature, correlations of nuclide metabolism and body weight are also discussed. (author)

  8. Future Projections and Consequences of the Changing North American Carbon Cycle

    Science.gov (United States)

    Huntzinger, D. N.; Cooley, S. R.; Moore, D. J.

    2017-12-01

    The rise of atmospheric carbon dioxide (CO2), primarily due to human-caused fossil fuel emissions and land-use change, has been dampened by carbon uptake by the oceans and terrestrial biosphere. Nevertheless, today's atmospheric CO2 levels are higher than at any time in the past 800,000 years. Over the past decade, there has been considerable effort to understand how carbon cycle changes interact with, and influence, atmospheric CO2 concentrations and thus climate. Here, we summarize the key findings related to projected changes to the North American carbon cycle and the consequences of these changes as reported in Chapters 17 and 19 of the 2nd State of the Carbon Cycle Report (SOCCR-2). In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, plant growth, and water-use efficiency. Together, these may lead to changes in vegetation composition, carbon storage, hydrology and biogeochemical cycling. In the ocean, increased uptake of atmospheric CO2 causes ocean acidification, which leads to changes in reproduction, survival, and growth of many marine species. These direct physiological responses to acidification are likely to have indirect ecosystem-scale consequences that we are just beginning to understand. In all environments, the effects of rising CO2 also interact with other global changes. For example, nutrient availability can set limits on growth and a warming climate alters carbon uptake depending on a number of other factors. As a result, there is low confidence in the future evolution of the North American carbon cycle. For example, models project that terrestrial ecosystems could continue to be a net sink (of up to 1.19 PgC yr-1) or switch to a net source of carbon to the atmosphere (of up to 0.60 PgC yr-1) by the end of the century under business-as-usual emission scenarios. And, while North American coastal areas have historically been a sink of carbon (e.g., 2.6 to 3.5 PgC since 1995) and are projected to continue to take up

  9. Soil carbon management in large-scale Earth system modelling

    DEFF Research Database (Denmark)

    Olin, S.; Lindeskog, M.; Pugh, T. A. M.

    2015-01-01

    , carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land-use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. Our model experiments allow us...

  10. Terrestrial contributions to the aquatic food web in the middle Yangtze River.

    Directory of Open Access Journals (Sweden)

    Jianzhu Wang

    Full Text Available Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish at an upstream constricted-channel site (Luoqi, a midstream estuarine site (Huanghua and a near dam limnetic site (Maoping of the TGD were collected for stable isotope (δ13C and δ15N and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping, particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.

  11. The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks

    International Nuclear Information System (INIS)

    Gitz, V.; Hourcade, J.Ch.; Ciais, Ph.

    2005-10-01

    This paper addresses the timing of the use of biological carbon sequestration and its capacity to alleviate the carbon constraint on the energy sector. We constructed a stochastic optimal control model balancing the costs of fossil emission abatement, the opportunity costs of lands allocated to afforestation, and the costs of uncertain climate damages. We show that a minor part of the sequestration potential should start immediately as a 'brake', slowing down both the rate of growth of concentrations and the rate of abatement in the energy sector. thus increasing the option value of the emission trajectories. But, most of the potential is put in reserve to be used as a 'safety valve' after the resolution of uncertainty, if a higher and faster decarbonization is required: sequestration cuts off the peaks of costs of fossil abatement and postpones the pivoting of the energy system by up to two decades. (authors)

  12. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    Science.gov (United States)

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  13. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990-2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.

  14. Impact of biological activated carbon pre-treatment on the hydrophilic fraction of effluent organic matter for mitigating fouling in microfiltration.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2017-07-24

    The hydrophilic (HPI) fraction of effluent organic matter, which has protein and carbohydrate contents, has a high propensity to foul low-pressure membranes. Biological activated carbon (BAC) filtration was examined as a pre-treatment for reducing the fouling of a microfiltration (MF) membrane (0.1 µm PVDF) by the HPI organic fraction extracted from a biologically treated secondary effluent (BTSE). Although the BAC removed less dissolved organic carbon, carbohydrate and protein from the HPI fraction than the granular activated carbon treatment which was used for comparison, it led to better improvement in permeate flux. This was shown to be due to the removal/breakdown of the HPI fraction resulting in less deposition of these organics on the membrane, many components of which are high molecular weight biopolymers (such as protein and carbohydrate molecules) through biodegradation and adsorption of those molecules on the biofilm and activated carbon. This study established the potential of BAC pre-treatment for reducing the HPI fouling of the membrane and thus improving the performance for the MF of BTSE for water reclamation.

  15. Single Molecule Detection in Living Biological Cells using Carbon Nanotube Optical Probes

    Science.gov (United States)

    Strano, Michael

    2009-03-01

    Nanoscale sensing elements offer promise for single molecule analyte detection in physically or biologically constrained environments. Molecular adsorption can be amplified via modulation of sharp singularities in the electronic density of states that arise from 1D quantum confinement [1]. Single-walled carbon nanotubes (SWNT), as single molecule optical sensors [2-3], offer unique advantages such as photostable near-infrared (n-IR) emission for prolonged detection through biological media, single-molecule sensitivity and, nearly orthogonal optical modes for signal transduction that can be used to identify distinct classes of analytes. Selective binding to the SWNT surface is difficult to engineer [4]. In this lecture, we will briefly review the immerging field of fluorescent diagnostics using band gap emission from SWNT. In recent work, we demonstrate that even a single pair of SWNT provides at least four optical modes that can be modulated to uniquely fingerprint chemical agents by the degree to which they alter either the emission band intensity or wavelength. We validate this identification method in vitro by demonstrating detection and identification of six genotoxic analytes, including chemotherapeutic drugs and reactive oxygen species (ROS), which are spectroscopically differentiated into four distinct classes. We also demonstrate single-molecule sensitivity in detecting hydrogen peroxide, one of the most common genotoxins and an important cellular signal. Finally, we employ our sensing and fingerprinting method of these analytes in real time within live 3T3 cells, demonstrating the first multiplexed optical detection from a nanoscale biosensor and the first label-free tool to optically discriminate between genotoxins. We will also discuss our recent efforts to fabricate biomedical sensors for real time detection of glucose and other important physiologically relevant analytes in-vivo. The response of embedded SWNT in a swellable hydrogel construct to

  16. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  17. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris.

    Science.gov (United States)

    Brinza, Loredana; Schofield, Paul F; Hodson, Mark E; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D; Mosselmans, J Frederick W

    2014-01-01

    The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced.

  18. Description, calibration and sensitivity analysis of the local ecosystem submodel of a global model of carbon and nitrogen cycling and the water balance in the terrestrial biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kercher, J.R. [Lawrence Livermore National Lab., CA (United States); Chambers, J.Q. [Lawrence Livermore National Lab., CA (United States)]|[California Univ., Santa Barbara, CA (United States). Dept. of Biological Sciences

    1995-10-01

    We have developed a geographically-distributed ecosystem model for the carbon, nitrogen, and water dynamics of the terrestrial biosphere TERRA. The local ecosystem model of TERRA consists of coupled, modified versions of TEM and DAYTRANS. The ecosystem model in each grid cell calculates water fluxes of evaporation, transpiration, and runoff; carbon fluxes of gross primary productivity, litterfall, and plant and soil respiration; and nitrogen fluxes of vegetation uptake, litterfall, mineralization, immobilization, and system loss. The state variables are soil water content; carbon in live vegetation; carbon in soil; nitrogen in live vegetation; organic nitrogen in soil and fitter; available inorganic nitrogen aggregating nitrites, nitrates, and ammonia; and a variable for allocation. Carbon and nitrogen dynamics are calibrated to specific sites in 17 vegetation types. Eight parameters are determined during calibration for each of the 17 vegetation types. At calibration, the annual average values of carbon in vegetation C, show site differences that derive from the vegetation-type specific parameters and intersite variation in climate and soils. From calibration, we recover the average C{sub v} of forests, woodlands, savannas, grasslands, shrublands, and tundra that were used to develop the model initially. The timing of the phases of the annual variation is driven by temperature and light in the high latitude and moist temperate zones. The dry temperate zones are driven by temperature, precipitation, and light. In the tropics, precipitation is the key variable in annual variation. The seasonal responses are even more clearly demonstrated in net primary production and show the same controlling factors.

  19. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae).

    Science.gov (United States)

    Huerta Lwanga, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A; Geissen, Violette

    2016-03-01

    Plastic debris is widespread in the environment, but information on the effects of microplastics on terrestrial fauna is completely lacking. Here, we studied the survival and fitness of the earthworm Lumbricus terrestris (Oligochaeta, Lumbricidae) exposed to microplastics (Polyethylene, digestion of ingested organic matter, microplastic was concentrated in cast, especially at the lowest dose (i.e., 7% in litter) because that dose had the highest proportion of digestible organic matter. Whereas 50 percent of the microplastics had a size of earthworms. These concentration-transport and size-selection mechanisms may have important implications for fate and risk of microplastic in terrestrial ecosystems.

  20. Origins of terrestrial organic matter in surface sediments of the East China Sea shelf

    Science.gov (United States)

    Zhang, Hailong; Xing, Lei; Zhao, Meixun

    2017-10-01

    Terrestrial organic matter (TOM) is an important component of marine sedimentary OM, and revealing the origins and transport mechanisms of TOM to the East China Sea (ECS) is important for understanding regional carbon cycle. A novel approach combining molecular proxies and compound-specific carbon isotopes is used to quantitatively constrain the origins and transport mechanisms of TOM in surface sediments from the ECS shelf. The content of terrestrial biomarkers of (C27+C29+C31) n-alkanes (52 to 580 ng g-1) revealed a seaward decreasing trend, the δ13CTOC values (-20.6‰ to -22.7‰) were more negative near the coast, and the TMBR (terrestrial and marine biomarker ratio) values (0.06 to 0.40) also revealed a seaward decreasing trend. These proxies all indicated more TOM (up to 48%) deposition in the coastal areas. The Alkane Index, the ratio of C29/(C29+C31) n-alkanes indicated a higher proportion of grass vegetation in the coastal area; While the δ13C values of C29 n-alkane (-29.3‰ to -33.8‰) indicated that terrestrial plant in the sediments of the ECS shelf were mainly derived from C3 plants. Cluster analysis afforded detailed estimates of different-sourced TOM contributions and transport mechanisms. TOM in the Zhejiang-Fujian coastal area was mostly delivered by the Changjiang River, and characterized by higher %TOM (up to 48%), higher %C3 plant OM (68%-85%) and higher grass plant OM (56%-61%); TOM in the mid-shelf area was mostly transported by aerosols, and characterized by low %TOM (less than 17%), slightly lower C3 plant OM (56%-72%) and lower grass plant OM (49%-55%).