WorldWideScience

Sample records for ternary metal oxynitride

  1. Metal-Catalyst-Free Synthesis and Characterization of Single-Crystalline Silicon Oxynitride Nanowires

    Directory of Open Access Journals (Sweden)

    Shuang Xi

    2012-01-01

    Full Text Available Large quantities of single-crystal silicon oxynitride nanowires with high N concentration have been synthesized directly on silicon substrate at 1200°C without using any metal catalyst. The diameter of these ternary nanowires is ranging from 10 to 180 nm with log-normal distribution, and the length of these nanowires varies from a few hundreds of micrometers to several millimeters. A vapor-solid mechanism was proposed to explain the growth of the nanowires. These nanowires are grown to form a disordered mat with an ultrabright white nonspecular appearance. The mat demonstrates highly diffusive reflectivity with the optical reflectivity of around 80% over the whole visible wavelength, which is comparable to the most brilliant white beetle scales found in nature. The whiteness might be resulted from the strong multiscattering of a large fraction of incident light on the disordered nanowire mat. These ultra-bright white nanowires could form as reflecting surface to meet the stringent requirements of bright-white light-emitting-diode lighting for higher optical efficiency. They can also find applications in diverse fields such as sensors, cosmetics, paints, and tooth whitening.

  2. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    to binary metallic glasses. They are of interest since third element can modify the physical properties of binary metallic glasses and can also be used as a probe to study the host. ..... conducting nature in the present case. When we. Figure 6. Variation of transition temperature (TC) with valance (Z) of ternary metallic glasses.

  3. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    When used with a suitable form of dialectic screening functions, this potential has also been found to yield good results in computing the SSP of (Ni33Zr67)1–x ..... superconducting nature. Hence, (Ni33Zr67)1–xMx. (M = Ti, V, Co, Cu) ternary metallic glasses exhibit super- conducting nature in the present case. When we.

  4. Solar selective performance of metal nitride/oxynitride based magnetron sputtered thin film coatings: a comprehensive review

    Science.gov (United States)

    Ibrahim, Khalil; Taha, Hatem; Mahbubur Rahman, M.; Kabir, Humayun; Jiang, Zhong-Tao

    2018-03-01

    Since solar-thermal collectors are considered to be the most direct way of converting solar energy into usable forms, in the last few years growing attention has been paid to the development of transition metal nitride and metal oxynitride based thin film selective surfaces for solar-thermal collectors, in order to harvest more solar energy. A solar-thermal energy system, generally, shows very high solar absorption of incident solar radiation from the solar-thermal collectors in the visible range (0.3 to 2.5 μm) and extremely low thermal losses through emission (or high reflection) in the infrared region (≥2.5 μm). The efficiency of a solar-thermal energy conversion system can be improved by the use of solar selective surfaces consisting of novel metallic nanoparticles embedded in metal nitride/oxynitride systems. In order to enhance the effectiveness of solar-thermal devices, solar selective surfaces with high thermal stability are a prerequisite. Over the years, substantial efforts have been made in the field of solar selective surfaces to attain higher solar absorptance and lower thermal emittance in high temperature (above 400 °C) applications. In this article, we review the present state-of-the-art transition metal nitride and/or oxynitride based vacuum sputtered nanostructured thin film coatings, with respect to their optical and solar selective surface applications. We have also summarized the solar selectivity data from recently published investigations, including discussion on some potential applications for these materials.

  5. Synthesis of a Novel Polyethoxysilsesquiazane and Thermal Conversion into Ternary Silicon Oxynitride Ceramics with Enhanced Thermal Stability.

    Science.gov (United States)

    Iwase, Yoshiaki; Horie, Yoji; Daiko, Yusuke; Honda, Sawao; Iwamoto, Yuji

    2017-12-05

    A novel polyethoxysilsesquiazane ([EtOSi(NH) 1.5 ] n , EtOSZ) was synthesized by ammonolysis at -78 °C of ethoxytrichlorosilane (EtOSiCl₃), which was isolated by distillation as a reaction product of SiCl₄ and EtOH. Attenuated total reflection-infra red (ATR-IR), 13 C-, and 29 Si-nuclear magnetic resonance (NMR) spectroscopic analyses of the ammonolysis product resulted in the detection of Si-NH-Si linkage and EtO group. The simultaneous thermogravimetric and mass spectrometry analyses of the EtOSZ under helium revealed cleavage of oxygen-carbon bond of the EtO group to evolve ethylene as a main gaseous species formed in-situ, which lead to the formation at 800 °C of quaternary amorphous Si-C-N with an extremely low carbon content (1.1 wt %) when compared to the theoretical EtOSZ (25.1 wt %). Subsequent heat treatment up to 1400 °C in N₂ lead to the formation of X-ray amorphous ternary Si-O-N. Further heating to 1600 °C in N₂ promoted crystallization and phase partitioning to afford Si₂N₂O nanocrystallites identified by the XRD and TEM analyses. The thermal stability up to 1400 °C of the amorphous state achieved for the ternary Si-O-N was further studied by chemical composition analysis, as well as X-ray photoelectron spectroscopy (XPS) and 29 Si-NMR spectroscopic analyses, and the results were discussed aiming to develop a novel polymeric precursor for ternary amorphous Si-O-N ceramics with an enhanced thermal stability.

  6. Synthesis of a Novel Polyethoxysilsesquiazane and Thermal Conversion into Ternary Silicon Oxynitride Ceramics with Enhanced Thermal Stability

    Directory of Open Access Journals (Sweden)

    Yoshiaki Iwase

    2017-12-01

    Full Text Available A novel polyethoxysilsesquiazane ([EtOSi(NH1.5]n, EtOSZ was synthesized by ammonolysis at −78 °C of ethoxytrichlorosilane (EtOSiCl3, which was isolated by distillation as a reaction product of SiCl4 and EtOH. Attenuated total reflection-infra red (ATR-IR, 13C-, and 29Si-nuclear magnetic resonance (NMR spectroscopic analyses of the ammonolysis product resulted in the detection of Si–NH–Si linkage and EtO group. The simultaneous thermogravimetric and mass spectrometry analyses of the EtOSZ under helium revealed cleavage of oxygen-carbon bond of the EtO group to evolve ethylene as a main gaseous species formed in-situ, which lead to the formation at 800 °C of quaternary amorphous Si–C–N with an extremely low carbon content (1.1 wt % when compared to the theoretical EtOSZ (25.1 wt %. Subsequent heat treatment up to 1400 °C in N2 lead to the formation of X-ray amorphous ternary Si–O–N. Further heating to 1600 °C in N2 promoted crystallization and phase partitioning to afford Si2N2O nanocrystallites identified by the XRD and TEM analyses. The thermal stability up to 1400 °C of the amorphous state achieved for the ternary Si-O-N was further studied by chemical composition analysis, as well as X-ray photoelectron spectroscopy (XPS and 29Si-NMR spectroscopic analyses, and the results were discussed aiming to develop a novel polymeric precursor for ternary amorphous Si–O–N ceramics with an enhanced thermal stability.

  7. Ternary scandium and transition metals germanides

    International Nuclear Information System (INIS)

    Kotur, B.Ya.

    1992-01-01

    Brief review of data on phase diagram of ternary Sc-Me-Ge systems (Me-d - , f-transition element) is given. Isothermal sections at 870 and 1070 K of 17 ternary systems are plotted. Compositions and their structural characteristics are presented. Variability of crystal structure is typical for ternary scandium germanides: 70 compounds with the studied structure belong to 23 structural types. Ternary germanides isostructural to types of Sm 4 Ge 4 , ZrCrSi 2 , ZrNiAl, ScCeSi, TiNiSi U 4 Re 7 Si 6 145 compounds from 70 under investigation are mostly formed in studied systems

  8. The interaction of uranium metal with nitrogen oxides: The formation of an oxynitride surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Albert F. [School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT (United Kingdom)], E-mail: carley@cardiff.ac.uk; Nevitt, Paul; Roussel, Paul [AWE, Aldermaston, Reading, Berks RG7 4PR (United Kingdom)

    2008-01-10

    The interaction of nitric oxide, nitrogen dioxide and nitrous oxide with a polycrystalline uranium surface has been investigated at 298 K. The surface composition and electronic structure of the developing oxide films were studied using X-ray and ultraviolet photoelectron spectroscopy. Nitrous oxide adsorbs dissociatively leaving only oxygen adsorbed on the uranium surface. Nitric oxide and nitrogen dioxide also adsorb dissociatively but in these cases both oxygen and nitrogen remain on the surface. We propose the formation of uranium oxynitride (UO{sub x}N{sub y}). For exposures >350 L the rate of reaction of NO with the oxynitride surface decreases significantly. In contrast, NO{sub 2} continues to react with the surface and a further increase in surface oxygen concentration is observed.

  9. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Quadratic T C equations have been proposed and found successful. Also, the present findings are found to be in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the ternary superconductors. The pseudo-alloy-atom (PAA) model was applied for the first time instead of ...

  10. Formation of ternary Mg–Cu–Dy bulk metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    showed that a series of ternary Mg–Cu–Dy bulk metallic glasses (BGMs) with a diameter of 4–8 mm were suc- cessfully fabricated in the system with ... rods with the maximum diameter of 6–16 mm are fabri- cated by copper-mold casting .... some minor secondary event, resulting in a large melting point of about 65 K, which ...

  11. Evaluation of diffusion barrier and electrical properties of tantalum oxynitride thin films for silver metallization

    International Nuclear Information System (INIS)

    Misra, E.; Wang, Y.; Theodore, N.D.; Alford, T.L.

    2004-01-01

    The thermal stability and the diffusion barrier properties of DC reactively sputtered tantalum oxynitride (Ta-O-N) thin films, between silver (Ag) and silicon (Si) p + n diodes were investigated. Both materials characterization (X-ray diffraction analysis, Rutherford backscattering spectrometry (RBS), Auger depth profiling) and electrical measurements (reverse-biased junction leakage current-density) were used to evaluate diffusion barrier properties of the thin films. The leakage current density of p + n diodes with the barrier (Ta-O-N) was approximately four orders of magnitude lower than those without barriers after a 30 min, 400 deg. C back contact anneal. The Ta-O-N barriers were stable up to 500 deg. C, 30 min anneals. However, this was not the case for the 600 deg. C anneal. RBS spectra and cross-sectional transmission electron microscopy of as-deposited and vacuum annealed samples of Ag/barrier (Ta-O-N)/Si indicate the absence of any interfacial interaction between the barrier and substrate (silicon). The failure of the Ta-O-N barriers has been attributed to thermally induced stresses, which cause the thin film to crack at elevated temperatures

  12. Layered Transition Metal Oxynitride Co3Mo2OxN6-x/C Catalyst for Oxygen Reduction Reaction.

    Science.gov (United States)

    An, Li; Xia, Zhonghong; Chen, Peikai; Xia, Dingguo

    2016-11-02

    Transition metal oxynitrides have now garnered growing interest in our quest for highly efficient alternatives to Pt in direct methanol alkaline fuel cells. Herein, carbon supported Co 3 Mo 2 O x N 6-x was synthesized via a simple two-step approach wherein the reactants undergo refluxing and heat treatment in NH 3 . For the as-prepared Co 3 Mo 2 O x N 6-x catalyst, uniformly dispersed on XC-72, with the particle size averaged at 5 nm, the catalytic activities toward oxygen reduction reaction in alkaline media are related to the commercial Pt/C, such as the comparable onset potential (0.9 V vs RHE), half-wave potential (0.8 V vs RHE), and even higher specific activity (82.7 mA cm -2 at 0.7 V). Significantly, the Co 3 Mo 2 O x N 6-x catalyst was highly stable in terms of 95% current retention after 12 h chronoamperometry measurement, indicative of favorable prospect for the non-noble cathodic catalyst in alkaline fuel cell.

  13. Binary and ternary carbides and nitrides of the transition metals and their phase relations

    International Nuclear Information System (INIS)

    Holleck, H.

    1981-01-01

    The occurrance and the structure of the binary and ternary transition metal carbides and nitrides are described. Phase diagrams are assessed for most of the binary and ternary systems. Many ternary phase diagrams are published in this report for the first time. (orig.) [de

  14. Ternary metal-rich sulfide with a layered structure

    Science.gov (United States)

    Franzen, Hugo F.; Yao, Xiaoqiang

    1993-08-17

    A ternary Nb-Ta-S compound is provided having the atomic formula, Nb.sub.1.72 Ta.sub.3.28 S.sub.2, and exhibiting a layered structure in the sequence S-M3-M2-M1-M2-M3-S wherein S represents sulfur layers and M1, M2, and M3 represent Nb/Ta mixed metal layers. This sequence generates seven sheets stacked along the [001] direction of an approximate body centered cubic crystal structure with relatively weak sulfur-to-sulfur van der Waals type interactions between adjacent sulfur sheets and metal-to-metal bonding within and between adjacent mixed metal sheets.

  15. Issues Affecting the Synthetic Scalability of Ternary Metal Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lauren Morrow

    2015-01-01

    Full Text Available Ternary Mn-Zn ferrite (MnxZn1-xFe2O4 nanoparticles (NPs have been prepared by the thermal decomposition of an oleate complex, sodium dodecylbenzenesulfonate (SDBS mediated hydrazine decomposition of the chloride salts, and triethylene glycol (TREG mediated thermal decomposition of the metal acetylacetonates. Only the first method was found to facilitate the synthesis of uniform, isolable NPs with the correct Mn : Zn ratio (0.7 : 0.3 as characterized by small angle X-ray scattering (SAXS, transmission electron microscopy (TEM, and inductively coupled plasma-optical emission spectroscopy (ICP-OES. Scaling allowed for retention of the composition and size; however, attempts to prepare Zn-rich ferrites did not result in NP formation. Thermogravimetric analysis (TGA indicated that the incomplete decomposition of the metal-oleate complexes prior to NP nucleation for Zn-rich compositions is the cause.

  16. Halo Formation During Solidification of Refractory Metal Aluminide Ternary Systems

    Science.gov (United States)

    D'Souza, N.; Feitosa, L. M.; West, G. D.; Dong, H. B.

    2018-02-01

    The evolution of eutectic morphologies following primary solidification has been studied in the refractory metal aluminide (Ta-Al-Fe, Nb-Al-Co, and Nb-Al-Fe) ternary systems. The undercooling accompanying solid growth, as related to the extended solute solubility in the primary and secondary phases can be used to account for the evolution of phase morphologies during ternary eutectic solidification. For small undercooling, the conditions of interfacial equilibrium remain valid, while in the case of significant undercooling when nucleation constraints occur, there is a departure from equilibrium leading to unexpected phases. In Ta-Al-Fe, an extended solubility of Fe in σ was observed, which was consistent with the formation of a halo of μ phase on primary σ. In Nb-Al-Co, a halo of C14 is formed on primary CoAl, but very limited vice versa. However, in the absence of a solidus projection it was not possible to definitively determine the extended solute solubility in the primary phase. In Nb-Al-Fe when nucleation constraints arise, the inability to initiate coupled growth of NbAl3 + C14 leads to the occurrence of a two-phase halo of C14 + Nb2Al, indicating a large undercooling and departure from equilibrium.

  17. Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template.

    Science.gov (United States)

    Fischer, Anna; Müller, Jens Oliver; Antonietti, Markus; Thomas, Arne

    2008-12-23

    Mesoporous graphitic carbon nitride was used as both a nanoreactor and a reactant for the synthesis of ternary metal nitride nanoparticles. By infiltration of a mixture of two metal precursors into mesoporous carbon nitride, the pores act first as a nanoconfinement, generating amorphous mixed oxide nanoparticles. During heating and decomposition, the carbon nitride second acts as reactant or, more precisely, as a nitrogen source, which converts the preformed mixed oxide nanoparticles into the corresponding nitride (reactive templating). Using this approach, ternary metal nitride particles with diameters smaller 10 nm composed of aluminum gallium nitride (Al-Ga-N) and titanium vanadium nitride (Ti-V-N) were synthesized. Due to the confinement effect of the carbon nitride matrix, the composition of the resulting metal nitride can be easily adjusted by changing the concentration of the preceding precursor solution. Thus, ternary metal nitride nanoparticles with continuously adjustable metal composition can be produced.

  18. Structural study of gallium oxynitrides prepared by ammonolysis of different oxide precursors

    Energy Technology Data Exchange (ETDEWEB)

    Cailleaux, Xavier; Merdrignac-Conanec, Odile; Tessier, Franck [UMR CNRS 6226 Sciences Chimiques de Rennes, Equipe Verres et Ceramiques, Universite de Rennes 1, 35042 Rennes Cedex (France); De Lucas, MarIa del Carmen Marco [Institut Carnot de Bourgogne, UMR 5209 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Nagasaka, Kazuteru; Kikkawa, Shinichi [Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku Sapporo 060-8628 (Japan)

    2009-02-21

    A comparative structural study has been carried out on gallium oxynitride powders using XRD and Raman spectroscopy. Gallium oxynitrides have been prepared by ammonolysis of either NiGa{sub 2}O{sub 4} ternary oxide or the citrate method-derived amorphous oxide. Their crystal chemistry is different and appears to be influenced by the nature of the oxide precursor: whereas gallium oxynitride obtained from amorphous gallium oxide crystallizes with the common wurtzite structure, gallium oxynitride obtained from NiGa{sub 2}O{sub 4} crystallizes with an original structure that we have identified as the carborundum II (B6) structure type or 6H-SiC. As far as we know, this is the first 6H-SiC structure found in gallium oxynitride powders.

  19. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com [Department of Physics, Amity Institute of Applied Sciences, AmityUniversity, Noida (U.P.) (India); Kumar, Narendra [Department of Physics (CASH), Modi University of Science and Technology, Lakshmangarh, Sikar, Rajsthan (India); Thapa, Khem B. [Department of Physics, U I E T, ChhatrapatiShahu Ji Maharaj University, Kanpur- (UP) (India); Ojha, S. P. [Department of Physics IIT, Banaras Hindu University (India)

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  20. Equilibrium studies of ternary systems containing some selected transition metal ions, triazoles and aromatic carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Mohamed Magdy; Radalla, Abd-Elatty; Qasem, Fatma; Khaled, Rehab [Beni-Suef University, Beni-Suef (Egypt)

    2014-01-15

    Solution equilibria of the binary and ternary complex systems of the divalent transition metal ions Cu{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Co{sup 2+} with 1,2,4-triazole (TRZ), 3-mercapto-1,2,4-triazole (TRZSH), and 3-amino-1,2,4-triazole (TRZAM) and aromatic carboxylic acids (phthalic, anthranilic, salicylic, and 5-sulfosalicylic acid) have been studied pH-metrically at (25.0±0.1) .deg. C, and a constant ionic strength I=1x10{sup -1} mol L{sup -1} NaNO{sub 3} in an aqueous medium. The potentiometric titration curves show that binary and ternary complexes of these ligands are formed in solution. The stability constants of the different binary and ternary complexes formed were calculated on the basis of computer analysis of the titration data. The relative stability of the different ternary complex species is expressed in terms of Δ log K values, log X and R. S.% parameters. The effect of temperature of the medium on both the proton-ligand equilibria for TRZAM and phthalic acid and their metal-ligand equilibria with Cu{sup 2+}, Ni{sup 2+}, and Co{sup 2+} has been studied along with the corresponding thermodynamic parameters. The complexation behavior of ternary complexes is ascertained using conductivity measurements. In addition, the formation of ternary complexes in solution has been confirmed by using UV-visible spectrophotometry.

  1. A new model for predicting thermodynamic properties of ternary metallic solution from binary components

    International Nuclear Information System (INIS)

    Fang Zheng; Zhang Quanru

    2006-01-01

    A model has been derived to predict thermodynamic properties of ternary metallic systems from those of its three binaries. In the model, the excess Gibbs free energies and the interaction parameter ω 123 for three components of a ternary are expressed as a simple sum of those of the three sub-binaries, and the mole fractions of the components of the ternary are identical with the sub-binaries. This model is greatly simplified compared with the current symmetrical and asymmetrical models. It is able to overcome some shortcomings of the current models, such as the arrangement of the components in the Gibbs triangle, the conversion of mole fractions between ternary and corresponding binaries, and some necessary processes for optimizing the various parameters of these models. Two ternary systems, Mg-Cu-Ni and Cd-Bi-Pb are recalculated to demonstrate the validity and precision of the present model. The calculated results on the Mg-Cu-Ni system are better than those in the literature. New parameters in the Margules equations expressing the excess Gibbs free energies of three binary systems of the Cd-Bi-Pb ternary system are also given

  2. New ternary transition metal borides containing uranium and rare earth elements

    International Nuclear Information System (INIS)

    Rogl, P.; Delong, L.

    1983-01-01

    The new ternary actinide metal diborides U 2 MoB 6 , U 2 ReB 6 , U 2 OsB 6 , URuB 4 and UOsB 4 were prepared and found to crystallize with either the Y 2 ReB 6 or the ThMoB 4 type of structure. LuRuB 4 and LuOsB 4 crystallize with the YCrB 4 type of structure. In a ternary series of solid solutions YRh 3 Bsub(1-x) (0 0 C), boron was found to stabilize a Cu 3 Au type of structure. The superconductivity of the new uranium compounds and of a series of ternary transition metal borides was investigated; no superconductivity was observed for temperatures as low at 1.3-1.5 K. The cubic perovskite or filled Cu 3 Au structure is discussed as a type which is very unfavorable for the occurrence of superconductivity. (Auth.)

  3. Ternary superconductors

    International Nuclear Information System (INIS)

    Giorgi, A.L.

    1987-01-01

    Ternary superconductors constitute a class of superconducting compounds with exceptional properties such as high transition temperatures (≅ 15.2 K), extremely high critical fields (H c2 >60 Tesla), and the coexistence of superconductivity and long-range magnetic order. This has generated great interest in the scientific community and resulted in a large number of experimental and theoretical investigations in which many new ternary compounds have been discovered. A review of some of the properties of these ternary compounds is presented with particular emphasis on the ternary molybdenum chalcogenides and the ternary rare earth transition metal tetraborides. The effect of partial substitution of a second metal atom to form pseudoternary compounds is examined as well as some of the proposed correlations between the superconducting transition temperature and the structural and electronic properties of the ternary superconductors

  4. A metallic solution model with adjustable parameter for describing ternary thermodynamic properties from its binary constituents

    International Nuclear Information System (INIS)

    Fang Zheng; Qiu Guanzhou

    2007-01-01

    A metallic solution model with adjustable parameter k has been developed to predict thermodynamic properties of ternary systems from those of its constituent three binaries. In the present model, the excess Gibbs free energy for a ternary mixture is expressed as a weighted probability sum of those of binaries and the k value is determined based on an assumption that the ternary interaction generally strengthens the mixing effects for metallic solutions with weak interaction, making the Gibbs free energy of mixing of the ternary system more negative than that before considering the interaction. This point is never considered in the models currently reported, where the only difference in a geometrical definition of molar values of components is considered that do not involve thermodynamic principles but are completely empirical. The current model describes the results of experiments very well, and by adjusting the k value also agrees with those from models used widely in the literature. Three ternary systems, Mg-Cu-Ni, Zn-In-Cd, and Cd-Bi-Pb are recalculated to demonstrate the method of determining k and the precision of the model. The results of the calculations, especially those in Mg-Cu-Ni system, are better than those predicted by the current models in the literature

  5. Oxynitride glasses—An overview

    Indian Academy of Sciences (India)

    Unknown

    Oxynitride glass; silicon–nitride; network former and modifier; leach resistance; nuclear waste. 1. Introduction. The history of oxynitride glasses is not an old one. It was only in the late ..... any evidence of contamination from crucibles. The melt- ing point of the crucible must be higher than the proce- ssing temperature of the ...

  6. Oxynitride glasses—An overview

    Indian Academy of Sciences (India)

    Keywords. Oxynitride glass; silicon–nitride; network former and modifier; leach resistance; nuclear waste. ... Earlier, heating an oxide glass with NH3 and/or N2 was the route to obtain oxynitride glass. Later on greater amount of nitrogen retention was made possible using AlN or Si3N4 as batch material. Silicate, borate and ...

  7. Silicon oxynitride: A field emission suppression coating

    Science.gov (United States)

    Theodore, Nimel D.

    stainless steel electrodes. We determined a quantitative, predictive electron emission model to describe electron emission from our silicon oxynitride coatings. Although Fowler-Nordheim theory adequately describes field emission from metals, it does not apply to our dielectric coatings. Several models exist in the literature to describe electron emission from dielectrics. Based upon our high voltage field emission results, electron emission from our silicon oxynitride coatings is described by the Schottky and Poole-Frenkel emission models. These models predict that increasing the band gap, dielectric constant, and electron affinity of our silicon oxynitride coatings would further reduce field emission.

  8. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Science.gov (United States)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  9. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    KAUST Repository

    Alahmary, Fatimah S.

    2014-05-01

    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  10. Ternary toxicological interactions of insecticides, herbicides, and a heavy metal on the earthworm Eisenia fetida

    International Nuclear Information System (INIS)

    Wang, Yanhua; Chen, Chen; Qian, Yongzhong; Zhao, Xueping; Wang, Qiang

    2015-01-01

    Highlights: • The combined toxicity of insecticides, herbicides, and a heavy metal was examined. • Acute earthworm toxicity assays were conducted in twenty-one ternary mixtures. • Synergism predominated in the majority of the mixtures at low effect levels. • Combination index method could more accurately predict the combined toxicity. - Abstract: The combined toxicities of five insecticides (chlorpyrifos, avermectin, imidacloprid, λ-cyhalothrin, and phoxim), two herbicides (atrazine and butachlor), and a heavy metal (cadmium) have been examined using the acute toxicity test on the earthworm. With a concentration of 2.75 mg/kg being lethal for 50% of the organisms, imidacloprid exhibited the highest acute toxicity toward the earthworm Eisenia fetida. Toxicological interactions of these chemicals in ternary mixtures were studied using the combination-index (CI) equation method. Twenty-one ternary mixtures exhibited various interactive effects, in which 11 combinations showed synergistic effects, four led to dual synergistic/additive behaviors, one exhibited an additive effect, and five showed increasing antagonism within the entire range of effects. The CI method was compared with the classical models of concentration addition and independent action, and it was found that the CI method could accurately predict combined toxicity of the chemicals studied. The predicted synergism in the majority of the mixtures, especially at low-effect levels, might have implications in the real terrestrial environment

  11. Ternary toxicological interactions of insecticides, herbicides, and a heavy metal on the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanhua [State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 (China); Chen, Chen [Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Qian, Yongzhong, E-mail: qyzcaas@aliyun.com [Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Zhao, Xueping [State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 (China); Wang, Qiang, E-mail: qiangwang2003@vip.sina.com [State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 (China)

    2015-03-02

    Highlights: • The combined toxicity of insecticides, herbicides, and a heavy metal was examined. • Acute earthworm toxicity assays were conducted in twenty-one ternary mixtures. • Synergism predominated in the majority of the mixtures at low effect levels. • Combination index method could more accurately predict the combined toxicity. - Abstract: The combined toxicities of five insecticides (chlorpyrifos, avermectin, imidacloprid, λ-cyhalothrin, and phoxim), two herbicides (atrazine and butachlor), and a heavy metal (cadmium) have been examined using the acute toxicity test on the earthworm. With a concentration of 2.75 mg/kg being lethal for 50% of the organisms, imidacloprid exhibited the highest acute toxicity toward the earthworm Eisenia fetida. Toxicological interactions of these chemicals in ternary mixtures were studied using the combination-index (CI) equation method. Twenty-one ternary mixtures exhibited various interactive effects, in which 11 combinations showed synergistic effects, four led to dual synergistic/additive behaviors, one exhibited an additive effect, and five showed increasing antagonism within the entire range of effects. The CI method was compared with the classical models of concentration addition and independent action, and it was found that the CI method could accurately predict combined toxicity of the chemicals studied. The predicted synergism in the majority of the mixtures, especially at low-effect levels, might have implications in the real terrestrial environment.

  12. Structural and thermal characterization of ternary complexes of piroxicam and alanine with transition metals: Uranyl binary and ternary complexes of piroxicam. Spectroscopic characterization and properties of metal complexes

    Science.gov (United States)

    Mohamed, Gehad G.

    2005-12-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO 2(II) complexes with piroxicam (Pir) drug (H 2L 1) and dl-alanine (Ala) (HL 2) and also the binary UO 2(II) complex with Pir were studied. The structures of the complexes were elucidated using elemental, IR, molar conductance, magnetic moment, diffused reflectance and thermal analyses. The UO 2(II) binary complex was isolated in 1:2 ratio with the formula [UO 2(H 2L) 2](NO 3) 2. The ternary complexes were isolated in 1:1:1 (M:H 2L 1:L 2) ratios. The solid complexes were isolated in the general formulae [M(H 2L)(L 2)(Cl) n(H 2O) m]· yH 2O (M = Fe(III) ( n = 2, m = 0, y = 1), Co(II) ( n = 1, m = 1, y = 2) and Ni(II) ( n = 1, m = 1, y = 0)); [M(H 2L)(L 2)](X) z· yH 2O (M = Cu(II) (X = AcO, z = 1, y = 0), Zn(II) (X = AcO, z = 1, y = 3) and UO 2(II) (X = NO 3, z = 1, y = 2)). Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data show that the complexes have octahedral geometry except Cu(II) and Zn(II) complexes have tetrahedral structures. The thermal decomposition of the complexes was discussed in relation to structure, and the thermodynamic parameters of the decomposition stages were evaluated.

  13. Synthesis and application of a ternary composite of clay, saw-dust and peanut husks in heavy metal adsorption.

    Science.gov (United States)

    Mungondori, Henry H; Mtetwa, Sandile; Tichagwa, Lilian; Katwire, David M; Nyamukamba, Pardon

    2017-05-01

    The adsorption of a multi-component system of ferrous, chromium, copper, nickel and lead on single, binary and ternary composites was studied. The aim of the study was to investigate whether a ternary composite of clay, peanut husks (PH) and saw-dust (SD) exhibited a higher adsorption capacity than that of a binary system of clay and SD as well as a single component adsorbent of PH alone. The materials were used in their raw state without any chemical modifications. This was done to retain the cost effective aspect of the naturally occurring adsorbents. The adsorption capacities of the ternary composite for the heavy metals Fe 2+ , Cr 3+ , Cu 2+ , Ni 2+ and Pb 2+ were 41.7 mg/g, 40.0 mg/g, 25.5 mg/g, 41.5 mg/g and 39.0 mg/g, respectively. It was found that the ternary composite exhibited excellent and enhanced adsorption capacity compared with both a binary and single adsorbent for the heavy metals Fe 2+ , Ni 2+ and Cr 3+ . Characterization of the ternary composites was done using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Kinetic models and adsorption isotherms were also studied. The pseudo second order kinetic model and the Langmuir adsorption isotherm best described the adsorption mechanisms for the ternary composite towards each of the heavy metal ions.

  14. Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes

    KAUST Repository

    Xia, Chuan

    2016-04-14

    Asymmetric supercapacitors provide a promising approach to fabricate capacitive energy storage devices with high energy and power densities. In this work, asymmetric supercapacitors with excellent performance have been fabricated using ternary (Ni, Co)0.85Se on carbon fabric as bind-free positive electrode and porous free-standing graphene films as negative electrode. Owing to their metal-like conductivity (~1.67×106 S m−1), significant electrochemical activity, and superhydrophilic nature, our nanostructured ternary nickel cobalt selenides result in a much higher areal capacitance (2.33 F cm−2 at 4 mA cm−2), better rate performance and cycling stability than their binary selenide equivalents, and other ternary oxides and chalcogenides. Those hybrid supercapacitors can afford impressive areal capacitance and stack capacitance of 529.3 mF cm−2 and 6330 mF cm−3 at 1 mA cm−2, respectively. More impressively, our optimized asymmetric device operating at 1.8 V delivers a very high stack energy density of 2.85 mWh cm−3 at a stack power density of 10.76 mW cm−3, as well as 85% capacitance retention after 10,000 continuous charge-discharge cycles. Even at a high stack power density of 1173 mW cm−3, this device still deliveries a stack energy density of 1.19 mWh cm−3, superior to most of the reported supercapacitors.

  15. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  16. Phase equilibria in M-X-X' and M-Al-X ternary systems (M-transition metal, X,X'-B,C,N,Si) and crystal chemistry of ternary compounds

    International Nuclear Information System (INIS)

    Gusev, A.I.

    1996-01-01

    The data on phase equilibria in the M-X-X' and M-Al-X ternary systems (M-transition metal of 3 to 8 groups, X-B,C, N, Si) have been considered and summarized. modern oxygen-free advanced ceramics is based on these ternary systems. Phase diagrams of the 130 ternary systems have been discussed, more than two hundred ternary phases forming in these systems have been systematized and described. The typical crystal structures of ternary compounds and phase have been considered, the common and distinctive features of these structures have been analysed. It has been shown that the ternary compounds with octahedral atomic groups XM 6 have a regions of homogeneity. Refs. 240

  17. The ternary post-transition metal carbodiimide SrZn(NCN){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Corkett, Alex J.; Konze, Philipp M. [Institute of Inorganic Chemistry, RWTH Aachen University, Aachen (Germany); Dronskowski, Richard [Institute of Inorganic Chemistry, RWTH Aachen University, Aachen (Germany); Juelich-Aachen Research Alliance (JARA-HPC), RWTH-Aachen University, Aachen (Germany)

    2017-11-17

    SrZn(NCN){sub 2}, the first example of a ternary post-transition metal carbodiimide, was prepared by a solid-state metathesis reaction. The crystal structure was solved from PXRD data and found to adopt the orthorhombic (Cmcm) BaZnSO structure, a high symmetry modification of that expressed by the oxide analogue SrZnO{sub 2}. Locally, SrZn(NCN){sub 2} features ZnN{sub 4} tetrahedra and SrN{sub 6} trigonal prisms similar to those in quarternary LiSr{sub 2}M(NCN){sub 4} (M = Al{sup 3+} and Ga{sup 3+}) phases, however, the overall topologies are distinct with single chains in the former and double chains in the latter. Electronic structure calculations indicate an indirect bandgap of about 2.95 eV in SrZn(NCN){sub 2}, slightly lower than the experimentally observed bandgap of 3.4 eV in SrZnO{sub 2} and consistent with a greater degree of covalency. The structural similarities between SrZn(NCN){sub 2} and oxychalcogenide analogues highlight the pseudochalcogenide character of NCN{sup 2-} and suggest that the title compound may serve as a template for accessing novel ternary carbodiimides featuring tetrahedrally coordinated transition metals. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Ternary systems

    International Nuclear Information System (INIS)

    Kagan, D.N.; Hubberstey, P.; Barker, M.G.

    1985-01-01

    The paper reviews the experimental and theoretical studies carried out on multicomponent alkali metal systems. Solid-liquid phase equilibria studies are mainly concerned with the systems Na-K-Rb and Na-K-Cs, and data on the liquidus temperatures in these systems are presented. The thermodynamic properties of the ternary Na-K-Cs eutectic system have been determined experimentally, and the enthalpy, heat capacity and excess functions of the alloy are given. An analysis of calculational methods used in determining thermodynamic functions of ternary liquid metals systems is described. Finally, data are tabulated for the density, compressibility, saturated vapour pressure, viscosity and thermal conductivity of the ternary Na-K-Cs eutectic system. (UK)

  19. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    Energy Technology Data Exchange (ETDEWEB)

    Marking, Gregory Allen [Iowa State Univ., Ames, IA (United States)

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf10Ta3S3 was found to crystallize in a new-structure type similar to the known gamma brasses. This structure is unique in that it is the only reported "stuffed" gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo Kα X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co2Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.

  20. Thermodynamics of Ternary Nitride Formation by Ammonolysis: Application to LiMoN2, Na3WN3 and Na3WO3N

    Science.gov (United States)

    1992-01-01

    oxidation of a nitride or oxynitride to a well defined solid or molten oxide. The enthalpies of formation of LiMoN2, Na3WN3 and U Na3WO3N have been measured...the Feasibility of Nitride Synthesis Oxide Precursors Ternary solid state compounds, as well as ionic salts and coordination compounds, are potential... MOx + 2/3x NH 3 -+ MNy + xH20 + (x/3 - y/ 2 ) N2 (1) Because nitrides frequently contain the metals in a lower formal oxidation state than oxides

  1. A combined theoretical and experimental approach of a new ternary metal oxide in molybdate composite for hybrid energy storage capacitors

    Science.gov (United States)

    Minakshi, M.; Watcharatharapong, T.; Chakraborty, S.; Ahuja, R.

    2018-04-01

    Sustainable energy sources require an efficient energy storage system possessing excellent electrochemical properties. The better understanding of possible crystal configurations and the development of a new ternary metal oxide in molybdate composite as an electrode for hybrid capacitors can lead to an efficient energy storage system. Here, we reported a new ternary metal oxide in molybdate composite [(Mn1/3Co1/3Ni1/3)MoO4] prepared by simple combustion synthesis with an extended voltage window (1.8 V vs. Carbon) resulting in excellent specific capacity 35 C g-1 (58 F g-1) and energy density (50 Wh kg-1 at 500 W kg-1) for a two electrode system in an aqueous NaOH electrolyte. The binding energies measured for Mn, Co, and Ni 2p are consistent with the literature, and with the metal ions being present as M(II), implying that the oxidation states of the transition metals are unchanged. The experimental findings are correlated well through density functional theory based electronic structure calculations. Our reported work on the ternary metal oxide studies (Mn1/3Co1/3Ni1/3)MoO4 suggests that will be an added value to the materials for energy storage.

  2. Ultrahigh figure-of-merit for hydrogen generation from sodium borohydride using ternary metal catalysts

    Science.gov (United States)

    Hu, Lunghao; Ceccato, R.; Raj, R.

    We report further increase in the figure-of-merit (FOM) for hydrogen generation from NaBH 4 than reported in an earlier paper [1], where a sub-nanometer layer of metal catalysts are deposited on carbon nanotube paper (CNT paper) that has been functionalized with polymer-derived silicon carbonitride (SiCN) ceramic film. Ternary, Ru-Pd-Pt, instead of the binary Pd-Pt catalyst used earlier, together with a thinner CNT paper is shown to increase the figure-of-merit by up to a factor of six, putting is above any other known catalyst for hydrogen generation from NaBH 4. The catalysts are prepared by first impregnating the functionalized CNT-paper with solutions of the metal salts, followed by reduction in a sodium borohydride solution. The reaction mechanism and the catalyst efficiency are described in terms of an electric charge transfer, whereby the negative charge on the BH 4 - ion is exchanged with hydrogen via the electronically conducting SiCN/CNT substrate [1].

  3. Quantum Dot Sensitized Solar Cells Based on Ternary Metal Oxide Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenyong [Univ. of Wyoming, Laramie, WY (United States); Tang, Jinke [Univ. of Wyoming, Laramie, WY (United States); Dahnovsky, Yuri [Univ. of Wyoming, Laramie, WY (United States); Pikal, Jon M [Univ. of Wyoming, Laramie, WY (United States); Chien, TeYu [Univ. of Wyoming, Laramie, WY (United States)

    2017-11-03

    In Phase I of this project we investigate quantum dot sensitized solar cells (QDSSCs) based on ternary metal oxide nanowires and study the physical and chemical mechanisms that govern device operation. Our research has the following five objectives: (1) synthesis of ternary metal oxide nanowires, (2) synthesis of QDs and exploration of non-solution based QD deposition methods, (3) physical and electro-optical characterizations of fabricated solar devices, (4) device modeling and first-principle theoretical study of transport physics, and (5) investigation of long-term stability issues of QD sensitized solar cells. In Phase II of this project our first major research goal is to investigate magnetically doped quantum dots and related spin polarization effect, which could improve light absorption and suppress electron relaxation in the QDs. We will utilize both physical and chemical methods to synthesize these doped QDs. We will also study magnetically modified nanowires and introduce spin-polarized transport into QDSSCs, and inspect its impact on forward electron injection and back electron transfer processes. Our second goal is to study novel solid-state electrolytes for QDSSCs. Specifically, we will inspect a new type of polymer electrolytes based on a modified polysulfide redox couple, and examine the effect of their electrical properties on QDSSC performance. These solid-state electrolytes could also be used as filler materials for in situ sample fracturing in STM and enable cross-sectional interface examination of QD/nanowire structures. Our third research goal is to examine the interfacial properties such as energy level alignment at QD/nanowire interfaces using the newly developed Cross-sectional Scanning Tunneling Microscopy and Spectroscopy technique for non-cleavable materials. This technique allows a direct probing of band structures and alignment at device interfaces, which could generate important insight into the mechanisms that govern QDSSC operation

  4. Development of ΔE-E telescope ERDA with 40 MeV {sup 35}Cl{sup 7+} beam at MALT in the University of Tokyo optimized for analysis of metal oxynitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Harayama, I.; Nagashima, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 (Japan); Hirose, Y. [Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Matsuzaki, H. [School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Sekiba, D., E-mail: sekiba@tac.tsukuba.ac.jp [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 (Japan); Tandem Accelerator Complex, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 (Japan)

    2016-10-01

    We have developed a compact ΔE-E telescope elastic recoil detection analysis (ERDA) system, for the first time at Micro Analysis Laboratory, Tandem Accelerator (MALT) in the University of Tokyo, which consists of a gas ionization chamber and solid state detector (SSD) for the quantitative analysis of light elements. The gas ionization chamber is designed to identify the recoils of O and N from metal oxynitrides thin films irradiated with 40 MeV {sup 35}Cl{sup 7+}. The length of the electrodes along the beam direction is 50 mm optimized to sufficiently separate energy loss of O and N recoils in P10 gas at 6.0 × 10{sup 3} Pa. The performance of the gas ionization chamber was examined by comparing the ERDA results on the SrTaO{sub 2}N thin films with semi-empirical simulation and the chemical compositions previously determined by nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). We also confirmed availability of the gas ionization chamber for identifying not only the recoils of O and N but also those of lithium, carbon and fluorine.

  5. Development of ΔE-E telescope ERDA with 40 MeV 35Cl7+ beam at MALT in the University of Tokyo optimized for analysis of metal oxynitride thin films

    Science.gov (United States)

    Harayama, I.; Nagashima, K.; Hirose, Y.; Matsuzaki, H.; Sekiba, D.

    2016-10-01

    We have developed a compact ΔE-E telescope elastic recoil detection analysis (ERDA) system, for the first time at Micro Analysis Laboratory, Tandem Accelerator (MALT) in the University of Tokyo, which consists of a gas ionization chamber and solid state detector (SSD) for the quantitative analysis of light elements. The gas ionization chamber is designed to identify the recoils of O and N from metal oxynitrides thin films irradiated with 40 MeV 35Cl7+. The length of the electrodes along the beam direction is 50 mm optimized to sufficiently separate energy loss of O and N recoils in P10 gas at 6.0 × 103 Pa. The performance of the gas ionization chamber was examined by comparing the ERDA results on the SrTaO2N thin films with semi-empirical simulation and the chemical compositions previously determined by nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). We also confirmed availability of the gas ionization chamber for identifying not only the recoils of O and N but also those of lithium, carbon and fluorine.

  6. Uranyl binary and ternary chelates of tenoxicam. Synthesis, spectroscopic and thermal characterization of ternary chelates of tenoxicam and alanine with transition metals

    Science.gov (United States)

    El-Gamel, Nadia E. A.

    2007-11-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO 2(II) chelates with tenoxicam (Ten) drug (H 2L 1) and dl-alanine (Ala) (HL 2) and also the binary UO 2(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO 2(II) binary chelate was isolated in 1:2 ratio with the formula [UO 2(H 2L) 2](NO 3) 2. The ternary chelates were isolated in 1:1:1 (M:H 2L 1:L 2) ratios and have the general formulae [M(H 2L 1)(L 2)(Cl) n(H 2O) m]· yH 2O (M = Fe(III) ( n = 2, m = 0, y = 2), Co(II) ( n = 1, m = 1, y = 2) and Ni(II) ( n = 1, m = 1, y = 3)); [M(H 2L 1)(L 2)](X) z· yH 2O (M = Cu(II) (X = AcO, z = 1, y = 0), Zn(II) (X = AcO, z = 1, y = 3) and UO 2(II) (X = NO 3, z = 1, y = 2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.

  7. Interatomic potential to predict the favored and optimized compositions for ternary Cu-Zr-Hf metallic glasses

    International Nuclear Information System (INIS)

    Luo, S. Y.; Cui, Y. Y.; Dai, Y.; Li, J. H.; Liu, B. X.

    2012-01-01

    Under the framework of smoothed and long range second-moment approximation of tight-binding, a realistic interatomic potential was first constructed for the Cu-Zr-Hf ternary metal system. Applying the constructed potential, Monte Carlo simulations were carried out to compare the relative stability of crystalline solid solution versus its disordered counterpart over the entire composition triangle of the system (as a function of alloy composition). Simulations not only reveal that the origin of metallic glass formation but also determine, in the composition triangle, a quadrilateral region, within which metallic glass formation is energetically favored. It is proposed to define the energy differences between the crystalline solid solutions and disordered states as the driving force for amorphization and the corresponding calculations pinpoint an optimized composition locating at an composition of Cu 55 Zr 10 Hf 35 , around which the driving force for metallic glass formation reaches its maximum, suggesting that the ternary Cu-Zr-Hf metallic glasses designed to have the compositions around Cu 55 Zr 10 Hf 35 could be more stable than other alloys in the system. Moreover, for the Cu 55 Zr 10 Hf 35 metallic glass, the Voronoi tessellation calculations reveal some interesting features of its atomic configurations and coordination polyhedra distribution.

  8. Atomistic approach to predict the glass-forming ability in Zr–Cu–Al ternary metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.Y. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, X.J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zheng, G.P. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Niu, X.R. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, C.T., E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-04-05

    Highlights: • An atomistic approach has been developed to predict the glass forming ability (GFA) in Zr–Cu–Al ternary alloy system. • Both of the thermodynamic and structure-dependent kinetic effects to glass formation have been taken into account. • The first-principles calculation and molecular dynamics simulation have been performed. • The approach predicts the best glass former in the model Zr–Cu–Al alloy system. • The predicted GFA is consistent with various experimental results. - Abstract: Prediction of composition-dependent glass-forming ability (GFA) remains to be a key scientific challenge in the metallic-glass community, especially in multi-component alloy systems. In the present study, we apply an atomistic approach to predict the trend of GFA effectively in the Zr–Cu–Al ternary alloy system from alloy compositions alone. This approach is derived from the first-principles calculations based on the density-functional theory and molecular dynamic (MD) simulations. By considering of both the thermodynamic and atomic-structure induced kinetic effects, the predicted GFA trend from this approach shows an excellent agreement with experimental data available in this alloy system, manifesting its capability of seeking metallic glasses with superior GFA in ternary alloy systems.

  9. Competitive immobilization of Pb in an aqueous ternary-metals system by soluble phosphates with varying pH.

    Science.gov (United States)

    Zhang, Zhuo; Ren, Jie; Wang, Mei; Song, Xinlai; Zhang, Chao; Chen, Jiayu; Li, Fasheng; Guo, Guanlin

    2016-09-01

    Chemical immobilization by phosphates has been widely and successfully applied to treat Pb in wastewater and contaminated soils. Pb in wastewaters and soils, however, always coexists with other heavy metals and their competitive reactions with phosphates have not been quantitatively and systematically studied. In this approach, immobilization of Pb, Zn, and Cd by mono-, di-, and tripotassium phosphate (KH2PO4, K2HPO4, and K3PO4) was observed in the single- and ternary-metals solutions. The immobilization rates of the three metals were determined by the residual concentration. The mineral composition and structure of the precipitates were characterized by powder X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The results indicated that competitive reaction occurred in Pb-Zn-Cd ternary system, with immobilization rates decrease of system. The reaction of Pb with three phosphates exhibited intense competitiveness and the phosphates had a stronger affinity for Pb when Cl(-) was added. Pb-phosphate minerals formed by KH2PO4 with the better crystalline characteristics and largest size were very stable with a low dissolution rate (system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Atomistic modeling to investigate the favored composition for metallic glass formation in the Ca-Mg-Ni ternary system.

    Science.gov (United States)

    Zhao, S; Li, J H; An, S M; Li, S N; Liu, B X

    2017-05-17

    A realistic interatomic potential was first constructed for the Ca-Mg-Ni system and then applied to Monte Carlo simulations to predict the favored composition for metallic glass formation in the ternary system. The simulations not only predict a hexagonal composition region, within which the Ca-Mg-Ni metallic glass formation is energetically favored, but also pinpoint an optimized sub-region within which the amorphization driving force, i.e. the energy difference between the solid solution and disordered phase, is larger than that outside. The simulations further reveal that the physical origin of glass formation is the solid solution collapsing when the solute atom exceeds the critical solid solubility. Further structural analysis indicates that the pentagonal bi-pyramids dominate in the optimized sub-region. The large atomic size difference between Ca, Mg and Ni extends the short-range landscape and facilitates the development of a hybridized packing model in the medium-range, and eventually enhancing the glass formation in the system. The predictions are well supported by the experimental observations reported so far, and could be of help for designing the ternary glass formation.

  11. Synthesis of a polar ordered oxynitride perovskite

    Science.gov (United States)

    Vadapoo, Rajasekarakumar; Ahart, Muhtar; Somayazulu, Maddury; Holtgrewe, Nicholas; Meng, Yue; Konopkova, Zuzana; Hemley, Russell J.; Cohen, R. E.

    2017-06-01

    For decades, numerous attempts have been made to produce polar oxynitride perovskites, where some of the oxygen is replaced by nitrogen, but a polar ordered oxynitride has never been demonstrated. Caracas and Cohen [Appl. Phys. Lett. 91, 092902 (2007), 10.1063/1.2776370] studied possible ordered polar oxynitrides within density-functional theory (DFT) and found a few candidates that were predicted to be insulating and at least metastable. YSi O2N stood out with huge predicted polarization and nonlinear optic coefficients. In this study, we demonstrate the synthesis of perovskite-structured YSi O2N by using a combination of a diamond-anvil cell and in situ laser-heating techniques. Subsequent in situ x-ray diffraction, second-harmonic generation, and Raman-scattering measurements confirm that it is polar and a strong nonlinear optical material, with structure and properties similar to those predicted by DFT.

  12. Synthesis of a polar ordered oxynitride perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Vadapoo, Rajasekarakumar; Ahart, Muhtar; Somayazulu, Maddury; Holtgrewe, Nicholas; Meng, Yue; Konopkova, Zuzana; Hemley, Russell J.; Cohen, R. E.

    2017-06-01

    For decades, numerous attempts have been made to produce polar oxynitride perovskites, where some of the oxygen is replaced by nitrogen, but a polar ordered oxynitride has never been demonstrated. Caracas and Cohen [Appl. Phys. Lett. 91, 092902 (2007)] studied possible ordered polar oxynitrides within density-functional theory (DFT) and found a few candidates that were predicted to be insulating and at least metastable. YSi O 2 N stood out with huge predicted polarization and nonlinear optic coefficients. In this study, we demonstrate the synthesis of perovskite-structured YSi O 2 N by using a combination of a diamond-anvil cell and in situ laser-heating techniques. Subsequent in situ x-ray diffraction, second-harmonic generation, and Raman-scattering measurements confirm that it is polar and a strong nonlinear optical material, with structure and properties similar to those predicted by DFT.

  13. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  14. Synthesis and characterization of mesostructured borosilica oxynitrides

    International Nuclear Information System (INIS)

    Xiu Tongping; Liu Qian; Wang Jiacheng

    2007-01-01

    Mesoporous borosilica oxynitrides were prepared by heat treatment of boron substituted MCM-41 in flowing ammonia at high-temperatures. Based on absorption-desorption isotherms, high-resolution transmission electron microscopy (HRTEM) and small-angle X-ray diffraction (SAXRD) measurement of the samples, it was found that the mesostructured ordering, high BET surface area and narrow pore size distribution of B-MCM-41 could be maintained after nitridation. Mesostructured borosilica oxynitrides may be potential acid-base solid catalysts in future

  15. Acute Toxicity of Ternary Cd-Cu-Ni and Cd-Ni-Zn Mixtures to Daphnia magna: Dominant Metal Pairs Change along a Concentration Gradient.

    Science.gov (United States)

    Traudt, Elizabeth M; Ranville, James F; Meyer, Joseph S

    2017-04-18

    Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu-Ni toxicity is more than additive, and Ni-Zn toxicity is slightly less than additive. To consider multiple metal-metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd-Cu-Ni and Cd-Ni-Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd-Cu-Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd-Ni-Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.

  16. Hydrogen distribution in oxynitride/oxide structures

    NARCIS (Netherlands)

    Oude Elferink, J.B.; Heide, U.A. van der; Arnold Bik, W.M.; Habraken, F.H.P.M.; Weg, W.F. van der

    1987-01-01

    Silicon oxynitride films with five different O/N ratios were deposited with low pressure chemical vapor deposition on a silicon substrate covered with an oxide. The films were subjected to subsequent post-deposition anneals in N2 and H2 at 1000°C, and a H plasma at 300°C to obtain information about

  17. Planar photonic crystal waveguides in silicon oxynitride

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Borel, Peter Ingo

    , at visible wavelengths they absorb light very strongly. In contrary, silicon oxynitride (SiON) glasses offer high transparency down to blue and ultraviolet wavelengths. Thus, SiON photonic crystal waveguides can open for new possibilities, e.g., within sensing and life sciences. We have fabricated Si...

  18. Mixing effects in a ternary Hf-Zr-Ni metallic melt

    Science.gov (United States)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Evenson, Z.; Meyer, A.

    2018-03-01

    We study the effect of the substitution of Zr by Hf on the dynamical behavior in the Zr36Ni64 melt. A reduced measured self-diffusion coefficient and a higher measured melt viscosity for an increased amount of Hf were observed. The ternary Hf10Zr25Ni65 melt, which exhibits a pronounced deviation from Arrhenius behavior over a studied temperature range of 550 K, can be accurately described by the scaling law of mode-coupling theory (MCT) with almost equal parameters for the self-diffusion and the viscosity. Although we only substitute alloy components with a nearly equal atomic size and the measured overall packing fraction remains almost unchanged, the dynamics in Hf10Zr25Ni65 are slower compared to Zr36Ni64 . This corresponds also to a higher critical temperature Tc and might be induced by different chemical interactions in the melts. The increased Tc results in a significantly smaller difference between liquidus and critical temperature Δ TLC=TL-Tc for the ternary melt in comparison with Zr36Ni64 , which may favor the glass formation in the Hf10Zr25Ni65 melt.

  19. Development of Cu-Hf-Al ternary systems and tungsten wire/particle reinforced Cu48Hf43Al9 bulk metallic glass composites for strengthening

    International Nuclear Information System (INIS)

    Park, Joyoung; An, Jihye; Choi-Yim, Haein

    2010-01-01

    Stable bulk glass forming alloys can be developed over a wide range of compositions in Cu-Hf-Al ternary systems starting from the Cu 49 Hf 42 Al 9 bulk metallic glass. Ternary Cu-Hf-Al alloys can be cast directly from the melt into copper molds to form fully amorphous strips with thicknesses of 1 to 6 mm. The maximum critical diameter of the new Cu-Hf-Al ternary alloy was 6 mm. X-ray diffraction patterns were used to confirm the amorphous nature of the ternary Cu-Hf-Al alloys. To increase the toughness of these metallic glasses, we reinforced the Cu 48 Hf 43 Al 9 bulk metallic glass-forming liquid with a 50% volume fraction of tungsten particles and an 80% volume fraction of tungsten wires with diameters of 242.4 μm. Composites with a critical diameter of 7 mm and length 70 mm were synthesized. The structure of the composites was confirmed by using X-ray diffraction (XRD), and the scanning electron microscopy (SEM). The mechanical properties of the composites were studied in compression tests. The thermal stability and the crystallization processes of the Cu-Hf-Al alloys and composites were investigated by using differential scanning calorimetry (DSC). Values of the glass transition temperature (T g ), the crystallization temperature (T x ), and the supercooled liquid region (ΔT = T x - T g ) are given in this paper.

  20. First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys

    Science.gov (United States)

    Khatta, Swati; Tripathi, S. K.; Prakash, Satya

    2017-09-01

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.

  1. Heavy metal ternary halides for room-temperature x-ray and gamma-ray detection

    Science.gov (United States)

    Liu, Zhifu; Peters, John A.; Stoumpos, Constantinos C.; Sebastian, Maria; Wessels, Bruce W.; Im, Jino; Freeman, Arthur J.; Kanatzidis, Mercouri G.

    2013-09-01

    We report our recent progress on wide bandgap ternary halide compounds CsPbBr3 and CsPbCl3 for room temperature x-ray and gamma-ray detectors. Their bandgaps are measured to be 2.24 eV and 2.86 eV, respectively. The measured mobility-lifetime products of CsPbBr3 are 1.7×10-3, 1.3×10-3 cm2/V, for electron and hole carriers, respectively, comparable to those of CdTe. We measured the room temperature spectral response of CsPbBr3 sample to Ag x-ray radiation. It has a well-resolved spectral response to the 22.4 keV Kα radiation peak and detector efficiency comparable to that of CdZnTe detector at 295 K.

  2. Ternary fission

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary ...

  3. Ternary fission

    Indian Academy of Sciences (India)

    respectively, which are expressed in MeV and taken from [12]. The ternary fragmentation potential between the three (spherical) fragments (referred to as PES), within the TCM [1–6], is defined as the sum of the total Coulomb potential, total nuclear potential, ℓ-dependent potential and the sum of the mass excesses of ternary.

  4. Ternary fission

    Indian Academy of Sciences (India)

    the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the competition between different geometries as well as different positioning of the fragments. Also, an attempt was made to calculate the mass distribution of ternary fission process within the ...

  5. Chemical and topological short-range orders in the ternary Ni-Zr-Al metallic glasses studied by Monte Carlo simulations.

    Science.gov (United States)

    Zhao, S Z; Li, J H; Liu, B X

    2013-03-06

    Based on the recently constructed Ni-Zr-Al n-body potential, Monte Carlo simulations are performed to study the glass formation and associated structural evolutions in the system. The micro-chemical inhomogeneity (MCI) parameter and Honeycutt and Anderson (HA) pair analysis are employed to investigate both the chemical short-range orders and topological short-range orders for the ternary Ni-Zr-Al metallic glasses. Results reveal that remarkable chemical short-range orders (CSROs) exist in the ternary Ni-Zr-Al metallic glasses and are strongly influenced by the chemical interactions among the constituent elements. Moreover, topological short-range orders are clearly formed in the ternary Ni-Zr-Al metallic glasses, with the most remarkable characteristic being the icosahedral local packing. Similarly to CSRO, the extent of icosahedral short-range orders formed in the Ni-Zr-Al system varies distinctly with the chemical composition. In addition, simulation results reveal that chemical short-range orders and topological short-range orders turn out to be influenced by different factors. Unlike CSRO, both chemical interactions and geometrical constraints play important roles in forming the topological short-range orders.

  6. Stability and electronic structure of Zr-based ternary metallic glasses and relevant compounds

    International Nuclear Information System (INIS)

    Hasegawa, M.; Soda, K.; Sato, H.; Suzuki, T.; Taketomi, T.; Takeuchi, T.; Kato, H.; Mizutani, U.

    2007-01-01

    The electronic structure of the Zr-based metallic glasses has been investigated by theoretical and experimental approaches. One approach is band calculations of the Zr 2 Ni (Zr 66.7 Ni 33.3 ) compound to investigate the electronic structure of the Zr 66.7 Ni 33.3 metallic glass (ΔT x = 0 K) of which the local atomic structure is similar to that of the Zr 2 Ni compound. The other is photoemission spectroscopy of the Zr 50 Cu 35 Al 15 bulk metallic glass (BMG) (ΔT x = 69 K). Here ΔT x = T x - T g where T x and T g are crystallization and glass transition temperature, respectively. Both results and previous ones on the Zr 55 Cu 30 Ni 5 Al 10 BMG indicate that there is a pseudogap at the Fermi level in the electronic structure of these Zr-based metallic glasses, independent of the value of the ΔT x . This implies that the pseudogap at the Fermi level is one of the factors that stabilize the glass phase of Zr-based metallic glasses

  7. Computer simulation studies of ternary uranate phases with alkali and alkaline-earth metals: Pt. 1

    International Nuclear Information System (INIS)

    Ball, R.G.J.

    1992-01-01

    Solid-state computer simulation techniques have been used to study the alkali and alkaline-earth metal MUO 3 uranate phases. These compounds display an interesting gradation in their structures which, it is shown, is accompanied by a variation in their intrinsic defect chemistry. For example, in the alkali-metal series, LiUO 3 adopts the lithium niobate structure and lithium Frenkel disorder dominates whereas KUO 3 and RbUO 3 adopt regular perovskite structures with Schottky defects being dominant. For the alkaline-earth metal compounds, both the calculations and experiment show that only SrUO 3 and BaUO 3 are stable with respect to the binary oxides. Both of these phases adopt the GdFeO 3 distorted perovskite structure and both have anti-site defects as the dominant intrinsic disorder. The tendency for anti-site disorder is also seen in the oxidation behaviour of these compounds. The calculations suggest that the oxidation will occur through the formation of a secondary UO 2 fluorite phase by the movement of alkaline-earth ions onto uranium sites, leaving behind M vacancies. The calculated energies for such oxidation processes are particularly favourable. The solution of alkaline-earth oxide, M 11 O, in M 11 UO 3 is shown to occur via a mechanism in which the M 11 ions substitute onto both the M 11 and U sublattices. (author)

  8. Chemical effects in ion mixing of a ternary system (metal-SiO2)

    Science.gov (United States)

    Banwell, T.; Nicolet, M.-A.; Sands, T.; Grunthaner, P. J.

    1987-01-01

    The mixing of Ti, Cr, and Ni thin films with SiO2 by low-temperature (- 196-25 C) irradiation with 290 keV Xe has been investigated. Comparison of the morphology of the intermixed region and the dose dependences of net metal transport into SiO2 reveals that long range motion and phase formation probably occur as separate and sequential processes. Kinetic limitations suppress chemical effects in these systems during the initial transport process. Chemical interactions influence the subsequent phase formation.

  9. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors

    KAUST Repository

    Liang, Hanfeng

    2017-04-06

    We report a versatile route for the preparation of metal phosphides using PH plasma for supercapacitor applications. The high reactivity of plasma allows rapid and low temperature conversion of hydroxides into monometallic, bimetallic, or even more complex nanostructured phosphides. These same phosphides are much more difficult to synthesize by conventional methods. Further, we present a general strategy for significantly enhancing the electrochemical performance of monometallic phosphides by substituting extrinsic metal atoms. Using NiCoP as a demonstration, we show that the Co substitution into NiP not only effectively alters the electronic structure and improves the intrinsic reactivity and electrical conductivity, but also stabilizes Ni species when used as supercapacitor electrode materials. As a result, the NiCoP nanosheet electrodes achieve high electrochemical activity and good stability in 1 M KOH electrolyte. More importantly, our assembled NiCoP nanoplates//graphene films asymmetric supercapacitor devices can deliver a high energy density of 32.9 Wh kg at a power density of 1301 W kg, along with outstanding cycling performance (83% capacity retention after 5000 cycles at 20 A g). This activity outperforms most of the NiCo-based materials and renders the NiCoP nanoplates a promising candidate for capacitive storage devices.

  10. Reactive ion assisted deposition of aluminum oxynitride thin films

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Lingg, L.J.; Lehan, J.P.; Macleod, H.A.; Suits, F.

    1989-01-01

    Optical properties, stoichiometry, chemical bonding states, and crystal structure of aluminum oxynitride (AlO/sub x/N/sub y/) thin films prepared by reactive ion assisted deposition were investigated. The results show that by controlling the amount of reactive gases the refractive index of aluminum oxynitride films at 550 nm is able to be varied from 1.65 to 1.83 with a very small extinction coefficient. Variations of optical constants and chemical bonding states of aluminum oxynitride films are related to the stoichiometry. From an x-ray photoelectron spectroscopy analysis it is observed that our aluminum oxynitride film is not simply a mixture of aluminum oxide and aluminum nitride but a continuously variable compound. The aluminum oxynitride films are amorphous from an x-ray diffraction analysis. A rugate filter using a step index profile of aluminum oxynitride films was fabricated by nitrogen ion beam bombardment of a growing Al film with backfill oxygen pressure as the sole variation. This filter shows a high resistivity to atmospheric moisture adsorption, suggesting that the packing density of aluminum oxynitride films is close to unity and the energetic ion bombardment densifies the film as well as forming the compound

  11. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  12. Rapid microwave-assisted preparation of binary and ternary transition metal sulfide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Butala, Megan M.; Perez, Minue A.; Arnon, Shiri; Göbel, Claudia; Preefer, Molleigh B.; Seshadri, Ram

    2017-12-01

    Transition metal chalcogenides are of interest for energy applications, including energy generation in photoelectrochemical cells and as electrodes for next-generation electrochemical energy storage. Synthetic routes for such chalcogenides typically involve extended heating at elevated temperatures for multiple weeks. We demonstrate here the feasibility of rapidly preparing select sulfide compounds in a matter of minutes, rather than weeks, using microwave-assisted heating in domestic microwaves. We report the preparations of phase pure FeS2, CoS2, and solid solutions thereof from the elements with only 40 min of heating. Conventional furnace and rapid microwave preparations of CuTi2S4 both result in a majority of the targeted phase, even with the significantly shorter heating time of 40 min for microwave methods relative to 12 days using a conventional furnace. The preparations we describe for these compounds can be extended to related structures and chemistries and thus enable rapid screening of the properties and performance of various compositions of interest for electronic, optical, and electrochemical applications.

  13. Synthesis and thermal characterization of new ternary chelates of piroxicam and tenoxicam with glycine and DL-phenylalanine and some transition metals

    Science.gov (United States)

    Zayed, M. A.; El-Dien, F. A. Nour; Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2006-05-01

    The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.

  14. Spectrophotometric Study of Ternary Complex Forming Systems of Some Lanthanide Metal Ions with Eriochrome Cyanine R in Presence of Cetylpyridinium Bromide for Microdetermination

    Directory of Open Access Journals (Sweden)

    A. S. Dhepe

    2011-01-01

    Full Text Available Study of coordination compounds of lanthanide elements has received a great attention due to growing applications in science and technology. Number of chromogenic reagents form water soluble colored complexes with lanthanides. Eriochrome cyanine R (ECR a member of triphenylmethane type of dye has been reported to form green colored complexes with lanthanides and has been used for microdetermination of these metal ions. Addition of cationic surfactant, Cetylpyridinium bromide (CPB, a cationic surfactant sensitizes the color reactions of Gd(III, Tb(III, Dy(III, Ho(III and Lu(III with ECR. Formation of water soluble, highly colored ternary complexes with a considerable bathochromic shift of about 50 nm in presence of surfactant has been observed. Optimum reaction conditions and other analytical parameters were also evaluated. Stoichiometric ratio 1:3:3 of Ln: ECR: CPB are responsible for the observed rise in molar absorptivity and sensitivity. Beer’s law was obeyed between 0.50 to 13.00 ppm. Effective photometric range and molar absorptivity of these ternary complexes have been calculated. Effect of some common interfering ions on determination of these lanthanide metal ions was studied. A simple, rapid and highly sensitive spectrophotometeric method has been proposed for the determination of metal ions understudy.

  15. Alpha Radiation Effects on Silicon Oxynitride Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Morichetti, Francesco; Grillanda, Stefano; Manandhar, Sandeep; Shutthanandan, Vaithiyalingam; Kimerling, Lionel; Melloni, Andrea; Agarwal, Anuradha M.

    2016-09-21

    Photonic technologies are today of great interest for use in harsh environments, such as outer space, where they can potentially replace current communication systems based on radiofrequency components. However, very much alike to electronic devices, the behavior of optical materials and circuits can be strongly altered by high-energy and high-dose ionizing radiations. Here, we investigate the effects of alpha () radiation with MeV-range energy on silicon oxynitride (SiON) optical waveguides. Irradiation with a dose of 5×1015 cm-2 increases the refractive index of the SiON core by nearly 10-2, twice as much that of the surrounding silica cladding, leading to a significant increase of the refractive index contrast of the waveguide. The higher mode confinement induced by -radiation reduces the loss of tightly bent waveguides. We show that this increases the quality factor of microring resonators by 20%, with values larger than 105 after irradiation.

  16. Optical and electrical properties of negatively charged aluminium oxynitride films

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kyungsoo; Jung, Sungwook; Lee, Jeoungin; Lee, Kwangsoo; Kim, Jaehong; Son, Hyukjoo [School of information and communication Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, 440-746 (Korea, Republic of); Yi, Junsin [School of information and communication Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, 440-746 (Korea, Republic of)], E-mail: yi@yurim.ac.kr

    2008-11-03

    Aluminium oxynitride (AlON) thin films were deposited by Radio Frequency (RF) magnetron sputtering on n-type silicon (Si) substrate of (100) orientation using argon (Ar) and oxygen (O{sub 2}) gases at substrate temperature of 450 {sup o}C. To know the change in electrical properties with gases ratio, a deposition was carried out for 140 s with Ar:O{sub 2} ratio changed from 1:3 to 4:3. After that, electrical properties of Metal-Insulator-Semiconductor (MIS) structure with AlON was analyzed. For Ar:O{sub 2} ratios from 1:3 to 4:3, all samples showed characteristics of negative charge. In particular, when Ar:O{sub 2} were 2:3 and 3:3, the value of flatband voltage in normal C-V curve showed above 14 V. The composition of the AlON in the film was investigated using X-ray Photoelectron Spectroscopy (XPS). The flatband voltages (V{sub FB}) in C-V curves were found to depend on compositions. The characteristics of photon energy band gap were obtained by UV/VIS spectrum.

  17. New ternary rare-earth transition-metal antimonides RE{sub 3}MSb{sub 5} (RE = La, Ce, Pr, Nd, Sm; M = Ti, Zr, Hf, Nb)

    Energy Technology Data Exchange (ETDEWEB)

    Bollore, G.; Ferguson, M.J.; Hushagen, R.W. [Univ. of Alberta, Edmonton (Canada)] [and others

    1995-12-01

    Investigations into ternary rare-earth transition-metal antimonide systems RE{sub x}M{sub y}Sb{sub z} have been going on for at least two decades. These studies have been carried out variously to search for new magnetic materials, to test the validity of bonding models, and perhaps most importantly, to systematize an interesting structural chemistry that is not as well understood as that of the corresponding phosphides or arsenides. Some of these antimonides have counterparts in phosphides or arsenides, such as REMSb{sub 2} (M = Mn-Zn, Pd, Ag, Au) with the HfCuSi{sub 2} structure, REM{sub 2}Sb{sub 2} (M = Mn, Ni, Pd) with the CaBe{sub 2}-Ge{sub 2} and ThCr{sub 2}Si{sub 2} structures, and REM{sub 4}Sb{sub 12} (M = Fe, Ru, Os) with the filled skutterudite LaFe{sub 4}P{sub 12} structure. Others, such as RE{sub 3}M{sub 3}Sb{sub 4} (M = Pt, Cu, Au) and REMSb{sub 3} (M = Cr, V) are unique to antimonides so far. The authors report here the synthesis of a new series of ternary-antimonides RE{sub 3}MSb{sub 5} containing an early transition metal M = Ti, Zr, Hf, Nb. 28 refs., 2 figs., 3 tabs.

  18. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.

    2002-01-01

    Ternary metal nitrides ( of general formula MxM'N-y(z)) attract considerable interest because of their special mechanical, electrical, magnetic, and catalytic properties. Usually they are prepared by ammonolysis of ternary oxides (MxM'O-y(m)) at elevated temperatures. We show that ternary...... nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...

  19. NEXAFS characterization and reactivity studies of bimetallic vanadium molybdenum oxynitride hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, R.; Oyama, S.T. [Virginia Polytechnic Inst., Blacksburg, VA (United States); Fruehberger, B.; Chen, J.G. [Exxon Research and Engineering Company, Annandale, NJ (United States)

    1997-02-27

    The surface and bulk compositions of vanadium molybdenum oxynitride (V{sub 2}MoO{sub 1.7}N{sub 2.4}), prepared by temperature-programmed reaction (TPR) of vanadium molybdenum oxide (V{sub 2}MoO{sub 8}) with ammonia, have been characterized using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NEXAFS data were recorded at the K-edges of nitrogen and oxygen, the L-edge of vanadium, and the M-edge of molybdenum. The nitrogen K-edge region of V-Mo oxynitride shows the characteristic NEXAFS features of early-transition-metal nitrides, although these features are different from those of either VN or Mo{sub 2}N. Furthermore, comparison of the electron yield and fluorescence yield measurements also reveals that the oxidation state is different for vanadium near the surface region and for vanadium in the bulk, which is estimated to be 2.8 {+-} 0.3 and 3.8 {+-} 0.3, respectively. The oxidation state of bulk molybdenum is also estimated to be 4.4 {+-} 0.3. The X-ray diffraction pattern shows that the bulk phase of the bimetallic oxide is different from the pure monometallic oxide phases but the oxynitride has a cubic structure that resembles the pure vanadium and molybdenum nitride phases. The V-Mo oxide as prepared shows a preferential orientation of [001] crystallographic planes which is lost during the nitridation process. This shows that the solid state transformation V{sub 2}MoO{sub 8} {yields} V{sub 2}MoO{sub 1.7}N{sub 2.4} is not topotactic. 27 refs., 8 figs., 1 tab.

  20. First-principles study on half-metallic ferromagnetic properties of Zn{sub 1-x}V{sub x}Se ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khatta, Swati; Tripathi, S.K.; Prakash, Satya [Panjab University, Central of Advanced Study in Physics, Department of Physics, Chandigarh (India)

    2017-09-15

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn{sub 1-x}V{sub x}Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction. (orig.)

  1. Silicon Oxynitride: A Versatile Material for Integrated Optics Applications

    NARCIS (Netherlands)

    Worhoff, Kerstin; Hilderink, L.T.H.; Driessen, A.; Lambeck, Paul

    Silicon oxynitride is a very attractive material for integrated optics application, because of its excellent optical properties (~e.g. optical loss below 0.2 dB/cm!, the large refractive index range ~between 1.45 for silicon oxide and 2.0 for silicon nitride), and last but not least, the

  2. Viscometric and thermodynamic studies of interactions in ternary ...

    Indian Academy of Sciences (India)

    Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K. Reena Gupta Mukhtar Singh ... Keywords. Ternary solutions; interactions of ionic and nonionic solutes; partial molar volumes; sucrosealkali metal halide solutions.

  3. pH-specific hydrothermal assembly of binary and ternary Pb(II)-(O,N-carboxylic acid) metal organic framework compounds: correlation of aqueous solution speciation with variable dimensionality solid-state lattice architecture and spectroscopic signatures.

    Science.gov (United States)

    Gabriel, C; Perikli, M; Raptopoulou, C P; Terzis, A; Psycharis, V; Mateescu, C; Jakusch, T; Kiss, T; Bertmer, M; Salifoglou, A

    2012-09-03

    Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.

  4. Sputtered titanium oxynitride coatings for endosseous applications: Physical and chemical evaluation and first bioactivity assays

    Energy Technology Data Exchange (ETDEWEB)

    Banakh, Oksana, E-mail: oksana.banakh@he-arc.ch [Institute of Applied Microtechnologies, Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Moussa, Mira, E-mail: mira.moussa@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland); Matthey, Joel, E-mail: joel.matthey@he-arc.ch [Institute of Applied Microtechnologies, Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Pontearso, Alessandro, E-mail: alessandro.pontearso@he-arc.ch [Institute of Applied Microtechnologies, Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Cattani-Lorente, Maria, E-mail: maria.cattani-lorente@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland); Sanjines, Rosendo, E-mail: rosendo.sanjines@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Condensed Matter Physics, Station 3, CH-1015 Lausanne (Switzerland); Fontana, Pierre, E-mail: Pierre.Fontana@hcuge.ch [Haemostasis laboratory, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH-1205 Geneva (Switzerland); Wiskott, Anselm, E-mail: anselm.wiskott@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland); Durual, Stephane, E-mail: stephane.durual@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland)

    2014-10-30

    Highlights: • Titanium oxynitride coatings (TiN{sub x}O{sub y}) with chemical composition ranging from TiN to TiO{sub 2} were deposited by magnetron sputtering from a metallic Ti target using a mixture of O{sub 2} + N{sub 2}. • The coatings structure as well as physical, chemical and mechanical properties progressively changes as a function of oxygen content in the TiN{sub x}O{sub y.} • All TiN{sub x}O{sub y} coatings show a significantly higher level of bioactivity as compared to bare Ti substrates (1.2 to 1.4 fold increase in cell proliferation). Despite variations in surface chemistry, topography and surface tension observed on films as a function of chemical composition, no significant differences in the films’ biological activity were observed after 3 days of testing. - Abstract: Titanium oxynitride coatings (TiN{sub x}O{sub y}) are considered a promising material for applications in dental implantology due to their high corrosion resistance, their biocompatibility and their superior hardness. Using the sputtering technique, TiN{sub x}O{sub y} films with variable chemical compositions can be deposited. These films may then be set to a desired value by varying the process parameters, that is, the oxygen and nitrogen gas flows. To improve the control of the sputtering process with two reactive gases and to achieve a variable and controllable coating composition, the plasma characteristics were monitored in-situ by optical emission spectroscopy. TiN{sub x}O{sub y} films were deposited onto commercially pure (ASTM 67) microroughened titanium plates by reactive magnetron sputtering. The nitrogen gas flow was kept constant while the oxygen gas flow was adjusted for each deposition run to obtain films with different oxygen and nitrogen contents. The physical and chemical properties of the deposited films were analyzed as a function of oxygen content in the titanium oxynitride. The potential application of the coatings in dental implantology was assessed by

  5. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    Science.gov (United States)

    Neudecker, Bernd J.; Bates, John B.

    2001-01-01

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  6. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim [Univ. of Missouri, Kansas City, MO (United States)

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  7. P{sup 2}IMS depth profile analysis of high temperature boron oxynitride dielectric films

    Energy Technology Data Exchange (ETDEWEB)

    Badi, N., E-mail: nbadi@uh.edu [Center for Advanced Materials (CAM), University of Houston, Houston, TX 77204-5004 (United States); Physics Department, University of Houston, Houston, TX 77204-5005 (United States); Vijayaraghavan, S. [Center for Advanced Materials (CAM), University of Houston, Houston, TX 77204-5004 (United States); Benqaoula, A. [Physics Department, University of Houston, Houston, TX 77204-5005 (United States); Tempez, A.; Tauziède, C.; Chapon, P. [Horiba Jobin Yvon, Longjumeau, F-91160 Paris (France)

    2014-02-15

    Existing silicon oxynitride (SiON) dielectric can only provide a very near term solution for the metal oxide semiconductor technology. The emerging high-k dielectric materials have a limited thermal stability and are prone to electrical behavior degradation which is associated with unwanted chemical reactions with silicon (Si). We investigated here applicability of amorphous boron oxynitride (BON) thin films as an emerging dielectric for high temperature capacitors. BON samples of thickness varying from 200 nm down to 10 nm were deposited in a high vacuum reactor using ion source assisted physical vapor deposition (PVD) technique. Plasma profiling ion mass spectrometry (P{sup 2}IMS) was utilized to specifically determine the interface quality and best capacitor performance as a function of growth temperatures of a graded sample with alternate layers of deposited titanium (Ti) and BON layers on Si. P{sup 2}IMS depth profiling of these layers were also performed to evaluate the stability of the dielectric layers and their efficacy against B dopant diffusion simulating processes occurring in activated polySi-based devices. For this purpose, BON layers were deposited on boron-isotope 10 (B{sup 10}) implanted Si substrates and subsequently annealed at high temperatures up to 1050 °C for about 10 s. Results comparing inter-diffusion of B{sup 10} intensities at the interfaces of BON–Si and SiON–Si samples suggest suitability of BON as barrier layers against boron diffusion at high temperature. Stable Ti/BON/Ti capacitor behavior was achieved at optimum growth temperature of 600 °C of the BON dielectric layer. Capacitance change with frequency (10 kHz to 2 MHz) and temperature up to 400 °C is about 1% and 10%, respectively.

  8. 2D Transition Metal Dichalcogenides and Graphene-Based Ternary Composites for Photocatalytic Hydrogen Evolution and Pollutants Degradation

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2017-03-01

    Full Text Available Photocatalysis have attracted great attention due to their useful applications for sustainable hydrogen evolution and pollutants degradation. Transition metal dichalcogenides (TMDs such as MoS2 and WS2 have exhibited great potential as cocatalysts to increase the photo-activity of some semiconductors. By combination with graphene (GR, enhanced cocatalysts of TMD/GR hybrids could be synthesized. GR here can act as a conductive electron channel for the transport of the photogenerated electrons, while the TMDs nanosheets in the hybrids can collect electrons and act as active sites for photocatalytic reactions. This mini review will focus on the application of TMD/GR hybrids as cocatalysts for semiconductors in photocatalytic reactions, by which we hope to provide enriched information of TMD/GR as a platform to develop more efficient photocatalysts for solar energy utilization.

  9. Ternary Silver Halide Nanocrystals.

    Science.gov (United States)

    Abeyweera, Sasitha C; Rasamani, Kowsalya D; Sun, Yugang

    2017-07-18

    Nanocrystalline silver halides (AgX) such as AgCl, AgBr, and AgI, a class of semiconductor materials with characteristics of both direct and indirect band gaps, represent the most crucial components in traditional photographic processing. The nanocrystal surfaces provide sensitivity specks that can turn into metallic silver, forming an invisible latent image, upon exposure to light. The photographic processing implies that the AgX nanoparticles possess unique properties. First, pristine AgX nanoparticles absorb light only at low efficiency to convert surface AgX into tiny clusters of silver atoms. Second, AgX nanoparticles represent an excellent class of materials to capture electrons efficiently. Third, small metallic silver clusters can catalyze the reduction of AgX nanoparticles to Ag nanoparticles in the presence of mild reducing reagents, known as self-catalytic reduction. These properties indicate that AgX nanoparticles can be partially converted to metallic silver with high precision, leading to the formation of hybrid AgX/Ag nanoparticles. The nanosized metallic Ag usually exhibit intense absorption bands in the visible spectral region due to their strong surface plasmon resonances, which make the AgX/Ag nanoparticles a class of promising visible-light-driven photocatalysts for environmental remediation and CO 2 reduction. Despite the less attention paid to their ability of capturing electrons, AgX nanoparticles might be a class of ideal electron shuttle materials to bridge light absorbers and catalysts on which electrons can drive chemical transformations. In this Account, we focus on ternary silver halide alloy (TSHA) nanoparticles, containing two types of halide ions, which increase the composition complexity of the silver halide nanoparticles. Interdiffusion of halide ions between two types of AgX at elevated temperatures has been developed for fabricating ternary silver halide alloy crystals, such as silver chlorobromide optical fibers for infrared

  10. A comparative evaluation between new ternary zirconium alloys as alternative metals for orthopedic and dental prosthetic devices.

    Science.gov (United States)

    Shyti, Genti; Rosalbino, Francesco; Macciò, Daniele; Scarabelli, Linda; Quarto, Rodolfo; Giannoni, Paolo

    2014-02-01

    We assessed in vitro the corrosion behavior and biocompatibility of four Zr-based alloys (Zr97.5 Nb1.5VM1.0  ; VM, valve metal: Ti, Mo, W, Ta; at%) to be used as implant materials, comparing the results with grade-2 titanium, a biocompatible metal standard. Corrosion resistance was investigated by open circuit potential and electrochemical impedance spectroscopy measurements as a function of exposure time to an artificial physiological environment (Ringer's solution). Human bone marrow stromal cells were used to evaluate biocompatibility of the alloys and their influence on growth kinetics and cell osteogenic differentiation through histochemical and gene expression analyses. Open circuit potential values indicated that Zr-based alloys and grade-2 Ti undergo spontaneous passivation in the simulated aggressive environment. High impedance values for all samples demonstrated improved corrosion resistance of the oxide film, with the best protection characteristics displayed by Zr97.5  Nb1.5Ta1.0. Cells seeded on all surfaces showed the same growth kinetics, although matrix mineralization and alkaline phosphatase activity were maximal on Zr97.5  Nb1.5Mo1.0 and Zr97.5   Nb1.5Ta1.0. Markers of ongoing proliferation, however, such as podocalyxin and CD49f, were still overexpressed on Zr97.5   Nb1.5   Mo1.0 even upon osteoinduction. No relevant effects were noted for the CD146-expressing population of bone progenitors. Nonetheless, the presence of a more differentiated cell population on Zr97.5Nb1.5Ta1.0 samples was inferable by comparing mineralization data and transcript levels of osteogenic markers (osteocalcin, osteopontin, bone sialoprotein, and RUNX2). The combination of passivation, corrosion resistance and satisfactory biotolerance to bone progenitors make the Zr-based alloys promising implant materials. Among those we tested, Zr97.5Nb1.5Ta1.0 seems to be the most appealing.

  11. Ternary complexes metal [Co(II), Ni(II), Cu(II) and Zn(II)]--ortho-iodohippurate (I-hip)--acyclovir. X-ray characterization of isostructural [(Co, Ni or Zn)(I-hip)(2)(ACV)(H(2)O)(3)] with stacking as a recognition factor.

    Science.gov (United States)

    Barceló-Oliver, M; Terrón, A; García-Raso, A; Fiol, J J; Molins, E; Miravitlles, C

    2004-11-01

    Four ternary metal--ortho-iodohippurate (I-hip)--acyclovir (ACV) complexes, [M(I-hip)(2)(ACV)(H(2)O)(3)] where M is Co(II) (1), Ni(II) (2), Cu (3) and Zn(II) have been obtained by reaction between the corresponding binary complexes M(II)(I-hip)(2)xnH(2)O and ACV. Three ternary complexes (M=Co, Ni and Zn) and the corresponding Zn(II)--ortho-iodohippurate binary derivative have been structurally characterized by X-ray diffraction: The studies show these three ternary complexes are isostructural and present, in solid state, an interesting stacking between the nucleobase and the aryl ring of the hippurate moiety, which probably promotes the formation of ternary complexes. Moreover, the two different ligands interact between them by means of ancillary hydrogen bonds with water molecules coordinated to the metal ion. It must be mentioned that these two recognition factors, hydrogen bonds plus stacking, could explain the reason for the isostructurality of these ternary derivatives with so different three metal ions, with diverses trends in coordination numbers and geometries. In solid state, there are two enantiomeric molecules that are related by an inversion center as the crystal-building unit (as a translational motif) for the ternary complexes.

  12. Atmospheric pressure chemical vapour deposition of the nitrides and oxynitrides of vanadium, titanium and chromium

    International Nuclear Information System (INIS)

    Elwin, G.S.

    1999-01-01

    A study has been made into the atmospheric pressure chemical vapour deposition of nitrides and oxynitrides of vanadium, titanium and chromium. Vanadium tetrachloride, vanadium oxychloride, chromyl chloride and titanium tetrachloride have been used as precursors with ammonia, at different flow conditions and temperatures. Vanadium nitride, vanadium oxynitride, chromium oxynitride, titanium/vanadium nitride and titanium/chromium oxynitride have been deposited as thin films on glass. The APCVD reaction of VCl 4 and ammonia leads to films with general composition VN x O y . By raising the ammonia concentration so that it is in excess (0.42 dm 3 min -1 VCl 4 with 1.0 dm 3 min -1 NH 3 at 500 deg. C) a film has been deposited with the composition VN 0.8 O 0.2 . Further investigation discovered similar elemental compositions could be reached by deposition at 350 deg. C (0.42 dm 3 min -1 VCl 4 with 0.5 dm 3 min -1 NH 3 ), followed by annealing at 650 deg. C, and cooled under a flow of ammonia. Only films formed below 400 deg. C were found to contain carbon or chlorine ( 3 and ammonia also lead to films of composition VN x O y the oxygen to nitrogen ratios depending on the deposition conditions. The reaction Of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.2 dm 3 min -1 ) at 500 deg. C lead to a film of composition VN 0. 47O 1.06 . The reaction of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.5 dm 3 min -1 ) at 650 deg. C lead to a film of composition VN 0.63 O 0.41 . The reaction of chromyl chloride with excess ammonia led to the formation of chromium oxide (Cr 2 O 3 ) films. Mixed metal films were prepared from the reactions of vanadium tetrachloride, titanium tetrachloride and ammonia to prepare V x Ti y N z and chromyl chloride, titanium tetrachloride and ammonia to form TiCr x O y N z . Both reactions produced the intended mixed coating but it was found that the vanadium / titanium nitride contained around 10 % vanadium whatever the conditions used. Oxygen contamination

  13. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  14. Computational study on oxynitride perovskites for CO2 photoreduction

    International Nuclear Information System (INIS)

    Hafez, Ahmed M.; Zedan, Abdallah F.; AlQaradawi, Siham Y.; Salem, Noha M.; Allam, Nageh K.

    2016-01-01

    Highlights: • Oxynitride perovskites are investigated for photoelectrochemical CO 2 reduction. • They have small electron and hole effective masses, rendering higher mobility. • The effect of cation size on the band gap is investigated and discussed. • W-doping allowed the selection of specific CO 2 reduction products. - Abstract: The photocatalytic conversion of CO 2 into chemical fuels is an attractive route for recycling this greenhouse gas. However, the large scale application of such approach is limited by the low selectivity and activity of the currently used photocatalysts. Using first principles calculations, we report on the selection of optimum oxynitride perovskites as photocatalysts for photoelectrochemical CO 2 reduction. The results revealed six perovskites that perfectly straddle the carbon dioxide redox potential; namely, BaTaO 2 N, SrTaO 2 N, CaTaO 2 N, LaTiO 2 N, BaNbO 2 N, and SrNbO 2 N. The electronic structure and the effective mass of the selected candidates are discussed in details, the partial and total density of states illustrated the orbital hybridization and the contribution of each element in the valence and conduction band minima. The effect of cation size in the ABO 2 N perovskites on the band gap is investigated and discussed. The optical properties of the selected perovskites are calculated to account for their photoactivity. Moreover, the effect of W doping on improving the selectivity of perovskites toward specific hydrocarbon product (methane) is discussed in details. This study reveals the promising optical and structural properties of oxynitride perovskite candidates for CO 2 photoreduction.

  15. Optical properties of zirconium oxynitride films: The effect of composition, electronic and crystalline structures

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, P. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Borges, J., E-mail: joelborges@fisica.uminho.pt [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Rodrigues, M.S. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139,7), 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Espinós, J.P.; González-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla (CSIC-University Sevilla), Avda. Américo Vespucio 49, 41092 Sevilla (Spain); Cunha, L.; Marques, L.; Vasilevskiy, M.I.; Vaz, F. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal)

    2015-12-15

    Highlights: • Optical behaviour of ZrO{sub x}N{sub y} films were correlated with structural properties. • A continuous depopulation of the d-band and an opening of an energy gap was observed. • Drude–Lorentz parameters changed for the metallic samples. • Optical bandgap of the films increases with non-metallic elements incorporation. - Abstract: This work is devoted to the investigation of zirconium oxynitride (ZrO{sub x}N{sub y}) films with varied optical responses prompted by the variations in their compositional and structural properties. The films were prepared by dc reactive magnetron sputtering of Zr, using Ar and a reactive gas mixture of N{sub 2} + O{sub 2} (17:3). The colour of the films changed from metallic-like, very bright yellow-pale and golden yellow, for low gas flows to red-brownish for intermediate gas flows. Associated to this colour change there was a significant decrease of brightness. With further increase of the reactive gas flow, the colour of the samples changed from red-brownish to dark blue or even to interference colourations. The variations in composition disclosed the existence of four different zones, which were found to be closely related with the variations in the crystalline structure. XRD analysis revealed the change from a B1 NaCl face-centred cubic zirconium nitride-type phase for films prepared with low reactive gas flows, towards a poorly crystallized over-stoichiometric nitride phase, which may be similar to that of Zr{sub 3}N{sub 4} with some probable oxygen inclusions within nitrogen positions, for films prepared with intermediate reactive gas flows. For high reactive gas flows, the films developed an oxynitride-type phase, similar to that of γ-Zr{sub 2}ON{sub 2} with some oxygen atoms occupying some of the nitrogen positions, evolving to a ZrO{sub 2} monoclinic type structure within the zone where films were prepared with relatively high reactive gas flows. The analysis carried out by reflected electron energy

  16. Holistic quantum design of thermoelectric niobium oxynitride

    Science.gov (United States)

    Music, Denis; Bliem, Pascal; Hans, Marcus

    2015-06-01

    We have applied holistic quantum design to thermoelectric NbON (space group Pm-3m). Even though transport properties are central in designing efficient thermoelectrics, mechanical properties should also be considered to minimize their thermal fatigue during multiple heating/cooling cycles. Using density functional theory, elastic constants of NbON were predicted and validated by nanoindentation measurements on reactively sputtered thin films. Based on large bulk-to-shear modulus ratio and positive Cauchy pressure, ceramic NbON appears ductile. These unusual properties may be understood by analyzing the electronic structure. Nb-O bonding is of covalent-ionic nature with metallic contributions. Second neighbor O-N bonds exhibit covalent-ionic character. Upon shear loading, these O-N bonds break giving rise to easily shearable planes. Ductile NbON, together with large Seebeck coefficient and low thermal expansion, is promising for thermoelectric applications.

  17. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    Science.gov (United States)

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  18. Investigating compositional effects of atomic layer deposition ternary dielectric Ti-Al-O on metal-insulator-semiconductor heterojunction capacitor structure for gate insulation of InAlN/GaN and AlGaN/GaN

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Albert; Stan, Liliana; Divan, Ralu; Shi, Junxia

    2016-11-01

    Gate insulation/surface passivation in AlGaN/GaN and InAlN/GaN heterojunction field-effect transistors is a major concern for passivation of surface traps and reduction of gate leakage current. However, finding the most appropriate gate dielectric materials is challenging and often involves a compromise of the required properties such as dielectric constant, conduction/valence band-offsets, or thermal stability. Creating a ternary compound such as Ti-Al-O and tailoring its composition may result in a reasonably good gate material in terms of the said properties. To date, there is limited knowledge of the performance of ternary dielectric compounds on AlGaN/GaN and even less on InAlN/GaN. To approach this problem, the authors fabricated metal-insulator-semiconductor heterojunction (MISH) capacitors with ternary dielectrics Ti-Al-O of various compositions, deposited by atomic layer deposition (ALD). The film deposition was achieved by alternating cycles of TiO2 and Al2O3 using different ratios of ALD cycles. TiO2 was also deposited as a reference sample. The electrical characterization of the MISH capacitors shows an overall better performance of ternary compounds compared to the pure TiO2. The gate leakage current density decreases with increasing Al content, being similar to 2-3 orders of magnitude lower for a TiO2:Al2O3 cycle ratio of 2:1. Although the dielectric constant has the highest value of 79 for TiO2 and decreases with increasing the number of Al2O3 cycles, it is maintaining a relatively high value compared to an Al2O3 film. Capacitance voltage sweeps were also measured in order to characterize the interface trap density. A decreasing trend in the interface trap density was found while increasing Al content in the film. In conclusion, our study reveals that the desired high-kappa properties of TiO2 can be adequately maintained while improving other insulator performance factors. The ternary compounds may be an excellent choice as a gate material for both

  19. Characterization of high surface area silicon oxynitrides

    International Nuclear Information System (INIS)

    Lednor, P.W.; DeRuiter, R.; Emeis, K.A.

    1992-01-01

    In heterogenous catalysis, liquid or gaseous feedstocks are converted over a solid catalyst into more desirable products. Such processes form an essential part of the oil and petrochemical industries. The solid catalyst usually consists of an inorganic phase, with or without metal particles on the surface. Examples include platinum particles on gamma alumina (a reforming catalyst used in oil processing), chromium particles on silica (an ethylene polymerization catalyst) and zeolites or amorphous silica-aluminas (used as solid acids).Oxides have been widely investigated in catalysis, and silica, alumina, and aluminosilicates find application commercially on a large scale. On the other hand, non-oxide materials such as nitrides, carbides and borides have been relatively little investigated. The main reason for this has been the lack of routes to the high surface area forms usually required in catalysis. However, this situation has changed significantly in recent years, due to the interest in high surface area non-oxides as precursors to fully dense ceramics; in this paper, the authors have reviewed synthetic routes to high surface area non-oxides

  20. Evaluation of a silicon oxynitride hydrophilic interaction liquid chromatography column in saccharide and glycoside separations.

    Science.gov (United States)

    Wan, Huihui; Sheng, Qianying; Zhong, Hongmin; Guo, Xiujie; Fu, Qing; Liu, Yanfang; Xue, Xingya; Liang, Xinmiao

    2015-05-01

    The retention characteristics of a silicon oxynitride stationary phase for carbohydrate separation were studied in hydrophilic interaction chromatography mode. Four saccharides including mono-, di-, and trisaccharides were employed to investigate the effects of water content and buffer concentration in the mobile phase on hydrophilic interaction liquid chromatography retention. For the tested saccharides, the silicon oxynitride column demonstrated excellent performance in terms of separation efficiency, hydrophilicity, and interesting separation selectivity for carbohydrates compared to the bare silica stationary phase. Finally, the silicon oxynitride hydrophilic interaction liquid chromatography column was employed in the separation of complex samples of fructooligosaccharides, saponins, and steviol glycoside from natural products. The resulting chromatograms demonstrated good separation efficiency and longer retention compared with silica, which further confirmed the advantages and potential application of silicon oxynitride stationary phase for hydrophilic interaction liquid chromatography separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis and crystal structure of copper (II) uracil ternary polymeric complex with 1,10-phenanthroline along with the Hirshfeld surface analysis of the metal binding sites for the uracil ligand

    Science.gov (United States)

    Patil, Yogesh Prakash; Nethaji, Munirathinam

    2015-02-01

    The study of models for "metal-enzyme-substrate" interaction has been a proactive area of research owing to its biological and pharmacological importance. In this regard the ternary copper uracil complex with 1,10-phenanthroline represents metal-enzyme-substrate system for DNA binding enzymes. The synthesis of the complex, followed by slow evaporation of the reaction mixture forms two concomitant solvatomorph crystals viz., {[Cu(phen)(μ-ura)(H2O)]n·H2O (1a)} and {[Cu(phen)(μ-ura)(H2O)]n·CH3OH (1b)}. Both complexes are structurally characterized, while elemental analysis, IR and EPR spectra were recorded for 1b (major product). In both complexes, uracil coordinates uniquely via N1 and N3 nitrogen atom acting as a bidentate bridging ligand forming a 1-D polymer. The two solvatomorphs were quantitatively analyzed for the differences with the aid of Hirshfeld surface analysis.

  2. Ternary chalcopyrite semiconductors

    CERN Document Server

    Shay, J L; Pamplin, B R

    2013-01-01

    Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications covers the developments of work in the I-III-VI2 and II-IV-V2 ternary chalcopyrite compounds. This book is composed of eight chapters that focus on the crystal growth, characterization, and applications of these compounds to optical communications systems. After briefly dealing with the status of ternary chalcopyrite compounds, this book goes on describing the crystal growth of II-IV-V2 and I-III-VI2 single crystals. Chapters 3 and 4 examine the energy band structure of these semiconductor compounds, illustrat

  3. Further studies on the lithium phosphorus oxynitride solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Pichonat, Tristan [Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN), Universite Lille 1, CNRS UMR 8520 Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq cedex (France); Institut de Recherche sur les Composants logiciels et materiels pour l' Information et la Communication Avancee (IRCICA), Universite Lille 1, CNRS FR 3024, Parc Scientifique de la Haute Borne, 50 Avenue Halley, 59650 Villeneuve d' Ascq (France); Lethien, Christophe, E-mail: christophe.lethien@iemn.univ-lille1.fr [Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN), Universite Lille 1, CNRS UMR 8520 Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq cedex (France); Institut de Recherche sur les Composants logiciels et materiels pour l' Information et la Communication Avancee (IRCICA), Universite Lille 1, CNRS FR 3024, Parc Scientifique de la Haute Borne, 50 Avenue Halley, 59650 Villeneuve d' Ascq (France); Tiercelin, Nicolas; Godey, Sylvie [Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN), Universite Lille 1, CNRS UMR 8520 Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq cedex (France); Pichonat, Emmanuelle [Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), CNRS UMR 8516, Universite Lille 1, 59655 Villeneuve d' Ascq Cedex (France); Roussel, Pascal; Colmont, Marie [Unite de Catalyse et de Chimie du Solide (UCCS), CNRS UMR 8181, Universite Lille 1, 59655 Villeneuve d' Ascq Cedex (France); Rolland, Paul Alain [Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN), Universite Lille 1, CNRS UMR 8520 Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq cedex (France); Institut de Recherche sur les Composants logiciels et materiels pour l' Information et la Communication Avancee (IRCICA), Universite Lille 1, CNRS FR 3024, Parc Scientifique de la Haute Borne, 50 Avenue Halley, 59650 Villeneuve d' Ascq (France)

    2010-09-01

    First step in the way to the fabrication of an all-solid microbattery for autonomous wireless sensor node, amorphous thin solid films of lithium phosphorus oxynitride (LiPON) were prepared by radio-frequency sputtering of a mixture target of P{sub 2}O{sub 5}/Li{sub 2}O in ambient nitrogen atmosphere. The morphology, composition, and ionic conductivity were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and A.C. impedance spectroscopy. With a thickness of 1.4 {mu}m, the obtained LiPON amorphous layer provided an ionic conductivity close to 6 x 10{sup -7} S cm{sup -1} at room temperature. MicroRaman UV spectroscopy study was successfully carried out for the first time on LiPON thin films to complete the characterization and bring further information on LiPON structure.

  4. Persistent luminescence in nitride and oxynitride phosphors: A review

    Science.gov (United States)

    Smet, Philippe F.; Botterman, Jonas; Van den Eeckhout, Koen; Korthout, Katleen; Poelman, Dirk

    2014-09-01

    The research field of persistent luminescence has experienced a strong growth in the past two decades, with a steady development of new materials and applications. Here we give an overview of the recent progress in a specific class of host materials, namely oxynitride and nitride persistent phosphors. These are interesting hosts to explore because of their unique characteristics, such as chemical stability and tunability of the emission over the entire visible range upon doping with divalent europium. To yield persistent luminescence however, co-dopants have to be added or the synthesis conditions have to be adjusted. Specific materials, such as Ca2Si5N8:Eu,Tm and BaSi2O2N2:Eu, are highlighted and their properties are put into the context of emerging applications such as in vivo imaging and pressure sensing via mechanoluminescence. Finally, directions for future research are given.

  5. Composition and formation mechanism of zirconium oxynitride films produced by reactive direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Ngaruiya, J.M.; Kappertz, O.; Liesch, C.; Wuttig, M.; Mueller, P.; Dronskowski, R.

    2004-01-01

    Direct current magnetron sputtered zirconium oxynitride films show an improvement in both deposition rate and physical properties compared to zirconium oxide. Here we seek to understand these beneficial effects and report on the film composition and crystallographic structure. Based on a thermochemical description together with a modeling of formation kinetics we propose a film formation mechanism, which explains many of the observations. Rutherford backscattering spectroscopy (RBS) shows early nitrogen incorporation at 64% N 2 flow in disagreement with the predictions of thermochemistry. The stoichiometry is only successfully simulated with the use of an expanded Berg-Larsson model with a low replacement coefficient of about 0.1 of nitrogen by oxygen after metal-nitrogen bond formation. The deviation from complete replacement as predicted by thermodynamics illustrates the importance of kinetics in film formation. The model further successfully predicts the variation of the mass deposition rate. The X-ray diffraction analyses suggest that, within the crystalline phase, nitrogen atoms occupy oxygen sites, resulting in an unchanged zirconium oxide structure. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Composition and formation mechanism of zirconium oxynitride films produced by reactive direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ngaruiya, J.M. [I. Physikalisches Institut der RWTH Aachen, 52056 Aachen (Germany); Jomo Kenyatta University of Agric. and Technol., Box 62000 Nairobi (Kenya); Kappertz, O.; Liesch, C.; Wuttig, M. [I. Physikalisches Institut der RWTH Aachen, 52056 Aachen (Germany); Mueller, P.; Dronskowski, R. [Institut f. Anorganische Chemie der RWTH Aachen, 52056 Aachen (Germany)

    2004-04-01

    Direct current magnetron sputtered zirconium oxynitride films show an improvement in both deposition rate and physical properties compared to zirconium oxide. Here we seek to understand these beneficial effects and report on the film composition and crystallographic structure. Based on a thermochemical description together with a modeling of formation kinetics we propose a film formation mechanism, which explains many of the observations. Rutherford backscattering spectroscopy (RBS) shows early nitrogen incorporation at 64% N{sub 2} flow in disagreement with the predictions of thermochemistry. The stoichiometry is only successfully simulated with the use of an expanded Berg-Larsson model with a low replacement coefficient of about 0.1 of nitrogen by oxygen after metal-nitrogen bond formation. The deviation from complete replacement as predicted by thermodynamics illustrates the importance of kinetics in film formation. The model further successfully predicts the variation of the mass deposition rate. The X-ray diffraction analyses suggest that, within the crystalline phase, nitrogen atoms occupy oxygen sites, resulting in an unchanged zirconium oxide structure. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Synthesis, characterization and fungicidal activity of binary and ternary metal(II) complexes derived from 4,4‧-((4-nitro-1,2-phenylene) bis(azanylylidene))bis(3-(hydroxyimino)pentan-2-one)

    Science.gov (United States)

    El-Tabl, Abdou S.; Shakdofa, Mohamad M. E.; Whaba, Mohamad A.

    2015-02-01

    Ternary copper(II) and binary copper(II), nickel(II) and cobalt(II) complexes derived from 4,4‧-((4-nitro-1,2-phenylene)bis(azanylylidene))bis(3-(hydroxyimino)pentan-2-one) (H2L) were synthesized and characterized by elemental and thermal analyses, IR, UV-Vis. and 1H NMR spectroscopy, conductivity and magnetic moments measurements. The analytical and spectral data showed that, the ligand acts as dibasic tetradentate or dibasic hexadentate bonding to the metal ion via the two-imine nitrogen, two nitrogen and/or oximato oxygen atoms of deprotonated oxime groups forming five and/or six rings including the metal ions. The complexes adopt either tetragonal distorted octahedral or square planar geometry around metal ions. The ESR spectra of the solid copper(II) complexes are characteristic to d9 configuration and having an axial symmetry type of a d(x2-y2) ground state. The g values confirmed the geometry is elongated tetragonal octahedral geometry with considerably ionic or covalent environment. The antifungal biological activity of the prepared compounds was studied using well diffusion method. The obtained results showed that, the ligand is biologically inactive while its metal complexes were more potent fungicides than the ligand and standard antifungal drug (Amphotericin B).

  8. Ternary rare earth metal boride carbides containing two-dimensional boron carbon network: The crystal and electronic structure of R2B4C (R=Tb, Dy, Ho, Er)

    Science.gov (United States)

    Babizhetskyy, Volodymyr; Zheng, Chong; Mattausch, Hansjürgen; Simon, Arndt

    2007-12-01

    The ternary rare earth boride carbides R2B4C (R=Tb, Dy, Ho, Er) have been synthesized by reacting the elements at temperatures between 1800 and 2000K. The crystal structure of Dy2B4C has been determined from single-crystal X-ray diffraction data. It crystallizes in a new structure type in the orthorhombic space group Immm (a=3.2772(6) Å, b=6.567(2) Å, c=7.542(1) Å, Z=2, R1=0.035 (wR2=0.10) for 224 reflections with Io>2σ(Io)). Boron atoms form infinite chains of fused B6 rings in [100] joined with carbon atoms into planar, two-dimensional networks which alternate with planar sheets of rare earth metal atoms. The electronic structure of Dy2B4C was also analyzed using the tight-binding extended Hückel method.

  9. Kinetic study of lithium-cadmium ternary amalgam decomposition

    International Nuclear Information System (INIS)

    Cordova, M.H.; Andrade, C.E.

    1992-01-01

    The effect of metals, which form stable lithium phase in binary alloys, on the formation of intermetallic species in ternary amalgams and their effect on thermal decomposition in contact with water is analyzed. Cd is selected as ternary metal, based on general experimental selection criteria. Cd (Hg) binary amalgams are prepared by direct contact Cd-Hg, whereas Li is formed by electrolysis of Li OH aq using a liquid Cd (Hg) cathodic well. The decomposition kinetic of Li C(Hg) in contact with 0.6 M Li OH is studied in function of ageing and temperature, and these results are compared with the binary amalgam Li (Hg) decomposition. The decomposition rate is constant during one hour for binary and ternary systems. Ageing does not affect the binary systems but increases the decomposition activation energy of ternary systems. A reaction mechanism that considers an intermetallic specie participating in the activated complex is proposed and a kinetic law is suggested. (author)

  10. Synthesis of novel binary and ternary Zn2+ complexes with putrescine and phosphocreatine and the metal complexes study in aqueous solution

    Science.gov (United States)

    Szyfman, Natalie Waissmann; Tenório, Thaís; Ribeiro, Tatiana S.; Felcman, Judith; Mercê, Ana Lucia Ramalho

    2014-09-01

    Binary and ternary systems of Zn2+ complexes with phosphocreatine (PCr) and putrescine (Put) were investigated in aqueous solution using potentiometric titrations, Raman spectroscopy, Nuclear Magnetic Resonance (1H NMR) and molecular modeling. The stability constants of the complexes and molecular adducts, determined by potentiometry (T = 25.0 °C, I = 0.100 mol L-1, KNO3), are for some of the calculated complexes log KZnPCr = 10.63 ± 0.03, log KZnPut = 5.22 ± 0.08 and for log KZnPCrPut = 16.56 ± 0.02. PCr acts as a bidentate ligand and Put as a monodentate ligand until around pH 11. The Raman and 1H NMR spectra and minimum total molecular energies calculations confirm the coordination modes of all systems. The ternary species are suggested by the values of the stability constants found as, when compared to those of the binary complexes with each ligand, they are neither the sum of the two or a value less than each one separately complexed with Zn2+. An intermolecular interaction was suggested for the ZnPCrPut species. However, for ZnPCrPutH species it was not possible to establish the same kind of interaction due to the long distance between the carboxylate group of phosphocreatine and the NH3+ group of Put.

  11. An Overview of the Structure-Property Relationships in Silicon-Based Oxynitride Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Paul F [ORNL; Hampshire, Stuart [University of Limerick; Pomeroy, Michael [University of Limerick; Hoffmann, M. J. [Universituet Karlsruhe, Germany; Lance, Michael J [ORNL; Satet, Raphaella L. [Universituet Karlsruhe, Germany

    2011-01-01

    The silicon oxynitride glasses take advantage of nitrogen-bonding to attain high elastic modulus, increased softening temperatures and viscosities, greater slow crack growth resistance and modest gains in fracture resistance. Of the oxynitride glasses, the Si-Y-Al based oxynitride glasses have been most extensively studied and a degree of success has been achieved in understanding how changes in glass composition affect structural parameters and their relationship to properties. More recent studies have focused on the Si-RE-Me oxynitride glasses where Me is primarily Al or Mg and RE includes most of the lanthanide series elements. These glasses possess a range of elastic, thermal, mechanical and optical properties, which can be correlated with the strength of the RE bond in terms of the cationic field strength. However, such correlation require knowledge of not only the RE valence state but also its coordination with the anions. Herein, the current state of the art understanding of the properties and structural parameters of oxynitride glasses and their interrelationships are reviewed.

  12. Novel TaPO{sub 5-x}N{sub 2x/3} oxynitrides

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Erwan [UMR CNRS 6226 ' Sciences Chimiques de Rennes' , equipe ' Verres et Ceramiques' , Universite de Rennes 1, F-35042 Rennes Cedex (France); Tessier, Franck, E-mail: Franck.Tessier@univ-rennes1.fr [UMR CNRS 6226 ' Sciences Chimiques de Rennes' , equipe ' Verres et Ceramiques' , Universite de Rennes 1, F-35042 Rennes Cedex (France); Chevire, Francois; Herbert, Nathalie; Lebullenger, Ronan; Roiland, Claire; Bureau, Bruno [UMR CNRS 6226 ' Sciences Chimiques de Rennes' , equipe ' Verres et Ceramiques' , Universite de Rennes 1, F-35042 Rennes Cedex (France)

    2012-02-05

    Graphical abstract: Tantalum-based nitridophosphate powders TaPO{sub 5-x}N{sub 2x/3} containing 9.1 (yellow) and 12.8 (orange) nitrogen wt.%, respectively. Highlights: Black-Right-Pointing-Pointer Synthesis of novel tantalum-based nitridophosphates. Black-Right-Pointing-Pointer Amorphous oxide and oxynitride powders. Black-Right-Pointing-Pointer Colored oxynitride phases. Black-Right-Pointing-Pointer High specific surface area powders. - Abstract: A series of novel nitrided tantalophosphates has been prepared by nitridation of X-ray amorphous TaPO{sub 5} precursors under ammonia flow. By varying the nitridation temperature, amorphous TaPO{sub 5-x}N{sub 2x/3} (1.6 < x < 4.1) oxynitrides were obtained with different nitrogen contents (N wt.% = 5-15). The most relevant features of this oxynitride series are as follow: (i) specific surface areas higher than 150 m{sup 2} g{sup -1}, (ii) yellow to orange colors depending on nitrogen contents and (iii) formation of a solid solution with variable nitrogen and oxygen contents. The precursors and corresponding oxynitrides have been characterized by several techniques including X-ray diffraction, oxygen/nitrogen elemental analyses, BET analysis, UV-vis spectrophotometry, thermal analysis, SEM, DRIFT and NMR analyses.

  13. Ion beam studied of silicon oxynitride and silicon nitroxide thin layers

    International Nuclear Information System (INIS)

    Oude Elferink, J.B.

    1989-01-01

    In this the processes occurring during high temperature treatments of silicon oxynitride and silicon oxide layers are described. Oxynitride layers with various atomic oxygen to nitrogen concentration ration (O/N) are considered. The high energy ion beam techniques Rutherford backscattering spectroscopy, elastic recoil detection and nuclear reaction analysis have been used to study the layer structures. A detailed discussion of these ion beam techniques is given. Numerical methods used to obtain quantitative data on elemental compositions and depth profiles are described. The electrical compositions and depth profiles are described. The electrical properties of silicon nitride films are known to be influenced by the behaviour of hydrogen in the film during high temperature anneling. Investigations of the behaviour of hydrogen are presented. Oxidation of silicon (oxy)nitride films in O 2 /H 2 0/HCl and nitridation of silicon dioxide films in NH 3 are considered since oxynitrides are applied as an oxidation mask in the LOCOS (Local oxidation of silicon) process. The nitridation of silicon oxide layers in an ammonia ambient is considered. The initial stage and the dependence on the oxide thickness of nitrogen and hydrogen incorporation are discussed. Finally, oxidation of silicon oxynitride layers and of silicon oxide layers are compared. (author). 76 refs.; 48 figs.; 1 tab

  14. Review: Silicon-based oxynitride and nitride phosphors for white LEDs

    Directory of Open Access Journals (Sweden)

    Rong-Jun Xie and Naoto Hirosaki

    2007-01-01

    Full Text Available As a novel class of inorganic phosphors, oxynitride and nitride luminescent materials have received considerable attention because of their potential applications in solid-state lightings and displays. In this review we focus on recent developments in the preparation, crystal structure, luminescence and applications of silicon-based oxynitride and nitride phosphors for white light-emitting diodes (LEDs. The structures of silicon-based oxynitrides and nitrides (i.e., nitridosilicates, nitridoaluminosilicates, oxonitridosilicates, oxonitridoaluminosilicates, and sialons are generally built up of networks of crosslinking SiN4 tetrahedra. This is anticipated to significantly lower the excited state of the 5d electrons of doped rare-earth elements due to large crystal-field splitting and a strong nephelauxetic effect. This enables the silicon-based oxynitride and nitride phosphors to have a broad excitation band extending from the ultraviolet to visible-light range, and thus strongly absorb blue-to-green light. The structural versatility of oxynitride and nitride phosphors makes it possible to attain all the emission colors of blue, green, yellow, and red; thus, they are suitable for use in white LEDs. This novel class of phosphors has demonstrated its superior suitability for use in white LEDs and can be used in bichromatic or multichromatic LEDs with excellent properties of high luminous efficacy, high chromatic stability, a wide range of white light with adjustable correlated color temperatures (CCTs, and brilliant color-rendering properties.

  15. Study of indium nitride and indium oxynitride band gaps

    Directory of Open Access Journals (Sweden)

    M. Sparvoli

    2013-01-01

    Full Text Available This work shows the study of the optical band gap of indium oxynitride (InNO and indium nitride (InN deposited by magnetron reactive sputtering. InNO shows multi-functionality in electrical and photonic applications, transparency in visible range, wide band gap, high resistivity and low leakage current. The deposition processes were performed in a magnetron sputtering system using a four-inches pure In (99.999% target and nitrogen and oxygen as plasma gases. The pressure was kept constant at 1.33 Pa and the RF power (13.56 MHz constant at 250 W. Three-inches diameter silicon wafer with 370 micrometer thickness and resistivity in the range of 10 ohm-centimeter was used as substrate. The thin films were analyzed by UV-Vis-NIR reflectance, photoluminescence (PL and Hall Effect. The band gap was obtained from Tauc analysis of the reflectance spectra and photoluminescence. The band gap was evaluated for both films: for InNO the value was 2.48 eV and for InN, 1.52 eV. The relative quantities obtained from RBS spectra analysis in InNO sample are 48% O, 12% N, 40% In and in InN sample are 8% O, 65% N, 27% In.

  16. Plasma-enhanced growth, composition, and refractive index of silicon oxy-nitride films

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1995-01-01

    Secondary ion mass spectrometry and refractive index measurements have been carried out on silicon oxy-nitride produced by plasma-enhanced chemical vapor deposition (PECVD). Nitrous oxide and ammonia were added to a constant flow of 2% silane in nitrogen, to produce oxy-nitride films with atomic...... nitrogen concentrations between 2 and 10 at. %. A simple atomic valence model is found to describe both the measured atomic concentrations and published material compositions for silicon oxy-nitride produced by PECVD. A relation between the Si–N bond concentration and the refractive index is found......-product. A model, that combine the chemical net reaction and the stoichiometric rules, is found to agree with measured deposition rates for given material compositions. Effects of annealing in a nitrogen atmosphere has been investigated for the 400 °C– 1100 °C temperature range. It is observed that PECVD oxy...

  17. Viscometric and thermodynamic studies of interactions in ternary ...

    Indian Academy of Sciences (India)

    Unknown

    making and structure-breaking capacities of alkali metal halides in pure aqueous solutions and in the pre- sence of sucrose have been ascertained from temperature dependence of φv. 0. Keywords. Ternary solutions; interactions of ionic and nonionic solutes; partial molar volumes; sucrose- alkali metal halide solutions. 1.

  18. Method of forming aluminum oxynitride material and bodies formed by such methods

    Science.gov (United States)

    Bakas, Michael P [Ammon, ID; Lillo, Thomas M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  19. A novel LaFeO3−XNX oxynitride. Synthesis and characterization

    International Nuclear Information System (INIS)

    Sierra Gallego, G.; Marín Alzate, N.; Arnache, O.

    2013-01-01

    Highlights: ► LaFeO 3 perovskite synthesized by auto combustion method. ► LaFeO 3−X N X oxynitride produced by ammonolysis reaction. ► Oxynitride characterized by XRD, Rietveld, SEM, EDX, BET, Raman, TGA and FTIR. ► Partial replacement of oxygen by nitrogen increases slightly the cell parameters. ► TGA shows that oxynitride start to decompose in air above 550 °C. Evolution of N 2 and NO was detected. - Abstract: A perovskite LaFeO 3 was synthesized by auto combustion method and then LaFeO 3−X N X oxynitride was produced by ammonolysis reaction. The synthesized LaFeO 3−X N X oxynitride was characterized by X-ray diffraction (XRD), Rietveld refinement, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Brunauer–Emmett–Teller (BET) nitrogen adsorption, particle size distribution, Raman spectroscopy, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). Nitrogen effect into the perovskite structure was confirmed by DRX. The structure refinement using the Rietveld method indicates that partial replacement of oxygen by nitrogen increases slightly the cell parameters of the LaFeO 3 perovskite. FTIR analysis show that bands at 995 and 1070 cm −1 in the oxynitrides spectra could be assigned to the stretching vibration modes of Fe–N bonds in the FeO 6−X N X octahedral. Thermogravimetric analysis (TGA) showed that LaFeO 3−X N X oxynitride series start to decompose in air above 550 °C. During the decomposition it was found that some amount of nitrogen stays retained in the structure forming intermediate compounds. MS analysis of the gaseous products reveals the evolution of N 2 and NO, suggesting a complex reaction mechanism. To our knowledge, there are no reports on the synthesis and characterization of the LaFeO 3−X N X oxynitrides.

  20. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, D., E-mail: daniel.cristea@unitbv.ro [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Crisan, A. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Cretu, N. [Electrical Engineering and Applied Physics Department, Transilvania University, 500036 Brasov (Romania); Borges, J. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710 - 057 Braga (Portugal); Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Lopes, C.; Cunha, L. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710 - 057 Braga (Portugal); Ion, V.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, “Photonic Processing of Advanced Materials” Group, PO Box MG-16, RO 77125 Magurele-Bucharest (Romania); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Apreutesei, M. [MATEIS Laboratory-INSA de Lyon, 21 Avenue Jean Capelle, 69621 Villeurbanne cedex (France); Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, Ecole Centrale de Lyon, Ecully F-69134 (France); Munteanu, D. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania)

    2015-11-01

    Highlights: • Tantalum oxynitride thin films have been deposited by magnetron sputtering, in various configurations. • The rising of the reactive gases mixture flow has the consequence of a gradual increase in the non-metallic content in the films, which results in a 10 orders of magnitude resistivity domain. • The higher resistivity films exhibit dielectric constants up to 41 and quality factors up to 70. - Abstract: The main purpose of this work is to present and to interpret the change of electrical properties of Ta{sub x}N{sub y}O{sub z} thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N{sub 2} and O{sub 2}, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, −50 V or −100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance Ta{sub x}N{sub y}O{sub z} films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric Ta{sub x}N{sub y}O{sub z} films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.

  1. Self-organized nickel nanoparticles on nanostructured silicon substrate intermediated by a titanium oxynitride (TiNxOy interface

    Directory of Open Access Journals (Sweden)

    M. Morales

    2018-01-01

    Full Text Available In this work we report an experimental approach by combining in situ sequential top-down and bottom-up processes to induce the organization of nanosized nickel particles. The top-down process consists in xenon ion bombardment of a crystalline silicon substrate to generate a pattern, followed by depositing a ∼15 nm titanium oxynitride thin film to act as a metallic diffusion barrier. Then, metallic nanoparticles are deposited by argon ion sputtering a pure nickel target, and the sample is annealed to promote the organization of the nickel nanoparticles (a bottom-up process. According to the experimental results, the surface pattern and the substrate biaxial surface strain are the driving forces behind the alignment and organization of the nickel nanoparticles. Moreover, the ratio between the F of metallic atoms arriving at the substrate relative to its surface diffusion mobility determines the nucleation regime of the nickel nanoparticles. These features are presented and discussed considering the existing technical literature on the subject.

  2. Self-organized nickel nanoparticles on nanostructured silicon substrate intermediated by a titanium oxynitride (TiNxOy) interface

    Science.gov (United States)

    Morales, M.; Droppa, R., Jr.; de Mello, S. R. S.; Figueroa, C. A.; Zanatta, A. R.; Alvarez, F.

    2018-01-01

    In this work we report an experimental approach by combining in situ sequential top-down and bottom-up processes to induce the organization of nanosized nickel particles. The top-down process consists in xenon ion bombardment of a crystalline silicon substrate to generate a pattern, followed by depositing a ˜15 nm titanium oxynitride thin film to act as a metallic diffusion barrier. Then, metallic nanoparticles are deposited by argon ion sputtering a pure nickel target, and the sample is annealed to promote the organization of the nickel nanoparticles (a bottom-up process). According to the experimental results, the surface pattern and the substrate biaxial surface strain are the driving forces behind the alignment and organization of the nickel nanoparticles. Moreover, the ratio between the F of metallic atoms arriving at the substrate relative to its surface diffusion mobility determines the nucleation regime of the nickel nanoparticles. These features are presented and discussed considering the existing technical literature on the subject.

  3. Optimization of plasma-enhanced chemical vapor deposition silicon oxynitride layers for integrated optics applications

    NARCIS (Netherlands)

    Hussein, M.G.; Worhoff, Kerstin; Sengo, G.; Sengo, G.; Driessen, A.

    2007-01-01

    Silicon oxynitride $(SiO_{x}N_{y}:H)$ layers were grown from 2% $SiH_{4}/N_{2}$ and $N_{2}O$ gas mixtures by plasma-enhanced chemical vapor deposition (PECVD). Layer properties such as refractive index, deposition rate, thickness non-uniformity and hydrogen bond content were correlated to the

  4. Structure and optical properties of cubic gallium oxynitride synthesized by solvothermal route

    International Nuclear Information System (INIS)

    Oberländer, Andreas; Kinski, Isabel; Zhu, Wenliang; Pezzotti, Giuseppe; Michaelis, Alexander

    2013-01-01

    Cubic gallium oxynitride was synthesized using a solvothermal processing route. Crystal structure, chemical composition, optical properties and the influence of heat treatment in either reactive or inert atmospheres have been investigated. Despite a strongly distorted lattice revealed using X-ray diffraction, the Raman active modes of a cubic gallium oxynitride structure could be observed. With diffusive reflectance UV–Vis spectroscopy a band gap at around 4.8 eV has been observed. Additionally, cathodoluminescence spectroscopy exhibited observable luminescence caused by defect-related transitions within the optical gap. Cathodoluminescence and photoluminescence spectra collected after heat treatments showed significant changes in the defect structure. In particular, for annealing in ammonia the main spectral modifications were related to the substitution of oxygen by nitrogen on anion sites. - Graphical abstract: CL spectra of gallium oxynitride: As-prepared and heat-treated at temperatures of 500 °C in different atmospheres. Highlights: ► Raman spectrum of cubic gallium oxynitride. ► Experimental determination of optical band gap. ► Shift of band gap energy due to heat treatment. ► Nitrogen incorporation leads to deep level acceptor states. ► Red shifted luminescence spectrum

  5. Nanopore fabrication in silicon oxynitride membranes by heating Au-particles

    NARCIS (Netherlands)

    de Vreede, Lennart; Schmidt Muniz, M.; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    We report the fabrication of nanopores in a silicon oxynitride (SiON) membrane by heating a silicon rich-silicon nitride (SiRN) membrane with a gold nanoparticle array deposited on its surface. The gold nanoparticle array was realized by photolithography and the membrane by wet-etching. The entire

  6. Growth Kinetics and Modeling of Direct Oxynitride Growth with NO-O2 Gas Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Everist, Sarah; Nelson, Jerry; Sharangpani, Rahul; Smith, Paul Martin; Tay, Sing-Pin; Thakur, Randhir

    1999-05-03

    We have modeled growth kinetics of oxynitrides grown in NO-O2 gas mixtures from first principles using modified Deal-Grove equations. Retardation of oxygen diffusion through the nitrided dielectric was assumed to be the dominant growth-limiting step. The model was validated against experimentally obtained curves with good agreement. Excellent uniformity, which exceeded expected walues, was observed.

  7. Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics

    NARCIS (Netherlands)

    Worhoff, Kerstin; Driessen, A.; Lambeck, Paul; Hilderink, L.T.H.; Linders, Petrus W.C.; Popma, T.J.A.

    1999-01-01

    Silicon Oxynitride layers are grown from SiH4/N2, NH3 and N2O by Plasma Enhanced Chemical Vapor Deposition. The process is optimized with respect to deposition of layers with excellent uniformity in the layer thickness, high homogeneity of the refractive index and good reproducibility of the layer

  8. Influence of phosphorus doping on hydrogen content and optical losses in PECVD silicon oxynitride

    NARCIS (Netherlands)

    Hussein, M.G.; Worhoff, Kerstin; Sengo, G.; Sengo, G.; Driessen, A.; Megret, P.; Wuilpart, M.; Bette, S.; Staquet, N.

    2005-01-01

    PECVD Phosphorus-doped silicon oxynitride layers (n=1.5) were deposited from $N_20$, 2%$SiH_4N_2$, $NH_3$ and 5%$PH_3/Ar$ gaseous mixtures. Chemical bonds were determined by Fourier transform infrared spectroscopy. N-H bond concentration of the layers decreased from 3.29 x $10^{21}$ to 0.45 x

  9. Composition-induced structural, electrical, and magnetic phase transitions in AX-type mixed-valence cobalt oxynitride epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Jumpei; Oka, Daichi [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); Hirose, Yasushi, E-mail: hirose@chem.s.u-tokyo.ac.jp; Yang, Chang; Fukumura, Tomoteru; Hasegawa, Tetsuya [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Harayama, Isao; Sekiba, Daiichiro [University of Tsukuba Tandem Accelerator Complex (UTTAC), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577 (Japan)

    2015-12-07

    Synthesis of mid- to late-transition metal oxynitrides is generally difficult by conventional thermal ammonolysis because of thermal instability. In this letter, we synthesized epitaxial thin films of AX-type phase-pure cobalt oxynitrides (CoO{sub x}N{sub y}) by using nitrogen-plasma-assisted pulsed laser deposition and investigated their structural, electrical, and magnetic properties. The CoO{sub x}N{sub y} thin films with 0 ≤ y/(x + y) ≤ 0.63 grown on MgO (100) substrates showed a structural phase transition from rock salt (RS) to zinc blend at the nitrogen content y/(x + y) ∼ 0.5. As the nitrogen content increased, the room-temperature electrical resistivity of the CoO{sub x}N{sub y} thin films monotonically decreased from the order of 10{sup 5} Ω cm to 10{sup −4} Ω cm. Furthermore, we observed an insulator-to-metal transition at y/(x + y) ∼ 0.34 in the RS-CoO{sub x}N{sub y} phase, which has not yet been reported in Co{sup 2+}/Co{sup 3+} mixed-valence cobalt oxides with octahedral coordination. The low resistivity in the RS-CoO{sub x}N{sub y} phase, on the 10{sup −3} Ω cm order, may have originated from the intermediate spin state of Co{sup 3+} stabilized by the lowered crystal field symmetry of the CoO{sub 6−n}N{sub n} octahedra (n = 1, 2,…5). Magnetization measurements suggested that a magnetic phase transition occurred in the RS-CoO{sub x}N{sub y} films during the insulator-to-metal transition. These results demonstrate that low-temperature epitaxial growth is a promising approach for exploring novel electronic functionalities in oxynitrides.

  10. Tantalum (oxy)nitrides nanotube arrays for the degradation of atrazine in vis-Fenton-like process.

    Science.gov (United States)

    Du, Yingxun; Zhao, Lu; Chang, Yuguang; Su, Yaling

    2012-07-30

    In order to overcome the limitation of the application of nanoparticles, tantalum (oxy)nitrides nanotube arrays on a Ta foil were synthesized and introduced in vis (visible light)-Fenton-like system to enhance the degradation of atrazine. At first, the anodization of tantalum foil in a mild electrolyte solution containing ethylene glycol and water (v:v=2:1) plus 0.5wt.% NH(4)F produced tantala nanotubes with an average diameter of 30nm and a length of approximately 1μm. Then the nitridation of tantala nanotube arrays resulted in the replacement of N atoms to O atoms to form tantalum (oxy)nitrides (TaON and Ta(3)N(5)), as testified by XRD and XPS analyses. The synthesized tantalum (oxy)nitrides nanotubes absorb well in the visible region up to 600nm. Under visible light, tantalum (oxy)nitrides nanotube arrays were catalytically active for Fe(3+) reduction. With tantalum (oxy)nitrides nanotube arrays, the degradation of atrazine and the formation of the intermediates in vis/Fe(3+)/H(2)O(2) system were significantly accelerated. This was explained by the higher concentration of Fe(2+) and thus the faster decomposition of H(2)O(2) with tantalum (oxy)nitrides nanotubes. In addition, tantalum (oxy)nitrides nanotubes exhibited stable performance during atrazine degradation for three runs. The good performance and stability of the tantalum (oxy)nitrides nanotubes film with the convenient separation, suggest that this film is a promising catalyst for vis-Fenton-like degradation. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Structural Series in the Ternary A-Mn-As System (A = Alkali Metal): Double-Layer-Type CsMn4As3 and RbMn4As3 and Tunnel-Type KMn4As3.

    Science.gov (United States)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2018-04-16

    New manganese arsenides CsMn 4 As 3 , RbMn 4 As 3 , and KMn 4 As 3 were synthesized by solid-state reaction. They consist of edge-sharing MnAs 4 tetrahedra, which are a building block similar to those of Fe-based superconductors. CsMn 4 As 3 and RbMn 4 As 3 adopt the KCu 4 S 3 -type structure (tetragonal P4/ mmm space group, No. 123) with a Mn 4 As 3 double layer, while KMn 4 As 3 has the CaFe 4 As 3 -type structure (orthorhombic Pnma space group, No. 62) with a Mn 4 As 3 tunnel framework. The structural change from CsMn 4 As 3 and RbMn 4 As 3 to KMn 4 As 3 as well as the structural trend of the other ternary A-Mn-As (A = alkali metal) and AE-Mn-As (AE = alkaline-earth metal) compounds is understood as a consequence of reduction of the coordination number around the A and AE sites owing to the decrease of the ionic radius from Cs + to Mg 2+ . Electrical resistivity measurements confirm that the three new phases are Mott insulators with band gaps of 0.52 (CsMn 4 As 3 ), 0.43 (RbMn 4 As 3 ), and 0.31 eV (KMn 4 As 3 ). Magnetic and heat capacity measurements revealed that CsMn 4 As 3 and RbMn 4 As 3 are antiferromagnets without apparent phase transitions below 400 K, which is similar to the magnetism of LaMnAsO and BaMn 2 As 2 , while the existence of the ferromagnetic component was indicated in KMn 4 As 3 with a magnetic transition at 179 K.

  12. Material comprising two different non-metallic parrticles having different particle sizes for use in solar reactor

    Science.gov (United States)

    Klausner, James F.; Momen, Ayyoub Mehdizadeh; Al-Raqom, Fotouh A.

    2017-10-03

    Disclosed herein is a composite particle comprising a first non-metallic particle in which is dispersed a second non-metallic particle, where the first non-metallic particle and the second non-metallic particle are inorganic; and where a chemical composition of the first non-metallic particle is different from a chemical composition of the second non-metallic particle; and where the first non-metallic particle and the second non-metallic particle are metal oxides, metal carbides, metal nitrides, metal borides, metal silicides, metal oxycarbides, metal oxynitrides, metal boronitrides, metal carbonitrides, metal borocarbides, or a combination thereof.

  13. Neutron Damage and MAX Phase Ternary Compounds

    International Nuclear Information System (INIS)

    Barsoum, Michael; Hoffman, Elizabeth; Sindelar, Robert; Garcua-Diaz, Brenda; Kohse, Gordon

    2014-01-01

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  14. Neutron Damage and MAX Phase Ternary Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michael [Drexel Univ., Philadelphia, PA (United States); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcua-Duaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kohse, Gordon [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-06-17

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  15. Laser gas assisted texturing and formation of nitride and oxynitride compounds on alumina surface: Surface response to environmental dust

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Aqeeli, N.

    2018-03-01

    Laser gas assisted texturing of alumina surface is carried out, and formation of nitride and oxynitride compounds in the surface vicinity is examined. The laser parameters are selected to create the surface topology consisting of micro/nano pillars with minimum defect sites including micro-cracks, voids and large size cavities. Morphological and hydrophobic characteristics of the textured surface are examined using the analytical tools. The characteristics of the environmental dust and its influence on the laser textured surface are studied while mimicking the local humid air ambient. Adhesion of the dry mud on the laser textured surface is assessed through the measurement of the tangential force, which is required to remove the dry mud from the surface. It is found that laser texturing gives rise to micro/nano pillars topology and the formation of AlN and AlON compounds in the surface vicinity. This, in turn, lowers the free energy of the textured surface and enhances the hydrophobicity of the surface. The liquid solution resulted from the dissolution of alkaline and alkaline earth metals of the dust particles in water condensate forms locally scattered liquid islands at the interface of mud and textured surface. The dried liquid solution at the interface increases the dry mud adhesion on the textured surface. Some dry mud residues remain on the textured surface after the dry mud is removed by a pressurized desalinated water jet.

  16. Composition and structure variation for magnetron sputtered tantalum oxynitride thin films, as function of deposition parameters

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, D.; Pătru, M.; Crisan, A.; Munteanu, D. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Crăciun, D. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Apreutesei, M. [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR 5270, CNRS, Ecole Centrale de Lyon, Ecully F-69134 (France); MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Moura, C. [Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Cunha, L., E-mail: lcunha@fisica.uminho.pt [Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-12-15

    Highlights: • Structural evolution from β-Ta, to fcc-Ta(O,N), to amorphous Ta{sub 2}O{sub 5} with increasing P(N{sub 2} + O{sub 2}). • The substrate bias influences the N content, but does not influence the O content of the films. • The structural features of the films appear at lower P(N{sub 2} + O{sub 2}) when produced with grounded substrate. - Abstract: Tantalum oxynitride thin films were produced by magnetron sputtering. The films were deposited using a pure Ta target and a working atmosphere with a constant N{sub 2}/O{sub 2} ratio. The choice of this constant ratio limits the study concerning the influence of each reactive gas, but allows a deeper understanding of the aspects related to the affinity of Ta to the non-metallic elements and it is economically advantageous. This work begins by analysing the data obtained directly from the film deposition stage, followed by the analysis of the morphology, composition and structure. For a better understanding regarding the influence of the deposition parameters, the analyses are presented by using the following criterion: the films were divided into two sets, one of them produced with grounded substrate holder and the other with a polarization of −50 V. Each one of these sets was produced with different partial pressure of the reactive gases P(N{sub 2} + O{sub 2}). All the films exhibited a O/N ratio higher than the N/O ratio in the deposition chamber atmosphere. In the case of the films produced with grounded substrate holder, a strong increase of the O content is observed, associated to the strong decrease of the N content, when P(N{sub 2} + O{sub 2}) is higher than 0.13 Pa. The higher Ta affinity for O strongly influences the structural evolution of the films. Grazing incidence X-ray diffraction showed that the lower partial pressure films were crystalline, while X-ray reflectivity studies found out that the density of the films depended on the deposition conditions: the higher the gas pressure, the

  17. Silicon nanostructures in silicon oxynitride for PV application: effect of argon

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, Fabien; Ferblantier, Gerald; Muller, Dominique; Slaoui, Abdelilah [Institut d' Electronique du Solide et des Systemes, UMR CNRS-UdS 7163, 23 Rue du Loess, BP20, 67034 Strasbourg cedex 2 (France); Ulhaq-Bouillet, Corinne [Institut de Physique et Chimie des Materiaux de Strasbourg, UMR CNRS-UdS 7504, 23 Rue du Loess, BP43, 67034 Strasbourg cedex 2 (France)

    2012-10-15

    Silicon rich silicon oxynitride (SRSON) were deposited by ECR-PECVD to form silicon nanostructures. The effect of argon flow during the deposition was investigated. The silicon nanoparticles were fabricated by a classical thermal treatment of SRSON films. The structural properties of the SRSON films were investigated by RBS and FTIR measurements. We show that the silicon excess in the SiO{sub x}N{sub y} matrix changes slightly with Ar flow but it has a significant impact on the silicon nanoparticles morphology embedded in the silicon oxynitride layer. Different shapes for silicon nanostructures ranging from separated Si nanocrystals to Si nanocolumns were formed as studied by energy-filtred transmission electron microscopy analysis (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. New examples of ternary rare-earth metal boride carbides containing finite boron carbon chains: The crystal and electronic structure of RE15B6C20 (RE=Pr, Nd)

    Science.gov (United States)

    Babizhetskyy, Volodymyr; Mattausch, Hansjürgen; Simon, Arndt; Hiebl, Kurt; Ben Yahia, Mouna; Gautier, Régis; Halet, Jean-François

    2008-08-01

    The ternary rare-earth metal boride carbides RE15B6C20 (RE=Pr, Nd) were synthesized by co-melting the elements. They exist above 1270 K. Their crystal structures were determined from single-crystal X-ray diffraction data. Both crystallize in the space group P1¯, Z=1, a=8.3431(8) Å, b=9.2492(9) Å, c=8.3581(8) Å, α=84.72(1)°, β=89.68(1)°, γ =84.23(1)° (R1=0.041 (wR2=0.10) for 3291 reflections with Io>2σ(Io)) for Pr15B6C20, and a=8.284(1) Å, b=9.228(1) Å, c=8.309(1) Å, α=84.74(1)°, β=89.68(1)°, γ=84.17(2)° (R1=0.033 (wR2=0.049) for 2970 reflections with Io>2σ(Io)) for Nd15B6C20. Their structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with unprecedented B2C4 finite chains, disordered C3 entities and isolated carbon atoms, respectively. Structural and theoretical analyses suggest the ionic formulation (RE3+)15([B2C4]6-)3([C3]4-)2(C4-)2·11ē. Accordingly, density functional theory calculations indicate that the compounds are metallic. Both structural arguments as well as energy calculations on different boron vs. carbon distributions in the B2C4 chains support the presence of a CBCCBC unit. Pr15B6C18 exhibits antiferromagnetic order at TN=7.9 K, followed by a meta-magnetic transition above a critical external field B>0.03 T. On the other hand, Nd15B6C18 is a ferromagnet below TC≈40 K.

  19. Magnetization of ternary alloys based on Fe0.65Ni0.35 invar with 3d transition metal additions: An ab initio study

    Science.gov (United States)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.; Popescu, Voicu; Matsen, Marc R.

    2015-01-01

    Smart susceptors are being developed for use as tooling surfaces in molding machines that use apply electro-magnetic induction heating to mold and form plastics or metal powders into structural parts, e.g., on aerospace and automotive manufacturing lines. The optimal magnetic materials for the induction heating process should have large magnetization, high magnetic permeability, but also small thermal expansion coefficient. The Fe0.65Ni0.35 invar alloy with its negligible thermal expansion coefficient is thus a natural choice for this application. Here, we use density functional theory as implemented through the Korringa-Kohn-Rostoker method within the coherent-potential approximation, to design new alloys with the large magnetization desired for smart susceptor applications. We consider the Fe0.65-xNi0.35-yMx+y alloys derived from Fe0.65Ni0.35 invar adding a third element M = Sc, Ti, V, Cr, Mn, or Co with concentration (x + y) reaching up to 5 at. %. We find that the total magnetization depends linearly on the concentration of M. Specifically, the early 3d transition metals from Sc to Cr decrease the magnetization with respect to that of the invar alloy whereas Mn and Co increase it.

  20. Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin films

    DEFF Research Database (Denmark)

    Christiansen, Ane Sælland; Stamate, Eugen; Thydén, Karl Tor Sune

    2015-01-01

    The nitrogen dissociation and plasma parameters during radio frequency sputtering of lithium phosphorus oxynitride thin films in nitrogen gas are investigated by mass appearance spectrometry, electrostatic probes and optical emission spectroscopy, and the results are correlated with electrochemical...... properties and microstructure of the films. Low pressure and moderate power are associated with lower plasma density, higher electron temperature, higher plasma potential and larger diffusion length for sputtered particles. This combination of parameters favors the presence of more atomic nitrogen, a fact...

  1. 10-fold enhancement in light-driven water splitting using niobium oxynitride microcone array films

    KAUST Repository

    Shaheen, Basamat

    2016-03-26

    We demonstrate, for the first time, the synthesis of highly ordered niobium oxynitride microcones as an attractive class of materials for visible-light-driven water splitting. As revealed by the ultraviolet photoelectron spectroscopy (UPS), photoelectrochemical and transient photocurrent measurements, the microcones showed enhanced performance (~1000% compared to mesoporous niobium oxide) as photoanodes for water splitting with remarkable stability and visible light activity. © 2016 Elsevier B.V. All rights reserved.

  2. Structural, elastic and electronic properties of transition metal carbides ZnC, NbC and their ternary alloys ZnxNb1-xC

    Science.gov (United States)

    Zidi, Y.; Méçabih, S.; Abbar, B.; Amari, S.

    2018-02-01

    We have investigated the structural, electronic and elastic properties of transition-metal carbides ZnxNb1-xC alloys in the range of 0 ≤ x ≤ 1 using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) and GGA + U (where U is the Hubbard correlation terms) approach is used to perform the calculations presented here. The lattice parameters, the bulk modulus, its pressure derivative and the elastic constants were determined. We have obtained Young's modulus, shear modulus, Poisson's ratio, anisotropy factor by the aid of the calculated elastic constants. We discuss the total and partial densities of states and charge densities.

  3. Chemical environment of iron atoms in iron oxynitride films synthesized by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Grafoute, M.; Petitjean, C.; Rousselot, C.; Pierson, J.F.; Greneche, J.M.

    2007-01-01

    An iron oxynitride film was deposited on silicon and glass substrates by magnetron sputtering in an Ar-N 2 -O 2 reactive mixture. Rutherford back-scattering spectrometry was used to determine the film composition (Fe 1.06 O 0.35 N 0.65 ). X-ray diffraction revealed the formation of a face-centred cubic (fcc) structure with a lattice parameter close to that of γ'''-FeN. X-ray photoelectron spectroscopy showed the occurrence of Fe-N and Fe-O bonds in the film. The local environment of iron atoms studied by 57 Fe Moessbauer spectrometry at both 300 and 77 K gives clear evidence that the Fe 1.06 O 0.35 N 0.65 is not a mixture of iron oxide and iron nitride phases. Despite a small amount of an iron nitride phase, the main sample consists of an iron oxynitride phase with an NaCl-type structure where oxygen atoms partially substitute for nitrogen atoms, thus indicating the formation of a iron oxynitride with an fcc structure

  4. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  5. Ternary System with Controlled Structure: A New Strategy toward Efficient Organic Photovoltaics.

    Science.gov (United States)

    Cheng, Pei; Wang, Rui; Zhu, Jingshuai; Huang, Wenchao; Chang, Sheng-Yung; Meng, Lei; Sun, Pengyu; Cheng, Hao-Wen; Qin, Meng; Zhu, Chenhui; Zhan, Xiaowei; Yang, Yang

    2018-02-01

    Recently, a new type of active layer with a ternary system has been developed to further enhance the performance of binary system organic photovoltaics (OPV). In the ternary OPV, almost all active layers are formed by simple ternary blend in solution, which eventually leads to the disordered bulk heterojunction (BHJ) structure after a spin-coating process. There are two main restrictions in this disordered BHJ structure to obtain higher performance OPV. One is the isolated second donor or acceptor domains. The other is the invalid metal-semiconductor contact. Herein, the concept and design of donor/acceptor/acceptor ternary OPV with more controlled structure (C-ternary) is reported. The C-ternary OPV is fabricated by a sequential solution process, in which the second acceptor and donor/acceptor binary blend are sequentially spin-coated. After the device optimization, the power conversion efficiencies (PCEs) of all OPV with C-ternary are enhanced by 14-21% relative to those with the simple ternary blend; the best PCEs are 10.7 and 11.0% for fullerene-based and fullerene-free solar cells, respectively. Moreover, the averaged PCE value of 10.4% for fullerene-free solar cell measured in this study is in great agreement with the certified one of 10.32% obtained from Newport Corporation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electronic structure simulation of chromium aluminum oxynitride by discrete variational-X alpha method and X-ray photoelectron spectroscopy

    CERN Document Server

    Choi, Y; Lee, J D; Kim, E; No, K

    2002-01-01

    We use a first-principles discrete variational (DV)-X alpha method to investigate the electronic structure of chromium aluminum oxynitride. When nitrogen is substituted for oxygen in the Cr-Al-O system, the N2p level appears in the energy range between O2p and Cr3d levels. Consequently, the valence band of chromium aluminum oxynitride becomes broader and the band gap becomes smaller than that of chromium aluminum oxide, which is consistent with the photoelectron spectra for the valence band using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). We expect that this valence band structure of chromium aluminum oxynitride will modify the transmittance slope which is a requirement for photomask application.

  7. Ternary Weighted Function and Beurling Ternary Banach Algebra l1ω(S

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghanian

    2011-01-01

    Full Text Available Let S be a ternary semigroup. In this paper, we introduce our notation and prove some elementary properties of a ternary weight function ω on S. Also, we make ternary weighted algebra l1ω(S and show that l1ω(S is a ternary Banach algebra.

  8. Characterization of silicon oxynitride films prepared by the simultaneous implantation of oxygen and nitrogen ions into silicon

    International Nuclear Information System (INIS)

    Hezel, R.; Streb, W.

    1985-01-01

    Silicon oxynitride films about 5 nm in thickness were prepared by simultaneously implanting 5 keV oxygen and nitrogen ions into silicon at room temperature up to saturation. These films with concentrations ranging from pure silicon oxide to silicon nitride were characterized using Auger electron spectroscopy, electron energy loss spectroscopy and depth-concentration profiling. The different behaviour of the silicon oxynitride films compared with those of silicon oxide and silicon nitride with regard to thermal stability and hardness against electron and argon ion irradiation is pointed out. (Auth.)

  9. Constructing ternary polyaniline-graphene-TiO{sub 2} hybrids with enhanced photoelectrochemical performance in photo-generated cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwei, E-mail: vivizhg@yahoo.com [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590 (China); Guo, Hanlin; Sun, Haiqing [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Zeng, Rongchang [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590 (China)

    2017-07-15

    Highlights: • Ternary polyaniline-graphene-TiO{sub 2} hybrids were synthesized. • Flat band potential shift facilitates electron injection to the coupled metal. • Electrons and holes transfer in the hybrids promotes electron–hole separation. • Synergistic effects of the ternary components make the hybrids photo-chargeable. - Abstract: Ternary polyaniline-graphene-TiO{sub 2} nanocomposites were constructed through a stepwise synthetic route. The hybrids exhibit remarkable enhancement in photoelectrochemical performance. The transfer of photo-excited carriers in the ternary composites facilitates the photo-induced electron-hole separation. Meanwhile, the flat band potential shift of the hybrids increases the inner electric field intensity that drives the photo-excited electron migration from the composites to the coupled metal. Furthermore, the ternary hybrids were found firstly to be photo-chargeable, which shows application potentials in photo-generated cathodic protection in dark.

  10. Quantitative SIMS depth profiling of diffusion barrier gate-oxynitride structures in TFT-LCDs.

    Science.gov (United States)

    Dreer, Sabine; Wilhartitz, Peter; Piplits, Kurt; Mayerhofer, Karl; Foisner, Johann; Hutter, Herbert

    2004-06-01

    Gate oxynitride structures of TFT-LCDs were investigated by SIMS, and successful solutions are demonstrated to overcome difficulties arising due to the charging effects of the multilayer systems, the matrix effect of the method, and the small pattern sizes of the samples. Because of the excellent reproducibility achieved by applying exponential relative sensitivity functions for quantitative analysis, minor differences in the barrier gate-oxynitride composition deposited on molybdenum capped aluminium-neodymium metallisation electrodes were determined between the centre and the edge of the TFT-LCD substrates. No differences were found for molybdenum-tungsten metallisations. Furthermore, at the edge of the glass substrates, aluminium, neodymium, and molybdenum SIMS depth profiles show an exponential trend. With TEM micrographs an inhomogeneous thickness of the molybdenum capping is revealed as the source of this effect, which influences the electrical behaviour of the device. The production process was improved after these results and the aging behaviour of TFT-LCDs was investigated in order to explain the change in control voltage occurring during the lifetime of the displays. SIMS and TEM show an enrichment of neodymium at the interface to the molybdenum layer, confirming good diffusion protection of the molybdenum barrier during accelerated aging. The reason for the shift of the control voltage was finally located by semi-quantitative depth profiling of the sodium diffusion originating from the glass substrate. Molybdenum-tungsten was a much better buffer for the highly-mobile charge carriers than aluminium-neodymium. Best results were achieved with PVD silicon oxynitride as diffusion barrier and gate insulator deposited on aluminium-neodymium metallisation layers.

  11. Corrosion resistance and biocompatibility of zirconium oxynitride thin film growth by RF sputtering

    International Nuclear Information System (INIS)

    Cubillos, G. I.; Olaya, J. J.; Clavijo, D.; Alfonso, J. E.; Bethencourt, M.

    2012-01-01

    Thin films of zirconium oxynitride were grown on common glass, silicon (100) and stainless steel 316 L substrates using the reactive RF magnetron sputtering technique. The films were analyzed through structural, morphological and biocompatibility studies. The structural analysis was carried out using X-ray diffraction (XRD), and the morphological analysis was carried out using scanning electron microscopy (Sem) and atomic force microscopy (AFM). These studies were done as a function of growth parameters, such as power applied to the target, substrate temperature, and flow ratios. The corrosion resistance studies were made on samples of stainless steel 316 L coated and uncoated with Zr x N y O films, through of polarization curves. The studies of biocompatibility were carried out on zirconium oxynitride films deposited on stainless steel 316 L through proliferation and cellular adhesion. The XRD analysis shows that films deposited at 623 K, with a flow ratio ΦN 2 /ΦO 2 of 1.25 and a total deposit time of 30 minutes grew preferentially oriented along the (111) plane of the zirconium oxynitride monoclinic phase. The Sem analyses showed that the films grew homogeneously, and the AFM studies indicated that the average rugosity of the film was 5.9 nm and the average particle size was 150 nm. The analysis of the corrosion resistant, shows that the stainless steel coated with the film was increased a factor 10. Finally; through the analysis of the biocompatibility we established that the films have a better surface than the substrate (stainless steel 316 L) in terms of the adhesion and proliferation of bone cells. (Author)

  12. Corrosion resistance and biocompatibility of zirconium oxynitride thin film growth by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, G. I.; Olaya, J. J.; Clavijo, D.; Alfonso, J. E. [Universidad Nacional de Colombia, Carrera 45 No. 26-85, AA 14490 Bogota D. C. (Colombia); Bethencourt, M., E-mail: jealfonsoo@unal.edu.co [Universidad de Cadiz, Centro Andaluz de Ciencia y Tecnologia Marinas, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Av. Republica de Saharaui, Puerto Real, E-11510 Cadiz (Spain)

    2012-07-01

    Thin films of zirconium oxynitride were grown on common glass, silicon (100) and stainless steel 316 L substrates using the reactive RF magnetron sputtering technique. The films were analyzed through structural, morphological and biocompatibility studies. The structural analysis was carried out using X-ray diffraction (XRD), and the morphological analysis was carried out using scanning electron microscopy (Sem) and atomic force microscopy (AFM). These studies were done as a function of growth parameters, such as power applied to the target, substrate temperature, and flow ratios. The corrosion resistance studies were made on samples of stainless steel 316 L coated and uncoated with Zr{sub x}N{sub y}O films, through of polarization curves. The studies of biocompatibility were carried out on zirconium oxynitride films deposited on stainless steel 316 L through proliferation and cellular adhesion. The XRD analysis shows that films deposited at 623 K, with a flow ratio {Phi}N{sub 2}/{Phi}O{sub 2} of 1.25 and a total deposit time of 30 minutes grew preferentially oriented along the (111) plane of the zirconium oxynitride monoclinic phase. The Sem analyses showed that the films grew homogeneously, and the AFM studies indicated that the average rugosity of the film was 5.9 nm and the average particle size was 150 nm. The analysis of the corrosion resistant, shows that the stainless steel coated with the film was increased a factor 10. Finally; through the analysis of the biocompatibility we established that the films have a better surface than the substrate (stainless steel 316 L) in terms of the adhesion and proliferation of bone cells. (Author)

  13. True ternary fission in 310126X

    International Nuclear Information System (INIS)

    Banupriya, B.; Vijayaraghavan, K.R.; Balasubramaniam, M.

    2015-01-01

    All possible combinations are minimized by the two dimensional minimization process and minimized with respect to neutron numbers and proton numbers of the fragments. Potential energy is low and Q - value is high at true ternary fission region. It shows that true ternary mode is the dominant mode in the ternary fission of superheavy nuclei. Also, the results show that the fragments with neutron magic numbers are the dominant one in the ternary fission of superheavy nuclei whereas the fragments with proton magic numbers are the dominant one in the ternary fission of heavy nuclei

  14. Decoupling Strain and Ligand Effects in Ternary Nanoparticles for Improved ORR Electrocatalysis

    DEFF Research Database (Denmark)

    C. Jennings, Paul; Lysgaard, Steen; Hansen, Heine Anton

    2016-01-01

    shows the effect of the ternary metal core allowing for tuning the catalytic activity through strain effects. Good agreement is found with experimental studies showing increased activity of Pt-Au-Fe/Ni nanoparticles, and the current study suggests that mid to late 3d-metals should also exhibit enhance...

  15. Plasma-enhanced chemical vapor deposition of silicon oxynitride for micromachined millimeter-wave devices

    Science.gov (United States)

    Saadaoui, M.; Peyrou, D.; Achkar, H.; Pennec, F.; Bouscayrol, L.; Rousset, B.; Boyer, P. T.; Scheid, E.; Pons, P.; Plana, R.

    2008-03-01

    Silicon oxynitride films were deposited by plasma-enhanced chemical vapor deposition at low temperature and frequency using SiH4 + NH3 + N2O gas mixtures. The process is optimized in order to deposit film with low tensile stress and high resistance during KOH etching. By increasing the gas flow of nitrous oxide (N2O), the film tends to be oxygen rich and the usual as-deposited high compressive stress is reduced to its lowest state at O/Si = 0.74. Annealing films above 480 °C generates low tensile stress suitable for membrane fabrication, and further infrared spectroscopy analysis shows that the shrinking of Si-O and Si-N bonds seems to be the cause of reversing the stress's nature. Young's modulus of the optimized layer is characterized by indentation. In application, 75 Ω coplanar waveguides (CPW) were fabricated on the top of an oxynitride membrane and characterized in term of insertion loss and effective permittivity. The results were compared to those obtained with the well-controlled bilayer silicon oxide-nitride membrane technology. The obtained losses are lower than 0.2 dB at 30 GHz with a free-space propagation signal.

  16. Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maggioni, G., E-mail: maggioni@lnl.infn.it [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Carturan, S. [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Fiorese, L. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali, Università di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Pinto, N.; Caproli, F. [Scuola di Scienze e Tecnologie, Sezione di Fisica, Università di Camerino, Via Madonna delle Carceri 9, Camerino (Italy); INFN, Sezione di Perugia, Perugia (Italy); Napoli, D.R. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Giarola, M.; Mariotto, G. [Dipartimento di Informatica—Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy)

    2017-01-30

    Highlights: • A surface passivation method for HPGe radiation detectors is proposed. • Highly insulating GeNx- and GeOxNy-based layers are deposited at room temperature. • Deposition parameters affect composition and electrical properties of the layers. • The improved performance of a GeNx-coated HPGe diode is assessed. - Abstract: This work reports a detailed investigation of the properties of germanium nitride and oxynitride films to be applied as passivation layers to Ge radiation detectors. All the samples were deposited at room temperature by reactive RF magnetron sputtering. A strong correlation was found between the deposition parameters, such as deposition rate, substrate bias and atmosphere composition, and the oxygen and nitrogen content in the film matrix. We found that all the films were very poorly crystallized, consisting of very small Ge nitride and oxynitride nanocrystallites, and electrically insulating, with the resistivity changing from three to six orders of magnitude as a function of temperature. A preliminary test of these films as passivation layers was successfully performed by depositing a germanium nitride film on the intrinsic surface of a high-purity germanium (HPGe) diode and measuring the improved performance, in terms of leakage current, with respect to a reference passivated diode. All these interesting results allow us to envisage the application of this coating technology to the surface passivation of germanium-based radiation detectors.

  17. Highly stable amorphous zinc tin oxynitride thin film transistors under positive bias stress

    Science.gov (United States)

    Niang, K. M.; Bayer, B. C.; Meyer, J. C.; Flewitt, A. J.

    2017-09-01

    The stability of amorphous zinc tin oxynitride thin film transistors (a-ZTON TFTs) under positive bias stress (PBS) is investigated. Thin films are deposited by remote plasma reactive sputtering and are annealed at 300 °C in air for 1 h, after which films are confirmed to be highly amorphous by transmission electron microscopy. Typical a-ZTON TFTs exhibit a threshold voltage of 2.5 V, a field effect mobility of 3.3 cm2 V-1 s-1, a sub-threshold slope of 0.55 V dec-1, and a switching ratio over 106. Using a thermalization energy analysis, the threshold voltage shift under PBS is analysed. A maximum energy barrier to defect conversion up to 0.91 eV is found, which is significantly greater than that of the ˜0.75 eV energy barrier for amorphous indium gallium zinc oxide and amorphous zinc tin oxide TFTs previously reported. The improved stability of these oxynitride TFTs over amorphous oxide TFTs is explained by the elimination of less stable oxygen vacancies due to the passivation of oxygen vacancies with nitrogen. The higher attempt-to-escape frequency of 108 to 109 s-1 in a-ZTON TFTs compared with 107 s-1 in amorphous oxide semiconductor TFTs, on the other hand, is attributed to the high homogeneity of the amorphous film leading to strong carrier localization in the band tails.

  18. Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors

    DEFF Research Database (Denmark)

    Storgaard-Larsen, Torben; Leistiko, Otto

    1997-01-01

    In this paper the influence of RF power, ammonia flow, annealing temperature, and annealing time on the optical and mechanical properties of plasma-enhanced chemically vapor deposited silicon oxynitride films, is presented. A low refractive index (1.47 to 1.48) film having tensile stress has been...

  19. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    International Nuclear Information System (INIS)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun

    2017-01-01

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr 7 Ni 10 , ZrNi, ZrNi 5 , Zr 14 Cu 51 , and Zr 2 Cu 9 , show a remarkable ternary solubility. A new ternary compound named τ 3 (Zr 31.1-30.7 . Cu 28.5-40.3 Ni 40.4-29.0 ) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  20. Ternary Fission Studies by Correlation Measurements with Ternary Particles

    Science.gov (United States)

    Mutterer, Manfred

    2011-10-01

    The rare ternary fission process has been studied mainly by inclusive measurements of the energy distributions and fractional yields of the light charged particles (LCPs) from fission, or by experiments on the angular and energy correlation between LCPs and fission fragments (FFs). The present contribution presents a brief overview of more elaborate correlation measurements that comprise the emission of neutrons and γ rays with LCPs and FFs, or the coincident registration of two LCPs. These measurements have permitted identification of new modes of particle-accompanied fission, such as the population of excited states in LCPs, the formation of neutron-unstable nuclei as short-lived intermediate LCPs, as well as the sequential decay of particle-unstable LCPs and quaternary fission. Furthermore, the neutron multiplicity numbers bar ν (A) and distributions of fragment masses A, measured for the ternary fission modes with various LCP isotopes, give a valuable hint of the role played by nuclear shell structure in the fission process near scission. Finally, two different hitherto unknown asymmetries in ternary α-particle emission with respect to the fission axis, called the TRI and ROT effect, were studied in fission reactions induced by polarised cold neutrons.

  1. The ternary system: Silicon-tantalum-uranium

    Energy Technology Data Exchange (ETDEWEB)

    Rogl, Peter, E-mail: peter.franz.rogl@univie.ac.a [Institute of Physical Chemistry, University of Vienna, A-1090 Wien, Waehringerstrasse 42 (Austria); Noel, Henri [Laboratoire de Chimie du Solide et Materiaux, UMR-CNRS 6226, Universite de Rennes I, Avenue du General Leclerc, F-35042 Rennes, Cedex (France)

    2010-09-01

    Phase equilibria in the ternary system Si-Ta-U have been established in an isothermal section at 1000 {sup o}C by optical microscopy, electron probe microanalysis and X-ray diffraction. Two novel ternary compounds were observed and were characterised by X-ray powder Rietveld refinement: stoichiometric {tau}{sub 1}-U{sub 2}Ta{sub 3}Si{sub 4} (U{sub 2}Mo{sub 3}Si{sub 4}-type, P2{sub 1}/c; a = 0.70011(1), b = 0.70046(1), c = 0.68584(1) nm, ss = 109.38(1); R{sub F} = 0.073, X-ray powder Rietveld refinement) and {tau}{sub 2}-U{sub 2-x}Ta{sub 3+x}Si{sub 4} at x {approx} 0.30 (Sc{sub 2}Re{sub 3}Si{sub 4}-type = partially ordered Zr{sub 5}Si{sub 4}-type, P4{sub 1}2{sub 1}2; a = b = 0.69717(3)(1), c = 1.28709(4) nm; R{sub F} = 0.056; X-ray single crystal data). Mutual solubility of U-silicides and Ta-silicides are found to be very small i.e. below about 1 at.%. Due to the equilibrium tie-line Ta{sub 2}Si-U(Ta), no compatibility exists between the U-rich silicides U{sub 3}Si or U{sub 3}Si{sub 2} and tantalum metal. Single crystals obtained from alloys slowly cooled from liquid (2000 {sup o}C), yielded a fully ordered compound U{sub 2}Ta{sub 2}Si{sub 3}C (unique structure type; Pmna, a = 0.68860(1); b = 2.17837(4); c = 0.69707(1) nm; R{sub F2} = 0.048).

  2. Some new ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov

    2017-07-01

    Full Text Available Let an $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$ and minimum Hamming distance $d$ over $GF(q$. One of the most important problems in coding theory is to construct codes with optimal minimum distances. In this paper 22 new ternary linear codes are presented. Two of them are optimal. All new codes improve the respective lower bounds in [11].

  3. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  4. Structural analysis and characterization of layer perovskite oxynitrides made from Dion Jacobson oxide precursors

    Science.gov (United States)

    Schottenfeld, Joshua A.; Benesi, Alan J.; Stephens, Peter W.; Chen, Gugang; Eklund, Peter C.; Mallouk, Thomas E.

    2005-07-01

    A three-layer oxynitride Ruddlesden-Popper phase Rb 1+xCa 2Nb 3O 10-xN x· yH 2O ( x=0.7-0.8, y=0.4-0.6) was synthesized by ammonialysis at 800 °C from the Dion-Jacobson phase RbCa 2Nb 3O 10 in the presence of Rb 2CO 3. Incorporation of nitrogen into the layer perovskite structure was confirmed by XPS, combustion analysis, and MAS NMR. The water content was determined by thermal gravimetric analysis and the rubidium content by ICP-MS. A similar layered perovskite interconversion occurred in the two-layer Dion-Jacobson oxide RbLaNb 2O 7 to yield Rb 1+xLaNb 2O 7-xN x· yH 2O ( x=0.7-0.8, y=0.5-1.0). Both compounds were air- and moisture-sensitive, with rapid loss of nitrogen by oxidation and hydrolysis reactions. The structure of the three-layer oxynitride Rb 1.7Ca 2Nb 3O 9.3N 0.7·0.5H 2O was solved in space group P4 /mmm with a=3.887(3) and c=18.65(1) Å, by Rietveld refinement of X-ray powder diffraction data. The two-layer oxynitride structure Rb 1.8LaNb 2O 6.3N 0.7·1.0H 2O was also determined in space group P4 /mmm with a=3.934(2) and c=14.697(2) Å. GSAS refinement of synchrotron X-ray powder diffraction data showed that the water molecules were intercalated between a double layer of Rb+ ions in both the two- and three-layer Ruddlesden-Popper structures. Optical band gaps were measured by diffuse reflectance UV-vis for both materials. An indirect band gap of 2.51 eV and a direct band gap of 2.99 eV were found for the three-layer compound, while an indirect band gap of 2.29 eV and a direct band gap of 2.84 eV were measured for the two-layer compound. Photocatalytic activity tests of the three-layer compound under 380 nm pass filtered light with AgNO 3 as a sacrificial electron acceptor gave a quantum yield of 0.025% for oxygen evolution.

  5. Nearly Ternary Quadratic Higher Derivations on Non-Archimedean Ternary Banach Algebras: A Fixed Point Approach

    Directory of Open Access Journals (Sweden)

    M. Eshaghi Gordji

    2011-01-01

    Full Text Available We investigate the stability and superstability of ternary quadratic higher derivations in non-Archimedean ternary algebras by using a version of fixed point theorem via quadratic functional equation.

  6. Electrical properties of ultra-thin oxynitrided layer using N2O plasma in inductively coupled plasma chemical vapor deposition for non-volatile memory on glass

    International Nuclear Information System (INIS)

    Jung, Sungwook; Hwang, Sunghyun; Kim, Kyunghae; Dhungel, S.K.; Chung, Ho-Kyoon; Choi, Byoung-Deog; Lee, Ki-Yong; Yi, J.

    2007-01-01

    In this work, the silicon oxynitride layer was studied as a tunneling layer for non-volatile memory application by fabricating low temperature polysilicon thin film transistors on glass. Silicon wafers were oxynitrided by only nitrous oxide plasma under different radio frequency powers and plasma treatment times. Plasma oxynitridation was performed in RF plasma using inductively coupled plasma chemical vapor deposition. The X-ray energy dispersive spectroscopy was employed to analyze the atomic concentration ratio of nitrogen/oxygen in oxynitride layer. The oxynitrided layer formed under radio frequency power of 150 W and substrate temperature of 623 K was found to contain the atomic concentration ratio of nitrogen/oxygen as high as 1.57. The advantage of high nitrogen concentration in silicon oxide layer formed by using nitrous oxide plasma was investigated by capacitance-voltage measurement. The analysis of capacitance-voltage characteristics demonstrated that the ultra-thin oxynitride layers of 2 nm thickness formed by only nitrous oxide plasma have good properties as tunneling layer for non-volatile memory device

  7. Synthesis of oxynitride materials for solar water splitting: investigations with ambient pressure and high pressure synthesis techniques

    Science.gov (United States)

    Dharmagunawardhane, Hingure Arachchilage Naveen

    Solar water splitting, a photocatalytic process where water is directly split into hydrogen and oxygen using sunlight absorbing semiconductor materials, is one of the most sought after methods to make hydrogen economy a reality. Oxynitrides containing d0 and d10 cations tend to have the appropriate band structure required for solar water splitting. So far, reported efficiencies are not high enough for practical use and synthesizing an oxynitride showing high enough efficiency remains necessary. In this dissertation, we discuss the synthesis of oxynitrides and studying their optical and photocatalytic properties with a particular emphasis on utilizing exploratory high pressure synthesis. High pressure synthesis is an interesting route to synthesize oxynitrides as this can stabilize reactants that tend to decompose at ambient pressure, helping to achieve the intended stoichiometry. For synthesis, we selected candidate compositions from published theoretical studies. Reactions were carried out at pressures around 1-3 GPa and at temperatures up to 1300°C in a multi-anvil large volume press. Phase changes were observed with in situ X-ray scattering. In these experiments, we found that most d0 and d10 cations tend to reduce in the high pressure reaction environment as temperature increases, but Zr4+, Hf4+ , and Ta5+ tend to retain their oxidation state. This information will be helpful in future theoretical studies to accurately predict stable oxynitrides synthesizable at high pressure. We synthesized (GaN)1-x(ZnO)x solid solution in the entire composition range at 1 GPa, 1150°C. The material showed photocatalytic H2 evolution activity even without surface modification with co catalysts, first such observed for this system. The minimum band gap of 2.65 eV and the highest H2 evolution activity of 2.31 mumol/h were observed at x = 0.51. On our initial investigation on the synthesis of gallium oxynitride spinel (Ga3O3N3) at high pressure, we found that the material could

  8. Study of the R-(Zr,W)-(O,N) (R = Y, Nd, Sm, Gd, Yb) oxynitride system

    Energy Technology Data Exchange (ETDEWEB)

    Tessier, Franck, E-mail: Franck.Tessier@univ-rennes1.fr [UMR CNRS 6226 ' Sciences Chimiques de Rennes' , equipe ' Verres et Ceramiques' , Universite de Rennes 1, 35042 Rennes cedex (France); Maillard, Pascal [UMR CNRS 6226 ' Sciences Chimiques de Rennes' , equipe ' Verres et Ceramiques' , Universite de Rennes 1, 35042 Rennes cedex (France); Orhan, Emmanuelle [Laboratoire Science des Procedes Ceramiques et Traitements de Surface, UMR CNRS 6638, Universite de Limoges, 123 Avenue Albert Thomas, 87060 Limoges cedex (France); Chevire, Francois [UMR CNRS 6226 ' Sciences Chimiques de Rennes' , equipe ' Verres et Ceramiques' , Universite de Rennes 1, 35042 Rennes cedex (France)

    2010-02-15

    The replacement of tantalum by the couple Zr/W within the RTa-O-N systems (R = Y, Nd, Sm, Gd, Yb), enables the preparation of novel oxide and oxynitride phases in the R-Zr-W-O-N system. R{sub 2}Zr{sub 2-x}W{sub x}O{sub 7+x} oxides exhibit the fluorite-type (x < 0.9) and scheelite (x {approx} 1) structures. Corresponding oxynitride compositions are of the fluorite-type and show different colors, for example in the case of ytterbium: pale yellow (x = 0.2 or 0.25), green (x = 0.5-0.8) and brown for the tungsten-rich samples (x = 0.9, 1). Photocatalytic activity measurements have been performed to investigate the overall water splitting behavior of these colored phases.

  9. Methods of forming aluminum oxynitride-comprising bodies, including methods of forming a sheet of transparent armor

    Science.gov (United States)

    Chu, Henry Shiu-Hung [Idaho Falls, ID; Lillo, Thomas Martin [Idaho Falls, ID

    2008-12-02

    The invention includes methods of forming an aluminum oxynitride-comprising body. For example, a mixture is formed which comprises A:B:C in a respective molar ratio in the range of 9:3.6-6.2:0.1-1.1, where "A" is Al.sub.2O.sub.3, "B" is AlN, and "C" is a total of one or more of B.sub.2O.sub.3, SiO.sub.2, Si--Al--O--N, and TiO.sub.2. The mixture is sintered at a temperature of at least 1,600.degree. C. at a pressure of no greater than 500 psia effective to form an aluminum oxynitride-comprising body which is at least internally transparent and has at least 99% maximum theoretical density.

  10. On Some Ternary LCD Codes

    OpenAIRE

    Darkunde, Nitin S.; Patil, Arunkumar R.

    2018-01-01

    The main aim of this paper is to study $LCD$ codes. Linear code with complementary dual($LCD$) are those codes which have their intersection with their dual code as $\\{0\\}$. In this paper we will give rather alternative proof of Massey's theorem\\cite{8}, which is one of the most important characterization of $LCD$ codes. Let $LCD[n,k]_3$ denote the maximum of possible values of $d$ among $[n,k,d]$ ternary $LCD$ codes. In \\cite{4}, authors have given upper bound on $LCD[n,k]_2$ and extended th...

  11. Phase equilibria of the Mo-Al-Ho ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yitai; Chen, Xiaoxian; Liu, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry

    2017-08-15

    Investigation into the reactions and phase equilibria of transition metal elements (i.e. Mo, Zr, Cr, V and Ti), Al and rare earths is academically and industrially important for the development of both refractory alloys and lightweight high-temperature materials. In this work, the equilibria of the Mo-Al-Ho ternary system at 773 K have been determined by using X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. A new ternary phase Al{sub 4}Mo{sub 2}Ho has been found and the other ternary phase Al{sub 43}Mo{sub 4}Ho{sub 6} is observed. Ten binary phases in the Al-Mo and Al-Ho systems, including Al{sub 17}Mo{sub 4} rather than Al{sub 4}Mo, have been determined to exist at 773 K. The homogeneity ranges of AlMo{sub 3} and Al{sub 8}Mo{sub 3} phase are 7.5 at.% and 1 at.%, respectively. According to the phase-disappearing method, the maximum solubility of Al in Mo is about 16 at.%.

  12. Structural modification of aluminium oxynitride phases under stresses at high temperatures, high pressures and under irradiation by fast neutrons

    International Nuclear Information System (INIS)

    Labbe, J.C.; Jeanne, A.; Roult, G.

    1990-01-01

    The structural modifications of the aluminium oxynitride phases under stresses are studied by the time of flight neutron diffraction method, at high temperatures (up to 1375degC), at high pressures (up to 2.4 GPa), and under irradiation by fast neutrons (up to 3.2 X 10 20 n/cm 2 ). In each case the evolutions of cell parameter, interatomic bond angles, bond lengths and atomic positions are given. (orig.)

  13. ELECTROKINETIC PROPERTIES, IN VITRO DISSOLUTION, AND PROSPECTIVE HEMOAND BIOCOMPATIBILITY OF TITANIUM OXIDE AND OXYNITRIDE FILMS FOR CARDIOVASCULAR STENTS

    Directory of Open Access Journals (Sweden)

    I. A. Khlusov

    2015-01-01

    Full Text Available A state of titanium oxide and oxynitride coatings on L316 steel has been studied before and after their contact with model biological fluids. Electrokinetic investigation in 1 mmol potassium chloride showed significant (more than 10 times fall of magnitude of electrostatic potential of thin (200–300 nm titanium films at pH changing in the range of 5–9 units during 2 h. Nevertheless, zeta-potential of all samples had negative charge under pH > 6.5. Long-term (5 weeks contact of samples with simulated body fluid (SBF promoted steel corrosion and titanium oxide and oxynitride films dissolution. On the other hand, sodium and chloride ions precipitation and sodium chloride crystals formation occurred on the samples. Of positive fact is an absence of calcification of tested artificial surfaces in conditions of long-term being in SBF solution. It is supposed decreasing hazard of fast thrombosis and loss of materials functional properties. According to in vitro experiment conducted, prospective biocompatibility of materials tested before and after their contact with SBF lines up following manner: Ti–O–N (1/3 > Ti–O–N (1/1, TiO2 > Steel. It may be explained by: 1 the corrosion-preventive properties of thin titanium oxide and oxynitride films;2 a store of surface negative charge for Ti–O–N (1/3 film; 3 minor augmentation of mass and thickness of titanium films connected with speed of mineralization processes on the interface of solution/solid body. At the same time, initial (before SBF contact differences of samples wettability became equal. Modifying effect of model biological fluids on physicochemical characteristics of materials tested (roughness enhancement, a reduction or reversion of surface negative potential, sharp augmentation of surface hydrofilicity should took into account under titanium oxide and oxynitride films formation and a forecast of their optimal biological properties as the materials for cardiovascular stents.

  14. A neutron diffraction study of oxygen and nitrogen ordering in a kinetically stable orthorhombic iron doped titanium oxynitride

    Science.gov (United States)

    Wu, On Ying; Parkin, Ivan P.; Hyett, Geoffrey

    2012-06-01

    The synthesis of a polycrystalline powder sample of iron doped orthorhombic titanium oxynitride, Ti2.92Fe0.01O4.02N0.98, on the scale of 0.7 g has been achieved. This was conducted by the unusual route of delamination from a steel substrate of a thin film deposited using atmospheric pressure chemical vapour deposition. The structure of the titanium oxynitride is presented, determined from a combined analysis of X-ray and neutron powder diffraction data. The use of neutron diffraction allows the position of the oxygen and nitrogen ions in the material to be reported unambiguously for the first time. In this study Ti2.92Fe0.01O4.02N0.98 is found to crystallise in the Cmcm space group, iso-structural pseudobrookite, with lattice parameters a=3.81080(6) Å, b=9.6253(2) Å, and c=9.8859(2) Å, and contains partial oxygen-nitrogen ordering. Of the three anion sites in this structure one is exclusively occupied by oxygen, while the remaining two sites are occupied by oxygen and nitrogen in a disordered manner. Testing indicates that this iron doped titanium oxynitride is a metastable phase that decomposes above 700 °C into TiN and TiO2, the thermodynamic products.

  15. Evaluation of ΔGsub(f) values for unstable compounds: a Fortran program for the calculation of ternary phase equilibria

    International Nuclear Information System (INIS)

    Throop, G.J.; Rogl, P.; Rudy, E.

    1978-01-01

    A Fortran IV program was set up for the calculation of phase equilibria and tieline distributions in ternary systems of the type: transition metal-transition metal-nonmetal (interstitial type of solid solutions). The method offers the possibility of determining the thermodynamic values for unstable compounds through their influence upon ternary phase equilibria. The variation of the free enthalpy of formation of ternary solid solutions is calculated as a function of nonmetal content, thus describing the actual curvature of the phase boundaries. The integral and partial molar free enthalpies of formation of binary nonstoichiometric compounds and of phase solutions are expressed as analytical functions of the nonmetal content within their homogeneity range. The coefficient of these analytical expressions are obtained by the use either of the Wagner-Schottky vacancy model or polynomials second order in composition (parabolic approach). The free energy of formation, ΔGsub(f) has been calculated for the systems Ti-C, Zr-C, and Ta-C. Calculations of the ternary phase equilibria yielded the values for ΔGsub(f) for the unstable compounds Ti 2 C at 1500 0 C and Zr 2 C at 1775 0 C of -22.3 and 22.7 kcal g atom metal respectively. These values were used for the calculation of isothermal sections within the ternary systems Ti-Ta-C (at 1500 0 C) and Zr-Ta-C (at 1775 0 C). The ideal case of ternary phase solutions is extended to regular solutions. (author)

  16. Phase diagram of the ternary Zr-Ti-Sn system

    International Nuclear Information System (INIS)

    Arias, D.; Gonzalez Camus, M.

    1987-01-01

    It is well known that Ti stabilizes the high temperature cubic phase of Zr and that Sn stabilizes the low temperature hexagonal phase of Zr. The effect of Sn on the Zr-Ti diagram has been studied in the present paper. Using high purity metals, nine different alloys have been prepared, with 4-32 at % Ti, 0.7-2.2 at % Sn and Zr till 100%. Resistivity and optical and SEM metallography techniques have been employed. Effect of some impurities have been analyzed. The results are discussed and different isothermic sections of the ternary Zr-Ti-Sn diagram are presented. (Author) [es

  17. Plutonium microstructures. Part 2. Binary and ternary alloys

    International Nuclear Information System (INIS)

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described

  18. Synthesis and characterization of multi-element oxynitride semiconductor film prepared by reactive sputtering deposition

    International Nuclear Information System (INIS)

    Yu, Ruei-Sung; Huang, Rong-Hsin; Lee, Chih-Ming; Shieu, Fuh-Sheng

    2012-01-01

    Highlights: ► The structural and semiconductor properties of multi-element oxide and oxynitride films were examined. ► The results revealed that (TiVCrZrTa) 1−x O x and (TiVCrZrTa) 1−x−y N y O x are amorphous. ► In the three-dimensional structure, anions act as cores surrounded by cations in a random and homogeneous dispersion. ► The (TiVCrZrTa) 1−x−y N y O x film is an n-type semiconductor with a conductivity of 2.75 × 10 −2 (Ω cm) −1 . ► The indirect band gap of the (TiVCrZrTa) 1−x−y N y O x film was 1.95 eV. - Abstract: This study concerns the use of reactive magnetron sputtering to prepare (TiVCrZrTa)-based oxide and oxynitride films. (TiVCrZrTa) 1−x O x and (TiVCrZrTa) 1−x−y N y O x films were prepared, and were found to be amorphous and free of multi-phase structure. Cations and anions in such structures were arranged in a random homogeneous dispersion. The introduction of nitrogen atoms into (TiVCrZrTa) 1−x O x yields (TiVCrZrTa) 1−x−y N y O x , which has a reduced oxidation state and thus, an increased number of the valence electrons. The (TiVCrZrTa) 1−x−y N y O x film is an n-type semiconductor, with an indirect band gap of 1.95 eV, and a carrier concentration (N) and conductivity (σ) of 1.01 × 10 19 cm −3 and 2.75 × 10 −2 (Ω cm) −1 , respectively.

  19. Description of the ternary system Cu-Ge-Te

    International Nuclear Information System (INIS)

    Dogguy, M.; Carcaly, C.; Rivet, J.; Flahaut, J.

    1977-01-01

    The Cu-Ge-Te ternary system has been studied by DTA and by crystallographic and metallographic analysis. The existence of a ternary compound Cu 2 GeTe 3 is demonstrated; this compound has a ternary incongruent melting point at 500 0 C. This ternary compound has a superstructure of a zinc blende type. The study shows the existence of five ternary eutectics. Two liquid-liquid miscibility gaps exist: the first is situated entirely in the ternary system; the second gives a monotectic region within the ternary system. (Auth.)

  20. Performance Estimation for Lowpass Ternary Filters

    Directory of Open Access Journals (Sweden)

    O'Shea Peter

    2003-01-01

    Full Text Available Ternary filters have tap values limited to , , or . This restriction in tap values greatly simplifies the multipliers required by the filter, making ternary filters very well suited to hardware implementations. Because they incorporate coarse quantisation, their performance is typically limited by tap quantisation error. This paper derives formulae for estimating the achievable performance of lowpass ternary filters, thereby allowing the number of computationally intensive design iterations to be reduced. Motivated by practical communications systems requirements, the performance measure which is used is the worst-case stopband attenuation.

  1. All-optical symmetric ternary logic gate

    Science.gov (United States)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  2. Ternary fission and cluster radioactivities

    CERN Document Server

    Poenaru, D N; Greiner, W; Gherghescu, R A; Hamilton, J H; Ramayya, A V

    2002-01-01

    Ternary fission yield for different kinds of light particle accompanied fission processes is compared to the Q-values for the corresponding cold phenomena, showing a striking correlation. The experimental evidence for the existence of a quasimolecular state in sup 1 sup 0 Be accompanied fission of sup 2 sup 5 sup 2 Cf may be explained using a three-center phenomenological model which generates a third minimum in the deformation energy at a separation distance very close to the touching point. This model is a natural extension of the unified approach to three groups of binary decay modes (cold fission, cluster radioactivities and alpha decay), illustrated by sup 2 sup 3 sup 4 U decay modes, and the alpha valley on the potential energy surfaces of sup 1 sup 0 sup 6 Te. New measurements of cluster decay modes, confirming earlier predictions within analytical superasymmetric fission model, are included in a comprehensive half-life systematics. (authors)

  3. Electrometric studies on the stabilities of some ternary and quaternary complexes of lanthanones

    International Nuclear Information System (INIS)

    Yadav, S.S.; Sharma, R.C.

    1994-01-01

    Potentiometric evidences have been cited for the formation of 1:1:1, Ln(III)-PDA-NTA/TCA ternary complexes and 1:1:1:1, Ln(III)-PDA-NTA-TCA quaternary complexes (where, Ln(III)=La(III), Pr(III) and Nd(III); PDA pyridine-2, 6-dicarboxylic acid, NTA = nitrilotriacetic acid and TCA thiophene-e-carboxylic acid). The formation constants log K MLL and K MLLL for the resulting ternary and quaternary complexes respectively have been evaluated at constant ionic strength (μ = 0.1 M KNO 3 ) and temperature (298± 1 K). The calculated values of stability constants in terms of metal ions have been found both in ternary and quaternary complexes as La(III) 0 indicated the spontaneous nature of the reaction and the bond formed in the resulting complexes. (author). 13 refs., 2 figs., 2 tabs

  4. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    Energy Technology Data Exchange (ETDEWEB)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    2018-02-06

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.

  5. Perovskite oxynitride LaTiOxNy thin films: Dielectric characterization in low and high frequencies

    International Nuclear Information System (INIS)

    Lu, Y.; Ziani, A.; Le Paven-Thivet, C.; Benzerga, R.; Le Gendre, L.; Fasquelle, D.; Kassem, H.

    2011-01-01

    Lanthanum titanium oxynitride (LaTiO x N y ) thin films are studied with respect to their dielectric properties in low and high frequencies. Thin films are deposited by radio frequency magnetron sputtering on different substrates. Effects of nitrogen content and crystalline quality on dielectric properties are investigated. In low-frequency range, textured LaTiO x N y thin films deposited on conductive single crystal Nb–STO show a dielectric constant ε′ ≈ 140 with low losses tanδ = 0.012 at 100 kHz. For the LaTiO x N y polycrystalline films deposited on conductive silicon substrates with platinum (Pt/Ti/SiO 2 /Si), the tunability reached up to 57% for a weak electric field of 50 kV/cm. In high-frequency range, epitaxial LaTiO x N y films deposited on MgO substrate present a high dielectric constant with low losses (ε′ ≈ 170, tanδ = 0.011, 12 GHz).

  6. Recent progress in oxynitride photocatalysts for visible-light-driven water splitting.

    Science.gov (United States)

    Takata, Tsuyoshi; Pan, Chengsi; Domen, Kazunari

    2015-06-01

    Photocatalytic water splitting into hydrogen and oxygen is a method to directly convert light energy into storable chemical energy, and has received considerable attention for use in large-scale solar energy utilization. Particulate semiconductors are generally used as photocatalysts, and semiconductor properties such as bandgap, band positions, and photocarrier mobility can heavily impact photocatalytic performance. The design of active photocatalysts has been performed with the consideration of such semiconductor properties. Photocatalysts have a catalytic aspect in addition to a semiconductor one. The ability to control surface redox reactions in order to efficiently produce targeted reactants is also important for photocatalysts. Over the past few decades, various photocatalysts for water splitting have been developed, and a recent main concern has been the development of visible-light sensitive photocatalysts for water splitting. This review introduces the study of water-splitting photocatalysts, with a focus on recent progress in visible-light induced overall water splitting on oxynitride photocatalysts. Various strategies for designing efficient photocatalysts for water splitting are also discussed herein.

  7. Thermo-optic coefficient and nonlinear refractive index of silicon oxynitride waveguides

    Science.gov (United States)

    Trenti, A.; Borghi, M.; Biasi, S.; Ghulinyan, M.; Ramiro-Manzano, F.; Pucker, G.; Pavesi, L.

    2018-02-01

    Integrated waveguiding devices based on silicon oxynitride (SiON) are appealing for their relatively high refractive index contrast and broadband transparency. The lack of two photon absorption at telecom wavelengths and the possibility to fabricate low loss waveguides make SiON an ideal platform for on-chip nonlinear optics and for the realization of reconfigurable integrated quantum lightwave circuits. Despite this, very few studies on its linear and nonlinear optical properties have been reported so far. In this work, we measured the thermo-optic coefficient dn/dT and the nonlinear refractive index n2 of relatively high (n ˜ 1.83 at a wavelength of 1.55 μm) refractive index SiON by using racetrack resonators. These parameters have been determined to be d/n d T =(1.84 ±0.17 ) × 10-5 K-1 and n2 = (7 ± 1) × 10-16 cm2W-1.

  8. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhenrui [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)]. E-mail: yinaoep@yahoo.mx; Aceves, Mariano [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico); Carrillo, Jesus [CIDS, BUAP, Puebla, Pue. (Mexico); Lopez-Estopier, Rosa [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)

    2006-12-05

    The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V {sub T}. When the applied voltage is smaller than V {sub T}, the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V {sub T}, the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained.

  9. Physical and electrical characteristics of silicon oxynitride films with various refractive indices

    International Nuclear Information System (INIS)

    Liao, Jeng-Hwa; Hsieh, Jung-Yu; Lin, Hsing-Ju; Tang, Wei-Yao; Chiang, Chun-Ling; Yang, Ling-Wu; Yang, Tahone; Chen, Kuang-Chao; Lu, Chih-Yuan; Lo, Yun-Shan; Wu, Tai-Bor

    2009-01-01

    This study explores the relationship between both the physical and the electrical characteristics of silicon oxynitride (SiON) films and the refractive index. The single wafer rapid thermal process modules were used for low pressure chemical vapour deposition of SiON films. A series of SiON films with refractive index between 1.50 and 1.83 were fabricated. Fourier transform infrared absorption spectroscopy and x-ray photoelectron spectroscopy identified the chemical bonding configurations of different SiON films: the Si-N bonds are replaced by Si-O bonds as the refractive index of the SiON films declines. Moreover, the Si atomic ratio is kept between 35% and 40% while the oxygen atomic ratio increases and the nitrogen atomic ratio decreases as the refractive index of the SiON film declines. The electrical characteristics of different SiON-based silicon-oxide-nitride-oxide-silicon (SONOS) devices suggest that (1) the dielectric constant increases with increasing refractive index of the SiON film and (2) the charge-trap density is inversely proportional to the oxygen concentration in the SiON film. Based on these results, the SiON films with various refractive indices can provide a wider application for silicon-based devices, such as SONOS and MOS devices.

  10. Vibrational spectroscopy characterization of magnetron sputtered silicon oxide and silicon oxynitride films

    Energy Technology Data Exchange (ETDEWEB)

    Godinho, V., E-mail: godinho@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla-CSIC/US, Avda. Americo Vespucio no 49, 41092 Seville (Spain); Universite Libre de Bruxelles, Avenue F.D. Roosevelt 50, B 1050 Bruxelles (Belgium); Denisov, V.N.; Mavrin, B.N.; Novikova, N.N.; Vinogradov, E.A.; Yakovlev, V.A. [Institute for Spectroscopy - Russian Academy of Sciences, 142190, Troitsk, Moscow reg. (Russian Federation); Fernandez-Ramos, C. [Instituto de Ciencia de Materiales de Sevilla-CSIC/US, Avda. Americo Vespucio no 49, 41092 Seville (Spain); Institute for Prospective and Technological Studies-JRC European Commission, C/Inca Garcilaso s/n, 41092 Seville (Spain); Jimenez de Haro, M.C.; Fernandez, A. [Instituto de Ciencia de Materiales de Sevilla-CSIC/US, Avda. Americo Vespucio no 49, 41092 Seville (Spain)

    2009-10-15

    Vibrational (infrared and Raman) spectroscopy has been used to characterize SiO{sub x}N{sub y} and SiO{sub x} films prepared by magnetron sputtering on steel and silicon substrates. Interference bands in the infrared reflectivity measurements provided the film thickness and the dielectric function of the films. Vibrational modes bands were obtained both from infrared and Raman spectra providing useful information on the bonding structure and the microstructure (formation of nano-voids in some coatings) for these amorphous (or nanocrystalline) coatings. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analysis have also been carried out to determine the composition and texture of the films, and to correlate these data with the vibrational spectroscopy studies. The angular dependence of the reflectivity spectra provides the dispersion of vibrational and interference polaritons modes, what allows to separate these two types of bands especially in the frequency regions where overlaps/resonances occurred. Finally the attenuated total reflection Fourier transform infrared measurements have been also carried out demonstrating the feasibility and high sensitivity of the technique. Comparison of the spectra of the SiO{sub x}N{sub y} films prepared in various conditions demonstrates how films can be prepared from pure silicon oxide to silicon oxynitride with reduced oxygen content.

  11. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride

    International Nuclear Information System (INIS)

    Yu Zhenrui; Aceves, Mariano; Carrillo, Jesus; Lopez-Estopier, Rosa

    2006-01-01

    The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V T . When the applied voltage is smaller than V T , the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V T , the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained

  12. Ternary networks reliability and Monte Carlo

    CERN Document Server

    Gertsbakh, Ilya; Vaisman, Radislav

    2014-01-01

    Ternary means “based on three”. This book deals with reliability investigations of  networks whose components subject to failures can be in three states –up, down and middle (mid), contrary to traditionally considered networks  having only binary (up/down) components. Extending binary case to ternary allows to consider more realistic and flexible models for communication, flow and supply networks.

  13. Modeling of anodic dissolution of U Pu Zr ternary alloy in the molten LiCl KCl electrolyte

    Science.gov (United States)

    Iizuka, Masatoshi; Kinoshita, Kensuke; Koyama, Tadafumi

    2005-02-01

    The metallic fuel anode in the molten salt electrorefining step for the pyrometallurgical reprocessing was modeled based on the findings from the anodic dissolution tests using a U Pu Zr ternary alloy. This anode model simulates selective dissolution of uranium and plutonium at lower anode potential, growth of a diffusion controlling layer consisting of a mixture of the molten salt electrolyte and the remaining zirconium metal, and simultaneous dissolution of all the constituents at higher anode potential. The calculation with this model reproduced well the actual anodic behavior of the U Pu Zr ternary alloy such as two-step rapid rise in the anode potential.

  14. Dynamic behavior of hydrogen in silicon nitride and oxynitride films made by low-pressure chemical vapor deposition

    Science.gov (United States)

    Arnoldbik, W. M.; Marée, C. H. M.; Maas, A. J. H.; van den Boogaard, M. J.; Habraken, F. H. P. M.; Kuiper, A. E. T.

    1993-08-01

    The diffusion and reactivity of hydrogen, incorporated in silicon oxynitride films during low-pressure chemical vapor deposition (LPCVD) at 800 °C, has been studied using elastic recoil detection and infrared spectroscopy for temperatures ranging from 700 to 1000 °C. The experiments are based on the determination of the hydrogen and deuterium depth profiles in layer structures in which H and D have been incorporated in different layers. This was achieved in two ways. Double layers have been produced directly during deposition or through exchange of incorporated hydrogen with gas-phase deuterium. The diffusion coefficient of hydrogen (or deuterium) is in the range between 3×1018 and 1×10-13 cm2/s, at temperatures between 700 and 1000 °C, and is characterized by a single activation energy of 3 eV, for [O]/([O]+[N]) values up to 0.45. The diffusion coefficient and hence the rate of the exchange of incorporated hydrogen and gas-phase deuterium increases with [O]/([O]+[N]) in the oxynitrides for [O]/([O]+[N]) >0.3. As a result we propose a model in which the rate-limiting step in the process of the diffusion of hydrogen in the LPCVD oxynitrides is the breaking of N-H bonds. Subsequent to the bond breaking, the hydrogen atom becomes trapped in a nitrogen-related trapping site or exchanges with a nitrogen-bonded hydrogen (deuterium) atom. If the bond breaking occurs within a distance of about 10 nm from the immediate surface, the hydrogen atom is able to desorb into the gas phase. A SiO2 capping layer is not able to prevent the desorption.

  15. Development of tantalum oxynitride thin films produced by PVD: Study of structural stability

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, D. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Department of Materials Science, Transylvania University, 500036 Brasov (Romania); Crisan, A. [Department of Materials Science, Transylvania University, 500036 Brasov (Romania); Barradas, N.P.; Alves, E. [Instituto Superior Técnico, Universidade Técnica de Lisboa Estrada Nacional 10, ao km 139,7 2695-066, Bobadela LRS (Portugal); Moura, C.; Vaz, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Cunha, L., E-mail: lcunha@fisica.uminho.pt [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-11-15

    The purpose of this work is to study the evolution of the structure and of the thermal stability of a group of tantalum oxynitride thin films, prepared by magnetron sputtering, under the influence of vacuum annealing, up to a temperature of 800 °C. When varying the partial pressure of the reactive gases (P{sub O{sub 2+N{sub 2}}}), during the deposition process, the films change from a structure with a combination of poorly developed crystallites of the tetragonal β-Ta and of the face centred cubic (fcc) Ta(O,N) phases, for the films deposited with low P{sub O2+N2}, to a quasi-amorphous structure, for the films deposited with highest pressures. For intermediate pressures, the films reveal the presence of the fcc-Ta(O,N) structure. This structure corresponds to O atoms substituting some of the N atoms on the fcc-TaN structure and/or N atoms substituting O atoms of the fcc-γ-TaO structure. When subjected to the thermal annealing at 700 °C or higher, the film produced with lowest partial pressure revealed a remarkable structural change. New diffraction peaks appear and can only be attributed to a sub-stoichiometric hexagonal tantalum nitride structure. The film did not reveal any signs of delamination or cracks after all annealing temperatures. The two films produced with highest partial pressure proved to be the most stable. Structurally, they maintain the amorphous structure after all the annealing treatments and, in addition, no cracks or delamination were detected.

  16. Lithium titanium oxynitride thin film with enhanced lithium storage and rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhaozhe, E-mail: yuzhaozhe@126.com [School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); Xu, Huarui, E-mail: huaruixu@guet.edu.cn [School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); Zhu, Guisheng; Yan, Dongliang [Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); Yu, Aibing [Department of Chemical Engineering, Monash University, Clayton, 3800, VIC (Australia)

    2016-04-15

    Graphical abstract: - Highlights: • LTON thin films are deposited by RF magnetron sputtering with powder target. • The substitution of nitrogen for oxygen can make more abundant cross-linking structures and favor the higher mobility of lithium ions. • The LTON had a high capacity of 290 mAh g{sup −1} at 0.1C, excellent rate capability of 160 mAh g{sup −1} at 5C and only ≈7% capacity loss after 100 cycles at 5C charge and discharge rate. - Abstract: The lithium titanium oxynitride (LTON) thin film electrode was prepared by radio frequency (RF) magnetron sputtering deposition using a cubic spinel structure Li{sub 4}Ti{sub 5}O{sub 12} (LTO) powder target in a N{sub 2} atmosphere for lithium ion batteries. XRD and SEM test results showed that the thin film was composed of weak crystal or amorphous structure and that its surface was homogeneous. XPS analyses indicated that nitrogen atoms were actually incorporated into the LTO matrix framework. The substitution of nitrogen for oxygen in the thin film created more abundant cross-linking structures, which favored the higher mobility of lithium ions. The LTON had a high capacity of 290 mAh g{sup −1} at 0.1C, excellent rate capability of 160 mAh g{sup −1} at 5C and only ≈7% capacity loss after 100 cycles at 5C charge and discharge rate. These properties make this thin film electrode a promising candidate material for use in thin film lithium ion batteries.

  17. Graphene-molybdenum oxynitride porous material with improved cyclic stability and rate capability for rechargeable lithium ion batteries.

    Science.gov (United States)

    Zhou, Ding; Wu, Haiping; Wei, Zhixiang; Han, Bao-Hang

    2013-10-21

    A graphene-molybdenum oxynitride (GMON) hybrid porous material was prepared by a thermal decomposition method and investigated as an anode material in lithium ion batteries. In the thermal decomposition reaction, a chemically homogeneous complex formed by ammonium molybdate and hexamethylenetetramine was used as the precursor for the synthesis of molybdenum oxynitride (MON), and graphene oxide was thermally reduced into graphene. Meanwhile, the graphene sheets were nitrogen doped by the ammonia generated during the thermal reaction. The GMON hybrid porous materials were characterized by X-ray diffraction, scanning electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, and thermal gravimetric analysis. Nitrogen sorption analysis showed that GMON possesses an enhanced porosity compared with the MON prepared in the same method. Owing to the improvement in the porosity and the conductivity, the GMON anode exhibited a reversible capacity of about 960 mA h g(-1) at a current density of 100 mA g(-1), furthermore, the rate performance and the cycling stability of the GMON anode were dramatically enhanced in comparison with thermal reduced graphene oxide and MON.

  18. Optical, electrical and mechanical properties of the tantalum oxynitride thin films deposited by pulsing reactive gas sputtering

    International Nuclear Information System (INIS)

    Le Dreo, H.; Banakh, O.; Keppner, H.; Steinmann, P.-A.; Briand, D.; Rooij, N.F. de

    2006-01-01

    Thin films of tantalum oxynitride were prepared by reactive magnetron sputtering using a Ta target and N 2 and O 2 as reactive gases. The nitrogen flow was kept constant while the oxygen flow was pulsed periodically. The film composition evolves progressively from TaO 0.25 N 1.51 to TaO 2.42 N 0.25 while increasing the oxygen pulse duty cycle without any abrupt change in the elemental content. The optical transmission spectra of the films deposited on glass show a 'blue shift' of the absorption edge with increasing oxygen content. X-ray diffraction (XRD) patterns of all films exhibit broad peaks typical for nanocrystalline materials. Cross-section film morphology is rather featureless and surface topography is smooth exhibiting very small grains, in agreement with the results obtained by XRD. The optical properties of the films are very sensitive to their chemical composition. All films exhibit semiconducting behaviour with an optical band gap changing from 1.85 to 4.0 eV with increasing oxygen content. In order to evaluate the potential of the tantalum oxynitride films for microelectronic applications some Ta-O-N films were integrated in a MOS structure. The results of the capacitance-voltage measurements of the system Al//Ta-O-N//p-Si are discussed with respect to the chemical composition of the Ta-O-N films

  19. Characterization of Nd2AlO3N and Sm2AlO3N oxynitrides synthesized by carbothermal reduction and nitridation

    International Nuclear Information System (INIS)

    Chevire, Francois; Pallu, Arthur; Ray, Erwan; Tessier, Franck

    2011-01-01

    Research highlights: → Carbothermal reduction and nitridation leads to rare earth aluminum oxynitride starting from oxide mixture. → Absorption shifts towards visible in Nd 2 AlO 3 N (orange) and Sm 2 AlO 3 N (yellow). → Oxynitrides are stable up to 600 deg. C in air. → The so-called 'intermediate phase' phenomenon is evidenced in Sm 2 AlO 3 N. - Abstract: The Nd 2 AlO 3 N and Sm 2 AlO 3 N oxynitrides with the K 2 NiF 4 -type structure have been prepared from oxide mixture at 1250 deg. C using the carbothermal reduction and nitridation route (CRN). Optimization of the process is discussed to prevent surface oxidation of the oxynitrides during the synthesis. The absorption of Nd 2 AlO 3 N and Sm 2 AlO 3 N, orange and yellow respectively, has been characterized by diffuse reflectance as well as their thermal stability versus oxidation by thermogravimetric analyses.

  20. The ternary system nickel-boron-silicon

    International Nuclear Information System (INIS)

    Lugscheider, E.; Reimann, H.; Knotek, O.

    1975-01-01

    The ternary system Nickel-Boron-Silicon was established at 850 0 C by means of X-ray diffraction, metallographic and micro-hardness examinations. The well known binary nickel borides and silicides resp. were confirmed. In the boron-silicon system two binary phases, SiBsub(4-x) with x approximately 0.7 and SiB 6 were found the latter in equilibrium with the β-rhombohedral boron. Confirming the two ternary silicon borides a greater homogeneity range was found for Ni 6 Si 2 B, the phase Nisub(4,6)Si 2 B published by Uraz and Rundqvist can better be described by the formula Nisub(4.29)Si 2 Bsub(1.43). In relation to further investigations we measured melting temperatures in ternary Ni-10 B-Si alloys by differential thermoanalysis. (author)

  1. True ternary fission of 252Cf

    International Nuclear Information System (INIS)

    Vijayaraghavan, K.R.; Balasubramaniam, M.; Oertzen, W. von

    2014-01-01

    Splitting of heavy radioactive nucleus into three fragments is known as ternary fission. If the size of the fragments are almost equal it is referred to as true ternary fission. Recently, Yu. V. Pyatkov et al observed/reported the experimental observation of true ternary fission in 252 Cf. In this work, the possibilities of different true ternary fission modes of 252 Cf through potential energy surface (PES) calculations based on three cluster model (TCM) are discussed. In TCM a condition on the mass numbers of the fission fragments is implied as A 1 ≥ A 2 ≥ A 3 in order to avoid repetition of combinations. Due to this condition, the values of Z 3 vary from 0 to 36 and Z 2 vary from 16 to 51. Of the different pairs having similar (Z 2 , Z 3 ) with different potential energy, a pair possessing minimum potential energy is chosen. Thus identified favourable combinations are plotted. For the PES calculations the arrangement of the fragments is considered in the order of A 1 +A 2 +A 3 . i.e. the heavy and the lightest fragments are kept at the ends. It is seen that the deepest minimum in the PES occurs for Z 3 =2 labelled as (Z 2 ; 2) indicating He accompanied breakup as the most favourable one. Of which, the breakup with Z 2 around 46 to 48 is the least (shown by dashed (Z 1 = 50) and dotted (Z 1 = 52) lines indicating a constant Z 1 value). The other notable minima in the PES are labelled and they correspond to the (Z 2 , Z 3 ) pairs viz., (20, 20), (28, 20), (28, 28) and (32, 32). Of these four minima, the first three are associated with the magic numbers 20 and 28. For Z 3 =20, there are two minimums at (20,20) and (28,20) among them (28,20) is the lowest minimum through which the minimum-path passes, and it is the ternary decay observed by Yu. V. Pyatkov et al. The fourth minima is the most interesting due to the fact that it corresponds to true ternary fission mode with Z 2 =32, Z 3 =32 and Z 1 =34. The minimum potential energy path also goes through this true

  2. A Josephson ternary associative memory cell

    International Nuclear Information System (INIS)

    Morisue, M.; Suzuki, K.

    1989-01-01

    This paper describes a three-valued content addressable memory cell using a Josephson complementary ternary logic circuit named as JCTL. The memory cell proposed here can perform three operations of searching, writing and reading in ternary logic system. The principle of the memory circuit is illustrated in detail by using the threshold-characteristics of the JCTL. In order to investigate how a high performance operation can be achieved, computer simulations have been made. Simulation results show that the cycle time of memory operation is 120psec, power consumption is about 0.5 μW/cell and tolerances of writing and reading operation are +-15% and +-24%, respectively

  3. Synthesis, Characterization and Applications of New Nonmetallic Photocatalysts -- Resorcinol Formaldehyde Resin and Boron Carbon Oxynitride

    Science.gov (United States)

    Gu, Ting

    This thesis describes the synthesis, characterization and applications of two kinds of nonmetallic photocatalysts: resorcinol formaldehyde (RF) resin and boron carbon oxynitride (BCNO). Part I: Catalyst-free hydrothermal method was developed to synthesize RF resin. It started with a solution containing only resorcinol and formaldehyde. The products were characterized by transmission electron microscopy (TEM), Solid state 13C nuclear magnetic resonance (13C-NMR) spectrometer and UV-Visible absorption spectroscopy. The particle size (diameter: 100nm-4microm) of RF the spheres was controlled by changing the concentration of the reactants. With increasing particle size, visible light absorption of the product was also increased. These RF spheres could degrade Rhodamine B and generate OH radicals under visible light irradiation. Besides, highly concentrated starting reactants would form large macroporous gel instead of individual particles. This kind of gel could be easily shaped to dishes and tubes, which could be used in filtration and degradation of air pollutants. Part II: The BCNO was prepared by heating a mixture of boric acid, melamine and PEG in atmosphere. The optical properties of the products were measured by UV-Visible absorption spectroscopy with integrating sphere. The X-ray powder diffraction (XRD) patterns indicated that all BCNO compounds had the turbostratic boron nitride (t-BN) structure. Meanwhile, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectrum (EELS) were used to determine the chemical composition of the catalyst. The BCNO could be identified as t-BN with N atoms partly substituted by O and C atoms. The degree of substitution affected its photocatalytic properties. Perdew--Burke--Ernzerhof (PBE) exchange model was introduced to simulate the density of state (DOS) of BCNO using these supercells. Simulation results indicated that C and O substitution induced occupied impurity states in the gap region which modified the band

  4. High-pressure behavior of α-quartz, oxynitride, and nitride structures

    International Nuclear Information System (INIS)

    Cartz, L.; Jorgensen, J.

    1981-01-01

    The high-pressure behavior of α-quartz SiO 2 and GeO 2 , oxynitrides Si 2 N 2 O and Ge 2 N 2 O and α- and β-Si 3 N 4 depends markedly on the nature of the linking of the coordination polyhedra in their crystal structures. Where bond angles can vary between neighboring polyhedra linked at one corner, relative tilting or rotations can occur modifying the aspect of the three-dimensional framework. Such fine structural rearrangements can dominate the reponse of the crystal structure to applied stresses as induced by the application of high pressures or by temperature changes. Direct evidence for this is available from structural measurements at high pressure using time-of-flight neutron diffraction with multicomponent profile refinement procedures, where atomic position changes have been determined up to pressures of approx.3 x 10 9 Pa. The crystal structures studied are the flexible α-quartz structures of SiO 2 and GeO 2 , the partially flexible structures Si 2 N 2 O and Ge 2 N 2 O, and the rigid structures α- and β-Si 3 N 4 . The volume compressibility coefficients K/sub v/ are greatest for α-quartz SiO 2 (274 x 10 -13 Pa -1 ) and GeO 2 (256 x 10 -13 Pa -1 ) with the Si-O-Si and Ge-O-Ge angles varying the most; K/sub v/ is intermediate for Si 2 N 2 O (79 x 10-13 Pa -1 ) and Ge 2 N 2 O (99 x 10 -13 Pa -1 ) where the Si-O-Si and Ge-O-Ge angles vary appreciably while the bond angles to the nitrogens change only slightly; K/sub v/ is least for α-Si 3 N 4 (35.5 x 10 -13 Pa -1 ) and β-Si 3 N 4 (27.5 x 10 -13 Pa -1 ) where no bond angles vary appreciably. For all of the structures examined, bond length changes with pressure are very small in comparison to bond angle changes, which can be an order of magnitude greater. Each structural type behaves in a characteristic way. For example, Si 2 N 2 O and Ge 2 N 2 O exhibit almost identical responses to pressure

  5. A high-throughput search for new ternary superalloys

    Science.gov (United States)

    Nyshadham, Chandramouli; Hansen, Jacob; Oses, Corey; Curtarolo, Stefano; Hart, Gus

    In 2006 an unexpected new superalloy, Co3[Al,W], was discovered. This new alloy is cobalt-based, in contrast to conventional superalloys, which are nickel-based. Inspired by this new discovery, we performed first-principles calculations, searching through 2224 ternary metallic systems of the form A3[B0.5C0.5], where A = Ni/Co/Fe and [B, C] = all binary combinations of 40 different elements chosen from the periodic table. We found 175 new systems that are better than the Co3[Al, W] superalloy. 75 of these systems are brand new--they have never been reported in experimental literature. These 75 new potential superalloys are good candidates for further experiments. Our calculations are consistent with current experimental literature where data exists. Work supported under: ONR (MURI N00014-13-1-0635).

  6. The ternary system: silicon-uranium-vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Henri [Laboratoire de Chimie du Solide et Materiaux, UMR-CNRS 6226, Universite de Rennes I, Avenue du General Leclerc, F-35042 Rennes, Cedex (France); Rogl, Peter Franz, E-mail: peter.franz.rogl@univie.ac.a [Institute of Physical Chemistry, University of Vienna, A-1090 Wien, Waehringerstrasse 42 (Austria)

    2010-09-01

    Phase equilibria in the system Si-U-V were established at 1100 {sup o}C by optical microscopy, EMPA and X-ray diffraction. Two ternary compounds were observed, U{sub 2}V{sub 3}Si{sub 4} and (U{sub 1-x}V{sub x}){sub 5}Si{sub 3}, for which the crystal structures were elucidated by X-ray powder data refinement and found to be isotypic with the monoclinic U{sub 2}Mo{sub 3}Si{sub 4}-type (space group P2{sub 1}/c; a = 0.6821(3), b = 0.6820(4), c = 0.6735(3) nm, {beta} = 109.77(1){sup o}) and the tetragonal W{sub 5}Si{sub 3}-type (space group I4/mcm, a = 1.06825(2), c = 0.52764(2) nm), respectively. (U{sub 1-x}V{sub x}){sub 5}Si{sub 3} appears at 1100 {sup o}C without any significant homogeneity region at x {approx} 0.2 resulting in a formula U{sub 4}VSi{sub 3} which corresponds to a fully ordered atom arrangement. DTA experiments clearly show decomposition of this phase above 1206 {sup o}C revealing a two-phase region U{sub 3}Si{sub 2} + V{sub 3}Si. At 1100 {sup o}C U{sub 4}VSi{sub 3} is in equilibrium with V{sub 3}Si, V{sub 5}Si{sub 3}, U{sub 3}Si{sub 2} and U(V). At 800 {sup o}C U{sub 4}VSi{sub 3} forms one vertex of the tie-triangle to U{sub 3}Si and V{sub 3}Si. Due to the rather high thermodynamic stability of V{sub 3}Si and the corresponding tie-lines V{sub 3}Si + liquid at 1100 {sup o}C and V{sub 3}Si + U(V) below 925 {sup o}C, no compatibility exists between U{sub 3}Si or U{sub 3}Si{sub 2} and vanadium metal.

  7. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun [Xiamen Univ. (China). College of Materials and Fujian Provincial Key Lab. of Materials Genome

    2017-08-15

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr{sub 7}Ni{sub 10}, ZrNi, ZrNi{sub 5}, Zr{sub 14}Cu{sub 51}, and Zr{sub 2}Cu{sub 9}, show a remarkable ternary solubility. A new ternary compound named τ{sub 3} (Zr{sub 31.1-30.7} . Cu{sub 28.5-40.3}Ni{sub 40.4-29.0}) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  8. Preparation of soluble ternary heteroazo dye complexes for the spectrophotometric determination of trace uranium(4)

    International Nuclear Information System (INIS)

    Abe, Shigeki; Ojima, Koichi

    1986-01-01

    The complexing ability of typical pyridylazo, quinolylazo and thiazolylazo dyes with uranium(4) in aqueous ethanol media are investigated in the presence and absence of aromatic carboxylic acid. Uranium(4) forms solubilized ternary complexes with PAN, PAR, TAM, 5-Br-PADAP, 3,5-diBr-PADAP and QADAP in 48% ethanol solution containing sufficient amounts of sulfosali-cylic acid and triethanolamine buffer (pH 7,8). Aromatic carboxylic acids contribute to expel the coordinated water molecules from the uranium(4) moiety and their chelating effects have been explained by ternary complex formation. An increase in molar absorptivity and no shift in the wavelength of maximum absorbance are observed for all uranium(4) complexes investigated. The 1:1 stoichiometry of uranium(4) and heteroazo dye in the binary complex does not change through ternary complex formation. The molar absorptivity of the uranium(4)-3,5-diBr-PADAP-sulfosalicylic acid ternary complex at 595 nm is 8,4x10 4 lmol -1 cm -1 and Beer's law is valid up to 2,5 μg ml -1 of uranium(4). The interferences due to coexisting metal ions can be effectively masked by addition of CyDTA or Ca-CyDTA. 24 refs., 5 figs (Author)

  9. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  10. Indacenodithienothiophene-Based Ternary Organic Solar Cells

    International Nuclear Information System (INIS)

    Gasparini, Nicola; García-Rodríguez, Amaranda; Prosa, Mario; Bayseç, Şebnem; Palma-Cando, Alex; Katsouras, Athanasios; Avgeropoulos, Apostolos; Pagona, Georgia; Gregoriou, Vasilis G.; Chochos, Christos L.; Allard, Sybille; Scherf, Ulrich; Brabec, Christoph J.; Ameri, Tayebeh

    2017-01-01

    One of the key aspects to achieve high efficiency in ternary bulk-hetorojunction solar cells is the physical and chemical compatibility between the donor materials. Here, we report the synthesis of a novel conjugated polymer (P1) containing alternating pyridyl[2,1,3]thiadiazole between two different donor fragments, dithienosilole and indacenodithienothiophene (IDTT), used as a sensitizer in a host system of indacenodithieno[3,2-b]thiophene,2,3-bis(3-(octyloxy)phenyl)quinoxaline (PIDTTQ) and [6,6]-phenyl C 70 butyric acid methyl ester (PC 71 BM). We found that the use of the same IDTT unit in the host and guest materials does not lead to significant changes in the morphology of the ternary blend compared to the host binary. With the complementary use of optoelectronic characterizations, we found that the ternary cells suffer from a lower mobility-lifetime (μτ) product, adversely impacting the fill factor. However, the significant light harvesting in the near infrared region improvement, compensating the transport losses, results in an overall power conversion efficiency enhancement of ~7% for ternary blends as compared to the PIDTTQ:PC 71 BM devices.

  11. Angular distribution in ternary cold fission

    International Nuclear Information System (INIS)

    Delion, D.S.; J.W. Goethe Univ., Frankfurt; Sandulescu, A.; J.W. Goethe Univ., Frankfurt; Greiner, W.

    2003-01-01

    We describe the spontaneous ternary cold fission of 252 Cf, accompanied by 4 He, 10 Be and 14 C. The light cluster decays from the first resonant eigenstate in the Coulomb potential plus a harmonic oscillator potential. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. (author)

  12. The use of ternary mixtures in concrete.

    Science.gov (United States)

    2014-05-01

    This manual is a summary of the findings of a comprehensive study. Its purpose is to provide engineers with the information they need to make educated decisions on the use of ternary mixtures for constructing concrete structures. It discusses the eff...

  13. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 2. Ternary alloy nanocatalysts for ... It is to be noted that synthesis of nanocrystallineternary alloys with precise composition is a big challenge which can be overcome by choosing an appropriate microemulsion system. High electrocatalytic activity towards ...

  14. Self-triggered coordination with ternary controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo

    2012-01-01

    This paper regards coordination of networked systems with ternary controllers. We develop a hybrid coordination system which implements a self-triggered communication policy, based on polling the neighbors upon need. We prove that the proposed scheme ensures finite-time convergence to a neighborhood

  15. Ternary catalyst-olefin-hydroperoxide complexes and their contribution to epoxidation

    International Nuclear Information System (INIS)

    Svitych, R.B.; Rzhevskaya, N.N.; Buchachenko, A.L.; Yablonskij, O.P.; Petukhov, A.A.; Belyaev, V.A.

    1976-01-01

    Electron and NMR spectroscopy have been used for studying the complex formation of catalysts (Mo 5+ , Mn 2+ , Co 2+ ) in double and triple systems: metal-olefin and metal-olefin-hydroperoxide. It has been established that ions of metals form complexes with olefins in the first sphere. The formation has been proved of ternary complexes metal-olefin-hydroperoxide. The structure of the complexes has been proposed with olefins in the first and hydroperoxide in the second sphere of the metal ion. The structure explains known kinetic regularities of epoxydation and the mechanism of the formation of final products, oxide and alcohol. It has been shown that the best catalysts for epoxydation of olefins with hydroperoxides must be the compounds of the metals with an electron state of ion d 0 [ru

  16. A neutron diffraction study of oxygen and nitrogen ordering in a kinetically stable orthorhombic iron doped titanium oxynitride

    International Nuclear Information System (INIS)

    Wu, On Ying; Parkin, Ivan P; Hyett, Geoffrey

    2012-01-01

    The synthesis of a polycrystalline powder sample of iron doped orthorhombic titanium oxynitride, Ti 2.92 Fe 0.01 O 4.02 N 0.98 , on the scale of 0.7 g has been achieved. This was conducted by the unusual route of delamination from a steel substrate of a thin film deposited using atmospheric pressure chemical vapour deposition. The structure of the titanium oxynitride is presented, determined from a combined analysis of X-ray and neutron powder diffraction data. The use of neutron diffraction allows the position of the oxygen and nitrogen ions in the material to be reported unambiguously for the first time. In this study Ti 2.92 Fe 0.01 O 4.02 N 0.98 is found to crystallise in the Cmcm space group, iso-structural pseudobrookite, with lattice parameters a=3.81080(6) Å, b=9.6253(2) Å, and c=9.8859(2) Å, and contains partial oxygen–nitrogen ordering. Of the three anion sites in this structure one is exclusively occupied by oxygen, while the remaining two sites are occupied by oxygen and nitrogen in a disordered manner. Testing indicates that this iron doped titanium oxynitride is a metastable phase that decomposes above 700 °C into TiN and TiO 2 , the thermodynamic products. - Graphical abstract: We report the synthesis of Ti 2.92 Fe 0.01 O 4.02 N 0.98 deposited as a thin film using atmospheric pressure chemical vapour deposition onto stainless steel, which is then delaminated to produce a polycrystalline powder sample. This powder sample was used in a neutron diffraction experiment, and analysis of this data has allowed the position of the oxygen and nitrogen ions in the material to be reported unambiguously for the first time. Ti 2.92 Fe 0.01 O 4.02 N 0.98 is found to crystallise in the Cmcm space group iso-structural pseudobrookite and contains partial oxygen–nitrogen ordering. Highlights: ► Partial oxygen and nitrogen ordering has been observed using neutron diffraction. ► A large powder sample has been made by removal of a CVD film from a steel

  17. Hydrothermal synthesis of graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite for removal of Cu (II) and methylene blue

    Science.gov (United States)

    Long, Zhihang; Zhan, Yingqing; Li, Fei; Wan, Xinyi; He, Yi; Hou, Chunyan; Hu, Hai

    2017-09-01

    In this work, highly activated graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite adsorbent was prepared from a simple hydrothermal route by using ferrous sulfate as precursor. For this purpose, the graphene oxide/multiwalled carbon nanotube architectures were formed through the π-π attractions between them, followed by attaching Fe3O4 nanoparticles onto their surface. The structure and composition of as-prepared ternary nanocomposite were characterized by XRD, FTIR, XPS, SEM, TEM, Raman, TGA, and BET. It was found that the resultant porous graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite with large surface area could effectively prevent the π-π stacking interactions between graphene oxide nanosheets and greatly improve sorption sites on the surfaces. Thus, owing to the unique ternary nanocomposite architecture and synergistic effect among various components, as-prepared ternary nanocomposite exhibited high separation efficiency when they were used to remove the Cu (II) and methylene blue from aqueous solutions. Furthermore, the adsorption isotherms of ternary nanocomposite structures for Cu (II) and methylene blue removal fitted the Langmuir isotherm model. This work demonstrated that the graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite was promising as an efficient adsorbent for heavy metal ions and organic dye removal from wastewater in low concentration.

  18. Design of a novel quantum reversible ternary up-counter

    Science.gov (United States)

    Houshmand, Pouran; Haghparast, Majid

    2015-08-01

    Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.

  19. Electrochemically Stable Titanium Oxy-Nitride Support for Platinum Electro-Catalyst for PEM Fuel Cell Applications

    International Nuclear Information System (INIS)

    Seifitokaldani, A.; Savadogo, O.

    2015-01-01

    Titanium Oxy-Nitride is prepared by an in-situ urea-based sol-gel method as a support for the platinum electro-catalyst for the oxygen reduction reaction (ORR). XRD, BET, SEM and EDX are used to analyze the physicochemical properties of the prepared Pt/TiON catalyst; and its electrochemical properties are evaluated by CV and RDE tests. Electrochemical active surface area is determined and compared to that of the commercial Pt/C electro-catalyst. Pt/TiON electro-catalyst showed a better electrochemical stability than those of the commercial Pt/C electro-catalyst. It is also found that the ORR proceeds via four electron transfer mechanism on both Pt/C and Pt/TiON electro-catalysts

  20. Silicon oxynitrides of KCC-1, SBA-15 and MCM-41 for CO 2 capture with excellent stability and regenerability

    KAUST Repository

    Patil, Umesh

    2012-01-01

    We report the use of silicon oxynitrides as novel adsorbents for CO 2 capture. Three series of functionalized materials based on KCC-1, SBA-15 and MCM-41 with Si-NH 2 groups were prepared using a simple one-step process via thermal ammonolysis using ammonia gas, and they demonstrated excellent CO 2 capture capabilities. These materials overcome several limitations of conventional amine-grafted mesoporous silica. They offer good CO 2 capture capacity, faster adsorption-desorption kinetics, efficient regeneration and reuse, more crucially excellent thermal and mechanical stability even in oxidative environments, and a clean and green synthesis route, which allows the overall CO 2 capture process to be practical and sustainable. This journal is © The Royal Society of Chemistry 2012.

  1. Thermal expansion of the nuclear fuel-sodium reaction product Na3(U0.84(2),Na0.16(2))O4 - Structural mechanism and comparison with related sodium-metal ternary oxides

    Science.gov (United States)

    Illy, Marie-Claire; Smith, Anna L.; Wallez, Gilles; Raison, Philippe E.; Caciuffo, Roberto; Konings, Rudy J. M.

    2017-07-01

    Na3.16(2)UV,VI0.84(2)O4 is obtained from the reaction of sodium with uranium dioxide under oxygen potential conditions typical of a sodium-cooled fast nuclear reactor. In the event of a breach of the steel cladding, it would be the dominant reaction product forming at the rim of the mixed (U,Pu)O2 fuel pellets. High-temperature X-ray diffraction measurements show that a distortion of the uranium environment in Na3.16(2)UV,VI0.84(2)O4 results in a strongly anisotropic thermal expansion. A comparison with several related sodium metallates Nan-2Mn+On-1 - including Na3SbO4 and Na3TaO4, whose crystal structures are reported for the first time - has allowed us to assess the role played in the lattice expansion by the Mn+ cation radius and the Na/M ratio. On this basis, the thermomechanical behavior of the title compound is discussed, along with those of several related double oxides of sodium and actinide elements, surrogate elements, or fission products.

  2. Room temperature ferromagnetism and CH{sub 4} gas sensing of titanium oxynitride induced by milling and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Bolokang, Amogelang S., E-mail: Sylvester.Bolokang@transnet.net [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); Transnet Engineering, Product Development, Private Bag X 528, Kilnerpark, 0127 (South Africa); Tshabalala, Zamaswazi P. [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); Malgas, Gerald F. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville, 7535 (South Africa); Kortidis, Ioannis [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); West Virginia University, Department of Mechanical & Aerospace Engineering, Evansdale Campus, Morgantown, WV, 26506 (United States); Swart, Hendrik C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300 (South Africa); Motaung, David E., E-mail: dmotaung@csir.co.za [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa)

    2017-06-01

    We report on the room temperature ferromagnetism and CH{sub 4} gas sensing of titanium oxynitride prepared by milling and annealing at 1100 °C in a nitrogen gas environment. Structural analyses revealed a metastable orthorhombic TiO{sub 2} phase after milling for 120 h. The 120 h milled TiO{sub 2} particles and subsequently annealed in nitrogen gas at 1100 °C showed the formation of titanium oxynitride (TiO{sub x}N{sub y}) with a tetragonal crystal structure. An FCC metastable TiO{sub x}N{sub y} phase was also observed with a lattice parameter a = 4.235 Å. The vibrating sample magnetometer and electron paramagnetic analyses showed that the milled and TiO{sub x}N{sub y} samples possess room temperature ferromagnetism. Gas sensing measurements were carried out toward CH{sub 4} and H{sub 2} gases. The TiO{sub x}N{sub y} nanostructures demonstrated higher sensing response and selectivity to CH{sub 4} gas at room temperature. The enhanced response of 1010 and sensitivity of 50.12 ppm{sup -1} at a concentration of 20 ppm CH{sub 4} are associated with higher surface area, pore diameter and surface defects such as oxygen vacancies and Ti{sup 3+}, as evidenced from the Brunauer–Emmet–Teller, photoluminescence, electron paramagnetic resonance and x-ray photoelectron analyses. - Highlights: • Ball milled of TiO{sub 2} structure revealed metastable orthorhombic phase. • Upon nitridation tetragonal and FCC TiO{sub x}N{sub y} crystal structures were induced. • The magnetic properties of TiO{sub 2} nanoparticles was transformed by milling. • TiO{sub x}N{sub y} sensing response for CH{sub 4} gas at room temperature was high.

  3. Regularity in the formation of compounds in ternary R-Me-Sn systems, R - REM, Me - Fe, Co, Ni, Cu

    International Nuclear Information System (INIS)

    Skolozdra, R.V.; Komarovskaya, L.P.; Koretskaya, O.Eh.

    1992-01-01

    For the ternary alloy systems of (La, Y, Gd, Lu)-Fe-Sn, (Ce, Y, Gd)-Co-Sn, (Ce, Y, Gd, Lu)-Ni-Sn and (Pr, Gd, Lu)-Cu-Sn isothermal sections of phase diagrams were plotted within the range of 670 to 870 K. It was revealed that substitution of transition metal in the kFe-Co-Ni-Cu series led to changes both in a number of ternary stannides and their structural types. A tendency was observed in change of stannide numbers depending on quantity ratio of R and Me components. Crystallochemical analysis of compounds obtained showed that they could be treated as interstitial structures or lsuperstructures with respect to them. The results of magnetic properties measurements were used for explanation of structural features of ternary compounds considered

  4. The Zintl-Klemm concept applied to cations in oxides. I. The structures of ternary aluminates

    OpenAIRE

    Santamaría Pérez, David; Vegas, Ángel

    2003-01-01

    The structures of 94 ternary aluminates are reinterpreted on the basis of the Zintl-Klemm concept and Pearson's generalized octet rule. In aluminates of highly electropositive metals such as alkali, alkaline-earth and rare-earth metals, the Al atoms form three-dimensional skeleta which can be interpreted as if the Al atoms were behaving as Zintl polyanions, adopting the structure of either main-group elements or Zintl polyanions showing the same connectivity. The O atoms are then located clos...

  5. Ternary nitrides for hydrogen storage: Li-B-N, Li-Al-N and Li-Ga-N systems

    International Nuclear Information System (INIS)

    Langmi, Henrietta W.; McGrady, G. Sean

    2008-01-01

    This paper reports an investigation of hydrogen storage performance of ternary nitrides based on lithium and the Group 13 elements boron, aluminum and gallium. These were prepared by ball milling Li 3 N together with the appropriate Group 13 nitride-BN, AlN or GaN. Powder X-ray diffraction of the products revealed that the ternary nitrides obtained are not the known Li 3 BN 2 , Li 3 AlN 2 and Li 3 GaN 2 phases. At 260 deg. C and 30 bar hydrogen pressure, the Li-Al-N ternary system initially absorbed 3.7 wt.% hydrogen, although this is not fully reversible. We observed, for the first time, hydrogen uptake by a pristine ternary nitride of Li and Al synthesized from the binary nitrides of the metals. While the Li-Ga-N ternary system also stored a significant amount of hydrogen, the storage capacity for the Li-B-N system was near zero. The hydrogenation reaction is believed to be similar to that of Li 3 N, and the enthalpies of hydrogen absorption for Li-Al-N and Li-Ga-N provide evidence that AlN and GaN, as well as the ball milling process, play a significant role in altering the thermodynamics of Li 3 N

  6. Characterization of carbon, nitrogen, oxygen and refractory metals in binary and ternary silicon-based films using ion beam methods; Caracterisation des elements: carbone, azote, oxygene et metal refractaire dans des depots binaires et ternaires a base de silicium par methodes d'analyse utilisant les faisceaux d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Somatri-Bouamrane, R. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire]|[Universite Claude Bernard, 69 - Lyon (France)

    1996-12-19

    Ion beam methods (non Rutherford backscattering, nuclear reactions) have been carried out in order to characterize silicon-based films. The cross sections for the reactions {sup 12}C({alpha},{alpha}), {sup 14}N({alpha},{alpha}), {sup 16}O({alpha},{alpha}), {sup 28}Si({alpha},{alpha}) and {sup 14}N({alpha},p) have been measured within 2 and 7 MeV. CVD beta SiC films could be analyzed and the interface between silicon carbide and the (100) silicon substrate was studied. The epitaxial growth of the beta SiC film could be modelled by comparing the results obtained with ion beam analysis, infrared spectroscopy and electron microscopy. Moreover, the stoichiometry of low pressure CVD Me-Si-N (Me=Re, W, Ti, Ta) ternary systems was studied. The evolution of the nitrogen content in W-Si-N systems allowed to study their stability with respect to the annealing conditions. (N.T.)

  7. Prediction of high-Tc conventional superconductivity in the ternary lithium borohydride system

    Science.gov (United States)

    Kokail, Christian; von der Linden, Wolfgang; Boeri, Lilia

    2017-12-01

    We investigate the superconducting ternary lithium borohydride phase diagram at pressures of 0 and 200 GPa using methods for evolutionary crystal structure prediction and linear-response calculations for the electron-phonon coupling. Our calculations show that the ground state phase at ambient pressure, LiBH4, stays in the P n m a space group and remains a wide band-gap insulator at all pressures investigated. Other phases along the 1 :1 :x Li:B:H line are also insulating. However, a full search of the ternary phase diagram at 200 GPa revealed a metallic Li2BH6 phase, which is thermodynamically stable down to 100 GPa. This superhydride phase, crystallizing in a F m 3 ¯m space group, is characterized by sixfold hydrogen-coordinated boron atoms occupying the fcc sites of the unit cell. Due to strong hydrogen-boron bonding this phase displays a critical temperature of ˜100 K between 100 and 200 GPa. Our investigations confirm that ternary compounds used in hydrogen-storage applications should exhibit high-Tc conventional superconductivity in diamond anvil cell experiments, and suggest a viable route to optimize the superconducting behavior of high-pressure hydrides, exploiting metallic covalent bonds.

  8. Characterization of gate oxynitrides by means of time of flight secondary ion mass spectrometry and x-ray photoelectron spectroscopy. Quantification of nitrogen

    CERN Document Server

    Ferrari, S; Fanciulli, M

    2002-01-01

    We present a methodology for the quantitative estimation of nitrogen in ultrathin oxynitrides by means of time of flight secondary ion mass spectrometry (TOF-SIMS) and x-ray photoelectron spectroscopy (XPS). We consider an innovative approach to TOF-SIMS depth profiling, by elemental distribution of single species as sum of peaks containing such species. This approach is very efficient in overcoming matrix effect arising when quantifying elements were distributed in silicon and silicon oxide. We use XPS to calibrate TOF-SIMS and to obtain quantitative information on nitrogen distribution in oxynitride thin layers. In the method we propose we process TOF-SIMS and XPS data simultaneously to obtain a quantitative depth profile.

  9. Development of binary and ternary titanium alloys for dental implants.

    Science.gov (United States)

    Cordeiro, Jairo M; Beline, Thamara; Ribeiro, Ana Lúcia R; Rangel, Elidiane C; da Cruz, Nilson C; Landers, Richard; Faverani, Leonardo P; Vaz, Luís Geraldo; Fais, Laiza M G; Vicente, Fabio B; Grandini, Carlos R; Mathew, Mathew T; Sukotjo, Cortino; Barão, Valentim A R

    2017-11-01

    The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Calculated site substitution in ternary gamma'-Ni3Al: Temperature and composition effects

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt

    1997-01-01

    The temperature and composition dependence of the site substitution behavior of ternary additions to Ni3Al is examined on the basis of first-principles calculations of the total energies of ternary, partially ordered (gamma') alloys. The calculations are performed by means of the linear muffin......-tin orbitals method in conjunction with the local-density and multisublattice coherent-potential approximations and include all 3d, 4d, 5d, and noble metals. The calculations show the existence of simple trends in the alloying behavior of the gamma' phase which may be explained in a Friedel-like model based...... diagram for the elements Co, Pd, Cu, and Ag incorrectly has been interpreted as evidence for strong Ni site preference and that, in fact, these elements are expected to exhibit only weak Ni site preference....

  11. Equilibrium study for ternary mixtures of biodiesel

    Science.gov (United States)

    Doungsri, S.; Sookkumnerd, T.; Wongkoblap, A.; Nuchitprasittichai, A.

    2017-11-01

    The liquid-liquid equilibrium (LLE) data for the ternary mixtures of methanol + fatty acid methyl ester (FAME) + palm oil and FAME + palm oil + glycerol at various temperatures from 35 to 55°C, the tie lines and binodial curves were also investigated and plotted in the equilibrium curve. The experimental results showed that the binodial curves of methanol + FAME + palm oil depended significantly with temperature while the binodial curves of FAME + palm oil + glycerol illustrated insignificant change with temperatures. The interaction parameters between liquid pair obtained for NRTL (Nonrandom Two-Liquid) and UNIQUAC (Universal Quasi-Chemical Theory) models from the experimental data were also investigated. It was found that the correlated parameters of UNIQUAC model for system of FAME + palm oil + glycerol, denoted as a13 and a31, were 580.42K and -123.69K, respectively, while those for system of methanol + FAME + palm oil, denoted as a42 and a24, were 71.48 K and 965.57K, respectively. The ternary LLE data reported here would be beneficial for engineers and scientists to use for prediction of yield and purity of biodiesel for the production. The UNIQUAC model agreed well with the experimental data of ternary mixtures of biodiesel.

  12. Design of ternary clocked adiabatic static random access memory

    Science.gov (United States)

    Pengjun, Wang; Fengna, Mei

    2011-10-01

    Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions.

  13. Design of ternary clocked adiabatic static random access memory

    International Nuclear Information System (INIS)

    Wang Pengjun; Mei Fengna

    2011-01-01

    Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions. (semiconductor integrated circuits)

  14. Ion Beam Nanostructuring of HgCdTe Ternary Compound

    Science.gov (United States)

    Smirnov, Aleksey B.; Savkina, Rada K.; Udovytska, Ruslana S.; Gudymenko, Oleksandr I.; Kladko, Vasyl P.; Korchovyi, Andrii A.

    2017-05-01

    Systematic study of mercury cadmium telluride thin films subjected to the ion beam bombardment was carried out. The evolution of surface morphology of (111) Hg1 - x Cd x Te ( x 0.223) epilayers due to 100 keV B+ and Ag+ ion irradiation was studied by AFM and SEM methods. X-ray photoelectron spectroscopy and X-ray diffraction methods were used for the investigation of the chemical compound and structural properties of the surface and subsurface region. It was found that in the range of nanoscale, arrays of holes and mounds on Hg0.777Cd0.223Te (111) surface as well as the polycrystalline Hg1 - x Cd x Te cubic phase with alternative compound ( x 0.20) have been fabricated using 100 keV ion beam irradiation of the basic material. Charge transport investigation with non-stationary impedance spectroscopy method has shown that boron-implanted structures are characterized by capacity-type impedance whereas for silver-implanted structures, an inductive-type impedance (or "negative capacitance") is observed. A hybrid system, which integrates the nanostructured ternary compound (HgCdTe) with metal-oxide (Ag2O) inclusions, was fabricated by Ag+ ion bombardment. The sensitivity of such metal-oxide-semiconductor hybrid structure for sub-THz radiation was detected with NEP 4.5 × 10-8 W/Hz1/2at ν ≈ 140 GHz and 296 K without amplification.

  15. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    International Nuclear Information System (INIS)

    Ammar, F; Makhlouf, A; Silvestrov, S

    2010-01-01

    In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

  16. Description of light charged particle emission in ternary fission

    International Nuclear Information System (INIS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kuklin, S. N.; Scheid, W.

    2010-01-01

    We consider the motion of three fragments starting from the scission point of ternary system. In the alpha-accompanied ternary fission the initial conditions are not the free parameters and determined by minimization of potential energy at scission point. In the trajectory calculations the angular distribution and mean value of the kinetic energy of the alpha-particles are well described in the spontaneous ternary fission of 252 Cf. In the Be- and C-accompanied ternary fission we found that the emission of the third particle occurs from one of the heavy fragments after their separation. (authors)

  17. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, F [Faculte des Sciences, Universite de Sfax, BP 1171, 3000 Sfax (Tunisia); Makhlouf, A [Laboratoire de Mathematiques, Informatique et Applications, Universite de Haute Alsace, 4, rue des Freres Lumiere F-68093 Mulhouse (France); Silvestrov, S, E-mail: Faouzi.Ammar@rnn.fss.t, E-mail: Abdenacer.Makhlouf@uha.f, E-mail: sergei.silvestrov@math.lth.s [Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund (Sweden)

    2010-07-02

    In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

  18. Ternary Au/ZnO/rGO nanocomposites electrodes for high performance electrochemical storage devices

    Science.gov (United States)

    Chaudhary, Manchal; Doong, Ruey-an; Kumar, Nagesh; Tseng, Tseung Yuen

    2017-10-01

    The combination of metal and metal oxide nanoparticles with reduced graphene oxides (rGO) is an active electrode material for electrochemical storage devices. Herein, we have, for the first time, reported the fabrication of ternary Au/ZnO/rGO nanocomposites by using a rapid and environmentally friendly microwave-assisted hydrothermal method for high performance supercapacitor applications. The ZnO/rGO provides excellent electrical conductivity and good macro/mesopore structures, which can facilitate the rapid electrons and ions transport. The Au nanoparticles with particle sizes of 7-12 nm are homogeneously distributed onto the ZnO/rGO surface to enhance the electrochemical performance by retaining the capacitance at high current density. The Au/ZnO/rGO nanocomposites, prepared with the optimized rGO amount of 100 mg exhibit a high specific capacitance of 875 and 424 F g-1 at current densities of 1 and 20 A g-1, respectively, in 2 M KOH. In addition, the energy and power densities of ternary Au/ZnO/rGO can be up to 17.6-36.5 Wh kg-1 and 0.27-5.42 kW kg-1, respectively. Results obtained in this study clearly demonstrate the excellence of ternary Au/ZnO/rGO nanocomposites as the active electrode materials for electrochemical pseudocapacitor performance and can open an avenue to fabricate metal/metal oxide/rGO nanocomposites for electrochemical storage devices with both high energy and power densities.

  19. Thin films of mixed metal compounds

    Science.gov (United States)

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  20. Experimental investigation of the ternary system Ni–Pd–Sn with special focus on the B8-type phase

    International Nuclear Information System (INIS)

    Jandl, Isabella; Ipser, Herbert; Richter, Klaus W.

    2015-01-01

    The ternary alloy system Ni–Pd–Sn was investigated experimentally from 700 °C upwards, with special focus on the general NiAs-type compounds. The phase diagram and crystallographic parameters were studied by means of powder X-ray diffraction (XRD), differential thermal analysis (DTA), light optical microscopy (LOM) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray spectroscopy (EDX). An isothermal section at 700 °C was constructed wherein a continuous phase field between the binary NiAs-type compounds γ (PdSn) and Ni 3 Sn 2 (high temperature modification) was detected. A series of samples throughout this phase field was used to investigate lattice parameter variations, occupation of the atomic sites and the melting behaviour. A partial ordering of the transition metals was observed. Moreover, three vertical sections at 30 at.%, 40 at.% and 50 at.% Sn were determined. Altogether, seven ternary invariant phase reactions were discovered: two ternary eutectic reactions, one ternary eutectoid reaction, three ternary transition reactions and one maximum. A complete reaction scheme for the investigated temperature range is given. Furthermore, a partial liquidus surface projection, except for the low-temperature Sn-rich region, was developed. - Highlights: • Detailed study of the ternary alloy system Ni–Pd–Sn. • 1 Isotherm, 3 vertical sections, a partial liquidus projection and a reaction scheme. • A continuous phase field, between γ and Ni 3 Sn 2 , was discovered. • Lattice parameters and structural features in this phase field were analysed. • A partial order of Ni and Pd in this phase field was observed

  1. Formation of ternary Mg–Cu–Dy bulk metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    and then exothermic reactions due to crystallization. The glass temperature, Tg, the onset temperature of the cry- stallization, Tx, the supercooled liquid region, ΔTx = Tx – Tg for the alloys are listed in table 1. With increasing. Mg content from 55 to 70 and decreasing Cu content from. 32 to 17, Tg decreased from 445⋅67 K to ...

  2. Ternary Complexes of some Divalent Metal Ions with Potentially ...

    African Journals Online (AJOL)

    NICO

    standard borax solution and standardized sodium hydroxide solution. The concentrations of Ca(II), Mg(II) and Zn(II) solu- tions were determined complexometrically by titrating against a standard solution of EDTA using Eriochrome Black T as the indicator and NH4OH/NH4Cl buffer to maintain the pH at 10.0. The data were ...

  3. Dumbbells and onions in ternary nucleation.

    Science.gov (United States)

    Nellas, Ricky B; Chen, Bin; Siepmann, J Ilja

    2007-06-14

    Molecular simulations for a ternary nucleation system (water/n-nonane/1-butanol) demonstrate a more complex nucleation mechanism than previously thought, where critical nuclei with different compositions are present even for a given vapour-phase composition; the spatial distribution in these critical nuclei is heterogeneous and dumbbell and onion motifs are found; in the former, water and nonane nano-droplets are connected through a butanol handle, while in the latter a water core is surrounded by a nonane corona with an interfacial butanol shell.

  4. Enhanced electrochemical performance of amorphous carbon nanotube-manganese-di-oxide-poly-pyrrole ternary nanohybrid

    Science.gov (United States)

    Pahari, D.; Das, N. S.; Das, B.; Howli, P.; Chattopadhyay, K. K.; Banerjee, D.

    2017-12-01

    Amorphous carbon nanotubes (a-CNTs) manganese di oxide (MnO2)-poly pyrrole (PPy) ternary nanocomposites have been synthesized by a simple chemical route. The as prepared samples have been characterized with different characterization tools that include field emission scanning and high resolution transmission electron microscopy, Raman, Fourier transformed infrared as well as UV-Vis spectroscopy. The electrochemical performance of all the as prepared pure and hybrid samples have been studied in detail. It has been seen that the ternary hybrid shows efficient electrochemical performance with high value of specific capacitance with good stability even up to 2000 cycles. The superior performance of the hybrid samples can be attributed to the strong synergistic effect between the components resulting electron shuttling along PPy main chains and inter-chain raising built-in continuous conductive network. The ternary composite approach offers an effective solution to enhance the device performance of metal-oxide based supercapacitors for long cycling applications. These studies can well speculate the existence of another supercapacitor hybrid for the use in environment friendly electrode and thus a pollution free nature.

  5. A study of phase separation in ternary alloys

    Indian Academy of Sciences (India)

    Unknown

    Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India. Abstract. We have studied the evolution of microstructure when a disordered ternary alloy is quenched into a ternary miscibility gap. We have used computer simulations based on multicomponent Cahn–Hilliard (CH) equations for cA and cB, the ...

  6. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  7. Thermodynamic modeling of the Ti-Al-Cr ternary system

    International Nuclear Information System (INIS)

    Chen Leyi; Qiu Aitao; Liu Lanjie; Jiang Ming; Lu Xionggang; Li Chonghe

    2011-01-01

    Research highlights: → The full experimental results of the Ti-Al-Cr ternary system and its sub-binary systems are reviewed and analysed in detail. → Based on the latest thermodynamic assessments of the Ti-Al, Ti-Cr and Al-Cr systems and the ternary experimental data in literature, the thermodynamic parameters of the Ti-Al-Cr ternary system are fully assessed by the Calphad method. → The transformation of disorder to order (bcc a 2 to B2) and the new ternary compound L 12T i 25 Cr 8 Al 67 are considered in this work. - Abstract: The Ti-Al-Cr ternary system is one of the most important systems to studying the titanium alloys. Some experimental data of this ternary system are available and a few partial thermodynamic assessments are reported. However, no full thermodynamic descriptions were published. In this study, the previous work on the Ti-Al-Cr system and its related binary systems are reviewed. Based on the thermodynamic descriptions of the Ti-Al, Ti-Cr and Al-Cr systems and the ternary experimental data in literature, the Ti-Al-Cr ternary system is assessed by means of the Calphad method. Several isothermal sections from 1073 K to 1573 K and some invariant reactions are calculated, which are in good agreement with the most of the experimental results.

  8. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  9. Calculation of ternary interdiffusion coefficients using a single diffusion couple

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Rothová, Věra

    2016-01-01

    Roč. 54, č. 5 (2016), s. 305-314 ISSN 0023-432X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : diffusion * interdiffusion * ternary alloys * ternary diffusion coefficients Subject RIV: BJ - Thermodynamic s Impact factor: 0.366, year: 2016

  10. Inclusion complex formation of ternary system: Fluoroscein-p-sulfonato calix[4]arene-Cu(2+) by cooperative binding.

    Science.gov (United States)

    Gawhale, Sharadchandra; Jadhav, Ankita; Rathod, Nilesh; Malkhede, Dipalee; Chaudhari, Gajanan

    2015-09-05

    The aqueous solution of fluorescein-para sulfonato calix[4]arene-metal ion complex has been studied based on absorption, fluorescence, (1)H NMR and FTIR spectroscopic results. It was found that the fluorescence intensity quenched regularly upon addition of pSCX4 and metal ion. The quenching constants and binding constants were determined for pSCX4-FL and pSCX4-FL-Cu(2+) systems. 1:1 stoichiometry is obtained for pSCX4-Cu(2+) system by continuous variation method. The NMR and IR results indicates the interaction among FL, pSCX4 and Cu(2+). The combined results demonstrate the cooperative binding to design the complex for ternary system. The life time for binary and ternary system has been studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Nanoscratching of nylon 66-based ternary nanocomposites

    International Nuclear Information System (INIS)

    Dasari, Aravind; Yu Zhongzhen; Mai Yiuwing

    2007-01-01

    The nanoscratch behavior of nylon 66/SEBS-g-MA/clay ternary nanocomposites produced by different blending protocols with contrasting microstructures is studied by using atomic force and transmission electron microscopy. A standard diamond Berkovich indenter is used for scratching and a low load of 1 mN, along with a low sliding velocity of 1 μm s -1 , are employed for this purpose. It is shown that in order to resist penetration it is more important to have exfoliated clay in the continuous nylon matrix during nanoscratching than to have the clay in the dispersed soft rubber domains. The results obtained also explain the preferred usage of ternary nanocomposites compared to binary nanocomposites, particularly nylon 66/exfoliated clay nanocomposites. This research extends current basic knowledge and provides new insights on the nature of nanoscale processes that occur during nanoscratching of polymer nanocomposites. Critical questions are raised on the relationships between the penetration depth and material deformation and damage left behind the moving indenter

  12. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Directory of Open Access Journals (Sweden)

    Jean-Marc Joubert

    2015-12-01

    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  13. Metal Ion Controlled Polymorphism of a Peptide

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Jancso, Attila; Szunyogh, Daniel

    2011-01-01

    , …) in the peptide, and the ligand and structural preferences of the metal ion (in our studies Zn2+, Cd2+, Hg2+, Cu+/2+). Simultaneously, new species such as metal ion bridged ternary complexes or even oligomers may be formed. In recent previous studies we have observed similar polymorphism of zinc finger model...

  14. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells

    NARCIS (Netherlands)

    Liu, Yang; Wu, Yuanhao; Bian, Dong; Gao, Shuang; Leeflang, M.A.; Guo, Hui; Zheng, Yufeng; Zhou, J.

    2017-01-01

    Novel Mg-(3.5, 6.5wt%)Li-(0.5, 2, 4wt%)Zn ternary alloys were developed as new kinds of biodegradable metallic materials with potential for stent application. Their mechanical properties, degradation behavior, cytocompatibility and hemocompatibility were studied. These potential biomaterials

  15. Deposition and Phase Transformations of Ternary Al-Cr-O Thin Films

    OpenAIRE

    Khatibi, Ali

    2011-01-01

    This thesis concerns the ternary Al-Cr-O system. (Al1-xCrx)2O3 solid solution thin films with 0.6metallic targets of Al and Cr in a flow controlled Ar / O2 gas mixture. As-deposited and annealed (Al1-xCrx)2O3 thin films were analyzed by x-ray diffraction, elastic recoil detection analysis, scanning electron microscopy, transmission electron microscopy, and nano...

  16. New ternary intermetallics, based magnesium, for hydrogen storage

    International Nuclear Information System (INIS)

    Roquefere, J.G.

    2009-05-01

    The use of fossil fuels (non-renewable energy) is responsible for increasing the concentration of greenhouse gases in the atmosphere. Among the considered alternatives, hydrogen is seen as the most attractive energy vector. The storage in intermetallics makes it possible to obtain mass and volume capacities (e.g. 140 g/L) higher than those obtained by liquid form or under pressure (respectively 71 and 40 g/L). We have synthesised Mg and Rare Earth based compounds (RE = Y, Ce and Gd), derived from the cubic Laves phases AB2. Their physical and chemical properties have been studied (hydrogenation, electrochemistry, magnetism,...). The conditions of sorption (P and T) are particularly favorable (i.e. absorption at room temperature and atmospheric pressure). Besides, to improve the sorption kinetics of metallic magnesium, the compounds developed previously were used as catalysts. Thus, GdMgNi4 was milled with magnesium and the speeds of absorption and desorption of the mixture are found higher than those obtained for the composites Mg+Ni or Mg+V, which are reference systems. A theoretical approach (DFT) was used to model the electronic structure of the ternary compounds (i.e. REMgNi4) and thus to predict or confirm the experimental results. (authors)

  17. Iron binary and ternary coatings with molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Yar-Mukhamedova, Gulmira, E-mail: gulmira-alma-ata@mail.ru [Institute Experimental and Theoretical Physics Al-Farabi Kazakh National University, 050038, Al-Farabi av., 71, Almaty (Kazakhstan); Ved, Maryna; Sakhnenko, Nikolay; Karakurkchi, Anna; Yermolenko, Iryna [National Technical University “Kharkov Polytechnic Institute”, Kharkov (Ukraine)

    2016-10-15

    Highlights: • High quality coatings of double Fe-Mo and ternary Fe-Mo-W electrolytic alloys can be produced both in a dc and a pulsed mode. • Application of unipolar pulsed current allows receiving an increased content of the alloying components and their more uniform distribution over the surface. • It is established that Fe-Mo and Fe-Mo-W coatings have an amorphous structure and exhibit improved corrosion resistance and microhardness as compared with the steel substrate due to the inclusion molybdenum and tungsten. - Abstract: Electrodeposition of Fe-Mo-W and Fe-Mo layers from a citrate solution containing iron(III) on steel and iron substrates is compared. The utilization of iron(III) compounds significantly improved the electrolyte stability eliminating side anodic redox reactions. The influence of concentration ratios and electrodeposition mode on quality, chemical composition, and functional properties of the alloys is determined. It has been found that alloys deposited in pulse mode have more uniform surface morphology and chemical composition and contain less impurities. Improvement in physical and mechanical properties as well as corrosion resistance of Fe-Mo and Fe-Mo-W deposits when compared with main alloy forming metals is driven by alloying components chemical passivity as well as by alloys amorphous structure. Indicated deposits can be considered promising materials in surface hardening technologies and repair of worn out items.

  18. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith

    Science.gov (United States)

    Hilsenbeck, S.J.; McCarley, R.E.; Schrader, G.L.; Xie, X.B.

    1999-02-16

    New amorphous molybdenum/tungsten sulfides with the general formula M{sup n+}{sub 2x/n}(L{sub 6}S{sub 8})S{sub x}, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M{sub 6}S{sub 8}){sup 0} cluster units are present. Vacuum thermolysis of the amorphous Na{sub 2x}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH first produces poorly crystalline NaMo{sub 6}S{sub 8} by disproportionation at 800 C and well-crystallized NaMo{sub 6}S{sub 8} at {>=} 900 C. Ion-exchange of the sodium material in methanol with soluble M{sup 2+} and M{sup 3+} salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M{sup n+}{sub 2x/n}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M{sup n+}{sub 2x/n}Mo{sub 6}S{sub 8+x}(MeOH){sub y}[MMOS] (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as ``Chevrel phase-like`` in that both contain Mo{sub 6}S{sub 8} cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst is shown to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS{sub 2} catalysts. 9 figs.

  19. [Construction of Three-Dimensional Isobologram for Ternary Pollutant Mixtures].

    Science.gov (United States)

    2015-12-01

    Tongji University, Shanghai 200092, China) Isobolographic analysis was widely used in the interaction assessment of binary mixtures. However, how to construct a three-dimensional (3D) isobologram for the assessment of toxicity interaction within ternary mixtures is still not reported up to date. The main purpose of this paper is to develop a 3D isobologram where the relative concentrations of three components are acted as three coordinate axes in 3D space to examine the toxicity interaction within ternary mixtures. Taking six commonly used pesticides in China, including three herbicides (2, 4-D, desmetryne and simetryn) and three insecticides ( dimethoate, imidacloprid and propoxur) as the mixture components, the uniform design ray procedure (UD-Ray) was used to rationally design the concentration composition of various components in the ternary mixtures so that effectively and comprehensively reflected the variety of actual environmental concentrations. The luminescent inhibition toxicities of single pesticides and their ternary mixtures to Vibrio fischeri at various concentration levels were determined by the microplate toxicity analysis. Selecting concentration addition (CA) as the addition reference, 3D isobolograms were constructed to study the toxicity interactions of various ternary mixtures. The results showed that the 3D isobologram could clearly and directly exhibit the toxicity interactions of ternary mixtures, and extend the use of isobolographic analysis into the ternary mixtures.

  20. Ternary phosphates of rubidium-cesium-rare earth element

    International Nuclear Information System (INIS)

    Mel'nikov, P.P.; Carrillo-Eredero, H.D.; Efremov, V.A.; Komissarova, L.N.; Quiroga, E.

    1986-01-01

    This article examines the possibility of the existence of ternary phosphates of the rare earth elements (REE) containing two large alkali cations in order to establish the morphological and physicochemical characteristics in the entire group of ternary REE phosphates. The synthesis of the ternary rubidium-cesium-REE phosphates was carried out with molten charges that did not contain an excess of components. Analysis for the uncommon alkali cations was done by the atomic absorption technique; for holmium, by complexometric titration; and for phosphorus, by gravimetry as NH 4 CdPO 4 . The data obtained fully confirm the composition of Rb 2 CsLn(PO 4 ) 2

  1. A Three-dimensional Topological Model of Ternary Phase Diagram

    International Nuclear Information System (INIS)

    Mu, Yingxue; Bao, Hong

    2017-01-01

    In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)

  2. Can Time Reversal be tested in ternary fission?

    International Nuclear Information System (INIS)

    Goennenwein, F.; Jesinger, P.; Koetzle, A.; Mutterer, M.; Kalben, J. von; Trzaska, W.H.; Petrov, G.A.; Gagarski, A.M.; Danilyan, G.; Pavlov, V.S.; Nesvizhevsky, V.; Zimmer, O.

    2000-01-01

    Ternary fission of 233 U and 235 U induced by cold polarized neutrons has been investigated. Several correlations between neutron spin and the momenta of fission fragments and ternary particles were analyzed. These correlations are probing time reversal invariance, parity non-conservation and left-right asymmetries. Results for all three correlations from the reaction 233 U(n,f) are presented. Especially the outcome in the searches for time reversal correlations and left-right asymmetries is unexpected. A huge effect observed formally as a violation of time reversal is most probably simulated by specific properties of the emission mechanism for ternary particles

  3. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  4. Magnetism and crystal fields in ternary superconductors

    International Nuclear Information System (INIS)

    Shenoy, G.K.; Crabtree, G.W.; Niarchos, D.; Behroozi, F.; Dunlap, B.D.; Hinks, D.; Noakes, D.R.

    1982-01-01

    In this paper, the present state of knowledge of crystalline electric field (CEF) in two important classes of ternary superconductors has been described. It is clear that in understanding the superconducting and magnetic behavior of RERh 4 B 4 , the CEF plays a very important role. Considerable importance has been given to the specific heat Schottky anomalies in deducing the position and degeneracy of various CEF levels. Interpretation of these data is made difficult because of complicated subtraction of lattice, electronic and superconducting specific heats. Furthermore, the purity of the sample is important in such studies. It is known that a few percent of Rh-B/sub x/, RERh 3 B 2 and RERh 6 B 4 are commonly present in RERh 4 B 4 , while Mo-Ch/sub x/, RE-Ch/sub x/ and RE 2 O 2 Ch phases occur in Chevrel phase compounds. Only single-crystal samples will lead to dependable specific heat data

  5. Evaluation of Photocatalytic Properties of Portland Cement Blended with Titanium Oxynitride (TiO2−xNy Nanoparticles

    Directory of Open Access Journals (Sweden)

    Juan D. Cohen

    2015-07-01

    Full Text Available Photocatalytic activity of Portland cement pastes blended with nanoparticles of titanium oxynitride (TiO2−xNy was studied. Samples with different percentages of TiO2−xNy (0.0%, 0.5%, 1%, 3% and TiO2 (1%, 3% were evaluated in order to study their self-cleaning properties. The presence of nitrogen in the tetragonal structure of TiO2 was evidenced by X-ray diffraction (XRD as a shift of the peaks in the 2θ axis. The samples were prepared with a water/cement ratio of 0.5 and a concentration of Rhodamine B of 0.5 g/L. After 65 h of curing time, the samples were irradiated with UV lamps to evaluate the reduction of the pigment. The color analysis was carried out using a Spectrometer UV/Vis measuring the coordinates CIE (Commission Internationale de l’Eclairage L*, a*, b*, and with special attention to the reddish tones (Rhodamine B color which correspond to a* values greater than zero. Additionally, samples with 0.5%, 1%, 3% of TiO2−xNy and 1%, 3% of TiO2 were evaluated under visible light with the purpose of determining the Rhodamine B abatement to wavelengths greater than 400 nm. The results have shown a similar behavior for both additions under UV light irradiation, with 3% being the addition with the highest photocatalytic efficiency obtained. However, TiO2−xNy showed activity under irradiation with visible light, unlike TiO2, which can only be activated under UV light.

  6. Theoretical and Experimental Investigations into Novel Oxynitride Discovery in the GaN-TiO2 System at High Pressure

    Directory of Open Access Journals (Sweden)

    Alwin James

    2018-01-01

    Full Text Available We employed ab initio evolutionary algorithm USPEX to speed up the discovery of a novel oxynitride in the binary system of GaN-TiO2 using high-pressure synthesis. A 1:2 mixture of GaN and nanocrystalline TiO2 (anatase was reacted under 1 GPa of pressure and at 1200 °C in a piston cylinder apparatus to produce a mixture of TiO2 (rutile and an unknown phase. From the initial analysis of high resolution neutron and X-ray diffraction data, it is isomorphic with monoclinic V2GaO5 with a unit cell composition of Ga10Ti8O28N2 with the following parameters: monoclinic, space group C2/m, a = 17.823(1 Å, b = 2.9970(1 Å, c = 9.4205(5 Å, β = 98.446(3°; Volume = 497.74(3 Å3. Further, a joint rietveld refinement revealed two distinct regimes—A Ti-rich block and a Ga-rich block. The Ti-rich block consists of four edge-shared octahedra and contains a site which is about 60% occupied by N; this site is bonded to four Ti. The remainder of the block consists of edge linked Ti-octahedral chains linked to the TiN/TiO fragments at octahedral corners partially occupied by nitrogen. The Ga-block contains two symmetry independent octahedral sites, occupied mostly by Ga, and a pure Ga-centered tetrahedral site bonded mostly to oxygen.

  7. Densities and Excess Molar Volume for the Ternary Systems (1 ...

    African Journals Online (AJOL)

    methylimidazolium methyl sulphate ([BMIM]+[MeSO4]-) were determined. The ternary systems studied were ... The results are interpreted in terms of the alcohol chain length and the intermolecular interactions. KEYWORDS Density, excess molar ...

  8. NiS and MoS2 nanosheet co-modified graphitic C3N4 ternary heterostructure for high efficient visible light photodegradation of antibiotic.

    Science.gov (United States)

    Lu, Xuejun; Wang, Yu; Zhang, Xinyi; Xu, Guangqing; Wang, Dongmei; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2018-01-05

    The development of efficient solar driven catalytic system for the degradation of antibiotics has become increasingly important in environmental protection and remediation. Non-noble-metal NiS and MoS 2 nanosheet co-modified graphitic C 3 N 4 ternary heterostructure has been synthesized via a facile combination of hydrothermal and ultrasound method, and the ternary heterostructure has been utilized for photocatalytic degradation of antibiotic agents. The antibiotics of ciprofloxacin (CIP) and tetracycline hydrochloride (TC) were photodegraded by the hybrid under the visible light. The optimal photodegradation rate of the ternary heterostructure reaches about 96% after 2h irradiation, which is 2.1 times higher than that of pure g-C 3 N 4 for TC degradation. The photocatalytic degradation rates of the ternary heterostructure for both CIP and TC obey the pseudo-first-order kinetic model. The enhanced visible light adsorption and charge separation efficiency contribute to the photocatalytic performance of the ternary heterostructure. This work provides new insights and pathways by which efficient degradation of antibiotics can be achieved and will stimulate further studies in this important field. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Kinetic and thermodynamic study of lithium ternary amalgams in contact with solvated lithium hydroxide

    International Nuclear Information System (INIS)

    Cordova M, M.

    1991-12-01

    Lithium amalgams are used on lithium isotope separation, the process has been studied in its different parameters, but there is no information on the isotopic separation in the presence of ternary metals diluted in the amalgam. The latest voltammetric technique developed for trace analysis is used for the study, to determine the effects of the presence of cadmium, which has been selected on compatibility criteria with the system, in the intermetallic structures of the amalgam. The differential pulse anodic stripping voltammetry indicates the presence of an intermetallic persistent structure after the potassium and lithium oxidation. This structure has a slow formation and destruction rate, with an anionic character, which accounts for the oxidation potential displacement of the amalgamated metals. The activation energy results of amalgam decomposition reaction in contact with water, allows to establish the intermetallic effects on this reaction, raising the energy of the activated state, on condition that there were time to form it. A reaction mechanism is proposed that agrees with these results. The study of the isotopic composition indicates that the intermetallic species affect the thermodynamic equilibrium between the phases in contact. The measurements of the system's isotopic composition do not give exact values for the separation factors, but they establish a difference in the sign of enthalpies of the isotopic equilibria. The enthalpy for the isotopic exchange for the binary amalgam is negative, with a value that agrees with those in the literature. Nevertheless, those of the ternary systems are positive, indicating an endothermic character process. (author)

  10. Features of programming in DSSP for the ternary machine

    Directory of Open Access Journals (Sweden)

    Alexey А. Burtsev

    2017-12-01

    Full Text Available In article characteristic properties of the Dialogue System for Structured Programming (DSSP in which it significantly differs from the traditional languages (Pascal, C which are usually used for development of a basic course of programming are emphasized. And also the new possibilities of program creation which can be effectively realized on the ternary computer and which are provided now by programming system DSSP for TVM — the ternary virtual machine are considered.

  11. Tricolore. A flexible color scale for ternary compositions

    DEFF Research Database (Denmark)

    2018-01-01

    tricolore is an R library providing a flexible color scale for the visualization of three-part/ternary compositions. Its main functionality is to color-code any ternary composition as a mixture of three primary colours and to draw a suitable color-key. tricolore flexibly adapts to different...... visualisation challenges via - discrete and continuous color support - support for unbalanced compositional data via centering - support for data with very narrow range via scaling - hue, chroma and lightness options...

  12. Embedded LTPS flash cells with oxide-nitride-oxynitride stack structure for realization of multi-function mobile flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sungwook; Kim, Jaehong; Son, Hyukjoo; Jang, Kyungsoo; Cho, Jaehyun; Kim, Kyunghae; Choi, Byoungdeog; Yi, Junsin [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)], E-mail: yi@yurim.skku.ac.kr

    2008-09-07

    In this paper, embedded flash (eFlash) cells were fabricated for realization of multi-functions, such as systems on panels (SOPs) and threshold voltage (V{sub TH}) stabilization of flat panel displays (FPDs). Fabrication was via low temperature polycrystalline silicon (LTPS) thin film transistor (TFT) technology and an oxide-nitride-oxynitride (ONOn) stack structure on glass. Poly-silicon (poly-Si) on glass, which was annealed via an excimer laser, has a very rough surface. To fabricate LTPS eFlash cells on glass with a very rough poly-Si surface, plasma-assisted oxynitridation was performed; nitrous oxide (N{sub 2}O) served as a reactive gas. LTPS eFlash cells have excellent TFT electrical properties, such as V{sub TH}, a high On/Off current ratio and a low sub-threshold swing (S). The results demonstrate that eFlash cells fabricated on glass with a rough silicon surface, via an ONOn stack structure, have switching characteristics suitable for data storage, such as a low operating voltage (<{+-}10 V) suitable for mobile FPDs, a threshold voltage window, {delta}V{sub TH}, which exceeds 2.3 V, between the programming and erasing (P/E) states, over a period of 10 years, and the capacity to retain the initial {delta}V{sub TH} over a period of 10{sup 5} P/E operations. (fast track communication)

  13. On the electronic nature of silicon and germanium based oxynitrides and their related mechanical, optical and vibrational properties as obtained from DFT and DFPT

    KAUST Repository

    Goumri-Said, Souraya

    2012-02-01

    Electronic structure, bonding and optical properties of the orthorhombic oxynitrides Si 2N 2O and Ge 2N 2O are studied using the density function theory as implemented in pseudo-potential plane wave and full-potential (linearized) augmented plane wave plus local orbitals methods. Generalized gradient approximation is employed in order to determine the band gap energy. Indeed, the Si 2N 2O exhibits a large direct gap whereas Ge 2N 2O have an indirect one. Bonding is analyzed via the charge densities and Mulliken population, where the role of oxygen is investigated. The analysis of the elastic constants show the mechanical stability of both oxynitrides. Their bulk and shear modulus are slightly smaller than those reported on nitrides semiconductors due to the oxygen presence. The optical properties, namely the dielectric function, optical reflectivity, refractive index and electron energy loss, are reported for radiation up to 30 eV. The phonon dispersion relation, zone-center optical mode frequency, density of phonon states are calculated using the density functional perturbed theory. Thermodynamic properties of Si 2N 2O and Ge 2N 2O, such as heat capacity and Debye temperature, are given for reference. Our study suggests that Si 2N 2O and Ge 2N 2O could be a promising potential materials for applications in the microelectronics and optoelectronics areas of research. © 2011 Elsevier B.V. All rights reserved.

  14. Zinc Tantalum Oxynitride (ZnTaO2N Photoanode Modified with Cobalt Phosphate Layers for the Photoelectrochemical Oxidation of Alkali Water

    Directory of Open Access Journals (Sweden)

    Prabhakarn Arunachalam

    2018-01-01

    Full Text Available Photoanodes fabricated by the electrophoretic deposition of a thermally prepared zinc tantalum oxynitride (ZnTaO2N catalyst onto indium tin oxide (ITO substrates show photoactivation for the oxygen evolution reaction (OER in alkaline solutions. The photoactivity of the OER is further boosted by the photodeposition of cobalt phosphate (CoPi layers onto the surface of the ZnTaO2N photoanodes. Structural, morphological, and photoelectrochemical (PEC properties of the modified ZnTaO2N photoanodes are studied using X-ray diffraction (XRD, scanning electron microscopy (SEM, ultraviolet visible (UV−Vis diffuse reflectance spectroscopy, and electrochemical techniques. The presence of the CoPi layer significantly improved the PEC performance of water oxidation in an alkaline sulphate solution. The photocurrent-voltage behavior of the CoPi-modified ZnTaO2N anodes was improved, with the influence being more prominent at lower oxidation potentials. A stable photocurrent density of about 2.3 mA·cm−2 at 1.23 V vs. RHE was attained upon visible light illumination. Relative to the ZnTaO2N photoanodes, an almost three-fold photocurrent increase was achieved at the CoPi/ZnTaO2N photoelectrode. Perovskite-based oxynitrides are modified using an oxygen-evolution co-catalyst of CoPi, and provide a new dimension for enhancing the photoactivity of oxygen evolution in solar-assisted water-splitting reactions.

  15. Phase formation, structural and microstructural characterization of novel oxynitride- perovskites synthesized by thermal ammonolysis of (Ca,Ba)MoO.sub.4./sub. and (Ca,Ba)MoO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Logvinovich, D.; Aguirre, M.H.; Hejtmánek, Jiří; Aguiar, R.; Ebbinghaus, S.G.; Reller, A.; Weidenkaff, A.

    2008-01-01

    Roč. 181, č. 9 (2008), s. 2243-2249 ISSN 0022-4596 Institutional research plan: CEZ:AV0Z10100521 Keywords : oxynitride * molybdate * crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.910, year: 2008

  16. Characterization of Nd{sub 2}AlO{sub 3}N and Sm{sub 2}AlO{sub 3}N oxynitrides synthesized by carbothermal reduction and nitridation

    Energy Technology Data Exchange (ETDEWEB)

    Chevire, Francois, E-mail: francois.chevire@univ-rennes1.fr [UMR CNRS 6226 ' Sciences Chimiques de Rennes' , Equipe Verres et Ceramiques, Groupe Materiaux Azotes et Ceramiques, Universite de Rennes 1, 35042 Rennes Cedex (France); Pallu, Arthur; Ray, Erwan; Tessier, Franck [UMR CNRS 6226 ' Sciences Chimiques de Rennes' , Equipe Verres et Ceramiques, Groupe Materiaux Azotes et Ceramiques, Universite de Rennes 1, 35042 Rennes Cedex (France)

    2011-05-12

    Research highlights: > Carbothermal reduction and nitridation leads to rare earth aluminum oxynitride starting from oxide mixture. > Absorption shifts towards visible in Nd{sub 2}AlO{sub 3}N (orange) and Sm{sub 2}AlO{sub 3}N (yellow). > Oxynitrides are stable up to 600 deg. C in air. > The so-called 'intermediate phase' phenomenon is evidenced in Sm{sub 2}AlO{sub 3}N. - Abstract: The Nd{sub 2}AlO{sub 3}N and Sm{sub 2}AlO{sub 3}N oxynitrides with the K{sub 2}NiF{sub 4}-type structure have been prepared from oxide mixture at 1250 deg. C using the carbothermal reduction and nitridation route (CRN). Optimization of the process is discussed to prevent surface oxidation of the oxynitrides during the synthesis. The absorption of Nd{sub 2}AlO{sub 3}N and Sm{sub 2}AlO{sub 3}N, orange and yellow respectively, has been characterized by diffuse reflectance as well as their thermal stability versus oxidation by thermogravimetric analyses.

  17. Charge distribution in the ternary fragmentation of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kannan, M.T.; Balasubramaniam, M. [Bharathiar University, Department of Physics, Coimbatore (India)

    2017-08-15

    We present here, for the first time, a study on ternary fragmentation charge distribution of {sup 252}Cf using the convolution integral method and the statistical theory. The charge distribution for all possible charge combinations of a ternary breakup are grouped as a bin containing different mass partitions. Different bins corresponding to various third fragments with mass numbers from A{sub 3} = 16 to 84 are identified with the available experimental masses. The corresponding potential energy surfaces are calculated using the three cluster model for the two arrangements A{sub 1} + A{sub 2} + A{sub 3} and A{sub 1} + A{sub 3} + A{sub 2}. The ternary fragmentation yield values are calculated for the ternary combination from each bin possessing minimum potential energy. The yields of the resulting ternary combinations as a function of the charge numbers of the three fragments are analyzed for both the arrangements. The calculations are carried out at different excitation energies of the parent nucleus. For each excitation energy the temperature of the three fragments are iteratively computed conserving the total energy. The distribution of fragment temperatures corresponding to different excitation energies for some fixed third fragments are discussed. The presence of the closed shell nucleus Sn in the favourable ternary fragmentation is highlighted. (orig.)

  18. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  19. Ternary Complexation on Bacterial Surfaces: Implications for Subsurface Anion Transport

    Science.gov (United States)

    Maclean, L. C.; Higginbottom, C. M.; Fowle, D. A.

    2002-12-01

    (VI) and I- in the presence of background electrolyte and aqueous Al (III), Cd(II), Ca(II) or cells coated with Al (oxy)hydroxide phases. We use a unique blend of XRD, electrophoretic mobility, SEM, and aqueous geochemistry measurements to quantify the mechanisms of Cr(VI) and I- removal from solution. Our results indicate the removal of both anions is highly dependent on solution pH with significant removal at low pH and diminishing removal at higher pH values, without the presence of cations or precipitates. However, in the presence of aqueous Cd(II) and Ca(II) which adsorbs strongly from pH 3.5-8, the removal of Cr(VI) and I- increases appreciably. Furthermore the loading of the cell surface with small amorphous mineral phases increases adsorption. Aging of the mineral-bacteria composites appears to decrease removal efficiency due to coarsening of the mineral phases and a decrease in charge density. Considering that many geologic environments include both cationic and anionic metal contaminants, our results suggest that mass transport of Cr(VI), I-, and other anions may be affected by ternary complexation or other cation mediated surface reactions in bacteria-bearing systems.

  20. Metallic and Ceramic Thin Film Thermocouples for Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Otto J. Gregory

    2013-11-01

    Full Text Available Temperatures of hot section components in today’s gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today’s engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire thermocouples.

  1. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system.

    Science.gov (United States)

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine

    2017-06-21

    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive

  2. Synthesis and crystal structure of K2NiF4-type novel Gd1+xCa1−xAlO4−xNx oxynitrides

    International Nuclear Information System (INIS)

    Masubuchi, Yuji; Hata, Tomoyuki; Motohashi, Teruki; Kikkawa, Shinichi

    2014-01-01

    Highlights: • Novel gadolinium calcium aluminum oxynitride was prepared by solid state reaction. • Crystal structure of the oxynitride was refined by using synchrotron X-ray diffraction. • Gd 1.2 Ca 0.8 AlO 3.8 N 0.2 has a layered K 2 NiF 4 -type structure with the I4mm space group. • Nitride ions preferentially occupy the apical site of aluminum octahedron. -- Abstract: Novel gadolinium calcium aluminum oxynitrides, Gd 1+x Ca 1−x AlO 4−x N x , were prepared in x = 0.15–0.25 by the solid state reaction of a nitrogen–rich mixture with AlN as an aluminum source; the mixture was sintered twice at 1500 °C for 5 h under 0.5 MPa of nitrogen gas. Shift in the optical absorption edge was observed in their diffuse reflectance spectra from 4.46 eV for the oxide (x = 0) to 2.94 eV for the oxynitride at x = 0.2. The crystal structure of Gd 1.2 Ca 0.8 AlO 3.8 N 0.2 at x = 0.2 was refined using a synchrotron X-ray diffraction data as a layered K 2 NiF 4 -type structure with the I4mm space group. Longer Al–O/N bond lengths in the oxynitride than those in GdCaAlO 4 suggest that the nitride ions are in the apical site of aluminum polyhedron, similar to those in Nd 2 AlO 3 N

  3. Review of Reactivity Experiments for Lithium Ternary Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Bolind, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-28

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers high tritium breeding, excellent heat transfer and corrosion properties, and most importantly, it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium related hazards are of primary concern. Reducing chemical reactivity is the primary motivation for the development of new lithium alloys, and it is therefore important to come up with proper ways to conduct experiments that can physically study this phenomenon. This paper will start to explore this area by outlining relevant past experiments conducted with lithium/air reactions and lithium/water reactions. Looking at what was done in the past will then give us a general idea of how we can setup our own experiments to test a variety of lithium alloys.

  4. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.

    2002-01-01

    nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...

  5. Anisotropy in the ternary cold fission

    CERN Document Server

    Delion, D S; Greiner, W

    2003-01-01

    We describe the spontaneous ternary cold fission of sup 2 sup 5 sup 2 Cf, accompanied by sup 4 He, sup 1 sup 0 Be and sup 1 sup 4 C within a stationary scattering formalism. We show that the light cluster should be born in the neck region. It decays from the first resonant eigenstate in the Coulomb plus harmonic oscillator potential, centred in this region and eccentric with respect to the symmetry axis. This description gives a simple answer to the question why the averaged values in the energy spectra of emitted clusters are close to each other, in spite of different Coulomb barriers. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. Experimental angular distributions can be explained by the spherical shapes of emitted clusters, except for a deformed sup 1 sup 0 Be. We also predicted some dependences of half-lives for such tri-nuclear systems upon potential parameters.

  6. Two-layer synchronized ternary quantum-dot cellular automata wire crossings

    Science.gov (United States)

    2012-01-01

    Quantum-dot cellular automata are an interesting nanoscale computing paradigm. The introduction of the ternary quantum-dot cell enabled ternary computing, and with the recent development of a ternary functionally complete set of elementary logic primitives and the ternary memorizing cell design of complex processing structures is becoming feasible. The specific nature of the ternary quantum-dot cell makes wire crossings one of the most problematic areas of ternary quantum-dot cellular automata circuit design. We hereby present a two-layer wire crossing that uses a specific clocking scheme, which ensures the crossed wires have the same effective delay. PMID:22507371

  7. Constitution of the ternary system Cr–Ni–Ti

    International Nuclear Information System (INIS)

    Krendelsberger, Natalja; Weitzer, Franz; Du, Yong; Schuster, Julius C.

    2013-01-01

    Highlights: •Reaction scheme and liquidus surface for Cr-Ni-Ti are given. •In the ternary the C14-type Laves phase coexists with the liquid phase. •Two ternary eutectics are identified. -- Abstract: The nature of solid–liquid phase equilibria in the ternary system Cr–Ni–Ti was investigated using electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and differential thermal analysis. Literature data on solid state phase equilibria are confirmed. The Cr 2 Ti Laves phase modifications coexisting with Ni–Ti phases are clarified to be hexagonal C14-type and cubic C15-type. The C14-type Laves phase γCr 2 Ti is found to coexist with the liquid phase. It forms in the pseudobinary peritectic reaction p max1 from L + β(Cr,Ti) at 1389 °C. On further cooling γCr 2 Ti + NiTi solidify at 1202 °C in the pseudobinary eutectic e max2 . In the Cr-rich part of the system ternary eutectics occur at 1216 °C (E 1 : L = Ni 3 Ti + (Ni) + β(Cr,Ti)) and 1100 °C (E 2 : L = NiTi + Ni 3 Ti + β(Cr,Ti)), respectively. No ternary eutectic is found in the Ti-rich part. Rather the eutectic trough ends in the binary eutectic L = NiTi 2 + β(Ti)

  8. Ternary fission of spontaneously fissile uranium isomers excited by neutrons

    International Nuclear Information System (INIS)

    Makarenko, V.E.; Molchanov, Y.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1989-01-01

    Spontaneously fissile isomers (SFI) of uranium were excited in the reactions 236,238 U(n,n') at an average neutron energy 4.5 MeV. A pulsed electrostatic accelerator and time analysis of the fission events were used. Fission fragments were detected by the scintillation method, and long-range particles from fission were detected by an ionization method. The relative probability of fission of nuclei through a spontaneously fissile isomeric state was measured: (1.30±0.01)·10 -4 ( 236 U) and (1.48±0.02)·10 -4 ( 238 U). Half-lives of the isomers were determined: 121±2 nsec (the SFI 236 U) and 267±13 nsec (the SFI 238 U). In study of the ternary fission of spontaneously fissile isotopes of uranium it was established that the probability of the process amounts to one ternary fission per 163±44 binary fissions of the SFI 236 U and one ternary fission per 49±14 binary fissions of the SFI 238 U. The substantial increase of the probability of ternary fission of SFI of uranium in comparison with the case of ternary fission of nuclei which are not in an isomeric state may be related to a special nucleon configuration of the fissile isomers of uranium

  9. Growth and properties of Al-rich InxAl1-xN ternary alloy grown on GaN template by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Oh, Tae Su; Suh, Eun-Kyung; Kim, Jong Ock; Jeong, Hyun; Lee, Yong Seok; Nagarajan, S; Lim, Kee Young; Hong, Chang-Hee

    2008-01-01

    An Al-rich In x Al 1-x N ternary alloy was grown on a GaN template by metal-organic chemical vapour deposition (MOCVD). The GaN template was fabricated on a c-plane sapphire with a low temperature GaN nucleation layer. The growth of the 300 nm thick In x Al 1-x N layer was carried out under various growth temperatures and pressures. The surface morphology and the InN molar fraction of the In x Al 1-x N layer were assessed by using atomic force microscopy (AFM) and high resolution x-ray diffraction, respectively. The AFM surface images of the In x Al 1-x N ternary alloy exhibited quantum dot-like grains caused by the 3D island growth mode. The grains, however, disappeared rapidly by increasing diffusion length and mobility of the Al adatoms with increasing growth temperature and the full width at half maximum value of ternary peaks in HR-XRD decreased with decreasing growth pressure. The MOCVD growth condition with the increased growth temperature and decreased growth pressure would be effective to grow the In x Al 1-x N ternary alloy with a smooth surface and improved quality. The optical band edge of In x Al 1-x N ternary alloys was estimated by optical absorbance and, based on the results of HR-XRD and optical absorbance measurements, we obtained the bowing parameter of the In x Al 1-x N ternary alloy at b = 5.3 eV, which was slightly larger than that of previous reports

  10. Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jalan, V.; Kosek, J.; Giner, J.; Taylor, E. J.; Anderson, E.; Bianchi, V.; Brooks, C.; Cahill, K.; Cropley, C.; Desai, M.; Frost, D.; Morriseau, B.; Paul, B.; Poirier, J.; Rousseau, M.; Swette, L.; Waterhouse, R.

    1988-11-01

    The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it was discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.

  11. Atomic and electronic structures of I-V-VI2 ternary chalcogenides

    Directory of Open Access Journals (Sweden)

    Khang Hoang

    2016-03-01

    Full Text Available Atomic and electronic structures of I-V-VI2 (I = Na, K, Ag, Cu, Au; V = As, Sb, Bi; VI = S, Se, Te are studied using first-principles hybrid density functional calculations. We find that the strong hybridization between the trivalent cation (As, Sb, and Bi p states and the divalent anion (S, Se, and Te p states tends to introduce electronic states in the band gap or pseudogap region and drive the systems toward metallicity. The atomic ordering on the cation sublattice of the ternary chalcogenides, therefore, has a strong impact on the energetics and the electronic structure in the neighborhood of the Fermi level as it determines if a certain atomic configuration is favorable to the highly directional cation p–anion p interaction. Besides these p states, the s state (in the case of Na and K or the s and d states (Ag, Cu, and Au can also play an important role in the band-gap formation. Our study suggests how to manipulate the electronic structure of these ternary compounds such that they show desired features for different applications by modifying their atomic structure and/or by changing their constituent element(s.

  12. A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.

    Science.gov (United States)

    Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin

    2018-02-14

    Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.

  13. Completed local ternary pattern for rotation invariant texture classification.

    Science.gov (United States)

    Rassem, Taha H; Khoo, Bee Ee

    2014-01-01

    Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP) and the Completed Local Binary Count (CLBC), have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP) drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP) is proposed to be more robust to noise than LBP, however, the latter's weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP) operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP) scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors.

  14. Completed Local Ternary Pattern for Rotation Invariant Texture Classification

    Directory of Open Access Journals (Sweden)

    Taha H. Rassem

    2014-01-01

    Full Text Available Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP and the Completed Local Binary Count (CLBC, have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP is proposed to be more robust to noise than LBP, however, the latter’s weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors.

  15. Collective and tracer diffusion kinetics in the ternary random alloy

    International Nuclear Information System (INIS)

    Belova, I.V.; Murch, G.E.; Allnatt, A.R.

    2002-01-01

    In this study, collective and tracer diffusion kinetics is addressed for the ternary random alloy. A formal solution from the self-consistent theory of Moleko et al (Moleko L K, Allnatt A R and Allnatt E L 1989 Phil. Mag. A 59 141) is derived for collective diffusion and compared with the corresponding solution for the binary random alloy. Tracer diffusion in the ternary alloy is treated from the perspective of a special case of the quaternary random alloy. Results from Monte Carlo calculations for tracer and collective correlation factors (for the bcc ternary random alloy) are found to be in excellent agreement with this self-consistent theory but in only semi-quantitative agreement with the earlier theory of Manning (Manning J R 1971 Phys. Rev. B 4 1111). (author)

  16. Constitutional studies of the molybdenum-ruthenium-palladium ternary system

    International Nuclear Information System (INIS)

    Cornish, L.A.; Pratt, J.N.

    1997-01-01

    An experimental and computational study has been made of phase equilibria in the Mo-Ru-Pd ternary system. The constitution of annealed binary and ternary alloys was investigated using optical and electron microscopy, X-ray diffraction and SEM phase analysis techniques. Limited thermodynamic measurements were made using the ZrO 2 solid electrolyte e.m.f. method. The data obtained from the various techniques were used to construct a ternary isothermal section at 1473 K. The experimentally determined section is compared with a calculated section for the same temperature, computed using thermodynamic coefficients derived solely from binary system information. Lattice parameters are reported for the b.c.c., f.c.c. and c.p.h. solid solutions and for the σ phase. (orig.)

  17. Thermal decomposition of cesium-ethylene-ternary graphite intercalation compounds

    International Nuclear Information System (INIS)

    Matsumoto, R.; Oishi, Y.; Arii, T.

    2010-01-01

    In this paper, the thermal decomposition of air-stable Cs-ethylene-ternary graphite intercalation compounds (GICs) is discussed. The air stability of Cs-GICs is improved remarkably after the absorption of ethylene into their interlayer nanospace, because the ethylene molecules oligomerize and block the movement of Cs atoms. In addition, the evaporation of Cs atoms from the Cs-ethylene-ternary GICs is observed above 400 o C under a N 2 atmosphere of 100 Pa by ion attachment mass spectrometry. Although the results indicate that Cs-ethylene-ternary GICs remain stable up to approximately 400 o C, their thermal stability is not very high as compared to that of Cs-GICs.

  18. The partially alternating ternary sum in an associative dialgebra

    International Nuclear Information System (INIS)

    Bremner, Murray R; Sanchez-Ortega, Juana

    2010-01-01

    The alternating ternary sum in an associative algebra, abc - acb - bac + bca + cab - cba, gives rise to the partially alternating ternary sum in an associative dialgebra with products dashv and vdash by making the argument a the center of each term. We use computer algebra to determine the polynomial identities in degree ≤9 satisfied by this new trilinear operation. In degrees 3 and 5, these identities define a new variety of partially alternating ternary algebras. We show that there is a 49-dimensional space of multilinear identities in degree 7, and we find equivalent nonlinear identities. We use the representation theory of the symmetric group to show that there are no new identities in degree 9.

  19. Studies on Ternary Complex Formation of U(VI)-salicylate by Using Time-resolved Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wan Sik; Cho, H. R.; Park, K. K.; Kim, W. H.; Jung, E. C. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Organic ligands containing carboxylic and phenolic functional groups naturally occur in groundwater environment, particularly in forms of polyelectrolytes such as humic and fulvic acids, from microbial degradation of biomass, e.g., plant and animal tissues. These ligands play important roles in dissolution and migration of actinide radionuclide species since they can form stable ternary actinide complexes with common inorganic ions like hydroxides and carbonates. Therefore, model ternary complexes of lanthanides and actinides have been targets of studies to understand their chemical behaviors under near-neutral pH groundwater conditions. Previous model carboxylic ligands include phthalates, maleic acids, or alpha- substituted carboxylic acids. However, majority of previous studies investigated binary systems or used potentiometric titration method that requires high ligand concentration in mM levels. Recently, highly sensitive time-resolved laserinduced fluorescence spectroscopy (TRLFS) has been used to investigate lower concentration (e.g., a few {mu}M levels) reactions of binary complexes between of ligands and metal ions. This technique provides information regarding electronic structures and complexation constants as well as fluorescence quenching mechanism. In the present study, we studied the U(VI)-OH-salicylate (SA) ternary complex formation at higher pH (> 4) via TRLF spectrum and UV-Vis absorbance measurement. Preliminary studies show that the fluorescence (FL) intensity of hydroxouranyl species at pH 4.5 decreases as SA concentration elevates in aqueous solution. Fluorescence quenching mechanism by SA is suggested based on FL intensity (I) and lifetime (tau) measurement via TRLFS

  20. Preparation and photoluminescence enhancement in terbium(III ternary complexes with β-diketone and monodentate auxiliary ligands

    Directory of Open Access Journals (Sweden)

    Devender Singh

    2016-12-01

    Full Text Available A series of new solid ternary complexes of terbium(III ion based on β-diketone ligand acetylacetone (acac and monodentate auxiliary ligands (aqua/urea/triphenylphosphineoxide/pyridine-N-oxide had been prepared. The structural characterizations of synthesized ternary compounds were studied by means of elemental analysis, infrared (IR, and proton nuclear magnetic resonance (NMR spectral techniques. The optical characteristics were investigated with absorption as well as photoluminescence spectroscopy. Thermal behavior of compounds was examined by TGA/DTA analysis and all metal complexes were found to have good thermal stability. The luminescence decay time of complexes were also calculated by monitoring at emission wavelength corresponding to 5D4 → 7F5 transition. A comparative inspection of the luminescent behavior of prepared ternary compounds was performed in order to determine the function of auxiliary ligands in the enhancement of luminescence intensity produced by central terbium(III ion. The color coordinates values suggested that compounds showed bright green emission in visible region in electromagnetic spectrum. Complexes producing green light could play a significant role in the fabrication of efficient light conversion molecular devices for display purposes and lightning systems.

  1. Equilibrium phase diagram of the Ag-Au-Pb ternary system

    International Nuclear Information System (INIS)

    Hassam, S.; Bahari, Z.

    2005-01-01

    The phase diagram of the ternary system Ag-Au-Pb has been established using differential thermal analysis and X-ray powder diffraction analysis. Four vertical sections were studied: X Pb = 0.40, X Au /X Pb = 1/3, X Ag /X Au = 4/1 and X Ag /X Au = 1/1. Two ternary transitory peritectics and one ternary eutectic were characterized. A schematic representation of the ternary equilibria is given

  2. Adiabatic pipelining: a key to ternary computing with quantum dots

    International Nuclear Information System (INIS)

    Pecar, P; Zimic, N; Mraz, M; Lebar Bajec, I; Ramsak, A

    2008-01-01

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  3. Adiabatic pipelining: a key to ternary computing with quantum dots

    Science.gov (United States)

    Pečar, P.; Ramšak, A.; Zimic, N.; Mraz, M.; Lebar Bajec, I.

    2008-12-01

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  4. PM1 steganographic algorithm using ternary Hamming Code

    Directory of Open Access Journals (Sweden)

    Kamil Kaczyński

    2015-12-01

    Full Text Available PM1 algorithm is a modification of well-known LSB steganographic algorithm. It has increased resistance to selected steganalytic attacks and increased embedding efficiency. Due to its uniqueness, PM1 algorithm allows us to use of larger alphabet of symbols, making it possible to further increase steganographic capacity. In this paper, we present the modified PM1 algorithm which utilizies so-called syndrome coding and ternary Hamming code. The modified algorithm has increased embedding efficiency, which means fewer changes introduced to carrier and increased capacity.[b]Keywords[/b]: steganography, linear codes, PM1, LSB, ternary Hamming code

  5. The importance of secondary and ternary twinning in compressed Ti

    International Nuclear Information System (INIS)

    Tirry, W.; Nixon, M.; Cazacu, O.; Coghe, F.; Rabet, L.

    2011-01-01

    Twin formation during uniaxial compression of high-purity α-Ti at room temperature is investigated for both quasi-static and dynamic conditions using electron backscatter diffraction techniques. The initial texture is favorable for {101-bar 2} twinning, yet it is observed that secondary and ternary twins occur for both strain rates, showing a higher propensity in the dynamic case. While secondary twins may explain the difference in texture change and strain hardening between the two loading conditions, the ternary twins mainly contribute to grain fractioning.

  6. A novel ternary logic circuit using Josephson junction

    International Nuclear Information System (INIS)

    Morisue, M.; Oochi, K.; Nishizawa, M.

    1989-01-01

    This paper describes a novel Josephson complementary ternary logic circuit named as JCTL. This fundamental circuit is constructed by combination of two SQUIDs, one of which is switched in the positive direction and the other in the negative direction. The JCTL can perform the fundamental operations of AND, OR, NOT and Double NOT in ternary form. The principle of the operation and design criteria are described in detail. The results of the simulation show that the reliable operations of these circuits can be achieved with a high performance

  7. Wurtzite-derived ternary I?III?O2 semiconductors

    OpenAIRE

    Omata, Takahisa; Nagatani, Hiraku; Suzuki, Issei; Kita, Masao

    2015-01-01

    Ternary zincblende-derived I?III?VI2 chalcogenide and II?IV?V2 pnictide semiconductors have been widely studied and some have been put to practical use. In contrast to the extensive research on these semiconductors, previous studies into ternary I?III?O2 oxide semiconductors with a wurtzite-derived ?-NaFeO2 structure are limited. Wurtzite-derived ?-LiGaO2 and ?-AgGaO2 form alloys with ZnO and the band gap of ZnO can be controlled to include the visible and ultraviolet regions. ?-CuGaO2, which...

  8. Organic semiconductor: Insulator polymer ternary blends for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Ferenczi, Toby A.M. [Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Mueller, Christian [Department of Materials, Eidgenoessische Technische Hochschule (ETH) Zuerich, CH-8093 Zuerich (Switzerland); Bradley, Donal D.C.; Nelson, Jenny [Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Centre for Plastic Electronics, Imperial College London, London SW7 2AZ (United Kingdom); Smith, Paul [Department of Materials, Eidgenoessische Technische Hochschule (ETH) Zuerich, CH-8093 Zuerich (Switzerland); Centre for Plastic Electronics, Imperial College London, London SW7 2AZ (United Kingdom); Stingelin, Natalie [Department of Materials, Eidgenoessische Technische Hochschule (ETH) Zuerich, CH-8093 Zuerich (Switzerland); Centre for Plastic Electronics, Imperial College London, London SW7 2AZ (United Kingdom); Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-09-15

    Ternary blends of poly(3-hexylthiophene): [6,6]-phenyl C{sub 61}-butyric acid methyl ester (P3HT:PC{sub 61}BM) and the insulating bulk polymers high-density polyethylene (HDPE), isotactic- and atactic polystyrene (i-PS, a-PS), are investigated. Addition of up to {approx}50 wt% of the electronically inert, semicrystalline HDPE and i-PS to the organic semiconducting system does not significantly degrade the performance of photovoltaic devices fabricated with these ternary blends. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Angular Correlations with γ-RAYS and Neutrons in Ternary Fission of 252Cf

    Science.gov (United States)

    Mutterer, M.; Kopatch, Yu. N.; Singer, P.; Klemens, M.; Hotzel, A.; Schwalm, D.; Thirolf, P.; Hesse, M.; Gönnenwein, F.

    The following sections are included: * Experiment * Data analysis * Anisotropy of γ-Ray Emission in Binary and Ternary Fission * Anisotropy of γ-ray emission with respect to fragment motion * Anisotropy of γ-my emission with respect to a-particle motion * Gamma-ray angular correlations for other ternary fission modes * Neutron Decay of Ternary Particles * References

  10. Ternary Complex Formation of Uranium(VI) and its Extraction with Tri-n-butyl phosphate and 8-Hydroxyquinoline

    International Nuclear Information System (INIS)

    Park, K. K.; Lee, G. H.; Cho, H. R.; Jung, E. C.

    2009-01-01

    The ternary complex formation of metal ions with ligand in an aquatic solution has been of interest in various research fields such as synergistic extraction, spectrophotometry, spectrofluorometry, solubility and sorption of radionuclides in an environment. When the metal ion extraction based on its formation of a ternary complex with two additives shows much higher extraction efficiency as compared to the extractions by an individual additive, it is classified as a synergistic extraction. Synergistic extraction uses a neutral donor in combination with an acidic chelating ligand. The chelating ligand neutralizes the charge of a metal ion to form an uncharged extractable complex having sites for water molecules, which can be replaced by the neutral donors to form an organophilic adduct. The most common acidic chelating ligands are β-diketones or organophosphorous acids, and neutral donors are amine derivatives or organophosphorous compounds such as alkylphosphates and alklypohsphine oxides. Development of sensitive and selective analytical instruments such as ICP-AES and ICP-MS makes an analyst be free from the trouble to separate analyte. However, sometimes, the removal of matrix from an analyte is required to increase sensitivity and to decrease background level and hysteresis of an instrument. Solvent extraction is one of the most important techniques in concentration and purification of U(VI). The purpose of this study is an understanding of a ternary complex formation of U(VI) in the presence of pyridine derivatives and TBP. The solvent extraction technique was used, and the results was explained by a stability of U(VI)-chelating ligand complexes. The result of this study could be applied to the concentration and separation of U(VI) from the sea water

  11. Mechanism of electron transfer reaction of ternary ...

    Indian Academy of Sciences (India)

    aDepartment of Chemistry, Faculty of Science, King Abdulaziz University, PO Box 80203,. Jeddah 21589, Saudi Arabia ... by periodate in aqueous acidic medium has been studied spectrophotometrically over the pH range of 4.45–5.57 at different ... Oxidations of inorganic substrates14,15 and some tran- sition metal ...

  12. Molecular dynamics study of the ternary Cu50Ti25Zr25 bulk glass forming alloy

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available The structure and thermodynamic properties of a ternary Cu50Ti25Zr25 metallic glass forming alloy in solid-liquid to glass phases were studied using molecular dynamics (MD method based on tight-binding (TB potentials. An atomic description of the melting, glass formation and crystallization process has been analyzed using different heating and cooling rates. The computed Glass Forming Ability (GFA parameters are in good agreement with experimental data. The structure analysis of the Cu50Ti25Zr25 based on molecular dynamics simulation will be also presented and compared with available MD results. We have also discussed the crystallization transition with two different interatomic potentials used in this work

  13. Synthesis and characterization of ternary Pt-Ni-M/C (M=Cu, Fe, Ce, Mo, W) nano-catalysts for low temperature fuel cells

    International Nuclear Information System (INIS)

    Ahmed, Riaz; Jamil, Rabia; Ansari, Muhammad Shahid

    2014-01-01

    Ternary metal catalysts were synthesized by impregnation method. The mixture of metal solutions was reduced slowly under inert atmosphere and the reduced metals were deposited on the Vulcan Carbon(VC). Tungsten, molybdenum, cerium, iron and copper were added to specified amounts of platinum and nickel. Addition of nickel generally improves catalytic activity of platinum. The XRD of the catalysts was done and the crystallite size and other parameters were calculated. Crystallite sizes were in the range of 5 to 16 nm. Electrochemical surface areas of the catalysts were determined by cyclic voltammetry (CV) in acidic media and are compared. Electro oxidation of methanol on the catalysts was done and peak potential, peak current, mass activity of the catalysts were calculated and are compared. These parameters were determined in acidic and basic media. It was found that mass activity increased significantly in basic media. Rate constants for the electro oxidation of methanol were also calculated in acidic and basic media and are compared and discussed. Rate constants were generally higher in basic media. Ternary catalysts showed improved catalytic activity than the binary catalyst. Nano alloying improved the catalytic activity and stability of the ternary catalysts

  14. Sc-W-Si and Sc-W-Ge ternary systems

    International Nuclear Information System (INIS)

    Kotur, B.Ya.; Voznyak, O.M.; Bodak, O.I.

    1989-01-01

    Phase equilibria in Sc-W-Si and Sc-W-Ge ternary systems are investigated at 1070 K. Sc 2+x W 3-x Si 4 ternary compound (0≤x≤1) is determined, its crystal structure (Ce 2 Sc 3 Si 4 structural type), as well as, change of elementary cell parameters and microhardness within homogeneity range are determined. Regularities of component interaction within Sc-M-Si(Ge) (M-Cr, Mo, W) ternary system are determined. Ternary systems with Mo and W are more closer to each other according to the phase equilibria character, than to ternary systems with Cr

  15. Densities and Excess Molar Volume for the Ternary Systems (1 ...

    African Journals Online (AJOL)

    NICO

    2012-09-10

    methylimidazolium methyl sulphate. ([BMIM]+[MeSO4]–) were determined. The ternary systems studied were ([BMIM]+[MeSO4]– + nitromethane + methanol or ethanol or 1-propanol) at the temperatures (303.15 and 313.15) K. The ...

  16. Speeds of sound and isothermal compressibility of ternary liquid ...

    Indian Academy of Sciences (India)

    ternary liquid systems. PACS Nos 43.35.Bf; 61.20.Gy; 82.60.Lf. 1. Introduction. The primary objective is to measure the speeds of sound and density of liquid systems in order to estimate the value of isentropic compressibility (βS). This cannot be done by any other method. Isentropic compressibility has been widely used to ...

  17. Mechanochemically prepared ternary hybrid cathode material for lithium batteries

    International Nuclear Information System (INIS)

    Posudievsky, Oleg Yu; Kozarenko, Olga A.; Dyadyun, Vyacheslav S.; Jorgensen, Scott W.; Spearot, James A.; Koshechko, Vyacheslav G.; Pokhodenko, Vitaly D.

    2013-01-01

    Graphical abstract: The presence of macromolecules of an ion-conducting polymer in the composition of the ternary nanocomposite PPy–PEO/V 2 O 5 promotes interfacial transfer of lithium ions and also facilitates faster transport inside the particles of the nanocomposite. -- Highlights: • Two- and three component nanocomposites are prepared via a solvent-free mechanochemical synthesis. • The nanocomposites retain their capacity above 200 mA h g −1 for at least one hundred cycles. • The presence of PEO promotes interfacial transfer of lithium ions and facilitates faster transport inside the nanocomposite. -- Abstract: Ternary host–guest nanocomposite based on vanadium oxide and two polymers with different types of conductivity (ionic and electronic) – polypyrrole (PPy) and polyethylene oxide (PEO) – is prepared by solventless mechanochemical synthesis. The nanocomposite can be reversibly cycled with a specific capacity of ∼200 mA h g −1 for at least one hundred cycles of full charge–discharge as the active component of the positive electrode of lithium batteries. Electrochemical performance of ternary PPy 0.1 PEO 0.15 V 2 O 5 is compared with two-component analog PPy 0.1 V 2 O 5 . The presence of macromolecules of an ion-conducting polymer in the composition of the ternary nanocomposite PPy 0.1 PEO 0.15 V 2 O 5 promotes interfacial transfer of lithium ions and also facilitates faster transport inside the particles of the nanocomposite

  18. The ternary-encoded fuzzy-neural networks

    OpenAIRE

    Semenova, Olena; Semenov, Andriy; Koval, Kostyantyn; Galka, Andriy

    2012-01-01

    When combining fuzzy logic and neural networks it is possible to get a hybrid system that can process uncertain values and can be trained. Fuzzy logic elements can be regarded as fuzzy-neural networks. In order to present a set of fuzzy values the ternary encoding is used.

  19. Excess isentropic compressibility and speed of sound of the ternary ...

    Indian Academy of Sciences (India)

    Speed of sound of the binary mixtures and the ternary mixture have been compared with calculated values from free length theory (FLT), collision factor theory (CFT), Nomoto's relation (NR), Van Deal's ideal mixing relation (IMR) and Junjie's relation (JR). The results are used to compare the relative merits of these theories ...

  20. Studies on Molecular Interaction in Ternary Liquid Mixtures

    Directory of Open Access Journals (Sweden)

    R. Uvarani

    2010-01-01

    Full Text Available Ultrasonic velocity, density and viscosity for the ternary liquid mixtures of cyclohexanone with 1-propanol and 1-butanol in carbon tetrachloride were measured at 303 K. The acoustical parameters and their excess values were calculated. The trends in the variation of these excess parameters were used to discuss the nature and strength of the interactions present between the component molecules.

  1. Optical Properties of Lead Silver Sulphide Ternary Thin Films ...

    African Journals Online (AJOL)

    Optical Properties of Lead Silver Sulphide Ternary Thin Films Deposited by Chemical Bath Method. ... The optical properties studied include reflectance, absorption coefficient, thickness, refractive index, extinction coefficient, optical conductivity and band gap energy. The films showed very high absorbance in the UV region, ...

  2. Application of Analytic Geometry to Ternary and Quaternary Diagrams.

    Science.gov (United States)

    MacCarthy, Patrick

    1986-01-01

    Advantages of representing ternary and quaternary composition diagrams by means of rectangular coordinates were pointed out in a previous paper (EJ 288 693). A further advantage of that approach is that analytic geometry, based on rectangular coordinates, is directly applicable as demonstrated by the examples presented. (JN)

  3. Ternary forecast of heavy snowfall in the Honam area, Korea

    Science.gov (United States)

    Sohn, Keon Tae; Lee, Jeong Hyeong; Cho, Young Seuk

    2009-03-01

    The objective of this study is to improve the statistical modeling for the ternary forecast of heavy snowfall in the Honam area in Korea. The ternary forecast of heavy snowfall consists of one of three values, 0 for less than 50 mm, 1 for an advisory (50-150 mm), and 2 for a warning (more than 150 mm). For our study, the observed daily snow amounts and the numerical model outputs for 45 synoptic factors at 17 stations in the Honam area during 5 years (2001 to 2005) are used as observations and potential predictors respectively. For statistical modeling and validation, the data set is divided into training data and validation data by cluster analysis. A multi-grade logistic regression model and neural networks are separately applied to generate the probabilities of three categories based on the model output statistic (MOS) method. Two models are estimated by the training data and tested by the validation data. Based on the estimated probabilities, three thresholds are chosen to generate ternary forecasts. The results are summarized in 3×3 contingency tables and the results of the three-grade logistic regression model are compared to those of the neural networks model. According to the model training and model validation results, the estimated three-grade logistic regression model is recommended as a ternary forecast model for heavy snowfall in the Honam area.

  4. Robust Self-Triggered Coordination With Ternary Controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo; Nair, G.N.

    2013-01-01

    This paper regards the coordination of networked systems, studied in the framework of hybrid dynamical systems. We design a coordination scheme which combines the use of ternary controllers with a self-triggered communication policy. The communication policy requires the agents to measure, at each

  5. Excess isentropic compressibility and speed of sound of the ternary

    Indian Academy of Sciences (India)

    These excess properties of the binary mixtures were fitted to Redlich-Kister equation, while the Cibulka's equation was used to fit the values related to the values to the ternary system. These excess properties have been used to discuss the presence of significant interactions between the component molecules in the binary ...

  6. Univolatility curves in ternary mixtures: geometry and numerical computation

    DEFF Research Database (Denmark)

    Shcherbakova, Nataliya; Rodriguez-Donis, Ivonne; Abildskov, Jens

    2017-01-01

    We propose a new non-iterative numerical algorithm allowing computation of all univolatility curves in homogeneous ternary mixtures independently of the presence of the azeotropes. The key point is the concept of generalized univolatility curves in the 3D state space, which allows the main...... computational part to be reduced to a simple integration of a system of ordinary differential equations....

  7. Segregation in ternary alloys: an interplay of driving forces

    International Nuclear Information System (INIS)

    Luyten, J.; Helfensteyn, S.; Creemers, C.

    2003-01-01

    Monte Carlo (MC) simulations combined with the constant bond energy (CBE) model are set up to explore and understand the general segregation behaviour in ternary alloys as a function of composition and more in particular the segregation to Cu-Ni-Al (1 0 0) surfaces. Besides its simplicity, allowing swift simulations, which are necessary for a first general survey over all possible compositions, one of the advantages of the CBE model lies in the possibility to clearly identify the different driving forces for segregation. All simulations are performed in the Grand Canonical Ensemble, using a new algorithm to determine the chemical potential of the components. Notwithstanding the simplicity of the CBE model, one extra feature is evidenced: depending on the values of the interatomic interaction parameters, in some regions of the ternary diagram, a single solid solution becomes thermodynamically unstable, leading to demixing into two conjugate phases. The simulations are first done for three hypothetical systems that are however representative for real alloy systems. The three systems are characterised by different sets of interatomic interaction parameters. These extensive simulations over the entire composition range of the ternary alloy yield a 'topographical' segregation map, showing distinct regions where different species segregate. These distinct domains originate from a variable interplay between the driving forces for segregation and attractive/repulsive interactions in the bulk of the alloy. The results on these hypothetical systems are very helpful for a better understanding of the segregation behaviour in Cu-Ni-Al and other ternary alloys

  8. Robust self-triggered coordination with ternary controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo

    2013-01-01

    This paper regards the coordination of networked systems, studied in the framework of hybrid dynamical systems. We design a coordination scheme which combines the use of ternary controllers with a self-triggered communication policy. The communication policy requires the agents to measure, at each

  9. Intermolecular Interactions in Ternary Glycerol–Sample–H2O

    DEFF Research Database (Denmark)

    Westh, Peter; Rasmussen, Erik Lumby; Koga, Yoshikata

    2011-01-01

    We studied the intermolecular interactions in ternary glycerol (Gly)–sample (S)–H2O systems at 25 °C. By measuring the excess partial molar enthalpy of Gly, HGlyEHEGly, we evaluated the Gly–Gly enthalpic interaction, HGly-GlyEHEGly--Gly, in the presence of various samples (S). For S, tert...

  10. Ternary mixtures of alkyltriphenylphosphonium bromides (C12 TPB ...

    Indian Academy of Sciences (India)

    Administrator

    TPB) in aqueous medium: their interfacial, bulk and fluorescence quenching behaviour. GARGI BASU RAY, SOUMEN .... aqueous and micellar media of CTAB and SDS at concentrations 20 times their CMCs. The alkyl- ... vailing in the ternary mixed micelles in contrast to the predominantly antagonistic behaviour reported.

  11. Ternary mixtures of alkyltriphenylphosphonium bromides (C12 TPB ...

    Indian Academy of Sciences (India)

    Administrator

    C14TPB and C16TPB, respectively (structures shown in scheme 1). Prasad et al23 have reported the prop- erties of binary .... dicating associative or cooperative interaction pre- vailing in the ternary mixed micelles in contrast to ... The organizational change in the mixed systems with variation in the associated counterion.

  12. Evaluation of griseofulvin binary and ternary solid dispersions with HPMCAS.

    Science.gov (United States)

    Al-Obaidi, Hisham; Buckton, Graham

    2009-01-01

    The stability and dissolution properties of griseofulvin binary and ternary solid dispersions were evaluated. Solid dispersions of griseofulvin and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared using the spray drying method. A third polymer, poly[N-(2-hydroxypropyl)methacrylate] (PHPMA), was incorporated to investigate its effect on the interaction of griseofulvin with HPMCAS. In this case, HPMCAS can form H bonds with griseofulvin directly; the addition of PHPMA to the solid dispersion may enhance the stability of the amorphous griseofulvin due to greater interaction with griseofulvin. The X-ray powder diffraction results showed that griseofulvin (binary and ternary solid dispersions) remained amorphous for more than 19 months stored at 85% RH compared with the spray-dried griseofulvin which crystallized totally within 24 h at ambient conditions. The Fourier transform infrared scan showed that griseofulvin carbonyl group formed hydrogen bonds with the hydroxyl group in the HPMCAS, which could explain the extended stability of the drug. Further broadening in the peak could be seen when PHPMA was added to the solid dispersion, which indicates stronger interaction. The glass transition temperatures increased in the ternary solid dispersions regardless of HPMCAS grade. The dissolution rate of the drug in the solid dispersion (both binary and ternary) has significantly increased when compared with the dissolution profile of the spray-dried griseofulvin. These results reveal significant stability of the amorphous form due to the hydrogen bond formation with the polymer. The addition of the third polymer improved the stability but had a minor impact on dissolution.

  13. Design of ternary low-power Domino JKL flip—flop and its application

    International Nuclear Information System (INIS)

    Wang Pengjun; Yang Qiankun; Zheng Xuesong

    2012-01-01

    By researching the ternary flip—flop and the adiabatic Domino circuit, a novel design of low-power ternary Domino JKL flip—flop on the switch level is proposed. First, the switch-level structure of the ternary adiabatic Domino JKL flip—flop is derived according to the switch-signal theory and its truth table. Then the ternary loop operation circuit and ternary reverse loop operation circuit are achieved by employing the ternary JKL flip—flop. Finally, the circuit is simulated by using the Spice tool and the results show that the logic function is correct. The energy consumption of the ternary adiabatic Domino JKL flip—flop is 69% less than its conventional Domino counterpart. (semiconductor integrated circuits)

  14. Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); Halpert, Gerald (Inventor); Fultz, Brent (Inventor); Witham, Charles K. (Inventor); Bowman, Robert C. (Inventor); Hightower, Adrian (Inventor)

    1997-01-01

    An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  15. Experimental investigation of the Ag–Bi–I ternary system and thermodynamic properties of the ternary phases

    International Nuclear Information System (INIS)

    Mashadieva, Leyla F.; Aliev, Ziya S.; Shevelkov, Andrei V.; Babanly, Mahammad B.

    2013-01-01

    Highlights: ► The self-consistent phase diagram of the Ag–Bi–I system is constructed. ► Ag 2 BiI 5 and AgBi 2 I 7 are the only ternary phases of the system. ► Standard thermodynamic functions of formation and the standard entropies of Ag 2 BiI 5 and AgBi 2 I 7 are calculated. - Abstract: The phase equilibriums in the Ag–Bi–I ternary system and thermodynamic properties of the ternary phases were experimentally determined by using DTA and XRD techniques and EMF measurements with the Ag 4 RbI 5 solid electrolyte. According to the obtained experimental results, the polythermal sections of the ternary phase diagram, its isothermal section at 300 K as well as the projection of the liquids surface have been revised. The fields of the primary crystallization and types and coordinates of nonvariant and monovariant equilibriums were determined. The partial molar functions of silver iodide and silver in the alloys as well as the standard thermodynamic functions of formation and the standard entropies of Ag 2 BiI 5 and AgBi 2 I 7 were calculated based on EMF measurements.

  16. Phase equilibria in the Mo-Fe-P system at 800 °C and structure of ternary phosphide (Mo(1-x)Fe(x))3P (0.10 ≤ x ≤ 0.15).

    Science.gov (United States)

    Oliynyk, Anton O; Lomnytska, Yaroslava F; Dzevenko, Mariya V; Stoyko, Stanislav S; Mar, Arthur

    2013-01-18

    Construction of the isothermal section in the metal-rich portion (ternary phases: (Mo(1-x)Fe(x))(2)P (x = 0.30-0.82) and (Mo(1-x)Fe(x))(3)P (x = 0.10-0.15). The occurrence of a Co(2)Si-type ternary phase (Mo(1-x)Fe(x))(2)P, which straddles the equiatomic composition MoFeP, is common to other ternary transition-metal phosphide systems. However, the ternary phase (Mo(1-x)Fe(x))(3)P is unusual because it is distinct from the binary phase Mo(3)P, notwithstanding their similar compositions and structures. The relationship has been clarified through single-crystal X-ray diffraction studies on Mo(3)P (α-V(3)S-type, space group I42m, a = 9.7925(11) Å, c = 4.8246(6) Å) and (Mo(0.85)Fe(0.15))(3)P (Ni(3)P-type, space group I4, a = 9.6982(8) Å, c = 4.7590(4) Å) at -100 °C. Representation in terms of nets containing fused triangles provides a pathway to transform these closely related structures through twisting. Band structure calculations support the adoption of these structure types and the site preference of Fe atoms. Electrical resistivity measurements on (Mo(0.85)Fe(0.15))(3)P reveal metallic behavior but no superconducting transition.

  17. Thermodynamic calculations in ternary titanium–aluminium–manganese system

    Directory of Open Access Journals (Sweden)

    ANA I. KOSTOV

    2008-04-01

    Full Text Available Thermodynamic calculations in the ternary Ti–Al–Mn system are shown in this paper. The thermodynamic calculations were performed using the FactSage thermochemical software and database, with the aim of determining thermodynamic properties, such as activities, coefficient of activities, partial and integral values of the enthalpies and Gibbs energies of mixing and excess energies at two different temperatures: 2000 and 2100 K. Bearing in mind that no experimental data for the Ti–Al–Mn ternary system have been obtained or reported. The obtained results represent a good base for further thermodynamic analysis and may be useful as a comparison with some future critical experimental results and thermodynamic optimization of this system.

  18. A New Multifunctional Sensor for Measuring Concentrations of Ternary Solution

    Science.gov (United States)

    Wei, Guo; Shida, Katsunori

    This paper presents a multifunctional sensor with novel structure, which is capable of directly sensing temperature and two physical parameters of solutions, namely ultrasonic velocity and conductivity. By combined measurement of these three measurable parameters, the concentrations of various components in a ternary solution can be simultaneously determined. The structure and operation principle of the sensor are described, and a regression algorithm based on natural cubic spline interpolation and the least square method is adopted to estimate the concentrations. The performances of the proposed sensor are experimentally tested by the use of ternary aqueous solution of sodium chloride and sucrose, which is widely involved in food and beverage industries. This sensor could prove valuable as a process control sensor in industry fields.

  19. Dynamical theory of subconstituents based on ternary algebras

    International Nuclear Information System (INIS)

    Bars, I.; Guenaydin, M.

    1980-01-01

    We propose a dynamical theory of possible fundamental constituents of matter. Our scheme is based on (super) ternary algebras which are building blocks of Lie (super) algebras. Elementary fields, called ''ternons,'' are associated with the elements of a (super) ternary algebra. Effective gauge bosons, ''quarks,'' and ''leptons'' are constructed as composite fields from ternons. We propose two- and four-dimensional (super) ternon theories whose structures are closely related to CP/sub N/ and Yang-Mills theories and their supersymmetric extensions. We conjecture that at large distances (low energies) the ternon theories dynamically produce effective gauge theories and thus may be capable of explaining the present particle-physics phenomenology. Such a scenario is valid in two dimensions

  20. Ternary and senary representations using DNA double-crossover tiles.

    Science.gov (United States)

    Kim, Byeonghoon; Jo, Soojin; Son, Junyoung; Kim, Junghoon; Kim, Min Hyeok; Hwang, Si Un; Dugasani, Sreekantha Reddy; Kim, Byung-Dong; Liu, Wing Kam; Kim, Moon Ki; Park, Sung Ha

    2014-03-14

    The information capacity of DNA double-crossover (DX) tiles was successfully increased beyond a binary representation to higher base representations. By controlling the length and the position of DNA hairpins on the DX tile, ternary and senary (base-3 and base-6) digit representations were realized and verified by atomic force microscopy. Also, normal mode analysis was carried out to study the mechanical characteristics of each structure.

  1. Evaluation of Griseofulvin Binary and Ternary Solid Dispersions with HPMCAS

    OpenAIRE

    Al-Obaidi, Hisham; Buckton, Graham

    2009-01-01

    The stability and dissolution properties of griseofulvin binary and ternary solid dispersions were evaluated. Solid dispersions of griseofulvin and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared using the spray drying method. A third polymer, poly[N-(2-hydroxypropyl)methacrylate] (PHPMA), was incorporated to investigate its effect on the interaction of griseofulvin with HPMCAS. In this case, HPMCAS can form H bonds with griseofulvin directly; the addition of PHPMA to t...

  2. Excess isentropic compressibility and speed of sound of the ternary ...

    Indian Academy of Sciences (India)

    Vi, αi and Cp,i are molar volume, cubic expansion coefficient, and the molar heat capacity of pure components, respectively. The excess speed of sound, uE, is estimated in binary and ternary mixtures using the following expression: uE = u − uid = u − (ρidκid s )−1/2,. (5) where ρid is the density of the corresponding ideal ...

  3. Thermoelectric properties of RuSb2Te ternary skutterudites

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Jiří; Plecháček, T.; Drašar, Č.; Laufek, F.

    2013-01-01

    Roč. 42, č. 7 (2013), s. 1864-1869 ISSN 0361-5235 R&D Projects: GA ČR GAP108/10/1315 Institutional support: RVO:61389013 Keywords : RuSb2Te * ternary skutterudite * doping Subject RIV: CA - Inorganic Chemistry Impact factor: 1.675, year: 2013 http://link.springer.com/article/10.1007/s11664-012-2451-5

  4. Ternary Ag/epoxy adhesive with excellent overall performance.

    Science.gov (United States)

    Ji, Yan-Hong; Liu, Yu; Huang, Gui-Wen; Shen, Xiao-Jun; Xiao, Hong-Mei; Fu, Shao-Yun

    2015-04-22

    Excellent electrical conductivity (EC) generally conflicts with high lap shear strength (LSS) for electrically conductive adhesives (ECAs) since EC increases while LSS decreases with increasing conductive filler content. In this work, the ECAs with the excellent overall performance are developed based on the ternary hybrid of Ag microflakes (Ag-MFs), Ag nanospheres (Ag-NSs), and Ag nanowires (Ag-NWs). First, a low silver content adhesive system is determined. Then, the effects of the relative contents of Ag fillers on the EC and the LSS are studied. It is shown that a small amount of Ag-NSs or Ag-NWs can dramatically improve the EC for the Ag-MF/epoxy adhesives. The Ag-NSs and Ag-NWs with appropriate contents have a synergistic effect in improving the EC. Meanwhile, the LSS of the as-prepared adhesive with the appropriate Ag contents reaches an optimal value. Both the EC and the LSS of the as-prepared ternary hybrid ECA with a low content of 40 wt % Ag are higher than those of the commercial ECAs filled with the Ag-MF content over 60 wt %. Finally, the ternary hybrid ECA with the optimal formulation is shown to be promising for printing the radio frequency identification tag antennas as an immediate application example.

  5. Realizing Ternary Logic in FPGAs for SWL DSP Systems

    Directory of Open Access Journals (Sweden)

    Tayeb Din

    2013-07-01

    Full Text Available Recently SWL (Short Word Length DSP (Digital Signal Processing applications has been proposed to overcome multiplier complexity that is evident in most of the digital applications. These SWL applications have been processed through sigma-delta modulation as a key element. For such applications, adder design plays vital role and can impact upon the chip area and its performance. In this paper, a ternary approach for adder tree has been proposed instead of binary that can accommodate more data with less chip-area at the cost of extra pin. The proposed ternary adder tree has been designed and developed in Quartus-II using three different design strategies namely T-gate (Ternary gate, LUT (Look Up Table and algebraic equations. Through rigorous simulation it was found that T-gate technique results in superior performance, an average of 23.5 and 33% improvement compared to the same adder structure based on Boolean Algebraic Equation and LUT, respectively. The proposed adder design would benefit the efficient implementation of SWL applications.

  6. Gases and carbon in metals

    International Nuclear Information System (INIS)

    Jehn, H.; Fromm, E.; Hoerz, G.

    1978-01-01

    This issue is part of a series of data on 'gases and carbon in metals'. The present survey includes results from papers dealing with gases and carbon in actinides and recommends critically selected data for each element. Firstly data od binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility limit, dissociation pressure of compunds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas adsorption and gas desorption kinetics, compound formation, precipitation kinetics, and property changes. Following the data on binary systems, the data of ternary systems are presented, beginning with systems which contain one metal and two gases or one gas and carbon and continuing with systems with two metals and one gas or carbon. Within a ternary system the topics are arranged in the same way as in binary systems. (HB) [de

  7. Ternary fission of 184466,476X formed in U + U collisions

    International Nuclear Information System (INIS)

    Karthikraj, C.; Subramanian, S.; Selvaraj, S.

    2016-01-01

    Recently, the very rare process of nuclear ternary fission has been of great interest in nuclear dynamics. Based on the statistical theory of fission, we discuss here the ternary-fission mass distribution of 184 466,476 X formed in low-energy U + U collisions for different heavy third fragments at T = 1 and 2 MeV. The expected ternary configurations 208 Pb + 208 Pb + 50 Ca and 204 Hg + 204 Hg + 58 Cr are obtained from the ternary fission of 184 466 X at T = 2 MeV. In addition, for both the systems, various possible ternary modes are listed for different heavy third fragments. Our results clearly indicate that the favored ternary configurations have either proton and/or neutron shell closure nucleus as one of their partners. (orig.)

  8. State-of-the-art Sn2+-based ternary oxides as photocatalysts for water splitting: electronic structures and optoelectronic properties

    KAUST Repository

    Noureldine, Dalal

    2016-09-19

    Developing visible light responsive metal oxide photocatalysts is a challenge that must be conquered to achieve high efficiency for water splitting or hydrogen evolution reactions. Valence band engineering is possible by forming ternary oxides using the combination of a metal cation with an s2d10 electronic configuration and a transition metal oxide with a d0 configuration. Many (Sn2+, Bi3+, Pb2+)-based ternary metal oxide photocatalysts have been reported for hydrogen and/or oxygen evolution under visible irradiation. Sn2+-based materials have attracted particular attention because tin is inexpensive, abundant and more environmentally friendly than lead or bismuth. In this review, we provide a fruitful library for Sn2+-based photocatalysts that have been reported to evolve hydrogen using sacrificial reagents, including SnNb2O6, Sn2Nb2O7, SnTaxNb2−xO6, SnTa2O6, Sn2Ta2O7, SnWO4 (α and β phases), SnSb2O6·nH2O, and Sn2TiO4. The synthesis method used in the literature and the resultant morphology and crystal structure of each compound are discussed. The density functional theory (DFT) calculations of the electronic structure and density of states are provided, and the consequent optoelectronic properties such as band gap, nature of the bandgap, dielectric constant, and effective masses are summarized. This review will help highlight the main challenges for Sn2+-based materials.

  9. Nanostructure-Directed Chemical Sensing: The IHSAB Principle and the Effect of Nitrogen and Sulfur Functionalization on Metal Oxide Decorated Interface Response

    Directory of Open Access Journals (Sweden)

    James L. Gole

    2013-08-01

    Full Text Available The response matrix, as metal oxide nanostructure decorated n-type semiconductor interfaces are modified in situ through direct amination and through treatment with organic sulfides and thiols, is demonstrated. Nanostructured TiO2, SnOx, NiO and CuxO (x = 1,2, in order of decreasing Lewis acidity, are deposited to a porous silicon interface to direct a dominant electron transduction process for reversible chemical sensing in the absence of significant chemical bond formation. The metal oxide sensing sites can be modified to decrease their Lewis acidity in a process appearing to substitute nitrogen or sulfur, providing a weak interaction to form the oxynitrides and oxysulfides. Treatment with triethylamine and diethyl sulfide decreases the Lewis acidity of the metal oxide sites. Treatment with acidic ethane thiol modifies the sensor response in an opposite sense, suggesting that there are thiol (SH groups present on the surface that provide a Brønsted acidity to the surface. The in situ modification of the metal oxides deposited to the interface changes the reversible interaction with the analytes, NH3 and NO. The observed change for either the more basic oxynitrides or oxysulfides or the apparent Brønsted acid sites produced from the interaction of the thiols do not represent a simple increase in surface basicity or acidity, but appear to involve a change in molecular electronic structure, which is well explained using the recently developed inverse hard and soft acids and bases (IHSAB model.

  10. Perovskite oxynitride LaTiO{sub x}N{sub y} thin films: Dielectric characterization in low and high frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Ziani, A. [Institut d' Electronique et de Telecommunications de Rennes (IETR) UMR-CNRS 6164, groupe ' Antennes et Hyperfrequences' , University of Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex (France); Le Paven-Thivet, C., E-mail: claire.lepaven@univ-rennes1.fr [Institut d' Electronique et de Telecommunications de Rennes (IETR) UMR-CNRS 6164, groupe ' Antennes et Hyperfrequences' , University of Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex (France); Benzerga, R.; Le Gendre, L. [Institut d' Electronique et de Telecommunications de Rennes (IETR) UMR-CNRS 6164, groupe ' Antennes et Hyperfrequences' , University of Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex (France); Fasquelle, D. [Laboratoire d' Etude des Materiaux et des Composants pour l' Electronique (LEMCEL) UPRES-EA 2601, University of Littoral-Cote d' Opale, 50 rue Ferdinand Buisson, F-62228 Calais cedex (France); Kassem, H. [Laboratoire de l' Integration du Materiau au Systeme(IMS) UMR-CNRS 5218, groupe Materiaux, University of Bordeaux 1, 16 avenue Pey-Berland, 33607 Pessac (France); and others

    2011-11-01

    Lanthanum titanium oxynitride (LaTiO{sub x}N{sub y}) thin films are studied with respect to their dielectric properties in low and high frequencies. Thin films are deposited by radio frequency magnetron sputtering on different substrates. Effects of nitrogen content and crystalline quality on dielectric properties are investigated. In low-frequency range, textured LaTiO{sub x}N{sub y} thin films deposited on conductive single crystal Nb-STO show a dielectric constant {epsilon} Prime Almost-Equal-To 140 with low losses tan{delta} = 0.012 at 100 kHz. For the LaTiO{sub x}N{sub y} polycrystalline films deposited on conductive silicon substrates with platinum (Pt/Ti/SiO{sub 2}/Si), the tunability reached up to 57% for a weak electric field of 50 kV/cm. In high-frequency range, epitaxial LaTiO{sub x}N{sub y} films deposited on MgO substrate present a high dielectric constant with low losses ({epsilon} Prime Almost-Equal-To 170, tan{delta} = 0.011, 12 GHz).

  11. Effect of annealing temperature on the structural, morphological, and mechanical properties of polycrystalline zirconium oxynitride composite films deposited by plasma focus device

    Science.gov (United States)

    Khan, Ijaz A.; Kashif, Muhammad; Farid, Amjad; Rawat, Rajdeep S.; Ahmad, Riaz

    2017-12-01

    In this article, we reveal the post deposition annealing effect on the structural, morphological, and mechanical properties of polycrystalline zirconium oxynitride (P-ZrON) composite films deposited for 40 focus shots using a plasma focus device. The development of Zr(101), ZrN(111), ZrN(200), Zr3N4(320), ZrN0.28(002), and m-ZrO2(200) diffraction peaks confirms the deposition of P-ZrON composite films. The peak intensity, crystallite size, dislocation density, compressive stress, and texture coefficient of the Zr3N4(320) plane and the microstructural features such as the shape, size and distribution of nanoparticles as well as the film compactness are influenced by the annealing temperature. Elemental analysis confirms the presence of Zr, N, and O in the deposited films. The microhardness of the P-ZrON composite film annealed at 500 °C is found to be 11.87 GPa which is 7.8 times that of virgin zirconium.

  12. Effect of additive gases and injection methods on chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F2 remote plasmas

    International Nuclear Information System (INIS)

    Yun, Y. B.; Park, S. M.; Kim, D. J.; Lee, N.-E.; Kim, K. S.; Bae, G. H.

    2007-01-01

    The authors investigated the effects of various additive gases and different injection methods on the chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F 2 remote plasmas. N 2 and N 2 +O 2 gases in the F 2 /Ar/N 2 and F 2 /Ar/N 2 /O 2 remote plasmas effectively increased the etch rate of the layers. The addition of direct-injected NO gas increased the etch rates most significantly. NO radicals generated by the addition of N 2 and N 2 +O 2 or direct-injected NO molecules contributed to the effective removal of nitrogen and oxygen in the silicon nitride and oxide layers, by forming N 2 O and NO 2 by-products, respectively, and thereby enhancing SiF 4 formation. As a result of the effective removal of the oxygen, nitrogen, and silicon atoms in the layers, the chemical dry etch rates were enhanced significantly. The process regime for the etch rate enhancement of the layers was extended at elevated temperature

  13. Intermixing of InGaAs/GaAs quantum wells and quantum dots using sputter-deposited silicon oxynitride capping layers

    Energy Technology Data Exchange (ETDEWEB)

    McKerracher, Ian; Fu Lan; Hoe Tan, Hark; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2012-12-01

    Various approaches can be used to selectively control the amount of intermixing in III-V quantum well and quantum dot structures. Impurity-free vacancy disordering is one technique that is favored for its simplicity, however this mechanism is sensitive to many experimental parameters. In this study, a series of silicon oxynitride capping layers have been used in the intermixing of InGaAs/GaAs quantum well and quantum dot structures. These thin films were deposited by sputter deposition in order to minimize the incorporation of hydrogen, which has been reported to influence impurity-free vacancy disordering. The degree of intermixing was probed by photoluminescence spectroscopy and this is discussed with respect to the properties of the SiO{sub x}N{sub y} films. This work was also designed to monitor any additional intermixing that might be attributed to the sputtering process. In addition, the high-temperature stress is known to affect the group-III vacancy concentration, which is central to the intermixing process. This stress was directly measured and the experimental values are compared with an elastic-deformation model.

  14. Novel tunable green-red-emitting oxynitride phosphors co-activated with Ce3+, Tb3+, and Eu3+: photoluminescence and energy transfer.

    Science.gov (United States)

    Huo, Jiansheng; Dong, Langping; Lü, Wei; Shao, Baiqi; You, Hongpeng

    2017-07-14

    A series of novel Ce 3+ , Tb 3+ and Eu 3+ ion doped Y 4 SiAlO 8 N-based oxynitride phosphors were synthesized by the solid-state method and characterized by X-ray powder diffraction, scanning electron microscopy, photoluminescence, lifetimes and thermo-luminescence. The excitation of the Ce 3+ /Tb 3+ co-doped and Ce 3+ /Tb 3+ /Eu 3+ tri-doped phosphor with near-UV radiation results in strong linear Tb 3+ green and Eu 3+ red emission. The occurrence of Ce 3+ -Tb 3+ and Ce 3+ -Tb 3+ -Eu 3+ energy transfer processes is responsible for the bright green or red luminescence. The Tb 3+ ion acting as an energy transfer bridge can alleviate MMCT quenching between the Ce 3+ -Eu 3+ ion pairs. The lifetime measurements demonstrated that the energy-transfer mechanisms of Ce 3+ → Tb 3+ and Tb 3+ → Eu 3+ are dipole-quadrupole and quadrupole-quadrupole interactions, respectively. The temperature dependent luminescence measurements showed that as-prepared green/red phosphors have good thermal stability against temperature quenching. The obtained results indicate that these phosphors might serve as promising candidates for n-UV LEDs.

  15. Can time reversal invariance be tested in ternary fission?

    International Nuclear Information System (INIS)

    Jesinger, P.; Koetzle, A.; Goennenwein, F.; Schmidt, K.; Gagarski, A. M.; Petrov, G. A.; Petrova, V. I.; Danilyan, G.; Pavlov, V. S.; Chvatchkin, V. B.; Mutterer, M.; Neumaier, S. R.; Nesvizhevsky, V.; Zimmer, O.; Geltenbort, P.; Korobkina, K.

    1998-01-01

    Already several years ago the idea has been put forward that a reaction well suited for tests of Time Reversal Invariance (TRI) might be ternary fission [1][2]. In ternary fission, besides the two main fission fragments, a third (usually light) charged particle is emitted. For a test of TRI a triple correlation has to be studied involving on one hand the momenta of a fission fragment p f and the ternary particle p t , and on the other hand e.g. the spin of the neutron inducing fission s. The correlation coefficient B=s·[p f xp t ] for the respective unit vectors s, p f and p t reverses sign upon time reversal and a non-vanishing expectation value for B could possibly be due to TRI being violated. However, final state interactions could equally well lead to a non-zero B with TRI being perfectly conserved. A first experiment of this type has been performed in early 1998 at the ILL. Placing fragment and ternary particle detectors at right angles both relative to each other and relative to a longitudinally polarized neutron beam, the observable B assumes the values B=±1. For a fixed set of detectors the sign of B is reversed upon flipping the neutron spin. The expected count rates for the two spin orientations are N=N 0 ·(1±D) with N 0 the count rate for an unpolarized beam. The asymmetry D measures the expectation value of the observable B. The reaction chosen was 233 U(n,f). An unexpectedly large correlation coefficient passing all tests of fake asymmetries was observed. From the raw data the expectation value for B is D=-(2.35±0.05)·10 -3 with the sign corresponding to light fragments. Corrections for finite solid angles subtended by the detectors are not included in the above figure. The corrections will further increase the correlation coefficient. At the moment the mere size of D is believed to rule out a failure of TRI as the origin of the effect. But even a less spectacular interpretation--which as yet is not available--should give a detailed and quite

  16. Polarographic and potentiometric studies on some binary and ternary complex systems of dioxouranium(VI)

    International Nuclear Information System (INIS)

    Janarthanam, M.; Sivasankar, B.; Rengaraj, K.; Nair, M.S.

    1995-01-01

    The relative coordinating abilities of donor sites in the potentially tridentate ligands viz., asparagine, glutamine, aspartic acid and glutamic acid towards uranyl ion have been investigated by polarographic and pH-metric techniques. The metal ion forms 1:2 complexes under polarographic conditions. However, only 1:1 complex is observed under pH-metric conditions, where 1:2 complexes do not proceed due to extensive hydrolysis of the metal ion. The relative variations of ΔE 1/2 with pH and ligand concentration supported by conductometric titration data indicate that the primary amino groups in the amino acids are not involved in coordination with uranyl ion. Further, the amide groups in asparagine and glutamine also do not participate in coordination thus rendering these ligands unidentate. In aspartic and glutamic acid complexes, seven- and eight- membered chelate rings are formed involving two terminal carboxyl groups. The mixed ligand complex equilibria of uranyl ion involving aspartic acid/glutamic acid as primary ligands (A) and maleic acid, malonic acid, succinic acid and lactic acid as secondary ligands (B) have also been studied by computer based numerical evaluation of pH titration data. The concentration profiles have indicated the favorability of the formation of ternary complexes in general as reflected in the Δlog K values. (author). 10 refs., 1 fig., 1 tab

  17. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide

    KAUST Repository

    Cabán-Acevedo, Miguel

    2015-09-14

    The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS 2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to further improvements in catalytic activity. Here we present a combined theoretical and experimental study to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production. Nanostructured CoPS electrodes achieved a geometrical catalytic current density of 10 mA cm at overpotentials as low as 48mV, with outstanding long-term operational stability. Integrated photocathodes of CoPS on n -p-p silicon micropyramids achieved photocurrents up to 35 mA cm at 0 V versus the reversible hydrogen electrode (RHE), onset photovoltages as high as 450 mV versus RHE, and the most efficient solar-driven hydrogen generation from Earth-abundant systems.

  18. Liquid-liquid equilibria for binary and ternary polymer solutions with PC-SAFT

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2004-01-01

    are used for investigating the correlative and predictive capabilities of the thermodynamic model PC-SAFT. The investigation shows that the model correlates well experimental LLE data for binary as well as ternary systems but further predicts the behavior of the ternary systems with reasonably good......Two algorithms for evaluating liquid-liquid equilibria (LLE) for binary and ternary polymer solutions are presented. The binary algorithm provides the temperature versus concentration cloud-point curve at fixed pressure, whereas the ternary algorithm provides component 1 versus component 2...

  19. Exploring multi-metal biosorption by indigenous metal-hyperresistant Enterobacter sp. J1 using experimental design methodologies

    International Nuclear Information System (INIS)

    Lu, W.-B.; Kao, W.-C.; Shi, J.-J.; Chang, J.-S.

    2008-01-01

    A novel experimental design, combining mixture design and response surface methodology (RSM), was developed to investigate the competitive adsorption behavior of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 able to tolerate high concentrations of a variety of heavy metals. Using the proposed combinative experimental design, two different experiment designs in a ternary metal biosorption system can be integrated to a succinct experiment and the number of experimental trials was markedly reduced from 38 to 26 by reusing the mutual experimental data. Triangular contour diagrams and triangular three-dimensional surface plots were generated to describe the ternary metal biosorption equilibrium data in mixture design systems. The results show that the preference of metal sorption of Enterobacter sp. J1 decreased in the order of Pb 2+ > Cu 2+ > Cd 2+ . The presence of other metals resulted in a competitive effect. The influence of the other two metals in ternary metal biosorption system can be easily determined by comparing the stray distance from the single metal biosorption. The behavior of competitive biosorption was successfully described and predicted using a combined Langmuir-Freundlich model along with new three-dimensional contour-surface plots

  20. Speciation and stability of methylene blue-metal-thiocyanate ion ...

    African Journals Online (AJOL)

    The relative stabilities indicate that cobalt is preferred to other two metals in the speciation of ternary complexes comparable with similar complexes in biosystems. This study also provides a method for the spectrophotometric determination of Co(II) and Zn(II) ions at nanogram levels at 25 oC and an ionic strength of 0.15 M.

  1. The metal-rich sulfides and phosphides of the early transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Franzen, H.F. [Ames Lab., IA (United States)]|[Iowa State Univ., Ames, IA (United States). Dept. of Chemistry

    1996-06-01

    Early work on the preparation of refractory metal-rich compounds of the early transition metals resulted in the understanding that metal-metal bonding results in a structural variety that plays an important role in the high-temperature chemistry of these systems. The binary metal-rich systems have been thoroughly studied at high temperatures, and the structures of most, if not all, of the refractory sulfides and phosphides are known. More recently new ternary phases have been discovered, and these have been shown to result from distributed fractional site occupation of metal atom sites in complex structures. The extent of metal-metal bonding has been quantified by Extended-Hueckel Tight-Bonding calculations using Mullikan Overlap Populations. Correlations of site occupancy with MOP based upon the DFSO model have been observed. 44 refs.

  2. Direct femtosecond observation of charge carrier recombination in ternary semiconductor nanocrystals: The effect of composition and shelling

    KAUST Repository

    Bose, Riya

    2015-02-12

    Heavy-metal free ternary semiconductor nanocrystals are emerging as key materials in photoactive applications. However, the relative abundance of intra-bandgap defect states and lack of understanding of their origins within this class of nanocrystals are major factors limiting their applicability. To remove these undesirable defect states which considerably shorten the lifetimes of photogenerated excited carriers, a detailed understanding about their origin and nature is required. In this report, we monitor the ultrafast charge carrier dynamics of CuInS2 (CIS), CuInSSe (CISSe), and CuInSe2 (CISe) nanocrystals, before and after ZnS shelling, using state-of-the-art time-resolved laser spectroscopy with broadband capabilities. The experimental results demonstrate the presence of both electron and hole trapping intra-bandgap states in the nanocrystals which can be removed significantly by ZnS shelling, and the carrier dynamics is slowed down. Another important observation remains the reduction of carrier lifetime in the presence of Se, and the shelling strategy is observed to be less effective at suppressing trap states. This study provides quantitative physical insights into the role of anion composition and shelling on the charge carrier dynamics in ternary CIS, CISSe, and CISe nanocrystals which are essential to improve their applicability for photovoltaics and optoelectronics.

  3. Modelling Eu(III) speciation in a Eu(III)/PAHA/α-Al2O3 ternary system

    International Nuclear Information System (INIS)

    Janot, Noemie; Reiller, Pascal E.; Benedetti, Marc F.

    2013-01-01

    In this work, modelling of Eu(III) speciation in a ternary system, i.e., in presence of purified Aldrich humic acid (PAHA) and α-Al 2 O 3 , is presented. First, the mineral surface charge is measured by potentiometric titrations and then described using the CD-MUSIC model. This model is also used to describe Eu(III) binding to the α-Al 2 O 3 surface at different pH values, ionic strength and mineral concentrations. Time resolved luminescence spectroscopy (TRLS) is then used to study the binding of Eu(III) to PAHA at pH 4 with different humic acid concentrations. The spectra are used to calculate a spectroscopic 'titration curve', used to determine Eu(III)/PAHA binding parameters in the NICA-Donnan model. Following a previous study (Janot et al., Water Res. 46, 731-740), modelling of the ternary system is based upon the definition of two PAHA pools where one fraction remains in solution and the other is adsorbed onto the mineral surface, with each possessing different proton and metal binding parameters. The modification of protonation behaviour for both fractions is examined using spectrophotometric titrations of the non adsorbed PAHA fraction at different organic/mineral ratios. These data are then used to describe Eu(III) interactions in the ternary system: Eu(III) re-partitioning in the ternary system is calculated for different pH, ionic strength and PAHA concentrations, and results are compared to experimental observations. The model is in good agreement with experimental data, except at high PAHA fractionation rates. Results show that organic complexation dominates over a large pH range, with the predominant species existing as the surface-bound fraction. Above pH 8, Eu(III) seems to be mostly complexed to the mineral surface, which is in agreement with previous spectroscopic observations (Janot et al., Environ. Sci. Technol. 45, 3224-3230). (authors)

  4. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    Science.gov (United States)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  5. Evaporation behaviour of the ternary uranium plutonium carbides

    International Nuclear Information System (INIS)

    Ohse, R.W.; Capone, F.

    1976-01-01

    Simultaneous measurement of total and partial pressures; variation of plutonium pressure with 1/T in the single phase region MC from C/M = 1.014 to 1.15 and two-phase region MC + M 2 C 3 from C/M = 1.15 to 1.30 from 2,000 K to 2,500 K and determination of the corresponding sublimation heat from the measured values; pressure composition diagram of the ternary (U,Pu) carbides giving the phase boundaries between MC and MC + M 2 C 3 phase fields. (RB) [de

  6. (Liquid + liquid) equilibria of (water + butyric acid + esters) ternary systems

    International Nuclear Information System (INIS)

    Kirbaslar, S. Ismail; Sahin, Selin; Bilgin, Mehmet

    2007-01-01

    (Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {water (1) + butyric acid (2) + ethyl propionate or dimethyl phthalate or dibutyl phthalate (3)} at T = 298.15 K and (101.3 ± 0.7) kPa. The relative mutual solubility of the butyric acid is higher in the layers of esters than in the aqueous layer. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region

  7. (Liquid + liquid) equilibria of (water + lactic acid + alcohol) ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Selin [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey); Ismail Kirbaslar, S. [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)], E-mail: krbaslar@istanbul.edu.tr; Bilgin, Mehmet [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)

    2009-01-15

    (Liquid + liquid) equilibrium (LLE) measurements of the solubility (binodal) curves and tie-line end compositions were carried out for {l_brace}water (1) + lactic acid (2) + octanol, or nonanol, or decanol (3){r_brace} at T = 298.15 K and 101.3 {+-} 0.7 kPa. The relative mutual solubility of lactic acid is higher in the water layers than in the organic layers. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE results for the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  8. (Liquid + liquid) equilibria of (water + propionic acid + alcohol) ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirbaslar, S. Ismail [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)]. E-mail: krbaslar@istanbul.edu.tr; Sahin, Selin [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey); Bilgin, Mehmet [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)

    2006-12-15

    (Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end composition were examined for mixtures of {l_brace}water (1) + propionic acid (2) + octanol or nonanol or decanol or dodecanol (3){r_brace} at T = 298.15 K and 101.3 {+-} 0.7 kPa. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  9. Paramagnetic centers in ternary coordinated oxygen in beryllium aluminosilicate glasses

    International Nuclear Information System (INIS)

    Blaginina, L.A.; Zatsepin, A.F.; Dmitriev, I.A.

    1988-01-01

    Glasses of the composition 3BeO-Al 2 O 3 -6SiO 2 containing a homogenizing additive of MgF 2 were synthesized. The ESR spectra of x-ray and gamma irradiated specimens were determined. A complex ESR spectrum arose in the original glass. The ESR spectrum of the gamma-irradiated polycrystalline Be 2 SiO 4 glass was almost identical to the crystallized glass. It was shown that the presence of beryllium atoms in the composition of silicate glasses created the conditions for the formation of structural fragments with ternary coordinated oxygen

  10. Quantifying the energetics of cooperativity in a ternary protein complex

    DEFF Research Database (Denmark)

    Andersen, Peter S; Schuck, Peter; Sundberg, Eric J

    2002-01-01

    and mathematical modeling to describe the energetics of cooperativity in a trimolecular protein complex. As a model system for quantifying cooperativity, we studied the ternary complex formed by the simultaneous interaction of a superantigen with major histocompatibility complex and T cell receptor, for which...... a structural model is available. This system exhibits positive and negative cooperativity, as well as augmentation of the temperature dependence of binding kinetics upon the cooperative interaction of individual protein components in the complex. Our experimental and theoretical analysis may be applicable...... to other systems involving cooperativity....

  11. Implementation of DFT application on ternary optical computer

    Science.gov (United States)

    Junjie, Peng; Youyi, Fu; Xiaofeng, Zhang; Shuai, Kong; Xinyu, Wei

    2018-03-01

    As its characteristics of huge number of data bits and low energy consumption, optical computing may be used in the applications such as DFT etc. which needs a lot of computation and can be implemented in parallel. According to this, DFT implementation methods in full parallel as well as in partial parallel are presented. Based on resources ternary optical computer (TOC), extensive experiments were carried out. Experimental results show that the proposed schemes are correct and feasible. They provide a foundation for further exploration of the applications on TOC that needs a large amount calculation and can be processed in parallel.

  12. Ternary system of cesium, rubidium and lead iodides

    International Nuclear Information System (INIS)

    Volchanskaya, V.V.; Dunaeva, T.I.; Il'yasov, I.I.

    1990-01-01

    Meltability diagram of ternary system (CsI) 2 -(RbI) 2 -PbI 2 has been studied. The liquidus of the given system consists of crystallization fields of solid solutions (CsI-RbI) and (CsI·PbI 2 -RbI-PbI 2 ), fields of incongruently melting compounds 9RbI·PbI 2 , 4CsI·PbI 2 and field of PbI 2 component. In the system two nonvariant points at 410 and 380 deg C are detected

  13. Electrical resistivity of liquid binary and ternary alloys

    International Nuclear Information System (INIS)

    Ornat, M.; Paja, A.

    2011-01-01

    New method of calculation of the electrical resistivity of liquid and amorphous alloys is presented. The method is based on the Morgan-Howson-Saub (MHS) model but the pseudopotentials are replaced by the scattering matrix operators. The Fermi energy is properly determined by the accurate values of the phase shifts. The model depends on a very small number of universal parameters and gives stable results. The calculated values of the resistivity agree well with available experimental data for a substantial number of binary alloys. Moreover, the results for some ternary alloys were also obtained. (orig.)

  14. A binomial truncation function proposed for the second-moment approximation of tight-binding potential and application in the ternary Ni-Hf-Ti system

    International Nuclear Information System (INIS)

    Li, J H; Dai, X D; Wang, T L; Liu, B X

    2007-01-01

    We propose a two-parameter binomial truncation function for the second-moment approximation of the tight-binding (TB-SMA) interatomic potential and illustrate in detail the procedure of constructing the potentials for binary and ternary transition metal systems. For the ternary Ni-Hf-Ti system, the lattice constants, cohesion energies, elastic constants and bulk moduli of six binary compounds, i.e. L1 2 Ni 3 Hf, NiHf 3 , Ni 3 Ti, NiTi 3 , Hf 3 Ti and HfTi 3 , are firstly acquired by ab initio calculations and then employed to derive the binomial-truncated TB-SMA Ni-Hf-Ti potential. Applying the ab initio derived Ni-Hf-Ti potential, the lattice constants, cohesive energy, elastic constants and bulk moduli of another six binary compounds, i.e. D0 3 NiHf 3 , NiTi 3 HfTi 3 , and B2 NiHf, NiTi, HfTi, and two ternary compounds, i.e. C1 b NiHfTi, L2 1 Ni 2 HfTi, are calculated, respectively. It is found that, for the eight binary compounds studied, the calculated lattice constants and cohesion energies are in excellent agreement with those directly acquired from ab initio calculations and that the elastic constants and bulk moduli calculated from the potential are also qualitatively consistent with the results from ab initio calculations

  15. Facile synthesis of the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres with enhanced photocatalytic performance

    Science.gov (United States)

    Zhao, Xiaohua; Su, Shuai; Wu, Guangli; Li, Caizhu; Qin, Zhe; Lou, Xiangdong; Zhou, Jianguo

    2017-06-01

    To utilize sunlight more effectively in photocatalytic reactions, the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres (Ag/ZnO@C) was successfully synthesized by a green and facile one-pot hydrothermal method. The carbon spheres (CSs) were wrapped by ZnO nanosheets, forming flower-like microstructures, and Ag nanoparticles (Ag NPs) were deposited on the surface of the ZnO nanosheets. The Ag/ZnO@C ternary heterostructure exhibited enhanced photocatalytic activity compared to those of Ag/ZnO, ZnO@C and pure ZnO for the degradation of Reactive Black GR and metronidazole under sunlight and visible light irradiation. This was attributed to the enhanced visible light absorption and effective charge separation based on the synergistic effect of ZnO, Ag NPs, and CSs. Due to the surface plasmon resonance effect of Ag NPs and surface photosensitizing effect of CSs, Ag/ZnO@C exhibited enhanced visible light absorption. Meanwhile, Ag NPs and CSs can both act as rapid electron transfer units to improve the separation of photogenerated charge carriers in Ag/ZnO@C. The primary active species were determined, and the photocatalytic mechanism was proposed. This work demonstrates an effective way to improve the photocatalytic performance of ZnO and provides information for the facile synthesis of noble metal/ZnO@C ternary heterostructure.

  16. A refracto-densimetric method for composition analysis of homogeneous ternary liquid mixtures

    OpenAIRE

    Martinez, Fleming; Rojas, Jaime

    2009-01-01

    A new method for composition analysis of homogeneous ternary liquid mixtures is presented. The method is based in the determination of refractive index and density of the unknown mixture. These values are localized in triangular diagrams of thermo-physical properties for the ternary system. The mixture composition correspond to the interception point of the isooptic and isopycnic curves.

  17. Fullerene alloy formation and the benefits for efficient printing of ternary blend organic solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Bjerring, Morten; Nielsen, Niels Chr.

    2015-01-01

    with a third polymer component, the system exhibits pseudo-binary phase behaviour instead of the expected ternary phase behaviour. Our results experimentally confirm the earlier hypothesis that the unexpected composition average dependent IV-behaviour for these supposed ternary mixtures are indeed due to them...

  18. Using a Ternary Diagram to Display a System's Evolving Energy Distribution

    Science.gov (United States)

    Brazzle, Bob; Tapp, Anne

    2016-01-01

    A ternary diagram is a graphical representation used for systems with three components. They are familiar to mineralogists (who typically use them to categorize varieties of solid solution minerals such as feldspar) but are not yet widely used in the physics community. Last year the lead author began using ternary diagrams in his introductory…

  19. Detection of the ternary alpha particles from 252Cr spontaneous source with timepix pixeleted detector

    International Nuclear Information System (INIS)

    Ahmadov, G.S.; Telezhnikov, S.A.; Ahmadov, F.I.; Garibov, A.A.; Ahmadov, G.S.; Ahmadov, F.I.; Granja, C.; Pospisil, S.

    2013-01-01

    A third charged particle is emitted besides the two main fission fragments in ternary fission. Because of the ternary fission is a unique tool to explore the dynamics and structure of atomic nuclei by probing the fissioning system near the scission point and observing fissioning reaction and decay mechanisms main tool to study nuclear fission processes

  20. Experimental investigation of phase equilibria in the Co-W-V ternary system

    International Nuclear Information System (INIS)

    Liu Xingjun; Zhu Yihong; Yu Yan; Wang Cuiping

    2011-01-01

    Highlights: → Three isothermal sections of the Co-W-V ternary system at 1100 deg. C, 1200 deg. C and 1300 deg. C were determined. → No ternary compound was found in the Co-W-V ternary system. → A stable liquid miscibility gap is newly discovered in the Co-W-V ternary system. → This work is of great essence to establish the thermodynamic database for the Co-based alloys. - Abstract: The phase equilibria in the Co-W-V ternary system were experimentally investigated by optical microscopy (OM), electron probe microanalysis (EPMA) and X-ray diffraction (XRD) on the equilibrated alloys. Three isothermal sections of the Co-W-V ternary system at 1100 deg. C, 1200 deg. C and 1300 deg. C were determined, and no ternary compound was found in this system. In addition, a novel phenomena induced by the liquid phase separation in the Co-W-V alloys was firstly discovered, suggesting that a stable liquid miscibility gap exists in the Co-W-V ternary system. The newly determined phase equilibria and firstly discovered phase separation phenomena in the Co-W-V system will provide important information for the development of Co-W based alloys.

  1. Asymmetry in ternary fission induced by polarized neutrons and fission mechanism

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Gennenvajn, F.; Dzhessinger, P.; Mutterer, M.; Petrov, G.A.

    2003-01-01

    The results of measuring the P-odd, P-even (right-left) and T-odd asymmetries of the charged particles emission in the double and ternary fission, induced by the polarized neutrons, are considered. It is shown, what kind of information on the mechanism of the ternary nuclear fission may be obtained from the theoretical analysis of these data [ru

  2. INTERVAL-VALUED INTUITIONISTIC FUZZY BI-IDEALS IN TERNARY SEMIRINGS

    Directory of Open Access Journals (Sweden)

    D. KRISHNASWAMY

    2016-04-01

    Full Text Available In this paper we introduce the notions of interval-valued fuzzy bi-ideal, interval-valued anti fuzzy bi-ideal and interval-valued intuitionistic fuzzy bi-ideal in ternary semirings and some of the basic properties of these ideals are investigated. We also introduce normal interval-valued intuitionistic fuzzy ideals in ternary semirings.

  3. Nucleation of metals by redox processes in glass molten media

    International Nuclear Information System (INIS)

    Laurent, Y.; Turmel, J.M.; Verdier, P.

    1997-01-01

    Nitrogen incorporation into an aluminosilicate glass network changes greatly its physico-chemical properties. M-Si-Al-O-N (M = Li, Mg, Ca, Ln) oxynitride glasses are chemically inert. However, the presence of N 3- ions in molten glass gives to the glass medium a reducing character. This work concerns the study of redox reactions in molten glass between nitrogen and oxides of the first transition series of the periodic table, cadmium and lead. In situ precipitation of metallic particles from the corresponding oxides is demonstrated by X-ray diffraction and EDS data. However, the reduction of pure TiO 2 and V 2 O 5 gives rise to the corresponding nitrides, i.e. TiN and VN. The redox reaction occurs with nitrogen release. The low solubility of metals in the molten glass media forces metal migration out off the glass and consequently favors metal recovery. This oxidation-reduction process in molten media can be envisaged as industrially useful for recovering metals in industrial wastes. (authors)

  4. Energy dissipation in the process of ternary fission in heavy nuclear reaction

    International Nuclear Information System (INIS)

    Li Xian; Wang Chengqian; Yan Shiwei

    2015-01-01

    We studied the evolution of the collective motion, interaction potential, the total kinetic and excitation energies in ternary fissions of 197 Au + 197 Au system at 15 MeV/u, and discussed energy dissipation of this reaction. Through the comparison with energy-angle correlation data in binary fissions, we preliminarily concluded that the rst fission of ternary fission was an extreme deep-inelastic process. We further analyzed the correlation of the total kinetic energy with impact parameters in both binary and ternary reactions, and found that the total energy of binary reactions systems was lost about 150 MeV more than ternary fission with small impact parameters, and with larger impact parameters the total energy of ternary reactions were lost 300 MeV more than binary reactions. (authors)

  5. First-principles study of ternary fcc solution phases from special quasirandom structures

    International Nuclear Information System (INIS)

    Shin Dongwon; Wang Yi; Liu Zikui; Walle, Axel van de

    2007-01-01

    In the present work, ternary special quasirandom structures (SQSs) for a fcc solid solution phase are generated at different compositions, x A =x B =x C =(1/3) and x A =(1/2), x B =x C =(1/4), whose correlation functions are satisfactorily close to those of a random fcc solution. The generated SQSs are used to calculate the mixing enthalpy of the fcc phase in the Ca-Sr-Yb system. It is observed that first-principles calculations of all the binary and ternary SQSs in the Ca-Sr-Yb system exhibit very small local relaxation. It is concluded that the fcc ternary SQSs can provide valuable information about the mixing behavior of the fcc ternary solid solution phase. The SQSs presented in this work can be widely used to study the behavior of ternary fcc solid solutions

  6. Genetic Synthesis of New Reversible/Quantum Ternary Comparator

    Directory of Open Access Journals (Sweden)

    DEIBUK, V.

    2015-08-01

    Full Text Available Methods of quantum/reversible logic synthesis are based on the use of the binary nature of quantum computing. However, multiple-valued logic is a promising choice for future quantum computer technology due to a number of advantages over binary circuits. In this paper we have developed a synthesis of ternary reversible circuits based on Muthukrishnan-Stroud gates using a genetic algorithm. The method of coding chromosome is presented, and well-grounded choice of algorithm parameters allowed obtaining better circuit schemes of one- and n-qutrit ternary comparators compared with other methods. These parameters are quantum cost of received reversible devices, delay time and number of constant input (ancilla lines. Proposed implementation of the genetic algorithm has led to reducing of the device delay time and the number of ancilla qutrits to 1 and 2n-1 for one- and n-qutrits full comparators, respectively. For designing of n-qutrit comparator we have introduced a complementary device which compares output functions of 1-qutrit comparators.

  7. A ternary logic model for recurrent neuromime networks with delay.

    Science.gov (United States)

    Hangartner, R D; Cull, P

    1995-07-01

    In contrast to popular recurrent artificial neural network (RANN) models, biological neural networks have unsymmetric structures and incorporate significant delays as a result of axonal propagation. Consequently, biologically inspired neural network models are more accurately described by nonlinear differential-delay equations rather than nonlinear ordinary differential equations (ODEs), and the standard techniques for studying the dynamics of RANNs are wholly inadequate for these models. This paper develops a ternary-logic based method for analyzing these networks. Key to the technique is the realization that a nonzero delay produces a bounded stability region. This result significantly simplifies the construction of sufficient conditions for characterizing the network equilibria. If the network gain is large enough, each equilibrium can be classified as either asymptotically stable or unstable. To illustrate the analysis technique, the swim central pattern generator (CPG) of the sea slug Tritonia diomedea is examined. For wide range of reasonable parameter values, the ternary analysis shows that none of the network equilibria are stable, and thus the network must oscillate. The results show that complex synaptic dynamics are not necessary for pattern generation.

  8. Kinetics of radiation-induced segregation in ternary alloys

    International Nuclear Information System (INIS)

    Lam, N.Q.; Kumar, A.; Wiedersich, H.

    1982-01-01

    Model calculations of radiation-induced segregation in ternary alloys have been performed, using a simple theory. The theoretical model describes the coupling between the fluxes of radiation-induced defects and alloying elements in an alloy A-B-C by partitioning the defect fluxes into those occurring via A-, B-, and C-atoms, and the atom fluxes into those taking place via vacancies and interstitials. The defect and atom fluxes can be expressed in terms of concentrations and concentration gradients of all the species present. With reasonable simplifications, the radiation-induced segregation problem can be cast into a system of four coupled partial-differential equations, which can be solved numerically for appropriate initial and boundary conditions. Model calculations have been performed for ternary solid solutions intended to be representative of Fe-Cr-Ni and Ni-Al-Si alloys under various irradiation conditions. The dependence of segregation on both the alloy properties and the irradiation variables, e.g., temperature and displacement rate, was calculated. The sample calculations are in good qualitative agreement with the general trends of radiation-induced segregation observed experimentally

  9. Microstructural Investigations On Ni-Ta-Al Ternary Alloys

    International Nuclear Information System (INIS)

    Negache, M.; Taibi, K.; Lounis, Z.; Souami, N.

    2010-01-01

    The Ni-Al-Ta ternary alloys in the Ni-rich part present complex microstructures. They are composed of multiple phases that are formed according to the nominal composition of the alloy, primary Ni(γ), Ni 3 Al(γ'), Ni 6 AlTa(τ 3 ), Ni 3 Ta(δ) or in equilibrium: two solid phases (γ'-τ 3 ), (τ 3 -δ), (τ 3 -γ), (γ-δ) or three solid phases (γ'-τ 3 -δ). The nature and the volume fraction of these phases give these alloys very interesting properties at high temperature, and this makes them attractive for specific applications. We have developed a series of ternary alloys in electric arc furnace, determining their solidification sequences using Differential Thermal Analysis (DTA), characterized by SEM-EDS, X-ray diffraction and by a microhardness tests. The follow-up results made it possible to make a correlation between the nature of the formed phases and their solidifying way into the Ni 75 Al x Ta y (x+y = 25at.%) system, which are varied and complex. In addition to the solid solution Ni (γ), the formed intermetallics compounds (γ', τ 3 and δ) has been identified and correlated with a complex balance between phases.We noticed that the hardness increases with the tantalum which has a hardening effect and though the compound Ni 3 Ta(δ) is the hardest. The below results provide a better understanding of the complex microstructure of these alloys.

  10. Face Liveness Detection Using Dynamic Local Ternary Pattern (DLTP

    Directory of Open Access Journals (Sweden)

    Sajida Parveen

    2016-05-01

    Full Text Available Face spoofing is considered to be one of the prominent threats to face recognition systems. However, in order to improve the security measures of such biometric systems against deliberate spoof attacks, liveness detection has received significant recent attention from researchers. For this purpose, analysis of facial skin texture properties becomes more popular because of its limited resource requirement and lower processing cost. The traditional method of skin analysis for liveness detection was to use Local Binary Pattern (LBP and its variants. LBP descriptors are effective, but they may exhibit certain limitations in near uniform patterns. Thus, in this paper, we demonstrate the effectiveness of Local Ternary Pattern (LTP as an alternative to LBP. In addition, we adopted Dynamic Local Ternary Pattern (DLTP, which eliminates the manual threshold setting in LTP by using Weber’s law. The proposed method was tested rigorously on four facial spoof databases: three are public domain databases and the other is the Universiti Putra Malaysia (UPM face spoof database, which was compiled through this study. The results obtained from the proposed DLTP texture descriptor attained optimum accuracy and clearly outperformed the reported LBP and LTP texture descriptors.

  11. Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, Nicholas D. [Department; Dudnik, Alexander S. [Department; Harutyunyan, Boris [Department; Aldrich, Thomas J. [Department; Leonardi, Matthew J. [Department; Manley, Eric F. [Department; Chemical; Butler, Melanie R. [Department; Harschneck, Tobias [Department; Ratner, Mark A. [Department; Chen, Lin X. [Department; Chemical; Bedzyk, Michael J. [Department; Department; Melkonyan, Ferdinand S. [Department; Facchetti, Antonio [Department; Chang, Robert P. H. [Department; Marks, Tobin J. [Department; Department

    2017-06-14

    Using small-molecule donor (SMD) semiconductors in organic photovoltaics (OPVs) has historically afforded lower power conversion efficiencies (PCEs) than their polymeric counterparts. The PCE difference is attributed to shorter conjugated backbones, resulting in reduced intermolecular interactions. Here, a new pair of SMDs is synthesized based on the diketopyrrolopyrrole-benzodithiophene-diketopyrrolopyrrole (BDT-DPP2) skeleton but having fluorinated and fluorinefree aromatic side-chain substituents. Ternary OPVs having varied ratios of the two SMDs with PC61BM as the acceptor exhibit tunable open-circuit voltages (Vocs) between 0.833 and 0.944 V due to a fluorination-induced shift in energy levels and the electronic “alloy” formed from the miscibility of the two SMDs. A 15% increase in PCE is observed at the optimal ternary SMD ratio, with the short-circuit current density (Jsc) significantly increased to 9.18 mA/cm2. The origin of Jsc enhancement is analyzed via charge generation, transport, and diffuse reflectance measurements, and is attributed to increased optical absorption arising from a maximum in film crystallinity at this SMD ratio, observed by grazing incidence wide-angle X-ray scattering.

  12. FUSED SALT METHOD FOR COATING URANIUM WITH A METAL

    Science.gov (United States)

    Eubank, L.D.

    1959-02-01

    A method is presented for coating uranium with a less active metal such as Cr, Ni, or Cu comprising immersing the U in a substantially anhydrous molten solution of a halide of these less active metals in a ternary chloride composition which consists of selected percentages of KCl, NaCl and another chloride such as LiCl or CaCl/sub 2/.

  13. Solid-state reactions during mechanical alloying of ternary Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hadef, Fatma, E-mail: hadef77@yahoo.fr [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria); Département de Physique, Faculté des Sciences, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria)

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe–Al–X systems, in order to improve mainly Fe–Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems. - Highlights: • A review of state of the art on binary Fe–Al alloys was presented. • Structural and microstructural properties of MA ternary Fe–Al–X alloys were summerized. • MA process is a powerful tool for producing metallic alloys at the nanometer scale.

  14. Optical properties and thermal stability of LaYbO3 ternary oxide for high-k dielectric application

    Science.gov (United States)

    Su, Wei-tao; Yang, Li; Li, Bin

    2011-01-01

    A new ternary rare oxide dielectric LaYbO3 film had been prepared on silicon wafers and quartz substrates by reactive sputtering method using a La-Yb metal target. A range of analysis techniques was performed to determine the optical band gap, thermal stability, and electrical property of the deposited samples. It was found the band gap of LaYbO3 film was about 5.8 eV. And the crystallization temperature for rapid thermal annealing (20 s) was between 900 and 950 °C. X-ray photoelectron spectroscopy results indicate the formation of the SiO2 and silicate in the interface between silicon wafer and LaYbO3 film. The dielectric constant is about 23 from the calculation of capacitance-voltage curve, which is comparable higher than previously reported La2O3 or Yb2O3 film.

  15. Theoretical study of physical properties and oxygen incorporation effect in nanolaminated ternary carbides 211-MAX phases

    KAUST Repository

    Kanoun, Mohammed

    2012-01-01

    In this chapter, we employ ab initio approaches to review some important physical properties of nanolaminated ternary carbides MAX phases. We fi rstly use an all electron full-potential linearized augmented plane-wave method within the generalized gradient approximation and the density functional theory approaches, to explore the existence of a steric effect on the M site in these compounds. The elastic properties are also reported in order to assess the mechanical stability. The substitution of oxygen for carbon in Ti 2 SnC M n +1 AX n, forming Ti 2 SnC 1- x O x, is examined next, where we simulated the effect of oxygen incorporation on mechanical and electronic properties using projector augmented wave method. We show that oxygen has interesting effects on both of elastic and electronic properties, that the bulk modulus decreases when oxygen concentration increases. The bonding in Ti 2 SnC 1- x O x has a tendency to a covalent-ionic nature with the presence of metallic character. © 2012 Woodhead Publishing Limited.

  16. Light-Triggered Ternary Device and Inverter Based on Heterojunction of van der Waals Materials.

    Science.gov (United States)

    Shim, Jaewoo; Jo, Seo-Hyeon; Kim, Minwoo; Song, Young Jae; Kim, Jeehwan; Park, Jin-Hong

    2017-06-27

    Multivalued logic (MVL) devices/circuits have received considerable attention because the binary logic used in current Si complementary metal-oxide-semiconductor (CMOS) technology cannot handle the predicted information throughputs and energy demands of the future. To realize MVL, the conventional transistor platform needs to be redesigned to have two or more distinctive threshold voltages (V TH s). Here, we report a finding: the photoinduced drain current in graphene/WSe 2 heterojunction transistors unusually decreases with increasing gate voltage under illumination, which we refer to as the light-induced negative differential transconductance (L-NDT) phenomenon. We also prove that such L-NDT phenomenon in specific bias ranges originates from a variable potential barrier at a graphene/WSe 2 junction due to a gate-controllable graphene electrode. This finding allows us to conceive graphene/WSe 2 -based MVL logic circuits by using the I D -V G characteristics with two distinctive V TH s. Based on this finding, we further demonstrate a light-triggered ternary inverter circuit with three stable logical states (ΔV out of each state <0.05 V). Our study offers the pathway to substantialize MVL systems.

  17. Synthesis and Characterization of the Ternary Thiobismuthates A9Bi13S24 (A = K, Rb)

    KAUST Repository

    Davaasuren, Bambar

    2016-11-16

    Ternary alkali metal thiobismuthates ABiS (A = K, Rb) were synthesized by direct combination reactions at 650 °C. The compounds crystallize in the monoclinic space group C2/m (no. 12) with cell parameters a = 30.919(1) Å, b = 4.1008(2) Å, c = 20.9072(9) Å, β = 105.826(3)° for KBiS (1) and a = 31.823(6) Å, b = 4.1177(8) Å, c = 21.086(4) Å, β = 105.62(3)° for RbBiS (2). The crystal structure of 1 contains a 3D [KBiS] polyanionic framework, whereas 2 consists of 2D [RbBiS] polyanionic slabs stacked along [201]. Both 1 and 2 are semiconductors with a band gap of 1.4 and 1.3 eV, respectively, which is supported by an electronic structure calculation. 1 melts congruently at 580 °C, while 2 melts incongruently at 575 °C. 1 and 2 are airstable and insoluble in water and organic solvents.

  18. Evaluation of ternary blended cements for use in transportation concrete structures

    Science.gov (United States)

    Gilliland, Amanda Louise

    This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make

  19. The new barium mercuride BaHg6 and ternary indium and gallium derivatives

    International Nuclear Information System (INIS)

    Wendorff, Marco; Röhr, Caroline

    2013-01-01

    Highlights: ► The new binary Hg-rich mercuride BaHg 6 crystallizes with a singular structure type. ► Ternary In substituted compounds are isotypic, whereas Ga substituted compounds are only structurally related. ► Structure relation to other Hg-rich alkali and alkaline earth mercurides. ► Discussion of covalent and metallic bonding aspects, as found by structure features and band structure calculations. - Abstract: The new binary barium mercuride BaHg 6 and the derived ternary indium and gallium containing compounds BaIn 1.2 Hg 4.8 and BaGa 0.8 Hg 5.2 were synthesized from melts of the elements, which were slowly cooled from 500 to 200 °C. Their crystal structures have been determined by means of single crystal X-ray diffraction. The binary mercuride BaHg 6 (Pnma, a = 1338.9(3), b = 519.39(13), c = 1042.6(4) pm, Z = 4, R1 = 0.0885) and the isotypic indium substituted compound BaIn 1.2 Hg 4.8 as well as the structurally related gallium mercuride BaGa 0.8 Hg 5.2 (Cmcm, a = 729.77(7), b = 1910.1(2), c = 507.48(5) pm, Z = 4, R1 = 0.0606) crystallize with new structure types. Common features of both structures are planar nets of five- and eight-membered Hg rings, stacked perpendicular to the shortest axes. According to their lengths, the Hg–Hg bonds can be classified into three groups: strong, short ones (I, 285–292 pm), which are only found inside the nets, and longer distances (II), still carrying bond critical points, around 300 pm. Further contacts (III) serve to complete the coordination spheres of Hg/M (320–358 pm). The overall coordination numbers of Hg/M range from 10 to 13. The Ba cations are positioned in the centers of the octagons of the Hg/M nets, thus exhibiting a 5:8:5, i.e. 18, coordination by Hg/M atoms. DFT calculations of the electronic band structure of pure BaHg 6 and ordered models of the indium ( ′ BaInHg 5 ′ ) and the gallium ( ′ BaGaHg 5 ′ ) mercurides were performed using the FP-LAPW method. The calculated Bader charges

  20. Sequential character of low-energy ternary and quaternary nuclear fission

    Science.gov (United States)

    Kadmensky, S. G.; Bulychev, A. O.

    2016-09-01

    An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collective deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.

  1. He and Be ternary spontaneous fission of sup 2 sup 5 sup 2 Cf

    CERN Document Server

    Hwang, J K; Ramayya, A V; Hamilton, J H

    2002-01-01

    Ternary and binary fission studies of sup 2 sup 5 sup 2 Cf have been carried out by using the Gammasphere detector array with light charged particle (LCD) detectors. The relative sup 4 He and sup 5 He ternary fission yields were determined. The kinetic energies of the sup 5 He and sup 4 He ternary particles were found to be approximately 11 and 16 MeV, respectively. The sup 5 He particles contribute 10-20 % to the total observed alpha ternary yield. The data indicate that in nuclei with octupole deformations the population for the negative parity bands might be enhanced in the alpha ternary fission. >From LCP-gamma double gated spectra, neutron multiplicity distributions for alpha ternary fission pairs were measured. The average neutron multiplicity decreases about 0.7 AMU in going from the binary to alpha ternary fission in the approximately same mass splittings (104-146). From the analysis of the gamma-gamma matrix gated on the sup 1 sup 0 Be particles, the two fragment pairs of sup 1 sup 3 sup 8 Xe - sup 1...

  2. The Zintl-Klemm concept applied to cations in oxides. I. The structures of ternary aluminates.

    Science.gov (United States)

    Santamaría-Pérez, David; Vegas, Angel

    2003-06-01

    The structures of 94 ternary aluminates are reinterpreted on the basis of the Zintl-Klemm concept and Pearson's generalized octet rule. In aluminates of highly electropositive metals such as alkali, alkaline-earth and rare-earth metals, the Al atoms form three-dimensional skeleta which can be interpreted as if the Al atoms were behaving as Zintl polyanions, adopting the structure of either main-group elements or Zintl polyanions showing the same connectivity. The O atoms are then located close to both the hypothetical two-electron bonds and the lone pairs, giving rise to a tetrahedral coordination. When more electronegative elements, such as W or Si, are present in the compound, the electron transfer towards the Al atoms does not take place. In this case, aluminium behaves as a base, transferring its electrons to the more electronegative atoms and the coordination sphere of aluminium becomes octahedral. In some compounds the Al atoms clearly show amphoteric character so that some Al atoms act as donors (bases) and hence are octahedrally coordinated, whereas others behave as acceptors (acids), adopting a tetrahedral coordination. From this it is concluded that the coordination sphere of aluminium is not a function of the ionic radius of the Al(3+) cations, but it depends on the nature of the other cations accompanying them in the structure. The networks formed by these aluminates are, in many instances, similar to those of the binary oxides of the main-group elements. For this reason, a systematic survey of these oxides is also reported. Compounds such as stuffed cristobalites and trydimites and also perovskites are examples of this new interpretation. Perovskites are then reinterpreted as a stuffed pseudo-TeO(3) structure. Other families of compounds such as silicates and phosphates are susceptible to a similar interpretation. This study provides additional examples of how cations recognize themselves in spite of being embedded in an oxygen matrix.

  3. Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement

    Directory of Open Access Journals (Sweden)

    Athanasios ePapaderakis

    2014-06-01

    Full Text Available Ternary Pt-Ru-Ni deposits on glassy carbon substrates, Pt-Ru(Ni/GC, have been formed by initial electrodeposition of Ni layers onto glassy carbon electrodes, followed by their partial exchange for Pt and Ru, upon their immersion into equimolar solutions containing complex ions of the precious metals. The overall morphology and composition of the deposits has been studied by SEM microscopy and EDS spectroscopy. Continuous but nodular films have been confirmed, with a Pt÷Ru÷Ni % bulk atomic composition ratio of 37÷12÷51 (and for binary Pt-Ni control systems of 47÷53. Fine topographical details as well as film thickness have been directly recorded using AFM microscopy. The composition of the outer layers as well as the interactions of the three metals present have been studied by XPS spectroscopy and a Pt÷Ru÷Ni % surface atomic composition ratio of 61÷12÷27 (and for binary Pt-Ni control systems of 85÷15 has been found, indicating the enrichment of the outer layers in Pt; a shift of the Pt binding energy peaks to higher values was only observed in the presence of Ru and points to an electronic effect of Ru on Pt. The surface electrochemistry of the thus prepared Pt-Ru(Ni/GC and Pt(Ni/GC electrodes in deaerated acid solutions (studied by cyclic voltammetry proves the existence of a shell consisting exclusively of Pt-Ru or Pt. The activity of the Pt-Ru(Ni deposits towards methanol oxidation (studied by slow potential sweep voltammetry is higher from that of the Pt(Ni deposit and of pure Pt; this enhancement is attributed both to the well-known Ru synergistic effect due to the presence of its oxides but also (based on the XPS findings to a modification effect of Pt electronic properties.

  4. Chemical vapor deposition of refractory ternary nitrides for advanced diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Custer, Jonathan S.; Fleming, James G.; Roherty-Osmun, Elizabeth; Smith, Paul Martin

    1998-09-22

    Refractory ternary nitride films for diffusion barriers in microelectronics have been grown using chemical vapor deposition. Thin films of titanium-silicon-nitride, tungsten-boron-nitride, and tungsten-silicon-nitride of various compositions have been deposited on 150 mm Si wafers. The microstructure of the films are either fully amorphous for the tungsten based films, or nauocrystalline TiN in an amorphous matrix for titanium-silicon-nitride. All films exhibit step coverages suitable for use in future microelectronics generations. Selected films have been tested as diffusion barriers between copper and silicon, and generally perform extremely weH. These fiIms are promising candidates for advanced diffusion barriers for microelectronics applications. The manufacturing of silicon wafers into integrated circuits uses many different process and materials. The manufacturing process is usually divided into two parts: the front end of line (FEOL) and the back end of line (BEOL). In the FEOL the individual transistors that are the heart of an integrated circuit are made on the silicon wafer. The responsibility of the BEOL is to wire all the transistors together to make a complete circuit. The transistors are fabricated in the silicon itself. The wiring is made out of metal, currently aluminum and tungsten, insulated by silicon dioxide, see Figure 1. Unfortunately, silicon will diffuse into aluminum, causing aluminum spiking of junctions, killing transistors. Similarly, during chemical vapor deposition (CVD) of tungsten from ~fj, the reactivity of the fluorine can cause "worn-holes" in the silicon, also destroying transistors. The solution to these problems is a so-called diffusion barrier, which will allow current to pass from the transistors to the wiring, but will prevent reactions between silicon and the metal.

  5. New method for the simultaneous condensation of complete ternary alloy systems under ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Mehrtens, A.; Moske, M.; Samwer, K.

    1988-01-01

    An ultrahigh vacuum apparatus is described for the simultaneous condensation of complete ternary alloy systems. Three singly controlled electron beam evaporation sources provide a constant evaporation rate of the different elements. A specially designed rotating mask guarantees a concentration gradient on the substrate according to a ternary phase diagram. The conversion of the actual concentration profile into a standard ternary phase diagram is done by simple computer calculations. They involve corrections for the beam characteristics of the evaporation sources and for the rotating mask. As an example, measurements for the Zr--Cu--Co system are given. The concentration range for the amorphous phase is compared with thermodynamic predictions using Miedema's parameter

  6. Ternary particles with extreme N/Z ratios from neutron-induced fission

    International Nuclear Information System (INIS)

    Koster, U.; Faust, H.; Friedrichs, T.; Oberstedt, S.; Fioni, G.; Grob, M.; Ahmad, I. J.; Devlin, M.; Heinz, A.; Kondev, F. G.; Lauritsen, T.; Sarantites, D. G.; Siem, S.; Sobotka, L. G.; Sonzogni, A.

    2000-01-01

    The existing ternary fission models can well reproduce the yields of the most abundant light charged particles. However, these models tend to significantly overestimate the yields of ternary particles with an extreme N/Z ratio: 3 He, 11 Li, 14 Be, etc. The experimental yields of these isotopes were investigated with the recoil separator LOHENGRIN down to a level of 10 -10 per fission. Results from the fissioning systems 233 U (n th , f), 235 U(n th ,f), 239 Pu(n th ,f) 241 Pu(n th ,f) and 245 Cm(n th ,f) are presented and the implications for the ternary fission models are discussed

  7. Hardness and Microstructure of Binary and Ternary Nitinol Compounds

    Science.gov (United States)

    Stanford, Malcolm K.

    2016-01-01

    The hardness and microstructure of twenty-six binary and ternary Nitinol (nickel titanium, nickel titanium hafnium, nickel titanium zirconium and nickel titanium tantalum) compounds were studied. A small (50g) ingot of each compound was produced by vacuum arc remelting. Each ingot was homogenized in vacuum for 48 hr followed by furnace cooling. Specimens from the ingots were then heat treated at 800, 900, 1000 or 1100 degree C for 2 hr followed by water quenching. The hardness and microstructure of each specimen was compared to the baseline material (55-Nitinol, 55 at.% nickel - 45 at.% titanium, after heat treatment at 900 degC). The results show that eleven of the studied compounds had higher hardness values than the baseline material. Moreover, twelve of the studied compounds had measured hardness values greater 600HV at heat treatments from 800 to 900 degree C.

  8. Magnetic ordering in rare-earth ternary superconductors

    International Nuclear Information System (INIS)

    Shirane, G.; Thomlinson, W.; Moncton, D.E.

    1979-01-01

    A review is given of current neutron scattering studies of rare-earth(R) ternary superconductors: RMo 6 X 8 (X = S or Se) and ErRh 4 B 4 . Most of these compounds develop antiferromagnetic long-range order which coexists microscopically with superconductivity. Two compounds, HoMo 6 S 8 and ErRh 4 B 4 , become ferromagnetic causing the destruction of superconductivity. In ErRh 4 B 4 , both superconducting and ferromagnetic regions are simultaneously present between 0.9 and 1.2 0 K but microscopic coexistence is not indicated. However, in this temperature range, magnetic fluctuations occurring in the superconducting regions take the forms of a magnetic spiral with a wavelength of approx. 100 A in order to accommodate superconductivity. This observation is in good agreement with the theoretical predictions of Blount and Varma

  9. (Liquid + liquid) equilibria of (water + butyric acid + esters) ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirbaslar, S. Ismail [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)], E-mail: krbaslar@istanbul.edu.tr; Sahin, Selin; Bilgin, Mehmet [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)

    2007-09-15

    (Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {l_brace}water (1) + butyric acid (2) + ethyl propionate or dimethyl phthalate or dibutyl phthalate (3){r_brace} at T = 298.15 K and (101.3 {+-} 0.7) kPa. The relative mutual solubility of the butyric acid is higher in the layers of esters than in the aqueous layer. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  10. Selective synthesis of ternary copper-antimony sulfide nanocrystals.

    Science.gov (United States)

    Xu, Dongying; Shen, Shuling; Zhang, Yejun; Gu, Hongwei; Wang, Qiangbin

    2013-11-18

    Ternary copper-antimony sulfide nanocrystals (CAS NCs) have attracted increasing attention in photovoltaics and photoelectric nanodevices due to their tunable band gaps in the near-IR regime. Although much progress in the synthesis of CAS NCs has been achieved, the selective synthesis of CAS NCs with controllable morphologies and compositions is preliminary: in particular, a facile method is still in demand. In this work, we have successfully selectively synthesized high-quality CAS NCs with diverse morphologies, compositions, and band gaps, including rectangular CuSbS2 nanosheets (NSs), trigonal-pyramidal Cu12Sb4S13 NCs, and rhombic Cu3SbS3 NSs, by cothermodecomposition of copper diethyldithiocarbamate trihydrate (Cu(Ddtc)2) and antimony diethyldithiocarbamate trihydrate (Sb(Ddtc)3). The direct and indirect band gaps of the obtained CAS NCs were systematically studied by performing Kubelka-Munk transformations of their solid-state diffuse reflectance spectra.

  11. An investigation of the ternary system Nb-Ti-Al

    International Nuclear Information System (INIS)

    Kaltenbach, K.; Gama, S.

    1984-01-01

    The binary systems Nb-Ti, Nb-Al and Al-Ti as well the ternary system Nb-Ti-Al were studied by the aid of arc-beam melted alloys. The as-cast alloys and samples heat treated at 1200 0 C were examined and the liquidus surface projection, an isothermal section at 1200 0 C and the reaction scheme of the system Nb-Ti-Al were constructed. The phase relations of the binary systems Nb-Ti and Nb-Al were confirmed, in the system Al-Ti still some examinations are necessary to resolve the existing uncertainties. The melting process of Nb-Ti alloys in the electron-beam furnace has been studied. (Author) [pt

  12. Ternary gypsum-based materials: Composition, properties and utilization

    Science.gov (United States)

    Doleželová, M.; Svora, P.; Vimmrová, A.

    2017-10-01

    In spite of the fact that gypsum is one of the most environmentally friendly binders, utilization of gypsum products is relatively narrow. The main problem of gypsum materials is their low resistance to the wet environment and radical decrease of mechanical properties with increasing moisture. The solution of the problem could be in use of composed gypsum-based binders, usually ternary, comprising gypsum, pozzolan and alkali activator of pozzolan reaction. These materials have a better moisture resistance and often also better mechanical properties. Paper provides literature survey of the possible compositions, properties and ways of utilization of the composed gypsum-based binders with latent hydraulic and pozzolan materials together with some results of present research performed by authors.

  13. Ternary complexes of rare earths: a potentiometric study

    International Nuclear Information System (INIS)

    Lakhani, S.U.; Sangal, S.P.; Thakur, G.S.

    1983-01-01

    Irving Rossotti's pH titration technique has been modified and applied to the study of mixed ligand complexes of rare earths. The existence of coordination numbers beyond six for rare earths is demonstrated through the replacement of water molecules from the seventh and eighth coordination sites. Ternary complexes formed by the rare earths with certain aminopolycarboxlic acids (NTA, HEDTA, EDTA) and 8-hydroxyquiniline 5-sulphonic acid (OSA) or 7-iodo 8-hydroxy quiniline 5 sulphonic acid (IOSA) are found to be less stable than the corresponding binary complexes. The stability of complexes have been determined at 35degC and 0.2M ionic strength maintained by NaCLO 4 . Stability constants increases with the decrease in ionic radii in the order La < Pr < Nd < Sm < Gd < Yb in case of NTA and HEDTA complexes whereas, a discontinuity is observed at gadolinium in the case of EDTA complexes. (author)

  14. Quadrupole interaction in ternary chalcopyrite semiconductors experiments and theory

    CERN Document Server

    Dietrich, M; Degering, D; Deicher, M; Kortus, J; Magerle, R; Möller, A; Samokhvalov, V; Unterricker, S; Vianden, R

    2000-01-01

    Electric field gradients have been measured at substitutional lattice sites in ternary semiconductors using perturbed gamma - gamma angular correlation spectroscopy. The experimental results for A/sup I/B/sup III/C/sub 2//sup VI/ chalcopyrite structure compounds and Square Operator A/sup II/B/sub 2//sup III/C/sub 4//sup VI/ defect chalcopyrites are compared with ab-initio calculations. The latter were carried out with the WIEN code that uses the full potential linearized augmented plane wave method within a density functional theory. The agreement between experiment and theory is in most cases very good. Furthermore, the anion displacements in AgGaX/sub 2/- compounds (X: S, Se, Te) have been determined theoretically by determining the minimum of the total energy of the electrons in an elementary cell. (20 refs).

  15. Hardware emulation of Memristor based Ternary Content Addressable Memory

    KAUST Repository

    Bahloul, Mohamed A.

    2017-12-13

    MTCAM (Memristor Ternary Content Addressable Memory) is a special purpose storage medium in which data could be retrieved based on the stored content. Using Memristors as the main storage element provides the potential of achieving higher density and more efficient solutions than conventional methods. A key missing item in the validation of such approaches is the wide spread availability of hardware emulation platforms that can provide reliable and repeatable performance statistics. In this paper, we present a hardware MTCAM emulation based on 2-Transistors-2Memristors (2T2M) bit-cell. It builds on a bipolar memristor model with storing and fetching capabilities based on the actual current-voltage behaviour. The proposed design offers a flexible verification environment with quick design revisions, high execution speeds and powerful debugging techniques. The proposed design is modeled using VHDL and prototyped on Xilinx Virtex® FPGA.

  16. Normal freezing of ideal ternary systems of the pseudobinary type

    Science.gov (United States)

    Li, C. H.

    1972-01-01

    Perfect liquid mixing but no solid diffusion is assumed in normal freezing. In addition, the molar compositions of the freezing solid and remaining liquid, respectively, follow the solidus and liquidus curves of the constitutional diagram. For the linear case, in which both the liquidus and solidus are perfectly straight lines, the normal freezing equation giving the fraction solidified at each melt temperature and the solute concentration profile in the frozen solid was determined as early as 1902, and has since been repeatedly published. Corresponding equations for quadratic, cubic or higher-degree liquidus and solidus lines have also been obtained. The equation of normal freezing for ideal ternary liquid solutions solidified into ideal solid solutions of the pseudobinary type is given. Sample computations with the use of this new equation were made and are given for the Ga-Al-As system.

  17. Structural study of the continuous medium of spontaneous ternary emulsions

    International Nuclear Information System (INIS)

    Desforge, Christine

    1993-01-01

    This research thesis addresses the study of the structure of a continuous medium of spontaneous ternary emulsions of oil-in-water type, composed of water and octane, and stabilised by means of a cationic surfactant (DDAB, didodecyldimethyl ammonium bromide). It shows that the kinetic stability is due to electrostatic repulsions between octane drops, and that these repulsions are due to the presence of positive charges on the DDAB mono-layer located at the interface between water and oil. Various aspects are highlighted by neutron and X ray scattering. In this study, the DDAB is replaced by a non-ionic surfactant. Its use results in very steady oil/water emulsions [fr

  18. Modeling adsorption of binary and ternary mixtures on microporous media

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2007-01-01

    The goal of this work is to analyze the adsorption of binary and ternary mixtures on the basis of the multicomponent potential theory of adsorption (MPTA). In the MPTA, the adsorbate is considered as a segregated mixture in the external potential field emitted by the solid adsorbent. This makes...... it possible using the same equation of state to describe the thermodynamic properties of the segregated and the bulk phases. For comparison, we also used the ideal adsorbed solution theory (IAST) to describe adsorption equilibria. The main advantage of these two models is their capabilities to predict...... multicomponent adsorption equilibria on the basis of single-component adsorption data. We compare the MPTA and IAST models to a large set of experimental data, obtaining reasonable good agreement with experimental data and high degree of predictability. Some limitations of both models are also discussed....

  19. Composition Optimization of Lithium-Based Ternary Alloy Blankets for Fusion Reactors

    Science.gov (United States)

    Jolodosky, Alejandra

    The goal of this dissertation is to examine the neutronic properties of a novel type of fusion reactor blanket material in the form of lithium-based ternary alloys. Pure liquid lithium, first proposed as a blanket for fusion reactors, is utilized as both a tritium breeder and a coolant. It has many attractive features such as high heat transfer and low corrosion properties, but most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns including degradation of the concrete containment structure. The work of this thesis began as a collaboration with Lawrence Livermore National Laboratory in an effort to develop a lithium-based ternary alloy that can maintain the beneficial properties of lithium while reducing the reactivity concerns. The first studies down-selected alloys based on the analysis and performance of both neutronic and activation characteristics. First, 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and energy multiplication factor (EMF). Alloys with adequate results based on TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). The straightforward approach to obtain Monte Carlo TBR and EMF results required 231 simulations per alloy and became computationally expensive, time consuming, and inefficient. Consequently, alternate methods were pursued. A collision history-based methodology recently developed for the Monte Carlo code Serpent, calculates perturbation effects on practically

  20. Tuning the properties of visible-light-responsive tantalum (oxy)nitride photocatalysts by non-stoichiometric compositions: A first-principles viewpoint

    KAUST Repository

    Harb, Moussab

    2014-01-01

    Finding an ideal photocatalyst for achieving efficient overall water splitting still remains a great challenge. By applying accurate first-principles quantum calculations based on DFT with the screened non-local hybrid HSE06 functional, we bring rational insights at the atomic level into the influence of non-stoichiometric compositions on essential properties of tantalum (oxy)nitride compounds as visible-light-responsive photocatalysts for water splitting. Indeed, recent experiments show that such non-stoichiometry is inherent to the nitridation methods of tantalum oxide with unavoidable oxygen impurities. We considered here O-enriched Ta3N5 and N-enriched TaON materials. Although their structural parameters are found to be very similar to those of pure compounds and in good agreement with available experimental studies, their photocatalytic features for visible-light-driven overall water splitting reactions show different behaviors. Further partial nitration of TaON leads to a narrowed band gap, but partially oxidizing Ta3N5 causes only subtle changes in the gap. The main influence, however, is on the band edge positions relative to water redox potentials. The pure Ta3N5 is predicted to be a good candidate only for H+ reduction and H2 evolution, while the pure TaON is predicted to be a good candidate for water oxidation and O2 evolution. Non-stoichiometry has here a positive influence, since partially oxidized tantalum nitride, Ta(3-x)N(5-5x)O5x (for x ≥ 0.16) i.e. with a composition in between TaON and Ta3N5, reveals suitable band edge positions that correctly bracket the water redox potentials for visible-light-driven overall water splitting reactions. Among the various explored Ta(3-x)N(5-5x)O5x structures, a strong stabilization is obtained for the configuration displaying a strong interaction between the O-impurities and the created Ta-vacancies. In the lowest-energy structure, each created Ta-vacancy is surrounded by five O-impurity species substituting

  1. Interactions in Ternary Mixtures of MnO2, Al2O3, and Natural Organic Matter (NOM) and the Impact on MnO2 Oxidative Reactivity.

    Science.gov (United States)

    Taujale, Saru; Baratta, Laura R; Huang, Jianzhi; Zhang, Huichun

    2016-03-01

    Our previous work reported that Al2O3 inhibited the oxidative reactivity of MnO2 through heteroaggregation between oxide particles and surface complexation of the dissolved Al ions with MnO2 (S. Taujale and H. Zhang, "Impact of interactions between metal oxides to oxidative reactivity of manganese dioxide" Environ. Sci. Technol. 2012, 46, 2764-2771). The aim of the current work was to investigate interactions in ternary mixtures of MnO2, Al2O3, and NOM and how the interactions affect MnO2 oxidative reactivity. For the effect of Al ions, we examined ternary mixtures of MnO2, Al ions, and NOM. Our results indicated that an increase in the amount of humic acids (HAs) increasingly inhibited Al adsorption by forming soluble Al-HA complexes. As a consequence, there was less inhibition on MnO2 reactivity than by the sum of two binary mixtures (MnO2+Al ions and MnO2+HA). Alginate or pyromellitic acid (PA)-two model NOM compounds-did not affect Al adsorption, but Al ions increased alginate/PA adsorption by MnO2. The latter effect led to more inhibition on MnO2 reactivity than the sum of the two binary mixtures. In ternary mixtures of MnO2, Al2O3, and NOM, NOM inhibited dissolution of Al2O3. Zeta potential measurements, sedimentation experiments, TEM images, and modified DLVO calculations all indicated that HAs of up to 4 mg-C/L increased heteroaggregation between Al2O3 and MnO2, whereas higher amounts of HAs completely inhibited heteroaggregation. The effect of alginate is similar to that of HAs, although not as significant, while PA had negligible effects on heteroaggregation. Different from the effects of Al ions and NOMs on MnO2 reactivity, the MnO2 reactivity in ternary mixtures of Al2O3, MnO2, and NOM was mostly enhanced. This suggests MnO2 reactivity was mainly affected through heteroaggregation in the ternary mixtures because of the limited availability of Al ions.

  2. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    International Nuclear Information System (INIS)

    Lestone, J.P.

    2008-01-01

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~ 1.2 MeV and ~ 10 -22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission. (author)

  3. Ternary and Multi-Bit FIR Filter Area-Performance Tradeoffs in FPGA

    Directory of Open Access Journals (Sweden)

    Khalil-Ur-Rahman Dayo

    2013-01-01

    Full Text Available In this paper, performance and area of conventional FIR (Finite Impulse Responce filters versus ternary sigma delta modulated FIR filter is compared in FPGA (Field Programmable Gate Arrays using VHDL (Verilog Description Language. Two different approaches were designed and synthesized at same spectral performance by obtaining a TIR (Target Impulse Response. Both filters were synthesized on adaptive LUT (Look Up Table FPGA device in pipelined and non-pipelined modes. It is shown that the Ternary FIR filter occupies approximately the same area as the corresponding multi-bit filter, but for a given specification, the ternary FIR filter has 32% better performance in non-pipelined and 72% in pipelined mode, compared to its equivalent Multi-Bit filter at its optimum 12-bit coefficient quantization. These promising results shows that ternary logic based (i.e. +1,0,-1 filters can be used for huge chip area savings and higher performance.

  4. The ternary systems Sc-Sm(Dy)-Si at 870 K

    International Nuclear Information System (INIS)

    Kotur, B.Ya.; Mokra, I.Ya.; Toporinskij, A.Ya.

    1991-01-01

    Isothermal cross sections of the ternary systems Sc-Sm-Si and Sc-Dy-Si at 870 K have been plotted. Investigation of scandium and disprosium in ternary systems have been examined by X-ray diffraction and microstructure analysis. Besides literary data on binary systems Sc-Si, Sm-Si, Dy-Si have been used. Formation of limited (Sc-Sm-Si, Sc-Dy-Si) and continuous (Sc-Dy-Si) solid solutions based on bisilicides of Sc and Sm(Dy) is discovered. Two and five ternary compounds in Sc-Sm-Si and Sc-Dy-Si systems have been determined and their crystal structure has been established. When investigating of Sc-(rare earth element)-Si ternary systems and should take into account the specific interaction of scandium and samarium with REE

  5. A computer calculation of the ternary Mo-Pd-Rh phase diagram

    International Nuclear Information System (INIS)

    Guerler, R.; Pratt, J.N.

    1993-01-01

    Thermodynamic coefficients for the phases in the binary Mo-Pd, Pd-Rh and Mo-Rh systems were derived by the assessment of the available experimental data using the binary Lukas optimization program. The resulting coefficients were first successfully utilised in reestablishing the binaries. The coefficients thus obtained in the binary computation were combined with ternary descriptions to compute ternary isothermal sections. Although no ternary interaction term was involved in the construction of the isotherms, the section calculated at 1373 K is found to be consistent with the experimentally established isothermal section at the same temperature. The location of three-phase field (bcc+hcp+fcc) and phase boundaries in both isotherms are matching reasonably well. Combining only binary coefficients of these phases, it is possible to construct reasonable isothermal sections at different temperatures. Following this conclusion, isothermal sections ranging from 1373 to 2673 K of the ternary Mo-Pd-Rh system were calculated. (orig.)

  6. Organic Solar Cells beyond One Pair of Donor-Acceptor: Ternary Blends and More.

    Science.gov (United States)

    Yang, Liqiang; Yan, Liang; You, Wei

    2013-06-06

    Ternary solar cells enjoy both an increased light absorption width, and an easy fabrication process associated with their simple structures. Significant progress has been made for such solar cells with demonstrated efficiencies over 7%; however, their fundamental working principles are still under investigation. This Perspective is intended to offer our insights on the three major governing mechanisms in these intriguing ternary solar cells: charge transfer, energy transfer, and parallel-linkage. Through careful analysis of exemplary cases, we summarize the advantages and limitations of these three major mechanisms and suggest future research directions. For example, incorporating additional singlet fission or upconversion materials into the energy transfer dominant ternary solar cells has the potential to break the theoretical efficiency limit in single junction organic solar cells. Clearly, a feedback loop between fundamental understanding and materials selection is in urgent need to accelerate the efficiency improvement of these ternary solar cells.

  7. Synthesis and characterization of (Ni1-xCox)Se2 based ternary selenides as electrocatalyst for triiodide reduction in dye-sensitized solar cells

    Science.gov (United States)

    Theerthagiri, J.; Senthil, R. A.; Buraidah, M. H.; Raghavender, M.; Madhavan, J.; Arof, A. K.

    2016-06-01

    Ternary metal selenides of (Ni1-xCox)Se2 with 0≤x≤1 were synthesized by using one-step hydrothermal reduction route. The synthesized metal selenides were utilized as an efficient, low-cost platinum free counter electrode for dye-sensitized solar cells. The cyclic voltammetry and electrochemical impedance spectroscopy studies revealed that the Ni0.5Co0.5Se2 counter electrode exhibited higher electrocatalytic activity and lower charge transfer resistance at the counter electrode/electrolyte interface than the other compositions for reduction of triiodide to iodide. Ternary selenides of Ni0.5Co0.5Se2 offer a synergistic effect to the electrocatalytic activity for the reduction of triiodide that might be due to an increase in active catalytic sites and small charge transfer resistance. The DSSC with Ni0.5Co0.5Se2 counter electrode achieved a high power conversion efficiency of 6.02%, which is comparable with that of conventional platinum counter electrode (6.11%). This present investigation demonstrates the potential application of Ni0.5Co0.5Se2 as counter electrode in dye-sensitized solar cells.

  8. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  9. Consideration of the Verleur model of far-infrared spectroscopy of ternary compounds

    International Nuclear Information System (INIS)

    Robouch, B. V.; Kisiel, A.; Sheregii, E. M.

    2001-01-01

    The clustering model proposed by Verleur and Barker [Phys. Rev. 149, 715 (1966)] to interpret far infrared data for face-centered-cubic ternary compounds is critically analyzed. It is shown that their approach, satisfactory for fitting some ternary compound spectral curves, is too restricted by its one-parameter β model to be able to describe preferences (with respect to a random distribution case) for the five tetrahedron configurations

  10. Predicting the lattice constants of the ternary pyrochlores A₂B₂O₆O'.

    Science.gov (United States)

    Nickolsky, M S

    2015-04-01

    The pyrochlores A2B2O6O' attract much attention because of their physical properties. Several models which relate chemical compositions of ternary pyrochlores with lattice constants have been proposed. Analysis of these models shows that some of them are statistically inadequate and cannot be used. Statistical models to predict lattice constants of ternary pyrochlores A2B2O6O' have been derived using multiple linear regression analysis.

  11. Partially fluorinated aarylene polyethers and their ternary blends with PBI and H3PO4

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf; Pan, Chao

    2008-01-01

    Ternary blend membranes based on sulphonated partially fluorinated arylene polyether, polybenzimidazole (PBI) and phosphoric acid were prepared and characterised as electrolyte for high temperature proton exchange membrane fuel cells. Partially fluorinated arylene polyether was first prepared from......% and modulus of 50 MPa at 150 degrees C. Based on these ternary membranes large MEAs with an active area of 256 cm(2) have been prepared for a 2 kW(el) stack showing good performance and reproducibility....

  12. Structure of the novel ternary hydrides Li4Tt2D (Tt=Si and Ge)

    International Nuclear Information System (INIS)

    Wu Hui; Rush, J.J.; Maryland Univ., College Park, MD; Hartman, M.R.; Oregon State Univ., Corvallis, OR; Udovic, T.J.; Zhou Wei; Pennsylvania Univ., Philadelphia, PA; Bowman, R.C. Jr.; Vajo, J.J.

    2007-01-01

    The crystal structures of newly discovered Li 4 Ge 2 D and Li 4 Si 2 D ternary phases were solved by direct methods using neutron powder diffraction data. Both structures can be described using a Cmmm orthorhombic cell with all hydrogen atoms occupying Li 6 -octahedral interstices. The overall crystal structure and the geometry of these interstices are compared with those of other related phases, and the stabilization of this novel class of ternary hydrides is discussed. (orig.)

  13. Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films.

    Science.gov (United States)

    Rhim, Jong-Whan; Wang, Long-Feng

    2013-07-01

    Multicomponent hydrogel films composed of agar, κ-carrageenan, konjac glucomannan powder, and nanoclay (Cloisite(®) 30B) were prepared and their mechanical and water barrier properties such as water vapor permeability (WVP), water contact angle (CA), water solubility (WS), water uptake ratio (WUR), water vapor uptake ratio (WVUR) were determined. Mechanical, water vapor barrier, and water resistance properties of the ternary blend film exhibited middle range of individual component films, however, they increased significantly after formation of nanocomposite with the clay. Especially, the water holding capacity of the ternary blend biopolymer films increased tremendously, from 800% to 1681% of WUR for agar and κ-carrageenan films up to 5118% and 5488% of WUR for the ternary blend and ternary blend nanocomposite films, respectively. Water vapor adsorption behavior of films was also tested by water vapor adsorption kinetics and water vapor adsorption isotherms test. Preliminary test result for fresh spinach packaging revealed that the ternary blend biohydrogel films had a high potential for the use as an antifogging film for packaging highly respiring agricultural produce. In addition, the ternary blend nanocomposite film showed an antimicrobial activity against Gram-positive bacteria, Listeria monocytogenes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Experimental determination of the phase equilibria in the Co-Fe-Zr ternary system

    International Nuclear Information System (INIS)

    Wang, C.P.; Yu, Y.; Zhang, H.H.; Hu, H.F.; Liu, X.J.

    2011-01-01

    Research highlights: → We determined four isothermal sections of the Co-Fe-Zr system from 1000 o C to 1300 o C. → No ternary compound was found in the Co-Fe-Zr ternary system. → The solubility of Fe in the liquid phase at 1300 o C is extremely large. → The (Co, Fe) 2 Zr phase form the continuous solution from Co-Zr side to Fe-Zr side. → The solubility of Zr in the fcc (Co, Fe) phase is extremely small. - Abstract: The phase equilibria in the Co-Fe-Zr ternary system were investigated by means of optical microscopy (OM), electron probe microanalysis (EPMA), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) on equilibrated ternary alloys. Four isothermal sections of the Co-Fe-Zr ternary system at 1300 o C, 1200 o C, 1100 o C and 1000 o C were experimentally established. The experimental results indicate that (1) no ternary compound was found in this system; (2) the solubility of Fe in the liquid phase of the Co-rich corner at 1300 o C is extremely large; (3) the liquid phase in the Zr-rich corner and the (Co,Fe) 2 Zr phase form the continuous solid solutions from the Co-Zr side to the Fe-Zr side; (4) the solubility of Zr in the fcc (Co, Fe) phase is extremely small.

  15. Temperature dependence of binary and ternary recombination of H3+ ions with electrons

    International Nuclear Information System (INIS)

    Glosik, J.; Plasil, R.; Korolov, I.; Kotrik, T.; Novotny, O.; Hlavenka, P.; Dohnal, P.; Varju, J.; Kokoouline, V.; Greene, Chris H.

    2009-01-01

    We study binary and the recently discovered process of ternary He-assisted recombination of H 3 + ions with electrons in a low-temperature afterglow plasma. The experiments are carried out over a broad range of pressures and temperatures of an afterglow plasma in a helium buffer gas. Binary and He-assisted ternary recombination are observed and the corresponding recombination rate coefficients are extracted for temperatures from 77 to 330 K. We describe the observed ternary recombination as a two-step mechanism: first, a rotationally excited long-lived neutral molecule H 3 * is formed in electron-H 3 + collisions. Second, the H 3 * molecule collides with a helium atom that leads to the formation of a very long-lived Rydberg state with high orbital momentum. We present calculations of the lifetimes of H 3 * and of the ternary recombination rate coefficients for para- and ortho-H 3 + . The calculations show a large difference between the ternary recombination rate coefficients of ortho- and para-H 3 + at temperatures below 300 K. The measured binary and ternary rate coefficients are in reasonable agreement with the calculated values.

  16. Temperature dependence of binary and ternary recombination of H3+ ions with electrons

    Science.gov (United States)

    Glosík, J.; Plašil, R.; Korolov, I.; Kotrík, T.; Novotný, O.; Hlavenka, P.; Dohnal, P.; Varju, J.; Kokoouline, V.; Greene, Chris H.

    2009-05-01

    We study binary and the recently discovered process of ternary He-assisted recombination of H3+ ions with electrons in a low-temperature afterglow plasma. The experiments are carried out over a broad range of pressures and temperatures of an afterglow plasma in a helium buffer gas. Binary and He-assisted ternary recombination are observed and the corresponding recombination rate coefficients are extracted for temperatures from 77 to 330 K. We describe the observed ternary recombination as a two-step mechanism: first, a rotationally excited long-lived neutral molecule H3∗ is formed in electron- H3+ collisions. Second, the H3∗ molecule collides with a helium atom that leads to the formation of a very long-lived Rydberg state with high orbital momentum. We present calculations of the lifetimes of H3∗ and of the ternary recombination rate coefficients for para- and ortho- H3+ . The calculations show a large difference between the ternary recombination rate coefficients of ortho- and para- H3+ at temperatures below 300 K. The measured binary and ternary rate coefficients are in reasonable agreement with the calculated values.

  17. First-principles study of ternary Li-Al-Te compounds under high pressure

    Science.gov (United States)

    Wang, Youchun; Tian, Fubo; Li, Da; Duan, Defang; Xie, Hui; Liu, Bingbing; Zhou, Qiang; Cui, Tian

    2018-02-01

    The ternary Li-Al-Te compounds were investigated by the first-principle evolutionary calculation based on density function theory. Apart from the known structure, I-42d LiAlTe2 and P3m1 LiAlTe2, several new structures were discovered, P-3m1 LiAlTe2, Pnma LiAlTe2, C2/c Li9AlTe2, Immm Li9AlTe2 and P4/mmm Li6AlTe. We determined that the I-42d LiAlTe2 firstly changed to P-3m1 phase at 6 GPa, and then into the Pnma structure at 65 GPa, Pnma phase was stable up at least to 120 GPa. I-42d LiAlTe2 was a pseudo-direct band gap semiconductor, but P-3m1 LiAlT2 was an indirect band gap semiconductor. This may be caused by the pressure effect. Subsequently, it was metallized under pressure. Pnma LiAlTe2 was also metallic at the pressure we studied. C2/c Li9AlTe2 was stable above 4 GPa, then turned into Immm phase at 60 GPa. C2/c Li9AlTe2 was an indirect band gap semiconductor. The results show that P4/mmm Li6AlTe was stable and metallized in the pressure range of 0.7-120 GPa. The calculations of DOS and PDOS indicate that the arrangement of electrons near Fermi energy can be affected by the increase of Li. The calculated ELF results and Bader charge analysis indicate that there was no covalent bond between Al and Te atoms for high-pressure Pnma LiAlTe2, Li9AlTe2 and Li6AlTe. For Li9AlTe2 and Li6AlTe, different from LiAlTe2, Al atoms not connect with Te atoms, but link with Li atoms. The results were further proved by Mulliken population analysis. And the weak covalent bonds between Li and Al atoms stem from the hybridization of Li s and Al p presented in PDOS diagrams. We further deduced that the pressure effect and the increase of Li content may result in the disappearance of Al-Te bonds for Li-Al-Te compound under extreme pressure.

  18. Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting.

    Science.gov (United States)

    Dinh, Khang Ngoc; Zheng, Penglun; Dai, Zhengfei; Zhang, Yu; Dangol, Raksha; Zheng, Yun; Li, Bing; Zong, Yun; Yan, Qingyu

    2018-02-01

    Herein, the hydrothermal synthesis of porous ultrathin ternary NiFeV layer double hydroxides (LDHs) nanosheets grown on Nickel foam (NF) substrate as a highly efficient electrode toward overall water splitting in alkaline media is reported. The lateral size of the nanosheets is about a few hundreds of nanometers with the thickness of ≈10 nm. Among all molar ratios investigated, the Ni 0.75 Fe 0.125 V 0.125 -LDHs/NF electrode depicts the optimized performance. It displays an excellent catalytic activity with a modest overpotential of 231 mV for the oxygen evolution reaction (OER) and 125 mV for the hydrogen evolution reaction (HER) in 1.0 m KOH electrolyte. Its exceptional activity is further shown in its small Tafel slope of 39.4 and 62.0 mV dec -1 for OER and HER, respectively. More importantly, remarkable durability and stability are also observed. When used for overall water splitting, the Ni 0.75 Fe 0.125 V 0.125 -LDHs/NF electrodes require a voltage of only 1.591 V to reach 10 mA cm -2 in alkaline solution. These outstanding performances are mainly attributed to the synergistic effect of the ternary metal system that boosts the intrinsic catalytic activity and active surface area. This work explores a promising way to achieve the optimal inexpensive Ni-based hydroxide electrocatalyst for overall water splitting. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Heat capacities, magnetic properties, and resistivities of ternary RPdBi alloys where R = La, Nd, Gd, Dy, Er, and Lu

    International Nuclear Information System (INIS)

    Riedemann, T.M.

    1996-01-01

    Over the past four and a half decades research on the rare earths, their compounds, and their alloys has yielded significant insights into the nature of materials. The rare earths can be used to systematically study a series of alloys or compounds. Magnetic ordering, crystalline fields, spin fluctuations, the magnetocaloric effect, and magnetostriction are a small sample of phenomena studied that are exhibited by the rare earth family. A significant portion of research has been conducted on the abundant RM 2 and RM phases, where R is the rare earth and M is a transition metal. The natural progression of science has led to the study of related RMX ternary phases, where X is either another transition metal or semimetal. There are now over 1,000 known RMX phases. The focus of this study is on RPdBi where R = La, Nd, Gd, Dy, Er, and Lu. Their heat capacities, magnetic properties, and resistivities are studied

  20. Synthesis of Be–Ti–V ternary beryllium intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan, E-mail: kim.jaehwan@jaea.go.jp; Nakamichi, Masaru

    2015-08-15

    Highlights: • Preliminary synthesis of ternary Be–Ti–V beryllides was investigated. • An area fraction of Be phase increased with increase of V amount in the beryllide because of increasing melting temperature. • The increase of Be phase fraction resulted in increase of weight gain as well as H{sub 2} generation. • The beryllides with lower V contents indicated to better phase stability at high temperature. - Abstract: Beryllium intermetallic compounds (beryllides) such as Be{sub 12}Ti and Be{sub 12}V are the most promising advanced neutron multipliers in demonstration power reactors. Advanced neutron multipliers are being developed by Japan and the EU as part of their Broader Approach activities. It has been previously shown, however, that beryllides are too brittle to fabricate into pebble- or rod-like shapes using conventional methods such as arc melting and hot isostatic pressing. To overcome this issue, we developed a new combined plasma sintering and rotating electrode method for the fabrication of beryllide rods and pebbles. Previously, we prepared a beryllide pebble with a Be–7.7 at.% Ti composition as the stoichiometric value of the Be{sub 12}Ti phase; however, Be{sub 17}Ti{sub 2} and Be phases were present along with the Be{sub 12}Ti phase that formed as the result of a peritectic reaction due to re-melting during granulation using the rotating electrode method. This Be phase was found to be highly reactive with oxygen and water vapor. Accordingly, to investigate the Be phase reduction and applicability for fabrication of electrodes prior to granulation using the rotating electrode method, Be–Ti–V ternary beryllides were synthesized using the plasma sintering method. Surface observation results indicated that increasing plasma sintering time and V addition led to an increase in the intermetallic compound phases compared with plasma-sintered beryllide with a Be–7.7 at.% Ti composition. Additionally, evaluation of the reactivity of

  1. Sol-Gel-Synthesis of Nanoscopic Complex Metal Fluorides.

    Science.gov (United States)

    Rehmer, Alexander; Scheurell, Kerstin; Scholz, Gudrun; Kemnitz, Erhard

    2017-11-02

    The fluorolytic sol-gel synthesis for binary metal fluorides (AlF₃, CaF₂, MgF₂) has been extended to ternary and quaternary alkaline earth metal fluorides (CaAlF₅, Ca₂AlF₇, LiMgAlF₆). The formation and crystallization of nanoscopic ternary CaAlF₅ and Ca₂AlF₇ sols in ethanol were studied by 19 F liquid and solid state NMR (nuclear magnetic resonance) spectroscopy, as well as transmission electron microscopy (TEM). The crystalline phases of the annealed CaAlF₅, Ca₂AlF₇, and LiMgAlF₆ xerogels between 500 and 700 °C could be determined by X-ray powder diffraction (XRD) and 19 F solid state NMR spectroscopy. The thermal behavior of un-annealed nanoscopic ternary and quaternary metal fluoride xerogels was ascertained by thermal analysis (TG/DTA). The obtained crystalline phases of CaAlF₅ and Ca₂AlF₇ derived from non-aqueous sol-gel process were compared to crystalline phases from the literature. The corresponding nanoscopic complex metal fluoride could provide a new approach in ceramic and luminescence applications.

  2. Sol-Gel-Synthesis of Nanoscopic Complex Metal Fluorides

    Directory of Open Access Journals (Sweden)

    Alexander Rehmer

    2017-11-01

    Full Text Available The fluorolytic sol-gel synthesis for binary metal fluorides (AlF3, CaF2, MgF2 has been extended to ternary and quaternary alkaline earth metal fluorides (CaAlF5, Ca2AlF7, LiMgAlF6. The formation and crystallization of nanoscopic ternary CaAlF5 and Ca2AlF7 sols in ethanol were studied by 19F liquid and solid state NMR (nuclear magnetic resonance spectroscopy, as well as transmission electron microscopy (TEM. The crystalline phases of the annealed CaAlF5, Ca2AlF7, and LiMgAlF6 xerogels between 500 and 700 °C could be determined by X-ray powder diffraction (XRD and 19F solid state NMR spectroscopy. The thermal behavior of un-annealed nanoscopic ternary and quaternary metal fluoride xerogels was ascertained by thermal analysis (TG/DTA. The obtained crystalline phases of CaAlF5 and Ca2AlF7 derived from non-aqueous sol-gel process were compared to crystalline phases from the literature. The corresponding nanoscopic complex metal fluoride could provide a new approach in ceramic and luminescence applications.

  3. Spectroscopic evidence for ternary surface complexes in the lead(II)-malonic acid-hematite system

    Science.gov (United States)

    Lenhart, J.J.; Bargar, J.R.; Davis, J.A.

    2001-01-01

    Using extended X-ray absorption fine structure (EXAFS) and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements, we examined the sorption of Pb(II) to hematite in the presence of malonic acid. Pb LIII-edge EXAFS measurements performed in the presence of malonate indicate the presence of both Fe and C neighbors, suggesting that a major fraction of surface-bound malonate is bonded to adsorbed Pb(II). In the absence of Pb(II), ATR-FTIR measurements of sorbed malonate suggest the formation of more than one malonate surface complex. The dissimilarity of the IR spectrum of malonate sorbed on hematite to those for aqueous malonate suggest at least one of the sorbed malonate species is directly coordinated to surface Fe atoms in an inner-sphere mode. In the presence of Pb, little change is seen in the IR spectrum for sorbed malonate, indicating that geometry of malonate as it coordinates to sorbed Pb(II) adions is similar to the geometry of malonate as it coordinates to Fe in the hematite surface. Fits of the raw EXAFS spectra collected from pH 4 to pH 8 result in average Pb-C distances of 2.98 to 3.14 A??, suggesting the presence of both four- and six-membered Pb-malonate rings. The IR results are consistent with this interpretation. Thus, our results suggest that malonate binds to sorbed Pb(II) adions, forming ternary metal-bridging surface complexes. ?? 2001 Academic Press.

  4. Radiation-induced segregation in binary and ternary alloys

    International Nuclear Information System (INIS)

    Okamoto, P.R.; Rehn, L.E.

    1979-01-01

    A review is given of our current knowledge of radiation-induced segregation of major and minor elements in simple binary and ternary alloys as derived from experimental techniques such as Auger electron spectroscopy, secondary-ion mass spectroscopy, ion-backscattering, infrared emissivity measurements and transmission electron microscopy. Measurements of the temperature, dose and dose-rate dependences as well as of the effects of such materials variables as solute solubility, solute misfit and initial solute concentration has proved particularly valuable in understanding the mechanisms of segregation. The interpretation of these data in terms of current theoretical models which link solute segregation behavior to defect-solute binding interactions and/or to the relative diffusion rates of solute and solvent atoms the interstitial and vacancy migration mechanisms has, in general, been fairly successful and has provided considerable insight into the highly interrelated phenomena of solute-defect trapping, solute segregation, phase stability and void swelling. Specific examples in selected fcc, bcc and hcp alloy systems are discussed with particular emphasis given to the effects of radiation-induced segregation on the phase stability of single-phase and two-phase binary alloys and simple Fe-Cr-Ni alloys. (Auth.)

  5. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex

    Science.gov (United States)

    Huang, Ying; Wu, Zhiping; Riwanto, Meliana; Gao, Shengqiang; Levison, Bruce S.; Gu, Xiaodong; Fu, Xiaoming; Wagner, Matthew A.; Besler, Christian; Gerstenecker, Gary; Zhang, Renliang; Li, Xin-Min; DiDonato, Anthony J.; Gogonea, Valentin; Tang, W.H. Wilson; Smith, Jonathan D.; Plow, Edward F.; Fox, Paul L.; Shih, Diana M.; Lusis, Aldons J.; Fisher, Edward A.; DiDonato, Joseph A.; Landmesser, Ulf; Hazen, Stanley L.

    2013-01-01

    Myeloperoxidase (MPO) and paraoxonase 1 (PON1) are high-density lipoprotein–associated (HDL-associated) proteins mechanistically linked to inflammation, oxidant stress, and atherosclerosis. MPO is a source of ROS during inflammation and can oxidize apolipoprotein A1 (APOA1) of HDL, impairing its atheroprotective functions. In contrast, PON1 fosters systemic antioxidant effects and promotes some of the atheroprotective properties attributed to HDL. Here, we demonstrate that MPO, PON1, and HDL bind to one another, forming a ternary complex, wherein PON1 partially inhibits MPO activity, while MPO inactivates PON1. MPO oxidizes PON1 on tyrosine 71 (Tyr71), a modified residue found in human atheroma that is critical for HDL binding and PON1 function. Acute inflammation model studies with transgenic and knockout mice for either PON1 or MPO confirmed that MPO and PON1 reciprocally modulate each other’s function in vivo. Further structure and function studies identified critical contact sites between APOA1 within HDL, PON1, and MPO, and proteomics studies of HDL recovered from acute coronary syndrome (ACS) subjects revealed enhanced chlorotyrosine content, site-specific PON1 methionine oxidation, and reduced PON1 activity. HDL thus serves as a scaffold upon which MPO and PON1 interact during inflammation, whereupon PON1 binding partially inhibits MPO activity, and MPO promotes site-specific oxidative modification and impairment of PON1 and APOA1 function. PMID:23908111

  6. Single crystal ternary oxide ferroelectric integration with Silicon

    Science.gov (United States)

    Bakaul, Saidur; Serrao, Claudy; Youun, Long; Khan, Asif; Salahuddin, Sayeef

    2015-03-01

    Integrating single crystal, ternary oxide ferroelectric thin film with Silicon or other arbitrary substrates has been a holy grail for the researchers since the inception of microelectronics industry. The key motivation is that adding ferroelectric materials to existing electronic devices could bring into new functionality, physics and performance improvement such as non-volatility of information, negative capacitance effect and lowering sub-threshold swing of field effect transistor (FET) below 60 mV/decade in FET [Salahuddin, S, Datta, S. Nano Lett. 8, 405(2008)]. However, fabrication of single crystal ferroelectric thin film demands stringent conditions such as lattice matched single crystal substrate and high processing temperature which are incompatible with Silicon. Here we report on successful integration of PbZr0.2Ti0.8O3 in single crystal form with by using a layer transfer method. The lattice structure, surface morphology, piezoelectric coefficient d33, dielectric constant, ferroelectric domain switching and spontaneous and remnant polarization of the transferred PZT are as good as these characteristics of the best PZT films grown by pulsed laser deposition on lattice matched oxide substrates. We also demonstrate Si based, FE gate controlled FET devices.

  7. Ternary blend cements concrete. Part II: Transport mechanism

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2007-03-01

    Full Text Available With today’s extensive use of cements containing two or more additions (blended cements, predicting concrete durability on the grounds of its strength alone leads to errors that may affect the service life of the resulting structures. Indeed, concrete of a given strength class can be made from different materials and proportions of widely varying durability. The present study evaluated water absorption, sorptivity and initial surface absorption in concrete made with unadditioned Portland, binary (limestone and ternary (limestone and granulated slag blend cement.En la actualidad con la utilización de cementos con dos o más adiciones (cementos compuestos predecir la durabilidad del hormigón a partir sólo de su resistencia conduce a cometer errores que pueden afectar la vida útil de las construcciones de hormigón. Pues es bien conocido que se pueden elaborar hormigones de una misma clase resistente con distintos materiales y proporciones, que podrán presentar un comportamiento durable totalmente diferente. En este trabajo se evalúa la absorción de agua, la capacidad de absorción, la absorción inicial superficial de hormigones elaborados con cemento Portland sin adición, cementos compuestos binario (caliza y ternario (escoria granulada y caliza.

  8. Control mechanism of double-rotator-structure ternary optical computer

    Science.gov (United States)

    Kai, SONG; Liping, YAN

    2017-03-01

    Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.

  9. Transmission properties of one-dimensional ternary plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shiveshwari, Laxmi [Department of Physics, K. B. Womens' s College, Hazaribagh 825 301 (India); Awasthi, S. K. [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Noida 201 304 (India)

    2015-09-15

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.

  10. Ternary choices in repeated games and border collision bifurcations

    International Nuclear Information System (INIS)

    Dal Forno, Arianna; Gardini, Laura; Merlone, Ugo

    2012-01-01

    Highlights: ► We extend a model of binary choices with externalities to include more alternatives. ► Introducing one more option affects the complexity of the dynamics. ► We find bifurcation structures which where impossible to observe in binary choices. ► A ternary choice cannot simply be considered as a binary choice plus one. - Abstract: Several recent contributions formalize and analyze binary choices games with externalities as those described by Schelling. Nevertheless, in the real world choices are not always binary, and players have often to decide among more than two alternatives. These kinds of interactions are examined in game theory where, starting from the well known rock-paper-scissor game, several other kinds of strategic interactions involving more than two choices are examined. In this paper we investigate how the dynamics evolve introducing one more option in binary choice games with externalities. The dynamics we obtain are always in a stable regime, that is, the structurally stable dynamics are only attracting cycles, but of any possible positive integer as period. We show that, depending on the structure of the game, the dynamics can be quite different from those existing when considering binary choices. The bifurcation structure, due to border collisions, is explained, showing the existence of so-called big-bang bifurcation points.

  11. Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides

    Science.gov (United States)

    Singh, N. B.; Coriell, S. R.; Su, Ching-Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  12. Symmetric and asymmetric ternary fission of hot nuclei

    International Nuclear Information System (INIS)

    Siwek-Wilczynska, K.; Wilczynski, J.; Leegte, H.K.W.; Siemssen, R.H.; Wilschut, H.W.; Grotowski, K.; Panasiewicz, A.; Sosin, Z.; Wieloch, A.

    1993-01-01

    Emission of α particles accompanying fusion-fission processes in the 40 Ar + 232 Th reaction at E( 40 Ar) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measurements allowed us to reconstruct the complete kinematics of each ternary event. The coincident energy spectra of α particles were analyzed by using predictions of the energy spectra of the statistical code CASCADE . The analysis clearly demonstrates emission from the composite system prior to fission, emission from fully accelerated fragments after fission, and also emission during scission. The analysis is presented for both symmetric and asymmetric fission. The results have been analyzed using a time-dependent statistical decay code and confronted with dynamical calculations based on a classical one-body dissipation model. The observed near-scission emission is consistent with evaporation from a dinuclear system just before scission and evaporation from separated fragments just after scission. The analysis suggests that the time scale of fission of the hot composite systems is long (about 7x10 -20 s) and the motion during the descent to scission almost completely damped

  13. Pressure-induced phase transition in a ternary microemulsion system

    International Nuclear Information System (INIS)

    Nagao, Michihiro; Seto, Hideki

    2002-01-01

    Static and dynamic structure of a ternary microemulsion system including AOT (Aerosol-OT; dioctyl sulfosuccinate sodium salt) were investigated in order to clarify the mechanism of the structural phase transition induced by pressure. From the static measurement by means of small-angle x-ray and neutron scattering (SAXS and SANS), it was observed that the dense water-in-oil droplet structure at ambient temperature and pressure transformed to two-phase coexistence with the lamellar phase and the bicontinuous phase with increasing pressure as the case of increasing temperature. The characteristic features of pressure-induced phase transition were quite similar to the temperature-induced one below the phase transition temperature and pressure, however, above the transition temperature and pressure, they were different. From the dynamical measurement by means of the neutron spin echo (NSE), membrane dynamics at high-pressure phase was observed completely different from the high temperature phase. The result showed that with increasing temperature the membrane became flexible and, on the other hand, it became rigid with increasing pressure. These differences suggested the different mechanism of the pressure-induced phase transition from the temperature-induced one. (author)

  14. Electronic structure and phase equilibria in ternary substitutional alloys

    International Nuclear Information System (INIS)

    Traiber, A.J.S.; Allen, S.M.; Waterstrat, R.M.

    1996-01-01

    A reliable, consistent scheme to study phase equilibria in ternary substitutional alloys based on the tight-binding approximation is presented. With electronic parameters from linear muffin-tin orbital calculations, the computed density of states and band structures compare well with those from more accurate abinitio calculations. Disordered alloys are studied within the tight-binding coherent-potential approximation extended to alloys; energetics of ordered systems are obtained through effective pair interactions computed with the general perturbation method; and partially ordered alloys are studied with a novel simplification of the molecular coherent-potential approximation combined with the general perturbation method. The formalism is applied to bcc-based Zr-Ru-Pd alloys which are promising candidates for medical implant devices. Using energetics obtained from the above scheme, we apply the cluster- variation method to study phase equilibria for particular pseudo- binary alloys and show that results are consistent with observed behavior of electronic specific heat coefficient with composition for Zr 0.5 (Ru, Pd) 0.5

  15. The role of In in III-nitride ternary semiconductors

    CERN Document Server

    Redondo cubero, A

    This proposal aims to study the role of In in the outstanding efficiency of luminescent devices based on group III-nitride ternary semiconductors. To study the microscopic environments of In in GaInN and AlInN, Perturbed Angular Correlation (PAC) experiments will be performed using the PAC-probes $^{111m}$Cd($^{111}$Cd), $^{115}$Cd($^{115}$In) and $^{117}$Cd($^{117}$In). Temperature dependent PAC measurements using the $^{111}$In($^{111}$Cd) probe indicated that In in GaN and AlN forms a complex with a defect, possibly a nitrogen vacancy (V$_{N}$), which is stable up to high temperatures and might be involved in the luminescence mechanisms. Analysing these results two questions arose: \\\\ \\\\1. Does the fact that the actual measurement is performed with the daughter nucleus $^{111}$Cd (being an acceptor) influence the probe-defect interaction? This question can be answered by performing measurements with the complementary probe $^{117}$Cd($^{117}$In). \\\\ \\\\ 2. What is the significance of $\\textit{a...

  16. TEXTURE-AWARE DENSE IMAGE MATCHING USING TERNARY CENSUS TRANSFORM

    Directory of Open Access Journals (Sweden)

    H. Hu

    2016-06-01

    Full Text Available Textureless and geometric discontinuities are major problems in state-of-the-art dense image matching methods, as they can cause visually significant noise and the loss of sharp features. Binary census transform is one of the best matching cost methods but in textureless areas, where the intensity values are similar, it suffers from small random noises. Global optimization for disparity computation is inherently sensitive to parameter tuning in complex urban scenes, and must compromise between smoothness and discontinuities. The aim of this study is to provide a method to overcome these issues in dense image matching, by extending the industry proven Semi-Global Matching through 1 developing a ternary census transform, which takes three outputs in a single order comparison and encodes the results in two bits rather than one, and also 2 by using texture-information to self-tune the parameters, which both preserves sharp edges and enforces smoothness when necessary. Experimental results using various datasets from different platforms have shown that the visual qualities of the triangulated point clouds in urban areas can be largely improved by these proposed methods.

  17. Thermodynamic assessment of the Al-Mo-V ternary system

    Directory of Open Access Journals (Sweden)

    Hu B.

    2017-01-01

    Full Text Available Thermodynamic assessment of the Al-Mo-V ternary system was performed by means of the CALPHAD (CALculation of PHAse Diagram approach based on the thermodynamic descriptions of three constitutive binary systems (Al-Mo, Al-V and Mo-V as well as the experimental phase equilibria data available in the literature. The solution phases, i.e. liquid, bcc (Mo, V and fcc (Al, were described using the substitutional solution models with the Redlich-Kister equation. The binary phases in the Al-Mo and Al-V systems with the solubilities of the third element were modeled using the sublattice models. An optimal set of thermodynamic parameters for the Al-Mo-V system was obtained. Six isothermal sections at 1200, 1000, 750, 715, 675 and 630°C and liquidus projection with isotherm were calculated. The reaction scheme for the entire Al-Mo-V system was also constructed. Comparisons between the calculated and measured phase diagrams indicated that almost all the reliable experimental information was satisfactorily accounted for by the present modeling.

  18. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    Science.gov (United States)

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  19. Delay Insensitive Ternary CMOS Logic for Secure Hardware

    Directory of Open Access Journals (Sweden)

    Ravi S. P. Nair

    2015-09-01

    Full Text Available As digital circuit design continues to evolve due to progress of semiconductor processes well into the sub 100 nm range, clocked architectures face limitations in a number of cases where clockless asynchronous architectures generate less noise and produce less electro-magnetic interference (EMI. This paper develops the Delay-Insensitive Ternary Logic (DITL asynchronous design paradigm that combines design aspects of similar dual-rail asynchronous paradigms and Boolean logic to create a single wire per bit, three voltage signaling and logic scheme. DITL is compared with other delay insensitive paradigms, such as Pre-Charge Half-Buffers (PCHB and NULL Convention Logic (NCL on which it is based. An application of DITL is discussed in designing secure digital circuits resistant to side channel attacks based on measurement of timing, power, and EMI signatures. A Secure DITL Adder circuit is designed at the transistor level, and several variance parameters are measured to validate the efficiency of DITL in resisting side channel attacks. The DITL design methodology is then applied to design a secure 8051 ALU.

  20. Lattice-matched heteroepitaxy of wide gap ternary compound semiconductors

    Science.gov (United States)

    Bachmann, Klaus J.

    A variety of applications are identified for heteroepitaxial structures of wide gap I-III-VI(sub 2) and II-IV-V(sub 2) semiconductors, and are assessed in comparison with ternary III-V alloys and other wide gap materials. Non-linear optical applications of the I-III-VI(sub 2) and II-IV-V(sub 2) compound heterostructures are discussed, which require the growth of thick epitaxial layers imposing stringent requirements on the conditions of heteroepitaxy. In particular, recent results concerning the MOCVD growth of ZnSi(x)Ge(1-x)P2 alloys lattice matching Si or GaP substrates are reviewed. Also, heterostructures of Cu(z)Ag(1-z)GaS2 alloys that lattice-match Si, Ge, GaP, or GaAs substrates are considered in the context of optoelectronic devices operating in the blue wavelength regime. Since under the conditions of MOCVD, metastable alloys of the II-IV-V(sub 2) compounds and group IV elements are realized, II-IV-V(sub 2) alloys may also serve as interlayers in the integration of silicon and germanium with exactly lattice-matched tetrahedrally coordinated compound semiconductors, e.g. ZnSi(x)Ge(1-x)P2.

  1. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    Science.gov (United States)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  2. Dynamic viscosities of the ternary liquid mixtures (dimethyl carbonate + methanol + ethanol) and (dimethyl carbonate + methanol + hexane) at several temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, A. [Chemical Engineering Department, Vigo University, 36310 Vigo (Spain); Pereiro, A.B. [Chemical Engineering Department, Vigo University, 36310 Vigo (Spain); Canosa, J. [Chemical Engineering Department, Vigo University, 36310 Vigo (Spain); Tojo, J. [Chemical Engineering Department, Vigo University, 36310 Vigo (Spain)]. E-mail: jtojo@uvigo.es

    2006-05-15

    Densities, {rho} speeds of sound, u and dynamic viscosities, {eta} of the ternary mixtures {l_brace}dimethyl carbonate (DMC) + methanol + ethanol{r_brace} and (dimethyl carbonate + methanol + hexane) were gathered at T = (293.15, 298.15, 308.15, and 313.15) K. From experimental data viscosity deviations, {delta}{eta} of the ternary mixtures were evaluated. These results have been correlated using the Cibulka equation. The fitting parameters and the standard deviations of the ternary viscosity deviations are given. UNIFAC-VISCO group contribution method was used to predict the dynamic viscosities of the ternary mixtures at several temperatures.

  3. Interfacial and electrical properties of InGaAs metal-oxide-semiconductor capacitor with TiON/TaON multilayer composite gate dielectric

    Science.gov (United States)

    Wang, L. S.; Xu, J. P.; Liu, L.; Lu, H. H.; Lai, P. T.; Tang, W. M.

    2015-03-01

    InGaAs metal-oxide-semiconductor (MOS) capacitors with composite gate dielectric consisting of Ti-based oxynitride (TiON)/Ta-based oxynitride (TaON) multilayer are fabricated by RF sputtering. The interfacial and electrical properties of the TiON/TaON/InGaAs and TaON/TiON/InGaAs MOS structures are investigated and compared. Experimental results show that the former exhibits lower interface-state density (1.0 × 1012 cm-2 eV-1 at midgap), smaller gate leakage current (9.5 × 10-5 A/cm2 at a gate voltage of 2 V), larger equivalent dielectric constant (19.8), and higher reliability under electrical stress than the latter. The involved mechanism lies in the fact that the ultrathin TaON interlayer deposited on the sulfur-passivated InGaAs surface can effectively reduce the defective states and thus unpin the Femi level at the TaON/InGaAs interface, improving the electrical properties of the device.

  4. Low-cost fabrication of ternary CuInSe{sub 2} nanocrystals by colloidal route using a novel combination of volatile and non-volatile capping agents

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, Parul; Narain Sharma, Shailesh, E-mail: shailesh@nplindia.org; Singh, Son

    2014-11-15

    Wet-route synthesis of CuInSe{sub 2} (CISe) nanocrystals has been envisaged with the utilization of the unique combination of coordinating ligand and non coordinating solvent. Our work demonstrates the formation of a single-phase, nearly stoichiometric and monodispersive, stable and well-passivated colloidal ternary CISe nanocrystals (band gap (E{sub g})∼1.16 eV) using a novel combination of ligands; viz. volatile arylamine aniline and non-volatile solvent 1-octadecene. The synthesis and growth conditions have been manoeuvred using the colligative properties of the mixture and thus higher growth temperature (∼250 °C) could be attained that promoted larger grain growth. The beneficial influence of the capping agents (aniline and 1-octadecene) on the properties of chalcopyrite nanocrystals has enabled us to pictorally model the structural, morphological and optoelectronic aspects of CISe nanoparticles. - Graphical abstract: Without resorting to any post-selenization process and using the colligative properties of the mixture comprising of volatile aniline and non-volatile 1-octadecene to manoeuvre the growth conditions to promote Ostwald ripening, a single phase, monodispersive and nearly stoichiometric ternary CISe nanocrystals are formed by wet-synthesis route. - Highlights: • Wet-route synthesis of CISe nanocrystals reported without post-selenization process. • Single-phase, stable and well-passivated colloidal ternary CISe nanocrystals formed. • Novel combination of capping agents: volatile aniline and non-volatile 1-octadecene. • Higher growth temperature attained using the colligative properties of the mixture. • Metallic salts presence explains exp. and theoretical boiling point difference.

  5. Band gap characterization of ternary BBi1-xNx (0≤x≤1) alloys using modified Becke-Johnson (mBJ) potential

    Science.gov (United States)

    Yalcin, Battal G.

    2015-04-01

    The semi-local Becke-Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi1-xNx (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi1-xNx structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew-Burke-Ernzerhof (PBE). For electronic properties the modified Becke-Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi1-xNx almost perfectly matches with Vegard's law. The spin-orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations.

  6. Synergistic increase of oxygen reduction favourable Fe-N coordination structures in a ternary hybrid of carbon nanospheres/carbon nanotubes/graphene sheets.

    Science.gov (United States)

    Zhang, Shiming; Liu, Bin; Chen, Shengli

    2013-11-14

    A Fe/N co-doped ternary nanocarbon hybrid, with uniform bamboo-like carbon nanotubes (CNTs) in situ grown on/between the single/few-layer graphene sheets interspaced by carbon nanosphere aggregates, was prepared through a one-pot heat treatment of a precursor mixture containing graphene oxide, Vulcan XC-72 carbon nanospheres, nitrogen rich melamine and small amounts of Fe ions. Physical characterization including electron microscopic images, N2 adsorption-desorption isotherms, pore size distribution, XPS, XRD, Mössbauer spectra, and EDX revealed that the 0-D/1-D/2-D ternary hybrid architecture not only offered an optimized morphology for high dispersion of each nanocarbon moiety, while the carbon nanosphere interspaced graphene sheets have provided a platform for efficient reaction between Fe ions and melamine molecules, resulting in uniform nucleation and growth of CNTs and formation of high density Fe-N coordination assemblies that have been believed to be the active centers for the oxygen reduction reaction (ORR) in carbon-based nonprecious metal electrocatalysts. In the absence of graphene oxides or carbon nanospheres, a similar heat treatment was found to result in large amounts of elemental Fe and Fe carbides and entangled CNTs with wide diameter distributions. As a result, the ternary Fe/N-doped nanocarbon hybrid exhibits ORR activity much higher than the Fe-N doped single or binary nanocarbon materials prepared under similar heat treatment conditions, and approaching that of the state-of-the-art carbon-supported platinum catalyst (Pt/C) in acidic media, as well as superior stability and methanol tolerance to Pt/C.

  7. Facile synthesis of the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaohua [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China); School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Su, Shuai; Wu, Guangli; Li, Caizhu [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Qin, Zhe [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China); Lou, Xiangdong [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Zhou, Jianguo, E-mail: zhoujgwj@163.com [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China)

    2017-06-01

    Highlights: • Flower-like Ag/ZnO encapsulating carbon spheres (Ag/ZnO@C) was synthesized. • A green facile synthesis method was used. • Ag/ZnO@C exhibited better photocatalytic performance than Ag/ZnO, ZnO@C, and ZnO. • Dye and metronidazole both can be decomposed by Ag/ZnO@C. - Abstract: To utilize sunlight more effectively in photocatalytic reactions, the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres (Ag/ZnO@C) was successfully synthesized by a green and facile one-pot hydrothermal method. The carbon spheres (CSs) were wrapped by ZnO nanosheets, forming flower-like microstructures, and Ag nanoparticles (Ag NPs) were deposited on the surface of the ZnO nanosheets. The Ag/ZnO@C ternary heterostructure exhibited enhanced photocatalytic activity compared to those of Ag/ZnO, ZnO@C and pure ZnO for the degradation of Reactive Black GR and metronidazole under sunlight and visible light irradiation. This was attributed to the enhanced visible light absorption and effective charge separation based on the synergistic effect of ZnO, Ag NPs, and CSs. Due to the surface plasmon resonance effect of Ag NPs and surface photosensitizing effect of CSs, Ag/ZnO@C exhibited enhanced visible light absorption. Meanwhile, Ag NPs and CSs can both act as rapid electron transfer units to improve the separation of photogenerated charge carriers in Ag/ZnO@C. The primary active species were determined, and the photocatalytic mechanism was proposed. This work demonstrates an effective way to improve the photocatalytic performance of ZnO and provides information for the facile synthesis of noble metal/ZnO@C ternary heterostructure.

  8. Band gap characterization of ternary BBi1−xNx (0≤x≤1) alloys using modified Becke–Johnson (mBJ) potential

    International Nuclear Information System (INIS)

    Yalcin, Battal G.

    2015-01-01

    The semi-local Becke–Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi 1−x N x (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi 1−x N x structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew–Burke–Ernzerhof (PBE). For electronic properties the modified Becke–Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi 1−x N x almost perfectly matches with Vegard's law. The spin–orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations

  9. Composition Range and Glass Forming Ability of Ternary Ca-Mg-Cu Bulk Metallic Glasses (Preprint)

    National Research Council Canada - National Science Library

    Senkov, O. N; Scott, J. M; Miracle, D. B

    2006-01-01

    .... The maximum thickness at which an alloy remains fully amorphous, glass transition temperature, crystallization temperature, temperature interval of the super-cooled region, solidus and liquidus...

  10. Synthesis of TiCuAg thick film inks for glass frit free metallization of aluminium nitride

    International Nuclear Information System (INIS)

    Adlassnig, A.; Schuster, J. C.; Smetana, W.; Reicher, R.

    1997-01-01

    A glas frit free screen printing ink for metallization of AIN was developed. Bonding to the substrate is achieved by active metal additives. The metallic component consists of Cu and Ag powder synthesized from inorganic salts by the polyol process, and Cu-Ti powder synthesized by arc melting, milling and ultracentrifugation. This ternary powder mixture was introduced to a specifically developed organic vehicle and screen printed onto AIN. The detailed development process and the results will be presented. (author)

  11. Oxynitride glasses—An overview

    Indian Academy of Sciences (India)

    Unknown

    temperature, compositions etc have been discussed towards a successful synthesis with a thermodynamic approach. Nitrogen content in glass as high as 36⋅8 eq% has been reported by the application of an overpressure of 30 atm N2. Different physical and chemical properties have been discussed in relation to nitro-.

  12. Computer simulation of absorption heat pump using aqueous lithium bromide and ternary nitrate mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R.

    1988-06-01

    A new aqueous ternary mixture consisting of 53 wt % LiNO/sub 3/, 28 wt % KNO/sub 3/, and 19 wt % NaNO/sub 3/is available for high-temperature heat pump applications. The pressure-composition-temperature and the specific enthalpy-concentration-temperature data in the form of correlated polynomial expressions are used in a computer program to simulate results of a temperature amplifier heat pump with LiBr/H/sub 2/O and ternary nitrate/H/sub 2/O mixtures as working fluids. In the absence of adequate thermophysical data for the fluids, the study serves as a best guess first approximation. The results show that the ternary nitrate mixture potentially has approximately a 10% advantage in COP and a 15% advantage in temperature lifts over aqueous LiBr at high temperatures. Ternary nitrates are hampered by crystallization at low waste heat temperatures and cannot operate competitively in the low lift and waste heat temperature regions. The potential performance advantage at high temperatures for the ternary nitrate mixture is sufficiently attractive to justify additional work to obtain adequate thermodynamic transport and corrosion data. 10 refs., 11 figs.

  13. Crystallization, data collection and processing of the chymotrypsin–BTCI–trypsin ternary complex

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, Gisele Ferreira; Teles, Rozeni Chagas Lima; Cavalcante, Nayara Silva; Neves, David; Ventura, Manuel Mateus [Laboratório de Biofísica, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília-DF (Brazil); Barbosa, João Alexandre Ribeiro Gonçalves, E-mail: joao@lnls.br [Center for Structural Molecular Biology (CeBiME), Brazilian Synchrotron Light Laboratory (LNLS), CP 6192, 13083-970 Campinas-SP (Brazil); Freitas, Sonia Maria de, E-mail: joao@lnls.br [Laboratório de Biofísica, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília-DF (Brazil)

    2007-12-01

    A ternary complex of the proteinase inhibitor (BTCI) with trypsin and chymotrypsin was crystallized and its crystal structure was solved by molecular replacement. A ternary complex of the black-eyed pea trypsin and chymotrypsin inhibitor (BTCI) with trypsin and chymotrypsin was crystallized by the sitting-drop vapour-diffusion method with 0.1 M HEPES pH 7.5, 10%(w/v) polyethylene glycol 6000 and 5%(v/v) 2-methyl-2,4-pentanediol as precipitant. BTCI is a small protein with 83 amino-acid residues isolated from Vigna unguiculata seeds and is able to inhibit trypsin and chymotrypsin simultaneously by forming a stable ternary complex. X-ray data were collected from a single crystal of the trypsin–BTCI–chymotrypsin ternary complex to 2.7 Å resolution under cryogenic conditions. The structure of the ternary complex was solved by molecular replacement using the crystal structures of the BTCI–trypsin binary complex (PDB code) and chymotrypsin (PDB code) as search models.

  14. Effect on strength of ternary alloying additions in L12 intermetallics

    International Nuclear Information System (INIS)

    Wu Yuanpang.

    1991-01-01

    The thermodynamic properties of {111} antiphase boundaries (APBs) as well as the site preference of ternary additions in an A 3 B intermetallic with L1 2 structure are studied, using a thermodynamic model. A survey of the results from a variety of ternary alloying additions to Ni 3 Al has shown that there is a conflict in the actual role which solid solution strengthening plays in the athermal increment of yield strength. For instance, a good quantitative agreement with linear concentration law is observed only in alloys with stoichiometric compositions but not in the general case of non-stoichiometric alloys. In the light of the possibility that micro-segregation could explain the experimental discrepancy, the author extends the binary solid solution strengthening theory to the ternary system in an L1 2 structure for the four real systems of Ni-Al-Si, Ni-Al-Ti, Ni-Al-Hf, and Ni-Al-V. It is found that ternary site preference plays an important role in the ternary solid solution strengthening theory with L1 2 structure. Good quantitative agreement was found between the calculated and experimentally measured strength for both stoichiometric and nonstoichiometric alloys

  15. Monitoring ligand-dependent assembly of receptor ternary complexes in live cells by BRETFect.

    Science.gov (United States)

    Cotnoir-White, David; El Ezzy, Mohamed; Boulay, Pierre-Luc; Rozendaal, Marieke; Bouvier, Michel; Gagnon, Etienne; Mader, Sylvie

    2018-03-13

    There is currently an unmet need for versatile techniques to monitor the assembly and dynamics of ternary complexes in live cells. Here we describe bioluminescence resonance energy transfer with fluorescence enhancement by combined transfer (BRETFect), a high-throughput technique that enables robust spectrometric detection of ternary protein complexes based on increased energy transfer from a luciferase to a fluorescent acceptor in the presence of a fluorescent intermediate. Its unique donor-intermediate-acceptor relay system is designed so that the acceptor can receive energy either directly from the donor or indirectly via the intermediate in a combined transfer, taking advantage of the entire luciferase emission spectrum. BRETFect was used to study the ligand-dependent cofactor interaction properties of the estrogen receptors ERα and ERβ, which form homo- or heterodimers whose distinctive regulatory properties are difficult to dissect using traditional methods. BRETFect uncovered the relative capacities of hetero- vs. homodimers to recruit receptor-specific cofactors and regulatory proteins, and to interact with common cofactors in the presence of receptor-specific ligands. BRETFect was also used to follow the assembly of ternary complexes between the V2R vasopressin receptor and two different intracellular effectors, illustrating its use for dissection of ternary protein-protein interactions engaged by G protein-coupled receptors. Our results indicate that BRETFect represents a powerful and versatile technique to monitor the dynamics of ternary interactions within multimeric complexes in live cells.

  16. A new method to estimate the atomic volume of ternary intermetallic compounds

    International Nuclear Information System (INIS)

    Pani, M.; Merlo, F.

    2011-01-01

    The atomic volume of an A x B y C z ternary intermetallic compound can be calculated starting from volumes of some proper A-B, A-C and B-C binary phases. The three methods by Colinet, Muggianu and Kohler, originally used to estimate thermodynamic quantities, and a new method here proposed, were tested to derive volume data in eight systems containing 91 ternary phases with the known structure. The comparison between experimental and calculated volume values shows the best agreement both for the Kohler method and for the new proposed procedure. -- Graphical abstract: Synopsys: the volume of a ternary intermetallic compound can be calculated starting from volumes of some binary phases, selected by the methods of Colinet, Muggianu, Kohler and a new method proposed here. The so obtained values are compared with the experimental ones for eight ternary systems. Display Omitted Research highlights: → The application of some thermodinamic methods to a crystallochemical problem. → The prevision of the average atomic volume of ternary intermetallic phases. → The proposal of a new procedure to select the proper starting set of binary phases.

  17. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    International Nuclear Information System (INIS)

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-01-01

    The aim of this study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. According to our study, the salient features for the ternary alloy are a negative SRO parameter between Ni–Cr and a positive between Cr–Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni–Cr and Ni–Fe pairs and positive for Cr–Cr and Fe–Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. The predicted SRO has an impact on point-defect energetics, electron–phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys

  18. Investigation of itraconazole ternary amorphous solid dispersions based on povidone and Carbopol.

    Science.gov (United States)

    Meng, Fan; Meckel, Jordan; Zhang, Feng

    2017-08-30

    We investigate a ternary system that consists of itraconazole (ITZ) and two polymers: povidone K12 and Carbopol 907. The interactions between these two polymers and their effects on the properties of ternary ITZ amorphous solid dispersions (ASDs) are studied. These two polymers can form a water-insoluble complex in acidic aqueous media. The critical pH is determined to be 4.17. The weight percentage of Carbopol 907 in the interpolymer complex range from 59 to 70%, depending on the initial ratios between these two polymers in the starting solutions. This complexation is driven by a negative enthalpy change from the H-bonding between the two polymers and a positive entropy change from the freed water molecules. Due to the slow precipitation of the interpolymer complex in aqueous media, the attempt to prepare ternary ASD using solvent-controlled coprecipitation is not successful. Melt extrusion is identified to be the only viable method to prepare this ternary ASD. We find that interpolymer complex-based ASDs are physically less stable and demonstrate the poorest drug-release properties when compared to individual polymer-based binary ASDs. This study illustrates that the too strong interaction between polymers in ternary ASDs is detrimental to their performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. First-principles study of ternary bcc alloys using special quasi-random structures

    International Nuclear Information System (INIS)

    Jiang Chao

    2009-01-01

    Using a combination of exhaustive enumeration and Monte Carlo simulated annealing, we have developed special quasi-random structures (SQSs) for ternary body-centered cubic (bcc) alloys with compositions of A 1 B 1 C 1 , A 2 B 1 C 1 , A 6 B 1 C 1 and A 2 B 3 C 3 , respectively. The structures possess local pair and multisite correlation functions that closely mimic those of the random bcc alloy. We employed the SQSs to predict the mixing enthalpies, nearest neighbor bond length distributions and electronic density of states of bcc Mo-Nb-Ta and Mo-Nb-V solid solutions. Our convergence tests indicate that even small-sized SQSs can give reliable results. Based on the SQS energetics, the predicting powers of the existing empirical ternary extrapolation models were assessed. The present results suggest that it is important to take into account the ternary interaction parameter in order to accurately describe the thermodynamic behaviors of ternary alloys. The proposed SQSs are quite general and can be applied to other ternary bcc alloys.

  20. Refractory metal based superalloys

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Vicente, Eduardo E.; Rubiolo, Gerardo H.

    1999-01-01

    Refractory metals are looked as promising materials for primary circuits in fission reactors and even as fusion reactor components. Indeed, superalloys could be developed which take advantage of their high temperature properties together with the benefits of a two- phase (intermetallic compound-refractory metal matrix) coherent structure. In 1993, researchers of the Office National d'Etudes et de Recherches Aerospatiales of France reported the observation of such a coherent structure in the Ta-Ti-Zr-Al-Nb-Mo system although the exact composition is not reported. The intermetallic compound would be Ti 2 AlMo based. However, the formation of this compound and its possible coexistence with a disordered bcc phase in the ternary system Ti-Al-Mo is a controversial subject in the related literature. In this work we develop a technique to obtain homogeneous alloys samples with 50 Ti-25 Al-25 Mo composition. The resulting specimens were characterized by optical and electronic metallography (SEM), microprobe composition measurements (EPMA) and X-ray diffraction (XRD) analyses. The results show the evidence for a bcc (A2→B2) ordering reaction in the Ti-Al-Mo system in the 50 Ti-25 Al-25 Mo composition. (author)

  1. Phase behavior of ternary mannosylerythritol lipid/water/oil systems.

    Science.gov (United States)

    Worakitkanchanakul, Wannasiri; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Rujiravanit, Ratana; Chavadej, Sumaeth; Minamikawa, Hiroyuki; Kitamoto, Dai

    2009-02-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants (BS) abundantly produced from renewable resources by yeast strains of the genus Pseudozyma. In this study, the ternary phase behaviors of two types of MELs, i.e. MEL-A and MEL-B, mixed with water and oil were investigated at 25 degrees C based on polarized optical microscopy and small-angle X-ray scattering (SAXS). When n-decane was used as an oil phase, diacetylated MEL-A formed single-phase water-in-oil (W/O) microemulsion in a remarkably large region. MEL-A, with a negative spontaneous curvature, also formed sponge (L(3)), reverse bicontinuous cubic (V(2)), and lamellar (L(alpha)) phases. Meanwhile, monoacetylated MEL-B, with the opposite configuration of the erythritol moiety, gave single-phase bicontinuous microemulsion and showed a triangular phase diagram dominated by the L(alpha) phase, suggesting that MEL-B has an almost zero spontaneous curvature. Moreover, we succeeded in preparation of oil-in-liquid crystal (O/LC) emulsion in the biphasic L(alpha)+O region of the MEL-B/water/n-decane system. The obtained gel-like emulsion was stable for at least 1 month. These results clearly demonstrated that the difference in the number of acetyl group on the headgroup and/or the chirality of the erythritol moiety drastically changed the phase behavior of MELs. Accordingly, these MELs would be quite distinctive from conventional BS hitherto reported, and would have great potential for the preparation of microemulsion and LC-based emulsion.

  2. Electrochemical combustion of indigo at ternary oxide coated titanium anodes

    Directory of Open Access Journals (Sweden)

    María I. León

    2014-12-01

    Full Text Available The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5 deposited on a Ti substrate (mesh obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.

  3. Characterization and preferential solvation of the hexane/hexan-1-ol/methylbenzoate ternary solvent.

    Science.gov (United States)

    Aparicio, S; Alcalde, R; Leal, J M; García, B

    2005-04-07

    The thermophysical properties of the hexane/hexan-1-ol/methylbenzoate ternary system and its binary constituents were studied at 298.15 K over the whole composition range. The excess and mixing properties calculated from the experimental values combined with the mixture activity coefficients deduced from the UNIFAC group contribution method were used to calculate the integrals of the Kirkwood-Buff fluctuation theory for the ternary system and the binary constituents. Also the local composition and the excess or deficit number of molecules around a central molecule have been determined. The volumetric properties for the ternary system and its binary constituents were correlated and predicted successfully with several cubic equations of state combined with two simple mixing rules. The structural and intermolecular interactions of the mixtures were analyzed on the basis of the measured and derived properties.

  4. Refractive indices of ternary liquid mixtures containing aliphatic alcohols at several temperatures

    Directory of Open Access Journals (Sweden)

    Sovilj Milan N.

    2005-01-01

    Full Text Available The refractive indices of ternary liquid mixtures (2-propanol+2-butanol+ethanol and (chloroform+2-propanol+2-butanol were measured at 20, 25, 30, and 35°C, and atmospheric pressure. The results were used to calculate the refractive index deviations over the entire mole fraction range for the mixtures. The refractive index deviations for the ternary mixtures were further fitted to empirical correlations (Cibulka Nagata-Tamura, and Lopez et al to estimate the ternary fitting parameters. Standard deviations and average percentage deviations from the regression lines are shown. The best fit was obtained by the Nagata-Tamura empirical correlation. Some of the existing predictive equations for the refractive index deviations (Tsao-Smith, Köhler, and Colinet were tested.

  5. Thermodynamic description of the Al-Cu-Yb ternary system supported by first-principles calculations

    Directory of Open Access Journals (Sweden)

    Huang G.

    2016-01-01

    Full Text Available Phase relationships of the ternary Al-Cu-Yb system have been assessed using a combination of CALPHAD method and first principles calculations. A self-consistent thermodynamic parameter was established based on the experimental and theoretical information. Most of the binary intermetallic phases, except Al3Yb, Al2Yb, Cu2Yb and Cu5Yb, were assumed to be zero solubility in the ternary system. Based on the experimental data, eight ternary intermetallic compounds were taken into consideration in this system. Among them, three were treated as line compounds with large homogeneity ranges for Al and Cu. The others were treated as stoichiometric compounds. The calculated phase diagrams were in agreement with available experimental and theoretical data.

  6. A constitutional investigation of the Mo-Pd-Rh ternary system at 1100deg C

    International Nuclear Information System (INIS)

    Guerler, R.; Pratt, J.N.

    1991-01-01

    Phase relations in the system Mo-Pd-Rh were studied at 1100deg C using conventionally melted and ultrarapidly solidified samples. Optical microscopy, X-ray diffraction, scanning electron microscopy and electron probe microanalysis were used for phase characterisation. The complete isothermal section at 1100deg C was established. The Mo bcc phase was found to have a very limited solid solution range whereas the ternary fcc solid solution originating on the Pd-Rh binary is the dominant phase in the system at this temperature. The centre of the isothermal is dominated by the ternary extension of the Mo-Rh hcp intermediate phase. The three phase (bcc+fcc+hcp) equilibrium region is located very near to the Mo-Pd binary system. No additional ternary intermediate phases were observed. The results are consistent with an isothermal section reported at higher temperatures. (orig.)

  7. Experimental investigation of phase equilibria in the Ni-Nb-V ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingjun; Yang, Shuiyuan; Wang, Cuiping [Xiamen Univ. (China). Dept. of Materials Science and Engineering; Xiamen Univ. (China). Fujian Provincial Key Lab. of Materials Genome; Zhang, Xianjie; Jiang, Hengxing; Shi, Zhan [Xiamen Univ. (China). Dept. of Materials Science and Engineering

    2017-09-15

    The phase equilibria of the Ni-Nb-V ternary system at 1000 C and 1200 C were established using electron probe microanalysis, X-ray diffraction and differential scanning calorimetry. The results of the investigation revealed that: (1) The Nb solubility in (Ni) and σ{sup '} phases was less than 10 at.%; (2) A ternary compound τ (NiNbV) was confirmed, in which V had a large solubility; (3) A new liquid region was evident at 1200 C, but was absent at 1000 C; (4) The lattice constants of Ni{sub 3}Nb and Ni{sub 6}Nb{sub 7} phase decreased with increase in V content in the Ni{sub 3}Nb and Ni{sub 6}Nb{sub 7}. The phase equilibria of the Ni-Nb-V ternary system will contribute to its thermodynamic assessment.

  8. A Novel Method for Detecting and Computing Univolatility Curves in Ternary Mixtures

    DEFF Research Database (Denmark)

    Shcherbakov, Nataliya; Rodriguez-Donis, Ivonne; Abildskov, Jens

    2017-01-01

    of the generalized univolatility and unidistribution curves in the three dimensional composition – temperature state space lead to a simple and efficient algorithm of computation of the univolatility curves. Two peculiar ternary systems, namely diethylamine – chloroform – methanol and hexane – benzene......Residue curve maps (RCMs) and univolatility curves are crucial tools for analysis and design of distillation processes. Even in the case of ternary mixtures, the topology of these maps is highly non-trivial. We propose a novel method allowing detection and computation of univolatility curves...... in homogeneous ternary mixtures independently of the presence of azeotropes, which is particularly important in the case of zeotropic mixtures. The method is based on the analysis of the geometry of the boiling temperature surface constrained by the univolatility condition. The introduced concepts...

  9. H2SO4-HNO3-H2O ternary system in the stratosphere

    Science.gov (United States)

    Kiang, C. S.; Hamill, P.

    1974-01-01

    Estimation of the equilibrium vapor pressure over the ternary system H2SO4-HNO3-H2O to study the possibility of stratospheric aerosol formation involving HNO3. It is shown that the vapor pressures for the ternary system H2SO4-HNO3-H2O with weight composition around 70-80% H2SO4, 10-20% HNO3, 10-20% H2O at -50 C are below the order of 10 to the minus 8th mm Hg. It is concluded that there exists more than sufficient nitric acid and water vapor in the stratosphere to participate in ternary system aerosol formation at -50 C. Therefore, HNO3 should be present in stratospheric aerosols, provided that H2SO4 is also present.

  10. Ternary particles with extreme N/Z ratios from neutron-induced fission

    Energy Technology Data Exchange (ETDEWEB)

    Koster, U.; Faust, H.; Friedrichs, T.; Oberstedt, S.; Fioni, G.; Grob, M.; Ahmad, I. J.; Devlin, M.; Heinz, A.; Kondev, F. G.; Lauritsen, T.; Sarantites, D. G.; Siem, S.; Sobotka, L. G.; Sonzogni, A.

    2000-05-16

    The existing ternary fission models can well reproduce the yields of the most abundant light charged particles. However, these models tend to significantly overestimate the yields of ternary particles with an extreme N/Z ratio: {sup 3}He, {sup 11}Li, {sup 14}Be, etc. The experimental yields of these isotopes were investigated with the recoil separator LOHENGRIN down to a level of 10{sup {minus}10} per fission. Results from the fissioning systems {sup 233}U (n{sub th}, f), {sup 235}U(n{sub th},f), {sup 239}Pu(n{sub th},f) {sup 241}Pu(n{sub th},f) and {sup 245}Cm(n{sub th},f) are presented and the implications for the ternary fission models are discussed.

  11. Ternary mixture of fatty acids as phase change materials for thermal energy storage applications

    Directory of Open Access Journals (Sweden)

    Karunesh Kant

    2016-11-01

    Full Text Available The present study deals with the development of ternary mixtures of fatty acids for low temperature thermal energy storage applications. The commercial grade fatty acids such as Capric Acid (CA, Lauric Acid (LA, Palmitic Acid (PA and Stearic Acid (SA, have been used to prepare stable, solid–liquid phase change material (PCM for the same. In this regard, a series of ternary mixture i.e. CA–LA–SA (CLS and CA–PA–SA (CPS have been developed with different weight percentages. Thermal characteristics of these developed ternary mixture i.e. melting temperature and latent heat of fusion have been measured by using Differential Scanning Calorimeter (DSC technique. The synthesized materials are found to have melting temperature in the range of 14–21 °C (along with adequate amount of latent heat of fusion, which may be quite useful for several low temperature thermal energy storage applications.

  12. Phase Relations in Ternary Systems in the Subsolidus Region: Methods to Formulate Solid Solution Equations and to Find Particular Compositions

    Science.gov (United States)

    Alvarez-Montan~o, Victor E.; Farías, Mario H.; Brown, Francisco; Mun~oz-Palma, Iliana C.; Cubillas, Fernando; Castillon-Barraza, Felipe F.

    2017-01-01

    A good understanding of ternary phase diagrams is required to advance and/or to reproduce experimental research in solid-state and materials chemistry. The aim of this paper is to describe the solutions to problems that appear when studying or determining ternary phase diagrams. A brief description of the principal features shown in phase diagrams…

  13. Formation and characterization of zein-propylene glycol alginate-surfactant ternary complexes: Effect of surfactant type.

    Science.gov (United States)

    Dai, Lei; Sun, Cuixia; Wei, Yang; Zhan, Xinyu; Mao, Like; Gao, Yanxiang

    2018-08-30

    In this study, zein, propylene glycol alginate (PGA) and surfactant ternary complexes were fabricated by antisolvent co-precipitation method. Two types of surfactants (rhamnolipid and lecithin) were applied to generate zein-PGA-rhamnolipid (Z-P-R) and zein-PGA-lecithin (Z-P-L) ternary complexes, respectively. Results showed that the surfactant types significantly affected the properties of ternary complexes. The formation of ternary complexes was mainly due to the non-covalent interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among zein, PGA and surfactants. Moreover, the thermal stability of ternary complexes was enhanced with increasing the levels of both surfactants. Notably, ternary complex dispersions exhibited better stability against pH from 2 to 8. Furthermore, a compact network structure was observed in Z-P-R ternary complex, while Z-P-L ternary complex remained the spherical structure. These findings would provide new insights into the development of novel delivery system and expand the options, when zein-based complexes were utilized under different environment conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  15. Possible Mechanisms of Ternary Fission in the 197Au+197 Au System at 15 AMeV

    International Nuclear Information System (INIS)

    Jun-Long, Tian; Xian, Li; Shi-Wei, Yan; Xi-Zhen, Wu; Zhu-Xia, Li

    2009-01-01

    Ternary fission in 197 Au+ 197 Au collisions at 15 A MeV is investigated by using the improved quantum molecular dynamical (ImQMD) model. The experimental mass distributions for each of the three fragments are reproduced for the first time without any freely adjusting parameters. The mechanisms of ternary fission in central and semi-central collisions are dynamically studied. In direct prolate ternary fission, two necks are found to be formed almost simultaneously and rupture sequentially in a very short time interval. Direct oblate ternary fission is a very rare fission event, in which three necks are formed and rupture simultaneously, forming three equally sized fragments along space-symmetric directions in the reaction plane. In sequential ternary fission a binary division is followed by another binary fission event after hundreds of fm/c. (nuclear physics)

  16. OBJECT TRACKING WITH ROTATION-INVARIANT LARGEST DIFFERENCE INDEXED LOCAL TERNARY PATTERN

    Directory of Open Access Journals (Sweden)

    J Shajeena

    2017-02-01

    Full Text Available This paper presents an ideal method for object tracking directly in the compressed domain in video sequences. An enhanced rotation-invariant image operator called Largest Difference Indexed Local Ternary Pattern (LDILTP has been proposed. The Local Ternary Pattern which worked very well in texture classification and face recognition is now extended for rotation invariant object tracking. Histogramming the LTP code makes the descriptor resistant to translation. The histogram intersection is used to find the similarity measure. This method is robust to noise and retain contrast details. The proposed scheme has been verified on various datasets and shows a commendable performance.

  17. Ternary blend of conjugated polymers for broadening the absorption bandwidth of polymer solar cells

    OpenAIRE

    Benten, Hiroaki; Nishida, Takaya; Mori, Daisuke; Ohkita, Hideo; Ito, Shinzaburo

    2016-01-01

    Ternary blend all-polymer solar cells are developed to broaden the absorption bandwidth of the photoactive layer. A wide-bandgap polymer with absorption in the visible region is introduced as a third polymer into a low-bandgap donor/acceptor binary polymer blend showing absorption in the near-infrared (NIR) region. In the ternary blend solar cell, the external quantum efficiency (EQE) is improved in the visible wavelength region, while retaining the excellent EQE of the host binary blend in t...

  18. Rapid assay of the comparative degradation of acetaminophen in binary and ternary combinations

    Directory of Open Access Journals (Sweden)

    Adnan Mujahid

    2014-09-01

    Full Text Available The study is intended to monitor the comparative degradation rates of acetaminophen in binary and ternary combinations by UV–vis spectroscopy. The drugs were exposed to UV-rays in blister packing. The exposition time was 24, 48 and 72 h for both shorter and longer wavelengths. The problem of overlapping UV bands of aspirin and caffeine with acetaminophen was solved by extracting them in diethylether, therefore, we developed a straightforward, rapid and accurate assay method for measuring acetaminophen concentration in binary and ternary mixtures and to monitor its degradation.

  19. Ternary chalcogenide micro-pseudocapacitors for on-chip energy storage

    KAUST Repository

    Kurra, Narendra

    2015-05-11

    We report the successful fabrication of a micro-pseudocapacitor based on ternary nickel cobalt sulfide for the first time, with performance substantially exceeding that of previously reported micro-pseudocapacitors based on binary sulfides. CoNi2S4 micro-pseudocapacitor exhibits a maximum energy density of 18.7 mWh/cm3 at a power density of 1163 mW/cm3, opens up an avenue for exploring new family of ternary oxides/sulfides based micro-pseudocapacitors.

  20. Search for new ternary Al, Ga or In containing phases using information forecasting system

    International Nuclear Information System (INIS)

    Kiseleva, N.N.; Burkhanov, G.S.

    1989-01-01

    Automated system of search for regularities in the formation of crystal phases and forecasting of new compounds with required properties, comprising data base on the properties of ternary inorganic compounds and cybernetic forecasting system, has been developed. General principles of operation of the developed information-forecasting system are considered. Efficiency of the system operation is shown, using as an example the search for new ternary compounds with aluminium, gallium and indium, crystallized in ZrNiAl, TiNiSi, ThCr 2 Si 2 , CaAl 2 Si 2 structural types. Results of the above-mentioned phases forecasting are shown